WO2012006763A1 - 聚光型太阳能电池模块的二次聚光装置 - Google Patents

聚光型太阳能电池模块的二次聚光装置 Download PDF

Info

Publication number
WO2012006763A1
WO2012006763A1 PCT/CN2010/001200 CN2010001200W WO2012006763A1 WO 2012006763 A1 WO2012006763 A1 WO 2012006763A1 CN 2010001200 W CN2010001200 W CN 2010001200W WO 2012006763 A1 WO2012006763 A1 WO 2012006763A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
mirror
concentrating
sunlight
reflective
Prior art date
Application number
PCT/CN2010/001200
Other languages
English (en)
French (fr)
Inventor
林赐鸿
林赐海
Original Assignee
威升开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威升开发股份有限公司 filed Critical 威升开发股份有限公司
Publication of WO2012006763A1 publication Critical patent/WO2012006763A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention provides a secondary concentrating device, and more particularly to a tubular member disposed in a concentrating solar cell module, and relates to a reflective channel of the tubular member.
  • a conventional concentrating solar cell module is generally composed of a mirror and a Concentrator Photovoltaic (CPV), and generally forms a concentrating chamber in a casing, and the concentrating solar energy
  • the battery is disposed in the chamber, and the mirror is disposed on the wall of the casing at the top of the chamber to reflect the external sunlight into the chamber, so that the concentrating solar battery is irradiated by the sunlight reflected by the mirror to generate electricity;
  • the practice of concentrating includes the use of Fresnel lenses and the Cassegrain optical system.
  • the main material of the above concentrating solar cell is gallium arsenide (GaAs), which is a three-five (III-V) material, and the solar cell generally made of silicon crystal material can only absorb 400 in the solar language.
  • GaAs gallium arsenide
  • concentrating type is different from silicon wafer solar technology, which can absorb a wide range of solar light transmission energy through multi-junction compound semiconductor, and the heat resistance of concentrating solar cell is higher than that of general crystal
  • the round solar cell is high again; therefore, the solar power generation efficiency can be improved and the battery use area can be saved by using a large-area mirror to focus the outside sunlight onto a small area of the concentrating solar cell.
  • the concentrating technology of the existing concentrating solar cell module can be disclosed in Taiwan province of China.
  • An object of the present invention is to provide a secondary concentrating device for a concentrating solar cell module, which overcomes the above-mentioned prior art, which causes the solar cell surface to receive sunlight due to the difference between strong and weak solar rays. The problem of uneven illumination intensity.
  • the secondary concentrating device of the concentrating solar cell module of the present invention comprises: a mirror capable of reflecting sunlight to the near side of the mirror to form a concentrating region;
  • a solar cell chip disposed in the concentrating region, and a light receiving end surface of the solar cell chip is directed toward the mirror to reflect sunlight of the concentrating region;
  • a tube member is disposed in the concentrating region adjacent to the solar cell chip, and the tube ends form a wide nozzle at a focus position of the mirror for reflecting sunlight, and a light-emitting end surface a narrow nozzle at the opposite end;
  • a reflective channel formed between the wide nozzle and the narrow nozzle, and the reflective channel gradually tapers from the wide nozzle toward the narrow nozzle, the reflective channel having a solar light A specific length of the plurality of reflections in the reflective channel, the specific length being set according to the wavelength of the sunlight reflected.
  • the plurality of solar rays reflected by the mirror into the concentrating region can be focused on the wide nozzle of the tube member, and then penetrate into the reflective channel, so that the solar light is carried in the reflective channel.
  • Sub-reflection, and the number of times of reflection of the solar light is affected by the inner wall of the gradually narrowing of the reflective channel, and gradually increases toward the narrow nozzle, so that the sunlight can be reflected to uniformly illuminate the light-receiving end face via the narrow nozzle
  • Driving the solar cell chip to generate electricity accordingly, to ensure the normal power generation efficiency of the solar cell chip.
  • a chamber is formed inside, and a top of the casing forms a window for the sunlight to enter, and communicates with the chamber, the mirror is disposed at the window to space the cavity
  • the chamber forms the concentrating zone.
  • the mirror extends downward into the chamber in an arc concave shape, and an upwardly facing arc-shaped concave reflecting surface is formed on the mirror, the concentrating region being located between the window and the arc concave reflecting surface.
  • the auxiliary window is disposed above the mirror, and the solar cell chip is located on the concave reflective surface of the arc.
  • the mirror reflects the auxiliary light through the concave reflective surface of the arc, and the auxiliary mirror has a
  • the arc-shaped reflecting surface irradiated by the sunlight reflected by the concave concave reflecting surface can reflect the sunlight to illuminate the solar cell chip.
  • the solar cell chip is adjacent to the window and is located above the arc-shaped reflective surface of the mirror, and the mirror reflects the solar cell chip by reflecting sunlight through the concave concave reflecting surface.
  • the mirror may be a convex lens or a Fresnel lens.
  • the invention also encompasses:
  • the tube member may be made of a non-transmissive material such that the inner wall of the retroreflective passageway blocks solar radiation to the area surrounding the solar cell chip.
  • the pipe member may be a rectangular pipe or a circular pipe to facilitate the processing of the pipe.
  • the inner wall of the reflective channel is formed with a reflective surface for the solar light to be reflected multiple times in the reflective channel; and the reflective surface is formed by a high reflectivity reflective material, and the reflective material may be aluminum or silver. .
  • the secondary concentrating device of the concentrating solar cell module of the present invention overcomes the difference in the prior art, due to the difference between the strong and weak sunlight, thereby causing the solar cell
  • the surface receives the problem of uneven intensity of sunlight.
  • Figure 1 is an exploded perspective view of the first embodiment of the present invention
  • FIG. 2 is a perspective view of a solar cell chip and a tube member of the present invention
  • Figure 3 is a cross-sectional view of the embodiment of Figure 1;
  • Figure 4 is a partial enlarged cross-sectional view of the pipe member of Figure 3;
  • FIG. 5 is a perspective view of another solar cell chip and tube of the present invention.
  • Figure 6 is a cross-sectional view showing a second embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a third embodiment of the present invention.
  • FIG. 1 is a perspective exploded view of the first embodiment of the present invention, and the secondary concentrating device of the concentrating solar cell module of the present invention is illustrated with FIG. 2 and FIG. a mirror 2, a concentrating solar cell chip 3, a tube member 4 and a reflective channel 40; a chamber 11 is formed inside the housing 1, and a window 12 is formed on the top of the housing 1 for sunlight to enter. And communicating with the chamber 11.
  • the mirror 2 is disposed in the window 12, and is capable of reflecting external sunlight to the chamber 11 in the vicinity of the mirror 2, and forming a concentrating region 13 in the chamber 11.
  • the mirror 2 can be implemented in this embodiment.
  • the arc is concave, and the center of the mirror 2 extends downward into the chamber 11 in an arc concave shape, and forms an upward direction on the top of the mirror 2.
  • a concave concave reflecting surface 21 of the square, and the compartment 11 forms the collecting area 13, so that the collecting area 13 is located between the window 12 and the concave concave reflecting surface 21, and the reflecting mirror 2 is through the concave concave reflecting surface 21
  • the outside sunlight is reflected into the concentrating area 13 for focusing.
  • the window 12 is provided with a lens 6 (shown in FIGS. 1 and 3) on the top of the mirror 2.
  • the lens 6 can be made of glass or a glazing material, and a window 5 is disposed at the center of the window 12, and is disposed at the window.
  • the central bottom surface of the lens 6 is located in the concentrating area 13 above the center of the arc-shaped concave reflecting surface 21 of the mirror 2; the solar cell chip 3 is disposed in the concentrating area 13 of the chamber 11 and is located in the concave shape of the arc
  • the center of the reflective surface 21, and a light-receiving end surface 31 of the solar cell chip 3 is reflected toward the mirror 2 to the sunlight of the concentrating area 13;
  • the reflection area of the mirror 2 is larger than the reflection area of the auxiliary mirror 5, and the auxiliary mirror
  • the reflection area of 5 is larger than the area of the light-receiving end surface 31 of the solar cell chip 3, and the mirror 2, the auxiliary mirror 5 and the solar cell chip 3 are arranged to form a Geisell Green optical system; thus, the mirror 2
  • the auxiliary mirror 5 can be irradiated by reflecting the external sunlight through the concave concave reflecting surface 21, and the bottom of the auxiliary mirror 5 has a downwardly convex curved reflecting surface 51, which
  • the tube member 4 is seated in the concentrating area 13 (as shown in FIGS. 1 and 3) and adjacent to the top end of the solar cell chip 3, and the double ends of the tube member 4 respectively form a reflection of sunlight at the mirror 2.
  • a wide nozzle 41 (shown in Figures 2 and 4) at a focus position, and a narrow nozzle 42 at the opposite end of the light receiving end 31; in fact, the tube 4 can be vertically disposed at the top of the solar cell chip 3
  • the bottom end of the tube member 4 is fixed at the top center of the arc-shaped concave reflecting surface 21, and the narrow nozzle 42 at the bottom end of the tube member 4 covers the light receiving end surface 31 of the solar cell chip 3, and the wide nozzle 41 at the top end of the tube member 4 faces the auxiliary mirror.
  • the tube member 4 may be made of a non-transmissive metal, plastic or ceramic material, and the tube members 4, 4a may be A rectangular tube or a circular tube (as shown in Figure 5) to facilitate the processing of the tube 4.
  • the reflective channel 40 is formed between the wide nozzle 41 and the narrow nozzle 42 (as shown in FIGS. 2 and 4), and the reflective channel 40 is gradually reduced in diameter from the wide nozzle 41 toward the narrow nozzle 42.
  • the reflective channel 40 is formed in a wide and narrow tapered shape; the reflective channel 40 has a specific length hi for the solar light to be reflected multiple times in the reflective channel 40, and the specific length hi is reflected according to the The wavelength of the sunlight is set.
  • the inner wall of the reflective channel 40 is coated with a reflective surface 43 for allowing the sunlight to be reflected multiple times in the reflective channel 40, and the reflective surface 43 can be
  • the reflective material of high reflectivity is disposed, and the reflective material may be aluminum or silver; in addition, since the tube 4 can be made of a non-transparent material, the The inner wall of the light tunnel 40 is also capable of blocking the radiation of sunlight to the area around the solar cell chip 3.
  • the solar light 7 can enter the concentrating zone 13 through the lens 6, and illuminate the The concave concave reflecting surface 21 of the mirror 2, and the arc concave reflecting surface 21 reflects the plurality of solar rays 7 to illuminate the arc convex reflecting surface 51 of the auxiliary mirror 5, and the arc convex reflecting surface 51 reflects the plurality of solar rays.
  • 7 is focused on the wide nozzle 41 at the top end of the tube member 4, and then penetrates into the reflective channel 40 (as shown in FIG. 4), so that the solar ray 7 is reflected multiple times on the reflective surface 43 of the inner wall of the reflective channel 40.
  • the number of times of reflection of the solar ray 7 is affected by the reflective surface 43 of the gradually constricted inner wall of the reflective channel 40, and gradually increases toward the narrow nozzle 42; therefore, the solar ray 7 can be reflected through the narrow
  • the nozzle 42 uniformly illuminates the light receiving end face 31 to drive the solar cell chip 3 to generate electricity; accordingly, the normal power generation efficiency of the solar cell chip 3 is ensured.
  • FIG. 6 a cross-sectional view of a second embodiment of the present invention is disclosed, which illustrates that the first embodiment is different in that the mirror 2a can be a convex lens or a Fresnel lens. And omitting the above-mentioned lens and auxiliary mirror, etc., the chamber 11 below the mirror 2a forms the concentrating area 13, and the solar cell chip 3 is located on the inner wall surface of the chamber 11 below the center of the mirror 2a, the reflection The reflection area of the mirror 2a is larger than the area of the light-receiving end surface 31 of the solar cell chip 3; thus, when the sunlight illuminates the top surface of the casing 1, the solar ray 7 is refracted by the mirror 2a, and the plurality of solar rays 7 are made.
  • the mirror 2a can be a convex lens or a Fresnel lens.
  • the chamber 11 below the mirror 2a forms the concentrating area 13
  • the solar cell chip 3 is located on the inner wall surface of the chamber 11 below the center of
  • a wide nozzle 41 focusing on the top end of the tube member 4 is further inserted into the reflective channel 40, so that the solar ray 7 is reflected multiple times on the reflective surface 43 of the inner wall of the reflective channel 40, and the solar ray 7 can be reflected.
  • the narrow nozzle 42 uniformly illuminates the light receiving end face 31 to drive the solar cell chip 3 to generate electricity, and the remaining components and embodiments are equivalent to the first embodiment described above.
  • FIG. 7 a cross-sectional view of a third embodiment of the present invention is disclosed, which illustrates that the first embodiment is different in that the auxiliary mirror is omitted, and the solar cell chip 3 is located in the lens 6.
  • a central bottom surface adjacent to the window 12, and the solar cell chip 3 is located in the concentrating area 13 above the center of the arc-shaped reflective surface 21 of the mirror 2; the tube 4 can be vertically disposed below the solar cell chip 3
  • the central bottom surface of the lens 6 has a narrow nozzle 42 covering the light receiving end face 31 of the solar cell chip 3, and the wide nozzle 41 of the tube member 4 faces the arc-shaped concave reflecting surface 21 of the mirror 2 and is reflected by the mirror 2 a focus position of the sunlight; a reflection area of the mirror 2 is larger than an area of the light-receiving end surface 31 of the solar cell chip 3; thus, when sunlight illuminates the top surface of the casing 1, the sunlight 7 can illuminate the mirror through the lens 6.
  • the arc-shaped concave reflecting surface 21 of the arc, and the arc-shaped concave reflecting surface 21 reflects the plurality of solar rays 7 to focus on the wide nozzle 41 of the tube member 4, and then penetrates into the reflecting channel 40, so that the sunlight 7 is reflected A plurality of reflections are made on the reflective surface 43 of the inner wall of the channel 40, and the solar ray 7 can be reflected and uniformly irradiated through the narrow nozzle 42
  • the light end face 31 drives the solar cell chip 3 to generate electricity, and the remaining components and embodiments are equivalent to the first embodiment described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供了一种聚光型太阳能电池模块的二次聚光装置,包括反射镜(2)用于反射太阳光以形成聚光区(13),配置在聚光区中的太阳能电池芯片(3)和管件(4),其中管件的一端为宽管口(41),反射镜反射的太阳光通过该宽管口照射进入该管件,管件的另一端为位于太阳能电池芯片对应端的窄管口(42),该宽管口和窄管口之间形成一反光通道(40),并且该反光通道具有一可供太阳光于通道长度内进行多次反射的预定长度以便反射太阳光均匀照射太阳能电池芯片,据以确保太阳能电池芯片的正常发电效率。

Description

聚光型太阳能电池模块的二次聚光装置 技术领域
本发明提供一种二次聚光装置, 特别是关于一种设于聚光型太阳能电池模块内 的管件, 并涉及该管件的一反光通道。 背景技术 '
传统的聚光型太阳能电池模块, 一般是由反射镜及聚光型太阳能电池 (Concentrator Photovoltaic, CPV) 组配而成, 通常是在一壳体内形成一聚光用腔室, 该聚光型太阳能电池设于腔室内, 且反射镜配置于腔室顶部的壳体壁面上, 以反射 外界太阳光至腔室内, 令聚光型太阳能电池接受反射镜反射的太阳光照射而发电; 目前利用反射镜聚光的作法, 包括有利用菲涅尔透镜 (Fresnel Lenes)及盖赛格林式 (Cassegrain)光学系统等。
且知,上述聚光型太阳能电池的主要材料为砷化镓 (GaAs),也就是三五族 (III-V) 材料, 一般采用硅晶材料制成的太阳能电池只能吸收太阳光语中 400 ~ l,100nm 波 长的能量, 而聚光型不同于硅晶圓太阳能技术, 可透过多接面化合物半导体吸收较 宽广的太阳光傳能量, 且聚光型太阳能电池的耐热性比一般晶圆型太阳能电池又来 的高; 因此, 可通过使用较大面积的反射镜将外界太阳光聚焦至较小面积的聚光型 太阳能电池上, 来提高太阳能的发电效率, 并节省电池使用面积。
现有的聚光型太阳能电池模块的聚光技术, 可见揭露于中国台湾省第
201015733号及第 M360983号专利案中; 然而, 其中的反射镜于反射太阳光照射聚 光型太阳能电池期间, 反射至腔室内的太阳光也容易辐射至聚光型太阳能电池周围 的区域, 而使该太阳能电池所能接收的太阳光的辐射能产生一定程度的衰减;此外, 该反射镜也容易受到外界环境或人为因素的影响, 而使反射镜所反射至太阳能电池 表面的多道太阳光线之间形成强、 弱上的差异, 导致太阳能电池表面接受太阳光照 射的强度不均匀。
因此, 现有较为先进的-技术中, 已存在一种可将太阳光聚焦于太阳能电池上的 聚光器, 揭露于中国台湾省第 1277772号专利案中, 其中的聚光器呈浅薄的杯状, 且反射镜所反射的太阳光可直接穿过该聚光器而聚焦于聚光型太阳能电池表面; 如 此, 虽能利用聚光器的内壁遮挡太阳光辐射至太阳能电池周围的区域, 但其反射镜 反射的太阳光直接聚焦于太阳能电池表面, 而具有上述太阳能电池表面接受太阳光 照射的强度不均匀的状况, 亟需加以改善。 发明内容
本发明的目的在于提供一种聚光型太阳能电池模块的二次聚光装置, 以克服上 述先前技术中, 由于多道太阳光线之间强、 弱上的差异, 而导致太阳能电池表面接 受太阳光照射强度不均匀的问题。
为能实现上述的目的, 本发明聚光型太阳能电池模块的二次聚光装置, 包含: 一反射镜, 能够反射太阳光至该反射镜近侧聚焦, 而形成一聚光区;
一太阳能电池芯片, 配置于该聚光区内, 且该太阳能电池芯片的一受光端面朝 向该反射镜反射至该聚光区的太阳光;
一管件, 座落于该聚光区内, 并邻近于该太阳能电池芯片, 且该管件双端分别 形成一位于该反射镜反射太阳光的聚焦位置的宽管口, 及一位于该受光端面的相对 端的窄管口; 及
一反光通道, 形成于该宽管口及该窄管口之间, 且该反光通道自该宽管口朝该 窄管口方向逐渐缩口, 该反光通道并具有一可供所述太阳光于该反光通道内进行多 次反射的特定长度, 该特定长度依据其所反射的太阳光的波长加以设定。
藉由上述, 经由该反射镜反射至聚光区内的多道太阳光线, 能够聚焦于该管件 的宽管口, 进而透入该反光通道内, 致使所述太阳光线于该反光通道内进行多次反 射, 且所述太阳光线的反射次数受到该反光通道的逐渐缩口的内壁影响, 而朝该窄 管口方向逐渐增多, 因此能够反射所述太阳光经由该窄管口均匀照射该受光端面, 驱使该太阳能电池芯片发电; 据此, 以确保太阳能电池芯片的正常发电效率。其中, 更加包含一壳体, 内部形成一腔室, 且该壳体顶部形成一可供太阳光照射进入 的窗口, 而与该腔室相连通, 该反射镜配置于该窗口, 以间隔该腔室形成该聚光区。
所述反射镜以弧凹形态向下方伸入该腔室内, 而于该反射镜上形成一朝向上方 的弧凹状反光面, 该聚光区位于该窗口与该弧凹状反光面之间。 该窗口配置一辅助 镜, 位于该反射镜上方, 该太阳能电池芯片位于该弧凹状反光面上, 该反射镜经由 该弧凹状反光面反射太阳光照射该辅助镜, 且该辅助镜上具有一可接受该弧凹状反 光面反射的太阳光照射的弧凸状反光面, 能够反射太阳光照射该太阳能电池芯片。 或者, 该太阳能电池芯片邻近该窗口, 并位于该反射镜的该弧凹状反光面上方, 该 反射镜经由该弧凹状反光面反射太阳光照射该太阳能电池芯片。
或者, 所述反射镜可为一凸透镜或一菲涅尔透镜。 此外, 本发明也包含:
所述管件可由非透光材料制成, 而使反光通道内壁能够遮挡太阳光辐射至太阳 能电池芯片周围的区域。
所述管件可为矩形管或圆形管, 以利于管件的加工。
所述反光通道内壁形成有一可供所述太阳光于该反光通道内进行多次反射的 反光面; 且该反光面由高反射率的反光材料布设而成, 该反光材料可为铝或银等。
与现有技术相比, 本发明所述的聚光型太阳能电池模块的二次聚光装置, 克服 了现有技术中, 由于多道太阳光线之间强、 弱上的差异, 而导致太阳能电池表面接 受太阳光照射强度不均匀的问题。 然而, 为能明确且充分揭露本发明, 并予列举较 佳实施的图例, 以详细说明其实施方式如后述: 附图说明
图 1是本发明第一款实施例的立体分解图;
图 2是本发明一太阳能电池芯片与管件的立体图;
图 3是图 1实施例的剖示图;
图 4是图 3的管件的局部放大剖示图;
图 5是本发明另一太阳能电池芯片与管件的立体图;
图 6是本发明第二款实施例的剖示图;
图 7是本发明第三款实施例的剖示图。
附图标记说明: 1-壳体; 1 1-腔室; 12-窗口; 13-聚光区; 2、 2a-反射镜; 21-弧凹状 反光面; 3-太阳能电池芯片; 31-受光端面; 4、 4a-反光通道; 41-宽管口; 42-窄管 口; 43-反光面; 5-辅助镜; 51-弧凸状反光面; 6-透镜; 7-太阳光线。 具体实施方式
首观图 1所示, 揭示出本发明第一款实施例的立体分解图, 并配合图 2及图 3 说明本发明聚光型太阳能电池模块的二次聚光装置, 包含一壳体 1、 一反射镜 2、 一聚光型太阳能电池芯片 3、 一管件 4及一反光通道 40; 该壳体 1内部形成一腔室 11, 且壳体 1顶部形成一可供太阳光照射进入的窗口 12, 而与该腔室 11相连通。 该反射镜 2配置于该窗口 12, 能够反射外界太阳光至反射镜 2近侧的腔室 11 内聚 焦, 而于腔室 11 内形成一聚光区 13; 该反射镜 2在本实施上可呈弧凹状, 且反射 镜 2中央以弧凹形态向下方伸入该腔室 11 内, 而于该反射镜 2顶部形成一朝向上 方的弧凹状反光面 21 , 并间隔腔室 11形成该聚光区 13 , 致使聚光区 13位于该窗 口 12与弧凹状反光面 21之间, 且该反射镜 2是经由弧凹状反光面 21反射外界太 阳光进入该聚光区 13内聚焦。
该窗口 12设有一透镜 6 (如图 1及图 3所示) , 位于该反射镜 2顶部, 该透镜 6可由玻璃或聚光胶材构成, 且窗口 12中央并配置有一辅助镜 5 , 位于该透镜 6中 央底面, 并位于该反射镜 2的弧凹状反光面 21中央上方的聚光区 13内; 该太阳能 电池芯片 3配置于该腔室 1 1的聚光区 13 内, 并位于该弧凹状反光面 21 中央, 且 太阳能电池芯片 3的一受光端面 31朝向该反射镜 2反射至该聚光区 13的太阳光; 该反射镜 2的反射面积大于该辅助镜 5的反射面积, 且辅助镜 5的反射面积大于该 太阳能电池芯片 3的受光端面 31的面积, 而使该反射镜 2、 辅助镜 5及太阳能电池 芯片 3之间配置形成一盖赛格林式光学系统; 如此, 该反射镜 2能够经由该弧凹状 反光面 21反射外界太阳光照射该辅助镜 5 ,且辅助镜 5底部具有一朝向下方的弧凸 状反光面 51, 能够接受该弧凹状反光面 21反射的太阳光照射, 并能够反射太阳光 照射该太阳能电池芯片 3的受光端面 31 ,致使太阳能电池芯片 3接受该反射镜 2及 辅助镜 5反射的太阳光照射而发电。
该管件 4座落于该聚光区 13 内 (如图 1及图 3所示) , 并邻近于该太阳能电 池芯片 3顶端, 且管件 4双端分别形成一位于该反射镜 2反射太阳光的聚焦位置的 宽管口 41 (如图 2及图 4所示) , 及一位于该受光端面 31的相对端的窄管口 42; 实际上, 该管件 4可垂直配置于该太阳能电池芯片 3顶端, 且管件 4底端固定于该 弧凹状反光面 21顶部中央, 而使管件 4底端的窄管口 42罩住太阳能电池芯片 3的 受光端面 31 , 且管件 4顶端的宽管口 41朝向该辅助镜 5的弧凸状反光面 51 , 并位 于该反射镜 2经由辅助镜 5反射太阳光的聚焦位置; 该管件 4可由非透光的金属、 塑料或陶瓷材料制成, 且管件 4、 4a可为矩形管或圓形管 (如图 5所示) , 以利于 管件 4的加工。
该反光通道 40形成于该宽管口 41及窄管口 42之间 (如图 2及图 4所示) , 且反光通道 40自该宽管口 41朝窄管口 42方向逐渐缩小直径, 而使反光通道 40呈 上宽下窄的斜锥状; 该反光通道 40并具有一可供所述太阳光于该反光通道 40内进 行多次反射的特定长度 hi ,该特定长度 hi依据其所反射的太阳光的波长加以设定; 实质上, 该反光通道 40 内壁以镀膜方式披覆形成有一可供所述太阳光于该反光通 道 40内进行多次反射的反光面 43 ,且反光面 43可由高反射率的反光材料布设而成, 该反光材料可为铝或银等; 此外, 由于该管件 4可由非透光材料制成, 因此, 该反 光通道 40内壁亦能够遮挡太阳光辐射至太阳能电池芯片 3周围的区域。 藉由上述, 可供据以实施本发明, 特别是当太阳光照射该壳体 1顶面时 (如图 3所示) , 太阳光线 7能够通过该透镜 6进入聚光区 13, 并照射该反射镜 2的弧凹 状反光面 21, 且弧凹状反光面 21会反射多道太阳光线 7照射该辅助镜 5的弧凸状 反光面 51 , 同时该弧凸状反光面 51会反射多道太阳光线 7聚焦于该管件 4顶端的 宽管口 41, 进而透入该反光通道 40内 (如图 4所示) , 致使所述太阳光线 7于该 反光通道 40内壁的反光面 43上进行多次反射, 且所述太阳光线 7的反射次数受到 该反光通道 40的逐渐缩口的内壁的反光面 43影响, 而朝该窄管口 42方向逐渐增 多; 因此, 能够反射所述太阳光线 7经由该窄管口 42均匀照射该受光端面 31 , 驱 使该太阳能电池芯片 3发电; 据此, 以确保太阳能电池芯片 3的正常发电效率。
请参阅图 6所示, 揭示出本发明第二款实施例的剖示图, 说明其于上述第一款 实施例相异之处在于,该反射镜 2a可为一凸透镜或一菲涅尔透镜, 并省略上述透镜 及辅助镜等构件, 该反射镜 2a下方的腔室 1 1形成该聚光区 13, 且太阳能电池芯片 3位于反射镜 2a中央下方的腔室 1 1内壁面上, 该反射镜 2a的反射面积大于该太阳 能电池芯片 3的受光端面 31的面积; 如此, 当太阳光照射该壳体 1顶面时, 太阳 光线 7会接受该反射镜 2a折射, 而使多道太阳光线 7 聚焦于该管件 4顶端的宽管 口 41 , 进而透入该反光通道 40内, 致使所述太阳光线 7于反光通道 40内壁的反光 面 43上进行多次反射, 能够反射所述太阳光线 7经由窄管口 42均匀照射受光端面 31 , 驱使该太阳能电池芯片 3发电, 其余构件组成及实施方式等同于上述第一款实 施例。
请参阅图 7所示, 揭示出本发明第三款实施例的剖示图, 说明其于上述第一款 实施例相异之处在于, 省略上述辅助镜, 该太阳能电池芯片 3位于该透镜 6中央底 面, 而邻近该窗口 12, 且太阳能电池芯片 3位于该反射镜 2的弧凹状反光面 21中 央上方的聚光区 13 内; 该管件 4可垂直配置于该太阳能电池芯片 3下方, 而位于 透镜 6中央底面, 该管件 4的窄管口 42罩住太阳能电池芯片 3的受光端面 31 , 且 管件 4的宽管口 41朝向该反射镜 2的弧凹状反光面 21, 并位于反射镜 2反射太阳 光的聚焦位置; 该反射镜 2的反射面积大于该太阳能电池芯片 3的受光端面 31的 面积; 如此, 当太阳光照射该壳体 1顶面时, 太阳光线 7能够通过透镜 6照射反射 镜 2的弧凹状反光面 21, 且弧凹状反光面 21会反射多道太阳光线 7聚焦于管件 4 的宽管口 41 , 进而透入该反光通道 40内, 致使所述太阳光线 7于反光通道 40内壁 的反光面 43上进行多次反射, 能够反射所述太阳光线 7经由窄管口 42均匀照射受 光端面 31 , 驱使该太阳能电池芯片 3发电, 其余构件组成及实施方式等同于上述第 一款实施例。
以上说明对本发明而言只是说明性的, 而非限制性的, 本领域普通技术人员理 解, 在不脱离权利要求所限定的精神和范围的情况下, 可作出许多修改、 变化或等 效, 但都将落入本发明的保护范围之内。

Claims

权利要求
1、 一种聚光型太阳能电池模块的二次聚光装置, 其特征在于, 包含有: 一反射镜, 能够反射太阳光至该反射镜近侧聚焦, 而形成一聚光区;
一太阳能电池芯片, 配置于该聚光区内, 且该太阳能电池芯片的一受光端面朝 向该反射镜反射至该聚光区的太阳光;
一管件, 座落于该聚光区内, 并邻近于该太阳能电池芯片, 且该管件双端分别 形成一位于该反射镜反射太阳光的聚焦位置的宽管口, 及一位于该受光端面的相对 端的窄管口; 及
一反光通道, 形成于该宽管口及该窄管口之间, 且该反光通道自该宽管口朝该 窄管口方向逐渐缩口, 该反光通道具有一供所述太阳光于该反光通道内进行多次反 射的特定长度, 能够反射所述太阳光经由该窄管口均匀照射该受光端面, 而使该太 阳能电池芯片发电。
2、 根据权利要求 1所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 更加包含一壳体, 该壳体内部形成一腔室, 且该壳体顶部形成一供太阳光照射进入 的窗口, 而该窗口与该腔室相连通, 该反射镜配置于该窗口, 以间隔该腔室形成该 聚光区。
3、 根据权利要求 2所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述反射镜以弧凹形态向下方伸入该腔室内, 而于该反射镜上形成一朝向上方的弧 凹状反光面, 该聚光区位于该窗口与该弧凹状反光面之间。
4、 根据权利要求 3所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述窗口配置一辅助镜, 该辅助镜位于该反射镜上方, 该太阳能电池芯片位于该弧 凹状反光面上, 该反射镜经由该弧凹状反光面反射太阳光照射该辅助镜, 且该辅助 镜上具有一接受该弧凹状反光面反射的太阳光照射的弧凸状反光面, 能够反射太阳 光照射该太阳能电池芯片。
5、 居权利要求 3所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述太阳能电池芯片邻近该窗口, 并位于该反射镜的该弧凹状反光面上方, 该反射 镜经由该弧凹状反光面反射太阳光照射该太阳能电池芯片。
6、 居权利要求 2所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述反射镜为一菲涅尔透镜。
7、 根据权利要求 1所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述管件由非透光材料制成。
8、 根据权利要求 1所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: 所述管件为矩形管或圓形管。
9、 根据权利要求 1所述聚光型太阳能电池模块的二次聚光装置, 其特征在于: '所述反光通道内壁形成有一供所述太阳光于该反光通道内进行多次反射的反光面。
10、根据权利要求 9所述聚光型太阳能电池模块的二次聚光装置,其特征在于: 所述反光面由高反射率的反光材料布设而成。
PCT/CN2010/001200 2010-07-14 2010-08-06 聚光型太阳能电池模块的二次聚光装置 WO2012006763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201020263954.9 2010-07-14
CN2010202639549U CN201773855U (zh) 2010-07-14 2010-07-14 聚光型太阳能电池模块的二次聚光装置

Publications (1)

Publication Number Publication Date
WO2012006763A1 true WO2012006763A1 (zh) 2012-01-19

Family

ID=43753698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001200 WO2012006763A1 (zh) 2010-07-14 2010-08-06 聚光型太阳能电池模块的二次聚光装置

Country Status (2)

Country Link
CN (1) CN201773855U (zh)
WO (1) WO2012006763A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208473B (zh) * 2011-05-30 2014-06-18 武汉凹伟能源科技有限公司 一种太阳能发电低倍聚光发电组件
CN102610684A (zh) * 2012-04-04 2012-07-25 成都聚合科技有限公司 一种增强型太阳能二次聚光装置
CN104716215B (zh) * 2013-12-11 2017-04-19 上海空间电源研究所 一种二次聚光器
CN109654751B (zh) * 2016-11-11 2020-08-21 江苏桑力太阳能产业有限公司 一种聚光式太阳能热水器
CN108110076A (zh) * 2018-02-06 2018-06-01 江苏贝德莱特太阳能科技有限公司 一种高效太阳能聚光电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384320B1 (en) * 2000-10-13 2002-05-07 Leon Lung-Chen Chen Solar compound concentrator of electric power generation system for residential homes
US20070095385A1 (en) * 2005-10-28 2007-05-03 Atomic Energy Council - Institute Of Nuclear Energy Research Photovoltaic concentrating apparatus
CN2919535Y (zh) * 2006-03-10 2007-07-04 孙迎光 一种反射式点聚光阵列太阳能光伏发电组件
US20080142077A1 (en) * 2006-12-15 2008-06-19 Sol Focus, Inc. Environmental condition control for an energy-conversion unit
US20080185040A1 (en) * 2007-02-01 2008-08-07 Sol Focus, Inc. Socket mounting of component in an optical system
US20090114280A1 (en) * 2007-11-03 2009-05-07 Solfocus, Inc. Combination non-imaging concentrator
US20100012169A1 (en) * 2008-07-19 2010-01-21 Solfocus, Inc. Energy Recovery of Secondary Obscuration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384320B1 (en) * 2000-10-13 2002-05-07 Leon Lung-Chen Chen Solar compound concentrator of electric power generation system for residential homes
US20070095385A1 (en) * 2005-10-28 2007-05-03 Atomic Energy Council - Institute Of Nuclear Energy Research Photovoltaic concentrating apparatus
CN2919535Y (zh) * 2006-03-10 2007-07-04 孙迎光 一种反射式点聚光阵列太阳能光伏发电组件
US20080142077A1 (en) * 2006-12-15 2008-06-19 Sol Focus, Inc. Environmental condition control for an energy-conversion unit
US20080185040A1 (en) * 2007-02-01 2008-08-07 Sol Focus, Inc. Socket mounting of component in an optical system
US20090114280A1 (en) * 2007-11-03 2009-05-07 Solfocus, Inc. Combination non-imaging concentrator
US20100012169A1 (en) * 2008-07-19 2010-01-21 Solfocus, Inc. Energy Recovery of Secondary Obscuration

Also Published As

Publication number Publication date
CN201773855U (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
US20090159126A1 (en) Integrated optics for concentrator solar receivers
JP5778913B2 (ja) 線形型太陽光集中収集器
US7473000B2 (en) Shield for solar radiation collector
KR102223799B1 (ko) 평면형 및 파라볼릭형 반사체와 광혼합체로 구성된 집광형 태양전지 모듈
KR101633146B1 (ko) 유도 방출 발광 도광 태양 집광기
JP6416333B2 (ja) 太陽電池モジュール
JPH0661519A (ja) 反射鏡付き光電池モジュール
JP2009524084A (ja) 集光器のためのハイブリッド型一次光学構成要素
US20100012169A1 (en) Energy Recovery of Secondary Obscuration
WO2012006763A1 (zh) 聚光型太阳能电池模块的二次聚光装置
TW201110386A (en) Non-imaging light concentrator
US8755665B2 (en) Electromagnetic wave gathering device and solar cell module having the same
WO2019084707A1 (zh) 聚光式太阳能系统
US20140048117A1 (en) Solar energy systems using external reflectors
TWI409967B (zh) 一種太陽能電池模組及其製作方法
TWM394574U (en) Secondary concentrator of concentrator solar cell module
CN112187166B (zh) 一种高效能聚光太阳能电池板
CN102638199A (zh) 一种太阳能点聚光光伏发电装置
WO2012012919A1 (zh) 聚光型太阳能电池模块的防污透气装置
US20110000538A1 (en) Non-imaging solar concentrator reflector for photovoltaic cells
RU2496181C1 (ru) Фотоэлектрический концентраторный субмодуль
AU2020278764B2 (en) Remote power beam-splitting
TWI538239B (zh) Light collection device and its light collection method
US10199527B2 (en) Solar concentrator and illumination apparatus
CN201881060U (zh) 旋转抛物面聚光太阳光聚焦切割装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854558

Country of ref document: EP

Kind code of ref document: A1