WO2012005116A1 - Organic photoelectric conversion element and method for manufacturing same - Google Patents

Organic photoelectric conversion element and method for manufacturing same

Info

Publication number
WO2012005116A1
WO2012005116A1 PCT/JP2011/064378 JP2011064378W WO2012005116A1 WO 2012005116 A1 WO2012005116 A1 WO 2012005116A1 JP 2011064378 W JP2011064378 W JP 2011064378W WO 2012005116 A1 WO2012005116 A1 WO 2012005116A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
transport layer
polymer
organic photoelectric
conversion element
Prior art date
Application number
PCT/JP2011/064378
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 宏明
野島 隆彦
伊藤 博英
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012523813A priority Critical patent/JP5700044B2/en
Publication of WO2012005116A1 publication Critical patent/WO2012005116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element, more particularly to a bulk heterojunction type organic photoelectric conversion element, and more particularly to an organic photoelectric conversion element that can be used for an organic solar cell and a method for manufacturing the same.
  • An organic solar cell (organic photoelectric conversion element) has a power generation layer including a p-type semiconductor and an n-type semiconductor on a transparent electrode, and a charge transport layer that transports generated charges to the electrode, and is formed by light absorption. It is characterized in that the charge is efficiently separated before the child is deactivated, and the generated charges can be taken out to the electrode.
  • the power generation layer and the charge transport layer need to be designed to have optimum film thicknesses in consideration of the light absorption efficiency and the charge transport resistance of the layer itself.
  • ITO titanium-doped indium oxide
  • the transparent electrode of the organic solar cell since the refractive index is high, the light reflected by the counter electrode is reflected back to the power generation layer side.
  • the above-mentioned metal electrode is generally formed by vapor deposition, sputtering, printing, or the like.
  • the charge transport layer is formed. It has also been a problem that a part of the electrode is destroyed and causes leakage between the electrode and the power generation layer or between the electrodes.
  • the thickness of the charge transport layer is made too thick, not only the optical loss as described above increases, but also the increase in resistance due to the increase in film thickness causes a decrease in performance, resulting in a technical trade-off. It was.
  • the object of the present invention is to reduce the optical loss of the charge transport layer and improve the short circuit current density (Jsc), reduce the damage of the charge transport layer when forming the counter electrode, and have an excellent fill factor (FF) due to the leak suppression effect. It is in providing an organic photoelectric conversion element and its manufacturing method.
  • the charge transport layer contains a polymer (A) having at least one selected from the following three unit structures.
  • X represents a hydrogen atom or a methyl group
  • R 1 to R 3 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms.
  • L, m, and n represent the polymer (A ) Represents the respective composition ratio (mol%) when the total number of moles of all monomers constituting 100 is 100, and 50 ⁇ l + m + n ⁇ 100.) 2.
  • the charge transport layer contains at least the polymer (A), a ⁇ -conjugated polymer, and a polyanion.
  • an organic photoelectric conversion element that achieves an excellent short-circuit current density and a fill factor, and has excellent durability at high temperatures and high humidity, and a method for manufacturing the same.
  • the present inventors have mainly used a power generation layer including a p-type semiconductor material and an n-type semiconductor material and either a hole or an electron between the first electrode and the second electrode.
  • An organic photoelectric conversion device having at least a charge transport layer for transporting to the surface, wherein the charge transport layer includes the polymer (A), thereby providing an organic photoelectric conversion device, which is excellent for the problems described above. I found that it was a solution.
  • the organic photoelectric conversion element of the present invention includes a first electrode, a second electrode, and a power generation layer sandwiched between them (a layer in which a p-type semiconductor and an n-type semiconductor are mixed, a bulk heterojunction layer, or a BHJ layer) , Also referred to as i layer), and is an element that generates current when irradiated with light.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a preferred photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10 includes a first electrode 101, a hole blocking layer (or electron transport layer) 102, a power generation layer 103, (a p-type semiconductor material 103 a and an n-type semiconductor material 103 b) on a substrate (not shown). (Bulk heterojunction structure)
  • the electron blocking layer (or hole transport layer) 104 and the second electrode 105 are stacked.
  • the organic photoelectric conversion element at least one of the first electrode 101 and the second electrode 105 described above is a transparent electrode.
  • the effect can be obtained when either is transparent or both are transparent.
  • the polymer (A) is included in a charge transport layer (at least one of an electron transport layer and a hole transport layer) that comes into contact with the electrode side to be formed later.
  • the charge transport layer contains at least the polymer (A), a ⁇ -conjugated polymer, and a polyanion.
  • the photoelectric conversion element of the present invention is characterized by having at least a charge transport layer between the first electrode and the second electrode, and further comprising the polymer (A) in the charge transport layer.
  • the polymer (A) in the charge transport layer by including the polymer (A) in the charge transport layer, it is possible to improve the transmittance without reducing the conductivity of the film, and the performance is lowered even if the film is made thicker. This makes it possible to suppress damage to electrode formation, which is a preferred embodiment.
  • X represents a hydrogen atom or a methyl group
  • R 1 to R 3 are each independently a straight chain having 1 to 5 carbon atoms or Represents a branched alkylene group.
  • l, m, and n represent respective constituent ratios (mol%) when the total number of moles of all monomers constituting the polymer (A) is 100, and 50 ⁇ l + m + n ⁇ 100 is preferable. .
  • the composition ratio is more preferably in the range of 70 ⁇ m ⁇ 100.
  • a hydrophilic polymer binder which is a polymer that can be dissolved or dispersed in an aqueous solvent (described later) in combination with the polymer (A).
  • a hydrophilic polymer binder which is a polymer that can be dissolved or dispersed in an aqueous solvent (described later) in combination with the polymer (A).
  • polyester resins acrylic resins, polyurethane resins, acrylic urethane resins, polycarbonate resins, cellulose resins, polyvinyl acetal resins, polyvinyl alcohol resins, and the like.
  • Specific examples of the compound include Vylonal MD1200, MD1400, MD1480 (manufactured by Toyobo Co., Ltd.) as polyester resins.
  • hydrophilic polymer binder As the hydrophilic polymer binder according to the present invention, a compound having a group that reacts with a cross-linking agent described later is more preferable because a stronger film is formed.
  • a group that reacts with the crosslinking agent varies depending on the crosslinking agent, and examples thereof include a hydroxy group, a carboxyl group, and an amino group. Among these, it is most preferable to have a hydroxy group in the side chain.
  • hydrophilic polymer binder examples include polyvinyl alcohol PVA-203, PVA-224, PVA-420 (manufactured by Kureha), hydroxypropylmethylcellulose 60SH-06, 60SH-50, 60SH.
  • the conductivity of the charge transport layer containing the ⁇ -conjugated polymer and the polyanion can be improved, and the compatibility with the ⁇ -conjugated polymer is good and high. Transparency and smoothness can be achieved.
  • the polyanion has a sulfo group
  • the sulfo group effectively acts as a dehydration catalyst, and a dense cross-linked layer can be formed without using an additional agent such as a cross-linking agent. This is a more preferred embodiment because it can be formed and an improvement in film strength can be expected.
  • the main copolymerization component of the polymer (A) is the three unit structures contained in the polymer (A), and 50 mol% or more of the copolymerization component is any one of the three unit structures, or the 3 It is a copolymer having a total of 50 mol% of one unit structure.
  • the polymer (A) preferably has a total of the three unit structures of 80 mol% or more, and may be a homopolymer formed from any one monomer of the three unit structures. It is an embodiment.
  • polymer (A) other monomer components may be copolymerized as long as they are soluble in an aqueous solvent, but a monomer component having high hydrophilicity is more preferable.
  • the polymer (A) has a number average molecular weight of preferably 1000 or less and 0 to 5% or less.
  • the number average molecular weight of the polymer (A) is such that the content of 1000 or less is 0 to 5% or less, such as reprecipitation method, preparative GPC, synthesis of monodisperse polymer by living polymerization, etc. Methods that remove components or suppress the formation of low molecular weight components can be used.
  • the reprecipitation method the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do.
  • preparative GPC can be divided by molecular weight, for example, by recycling preparative GPCLC-9100 (manufactured by Japan Analytical Industrial Co., Ltd.), polystyrene gel column, and passing the polymer-dissolved solution through the column. It is a method that can be cut.
  • the living polymerization the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the amount of monomer added, for example, if a polymer having a molecular weight of 20,000 is synthesized, the production of low molecular weight substances can be suppressed.
  • the reprecipitation method and living polymerization are preferable from the viewpoint of production suitability.
  • the number average molecular weight and weight average molecular weight of the polymer (A) or hydrophilic polymer binder of the present invention can be measured by generally known gel permeation chromatography (GPC).
  • the molecular weight distribution can be expressed by a ratio of (weight average molecular weight / number average molecular weight).
  • the solvent to be used is not particularly limited as long as the polymer (A) or the hydrophilic polymer binder is dissolved, preferably THF, DMF, CH 2 Cl 2 , more preferably THF, DMF, and further preferably DMF. .
  • the measurement temperature is not particularly limited, but 40 ° C. is preferable.
  • the molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000 in terms of number average molecular weight, more preferably in the range of 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000. is there.
  • the molecular weight distribution of the polymer (A) is preferably from 1.01 to 1.30, more preferably from 1.01 to 1.25.
  • the content with a number average molecular weight of 1000 or less was converted to a ratio by integrating the area with a number average molecular weight of 1000 or less and dividing by the area of the entire distribution.
  • the living radical polymerization solvent is inactive under reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable.
  • the living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the abundance ratio of the polymer (A) according to the present invention is preferably such that the solid content ratio in the charge transport layer is 10% by mass to 90% by mass. More preferably, it is 20% by mass to 80% by mass. If it is 10% by mass or more, the effect of improving the transmittance can be obtained without significantly lowering the conductivity, and if it is 90% by mass or less, sufficient conductivity can be maintained, which is a preferable abundance ratio in the present invention.
  • the ⁇ -conjugated polymer preferably used in the present invention is not particularly limited, but is preferably a so-called conductive polymer. Furthermore, it is more preferable to have a ⁇ -conjugated polymer and a polyanion. Such a polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
  • Examples of the ⁇ -conjugated polymer that can be used in the present invention include polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, and polyparaffins.
  • Chain conductive polymers such as phenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl compounds, and the like can be used.
  • polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like.
  • polyethylenedioxythiophenes are preferable.
  • the precursor monomer that forms a ⁇ -conjugated polymer of the present invention has a ⁇ -conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidizing agent, a ⁇ -conjugated system is formed in the main chain.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion preferably used in the present invention is not particularly limited, but it is more preferable to have a sulfo group as the anionic group.
  • polyanions include substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted polyester, and co-polymers thereof.
  • Preferred is a combination of a structural unit having an anionic group and a structural unit having no anionic group.
  • This polyanion is a solubilized polymer that solubilizes a ⁇ -conjugated conductive polymer in a solvent.
  • the anion group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • it may be a polyanion having F in the compound.
  • Nafion made by Dupont
  • Flemion made by Asahi Glass Co., Ltd.
  • perfluoro vinyl ether containing a carboxylic acid group and the like can be mentioned.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable.
  • These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • a method for producing a polyanion for example, a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of introducing into a polymer having no anionic group by sulfonation with a sulfonating agent, The method of manufacturing by superposition
  • Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like.
  • the ultrafiltration method is preferable from the viewpoint of easy work.
  • Such a conductive polymer is preferably a commercially available material.
  • a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the CLEVIOS series, from Aldrich as PEDOT / PSS 483095, 560598, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • a water-soluble organic compound may be contained as the second dopant.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • Examples of the ether group-containing compound include diethylene glycol monoethyl ether.
  • Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the charge transport layer contains at least the polymer (A), a ⁇ -conjugated polymer, and a polyanion.
  • the charge transport layer can be formed by applying and drying a coating solution comprising at least a hydrophilic polymer binder component containing the polymer (A), a ⁇ -conjugated polymer component, a polyanion component, and a solvent.
  • the abundance ratio of the ⁇ -conjugated polymer according to the present invention is preferably such that the solid content ratio in the charge transport layer is 10% by mass or more. More preferably, it is 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass.
  • the transmittance can be improved while maintaining conductivity, so that it is more preferable in the present invention. Is the ratio.
  • the composition ratio of the ⁇ -conjugated polymer and the polyanion is also important.
  • the composition amount of the polyanion is preferably 3 to 50 times the ⁇ -conjugated polymer. If it is 3 times or more, it is preferable because hole charges can be selectively transported and electron charges can be effectively blocked. Moreover, if it is 50 times or less, the hole charge mobility is sufficiently high, which is preferable in the present invention.
  • a more preferable composition ratio is 5 times or more and 10 times or less.
  • the conductivity when used as a charge transport layer, functions as a charge transport layer if it is 1 S / cm or less, more preferably 1 ⁇ 10 ⁇ 2 S / cm or less, 1 ⁇ 10 ⁇ 6 S / cm. More preferably, it is 1 ⁇ 10 ⁇ 3 S / cm or less, and 1 ⁇ 10 ⁇ 5 S / cm or more.
  • the conductivity in this range is the same reason as described above, but has a sufficient ability to block electronic charges, and is a preferred embodiment in the photoelectric conversion element of the present invention.
  • an aqueous solvent can be preferably used.
  • the aqueous solvent represents a solvent in which 50% by mass or more is water.
  • pure water containing no other solvent may be used.
  • the component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method
  • a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
  • the dry film thickness of the charge transport layer is preferably 30 to 2000 nm.
  • the charge transport layer according to the present invention preferably has a thickness of 100 nm or more from the viewpoint of suppressing damage during electrode formation, and more preferably has a thickness of 200 nm or more from the viewpoint of further improving the leak prevention effect. Moreover, it is more preferable that it is a film thickness of 1000 nm or less from a viewpoint of maintaining the high transmittance
  • a drying process is appropriately performed to volatilize the solvent.
  • a drying process it is preferable to dry-process at the temperature of the range which does not damage a board
  • a drying treatment can be performed at 80 to 150 ° C. for 10 seconds to 10 minutes.
  • the solid content ratio of the polymer (A) contained in the dry film is more preferably 10% by mass to 90% by mass. If it is 15 mass% or more, the transmittance of the film can be improved depending on the amount added, and if it is 70 mass% or less, the film resistance can be kept low, which is preferable in the present invention.
  • the crosslinking reaction step in which an additional heat treatment is performed after the film formation is dried.
  • the drying treatment can be performed at 80 to 150 ° C. for 2 minutes to 120 minutes.
  • a long-time treatment of about 10 to 200 hours may be performed at a relatively low temperature of about 40 ° C. to 100 ° C.
  • a crosslinking reaction in addition to heating with a general hot air dryer, a crosslinking reaction can be caused in a shorter time by using an IR heater, IH heater, microwave heating, or a combination thereof. However, since it involves a dehydration reaction, it is preferable to use at least heating with hot air.
  • Nanoindentation elastic modulus The improvement of the film strength by the crosslinking reaction of the present invention can be evaluated by the elastic modulus using the nanoindentation method.
  • the nanoindentation elastic modulus in the present invention is a method of calculating the elastic modulus from the degree of depression of the cantilever by pressing a special SPM cantilever against the target film with a constant load.
  • the elastic modulus is preferably 4 GPa or more and 10 GPa. If the elastic modulus is 4 GPa or more, damage during electrode formation can be suppressed, and if it is 10 GPa or less, deformation and cracks can be suppressed by appropriate flexibility, which is preferable.
  • the more preferable elastic modulus is most preferably 5 GPa or more and 8 GPa or less from the above viewpoint.
  • Charge transport layer hole transport layer, electron transport layer>
  • the original function of the charge transport layer is to serve as a blocking layer that transports only holes or electrons generated in the power generation layer to the electrode and prevents transport of the opposite carrier.
  • the hole transport layer can be referred to as an electron blocking layer, and the electron transport layer as a hole blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense. More specifically, the hole blocking layer is made of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, and transports electrons. While blocking holes, the recombination probability of electrons and holes on the electrode can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the power generation layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense. More specifically, the electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes. However, the probability of recombination of electrons and holes can be improved by blocking electrons. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the dry film thickness of the charge transport layer of the present invention is preferably 30 to 2000 nm.
  • the charge transport layer (for example, 104 in FIG. 1) on the electrode forming side later preferably has a thickness of 100 nm or more from the viewpoint of suppressing damage during electrode formation, and 200 nm or more from the viewpoint of further improving the leakage prevention effect.
  • the film thickness is Moreover, it is more preferable that it is a film thickness of 1000 nm or less from a viewpoint of maintaining the high transmittance
  • the charge transport layer on the substrate side (for example, 102 in FIG. 1) is preferably 5 to 500 nm, more preferably 7 to 200 nm, and most preferably 10 to 100 nm from the viewpoint of film resistance and transmittance. .
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, the ⁇ -conjugated polymers, conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si, p-type-SiC, nickel oxide, and molybdenum oxide can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • any one of conventionally known compounds can be selected and used.
  • nitro-substituted fluorene derivatives diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodisides.
  • methane and anthrone derivatives examples include methane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • n-type conductive inorganic oxides titanium oxide, zinc oxide, etc.
  • titanium oxide titanium oxide, zinc oxide, etc.
  • TPD N, N'-bis (3-methylphenyl)-(1,1'-b
  • Triazole derivatives Triazole derivatives, oki Use of dizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be preferably used.
  • nitrogen-containing compounds described in JP-T-2010-525613 can be preferably used in the present invention.
  • the compound is R 1 N (R 2 R 3 ), and each of R 1 , R 2 , and R 3 is independently H, C1-C20 alkyl, C1-C20 alkoxy, aryl, heteroaryl, C3- C20 cycloalkyl, or C3-C20 heterocycloalkyl, or R 1 and R 2 , R 2 and R 3 , or R 1 and R 3 together with their attached nitrogen atoms are heteroaryl or C3-C20 Wherein R 1 is C1-C20 alkyl substituted with Si (OR) 3 or NH (R), or aryl substituted with COOH or SH, and each R is independently C1 It is preferably a C20 alkyl.
  • 3- (N, N-dimethylamino) propyltrimethoxysilane, 4-dimethylaminobenzoic acid, 4-aminobenzoic acid or 4-aminothiophenol is preferred.
  • More preferred is polyamine, polyethyleneimine or a derivative thereof.
  • the crosslinking agent is not particularly limited, it preferably contains an epoxy-containing compound, and glycerol propoxylate triglycidyl ether or glycerol diglycidyl ether can be preferably used as a specific example of the crosslinking agent.
  • Examples of the p-type semiconductor material used for the power generation layer (bulk heterojunction layer) of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF ) -Perchloric acid complexes, and derivatives and precursors thereof.
  • TTF tetra
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer examples include a polythiophene such as poly (3-hexylthiophene) (P3HT) and oligomers thereof, or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • P3HT poly (3-hexylthiophene)
  • oligomers thereof or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • Such polythiophene Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008 / 000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008 / 000664, an Adv Mater, a polythiophene-thiazolothiazole copolymer described in 2007p4160, Nature Mat. vol.
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • the electron transport layer is formed on the power generation layer by coating, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .
  • Such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • the soluble substituent reacts to become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834. Materials etc. can be mentioned.
  • the n-type semiconductor material used for the bulk heterojunction layer of the present invention is not particularly limited.
  • fullerene, octaazaporphyrin and the like, p-type semiconductor perfluoro products (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetra examples thereof include aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, perylene tetracarboxylic acid anhydrides, and perylene tetracarboxylic acid diimides, and polymer compounds containing the imidized product thereof as a skeleton.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), and the like.
  • PCBM [6,6] -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-buty Rick acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
  • the organic photoelectric conversion element according to the present invention has at least a transparent electrode and a counter electrode. In the present invention, either of them is formed by the above-described forming method. Further, when a tandem configuration is adopted, the tandem configuration can be achieved by using an intermediate electrode. The structure of a preferable transparent electrode and a counter electrode is described below.
  • the transparent electrode and the counter electrode are the names of the electrodes expressed from the function of whether or not there is translucency.
  • the electrodes through which holes mainly flow are used when the electrodes are classified according to the type of carrier flow.
  • the electrode through which electrons mainly flow is called the anode, and it is called the cathode.
  • the first electrode is a positive electrode
  • the holes are mainly extracted from the carriers composed of holes and electrons, as described above, between the first electrode and the photoelectric conversion layer (power generation layer). It is preferable to have a hole transport layer.
  • the second electrode is a cathode
  • Transparent electrode As the transparent electrode in the organic photoelectric conversion element, a material using an electrode substance of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used.
  • the material composition of the optimal work function can be selected according to the junction configuration with the charge transport layer. Compositions with shallow work function include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture , Indium, lithium / aluminum mixture, rare-earth metal, etc.
  • an ultra-thin film such as gold, silver, or platinum, or a nanoparticle / nanowire layer thereof, a conductive metal oxide material such as indium tin oxide (ITO), SnO 2 , or ZnO, And conductive polymers.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
  • the sheet resistance of the transparent electrode is preferably several hundred ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ , and further preferably 15 ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected from the viewpoint of transmittance / resistance in the range of 10 to 1000 nm, preferably 100 to 200 nm.
  • Counter electrode a metal, an alloy, an electrically conductive compound and a mixture thereof are preferably used.
  • metals and the like do not need to be thin films, and there are no particular limitations on the film thickness and composition as long as desired electrical conductivity can be obtained. Further, it is preferable to select a material having an optimum work function according to the charge transport layer in contact therewith. As a specific material, the same material as the example mentioned in the above-mentioned transparent electrode can be used.
  • a material having a shallower work function is selected from the above-described materials so that electrons can be efficiently extracted.
  • an element is formed on a pair of comb-shaped electrodes instead of the sandwiched structure between the first electrode and the second electrode as shown in FIG.
  • the back contact type organic photoelectric conversion element can also be configured.
  • various intermediate layers may be included in the device.
  • the intermediate layer include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, a wavelength conversion layer, a smoothing layer, and the like.
  • the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and is absorbed again by the photoelectric conversion layer, and more photoelectric conversion is performed. Efficiency is improved and preferable.
  • the substrate When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • the substrate for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • a transparent resin film There is no restriction
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PE polyethylene
  • PP polypropylene
  • polystyrene resin film polyolefin resins such as cyclic olefin resin Film
  • the resin film transmittance of 80% or more in ⁇ 800 nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer various known antireflection layers can be provided.
  • the transparent resin film is a biaxially stretched polyethylene terephthalate film
  • an easy adhesion layer is provided adjacent to the film, and the refractive index thereof. Is preferably 1.57 to 1.63, since the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • Examples of the method for forming a photoelectric conversion layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method, a coating method (including a casting method and a spin coating method), and the like.
  • a vapor deposition method As a formation method of a photoelectric converting layer, a vapor deposition method, the apply
  • the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency.
  • the coating method is also excellent in production speed.
  • the coating method used at this time is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating.
  • patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized and the photoelectric conversion layer can have an appropriate phase separation structure. As a result, the carrier mobility of the photoelectric conversion layer is improved and high efficiency can be obtained.
  • the power generation layer may be composed of a layer in which a p-type semiconductor and an n-type semiconductor are mixed, or may have a plurality of layers having different mixing ratios in the film thickness direction or a gradation structure with a mixing ratio.
  • a soluble material such as a photoelectric conversion layer and a transport layer
  • only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or ablation using a carbonic acid laser after film formation, or scraping directly with a scriber Patterning may be performed by a method or the like, or direct patterning may be performed using various printing methods such as an inkjet method, screen printing, and gravure printing.
  • insoluble materials such as electrode materials
  • various printing methods such as vacuum deposition, vacuum sputtering, plasma CVD, screen printing using ink in which fine particles of electrode material are dispersed, gravure printing, and ink jet
  • the pattern may be formed by a known method such as etching or lift-off of the deposited film, or by transferring a pattern formed on another substrate.
  • the entire device may be sealed with two substrates with a barrier, and preferably a moisture getter, oxygen getter, etc. are enclosed. Is more preferred in the present invention.
  • polymer (A) As polymer (A), poly (2-hydroxyethyl acrylate) was synthesized.
  • the structure and molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
  • ITO indium tin oxide
  • sheet resistance 8 ⁇ / ⁇
  • first An electrode was formed.
  • the patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • P3HT manufactured by Prectronics: regioregular poly-3-hexylthiophene, HOMO: -5.5 eV, LUMO: -3.4 eV
  • PCBM manufactured by Frontier Carbon: 6,6-phenyl-C
  • 61- butyric acid methyl ester, HOMO: -6.1 eV, LUMO: -4.3 eV prepared at a ratio of 1: 0.8 so as to be 3.0% by mass, filtered through a filter and dried.
  • a power generation layer was formed on the substrate so that the film thickness was about 200 nm.
  • PEDOT-PSS (Baytron P4083, manufactured by Starkvitech, IP (HOMO): -5.0 eV) composed of a conductive polymer and a polyanion, Emulgen manufactured by Kao Chemical Co., Ltd., and isopropanol was prepared.
  • the coating film was dried so that the dry film thickness was about 100 nm. Thereafter, heat treatment was performed at 150 ° C. for 10 minutes to form a hole transport layer.
  • the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the pressure inside the vacuum deposition apparatus is reduced to 1 ⁇ 10 ⁇ 4 Pa or less, and then Ag metal is deposited at a deposition rate of 5.0 nm / second.
  • the second electrode was formed by laminating 200 nm.
  • the obtained organic photoelectric conversion element SC-101 was moved to a nitrogen chamber and sealed with a sealing cap and a UV curable resin, and the organic photoelectric conversion element SC-101 having a light receiving portion of 10 ⁇ 10 mm size was obtained. Produced.
  • a substrate on which only the hole transport layer was formed was prepared, and after heat treatment at 150 ° C. for 10 minutes, the elastic modulus was measured using the nanoindentation method described above, and it was 1.9 GPa.
  • the elastic modulus of each organic photoelectric conversion element described below is also formed in a film thickness of 300 nm only for the charge transport layer that mainly transports either holes or electrons of each element as in the organic photoelectric conversion element SC-101.
  • the prepared substrate was manufactured, heat-treated at 150 ° C. for 10 minutes, and then the elastic modulus was measured using a nanoindentation method.
  • a photoelectric conversion element SC-102 was produced in the same manner as SC-101 except that the hole transport layer was formed as described above.
  • the elastic modulus of the SC-102 hole transport layer was measured to be 3.6 GPa.
  • the elastic modulus of the SC-103 hole transport layer was measured to be 4.9 GPa.
  • the elastic modulus of the hole transport layer of SC-104 was measured and found to be 5.4 GPa.
  • the elastic modulus of the hole transport layer of SC-105 was measured to be 6.3 GPa.
  • the elastic modulus of the hole transport layer of SC-106 was measured to be 5.5 GPa.
  • the elastic modulus of the hole transport layer of SC-107 was measured to be 4.7 GPa.
  • the elastic modulus of the hole transport layer of SC-108 was measured to be 5.2 GPa.
  • the elastic modulus of the hole transport layer of SC-109 was measured to be 4.5 GPa.
  • ITO indium tin oxide
  • sheet resistance 8 ⁇ / ⁇
  • first An electrode was formed.
  • the patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • a liquid containing PEDOT-PSS (Baytron P4083, Starck Vitec, IP (HOMO): -5.0 eV) and isopropanol composed of a conductive polymer and polyanion is prepared so that the dry film thickness is about 50 nm. And dried. Thereafter, heat treatment was performed at 150 ° C. for 10 minutes to form a hole transport layer.
  • P3HT manufactured by Prectronics: regioregular poly-3-hexylthiophene, HOMO: -5.5 eV, LUMO: -3.4 eV
  • PCBM manufactured by Frontier Carbon: 6,6-phenyl-C
  • 61- butyric acid methyl ester, HOMO: -6.1 eV, LUMO: -4.3 eV prepared at a ratio of 1: 0.8 so as to be 3.0% by mass, filtered through a filter and dried.
  • a power generation layer was formed on the hole transport layer so that the film thickness was about 200 nm.
  • the solid content concentration of the dry membrane is 50
  • Poly (2-hydroxyethyl acrylate) was dissolved so as to have a mass%, and was applied and dried so that the dry film thickness was 20 nm. Thereafter, heat treatment was performed at 120 ° C. for 30 minutes to form a hole blocking layer.
  • the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then Al metal is deposited at a deposition rate of 5.0 nm / second.
  • the second electrode was formed by laminating 200 nm.
  • the obtained organic photoelectric conversion element SC-111 was moved to a nitrogen chamber and sealed using a sealing cap and a UV curable resin, so that the organic photoelectric conversion element SC-111 having a light receiving portion of 10 ⁇ 10 mm size was obtained. Produced.
  • a substrate on which a functional layer before Ag deposition was formed was prepared, and the elastic modulus was measured using the nanoindentation method described above, and it was 3.2 GPa.
  • the electric conductivity of the hole transport layer formed by SC-102 was measured by a four-terminal four-probe method and found to be 2 ⁇ 10 ⁇ 4 S / cm.
  • the conductivity was in the range of 10 ⁇ 5 S / cm to 1 ⁇ 10 ⁇ 3 S / cm, though there was a difference between SC-103 to SC-106 and SC-108 to SC-110.
  • Photoelectric conversion element 101 1st electrode 102 Hole blocking layer (or electron transport layer) 103 power generation layer 103a p-type semiconductor material 103b n-type semiconductor material 104 electron blocking layer (hole transport layer) 105 second electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed are: an organic photoelectric conversion element which has improved short-circuit current density (Jsc) by reducing the optical loss of a charge transport layer, while achieving excellent fill factor (FF) by reducing damage to the charge transport layer during the formation of a counter electrode and suppressing leakage; and a method for manufacturing the organic photoelectric conversion element. Specifically disclosed is an organic photoelectric conversion element which comprises, between a first electrode and a second electrode, at least a power generating layer that contains a p-type semiconductor material and an n-type semiconductor material and a charge transport layer that mainly transports either holes or electrons. The organic photoelectric conversion element is characterized in that the charge transport layer contains a polymer (A) that has at least one unit structure selected from the three unit structures described below.

Description

有機光電変換素子およびその製造方法Organic photoelectric conversion element and manufacturing method thereof
 本発明は、有機光電変換素子に関し、さらに詳しくは、バルクヘテロジャンクション型の有機光電変換素子に関し、更に詳しくは、有機太陽電池に用いることのできる有機光電変換素子およびその製造方法に関する。 The present invention relates to an organic photoelectric conversion element, more particularly to a bulk heterojunction type organic photoelectric conversion element, and more particularly to an organic photoelectric conversion element that can be used for an organic solar cell and a method for manufacturing the same.
 有機太陽電池(有機光電変換素子)は、透明電極上にp型半導体とn型半導体を含む発電層と、発生した電荷を電極まで輸送する電荷輸送層とを有し、光吸収によって形成した励起子を失活する前に効率よく電荷分離し、発生した電荷を電極まで取り出せる構成であることが特徴である。 An organic solar cell (organic photoelectric conversion element) has a power generation layer including a p-type semiconductor and an n-type semiconductor on a transparent electrode, and a charge transport layer that transports generated charges to the electrode, and is formed by light absorption. It is characterized in that the charge is efficiently separated before the child is deactivated, and the generated charges can be taken out to the electrode.
 発電層および電荷輸送層は、光の吸収効率と層自体の電荷輸送抵抗を考慮し最適な膜厚を設計する必要がある。特に透明電極と対極の金属電極間の光干渉を活用することは重要で、光の電界強度分布が発電層に最適化されるように膜厚を設計する必要がある。有機太陽電池の透明電極はITO(スズドープ酸化インジウム)が一般的に用いられ、屈折率が高いことから、対極で反射した光が発電層側に反射し戻される。光の電界強度を最適に設計することで発電層の見かけの光路長を稼ぎ、薄膜であってもより高い光吸収効率を得ることができる。 The power generation layer and the charge transport layer need to be designed to have optimum film thicknesses in consideration of the light absorption efficiency and the charge transport resistance of the layer itself. In particular, it is important to utilize optical interference between the transparent electrode and the counter electrode, and it is necessary to design the film thickness so that the electric field strength distribution of light is optimized for the power generation layer. ITO (tin-doped indium oxide) is generally used for the transparent electrode of the organic solar cell, and since the refractive index is high, the light reflected by the counter electrode is reflected back to the power generation layer side. By designing the electric field strength of light optimally, the apparent optical path length of the power generation layer can be obtained, and higher light absorption efficiency can be obtained even with a thin film.
 しかしながら、光が電極間を往復する間、発電に寄与しない電荷輸送層などでの光吸収によって、光ロスが発生することが課題となる。光ロスを低減させるために、電荷輸送層を薄く設計すると、上述した電界強度分布が発電層から大きくずれたり、層が薄すぎるために電極と発電層との間にリーク発生したりすることがあり、安定した発電効率が得られないといった課題があった。 However, there is a problem that light loss occurs due to light absorption in a charge transport layer that does not contribute to power generation while light reciprocates between the electrodes. If the charge transport layer is designed to be thin in order to reduce optical loss, the above-mentioned electric field strength distribution may greatly deviate from the power generation layer, or the layer may be too thin to cause leakage between the electrode and the power generation layer. There was a problem that stable power generation efficiency could not be obtained.
 また、上述の金属電極は一般的に、蒸着法やスパッタ法、または印刷法などにより形成されるが、その際に蒸発した金属クラスターや、印刷機の版などとコンタクトする際に、電荷輸送層の一部を破壊し、電極と発電層、または電極間でリーク発生の要因となることも課題となっていた。この様な課題に対し、電荷輸送層の膜厚を厚くし過ぎると、上述したような光学ロスが増大するばかりか、厚膜化による抵抗増が性能を低下させる要因となり、技術的なトレードオフとなっていた。 In addition, the above-mentioned metal electrode is generally formed by vapor deposition, sputtering, printing, or the like. When contacting the metal cluster evaporated at that time or a printing plate, the charge transport layer is formed. It has also been a problem that a part of the electrode is destroyed and causes leakage between the electrode and the power generation layer or between the electrodes. To deal with such problems, if the thickness of the charge transport layer is made too thick, not only the optical loss as described above increases, but also the increase in resistance due to the increase in film thickness causes a decrease in performance, resulting in a technical trade-off. It was.
 この様な課題に対し、例えば、発電層と電極間に電荷輸送性のオプティカルスペーサー層を設けることで、発電層の光電界強度を増大し、積極的に光学的効果を高める方法(例えば、特許文献1参照)や、ヒドロキシル類を有する剤を若干量添加することで、電荷輸送層自体の抵抗を低減させ、厚膜化による抵抗増を低減させる方法(例えば、特許文献2参照)、対極の金属電極をグロー放電法で作製することで、電荷輸送層へのダメージを低減する方法(例えば、特許文献3参照)、予め同じ基板上に作製した陽極および陰極上に、後から有機電荷輸送層を積層する方法(例えば、特許文献4参照)などが紹介されている。 In response to such a problem, for example, by providing an optical spacer layer having a charge transport property between the power generation layer and the electrode, the optical electric field strength of the power generation layer is increased and the optical effect is positively enhanced (for example, patent Reference 1), a method of reducing the resistance of the charge transport layer itself by adding a small amount of an agent having hydroxyls, and reducing resistance increase due to thickening (for example, see Patent Document 2), A method of reducing damage to the charge transport layer by producing a metal electrode by a glow discharge method (see, for example, Patent Document 3), an organic charge transport layer later on an anode and a cathode previously produced on the same substrate. The method of laminating (see, for example, Patent Document 4) has been introduced.
 しかし、この上述した何れの解決策においても、膜抵抗を極端に低下させることなく、電荷輸送層の光ロス低減と、電極形成時のダメージ低減とを両立できておらず、十分な性能が得られていなかった。 However, in any of the above-mentioned solutions, sufficient reduction in optical loss of the charge transport layer and reduction in damage during electrode formation cannot be achieved without extremely reducing the membrane resistance, and sufficient performance can be obtained. It was not done.
特表2008-533745号公報Special table 2008-533745 特表2010-508430号公報Special table 2010-508430 gazette 特開平9-92863号公報Japanese Patent Laid-Open No. 9-92863 特開2004-152786号公報JP 2004-152786 A
 本発明の目的は、電荷輸送層の光学ロスを低減し短絡電流密度(Jsc)を向上させると共に、対極形成時の電荷輸送層ダメージを低減し、リーク抑制効果によってフィルファクター(FF)に優れた有機光電変換素子およびその製造方法を提供することにある。 The object of the present invention is to reduce the optical loss of the charge transport layer and improve the short circuit current density (Jsc), reduce the damage of the charge transport layer when forming the counter electrode, and have an excellent fill factor (FF) due to the leak suppression effect. It is in providing an organic photoelectric conversion element and its manufacturing method.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.第1の電極と第2の電極との間に、p型半導体材料とn型半導体材料とを含む発電層と、正孔または電子のどちらかを主に輸送する電荷輸送層とを少なくとも有する有機光電変換素子において、該電荷輸送層が下記3つの単位構造から選ばれる少なくとも1種を有するポリマー(A)を含むことを特徴とする有機光電変換素子。 1. Organic having at least a power generation layer including a p-type semiconductor material and an n-type semiconductor material and a charge transport layer mainly transporting either holes or electrons between the first electrode and the second electrode In the photoelectric conversion element, the charge transport layer contains a polymer (A) having at least one selected from the following three unit structures.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、Xは水素原子又はメチル基を表し、R~Rはそれぞれ独立に炭素数1~5の直鎖または分岐アルキレン基を表す。l、m、及びnは、当該ポリマー(A)を構成する全モノマーのモル数の合計を100としたときのそれぞれの構成率(モル%)を表し、50≦l+m+n≦100である。)
 2.前記電荷輸送層が、前記ポリマー(A)と、π共役系高分子とポリアニオンとを少なくとも含むことを特徴とする前記1記載の有機光電変換素子。
(In the formula, X represents a hydrogen atom or a methyl group, R 1 to R 3 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms. L, m, and n represent the polymer (A ) Represents the respective composition ratio (mol%) when the total number of moles of all monomers constituting 100 is 100, and 50 ≦ l + m + n ≦ 100.)
2. 2. The organic photoelectric conversion device according to 1, wherein the charge transport layer contains at least the polymer (A), a π-conjugated polymer, and a polyanion.
 3.前記電荷輸送層における、前記ポリマー(A)の固形分比率が10質量%~90質量%であることを特徴とする前記1又は2記載の有機光電変換素子。 3. 3. The organic photoelectric conversion device as described in 1 or 2 above, wherein the solid content ratio of the polymer (A) in the charge transport layer is 10% by mass to 90% by mass.
 4.前記電荷輸送層が、前記ポリマー(A)と前記ポリアニオンとの熱処理工程後のナノインデンテーション法で測定した弾性率が、4GPa以上、10GPa以下であることを特徴とする前記1~3のいずれか1項記載の有機光電変換素子。 4. Any one of the above 1 to 3, wherein the charge transport layer has an elastic modulus measured by a nanoindentation method after a heat treatment step of the polymer (A) and the polyanion is 4 GPa or more and 10 GPa or less. The organic photoelectric conversion element of 1 item | term.
 5.前記1~4のいずれか1項記載の有機光電変換素子が、前記電荷輸送層を形成後、前記ポリマー(A)と前記ポリアニオンとの熱処理工程を含んで製造されることを特徴とする有機光電変換素子の製造方法。 5. 5. The organic photoelectric conversion element according to any one of 1 to 4, wherein the organic photoelectric conversion element is produced by a heat treatment step of the polymer (A) and the polyanion after forming the charge transport layer. A method for manufacturing a conversion element.
 本発明により、優れた短絡電流密度とフィルファクターを達成し、複次的には高温・高湿時の耐久性に優れた有機光電変換素子およびその製造方法を提供することができた。 According to the present invention, it was possible to provide an organic photoelectric conversion element that achieves an excellent short-circuit current density and a fill factor, and has excellent durability at high temperatures and high humidity, and a method for manufacturing the same.
本発明の光電変換素子を例示した図である。It is the figure which illustrated the photoelectric conversion element of this invention.
 本発明者らは、鋭意検討の結果、第1の電極と第2の電極との間に、p型半導体材料とn型半導体材料とを含む発電層と、正孔または電子のどちらかを主に輸送する電荷輸送層とを少なくとも有する有機光電変換素子において、前記電荷輸送層が前記ポリマー(A)を含むことを特徴とする有機光電変換素子を提供することで、上述した課題に対して優れた解決策となることを見出した。 As a result of intensive studies, the present inventors have mainly used a power generation layer including a p-type semiconductor material and an n-type semiconductor material and either a hole or an electron between the first electrode and the second electrode. An organic photoelectric conversion device having at least a charge transport layer for transporting to the surface, wherein the charge transport layer includes the polymer (A), thereby providing an organic photoelectric conversion device, which is excellent for the problems described above. I found that it was a solution.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 (有機光電変換素子および太陽電池の構成)
 本発明の有機光電変換素子は、第1の電極と第2の電極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層であり、バルクヘテロジャンクション層、またはBHJ層、i層とも言う)が少なくとも1層以上あり、光を照射すると電流を発生する素子である。
(Configuration of organic photoelectric conversion element and solar cell)
The organic photoelectric conversion element of the present invention includes a first electrode, a second electrode, and a power generation layer sandwiched between them (a layer in which a p-type semiconductor and an n-type semiconductor are mixed, a bulk heterojunction layer, or a BHJ layer) , Also referred to as i layer), and is an element that generates current when irradiated with light.
 本発明に係る有機光電変換素子の好ましい形態について図1を用いて説明するが、これに限定されるものではない。 Although the preferable form of the organic photoelectric conversion element concerning this invention is demonstrated using FIG. 1, it is not limited to this.
 図1は本発明の好ましい光電変換素子の断面構造を模式的に示した図である。 FIG. 1 is a diagram schematically showing a cross-sectional structure of a preferred photoelectric conversion element of the present invention.
 図1において、光電変換素子10は図示しない基板上に、第1の電極101、正孔阻止層(または電子輸送層)102、発電層103、(p型半導体材料103aとn型半導体材料103bとのバルクヘテロジャンクション構造)電子阻止層(または正孔輸送層)104、第2の電極105を積層した構造を示している。 In FIG. 1, the photoelectric conversion element 10 includes a first electrode 101, a hole blocking layer (or electron transport layer) 102, a power generation layer 103, (a p-type semiconductor material 103 a and an n-type semiconductor material 103 b) on a substrate (not shown). (Bulk heterojunction structure) The electron blocking layer (or hole transport layer) 104 and the second electrode 105 are stacked.
 有機光電変換素子は、前述した第1の電極101または第2の電極105の少なくともどちらかが透明電極であるが、本発明においては、どちらが透明でも、両方とも透明でも効果を得ることができる。また、後から形成する電極側と接触する電荷輸送層(電子輸送層、または正孔輸送層の少なくともどちらか)に前記ポリマー(A)を含むことを特徴としている。 In the organic photoelectric conversion element, at least one of the first electrode 101 and the second electrode 105 described above is a transparent electrode. However, in the present invention, the effect can be obtained when either is transparent or both are transparent. Further, the polymer (A) is included in a charge transport layer (at least one of an electron transport layer and a hole transport layer) that comes into contact with the electrode side to be formed later.
 更に本発明においては、前記電荷輸送層が、前記ポリマー(A)と、π共役系高分子とポリアニオンとを少なくとも含むことがより好ましい。 Furthermore, in the present invention, it is more preferable that the charge transport layer contains at least the polymer (A), a π-conjugated polymer, and a polyanion.
 [ポリマー(A)]
 本発明の光電変換素子は、第1の電極と第2の電極との間に、電荷輸送層を少なくとも有することを特徴とし、更には、該電荷輸送層に前記ポリマー(A)を含むことを特徴とする。
[Polymer (A)]
The photoelectric conversion element of the present invention is characterized by having at least a charge transport layer between the first electrode and the second electrode, and further comprising the polymer (A) in the charge transport layer. Features.
 本発明においては、前記電荷輸送層にポリマー(A)を含むことで、膜の導電性を低下させずに透過率を向上させることが可能となり、膜をより厚膜化しても性能を低下させず電極形成に対するダメージを抑制可能となり、好ましい実施形態である。 In the present invention, by including the polymer (A) in the charge transport layer, it is possible to improve the transmittance without reducing the conductivity of the film, and the performance is lowered even if the film is made thicker. This makes it possible to suppress damage to electrode formation, which is a preferred embodiment.
 本発明で好ましく用いられるポリマー(A)の具体例としては、ポリマー(A)において、Xは水素原子又はメチル基を表し、R~Rはそれぞれ独立に炭素数1~5の直鎖または分岐アルキレン基を表す。l、m、及びnは、当該ポリマー(A)を構成する全モノマーのモル数の合計を100としたときのそれぞれの構成率(モル%)を表し、50≦l+m+n≦100とすることが好ましい。構成比は70≦m≦100の範囲内であることが更に好ましい。 As specific examples of the polymer (A) preferably used in the present invention, in the polymer (A), X represents a hydrogen atom or a methyl group, and R 1 to R 3 are each independently a straight chain having 1 to 5 carbon atoms or Represents a branched alkylene group. l, m, and n represent respective constituent ratios (mol%) when the total number of moles of all monomers constituting the polymer (A) is 100, and 50 ≦ l + m + n ≦ 100 is preferable. . The composition ratio is more preferably in the range of 70 ≦ m ≦ 100.
 本発明において、ポリマー(A)と併用して、水系溶媒(後述)に溶解、あるいは、分散できるポリマーで、親水性のポリマーバインダーを用いることが好ましい。例えば、ポリエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、アクリルウレタン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアセタール系樹脂、ポリビニルアルコール系樹脂等を挙げることができる。具体的な化合物としては、例えば、ポリエステル系樹脂としてバイロナールMD1200、MD1400、MD1480(以上、東洋紡社製)を挙げることができる。 In the present invention, it is preferable to use a hydrophilic polymer binder which is a polymer that can be dissolved or dispersed in an aqueous solvent (described later) in combination with the polymer (A). Examples thereof include polyester resins, acrylic resins, polyurethane resins, acrylic urethane resins, polycarbonate resins, cellulose resins, polyvinyl acetal resins, polyvinyl alcohol resins, and the like. Specific examples of the compound include Vylonal MD1200, MD1400, MD1480 (manufactured by Toyobo Co., Ltd.) as polyester resins.
 本発明に係る親水性のポリマーバインダーとしては、後述する架橋剤と反応する基を有する化合物であれば、より強固な膜を形成することから、より好ましい。こうした親水性のポリマーバインダーとしては、架橋剤と反応する基としては架橋剤によって異なるが、例えば、ヒドロキシ基、カルボキシル基、アミノ基等を挙げることができる。中でも、側鎖にヒドロキシ基を有することが最も好ましい。 As the hydrophilic polymer binder according to the present invention, a compound having a group that reacts with a cross-linking agent described later is more preferable because a stronger film is formed. As such a hydrophilic polymer binder, a group that reacts with the crosslinking agent varies depending on the crosslinking agent, and examples thereof include a hydroxy group, a carboxyl group, and an amino group. Among these, it is most preferable to have a hydroxy group in the side chain.
 本発明に係る親水性のポリマーバインダーの具体的な化合物としては、ポリビニルアルコールPVA-203、PVA-224、PVA-420(以上、クレハ社製)、ヒドロキシプロピルメチルセルロース60SH-06、60SH-50、60SH-4000、90SH-100(以上、信越化学工業社製)、メチルセルロースSM-100(信越化学工業社製)、酢酸セルロースL-20、L-40、L-70(以上、ダイセル化学工業社製)、カルボキシメチルセルロースCMC-1160(ダイセル化学工業社製)、ヒドロキシエチルセルロースSP-200、SP-600(以上、ダイセル化学工業社製)、アクリル酸アルキル共重合体ジュリマーAT-210、AT-510(以上、東亞合成社製)、ポリヒドロキシエチルアクリレート、ポリヒドロキシエチルメタクリレート等を挙げることができる。 Specific examples of the hydrophilic polymer binder according to the present invention include polyvinyl alcohol PVA-203, PVA-224, PVA-420 (manufactured by Kureha), hydroxypropylmethylcellulose 60SH-06, 60SH-50, 60SH. -4000, 90SH-100 (above, manufactured by Shin-Etsu Chemical Co., Ltd.), methylcellulose SM-100 (produced by Shin-Etsu Chemical Co., Ltd.), cellulose acetate L-20, L-40, L-70 (above, manufactured by Daicel Chemical Industries, Ltd.) Carboxymethylcellulose CMC-1160 (manufactured by Daicel Chemical Industries, Ltd.), hydroxyethyl cellulose SP-200, SP-600 (manufactured by Daicel Chemical Industries, Ltd.), alkyl acrylate copolymer Jurimer AT-210, AT-510 (above, Manufactured by Toagosei Co., Ltd.), polyhydroxyethyl Acrylate, may be mentioned poly-hydroxyethyl methacrylate.
 上記ポリマー(A)を一定量含む場合、π共役系高分子とポリアニオンを含有する電荷輸送層の導電性を向上させることが可能で、さらに、π共役系高分子との相溶性も良好で高い透明性と平滑性が達成できる。さらに、ポリアニオンがスルホ基を有する場合は、上記ポリマー(A)であれば、スルホ基が効果的に脱水触媒として働き、架橋剤等の追加の剤を利用しなくても、緻密な架橋層を形成でき、膜強度の向上が期待できることからより好ましい実施形態である。 When the polymer (A) is contained in a certain amount, the conductivity of the charge transport layer containing the π-conjugated polymer and the polyanion can be improved, and the compatibility with the π-conjugated polymer is good and high. Transparency and smoothness can be achieved. Furthermore, when the polyanion has a sulfo group, if the polymer (A) is used, the sulfo group effectively acts as a dehydration catalyst, and a dense cross-linked layer can be formed without using an additional agent such as a cross-linking agent. This is a more preferred embodiment because it can be formed and an improvement in film strength can be expected.
 ポリマー(A)の主たる共重合成分は、前記ポリマー(A)が含有する、3つの単位構造であり、共重合成分の50mol%以上の成分が該3つの単位構造のいずれか、あるいは、該3つの単位構造の合計が50mol%以上ある共重合ポリマーである。ポリマー(A)は該3つの単位構造の合計が80mol%以上であることがより好ましく、さらに、該3つの単位構造いずれか単独のモノマーから形成されたホモポリマーであってもよく、また、好ましい実施形態である。 The main copolymerization component of the polymer (A) is the three unit structures contained in the polymer (A), and 50 mol% or more of the copolymerization component is any one of the three unit structures, or the 3 It is a copolymer having a total of 50 mol% of one unit structure. The polymer (A) preferably has a total of the three unit structures of 80 mol% or more, and may be a homopolymer formed from any one monomer of the three unit structures. It is an embodiment.
 ポリマー(A)においては、水系溶媒に可溶である範囲において、他のモノマー成分が共重合されていてもかまわないが、親水性の高いモノマー成分であることがより好ましい。また、ポリマー(A)は数平均分子量において、1000以下の含有量が0~5%以下であることが好ましい。 In the polymer (A), other monomer components may be copolymerized as long as they are soluble in an aqueous solvent, but a monomer component having high hydrophilicity is more preferable. The polymer (A) has a number average molecular weight of preferably 1000 or less and 0 to 5% or less.
 このポリマー(A)の数平均分子量において、1000以下の含有量が0~5%以下とする方法としては、再沈殿法、分取GPC、リビング重合による単分散のポリマーを合成等により、低分子量成分を除去する、または低分子量成分の生成を抑制する方法を用いることができる。再沈殿法は、ポリマーが溶解可能な溶媒へ溶解し、ポリマーを溶解した溶媒より溶解性の低い溶媒中へ滴下することにより、ポリマーを析出させ、モノマー、触媒、オリゴマー等の低分子量成分を除去する方法である。また、分取GPCは、例えばリサイクル分取GPCLC-9100(日本分析工業社製)、ポリスチレンゲルカラムで、ポリマーを溶解した溶液をカラムに通すことにより分子量で分けることができ、所望の低分子量をカットすることができる方法である。リビング重合は、開始種の生成が経時で変化せず、また停止反応等の副反応が少なく、分子量の揃ったポリマーが得られる。分子量はモノマーの添加量により調整できるため、例えば分子量を2万のポリマーを合成すれば、低分子量体の生成を抑制することができる。生産適正から、再沈殿法、リビング重合が好ましい。 The number average molecular weight of the polymer (A) is such that the content of 1000 or less is 0 to 5% or less, such as reprecipitation method, preparative GPC, synthesis of monodisperse polymer by living polymerization, etc. Methods that remove components or suppress the formation of low molecular weight components can be used. In the reprecipitation method, the polymer is dissolved in a solvent in which the polymer can be dissolved and dropped into a solvent having a lower solubility than the solvent in which the polymer is dissolved, thereby precipitating the polymer and removing low molecular weight components such as monomers, catalysts, and oligomers. It is a method to do. Further, preparative GPC can be divided by molecular weight, for example, by recycling preparative GPCLC-9100 (manufactured by Japan Analytical Industrial Co., Ltd.), polystyrene gel column, and passing the polymer-dissolved solution through the column. It is a method that can be cut. In the living polymerization, the generation of the starting species does not change with time, and there are few side reactions such as termination reaction, and a polymer having a uniform molecular weight can be obtained. Since the molecular weight can be adjusted by the amount of monomer added, for example, if a polymer having a molecular weight of 20,000 is synthesized, the production of low molecular weight substances can be suppressed. The reprecipitation method and living polymerization are preferable from the viewpoint of production suitability.
 本発明のポリマー(A)または親水性のポリマーバインダーの数平均分子量、重量平均分子量の測定は、一般的に知られているゲルパーミエーションクロマトグラフィー(GPC)により行うことができる。分子量分布は(重量平均分子量/数平均分子量)の比で表すことができる。使用する溶媒は、ポリマー(A)または親水性のポリマーバインダーが溶解すれば特に制限はなく、THF、DMF、CHClが好ましく、より好ましくはTHF、DMFであり、さらに好ましくはDMFである。また、測定温度も特に制限はないが40℃が好ましい。 The number average molecular weight and weight average molecular weight of the polymer (A) or hydrophilic polymer binder of the present invention can be measured by generally known gel permeation chromatography (GPC). The molecular weight distribution can be expressed by a ratio of (weight average molecular weight / number average molecular weight). The solvent to be used is not particularly limited as long as the polymer (A) or the hydrophilic polymer binder is dissolved, preferably THF, DMF, CH 2 Cl 2 , more preferably THF, DMF, and further preferably DMF. . The measurement temperature is not particularly limited, but 40 ° C. is preferable.
 本発明に係るポリマー(A)の分子量は数平均分子量で3,000~2,000,000の範囲が好ましく、より好ましくは4,000~500,000、さらに好ましくは5000~100000の範囲内である。ポリマー(A)の分子量分布は1.01~1.30が好ましく、より好ましくは1.01~1.25である。 The molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000 in terms of number average molecular weight, more preferably in the range of 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000. is there. The molecular weight distribution of the polymer (A) is preferably from 1.01 to 1.30, more preferably from 1.01 to 1.25.
 数平均分子量1000以下の含有量はGPCにより得られた分布において、数平均分子量1000以下の面積を積算し、分布全体の面積で割ることで割合を換算した。 In the distribution obtained by GPC, the content with a number average molecular weight of 1000 or less was converted to a ratio by integrating the area with a number average molecular weight of 1000 or less and dividing by the area of the entire distribution.
 リビングラジカル重合溶剤は、反応条件化で不活性であり、モノマー、生成するポリマーを溶解できれば特に制限はないが、アルコール系溶媒と水の混合溶媒が好ましい。リビングラジカル重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。 The living radical polymerization solvent is inactive under reaction conditions and is not particularly limited as long as it can dissolve the monomer and the polymer to be formed, but a mixed solvent of an alcohol solvent and water is preferable. The living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
 本発明に係るポリマー(A)の存在比は、前記電荷輸送層中に固形分比率が10質量%~90質量%であることが好ましい。更に好ましくは20質量%~80質量%である。10質量%以上あれば、導電性を著しく低下させることなく透過率向上に効果が得られ、90質量%以下であれば十分な導電性を保つことができ本発明において好ましい存在比である。 The abundance ratio of the polymer (A) according to the present invention is preferably such that the solid content ratio in the charge transport layer is 10% by mass to 90% by mass. More preferably, it is 20% by mass to 80% by mass. If it is 10% by mass or more, the effect of improving the transmittance can be obtained without significantly lowering the conductivity, and if it is 90% by mass or less, sufficient conductivity can be maintained, which is a preferable abundance ratio in the present invention.
 [π共役系高分子]
 本発明で好ましく用いられるπ共役系高分子としては、特に限定されないが、所謂導電性高分子であることが好ましい。更には、π共役系高分子とポリアニオンとを有してなることがより好ましい。こうした高分子は、後述するπ共役系高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。
[Π-conjugated polymer]
The π-conjugated polymer preferably used in the present invention is not particularly limited, but is preferably a so-called conductive polymer. Furthermore, it is more preferable to have a π-conjugated polymer and a polyanion. Such a polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
 本発明に用いることができるπ共役系高分子としては、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類、等の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。更にはポリエチレンジオキシチオフェン類であることが好ましい。 Examples of the π-conjugated polymer that can be used in the present invention include polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, and polyparaffins. Chain conductive polymers such as phenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl compounds, and the like can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Furthermore, polyethylenedioxythiophenes are preferable.
 本発明のπ共役系高分子を形成する前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にも、その主鎖にπ共役系が形成されるものを好ましく用いることができる。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。 The precursor monomer that forms a π-conjugated polymer of the present invention has a π-conjugated system in the molecule, and even when polymerized by the action of an appropriate oxidizing agent, a π-conjugated system is formed in the main chain. Can be preferably used. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythio , 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyl Oxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3- Methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3- Isobutylaniline, 2-anilinesulfonic acid, 3-anili Sulfonic acid and the like.
 [ポリアニオン]
 本発明で好ましく用いられるポリアニオンは特に限定されないが、アニオン性基として、スルホ基を有することがより好ましい。
[Polyanion]
The polyanion preferably used in the present invention is not particularly limited, but it is more preferable to have a sulfo group as the anionic group.
 具体的なポリアニオンの例としては、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものが好ましい。 Specific examples of polyanions include substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted polyester, and co-polymers thereof. Preferred is a combination of a structural unit having an anionic group and a structural unit having no anionic group.
 このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 This polyanion is a solubilized polymer that solubilizes a π-conjugated conductive polymer in a solvent. The anion group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリアニオンのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anion group of the polyanion may be a functional group capable of undergoing chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate group, A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
 また、化合物内にFを有するポリアニオンであってもよい。具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等を挙げることができる。 Also, it may be a polyanion having F in the compound. Specifically, Nafion (made by Dupont) containing a perfluorosulfonic acid group, Flemion (made by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group, and the like can be mentioned.
 これらのうち、スルホン酸を有する化合物であると、導電性ポリマー含有層を塗布、乾燥することによって形成した後に、100℃以上200℃以下の温度で5分以上の加熱処理を施した場合、この塗布膜の溶媒耐性が著しく向上することから、より好ましい。 Among these, when a compound having a sulfonic acid is formed by applying and drying a conductive polymer-containing layer, when subjected to a heat treatment at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more, It is more preferable because the solvent resistance of the coating film is remarkably improved.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。 The polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 ポリアニオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーに、スルホ化剤によりスルホン酸化して導入する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。 As a method for producing a polyanion, for example, a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of introducing into a polymer having no anionic group by sulfonation with a sulfonating agent, The method of manufacturing by superposition | polymerization of an anionic group containing polymeric monomer is mentioned.
 アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/または重合触媒の存在下で、酸化重合またはラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/または重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有しない重合性モノマーを共重合させてもよい。 Examples of the method for producing an anion group-containing polymerizable monomer by polymerization include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added to the predetermined amount. React with time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, an anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anionic group.
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。 The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
 得られたポリマーがポリアニオン塩である場合には、ポリアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。 When the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
 こうした導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCLEVIOSシリーズとして、Aldrich社からPEDOT/PSS 483095、560598として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることができる。 Such a conductive polymer is preferably a commercially available material. For example, a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the CLEVIOS series, from Aldrich as PEDOT / PSS 483095, 560598, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
 第2のドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。 A water-soluble organic compound may be contained as the second dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably.
 前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、ヒドロキシ基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物等が挙げられる。前記ヒドロキシ基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリン等が挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトン等が挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、等が挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシド等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。 The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, γ-butyrolactone, and the like. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 〔電荷輸送層の形成〕
 本発明において前記電荷輸送層が、前記ポリマー(A)と、π共役系高分子とポリアニオンとを少なくとも含むことがより好ましい。例えば、ポリマー(A)を含む親水性のポリマーバインダー成分と、π共役系高分子成分と、ポリアニオン成分と、溶媒とを少なくとも含んでなる塗布液を塗布、乾燥することで形成することができる。
(Formation of charge transport layer)
In the present invention, it is more preferable that the charge transport layer contains at least the polymer (A), a π-conjugated polymer, and a polyanion. For example, it can be formed by applying and drying a coating solution comprising at least a hydrophilic polymer binder component containing the polymer (A), a π-conjugated polymer component, a polyanion component, and a solvent.
 本発明に係るπ共役系高分子の存在比は、前記電荷輸送層中に固形分比率が10質量%以上であることが好ましい。更に好ましくは10質量%~90質量%、より好ましくは20質量%~80質量%である。本発明においては前記のポリマー(A)を含むポリマーバインダーとの相溶性にもよるが、20質量%~50質量%でも、導電性を保ったまま透過率を向上できるため本発明においてより好ましい存在比である。 The abundance ratio of the π-conjugated polymer according to the present invention is preferably such that the solid content ratio in the charge transport layer is 10% by mass or more. More preferably, it is 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass. In the present invention, depending on the compatibility with the polymer binder containing the polymer (A) described above, even if it is 20% by mass to 50% by mass, the transmittance can be improved while maintaining conductivity, so that it is more preferable in the present invention. Is the ratio.
 また、π共役系高分子であるポリ(3,4-エチレンジオキシチオフェン)とポリアニオンであるポリスチレンスルホン酸からなる導電性ポリマーの場合、π共役系高分子とポリアニオンの組成比も重要となる。特に、本発明の光電変換素子において電荷輸送層として用いる場合、π共役系高分子に対してポリアニオンの組成量が、3倍以上、50倍以下であることが好ましい。3倍以上であれば、正孔電荷を選択的に輸送し、且つ、電子電荷を効果的に阻止できるため好ましい。また、50倍以下であれば、正孔電荷の移動度が十分に高く、本発明において好ましい。更に好ましい組成比は5倍以上、10倍以下である。 In the case of a conductive polymer composed of poly (3,4-ethylenedioxythiophene) which is a π-conjugated polymer and polystyrene sulfonic acid which is a polyanion, the composition ratio of the π-conjugated polymer and the polyanion is also important. In particular, when used as a charge transport layer in the photoelectric conversion element of the present invention, the composition amount of the polyanion is preferably 3 to 50 times the π-conjugated polymer. If it is 3 times or more, it is preferable because hole charges can be selectively transported and electron charges can be effectively blocked. Moreover, if it is 50 times or less, the hole charge mobility is sufficiently high, which is preferable in the present invention. A more preferable composition ratio is 5 times or more and 10 times or less.
 また、電荷輸送層として用いる場合の導電率としては、1S/cm以下であれば電荷輸送層として機能するが、より好ましくは1×10-2S/cm以下、1×10-6S/cm以上であり、より好ましくは1×10-3S/cm以下、1×10-5S/cm以上である。この範囲の導電率であれば、上述と同様な理由であるが、電子電荷の阻止能が十分にあり、本発明の光電変換素子において好ましい形態である。 In addition, when used as a charge transport layer, the conductivity functions as a charge transport layer if it is 1 S / cm or less, more preferably 1 × 10 −2 S / cm or less, 1 × 10 −6 S / cm. More preferably, it is 1 × 10 −3 S / cm or less, and 1 × 10 −5 S / cm or more. The conductivity in this range is the same reason as described above, but has a sufficient ability to block electronic charges, and is a preferred embodiment in the photoelectric conversion element of the present invention.
 溶媒としては、水系溶媒を好ましく用いることができる。ここで、水系溶媒とは、50質量%以上が水である溶媒を表す。もちろん、他の溶媒を含有しない純水であってもよい。水系溶媒の水以外の成分は、水に相溶する溶剤であれば特に制限はないが、アルコール系の溶媒を好ましく用いることができ、中でも、沸点が比較的水に近いイソプロピルアルコールを用いることが形成する膜の平滑性等には有利である。 As the solvent, an aqueous solvent can be preferably used. Here, the aqueous solvent represents a solvent in which 50% by mass or more is water. Of course, pure water containing no other solvent may be used. The component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等を用いることができる。 As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method A letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
 前記電荷輸送層の乾燥膜厚は、30~2000nmであることが好ましい。本発明に係る電荷輸送層は、電極形成時のダメージ抑制の観点から100nm以上の膜厚がより好ましく、リーク防止効果をより高める視点からは200nm以上の膜厚であることがさらに好ましい。また、高い透過率と膜としての抵抗低減を維持する視点から1000nm以下の膜厚であることがより好ましい。 The dry film thickness of the charge transport layer is preferably 30 to 2000 nm. The charge transport layer according to the present invention preferably has a thickness of 100 nm or more from the viewpoint of suppressing damage during electrode formation, and more preferably has a thickness of 200 nm or more from the viewpoint of further improving the leak prevention effect. Moreover, it is more preferable that it is a film thickness of 1000 nm or less from a viewpoint of maintaining the high transmittance | permeability and the resistance reduction as a film | membrane.
 塗布した後、溶媒を揮発させるために、適宜乾燥処理を施す。乾燥処理の条件として特に制限はないが、基板や導電性ポリマー含有層が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80~150℃で10秒から10分の乾燥処理をすることができる。 After coating, a drying process is appropriately performed to volatilize the solvent. Although there is no restriction | limiting in particular as conditions of a drying process, It is preferable to dry-process at the temperature of the range which does not damage a board | substrate and a conductive polymer content layer. For example, a drying treatment can be performed at 80 to 150 ° C. for 10 seconds to 10 minutes.
 本発明の電荷輸送層において、乾燥膜に含まれるポリマー(A)の固形分比率が10質量%~90質量%であることがより好ましい。15質量%以上であれば、添加量に応じて膜の透過率を向上させることができより好ましく、また70質量%以下であれば膜抵抗が低く保てるため本発明において好ましい。 In the charge transport layer of the present invention, the solid content ratio of the polymer (A) contained in the dry film is more preferably 10% by mass to 90% by mass. If it is 15 mass% or more, the transmittance of the film can be improved depending on the amount added, and if it is 70 mass% or less, the film resistance can be kept low, which is preferable in the present invention.
 [架橋構造の形成]
 本発明の電荷輸送層において、ポリアニオンとしてスルホ基を有するポリマーと、上記ポリマー(A)を含む場合、水酸基の脱水反応による製膜後の架橋反応によって、膜強度が大幅に高くなることが分かっており、電極形成時の有機層へのダメージを低減する効果が期待できより好ましい構成である。
[Formation of cross-linked structure]
In the charge transport layer of the present invention, when the polymer having a sulfo group as the polyanion and the polymer (A) are included, it is found that the film strength is significantly increased by the crosslinking reaction after the film formation by the dehydration reaction of the hydroxyl group. Thus, the effect of reducing damage to the organic layer during electrode formation can be expected, and this is a more preferable configuration.
 本発明では、架橋反応を促進する目的で、製膜乾燥後に追加の加熱処理をする架橋反応工程を有することが好ましい。加熱処理の条件に制約はないが、基板や他の層が損傷しない範囲の温度で処理することが好ましい。例えば、80~150℃で2分から120分の乾燥処理をすることができる。また、40℃~100℃程度の比較的低温で10~200時間程度の長時間の処理を施しても良い。更に、加熱処理の方法としては、一般的な熱風によるドライヤー加熱の他に、IRヒーターやIHヒーター、マイクロウェーブによる加熱、またはこれらを併用することで、より短時間で架橋反応を起こすことができるが、脱水反応を伴うため、熱風による加熱を少なくとも用いることが好ましい。 In the present invention, for the purpose of accelerating the crosslinking reaction, it is preferable to have a crosslinking reaction step in which an additional heat treatment is performed after the film formation is dried. There is no restriction on the conditions of the heat treatment, but it is preferable to perform the treatment at a temperature within a range where the substrate and other layers are not damaged. For example, the drying treatment can be performed at 80 to 150 ° C. for 2 minutes to 120 minutes. Further, a long-time treatment of about 10 to 200 hours may be performed at a relatively low temperature of about 40 ° C. to 100 ° C. Furthermore, as a heat treatment method, in addition to heating with a general hot air dryer, a crosslinking reaction can be caused in a shorter time by using an IR heater, IH heater, microwave heating, or a combination thereof. However, since it involves a dehydration reaction, it is preferable to use at least heating with hot air.
 [ナノインデンテーション弾性率]
 本発明の架橋反応による膜強度の向上は、ナノインデンテーション法を用いた弾性率により評価することができる。本発明におけるナノインデンテーション弾性率とは、特殊なSPMのカンチレバーを一定荷重で対象膜に押し付け、カンチレバーのへこみ具合から、弾性率を算出する手法である。
[Nanoindentation elastic modulus]
The improvement of the film strength by the crosslinking reaction of the present invention can be evaluated by the elastic modulus using the nanoindentation method. The nanoindentation elastic modulus in the present invention is a method of calculating the elastic modulus from the degree of depression of the cantilever by pressing a special SPM cantilever against the target film with a constant load.
 本発明の電荷輸送層へのダメージを低減させるために、前記の弾性率は4GPa以上、10GPaであることが好ましい。弾性率が4GPa以上あれば電極形成時のダメージを抑制することができ、また10GPa以下であれば、適度なフレキシブル性により変形やクラックを抑制でき好ましい。より好ましい弾性率としては、上記の観点から5GPa以上、8GPa以下が最も好ましい。 In order to reduce damage to the charge transport layer of the present invention, the elastic modulus is preferably 4 GPa or more and 10 GPa. If the elastic modulus is 4 GPa or more, damage during electrode formation can be suppressed, and if it is 10 GPa or less, deformation and cracks can be suppressed by appropriate flexibility, which is preferable. The more preferable elastic modulus is most preferably 5 GPa or more and 8 GPa or less from the above viewpoint.
 以下、本発明の好ましい態様について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 <電荷輸送層:正孔輸送層、電子輸送層>
 電荷輸送層の本来の機能として、発電層で発生した正孔または電子のみを電極まで輸送し、反対のキャリアの輸送を阻止する阻止層としての役割がある。この場合、正孔輸送層を電子阻止層、電子輸送層を正孔阻止層と言い換えることができる。
<Charge transport layer: hole transport layer, electron transport layer>
The original function of the charge transport layer is to serve as a blocking layer that transports only holes or electrons generated in the power generation layer to the electrode and prevents transport of the opposite carrier. In this case, the hole transport layer can be referred to as an electron blocking layer, and the electron transport layer as a hole blocking layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、より詳しくは電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の電極上での再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発電層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. More specifically, the hole blocking layer is made of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, and transports electrons. While blocking holes, the recombination probability of electrons and holes on the electrode can be improved. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer is preferably provided adjacent to the power generation layer.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、より詳しくは正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. More specifically, the electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes. However, the probability of recombination of electrons and holes can be improved by blocking electrons. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
 上述のように、本発明の電荷輸送層の乾燥膜厚は、30~2000nmであることが好ましい。特に後から電極形成する側の電荷輸送層(例えば、図1中104)は、電極形成時のダメージ抑制の観点から100nm以上の膜厚がより好ましく、リーク防止効果をより高める視点からは200nm以上の膜厚であることがさらに好ましい。また、高い透過率と膜としての抵抗低減を維持する視点から1000nm以下の膜厚であることがより好ましい。 As described above, the dry film thickness of the charge transport layer of the present invention is preferably 30 to 2000 nm. In particular, the charge transport layer (for example, 104 in FIG. 1) on the electrode forming side later preferably has a thickness of 100 nm or more from the viewpoint of suppressing damage during electrode formation, and 200 nm or more from the viewpoint of further improving the leakage prevention effect. More preferably, the film thickness is Moreover, it is more preferable that it is a film thickness of 1000 nm or less from a viewpoint of maintaining the high transmittance | permeability and the resistance reduction as a film | membrane.
 一方、基板側の電荷輸送層(例えば、図1中102)は5~500nmであることが好ましく、膜抵抗および透過率の観点から、7~200nmがより好ましく、更には10~100nmが最も好ましい。 On the other hand, the charge transport layer on the substrate side (for example, 102 in FIG. 1) is preferably 5 to 500 nm, more preferably 7 to 200 nm, and most preferably 10 to 100 nm from the viewpoint of film resistance and transmittance. .
 <正孔輸送層>
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
<Hole transport layer>
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、前記π共役系高分子、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, the π-conjugated polymers, conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC、酸化ニッケル、酸化モリブデン等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si, p-type-SiC, nickel oxide, and molybdenum oxide can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。 The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 As the material, any one of conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodisides. Examples include methane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Similar to the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 また、n型の伝導性を有する無機酸化物(酸化チタン、酸化亜鉛等)も用いることができる。 Also, n-type conductive inorganic oxides (titanium oxide, zinc oxide, etc.) can be used.
 具体例としては、N,N′-ビス(3-メチルフェニル)-(1,1′-ビフェニル)-4,4′-ジアミン(TPD)や4,4′-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物やその誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4′,4″-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポルフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体等を好ましく用いることができる。 Specific examples include N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD) and 4,4'-bis [N- (naphthyl)- Aromatic diamine compounds such as N-phenyl-amino] biphenyl (α-NPD) and derivatives thereof, oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene, 4 , 4 ', 4 "-tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. , Triazole derivatives, oki Use of dizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc. In the polymer material, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be preferably used.
 また、例えば特表2010-525613号公報記載の窒素含有化合物も本発明において好ましく用いることができる。前記化合物はRN(R)であり、R、R、およびRが各々独立に、H、C1~C20のアルキル、C1~C20のアルコキシ、アリール、ヘテロアリール、C3~C20のシクロアルキル、またはC3~C20のヘテロシクロアルキルであるか、RおよびR、RおよびR、またはRおよびRが、それらの結合した窒素原子と共にヘテロアリールまたはC3~C20のヘテロシクロアルキルをなす、Rは、Si(OR)またはNH(R)で置換されたC1~C20アルキルであるか、COOHまたはSHで置換されたアリールであり、各Rは独立にC1~C20アルキルであることが好ましい。本発明で好ましく用いることができるより具体的な窒素含有化合物例としては、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、(3-トリメトキシシリルプロピル)ジエチレントリアミン、3-アミノプロピルトリメトキシシラン、3-(N,N-ジメチルアミノ)プロピルトリメトキシシラン、4-ジメチルアミノ安息香酸、4-アミノ安息香酸、または4-アミノチオフェノールが好ましい。更に好ましくはポリアミン、ポリエチレンイミンまたはその誘導体である。 Further, for example, nitrogen-containing compounds described in JP-T-2010-525613 can be preferably used in the present invention. The compound is R 1 N (R 2 R 3 ), and each of R 1 , R 2 , and R 3 is independently H, C1-C20 alkyl, C1-C20 alkoxy, aryl, heteroaryl, C3- C20 cycloalkyl, or C3-C20 heterocycloalkyl, or R 1 and R 2 , R 2 and R 3 , or R 1 and R 3 together with their attached nitrogen atoms are heteroaryl or C3-C20 Wherein R 1 is C1-C20 alkyl substituted with Si (OR) 3 or NH (R), or aryl substituted with COOH or SH, and each R is independently C1 It is preferably a C20 alkyl. Specific examples of nitrogen-containing compounds that can be preferably used in the present invention include 3- (2-aminoethyl) aminopropyltrimethoxysilane, (3-trimethoxysilylpropyl) diethylenetriamine, and 3-aminopropyltrimethoxysilane. 3- (N, N-dimethylamino) propyltrimethoxysilane, 4-dimethylaminobenzoic acid, 4-aminobenzoic acid or 4-aminothiophenol is preferred. More preferred is polyamine, polyethyleneimine or a derivative thereof.
 前記ポリマーのうちの少なくとも一部の分子は架橋剤によって架橋されていることが本発明において更に好ましい。架橋剤は特に限定されないが、含エポキシ化合物を含むことが好ましく、架橋剤の具体例としてはグリセロールプロポキシラートトリグリシジルエーテルまたはグリセロールジグリシジルエーテルなどを好ましく用いることができる。 In the present invention, it is more preferable that at least some of the molecules of the polymer are crosslinked by a crosslinking agent. Although the crosslinking agent is not particularly limited, it preferably contains an epoxy-containing compound, and glycerol propoxylate triglycidyl ether or glycerol diglycidyl ether can be preferably used as a specific example of the crosslinking agent.
 <p型半導体材料>
 本発明の発電層(バルクヘテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
<P-type semiconductor material>
Examples of the p-type semiconductor material used for the power generation layer (bulk heterojunction layer) of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。 Examples of the condensed polycyclic aromatic low-molecular compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF ) -Perchloric acid complexes, and derivatives and precursors thereof.
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。 Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A. A pentacene derivative having a substituent described in JP-A No. 2003-136964, a pentacene precursor described in US Patent Application Publication No. 2003/136964, and the like; Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.
 共役系ポリマーとしては、例えば、ポリ(3-ヘキシルチオフェン)(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008/000664号に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。 Examples of the conjugated polymer include a polythiophene such as poly (3-hexylthiophene) (P3HT) and oligomers thereof, or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Such polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008 / 000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008 / 000664, an Adv Mater, a polythiophene-thiazolothiazole copolymer described in 2007p4160, Nature Mat. vol. 6 (2007), p497 described in PCPDTBT, etc., polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as σ-conjugated polymers such as polysilane and polygermane.
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。 In addition, oligomeric materials, not polymer materials, include thiophene hexamer α-seccithiophene α, ω-dihexyl-α-sexualthiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3 Oligomers such as -butoxypropyl) -α-sexithiophene can be preferably used.
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。 Among these compounds, compounds that are highly soluble in an organic solvent to the extent that a solution process can be performed, can form a crystalline thin film after drying, and can achieve high mobility are preferable.
 また、発電層上に電子輸送層を塗布で製膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いても良い。 Further, when the electron transport layer is formed on the power generation layer by coating, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .
 このような材料としては、Technical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008-16834号等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。 Examples of such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Alternatively, the soluble substituent reacts to become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834. Materials etc. can be mentioned.
 <n型半導体材料>
 本発明のバルクヘテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
<N-type semiconductor material>
The n-type semiconductor material used for the bulk heterojunction layer of the present invention is not particularly limited. For example, fullerene, octaazaporphyrin and the like, p-type semiconductor perfluoro products (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetra Examples thereof include aromatic carboxylic acid anhydrides such as carboxylic acid anhydrides, naphthalene tetracarboxylic acid diimides, perylene tetracarboxylic acid anhydrides, and perylene tetracarboxylic acid diimides, and polymer compounds containing the imidized product thereof as a skeleton.
 しかし、例えばチオフェン系共役ポリマーをp型半導体材料として用いる場合、効率的な電荷分離を行えるフラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 However, for example, when a thiophene-based conjugated polymer is used as a p-type semiconductor material, a fullerene derivative capable of efficient charge separation is preferable. Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), and the like. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。 Among them, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PCBM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PCBnB), [6,6] -phenyl C61-buty Rick acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A-2006-199674, metallocene fullerenes such as JP-A-2008-130889, and cyclics such as US Pat. No. 7,329,709. It is preferable to use a fullerene derivative having a substituent and having improved solubility, such as fullerene having an ether group.
 <電極>
 本発明に関わる有機光電変換素子においては、少なくとも透明電極と対電極とを有する。本発明においては、このどちらかを前述の形成方法によって形成されているものである。また、タンデム構成をとる場合には中間電極を用いることでタンデム構成を達成することができる。以下に好ましい透明電極、及び対電極の構成について述べる。
<Electrode>
The organic photoelectric conversion element according to the present invention has at least a transparent electrode and a counter electrode. In the present invention, either of them is formed by the above-described forming method. Further, when a tandem configuration is adopted, the tandem configuration can be achieved by using an intermediate electrode. The structure of a preferable transparent electrode and a counter electrode is described below.
 なお透明電極及び対電極は、透光性があるかどうかといった機能から表現した電極の名称であるが、キャリアの流れる種類で電極を呼び分ける場合、本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。 The transparent electrode and the counter electrode are the names of the electrodes expressed from the function of whether or not there is translucency. However, in the present invention, the electrodes through which holes mainly flow are used when the electrodes are classified according to the type of carrier flow. The electrode through which electrons mainly flow is called the anode, and it is called the cathode.
 第1の電極が正極である場合は、正孔と電子からなるキャリアの内、正孔を主に取り出す構成のため、上述した様に、第1の電極と光電変換層(発電層)の間に正孔輸送層を有することが好ましい。同様に、第2の電極が陰極である場合は電子を主に取り出す構成のため、第2の電極と光電変換層(発電層)との間に電子輸送層を有することが好ましい。 In the case where the first electrode is a positive electrode, since the holes are mainly extracted from the carriers composed of holes and electrons, as described above, between the first electrode and the photoelectric conversion layer (power generation layer). It is preferable to have a hole transport layer. Similarly, in the case where the second electrode is a cathode, it is preferable to have an electron transport layer between the second electrode and the photoelectric conversion layer (power generation layer) because the structure mainly extracts electrons.
 <透明電極>
 有機光電変換素子における透明電極としては、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。電荷輸送層との接合構成に応じて最適な仕事関数の材料組成を選択できる。仕事関数が浅い組成としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等の極薄膜が挙げられる。また、仕事関数の深い組成としては、金、銀、白金等の極薄膜、またはそれらのナノ粒子・ナノワイヤー層、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性金属酸化物材料、および導電性ポリマー等が挙げられる。また、IDIXO(In-ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。
<Transparent electrode>
As the transparent electrode in the organic photoelectric conversion element, a material using an electrode substance of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used. The material composition of the optimal work function can be selected according to the junction configuration with the charge transport layer. Compositions with shallow work function include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture , Indium, lithium / aluminum mixture, rare-earth metal, etc. In addition, as a composition having a deep work function, an ultra-thin film such as gold, silver, or platinum, or a nanoparticle / nanowire layer thereof, a conductive metal oxide material such as indium tin oxide (ITO), SnO 2 , or ZnO, And conductive polymers. Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
 更には、このような金属薄膜、ナノ粒子・ナノワイヤー、金属酸化物材料を併用して高透過率と高導電性を両立した透明電極とすることも本発明の好ましい態様である。 Furthermore, it is also a preferable aspect of the present invention to use such a metal thin film, nanoparticle / nanowire, and metal oxide material in combination as a transparent electrode having both high transmittance and high conductivity.
 透明電極のシート抵抗は数百Ω/□以下が好ましく、50Ω/□が更に好ましく、15Ω/□以下が更に好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは100~200nmの範囲で透過率/抵抗の観点から選ばれる。 The sheet resistance of the transparent electrode is preferably several hundred Ω / □ or less, more preferably 50Ω / □, and further preferably 15Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected from the viewpoint of transmittance / resistance in the range of 10 to 1000 nm, preferably 100 to 200 nm.
 透明電極側から電子を取り出す構成の場合、より好ましくは上述の透明導電性酸化膜などに仕事関数を変化させる処理をすることが好ましい。例えば、WO2008/134492号パンフレット記載の様に窒素、リン、硫黄などを分子内に有する組成物を酸化膜上に形成する方法や、APPLIED PHYSICS LETTERS 92, 173303 (2008)、または、Adv. Mater. 2008, 20, 415-419に記載の炭酸塩、フッ化セシウム、Cs(acac)などを酸化膜上に形成する方法などを好ましく用いることで、発電層で発生した電子を効率よく取り出すことができより好ましい。 In the case of a configuration in which electrons are extracted from the transparent electrode side, it is more preferable to perform a process of changing the work function on the above-described transparent conductive oxide film. For example, as described in the pamphlet of WO2008 / 134492, a method of forming a composition having nitrogen, phosphorus, sulfur or the like in the molecule on an oxide film, APPLIED PHYSICS LETTERS 92, 173303 (2008), or Adv. Mater. By preferably using the method of forming carbonate, cesium fluoride, Cs (acac), etc. described in 2008, 20, 415-419 on the oxide film, electrons generated in the power generation layer can be efficiently extracted. More preferred.
 <対電極>
 一方、対電極も同様に、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。但し、金属類などは薄膜である必要はなく、所望の電気伝導度が得られれば特に膜厚や組成に制限はない。また、接する電荷輸送層に応じて最適な仕事関数の材料を選択することが好ましい。具体的な材料としては、上述の透明電極で挙げた例と同様な材料を用いることができる。
<Counter electrode>
On the other hand, as the counter electrode, a metal, an alloy, an electrically conductive compound and a mixture thereof are preferably used. However, metals and the like do not need to be thin films, and there are no particular limitations on the film thickness and composition as long as desired electrical conductivity can be obtained. Further, it is preferable to select a material having an optimum work function according to the charge transport layer in contact therewith. As a specific material, the same material as the example mentioned in the above-mentioned transparent electrode can be used.
 対電極側から電子を取り出す構成の場合、より好ましくは上述の材料の中から、より仕事関数が浅い材料を選択することで、電子を効率よく取り出すことができより好ましい。 In the case of a configuration in which electrons are extracted from the counter electrode side, it is more preferable that a material having a shallower work function is selected from the above-described materials so that electrons can be efficiently extracted.
 (その他の機能層)
 太陽光利用率(光電変換効率)の向上を目的として、図1に示されるような第1の電極および第2の電極間でサンドイッチした構造に替わり、一対の櫛歯状電極上に素子を形成させたバックコンタクト型の有機光電変換素子が構成とすることもできる。
(Other functional layers)
For the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), an element is formed on a pair of comb-shaped electrodes instead of the sandwiched structure between the first electrode and the second electrode as shown in FIG. The back contact type organic photoelectric conversion element can also be configured.
 更には図1には記載していないが、エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層、平滑化層等などを挙げることができる。 Further, although not shown in FIG. 1, for the purpose of improving the energy conversion efficiency and improving the lifetime of the device, various intermediate layers may be included in the device. Examples of the intermediate layer include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, a wavelength conversion layer, a smoothing layer, and the like.
 対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1の電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。 If a metal material is used as the conductive material of the counter electrode, the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and is absorbed again by the photoelectric conversion layer, and more photoelectric conversion is performed. Efficiency is improved and preferable.
 (基板)
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
(substrate)
When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted. As the substrate, for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things. For example, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given. If the resin film transmittance of 80% or more in ~ 800 nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 Further, for the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
 (光学機能層)
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接して易接着層を設け、その屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 As the antireflection layer, various known antireflection layers can be provided. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, an easy adhesion layer is provided adjacent to the film, and the refractive index thereof. Is preferably 1.57 to 1.63, since the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。 Also, examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 (製膜方法・表面処理方法)
 電子受容体と電子供与体とが混合された光電変換層、および輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
(Film forming method / Surface treatment method)
Examples of the method for forming a photoelectric conversion layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method, a coating method (including a casting method and a spin coating method), and the like. Among these, as a formation method of a photoelectric converting layer, a vapor deposition method, the apply | coating method (a casting method, a spin coat method is included), etc. can be illustrated. Among these, the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. The coating method is also excellent in production speed.
 この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。 The coating method used at this time is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層のキャリア移動度が向上し、高い効率を得ることができるようになる。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized and the photoelectric conversion layer can have an appropriate phase separation structure. As a result, the carrier mobility of the photoelectric conversion layer is improved and high efficiency can be obtained.
 発電層(バルクヘテロジャンクション層)は、p型半導体とn型半導体とが混在された層で構成してもよいが、それぞれ混合比が膜厚方向で異なる複数層または混合比のグラデーション構成でもよい。 The power generation layer (bulk heterojunction layer) may be composed of a layer in which a p-type semiconductor and an n-type semiconductor are mixed, or may have a plurality of layers having different mixing ratios in the film thickness direction or a gradation structure with a mixing ratio.
 (パターニング)
 本発明に係る電極、発電層、正孔輸送層、電子輸送層、ブロック層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
(Patterning)
There is no particular limitation on the method and process for patterning the electrode, power generation layer, hole transport layer, electron transport layer, block layer and the like according to the present invention, and known methods can be applied as appropriate.
 光電変換層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、製膜後に炭酸レーザーなどを用いてアブレーションする方法、スクライバで直接削り取る方法等でパターニングしてもよいし、インクジェット法やスクリーン印刷、グラビア印刷等の各種印刷方法を使用して直接パターニングしても良い。 If it is a soluble material such as a photoelectric conversion layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or ablation using a carbonic acid laser after film formation, or scraping directly with a scriber Patterning may be performed by a method or the like, or direct patterning may be performed using various printing methods such as an inkjet method, screen printing, and gravure printing.
 電極材料などの不溶性の材料の場合は、真空蒸着法や真空スパッタ法、プラズマCVD法、電極材料の微粒子を分散させたインキを用いたスクリーン印刷法やグラビア印刷法、インクジェット法などの各種印刷方法、蒸着膜に対しエッチング又はリフトオフする等の公知の方法、また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。 In the case of insoluble materials such as electrode materials, various printing methods such as vacuum deposition, vacuum sputtering, plasma CVD, screen printing using ink in which fine particles of electrode material are dispersed, gravure printing, and ink jet The pattern may be formed by a known method such as etching or lift-off of the deposited film, or by transferring a pattern formed on another substrate.
 (封止)
 作製した有機光電変換素子が大気中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
(Sealing)
In order to prevent the produced organic photoelectric conversion element from being deteriorated by oxygen, moisture, etc. in the atmosphere, it is preferable to seal by a known method. For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive. Method of coating, method of coating organic polymer material (polyvinyl alcohol etc.) with high gas barrier property, method of depositing inorganic thin film (silicon oxide, aluminum oxide etc.) or organic film (parylene etc.) with high gas barrier property under vacuum And a method of laminating these in a composite manner.
 更に本発明においては、エネルギー変換効率と素子寿命向上の観点から、素子全体を2枚のバリア付き基板で封止した構成でもよく、好ましくは、水分ゲッター、酸素ゲッター等を同封した構成であることが本発明においてより好ましい。 Further, in the present invention, from the viewpoint of improving energy conversion efficiency and device life, the entire device may be sealed with two substrates with a barrier, and preferably a moisture getter, oxygen getter, etc. are enclosed. Is more preferred in the present invention.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [ポリマー(A)の準備]
 ポリマー(A)として、ポリ(2-ヒドロキシエチルアクリレート)の合成を行った。
[Preparation of polymer (A)]
As polymer (A), poly (2-hydroxyethyl acrylate) was synthesized.
 まずは開始剤を合成すべく、50ml三口フラスコに2-ブロモイソブチリルブロミド(7.3g、35mmol)とトリエチルアミン(2.48g、35mmol)及びTHF(20ml)を加え、アイスバスにより内温を0℃に保持した。この溶液内にオリゴエチレングリコール(10g、23mmol、エチレングリコールユニット7~8、Laporte Specialties社製)の33%THF溶液30mlを滴下した。30分攪拌後、溶液を室温にし、更に4時間攪拌した。THFをロータリーエバポレーターにより減圧除去後、残渣をジエチルエーテルに溶解し、分液ロートに移した。水を加えエーテル層を3回洗浄後、エーテル層をMgSOにより乾燥させた。エーテルをロータリーエバポレーターにより減圧留去し、開始剤を8.2g(収率73%)得た。 First, in order to synthesize an initiator, 2-bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was reduced to 0 with an ice bath. Held at 0C. In this solution, 30 ml of a 33% THF solution of oligoethylene glycol (10 g, 23 mmol, ethylene glycol units 7-8, manufactured by Laporte Specialties) was added dropwise. After stirring for 30 minutes, the solution was brought to room temperature and further stirred for 4 hours. After THF was removed under reduced pressure by a rotary evaporator, the residue was dissolved in diethyl ether and transferred to a separatory funnel. Water was added and the ether layer was washed three times, and then the ether layer was dried with MgSO 4 . Ether was distilled off under reduced pressure using a rotary evaporator to obtain 8.2 g of initiator (yield 73%).
 続いて、上記合成した開始剤(500mg、1.02mmol)、2-ヒドロキシエチルアクリレート(4.64g、40mmol、東京化成社製)、50:50v/v%メタノール/水混合溶媒の5mlをシュレンク管に投入し、減圧下液体窒素に10分間シュレンク管を浸した。シュレンク管を液体窒素から出し、5分後に窒素置換を行った。この操作を3回行った後、窒素下で、ビピリジン(400mg、2.56mmol)、CuBr(147mg、1.02mmol)を加え、20℃で攪拌した。30分後、ろ紙とシリカを敷いた4cm桐山ロート上に反応溶液を滴下し、減圧で反応溶液を回収した。ロータリーエバポレーターにより溶媒を減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量13100、分子量分布1.17、数平均分子量<1000の含量0%、のポリ(2-ヒドロキシエチルアクリレート)を2.60g(収率84%)得た。 Subsequently, 5 ml of the synthesized initiator (500 mg, 1.02 mmol), 2-hydroxyethyl acrylate (4.64 g, 40 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), 50:50 v / v% methanol / water mixed solvent was added to the Schlenk tube. The Schlenk tube was immersed in liquid nitrogen for 10 minutes under reduced pressure. The Schlenk tube was taken out of liquid nitrogen and replaced with nitrogen after 5 minutes. After performing this operation three times, bipyridine (400 mg, 2.56 mmol) and CuBr (147 mg, 1.02 mmol) were added under nitrogen, and the mixture was stirred at 20 ° C. After 30 minutes, the reaction solution was dropped onto a 4 cm Kiriyama funnel with filter paper and silica, and the reaction solution was recovered under reduced pressure. The solvent was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 2.60 g (yield 84%) of poly (2-hydroxyethyl acrylate) having a number average molecular weight of 13100, a molecular weight distribution of 1.17, and a content of number average molecular weight <1000 and a content of 0% were obtained.
 構造、分子量は各々H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。 The structure and molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
 <GPC測定条件>
 装置:Wagers2695(Separations Module)
 検出器:Waters 2414 (Refractive Index Detector)
 カラム:Shodex Asahipak GF-7M HQ
 溶離液:ジメチルホルムアミド(20mM LiBr)
 流速:1.0ml/min
 温度:40℃
 また、上記合成法と同様にして、2-ヒドロキシブチルアクリレートを原料に、ポリ(2-ヒドロキシブチルアクリレート)(数平均分子量約15000)を合成し、上記方法と同様にして精製した。
<GPC measurement conditions>
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
Similarly to the above synthesis method, poly (2-hydroxybutyl acrylate) (number average molecular weight of about 15000) was synthesized from 2-hydroxybutyl acrylate as a raw material, and purified in the same manner as in the above method.
 また、ポリ(2-ヒドロキシエチルビニルエーテル)(数平均分子量約20000、固形分20%水溶液)、および、ポリ(2-ヒドロキシエチルアクリルアミド)(数平均分子量約20000、固形分20%水溶液)については、上記数平均分子量をもつ市販品を入手し、上記方法と同様にして数平均分子量<1000の含量0%になるよう精製した。 For poly (2-hydroxyethyl vinyl ether) (number average molecular weight about 20000, solid content 20% aqueous solution) and poly (2-hydroxyethyl acrylamide) (number average molecular weight about 20000, solid content 20% aqueous solution), A commercial product having the number average molecular weight was obtained and purified in the same manner as described above so that the content of the number average molecular weight <1000 was 0%.
 [ナノインデンテーション法による弾性率の測定]
 ナノインデンテーション法による弾性率の測定を以下に従って行った。
[Measurement of elastic modulus by nanoindentation method]
The elastic modulus was measured by the nanoindentation method according to the following.
 Hysitron社製Triboscopeを用いて、エスアイアイナノテクノロジー社製SPI3800Nに装着し測定した。測定には、圧子としてベルコビッチ型圧子(先端稜角142.3°)と呼ばれる三角錘型ダイヤモンド製圧子で、先端曲率半径75~100nmのものを用いた。表面に直角に当て、徐々に圧印加し、最大荷重到達後に荷重を0にまで徐々に戻す。この時の最大荷重Pを圧子接触部の投影面積Aで除した値P/Aを硬度として算出し、この値(硬度=P/A(GPa))を、ナノインデンテーション弾性率を表す指標として示す。 Using a Triscope made by Hystron, it was mounted on SPI3800N made by SII Nano Technology and measured. For the measurement, a triangular pyramid diamond indenter called a Belkovic indenter (tip ridge angle 142.3 °) having a tip curvature radius of 75 to 100 nm was used. Applying pressure at right angles to the surface, gradually applying pressure, and gradually returning the load to 0 after reaching the maximum load. A value P / A obtained by dividing the maximum load P at this time by the projected area A of the indenter contact portion is calculated as hardness, and this value (hardness = P / A (GPa)) is used as an index representing the nanoindentation elastic modulus. Show.
 〔有機光電変換素子SC-101の作製〕
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗8Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
[Production of Organic Photoelectric Conversion Device SC-101]
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 150 nm (sheet resistance: 8 Ω / □) is patterned to a width of 10 mm using a normal photolithography technique and wet etching to form a first An electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
 この透明基板上に、イソプロパノールに溶解したポリエチレンイミンと、グリセロールプロポキシレートトリグリシジルエーテルの混合溶液を塗布し、ホットプレート上で120℃10分間乾燥させ、正孔阻止層を製膜した。 On this transparent substrate, a mixed solution of polyethyleneimine dissolved in isopropanol and glycerol propoxylate triglycidyl ether was applied and dried on a hot plate at 120 ° C. for 10 minutes to form a hole blocking layer.
 続けて、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン、HOMO:-5.5eV、LUMO:-3.4eV)とPCBM(フロンティアカーボン社製:6,6-フェニル-C61-ブチリックアシッドメチルエステル、HOMO:-6.1eV、LUMO:-4.3eV)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過し乾燥膜厚が約200nmになるよう前記基板上に発電層を製膜した。続けて、導電性高分子およびポリアニオンからなるPEDOT-PSS(Baytron P4083・スタルクヴィテック社製、IP(HOMO):-5.0eV)、花王ケミカル株式会社製エマルゲン、イソプロパノールを含む液を調液し、乾燥膜厚が約100nmになるように塗布乾燥した。そのあと、150℃で10分間加熱処理し正孔輸送層を製膜した。 Subsequently, P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene, HOMO: -5.5 eV, LUMO: -3.4 eV) and PCBM (manufactured by Frontier Carbon: 6,6-phenyl-C) were added to chlorobenzene. 61- butyric acid methyl ester, HOMO: -6.1 eV, LUMO: -4.3 eV) prepared at a ratio of 1: 0.8 so as to be 3.0% by mass, filtered through a filter and dried. A power generation layer was formed on the substrate so that the film thickness was about 200 nm. Subsequently, a liquid containing PEDOT-PSS (Baytron P4083, manufactured by Starkvitech, IP (HOMO): -5.0 eV) composed of a conductive polymer and a polyanion, Emulgen manufactured by Kao Chemical Co., Ltd., and isopropanol was prepared. The coating film was dried so that the dry film thickness was about 100 nm. Thereafter, heat treatment was performed at 150 ° C. for 10 minutes to form a hole transport layer.
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度5.0nm/秒でAgメタルを200nm積層することで第2の電極を形成した。得られた有機光電変換素子SC-101を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が10×10mmサイズの有機光電変換素子SC-101を作製した。 Next, the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the pressure inside the vacuum deposition apparatus is reduced to 1 × 10 −4 Pa or less, and then Ag metal is deposited at a deposition rate of 5.0 nm / second. The second electrode was formed by laminating 200 nm. The obtained organic photoelectric conversion element SC-101 was moved to a nitrogen chamber and sealed with a sealing cap and a UV curable resin, and the organic photoelectric conversion element SC-101 having a light receiving portion of 10 × 10 mm size was obtained. Produced.
 別途、上記正孔輸送層のみを製膜した基板を作製し、150℃で10分間加熱処理した後、上述したナノインデンテーション法を用いて弾性率を測定したところ、1.9GPaであった。 Separately, a substrate on which only the hole transport layer was formed was prepared, and after heat treatment at 150 ° C. for 10 minutes, the elastic modulus was measured using the nanoindentation method described above, and it was 1.9 GPa.
 尚、以下の各有機光電変換素子の弾性率も、有機光電変換素子SC-101と同様に各素子の正孔または電子のどちらかを主に輸送する電荷輸送層のみを膜厚300nmに製膜した基板を作製し、150℃で10分間加熱処理した後、ナノインデンテーション法を用いて弾性率を測定した。 In addition, the elastic modulus of each organic photoelectric conversion element described below is also formed in a film thickness of 300 nm only for the charge transport layer that mainly transports either holes or electrons of each element as in the organic photoelectric conversion element SC-101. The prepared substrate was manufactured, heat-treated at 150 ° C. for 10 minutes, and then the elastic modulus was measured using a nanoindentation method.
 〔有機光電変換素子SC-102の作製〕
 前記有機光電変換素子SC-101の作製において、発電層まで同様にして機能層を製膜した。続けて、導電性高分子およびポリアニオンからなるPEDOT-PSS(Baytron P4083・スタルクヴィテック社製、IP(HOMO):-5.0eV)、花王ケミカル株式会社製エマルゲン、イソプロパノールに加え、上記合成したポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で5質量%含むよう調液し、乾燥膜厚が約100nmになるように塗布乾燥した。そのあと、150℃で10分間の加熱処理により、架橋反応を促進して正孔輸送層を製膜した。
[Production of Organic Photoelectric Conversion Device SC-102]
In the production of the organic photoelectric conversion element SC-101, functional layers were similarly formed up to the power generation layer. Subsequently, PEDOT-PSS (Baytron P4083, Starckvitech, IP (HOMO): -5.0 eV) composed of a conductive polymer and a polyanion, Emulgen, Kao Chemical Co., Ltd., and the above synthesized poly (2-Hydroxyethyl acrylate) was prepared so as to contain 5% by mass of the solid content of the dry film, and applied and dried so that the dry film thickness was about 100 nm. Thereafter, the hole transport layer was formed by promoting the crosslinking reaction by heat treatment at 150 ° C. for 10 minutes.
 上述の正孔輸送層製膜以外は、前記SC-101と同様にして光電変換素子SC-102を作製した。 A photoelectric conversion element SC-102 was produced in the same manner as SC-101 except that the hole transport layer was formed as described above.
 なお、SC-102の正孔輸送層について、弾性率を測定したところ、3.6GPaであった。 The elastic modulus of the SC-102 hole transport layer was measured to be 3.6 GPa.
 〔有機光電変換素子SC-103の作製〕
 前記有機光電変換素子SC-102の作製において、正孔輸送層にポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で15質量%含むようにした以外は前記有機光電変換素子SC-102と同様にしてSC-103を作製した。
[Production of Organic Photoelectric Conversion Device SC-103]
In the production of the organic photoelectric conversion element SC-102, except that poly (2-hydroxyethyl acrylate) is contained in the hole transport layer in a solid content of 15% by mass, the organic photoelectric conversion element SC-102 Similarly, SC-103 was produced.
 なお、SC-103の正孔輸送層について、弾性率を測定したところ、4.9GPaであった。 The elastic modulus of the SC-103 hole transport layer was measured to be 4.9 GPa.
 〔有機光電変換素子SC-104の作製〕
 前記有機光電変換素子SC-102の作製において、正孔輸送層にポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で30質量%含むようにした以外は前記有機光電変換素子SC-102と同様にしてSC-104を作製した。
[Production of Organic Photoelectric Conversion Device SC-104]
In the production of the organic photoelectric conversion element SC-102, except that poly (2-hydroxyethyl acrylate) is included in the hole transport layer in a solid content of 30% by mass in the dry film, Similarly, SC-104 was produced.
 なお、SC-104の正孔輸送層について、弾性率を測定したところ、5.4GPaであった。 The elastic modulus of the hole transport layer of SC-104 was measured and found to be 5.4 GPa.
 〔有機光電変換素子SC-105の作製〕
 前記有機光電変換素子SC-102の作製において、正孔輸送層にポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で50質量%含むようにした以外は前記有機光電変換素子SC-102と同様にしてSC-105を作製した。
[Production of Organic Photoelectric Conversion Device SC-105]
In the production of the organic photoelectric conversion element SC-102, except that poly (2-hydroxyethyl acrylate) is included in the hole transport layer in a solid content of 50% by mass in the dry film, Similarly, SC-105 was produced.
 なお、SC-105の正孔輸送層について、弾性率を測定したところ、6.3GPaであった。 The elastic modulus of the hole transport layer of SC-105 was measured to be 6.3 GPa.
 〔有機光電変換素子SC-106の作製〕
 前記有機光電変換素子SC-102の作製において、正孔輸送層にポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で70質量%含むようにした以外は前記有機光電変換素子SC-102と同様にしてSC-106を作製した。
[Production of Organic Photoelectric Conversion Device SC-106]
In the production of the organic photoelectric conversion element SC-102, except that poly (2-hydroxyethyl acrylate) is included in the hole transport layer in a solid content of 70% by mass in the dry film, Similarly, SC-106 was produced.
 なお、SC-106の正孔輸送層について、弾性率を測定したところ、5.5GPaであった。 The elastic modulus of the hole transport layer of SC-106 was measured to be 5.5 GPa.
 〔有機光電変換素子SC-107の作製〕
 前記有機光電変換素子SC-102の作製において、正孔輸送層にポリ(2-ヒドロキシエチルアクリレート)を乾燥膜の固形分で90質量%含むようにした以外は前記有機光電変換素子SC-102と同様にしてSC-107を作製した。
[Production of Organic Photoelectric Conversion Device SC-107]
In the production of the organic photoelectric conversion device SC-102, except that poly (2-hydroxyethyl acrylate) was included in the hole transport layer in a solid content of 90% by mass in the dry film, Similarly, SC-107 was produced.
 なお、SC-107の正孔輸送層について、弾性率を測定したところ、4.7GPaであった。 The elastic modulus of the hole transport layer of SC-107 was measured to be 4.7 GPa.
 〔有機光電変換素子SC-108の作製〕
 前記有機光電変換素子SC-106の作製において、ポリ(2-ヒドロキシエチルアクリレート)に換えて、ポリ(2-ヒドロキシブチルアクリレート)を用いた以外は前記有機光電変換素子SC-106と同様にしてSC-108を作製した。
[Production of Organic Photoelectric Conversion Device SC-108]
In the production of the organic photoelectric conversion element SC-106, SC was made in the same manner as the organic photoelectric conversion element SC-106 except that poly (2-hydroxybutyl acrylate) was used instead of poly (2-hydroxyethyl acrylate). -108 was produced.
 なお、SC-108の正孔輸送層について、弾性率を測定したところ、5.2GPaであった。 The elastic modulus of the hole transport layer of SC-108 was measured to be 5.2 GPa.
 〔有機光電変換素子SC-109の作製〕
 前記有機光電変換素子SC-106の作製において、ポリ(2-ヒドロキシエチルアクリレート)に換えて、ポリ(2-ヒドロキシエチルビニルエーテル)を用いた以外は前記有機光電変換素子SC-106と同様にしてSC-109を作製した。
[Production of Organic Photoelectric Conversion Device SC-109]
In the production of the organic photoelectric conversion element SC-106, SC was made in the same manner as the organic photoelectric conversion element SC-106 except that poly (2-hydroxyethyl vinyl ether) was used instead of poly (2-hydroxyethyl acrylate). -109 was produced.
 なお、SC-109の正孔輸送層について、弾性率を測定したところ、4.5GPaであった。 The elastic modulus of the hole transport layer of SC-109 was measured to be 4.5 GPa.
 〔有機光電変換素子SC-110の作製〕
 前記有機光電変換素子SC-106の作製において、ポリ(2-ヒドロキシエチルアクリレート)に換えて、ポリ(2-ヒドロキシエチルアクリルアミド)を用いた以外は前記有機光電変換素子SC-106と同様にしてSC-110を作製した。
[Production of Organic Photoelectric Conversion Device SC-110]
In the production of the organic photoelectric conversion element SC-106, SC was made in the same manner as the organic photoelectric conversion element SC-106 except that poly (2-hydroxyethyl acrylamide) was used instead of poly (2-hydroxyethyl acrylate). -110 was produced.
 なお、SC-110の正孔輸送層について、弾性率を測定したところ、5.9GPaであった。 Note that when the elastic modulus of the hole transport layer of SC-110 was measured, it was 5.9 GPa.
 〔有機光電変換素子SC-111の作製〕
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗8Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
[Production of Organic Photoelectric Conversion Device SC-111]
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 150 nm (sheet resistance: 8 Ω / □) is patterned to a width of 10 mm using a normal photolithography technique and wet etching to form a first An electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
 導電性高分子およびポリアニオンからなるPEDOT-PSS(Baytron P4083・スタルクヴィテック社製、IP(HOMO):-5.0eV)、イソプロパノールを含む液を調液し、乾燥膜厚が約50nmになるように塗布乾燥した。そのあと、150℃で10分間加熱処理し正孔輸送層を製膜した。 A liquid containing PEDOT-PSS (Baytron P4083, Starck Vitec, IP (HOMO): -5.0 eV) and isopropanol composed of a conductive polymer and polyanion is prepared so that the dry film thickness is about 50 nm. And dried. Thereafter, heat treatment was performed at 150 ° C. for 10 minutes to form a hole transport layer.
 続けて、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン、HOMO:-5.5eV、LUMO:-3.4eV)とPCBM(フロンティアカーボン社製:6,6-フェニル-C61-ブチリックアシッドメチルエステル、HOMO:-6.1eV、LUMO:-4.3eV)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過し乾燥膜厚が約200nmになるよう前記正孔輸送層上に発電層を製膜した。 Subsequently, P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene, HOMO: -5.5 eV, LUMO: -3.4 eV) and PCBM (manufactured by Frontier Carbon: 6,6-phenyl-C) were added to chlorobenzene. 61- butyric acid methyl ester, HOMO: -6.1 eV, LUMO: -4.3 eV) prepared at a ratio of 1: 0.8 so as to be 3.0% by mass, filtered through a filter and dried. A power generation layer was formed on the hole transport layer so that the film thickness was about 200 nm.
 続けて、イソプロパノールに溶解したポリエチレンイミン(PEI)と、グリセロールプロポキシレートトリグリシジルエーテル(GPTGE)、ポリアニオンとしてナフィオン(Nafion:ポリフッ化スルホン、DuPontケミカル社製)に加え、乾燥膜の固形分濃度が50質量%になるようポリ(2-ヒドロキシエチルアクリレート)を溶解し、乾燥膜厚が20nmになるように塗布乾燥した。そのあと、120℃で30分間加熱処理し、正孔阻止層を製膜した。 Subsequently, in addition to polyethyleneimine (PEI) dissolved in isopropanol, glycerol propoxylate triglycidyl ether (GPTGE), and polyanion as Nafion (Nafion: polyfluorinated sulfone, manufactured by DuPont Chemical Co., Ltd.), the solid content concentration of the dry membrane is 50 Poly (2-hydroxyethyl acrylate) was dissolved so as to have a mass%, and was applied and dried so that the dry film thickness was 20 nm. Thereafter, heat treatment was performed at 120 ° C. for 30 minutes to form a hole blocking layer.
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度5.0nm/秒でAlメタルを200nm積層することで第2の電極を形成した。得られた有機光電変換素子SC-111を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が10×10mmサイズの有機光電変換素子SC-111を作製した。 Next, the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 × 10 −4 Pa or less, and then Al metal is deposited at a deposition rate of 5.0 nm / second. The second electrode was formed by laminating 200 nm. The obtained organic photoelectric conversion element SC-111 was moved to a nitrogen chamber and sealed using a sealing cap and a UV curable resin, so that the organic photoelectric conversion element SC-111 having a light receiving portion of 10 × 10 mm size was obtained. Produced.
 別途、Ag蒸着前の機能層を製膜した基板を作製し、上述したナノインデンテーション法を用いて弾性率を測定したところ、3.2GPaであった。 Separately, a substrate on which a functional layer before Ag deposition was formed was prepared, and the elastic modulus was measured using the nanoindentation method described above, and it was 3.2 GPa.
 《素子性能の評価》
 上記作製した光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFFを、同素子上に形成した4箇所の受光部をそれぞれ測定した。ここで、SC-101のJsc、およびFFを100としたときの相対値を見積もり、結果を表1に示した。
<Evaluation of device performance>
About the photoelectric conversion element produced above, by irradiating the solar simulator (AM1.5G filter) with light of 100 mW / cm 2 intensity and overlaying a mask with an effective area of 1 cm 2 on the light receiving part, the IV characteristics are evaluated. The short-circuit current density Jsc (mA / cm 2 ), the open circuit voltage Voc (V), and the fill factor FF were measured at four light receiving portions formed on the same element. Here, relative values were estimated when SC-101 Jsc and FF were set to 100, and the results are shown in Table 1.
 また、SC-102で製膜した正孔輸送層の導電率を4端子4探針法により測定したところ、2×10-4S/cmであった。この導電率は、SC-103~SC-106及びSC-108~SC-110において差はあるものの、いずれも10-5S/cm~1×10-3S/cmの範囲であった。 Further, the electric conductivity of the hole transport layer formed by SC-102 was measured by a four-terminal four-probe method and found to be 2 × 10 −4 S / cm. The conductivity was in the range of 10 −5 S / cm to 1 × 10 −3 S / cm, though there was a difference between SC-103 to SC-106 and SC-108 to SC-110.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、従来構成であるSC-101に対して、本願のSC-102~SC-111では高い透過率と弾性率に伴って、JscおよびFFの優れた結果を示し、本発明の効果が明らかとなった。 As is clear from Table 1, the SC-102 to SC-111 of the present application show superior results of Jsc and FF with high transmittance and elastic modulus, compared with the conventional structure SC-101. The effect of the invention became clear.
 10 光電変換素子
 101 第1の電極
 102 正孔阻止層(または電子輸送層)
 103 発電層
 103a p型半導体材料
 103b n型半導体材料
 104 電子阻止層(正孔輸送層)
 105 第2の電極
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element 101 1st electrode 102 Hole blocking layer (or electron transport layer)
103 power generation layer 103a p-type semiconductor material 103b n-type semiconductor material 104 electron blocking layer (hole transport layer)
105 second electrode

Claims (5)

  1.  第1の電極と第2の電極との間に、p型半導体材料とn型半導体材料とを含む発電層と、正孔または電子のどちらかを主に輸送する電荷輸送層とを少なくとも有する有機光電変換素子において、該電荷輸送層が下記3つの単位構造から選ばれる少なくとも1種を有するポリマー(A)を含むことを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     (式中、Xは水素原子又はメチル基を表し、R~Rはそれぞれ独立に炭素数1~5の直鎖または分岐アルキレン基を表す。l、m、及びnは、当該ポリマー(A)を構成する全モノマーのモル数の合計を100としたときのそれぞれの構成率(モル%)を表し、50≦l+m+n≦100である。)
    Organic having at least a power generation layer including a p-type semiconductor material and an n-type semiconductor material and a charge transport layer mainly transporting either holes or electrons between the first electrode and the second electrode In the photoelectric conversion element, the charge transport layer contains a polymer (A) having at least one selected from the following three unit structures.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, X represents a hydrogen atom or a methyl group, R 1 to R 3 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms. L, m, and n represent the polymer (A ) Represents the respective composition ratio (mol%) when the total number of moles of all monomers constituting 100 is 100, and 50 ≦ l + m + n ≦ 100.)
  2.  前記電荷輸送層が、前記ポリマー(A)と、π共役系高分子とポリアニオンとを少なくとも含むことを特徴とする請求項1記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1, wherein the charge transport layer contains at least the polymer (A), a π-conjugated polymer, and a polyanion.
  3.  前記電荷輸送層における、前記ポリマー(A)の固形分比率が10質量%~90質量%であることを特徴とする請求項1又は2記載の有機光電変換素子。 3. The organic photoelectric conversion element according to claim 1, wherein the solid content ratio of the polymer (A) in the charge transport layer is 10% by mass to 90% by mass.
  4.  前記電荷輸送層が、前記ポリマー(A)と前記ポリアニオンとの熱処理工程後のナノインデンテーション法で測定した弾性率が、4GPa以上、10GPa以下であることを特徴とする請求項1~3のいずれか1項記載の有機光電変換素子。 The elastic modulus of the charge transport layer measured by a nanoindentation method after the heat treatment step of the polymer (A) and the polyanion is 4 GPa or more and 10 GPa or less. The organic photoelectric conversion element of Claim 1.
  5.  請求項1~4のいずれか1項記載の有機光電変換素子が、前記電荷輸送層を形成後、前記ポリマー(A)と前記ポリアニオンとの熱処理工程を含んで製造されることを特徴とする有機光電変換素子の製造方法。 The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the organic photoelectric conversion device is produced by a heat treatment step of the polymer (A) and the polyanion after the formation of the charge transport layer. A method for producing a photoelectric conversion element.
PCT/JP2011/064378 2010-07-06 2011-06-23 Organic photoelectric conversion element and method for manufacturing same WO2012005116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012523813A JP5700044B2 (en) 2010-07-06 2011-06-23 Organic photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-153688 2010-07-06
JP2010153688 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005116A1 true WO2012005116A1 (en) 2012-01-12

Family

ID=45441102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064378 WO2012005116A1 (en) 2010-07-06 2011-06-23 Organic photoelectric conversion element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5700044B2 (en)
WO (1) WO2012005116A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161917A (en) * 2012-02-03 2013-08-19 Konica Minolta Inc Tandem type organic photoelectric conversion element
WO2017170345A1 (en) * 2016-03-29 2017-10-05 住友化学株式会社 Organic photoelectric conversion element, and solar battery module and sensor provided with same
JP2017206479A (en) * 2016-05-20 2017-11-24 株式会社リコー Organic material and photoelectric conversion element
JP2019068028A (en) * 2017-03-28 2019-04-25 住友化学株式会社 Photoelectric conversion element and method of manufacturing the same
JP2019140325A (en) * 2018-02-14 2019-08-22 国立大学法人山形大学 Organic EL device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2006089554A (en) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd Electroconductive composition and method for producing the same
JP2007095782A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Method of manufacturing organic solar cell
JP2010098034A (en) * 2008-10-15 2010-04-30 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and photosensor array
JP2011103186A (en) * 2009-11-10 2011-05-26 Konica Minolta Holdings Inc Organic electron element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619660B2 (en) * 2004-02-04 2011-01-26 信越ポリマー株式会社 Photoelectric conversion element and manufacturing method thereof
KR100779416B1 (en) * 2003-08-20 2007-11-28 티디케이가부시기가이샤 Organic EL device and method for manufacturing same
EP2079792B2 (en) * 2006-11-06 2018-09-12 Agfa-Gevaert N.V. Layer configuration with improved stability to sunlight exposure
JP2008227383A (en) * 2007-03-15 2008-09-25 Seiko Epson Corp Organic electroluminescent device and its fabrication process, electronic apparatus
JP5359255B2 (en) * 2008-12-19 2013-12-04 コニカミノルタ株式会社 Organic photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504693A (en) * 2000-06-26 2004-02-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Materials and methods for making conductive patterns
JP2006089554A (en) * 2004-09-22 2006-04-06 Shin Etsu Polymer Co Ltd Electroconductive composition and method for producing the same
JP2007095782A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Method of manufacturing organic solar cell
JP2010098034A (en) * 2008-10-15 2010-04-30 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and photosensor array
JP2011103186A (en) * 2009-11-10 2011-05-26 Konica Minolta Holdings Inc Organic electron element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161917A (en) * 2012-02-03 2013-08-19 Konica Minolta Inc Tandem type organic photoelectric conversion element
WO2017170345A1 (en) * 2016-03-29 2017-10-05 住友化学株式会社 Organic photoelectric conversion element, and solar battery module and sensor provided with same
CN109075258A (en) * 2016-03-29 2018-12-21 住友化学株式会社 Organic photoelectric converter and the solar cell module and sensor for having the organic photoelectric converter
JPWO2017170345A1 (en) * 2016-03-29 2019-02-14 住友化学株式会社 ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL MODULE AND SENSOR EQUIPPED WITH THE SAME
US11063219B2 (en) 2016-03-29 2021-07-13 Sumitomo Chemical Company, Limited Organic photoelectric conversion element, and solar cell module and sensor provided with the same
JP2017206479A (en) * 2016-05-20 2017-11-24 株式会社リコー Organic material and photoelectric conversion element
JP2019068028A (en) * 2017-03-28 2019-04-25 住友化学株式会社 Photoelectric conversion element and method of manufacturing the same
JP2019140325A (en) * 2018-02-14 2019-08-22 国立大学法人山形大学 Organic EL device
JP7112708B2 (en) 2018-02-14 2022-08-04 国立大学法人山形大学 Organic EL element

Also Published As

Publication number Publication date
JPWO2012005116A1 (en) 2013-09-02
JP5700044B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5625852B2 (en) Organic photoelectric conversion device and method for producing organic photoelectric conversion device
JP5488595B2 (en) Organic photoelectric conversion element
JP5673674B2 (en) Transparent electrode and organic electronic device using the same
JP5720671B2 (en) Organic electronic device and manufacturing method thereof
JP5949335B2 (en) Tandem type photoelectric conversion element and solar cell using the same
JP5527060B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
WO2011052468A1 (en) Organic electronic device
JP5609307B2 (en) Transparent conductive support
JP2012009240A (en) Transparent electrode and method of manufacturing the same, and organic electronic element using the transparent electrode
JP5700044B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5593900B2 (en) Organic photoelectric conversion element
JP5444743B2 (en) Organic photoelectric conversion element
JP5644415B2 (en) Organic photoelectric conversion element and organic solar cell using the same
JP2013089685A (en) Organic photoelectric conversion element and solar cell using the same
WO2011136022A1 (en) Method for manufacturing transparent electrode, transparent electrode and organic electronic element
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
JP5870722B2 (en) Organic photoelectric conversion element and solar cell
JP5381619B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2013077760A (en) Organic photoelectric conversion element and solar cell using the same
JP5245128B2 (en) Organic electronic device and manufacturing method thereof
JP6003071B2 (en) Tandem organic photoelectric conversion device
JP2012079953A (en) Organic solar cell
JP2012134337A (en) Organic photoelectric conversion element
JP5245127B2 (en) Organic electronic device
JP2013171864A (en) Tandem type organic photoelectric conversion element and solar cell using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012523813

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803452

Country of ref document: EP

Kind code of ref document: A1