WO2011136022A1 - Method for manufacturing transparent electrode, transparent electrode and organic electronic element - Google Patents

Method for manufacturing transparent electrode, transparent electrode and organic electronic element Download PDF

Info

Publication number
WO2011136022A1
WO2011136022A1 PCT/JP2011/059149 JP2011059149W WO2011136022A1 WO 2011136022 A1 WO2011136022 A1 WO 2011136022A1 JP 2011059149 W JP2011059149 W JP 2011059149W WO 2011136022 A1 WO2011136022 A1 WO 2011136022A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
layer
polymer
organic
conductive polymer
Prior art date
Application number
PCT/JP2011/059149
Other languages
French (fr)
Japanese (ja)
Inventor
昌紀 後藤
博和 小山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012512762A priority Critical patent/JP5673675B2/en
Publication of WO2011136022A1 publication Critical patent/WO2011136022A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers

Definitions

  • the present invention relates to a method for producing a transparent electrode used in an organic electronic element used in organic electronic devices such as organic EL (electroluminescence) and solar cells.
  • organic electronic devices such as organic EL elements and organic solar cells have attracted attention.
  • transparent electrodes have become an essential component technology.
  • the demand for larger areas is increasing, and in the case of transparent electrodes such as ITO and conductive polymers that have been used in the past, particularly low surface resistance is required.
  • the film formation cost is remarkably increased, but it is very difficult to obtain a surface resistance sufficiently low in practical use.
  • transparent electrodes include metal fibers such as metal nanowires described in US Patent Application Publication No. 2007 / 0074316A1, and metals typified by electromagnetic wave shielding films for plasma displays described in Japanese Patent Application Laid-Open No. 2000-149773.
  • the transparent electrode which formed the fine mesh structure with the grid pattern is mentioned.
  • metal grids using silver in particular, can achieve both good conductivity and transparency due to the inherent high conductivity of silver.
  • the portion that transmits light is electrically conductive.
  • the current cannot be uniform over the entire transparent electrode surface.
  • a transparent electrode in which a transparent conductive film such as ITO or a conductive polymer is combined with a thin metal wire structure is disclosed (for example, see Patent Documents 1 and 2).
  • the metal grid itself has high surface smoothness.
  • Examples of methods for improving the surface smoothness of the metal grid include a method of etching the metal grid surface (see Patent Document 4), a method of polishing the grid surface (see Patent Document 5), and the like. As a result, there is a problem that the conductivity of the metal grid is lowered, and particles themselves generated by polishing cause leakage between electrodes.
  • the object of the present invention has been made in view of the above circumstances, and provides a transparent electrode that provides an organic electronic device that is excellent in uniformity of the performance of the organic functional layer while maintaining high transparency and conductivity and excellent in durability.
  • a manufacturing method to be manufactured, a transparent electrode obtained thereby, and an organic electronic device using the same can be provided. Furthermore, the performance of the organic functional layer is excellent in uniformity, excellent in durability, and can cope with a large area.
  • the manufacturing method which manufactures the transparent electrode which gives an organic electronic device, the transparent electrode obtained by it, and the organic electronic device using the same can be provided.
  • the manufacturing method of the transparent electrode characterized by having.
  • X 1 to X 3 each independently represents a hydrogen atom or a methyl group.
  • R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms.
  • Conditions: l (mol%) of the polymerized units of the above general formula 1 in the total polymerized units of the polymer (A), and ratios (mol%) of the polymerized units of the above general formula 2 in all polymerized units of the polymer (A). ) Is m, and the ratio (mol%) of the polymerized units of the above general formula 3 to the total polymerized units of the polymer (A) is n.
  • a transparent electrode that provides an organic electronic device with excellent uniformity in performance of organic functional layer and excellent durability by maintaining smoothness and conductivity while maintaining high transparency and conductivity.
  • Method, transparent electrode obtained by the method, organic electronic device using the same, and organic electronic device having excellent performance uniformity of organic functional layer, excellent durability, and adaptable to large area The manufacturing method which manufactures the transparent electrode which gives can, the transparent electrode obtained by it, and an organic electronic device using the same can be provided.
  • This invention is a manufacturing method of a transparent electrode, Comprising: The process (1) and the process after a process (1) which form the electroconductive metal layer which has a metal fine wire structure on a transparent support body, an electroconductive metal Forming a conductive polymer layer containing a conductive polymer having a ⁇ -conjugated conductive polymer and a polyanion and the polymer (A) on the layer to produce a transparent electrode plate (2), step (2) A subsequent step (3), in which the transparent electrode plate is subjected to a chemical etching treatment to produce a transparent electrode.
  • the conductive polymer layer contains the above specific polymer, and after the conductive polymer layer is provided, a chemical etching treatment is performed to maintain high transparency and conductivity while maintaining smoothness.
  • a transparent electrode that provides an organic electronic device with excellent uniformity in performance of the organic functional layer and excellent durability can be obtained.
  • a conductive metal layer having a fine metal wire structure is formed on the transparent support.
  • the transparent support according to the present invention is a visible light wavelength region measured by a method in accordance with JIS K 7361-1 (corresponding to ISO 13468-1) “Plastic—Test method for total light transmittance of transparent material”.
  • the transparent support used in the present invention is not particularly limited, and the material, shape, structure, thickness, hardness and the like can be appropriately selected from known materials, but have high light transmittance. Preferably it is.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyvinyl acetal resin films such as polyvinyl butyral (PVB), polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) Resin film, polycarbonate (PC) resin film, polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (T C) can be exemplified a resin film or the like.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • polystyrene resin films polyolefin resin films such as cyclic
  • a resin film having a transmittance of 80% or more at a visible wavelength (380 to 780 nm) can be particularly preferably applied to the present invention.
  • it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent support used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the refractive index of the easy-adhesion layer adjacent to the film is set to 1.57 to 1.63 so that the interface reflection between the film substrate and the easy-adhesion layer can be reduced. Since it can reduce and can improve the transmittance
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • a gas barrier layer may be formed in advance on the transparent support, if necessary, or a hard coat layer may be formed in advance.
  • metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used.
  • the gas barrier layer may have a multilayer structure as necessary.
  • a resistance heating vapor deposition method an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
  • each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, more preferably 10 nm to 200 nm per layer.
  • the gas barrier layer is provided on at least one surface of the transparent support.
  • the gas barrier layer is preferably provided on the electrode layer side, and more preferably provided on both sides.
  • the conductive metal layer according to the present invention has a fine metal wire structure.
  • the metal thin wire structure is a structure in which linear metals are gathered, and includes a structure in which a metal grid is patterned and a structure in which metal nanowires are gathered.
  • the thin metal wire structure of the conductive metal layer according to the present invention may be either a structure that is a metal grid pattern, a structure in which metal nanowires are aggregated, or a structure that includes both.
  • the metal material of the metal grid pattern the metal may be a simple substance or an alloy, and may be a single layer or a multilayer, but silver is preferably used from the viewpoint of conductivity.
  • the shape of the metal grid pattern is not particularly limited and may be, for example, a stripe shape, a lattice shape, or a random network structure, but the aperture ratio is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio is a ratio of the portion without the thin lines forming the metal grid pattern to the whole.
  • the aperture ratio of the striped grid pattern having a line width of 100 ⁇ m and a line interval of 1 mm is approximately 90%.
  • the line width of the metal grid pattern is preferably 10 to 200 ⁇ m from the viewpoint of conductivity and transmittance.
  • the height of the fine wire (thickness of the conductive metal layer) is preferably 0.1 to 10 ⁇ m from the viewpoints of conductivity, current leakage prevention, and fine wire distribution uniformity.
  • the method for forming the metal grid pattern is not particularly limited, and a conventionally known method can be used.
  • the ink containing metal fine particles can be formed by a method of printing in a desired shape by a known printing method such as gravure printing, flexographic printing, offset printing, screen printing, and inkjet printing.
  • a metal layer is formed on the entire surface of the substrate and formed by a known photolithographic method, a method of performing plating after printing a catalyst ink that can be plated in a desired shape, and another method include A method using silver salt photography technology can also be used.
  • the method using silver salt photographic technology can be carried out, for example, referring to paragraph number 0076-0112 of JP2009-140750A and examples.
  • a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 can be used.
  • the metal nanowire refers to a linear structure having a diameter from the atomic scale to the nm size, the main component being a metal element.
  • the average length is preferably 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, and particularly preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • the average minor axis of the metal nanowire is preferably 10 to 300 nm, more preferably 30 to 200 nm.
  • the relative standard deviation of the minor axis is preferably 20% or less.
  • the metal nanowires are preferably in contact with each other, and more preferably in mesh form.
  • Conductive metal layers in which metal nanowires are brought into contact with each other or in mesh form are prepared by applying a dispersion containing metal nanowires to a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, It can be easily obtained by coating and drying to form a film using a liquid phase film forming method such as a blade coating method, a bar coating method, a gravure coating method, a curtain coating method, a spray coating method, or a doctor coating method.
  • the basis weight of the metal nanowire is preferably 5 mg / m 2 or more and 500 mg / m 2 or less, more preferably 10 mg / m 2 or more and 200 mg / m 2 or less.
  • the amount of metal nanowires is 5 mg / m 2 or more, the contact between the metal nanowires is improved and the conductivity is improved, and when the amount is 500 mg / m 2 or less, the portion shielded from light by the metal nanowires is reduced. Transparency is improved.
  • the means for producing the metal nanowire there are no particular restrictions on the means for producing the metal nanowire, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction
  • a conductive polymer layer containing a conductive polymer having a ⁇ -conjugated conductive polymer and a polyanion and the polymer (A) is formed on the conductive metal layer formed as described above. And forming a transparent electrode plate.
  • the conductive polymer according to the present invention is a conductive polymer comprising a ⁇ -conjugated conductive polymer and a polyanion.
  • the conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
  • the ⁇ -conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
  • the precursor monomer has a ⁇ -conjugated system in the molecule, and a ⁇ -conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent.
  • an appropriate oxidizing agent examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a functional group and a structural unit having no anionic group.
  • This polyanion is a solubilized polymer that solubilizes a ⁇ -conjugated conductive polymer in a solvent.
  • the anionic group of the polyanion functions as a dopant for the ⁇ -conjugated conductive polymer, and improves the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the anionic group of the polyanion may be any functional group that can undergo chemical oxidation doping to the ⁇ -conjugated conductive polymer.
  • a monosubstituted sulfate group A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. .
  • homopolymers may be used, or two or more kinds of copolymers may be used.
  • the polyanion which has a fluorine (F) in a compound may be sufficient.
  • Nafion manufactured by Dupont
  • Flemion manufactured by Asahi Glass Co., Ltd.
  • perfluoro vinyl ether containing a carboxylic acid group, and the like can be mentioned.
  • the heat treatment is performed at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more. It is more preferable because the cleaning resistance and solvent resistance of the coating film are remarkably improved.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable.
  • These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, an anion And a method of producing the polymerizable group-containing polymerizable monomer by polymerization.
  • Examples of the method for producing an anionic group-containing polymerizable monomer by polymerization include a method for producing an anionic group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. It is done.
  • a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, this is maintained at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is previously dissolved in the solvent is added thereto, The reaction is performed for a predetermined time.
  • the polymer obtained by the reaction is adjusted to a certain concentration by the solvent.
  • a polymerizable monomer having no anionic group may be copolymerized with the anionic group-containing polymerizable monomer.
  • the oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ -conjugated conductive polymer.
  • the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid.
  • the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like.
  • the ultrafiltration method is preferable from the viewpoint of easy work.
  • Such a conductive polymer is preferably a commercially available material.
  • a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
  • a water-soluble organic compound may be contained as a dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and ⁇ -butyrolactone.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the polymer (A) is a polymer having at least one polymerization unit (repeating unit) represented by the following general formula 1, general formula 2 and general formula 3 as unit polymerization under the following conditions.
  • X 1 to X 3 each independently represents a hydrogen atom or a methyl group.
  • R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms.
  • Conditions: l (mol%) of the polymerized units of the above general formula 1 in the total polymerized units of the polymer (A), and ratios (mol%) of the polymerized units of the above general formula 2 in all polymerized units of the polymer (A). ) Is m, and the ratio (mol%) of the polymerized units of the above general formula 3 to the total polymerized units of the polymer (A) is n. 50 ⁇ l + m + n ⁇ 100, 0 ⁇ l ⁇ 100, 0 ⁇ m ⁇ 100 0 ⁇ n ⁇ 100.
  • the component of 50% by mole or more of the copolymer component is any one of the above general formulas 1 to 3, or the total of the components of the above general formulas 1 to 3 is 50% by mole or more.
  • Copolymer More preferably, the total of the components of the general formulas 1 to 3 is 80 mol% or more. Further, it may be a homopolymer formed from a single monomer of any one of the above general formulas 1 to 3, and is a preferred embodiment.
  • the polymer (A) in the present invention has the above (repeated) unit structure.
  • Examples of the alkylene group having 5 or less carbon atoms represented by R 1 to R 3 include a methylene group, an ethylene group, a butylene group, a propylene group, and a pentylene group, and an ethylene group is preferably used.
  • the ratio m of the polymerized units is preferably in the range of 70 ⁇ m ⁇ 100.
  • the polymer (A) is preferably soluble in an aqueous solvent.
  • the aqueous solvent refers to a solvent in which 50% by mass or more is water.
  • the component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
  • the number average molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000. .
  • the number average molecular weight and the weight average molecular weight according to the present invention are measured using gel permeation chromatography (hereinafter abbreviated as “GPC”).
  • the measurement conditions are as follows.
  • Apparatus Wagers 2695 (Separations Module) Detector: Waters 2414 (Refractive Index Detector) Column: Shodex Asahipak GF-7M HQ Eluent: Dimethylformamide (20 mM LiBr) Flow rate: 1.0 ml / min Temperature: 40 ° C
  • the polymer (A) is obtained by radical polymerization, but is particularly preferably synthesized by living radical polymerization.
  • methyl (meth) acrylate, ethyl (meth) acrylate, styrene and the like can be used in addition to the monomers corresponding to the above general formula 1, general formula 2 and general formula 3.
  • the solvent used in the living radical polymerization is inactive under reaction conditions and is not particularly limited as long as the monomer and the polymer to be formed can be dissolved, but a mixed solvent of an alcohol solvent and water is preferable.
  • the living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
  • the conductive polymer layer according to the present invention is obtained by applying a coating solution containing the above conductive polymer and polymer (A) onto the conductive metal layer as described below and drying.
  • the ratio of the conductive polymer to the polymer (A) is preferably from 30 to 900 parts by mass of the polymer (A) when the conductive polymer is 100 parts by mass in terms of transparency and conductivity. More preferably, it is at least part.
  • a coating solution containing at least a conductive polymer containing a ⁇ -conjugated conductive polymer and a polyanion, a polymer (A), and an aqueous solvent is used. It is preferably formed by applying and drying by a method.
  • the concentration of solid content in the coating solution containing the conductive polymer and the polymer (A) is preferably 0.5 to 30% by mass, and preferably 1 to 20% by mass. From the viewpoint of the smoothness of the coating film and the expression of the leak prevention effect, it is more preferable.
  • the coating dry film thickness of the conductive polymer layer containing the conductive polymer and the polymer (A) is preferably 30 to 2000 nm.
  • the decrease in conductivity is large, so that it is more preferably 100 nm or more, and more preferably 200 nm or more from the viewpoint of enhancing prevention of inter-electrode current leakage with the counter electrode. Further, it is more preferably 1000 nm or less from the viewpoint of maintaining high transmittance.
  • dry treatment is performed as appropriate.
  • a drying process can be performed at 80 to 150 ° C. for 10 seconds to 10 minutes.
  • step (3) In order to perform the chemical etching process in step (3) more efficiently, it is preferable to perform the following immobilization process on the conductive polymer layer.
  • the immobilization treatment method a method in which the conductive polymer layer is hardly soluble or insoluble by heat treatment is preferably used. This heat treatment may be performed simultaneously with the aforementioned drying treatment.
  • the polyanion is a polyanion having a sulfo group as an anionic group
  • an additional heat treatment is performed for 5 minutes or more at a temperature in the range of 100 to 200 ° C. after forming a film by a drying treatment after coating. It is preferable.
  • the conductive polymer layer is fixed, and the washing resistance and solvent resistance are remarkably improved.
  • step (3) the transparent electrode plate obtained by the above steps (1) and (2) having a conductive metal layer and a conductive polymer layer on the support is subjected to a chemical etching treatment to produce a transparent electrode.
  • the chemical etching treatment according to the present invention refers to a treatment with an etching solution described below, which is a solution.
  • the chemical etching treatment is performed by etching at least a surface (electrode layer surface) having a conductive polymer layer of a transparent electrode plate. It is performed by bringing the liquid into contact.
  • composition of the etching solution a general processing solution for metal etching can be used. From the viewpoint of handling safety and etching property of the conductive metal layer using silver, a silver halide color photographic light-sensitive material is used.
  • the bleach-fixing solution used in the development processing can be preferably used.
  • the solution is preferably an aqueous solution, but an organic solvent such as ethanol may be used as long as it can dissolve the bleaching agent and fixing agent described below.
  • a bleaching agent used in the bleach-fixing solution a known bleaching agent can also be used.
  • an organic complex salt of iron (III) for example, a complex salt of an aminopolycarboxylic acid
  • an organic compound such as citric acid, tartaric acid, malic acid or the like. Acid, persulfate, hydrogen peroxide and the like are preferable.
  • an organic complex salt of iron (III) is particularly preferable from the viewpoint of rapid processing and prevention of environmental pollution.
  • aminopolycarboxylic acids useful for forming organic complex salts of iron (III), or salts thereof include biodegradable ethylenediamine disuccinic acid (SS form), N- (2-carboxylate ethyl) -L-aspartic acid, ⁇ -alanine diacetic acid, methyliminodiacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, 1,3-diaminopropanetetraacetic acid, propylenediaminetetraacetic acid, nitrilotriacetic acid, cyclohexanediaminetetraacetic acid, iminodiacetic acid
  • SS form biodegradable ethylenediamine disuccinic acid
  • N- (2-carboxylate ethyl) -L-aspartic acid ⁇ -alanine diacetic acid
  • methyliminodiacetic acid ethylenediaminetetraacetic acid, diethylenetriaminep
  • These compounds may be sodium, potassium, thylium or ammonium salts.
  • ethylenediamine disuccinic acid (SS form) N- (2-carboxylateethyl) -L-aspartic acid, ⁇ -alanine diacetic acid, ethylenediaminetetraacetic acid, 1,3-diaminopropanetetraacetic acid, methylimino
  • the diacetic acid is preferably its iron (III) complex salt.
  • ferric ion complex salts may be used in the form of complex salts or ferric salts such as ferric sulfate, ferric chloride, ferric nitrate, ferric ammonium sulfate, ferric phosphate.
  • a ferric ion complex salt may be formed in a solution using a chelating agent such as aminopolycarboxylic acid.
  • the chelating agent may be used in excess of the ferric ion complex salt.
  • the iron complexes aminopolycarboxylic acid iron complexes are preferable, and the addition amount is 0.01 to 1.0 mol / liter, preferably 0.05 to 0.50 mol / liter, and more preferably 0.10 to 0.00. 50 mol / liter, more preferably 0.15 to 0.40 mol / liter.
  • Fixing agents used in the bleach-fixing solution are known fixing agents, that is, thiosulfates such as sodium thiosulfate and ammonium thiosulfate, thiocyanates such as sodium thiocyanate and ammonium thiocyanate, ethylenebisthioglycolic acid, 3, These are water-soluble silver halide solubilizers such as thioether compounds such as 6-dithia-1,8-octanediol and thioureas, and these can be used alone or in combination.
  • a special bleach-fixing agent comprising a combination of a fixing agent described in JP-A-55-155354 and a large amount of a halide such as potassium iodide can also be used.
  • thiosulfate particularly ammonium thiosulfate.
  • the amount of the fixing agent per liter is preferably 0.3 to 2 mol, and more preferably 0.5 to 1.0 mol.
  • the pH range of the bleach-fixing solution used in the present invention is preferably from 3 to 8, more preferably from 4 to 7.
  • hydrochloric acid, sulfuric acid, nitric acid, bicarbonate, ammonia, caustic potash, caustic soda, sodium carbonate, potassium carbonate and the like can be added as necessary.
  • the conductive metal layer that is not covered with the conductive polymer and is present on the surface of the conductive polymer layer is removed.
  • the chemical etching treatment time is not particularly limited as long as unnecessary protruding portions of the conductive metal layer are removed, but it is preferably 180 seconds or less from the viewpoint of productivity, and more preferably 5 seconds or more and 120 seconds or less. After the chemical etching treatment, washing is performed with water, and the etching solution is sufficiently washed away, and then the transparent electrode is dried.
  • the electrical resistance value of the conductive part of the transparent electrode is preferably 1000 ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less, as the surface specific resistance.
  • the surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the conductive polymer layer contains the polymer (A) and is subjected to a chemical etching treatment, so that the conductive polymer layer blocks the etching treatment liquid and removes the conductive metal exposed on the surface. It can be efficiently removed, and as a result, it is presumed that it has excellent flatness and maintains high conductivity and transparency.
  • the organic electronic device in the present invention has a transparent electrode and an organic functional layer produced by the method of the present invention.
  • a transparent electrode formed by the method of the present invention is used as a first electrode, an organic functional layer is formed on the first electrode, and a second electrode is formed on the organic functional layer as a counter electrode.
  • an organic electronic device can be obtained.
  • organic functional layer examples include an organic light emitting layer, an organic photoelectric conversion layer, a liquid crystal polymer layer, and the like, without any particular limitation. This is particularly effective in the case of an organic photoelectric conversion layer.
  • the transparent electrode of the present invention is particularly effective when the organic functional layer described below has a thickness of 1 nm to 500 nm, and further effective for an organic functional layer with a thickness of 1 to 200 nm.
  • the organic electronic device of the present invention is an organic EL device and an organic photoelectric conversion device will be described.
  • an organic EL device having an organic light emitting layer as an organic functional layer includes a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer, etc. in addition to the organic light emitting layer.
  • a layer for controlling light emission may be used in combination with the organic light emitting layer.
  • the conductive polymer layer on the transparent electrode of the present invention can also function as a hole injection layer, it can also serve as a hole injection layer, but a hole injection layer may be provided independently.
  • the light emitting layer may be a monochromatic light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively, or by la
  • the organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer.
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
  • the transparent electrode of the present invention is used in the first or second electrode part.
  • the first electrode portion is an anode and the second electrode portion is a cathode.
  • the second electrode portion may be a conductive material single layer, but in addition to a conductive material, a resin for holding these may be used in combination.
  • a material having a low work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light coming to the second electrode side is reflected and returns to the first electrode part side.
  • the metal nanowire of the first electrode part scatters or reflects part of the light backward, but by using a metal material as the conductive material of the second electrode part, this light can be reused and the extraction efficiency is improved. .
  • the organic photoelectric conversion element has a structure in which a first electrode portion, a photoelectric conversion layer (hereinafter also referred to as a bulk heterojunction layer) having a bulk heterojunction structure (p-type semiconductor layer and n-type semiconductor layer), and a second electrode portion are stacked.
  • a first electrode portion a photoelectric conversion layer having a bulk heterojunction structure (p-type semiconductor layer and n-type semiconductor layer)
  • a second electrode portion are stacked.
  • An intermediate layer such as an electron transport layer may be provided between the photoelectric conversion layer and the second electrode part.
  • the photoelectric conversion layer is a layer that converts light energy into electric energy, and constitutes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material functions relatively as an electron donor (donor)
  • the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons as in the case of an electrode, but donates or accepts electrons by a photoreaction.
  • Examples of p-type semiconductor materials include various condensed polycyclic aromatic compounds and conjugated compounds.
  • condensed polycyclic aromatic compound for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.
  • conjugated compound examples include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.
  • ⁇ -sexual thiophene ⁇ , ⁇ -dihexyl- ⁇ -sexual thiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3- An oligomer such as butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • polymer p-type semiconductor examples include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like.
  • Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Pat. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc.
  • porphyrin copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, TCNQ-iodine complex, etc.
  • At least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.
  • pentacenes examples include substituents described in International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, JP-A-2004-107216, etc.
  • Examples thereof include substituted acenes described in No. 14.4986 and the like and derivatives thereof.
  • Such compounds include J.M. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, 2706 and the like, and acene-based compounds substituted with a trialkylsilylethynyl group, a pentacene precursor described in US Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors.
  • the latter precursor type can be preferably used.
  • the p-type semiconductor material is a compound that has undergone a chemical structural change by a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material.
  • compounds that cause a scientific structural change by heat are preferred.
  • n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid
  • n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid
  • Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton.
  • a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.
  • fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred.
  • Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the photoelectric conversion element of the present invention is used as a photoelectric conversion device such as a solar cell
  • the photoelectric conversion element may be used in a single layer or may be used by being laminated (tandem type).
  • the photoelectric conversion device is not deteriorated by oxygen, moisture, or the like in the environment, the photoelectric conversion device is preferably sealed by a known method.
  • Preparation of transparent electrode >> [Preparation of transparent electrode TCF-1; comparative example] ITO was vapor-deposited with an average film thickness of 150 nm on a 100 ⁇ m-thick polyethylene terephthalate film support provided with a gas barrier layer on both sides, and then the vapor-deposited film was cut into 180 mm ⁇ 180 mm square to produce a transparent electrode TCF-1.
  • TCF-3 Preparation of transparent electrode TCF-3; comparative example
  • a conductive polymer solution CP-1 prepared by the following method is applied onto TCF-2 using a spin coater so as to have a dry film thickness of 500 nm, heat-treated at 120 ° C. for 20 minutes, and then applied.
  • a transparent electrode TCF-3 was produced in the same manner as TCF-2 except that the film was cut into 100 mm ⁇ 100 mm square.
  • the Schlenk tube was taken out of liquid nitrogen and replaced with nitrogen after 5 minutes. After performing this operation three times, bipyridine (400 mg, 2.56 mmol) and CuBr (147 mg, 1.02 mmol) were added under nitrogen, and the mixture was stirred at 20 ° C. After 30 minutes, the reaction solution was dropped onto a 4 cm Kiriyama funnel with filter paper and silica, and the reaction solution was recovered under reduced pressure.
  • the structure and molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
  • a conductive polymer liquid CP-1 was prepared as follows.
  • Etching solution BF-1 Ethylenediaminetetraacetic acid ferric ammonium 60g Ethylenediaminetetraacetic acid 2g Sodium metabisulfite 15g 70g ammonium thiosulfate Maleic acid 5g Etching solution BF-1 was prepared by finishing to 1 L with pure water and adjusting the pH to 5.5 with sulfuric acid or ammonia water.
  • TCF-5 Preparation of transparent electrode TCF-5; comparative example
  • TCF-3 instead of the conductive polymer liquid CP-1, PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) was applied to a spin coater so that the dry film thickness was 150 nm.
  • a transparent electrode TCF-5 was produced in the same manner as TCF-3, except that coating and drying were performed using
  • the transparent electrode TCF-6 is the same as TCF-4 except that it is immersed in the etching solution BF-1 for 60 seconds before being coated with the conductive polymer solution CP-1, and then washed and dried. Was made.
  • TCF-7 Transparent Electrode TCF-7; Present Invention
  • a transparent electrode TCF-7 was produced in the same manner as TCF-4 except that a silver nanowire film produced as described below was used instead of the silver grid pattern.
  • a silver nanowire having an average minor axis of 75 nm and an average length of 35 ⁇ m was prepared using polyvinylpyrrolidone K30 (molecular weight: 50,000; manufactured by ISP). After silver nanowires are filtered and washed with an outer filtration membrane, hydroxypropylmethylcellulose 60SH-50 (manufactured by Shin-Etsu Chemical Co., Ltd.) is redispersed in an aqueous solution containing 25% by mass of silver, and the silver nanowire dispersion liquid is obtained. Prepared.
  • the prepared silver nanowire dispersion is applied to a silver terephthalate film support having a gas barrier layer on both sides and a polyethylene terephthalate film support having a thickness of 100 ⁇ m so that the weight of the silver nanowire is 50 mg / m 2. It was applied and dried to produce a silver nanowire film.
  • TCF-7 a transparent electrode was formed in the same manner as TCF-7, except that a silver grid pattern having a pattern width of 50 ⁇ m, a pattern interval of 1000 ⁇ m, and a thickness of 1 ⁇ m was formed on the silver nanowire film by the same method as TCF-2. TCF-8 was produced.
  • a transparent electrode TCF-9 was produced in the same manner as TCF-4 except that the conductive polymer liquid CP-1 was changed to the conductive polymer liquid CP-2 prepared as follows in TCF-4.
  • TCF-11 (Conductive polymer liquid CP-3) Polyhydroxyethyl vinyl ether (number average molecular weight 20,000, solid content 50% aqueous solution) 0.14 g PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) 1.59 g
  • TCF-4 was the same as TCF-4 except that the water-soluble binder resin 1 was a conductive polymer liquid CP-4 made of a copolymer of hydroxyethyl acrylate (49 mol%) and methyl acrylate (51 mol%).
  • the transparent electrode TCF-11 was produced, the entire conductive polymer layer eluted during immersion in the etching solution BF-1 for 60 seconds, and a transparent electrode could not be produced.
  • Transparent electrodes TCF-12 to 15 were produced in the same manner as TCF-4 except that the conductive metal layer and the conductive polymer layer were those shown in Table 2.
  • the surface resistivity of the transparent electrode was measured by a four-terminal method using a resistivity meter Loresta GP manufactured by Dia Instruments.
  • organic EL elements OLED-1 to -15 were produced in the following procedure.
  • PEDOT-PSS CLEVIOS PH510 solid content 1.89%) (manufactured by HC Starck) was applied and dried using a spin coater so that the dry film thickness was 30 nm.
  • the transparent electrode was set in a commercially available vacuum deposition apparatus, and each of the deposition materials in the vacuum deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
  • each light emitting layer was provided by the following procedure.
  • the deposition crucible containing the following ⁇ -NPD was energized and heated, evaporated at a deposition rate of 0.1 nm / second, and a 30 nm hole transport layer was established.
  • Ir-1, Ir-14 and the following compound 1-7 were co-deposited at a deposition rate of 0.1 nm / sec so that the following Ir-1 would be 13% by mass and the following Ir-14 would be 3.7% by mass: Then, a green-red phosphorescent light emitting layer having an emission maximum wavelength of 622 nm and a thickness of 10 nm was formed.
  • E-66 and compound 1-7 were co-evaporated at a deposition rate of 0.1 nm / second so that the following E-66 was 10% by mass, and a blue phosphorescent emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm. Formed.
  • M-1 below is deposited to a thickness of 5 nm to form a hole blocking layer, and CsF is co-deposited with M-1 so that the thickness ratio is 10%, and an electron transport layer having a thickness of 45 nm is formed. Formed.
  • Al was evaporated as a first electrode external take-out terminal and 80 mm ⁇ 80 mm second electrode (cathode) forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa to obtain a thickness.
  • a second electrode of 100 nm was formed.
  • the thickness of the organic functional layer between the electrodes was 120 nm.
  • an adhesive is applied to the periphery of the second electrode except for the end portion so that external terminals for the first electrode and the second electrode can be formed, and Al 2 O 3 is vapor deposited at a thickness of 300 nm using polyethylene terephthalate as a base material.
  • the adhesive was cured by heat treatment to form a sealing film, and an organic EL device having a light emitting area of 80 mm ⁇ 80 mm was produced.
  • the light emission unevenness was evaluated by visually evaluating the light emission state according to the following criteria using a source measure unit 2400 type manufactured by KEITHLEY, applying a direct current voltage to each organic EL element to emit light with a luminance of 1000 cd / m 2 .
  • A Completely uniform light emission, no problem.
  • Almost uniform light emission, no problem.
  • Some light emission unevenness is partially observed, but practically acceptable.
  • X Light emission unevenness over the entire surface. Seen and unacceptable (rectification ratio) The rectification ratio was determined by measuring the current value when a voltage of +3 V / ⁇ 3 V was applied to each organic EL element, obtaining the rectification ratio by the following formula, and evaluating it according to the following criteria. If there is leakage between electrodes, the rectification ratio becomes a low value. It is practical range is 10 2 or more.
  • Rectification ratio current value when +3 V is applied / current value when ⁇ 3 V is applied ⁇ : Rectification ratio 10 3 or more ⁇ : Rectification ratio 10 2 or more and less than 10 3 ⁇ : Rectification ratio 10 1 or more and less than 10 2 ⁇ : Rectification ratio 10 1 Less than (brightness change)
  • Each organic EL element was allowed to emit light continuously at a constant voltage so that the initial luminance was 5000 cd / m 2 , and the time until the luminance was reduced by half was determined. The half time of OLED-1 was set to 100, and the relative value was evaluated. 120 or more is a practically good range.
  • the transparent electrode obtained by the method of the present invention maintains high transparency and conductivity, and the organic EL device using the same has little unevenness in light emission and excellent performance uniformity of the organic functional layer. It can be seen that it has excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Disclosed is a method for manufacturing a transparent electrode, which provides an organic electronic element that has excellent durability and is excellent in terms of uniformity of the performance of an organic functional layer while high transparency and conductivity are also maintained. The method for manufacturing a transparent electrode includes: step (1) for forming, on a transparent support body, a conductive metal layer that has a metal fine wire structure; step (2), subsequent to step (1), for manufacturing a transparent electrode plate by forming, on the conductive metal layer, a conductive polymer layer that contains a polymer (A) and a conductive polymer having polyanions and π-conjugated conductive polymer molecules; and step (3), subsequent to step (2), for manufacturing a transparent electrode by performing chemical etching treatment on the transparent electrode plate. A transparent electrode which is obtained by the method for manufacturing a transparent electrode, and an organic electronic element which uses the transparent electrode, are also disclosed.

Description

透明電極の製造方法、透明電極および有機電子素子Method for producing transparent electrode, transparent electrode and organic electronic device
 本発明は、有機EL(エレクトロルミネッセンス)、太陽電池などの有機電子デバイスに用いられる有機電子素子に用いられる透明電極の製造方法に関する。 The present invention relates to a method for producing a transparent electrode used in an organic electronic element used in organic electronic devices such as organic EL (electroluminescence) and solar cells.
 近年、有機EL素子や有機太陽電池といった有機電子デバイスが注目されており、このようなデバイスにおいて、透明電極は必須の構成技術となっている。有機電子デバイスにおいては、大面積化への要望が益々高くなってきており、従来から用いられている、ITOや導電性ポリマーの様な透明電極の場合、特に低い表面抵抗が必要とされる大面積用途においては、成膜コストが飛躍的に高くなるばかりか、実用上十分低い表面抵抗を得ることは非常に困難である。 In recent years, organic electronic devices such as organic EL elements and organic solar cells have attracted attention. In such devices, transparent electrodes have become an essential component technology. In organic electronic devices, the demand for larger areas is increasing, and in the case of transparent electrodes such as ITO and conductive polymers that have been used in the past, particularly low surface resistance is required. In the area use, not only the film formation cost is remarkably increased, but it is very difficult to obtain a surface resistance sufficiently low in practical use.
 他の透明電極としては、米国特許出願公開第2007/0074316A1号明細書に記載の金属ナノワイヤ等の金属繊維や、特開2000-149773号公報に記載のプラズマディスプレイの電磁波シールド膜に代表される金属グリッドパターンにより微細メッシュ構造を形成した透明電極が挙げられる。 Other transparent electrodes include metal fibers such as metal nanowires described in US Patent Application Publication No. 2007 / 0074316A1, and metals typified by electromagnetic wave shielding films for plasma displays described in Japanese Patent Application Laid-Open No. 2000-149773. The transparent electrode which formed the fine mesh structure with the grid pattern is mentioned.
 これらのうち、特に銀を用いた金属グリッドでは、銀本来の高い導電率により良好な導電性と透明性を両立することができるが、グリッド構造であるが故に光を透過する部分には導電性を有しておらず、透明電極面全体において電流が均一にはなり得ない。電流の面均一性と導電性を両立するため、ITOや導電性ポリマー等の透明導電膜と金属細線構造部を組み合わせた透明電極が開示されている(例えば、特許文献1および2参照)。 Among these, metal grids using silver, in particular, can achieve both good conductivity and transparency due to the inherent high conductivity of silver. However, because of the grid structure, the portion that transmits light is electrically conductive. The current cannot be uniform over the entire transparent electrode surface. In order to achieve both current surface uniformity and conductivity, a transparent electrode in which a transparent conductive film such as ITO or a conductive polymer is combined with a thin metal wire structure is disclosed (for example, see Patent Documents 1 and 2).
 一方、有機EL素子を有するような有機電子デバイスに対しては、透明電極に高い平滑性が要求される。透明電極上に突起があると、電極間リークやその部分での電界集中により素子寿命低下の要因となる。導電性ポリマーの積層は、このような突起を埋めることで表面平滑性の改善にもなるが、突起の大きさによっては、埋め込みに必要な導電性ポリマー層が厚くなり、デバイスの透明性の点から、これらを両立させることは難しい。 On the other hand, for organic electronic devices having organic EL elements, high smoothness is required for the transparent electrode. If there are protrusions on the transparent electrode, the element life may be reduced due to inter-electrode leakage or electric field concentration at that portion. Laminating conductive polymer also improves surface smoothness by filling such protrusions, but depending on the size of the protrusions, the conductive polymer layer required for embedding becomes thick, and the transparency of the device Therefore, it is difficult to achieve both.
 突起を埋める他の方法としては、基板上に、透明導電膜、金属グリッドの順に積層し、さらに該金属グリッド上を絶縁層で完全に被覆した後、発光層等の有機機能層を積層する方法があるが(例えば、特許文献3参照)、絶縁層の幅を金属グリッドの線幅より広くとらなければならず、発光領域が縮小してしまう問題がある。 As another method for filling the protrusions, a method of laminating an organic functional layer such as a light emitting layer after laminating a transparent conductive film and a metal grid in this order on the substrate, and further covering the metal grid completely with an insulating layer. However, there is a problem that the width of the insulating layer must be wider than the line width of the metal grid, and the light emitting region is reduced.
 透明導電膜と金属グリッドを組み合わせた透明電極上の突起をなくすためには、金属グリッド自身の表面平滑性が高いことが望ましい。 In order to eliminate protrusions on the transparent electrode combining the transparent conductive film and the metal grid, it is desirable that the metal grid itself has high surface smoothness.
 金属グリッドの表面平滑性を向上させる方法としては、金属グリッド表面をエッチング処理する方法や(特許文献4参照)、グリッド表面を研磨する方法(特許文献5参照)等が挙げられるが、エッチング処理することによって金属グリッドの導電性が低下する、研磨により発生したパーティクル自体が電極間リークの原因になる等の問題がある。 Examples of methods for improving the surface smoothness of the metal grid include a method of etching the metal grid surface (see Patent Document 4), a method of polishing the grid surface (see Patent Document 5), and the like. As a result, there is a problem that the conductivity of the metal grid is lowered, and particles themselves generated by polishing cause leakage between electrodes.
特開2005-302508号公報JP 2005-302508 A 特表2009-505358号公報Special table 2009-505358 国際公開第10/38181号パンフレットInternational Publication No. 10/38181 Pamphlet 特開平10-70354号公報JP-A-10-70354 特開2007-233040号公報JP 2007-233304 A
 本発明の目的は、前記事情に鑑みてなされたものであり、高い透明性、導電性を維持しつつ有機機能層の性能の均一性に優れ、耐久性に優れる有機電子素子を与える透明電極を製造する製造方法、それにより得られた透明電極、それを用いた有機電子素子が提供でき、さらに有機機能層の性能の均一性に優れ、耐久性に優れ、大面積化にも対応可能である有機電子素子を与える透明電極を製造する製造方法、それにより得られた透明電極、それを用いた有機電子素子が提供できる。 The object of the present invention has been made in view of the above circumstances, and provides a transparent electrode that provides an organic electronic device that is excellent in uniformity of the performance of the organic functional layer while maintaining high transparency and conductivity and excellent in durability. A manufacturing method to be manufactured, a transparent electrode obtained thereby, and an organic electronic device using the same can be provided. Furthermore, the performance of the organic functional layer is excellent in uniformity, excellent in durability, and can cope with a large area. The manufacturing method which manufactures the transparent electrode which gives an organic electronic device, the transparent electrode obtained by it, and the organic electronic device using the same can be provided.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.透明支持体上に、金属細線構造を有する導電性金属層を形成する工程(1)、
 該工程(1)の後の工程であり、該導電性金属層上に、π共役系導電性高分子とポリアニオンとを有する導電性ポリマーおよび下記のポリマー(A)、を含有する導電性ポリマー層を形成し、透明電極板を作製する工程(2)、
 該工程(2)の後の工程であり、該透明電極板に化学エッチング処理を施し透明電極を作製する工程(3)、
を有することを特徴とする透明電極の製造方法。
〔ポリマー(A):下記一般式1、一般式2および一般式3で表される重合単位(繰り返し単位)の少なくとも一つを重合単位として、下記の条件で有するポリマー。
1. Forming a conductive metal layer having a fine metal wire structure on the transparent support (1);
A conductive polymer layer comprising a conductive polymer having a π-conjugated conductive polymer and a polyanion on the conductive metal layer and the following polymer (A), which is a step subsequent to the step (1). Forming a transparent electrode plate (2),
A step (3) after the step (2), in which the transparent electrode plate is subjected to a chemical etching treatment to produce a transparent electrode;
The manufacturing method of the transparent electrode characterized by having.
[Polymer (A): A polymer having at least one of the polymerization units (repeating units) represented by the following general formula 1, general formula 2 and general formula 3 as a polymerization unit under the following conditions.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔各式中、X~Xはそれぞれ独立に、水素原子、またはメチル基を表す。R~Rはそれぞれ独立に、炭素数が5以下のアルキレン基を表す。条件:ポリマー(A)の全重合単位に占める上記一般式1の重合単位の割合(モル%)をl、ポリマー(A)の全重合単位に占める上記一般式2の重合単位の割合(モル%)をm、ポリマー(A)の全重合単位に占める上記一般式3の重合単位の割合(モル%)をnとしたとき、50≦l+m+n≦100、0≦l≦100、0≦m≦100、0≦n≦100である。〕
 2.前記金属細線構造が、金属グリッドパターンであることを特徴とする前記1に記載の透明電極の製造方法。
[In each formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group. R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. Conditions: l (mol%) of the polymerized units of the above general formula 1 in the total polymerized units of the polymer (A), and ratios (mol%) of the polymerized units of the above general formula 2 in all polymerized units of the polymer (A). ) Is m, and the ratio (mol%) of the polymerized units of the above general formula 3 to the total polymerized units of the polymer (A) is n. 50 ≦ l + m + n ≦ 100, 0 ≦ l ≦ 100, 0 ≦ m ≦ 100 0 ≦ n ≦ 100. ]
2. 2. The method for producing a transparent electrode according to 1 above, wherein the thin metal wire structure is a metal grid pattern.
 3.前記導電性金属層が、金属ナノワイヤを含有することを特徴とする前記1に記載の透明電極の製造方法。 3. 2. The method for producing a transparent electrode according to 1 above, wherein the conductive metal layer contains metal nanowires.
 4.前記1から3のいずれか1項に記載の透明電極の製造方法によって製造されたことを特徴とする透明電極。 4. 4. A transparent electrode manufactured by the method for manufacturing a transparent electrode according to any one of 1 to 3 above.
 5.前記4に記載の透明電極を具備することを特徴とする有機電子素子。 5. 5. An organic electronic device comprising the transparent electrode as described in 4 above.
 6.前記有機電子素子が、有機エレクトロルミネッセンス素子であることを特徴とする前記5に記載の有機電子素子。 6. 6. The organic electronic device as described in 5 above, wherein the organic electronic device is an organic electroluminescence device.
 7.前記有機エレクトロルミネッセンス素子が有する有機機能層の厚さが1nm~200nmであることを特徴とする前記6に記載の有機電子素子。 7. 7. The organic electronic device as described in 6 above, wherein the organic functional layer of the organic electroluminescent device has a thickness of 1 nm to 200 nm.
 本発明の上記構成により、高い透明性、導電性を維持しつつ、平滑性に優れることにより有機機能層の性能の均一性に優れかつ耐久性に優れる有機電子素子を与える透明電極を製造する製造方法、それにより得られた透明電極、それを用いた有機電子素子が提供でき、さらに有機機能層の性能の均一性に優れ、耐久性に優れ、大面積化にも対応可能である有機電子素子を与える透明電極を製造する製造方法、それにより得られた透明電極、それを用いた有機電子素子が提供できる。 Manufacture of a transparent electrode that provides an organic electronic device with excellent uniformity in performance of organic functional layer and excellent durability by maintaining smoothness and conductivity while maintaining high transparency and conductivity. Method, transparent electrode obtained by the method, organic electronic device using the same, and organic electronic device having excellent performance uniformity of organic functional layer, excellent durability, and adaptable to large area The manufacturing method which manufactures the transparent electrode which gives can, the transparent electrode obtained by it, and an organic electronic device using the same can be provided.
 本発明は、透明電極の製造方法であって、透明支持体上に、金属細線構造を有する導電性金属層を形成する工程(1)、工程(1)の後の工程であり、導電性金属層上に、π共役系導電性高分子とポリアニオンとを有する導電性ポリマーおよび上記のポリマー(A)、を含有する導電性ポリマー層を形成し、透明電極板を作製する工程(2)、工程(2)の後の工程であり該透明電極板に化学エッチング処理を施し透明電極を作製する工程(3)、を有することを特徴とする。 This invention is a manufacturing method of a transparent electrode, Comprising: The process (1) and the process after a process (1) which form the electroconductive metal layer which has a metal fine wire structure on a transparent support body, an electroconductive metal Forming a conductive polymer layer containing a conductive polymer having a π-conjugated conductive polymer and a polyanion and the polymer (A) on the layer to produce a transparent electrode plate (2), step (2) A subsequent step (3), in which the transparent electrode plate is subjected to a chemical etching treatment to produce a transparent electrode.
 本発明では、特に導電性ポリマー層が、上記特定のポリマーを含有し、導電性ポリマー層を設けた後、化学エッチング処理を施すことで、高い透明性、導電性を維持ししつつ、平滑性に優れることにより、有機機能層の性能の均一性に優れかつ耐久性に優れる有機電子素子を与える透明電極が得られる。 In the present invention, in particular, the conductive polymer layer contains the above specific polymer, and after the conductive polymer layer is provided, a chemical etching treatment is performed to maintain high transparency and conductivity while maintaining smoothness. As a result, a transparent electrode that provides an organic electronic device with excellent uniformity in performance of the organic functional layer and excellent durability can be obtained.
 本発明の構成要素について詳細な説明をする。 DETAILED DESCRIPTION The components of the present invention will be described in detail.
 (工程(1))
 工程(1)では、透明支持体上に、金属細線構造を有する導電性金属層を形成する。
(Process (1))
In the step (1), a conductive metal layer having a fine metal wire structure is formed on the transparent support.
 〔透明支持体〕
 本発明に係る透明支持体とは、JIS K 7361-1(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率が60%以上である基板をいう。
(Transparent support)
The transparent support according to the present invention is a visible light wavelength region measured by a method in accordance with JIS K 7361-1 (corresponding to ISO 13468-1) “Plastic—Test method for total light transmittance of transparent material”. A substrate having a total light transmittance of 60% or more.
 本発明に用いられる透明支持体としては、特に制限はなく、その材料、形状、構造、厚み、硬度等については公知のものの中から適宜選択することができるが、高い光透過性を有していることが好ましい。 The transparent support used in the present invention is not particularly limited, and the material, shape, structure, thickness, hardness and the like can be appropriately selected from known materials, but have high light transmittance. Preferably it is.
 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリビニルブチラール(PVB)等のポリビニルアセタール樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができる。 For example, polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyvinyl acetal resin films such as polyvinyl butyral (PVB), polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) Resin film, polycarbonate (PC) resin film, polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (T C) can be exemplified a resin film or the like.
 可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に特に好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度およびコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 A resin film having a transmittance of 80% or more at a visible wavelength (380 to 780 nm) can be particularly preferably applied to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明支持体には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。 The transparent support used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 Also, examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
 透明支持体が二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基材と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。 When the transparent support is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy-adhesion layer adjacent to the film is set to 1.57 to 1.63 so that the interface reflection between the film substrate and the easy-adhesion layer can be reduced. Since it can reduce and can improve the transmittance | permeability, it is more preferable. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
 易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 また、透明支持体には必要に応じてガスバリア層が予め形成されていてもよいし、ハードコート層が予め形成されていてもよい。ガスバリア層の形成材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミニウム等の金属酸化物、金属窒化物が使用できる。 In addition, a gas barrier layer may be formed in advance on the transparent support, if necessary, or a hard coat layer may be formed in advance. As a material for forming the gas barrier layer, metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used.
 これらの材料は、水蒸気バリア機能のほかに酸素バリア機能も有する。特にガスバリア性、耐溶剤性、透明性が良好な窒化シリコン、酸化窒化シリコンが好ましい。また、ガスバリア層は必要に応じて多層構成とすることも可能である。ガスバリア層の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。 These materials have an oxygen barrier function in addition to a water vapor barrier function. In particular, silicon nitride and silicon oxynitride having good gas barrier properties, solvent resistance, and transparency are preferable. Further, the gas barrier layer may have a multilayer structure as necessary. As a method for forming the gas barrier layer, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
 前記ガスバリア層を構成する各無機層の厚みに関しては特に限定されないが、典型的には1層当たり5nm~500nmの範囲内であることが好ましく、さらに好ましくは1層当たり10nm~200nmである。ガスバリア層は透明支持体の少なくとも一方の面に設けられる。ガスバリア層は、電極層側に設けられるのが好ましく、両面に設けられるのがより好ましい。 The thickness of each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, more preferably 10 nm to 200 nm per layer. The gas barrier layer is provided on at least one surface of the transparent support. The gas barrier layer is preferably provided on the electrode layer side, and more preferably provided on both sides.
 〔導電性金属層〕
 本発明に係る導電性金属層は、金属細線構造を有する。
[Conductive metal layer]
The conductive metal layer according to the present invention has a fine metal wire structure.
 金属細線構造は、線状の金属が集合した構造であり、金属グリッドがパターン化された構造、金属ナノワイヤが集合した構造が挙げられる。 The metal thin wire structure is a structure in which linear metals are gathered, and includes a structure in which a metal grid is patterned and a structure in which metal nanowires are gathered.
 本発明に係る導電性金属層の金属細線構造としては、金属グリッドパターンである構造または金属ナノワイヤが集合した構造どちらか一方であってもよいし、両方を含む構造であってもよい。金属グリッドパターンの金属材料としては、金属は単体でも合金でも良く、単層でも多層でも良いが、導電性の観点から銀を用いるのが好ましい。 The thin metal wire structure of the conductive metal layer according to the present invention may be either a structure that is a metal grid pattern, a structure in which metal nanowires are aggregated, or a structure that includes both. As the metal material of the metal grid pattern, the metal may be a simple substance or an alloy, and may be a single layer or a multilayer, but silver is preferably used from the viewpoint of conductivity.
 金属グリッドパターンの形状は特に制限はなく、例えば、ストライプ状、格子状、あるいはランダムな網目構造であってもよいが、開口率は透明性の観点から80%以上であることが好ましい。開口率とは、金属グリッドパターンをなす細線のない部分が全体に占める割合であり、例えば、線幅100μm、線間隔1mmのストライプ状グリッドパターンの開口率は、およそ90%である。 The shape of the metal grid pattern is not particularly limited and may be, for example, a stripe shape, a lattice shape, or a random network structure, but the aperture ratio is preferably 80% or more from the viewpoint of transparency. The aperture ratio is a ratio of the portion without the thin lines forming the metal grid pattern to the whole. For example, the aperture ratio of the striped grid pattern having a line width of 100 μm and a line interval of 1 mm is approximately 90%.
 金属グリッドパターンの線幅は、導電性および透過率の面から、10~200μmが好ましい。細線の高さ(導電性金属層の厚さ)は、導電性、電流リーク防止、細線分布均一性の面から、0.1~10μmが好ましい。 The line width of the metal grid pattern is preferably 10 to 200 μm from the viewpoint of conductivity and transmittance. The height of the fine wire (thickness of the conductive metal layer) is preferably 0.1 to 10 μm from the viewpoints of conductivity, current leakage prevention, and fine wire distribution uniformity.
 金属グリッドパターンを形成する方法としては、特に制限はなく、従来公知な方法が利用できる。例えば、金属微粒子を含有するインクを、グラビア印刷、フレキソ印刷、オフセット印刷、スクリーン印刷、インクジェット印刷等の公知の印刷法により所望の形状に印刷する方法によって形成できる。 The method for forming the metal grid pattern is not particularly limited, and a conventionally known method can be used. For example, the ink containing metal fine particles can be formed by a method of printing in a desired shape by a known printing method such as gravure printing, flexographic printing, offset printing, screen printing, and inkjet printing.
 別な方法としては、基材全面に金属層を形成し、公知のフォトリソ法によって形成する方法や、メッキ可能な触媒インクを所望の形状に印刷した後にメッキ処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。 As another method, a metal layer is formed on the entire surface of the substrate and formed by a known photolithographic method, a method of performing plating after printing a catalyst ink that can be plated in a desired shape, and another method include A method using silver salt photography technology can also be used.
 銀塩写真技術を応用した方法については、例えば、特開2009-140750号公報の段落番号0076-0112、および実施例を参考にして実施できる。 The method using silver salt photographic technology can be carried out, for example, referring to paragraph number 0076-0112 of JP2009-140750A and examples.
 ランダムな網目構造としては、例えば、特表2005-530005号公報に記載のような、金属微粒子を含有する液を塗布乾燥することにより、自発的に導電性微粒子の無秩序な網目構造を形成する方法を利用できる。 As a random network structure, for example, a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 Can be used.
 本発明において、金属ナノワイヤとは、金属元素を主要な構成要素とする、原子スケールからnmサイズの直径を有する線状構造体のことをいう。 In the present invention, the metal nanowire refers to a linear structure having a diameter from the atomic scale to the nm size, the main component being a metal element.
 金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。 As the metal nanowire, in order to form a long conductive path with one metal nanowire, the average length is preferably 3 μm or more, more preferably 3 to 500 μm, and particularly preferably 3 to 300 μm. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, although there is no restriction | limiting in particular in an average breadth, it is preferable that it is small from a transparency viewpoint, and the larger one is preferable from a conductive viewpoint.
 本発明においては、金属ナノワイヤの平均短径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。 In the present invention, the average minor axis of the metal nanowire is preferably 10 to 300 nm, more preferably 30 to 200 nm. In addition, the relative standard deviation of the minor axis is preferably 20% or less.
 金属ナノワイヤが集合した金属細線構造において、金属ナノワイヤは相互に接触していることが好ましく、さらにメッシュ状に接触していることが好ましい。金属ナノワイヤを相互に接触、またはメッシュ状に接触させた導電性金属層は、金属ナノワイヤを含む分散液を、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法等の液相成膜法を用いて塗布、乾燥して膜形成すれば容易に得ることができる。 In the metal thin wire structure in which metal nanowires are assembled, the metal nanowires are preferably in contact with each other, and more preferably in mesh form. Conductive metal layers in which metal nanowires are brought into contact with each other or in mesh form are prepared by applying a dispersion containing metal nanowires to a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, It can be easily obtained by coating and drying to form a film using a liquid phase film forming method such as a blade coating method, a bar coating method, a gravure coating method, a curtain coating method, a spray coating method, or a doctor coating method.
 金属ナノワイヤの目付け量は5mg/m以上500mg/m以下であるのが好ましく、10mg/m以上200mg/m以下であるのがより好ましい。金属ナノワイヤの目付け量を5mg/m以上とすることで、金属ナノワイヤ同士の接触が良くなり導電性が向上し、500mg/m以下とすることで、金属ナノワイヤにより遮光される部分が減少し透明性が向上する。 The basis weight of the metal nanowire is preferably 5 mg / m 2 or more and 500 mg / m 2 or less, more preferably 10 mg / m 2 or more and 200 mg / m 2 or less. When the amount of metal nanowires is 5 mg / m 2 or more, the contact between the metal nanowires is improved and the conductivity is improved, and when the amount is 500 mg / m 2 or less, the portion shielded from light by the metal nanowires is reduced. Transparency is improved.
 金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等を参考にすることができる。銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。 There are no particular restrictions on the means for producing the metal nanowire, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing silver nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, and the like. The method for producing silver nanowires can be easily produced in an aqueous solution, and since the conductivity of silver is the highest in metals, it is preferably applied as a method for producing metal nanowires according to the present invention. Can do.
 (工程(2))
 工程(2)では、上記のように形成した導電性金属層上に、π共役系導電性高分子とポリアニオンとを有する導電性ポリマーおよび上記のポリマー(A)、を含有する導電性ポリマー層を形成し、透明電極板を作製する。
(Process (2))
In the step (2), a conductive polymer layer containing a conductive polymer having a π-conjugated conductive polymer and a polyanion and the polymer (A) is formed on the conductive metal layer formed as described above. And forming a transparent electrode plate.
 本発明に係る導電性ポリマーは、π共役系導電性高分子とポリアニオンとを含んで成る導電性ポリマーである。導電性ポリマーは、後述するπ共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリアニオンの存在下で化学酸化重合することによって容易に製造できる。 The conductive polymer according to the present invention is a conductive polymer comprising a π-conjugated conductive polymer and a polyanion. The conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer described later in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion described later.
 (π共役系導電性高分子)
 本発明に用いるπ共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類の鎖状導電性ポリマーを利用することができる。中でも、導電性、透明性、安定性等の観点からポリチオフェン類やポリアニリン類が好ましい。ポリエチレンジオキシチオフェンであることが最も好ましい。
(Π-conjugated conductive polymer)
The π-conjugated conductive polymer used in the present invention is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans. , Polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyl chain conductive polymers can be used. Of these, polythiophenes and polyanilines are preferable from the viewpoints of conductivity, transparency, stability, and the like. Most preferred is polyethylene dioxythiophene.
 (π共役系導電性高分子前駆体モノマー)
 前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類およびその誘導体、チオフェン類およびその誘導体、アニリン類およびその誘導体等が挙げられる。
(Π-conjugated conductive polymer precursor monomer)
The precursor monomer has a π-conjugated system in the molecule, and a π-conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent. Examples thereof include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof.
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythio , 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyl Oxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3- Methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3- Isobutylaniline, 2-anilinesulfonic acid, 3-anili Sulfonic acid and the like.
 (ポリアニオン)
 ポリアニオンは、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルおよびこれらの共重合体であって、アニオン性基を有する構成単位とアニオン性基を有さない構成単位とからなるものである。
(Polyanion)
The polyanion is a substituted or unsubstituted polyalkylene, a substituted or unsubstituted polyalkenylene, a substituted or unsubstituted polyimide, a substituted or unsubstituted polyamide, a substituted or unsubstituted polyester, and a copolymer thereof. It consists of a structural unit having a functional group and a structural unit having no anionic group.
 このポリアニオンは、π共役系導電性高分子を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン性基は、π共役系導電性高分子に対するドーパントとして機能して、π共役系導電性高分子の導電性と耐熱性を向上させる。 This polyanion is a solubilized polymer that solubilizes a π-conjugated conductive polymer in a solvent. The anionic group of the polyanion functions as a dopant for the π-conjugated conductive polymer, and improves the conductivity and heat resistance of the π-conjugated conductive polymer.
 ポリアニオンのアニオン性基としては、π共役系導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さおよび安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。 The anionic group of the polyanion may be any functional group that can undergo chemical oxidation doping to the π-conjugated conductive polymer. Among them, from the viewpoint of ease of production and stability, a monosubstituted sulfate group A monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group on the π-conjugated conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. .
 これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。また、化合物内にフッ素(F)を有するポリアニオンであっても良い。具体的には、パーフルオロスルホ基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)などを挙げることができる。 These homopolymers may be used, or two or more kinds of copolymers may be used. Moreover, the polyanion which has a fluorine (F) in a compound may be sufficient. Specifically, Nafion (manufactured by Dupont) containing a perfluorosulfo group, Flemion (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group, and the like can be mentioned.
 これらのうち、スルホ基を有する化合物であると、導電性ポリマー含有層を塗布、乾燥することによって形成した後に、100℃以上200℃以下の温度で5分以上の加熱処理を施した場合、この塗布膜の洗浄耐性や溶媒耐性が著しく向上することから、より好ましい。 Among these, when the compound having a sulfo group is formed by applying and drying the conductive polymer-containing layer, the heat treatment is performed at a temperature of 100 ° C. or more and 200 ° C. or less for 5 minutes or more. It is more preferable because the cleaning resistance and solvent resistance of the coating film are remarkably improved.
 さらに、これらの中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、また、得られる導電性ポリマーの導電性をより高くできる。 Further, among these, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl acrylate sulfonic acid are preferable. These polyanions have high compatibility with the binder resin, and can further increase the conductivity of the obtained conductive polymer.
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性および導電性の点からは、50~10000個の範囲がより好ましい。 The polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
 ポリアニオンの製造方法としては、例えば、酸を用いてアニオン性基を有さないポリマーにアニオン性基を直接導入する方法、アニオン性基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン性基含有重合性モノマーの重合により製造する方法が挙げられる。 Examples of the method for producing a polyanion include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, an anion And a method of producing the polymerizable group-containing polymerizable monomer by polymerization.
 アニオン性基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン性基含有重合性モノマーを、酸化剤および/または重合触媒の存在下で、酸化重合またはラジカル重合によって製造する方法が挙げられる。 Examples of the method for producing an anionic group-containing polymerizable monomer by polymerization include a method for producing an anionic group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. It is done.
 具体的には、所定量のアニオン性基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤および/または重合触媒を溶解した溶液を添加し、所定時間で反応させる。 Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, this is maintained at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is previously dissolved in the solvent is added thereto, The reaction is performed for a predetermined time.
 その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン性基含有重合性モノマーにアニオン性基を有さない重合性モノマーを共重合させてもよい。アニオン性基含有重合性モノマーの重合に際して使用する酸化剤および酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。 The polymer obtained by the reaction is adjusted to a certain concentration by the solvent. In this production method, a polymerizable monomer having no anionic group may be copolymerized with the anionic group-containing polymerizable monomer. The oxidizing agent, oxidation catalyst, and solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the π-conjugated conductive polymer.
 得られたポリマーがポリアニオン塩である場合には、ポリアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。 When the obtained polymer is a polyanion salt, it is preferably transformed into a polyanionic acid. Examples of the method for converting to an anionic acid include an ion exchange method using an ion exchange resin, a dialysis method, an ultrafiltration method, and the like. Among these, the ultrafiltration method is preferable from the viewpoint of easy work.
 こうした導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマー(PEDOT-PSSと略す)が、H.C.Starck社からCleviosシリーズとして、Aldrich社からPEDOT-PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。本発明において、こうした剤も好ましく用いることができる。 Such a conductive polymer is preferably a commercially available material. For example, a conductive polymer (abbreviated as PEDOT-PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is described in H.C. C. It is commercially available from Starck as the Clevios series, from Aldrich as PEDOT-PSS 483095 and 560596, and from Nagase Chemtex as the Denatron series. Polyaniline is also commercially available from Nissan Chemical as the ORMECON series. In the present invention, such an agent can also be preferably used.
 2nd.ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、ヒドロキシ基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。前記ヒドロキシ基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリンなどが挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトンなどが挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、などが挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが好ましい。 2nd. A water-soluble organic compound may be contained as a dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and γ-butyrolactone. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 (ポリマー(A))
 ポリマー(A)は、下記の一般式1、一般式2および一般式3で表される重合単位(繰り返し単位)の少なくとも一つを単位重合として、下記の条件で有するポリマーである。
(Polymer (A))
The polymer (A) is a polymer having at least one polymerization unit (repeating unit) represented by the following general formula 1, general formula 2 and general formula 3 as unit polymerization under the following conditions.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 各式中、X~Xはそれぞれ独立に、水素原子、またはメチル基を表す。R~Rはそれぞれ独立に、炭素数が5以下のアルキレン基を表す。条件:ポリマー(A)の全重合単位に占める上記一般式1の重合単位の割合(モル%)をl、ポリマー(A)の全重合単位に占める上記一般式2の重合単位の割合(モル%)をm、ポリマー(A)の全重合単位に占める上記一般式3の重合単位の割合(モル%)をnとしたとき、50≦l+m+n≦100、0≦l≦100、0≦m≦100、0≦n≦100である。 In each formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group. R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. Conditions: l (mol%) of the polymerized units of the above general formula 1 in the total polymerized units of the polymer (A), and ratios (mol%) of the polymerized units of the above general formula 2 in all polymerized units of the polymer (A). ) Is m, and the ratio (mol%) of the polymerized units of the above general formula 3 to the total polymerized units of the polymer (A) is n. 50 ≦ l + m + n ≦ 100, 0 ≦ l ≦ 100, 0 ≦ m ≦ 100 0 ≦ n ≦ 100.
 即ち、ポリマー(A)は、共重合成分の50mol%以上の成分が、上記一般式1~一般式3のいずれか、あるいは、上記一般式1~一般式3の成分の合計が50mol%以上ある共重合ポリマーである。また、一般式1~一般式3の成分の合計が80mol%以上であることがより好ましい。さらに、上記一般式1~一般式3いずれか単独のモノマーから形成されたホモポリマーであっても良く、また、好ましい実施形態である。 That is, in the polymer (A), the component of 50% by mole or more of the copolymer component is any one of the above general formulas 1 to 3, or the total of the components of the above general formulas 1 to 3 is 50% by mole or more. Copolymer. More preferably, the total of the components of the general formulas 1 to 3 is 80 mol% or more. Further, it may be a homopolymer formed from a single monomer of any one of the above general formulas 1 to 3, and is a preferred embodiment.
 本発明におけるポリマー(A)は、前記(繰り返し)単位構造を有する。 The polymer (A) in the present invention has the above (repeated) unit structure.
 RからRが表す炭素数5以下のアルキレン基としては、メチレン基、エチレン基、ブチレン基、プロピレン基、ペンチレン基が挙げられるが、エチレン基が好ましく用いられる。 Examples of the alkylene group having 5 or less carbon atoms represented by R 1 to R 3 include a methylene group, an ethylene group, a butylene group, a propylene group, and a pentylene group, and an ethylene group is preferably used.
 さらに、前記ポリマー(A)において、重合単位の割合mが、70≦m≦100の範囲内であることが好ましい。また、前記ポリマー(A)が、水系溶媒に可溶であることが好ましい。水系溶媒とは、50質量%以上が水である溶媒をいう。 Furthermore, in the polymer (A), the ratio m of the polymerized units is preferably in the range of 70 ≦ m ≦ 100. The polymer (A) is preferably soluble in an aqueous solvent. The aqueous solvent refers to a solvent in which 50% by mass or more is water.
 勿論、他の溶媒を含有しない純水であっても良い。 Of course, pure water containing no other solvent may be used.
 水系溶媒の水以外の成分は、水に相溶する溶剤であれば特に制限はないが、アルコール系の溶媒を好ましく用いることができ、中でも、沸点が比較的水に近いイソプロピルアルコールを用いることが形成する膜の平滑性などには有利である。 The component other than water in the aqueous solvent is not particularly limited as long as it is a solvent compatible with water, but an alcoholic solvent can be preferably used, and isopropyl alcohol having a boiling point relatively close to water can be used. This is advantageous for the smoothness of the film to be formed.
 本発明に係るポリマー(A)の数平均分子量は、3,000~2,000,000の範囲が好ましく、より好ましくは4,000~500,000、さらに好ましくは5000~100000の範囲内である。 The number average molecular weight of the polymer (A) according to the present invention is preferably in the range of 3,000 to 2,000,000, more preferably 4,000 to 500,000, still more preferably in the range of 5,000 to 100,000. .
 本発明に係るポリマー(A)の分子量分布(重量平均分子量/数平均分子量=Mw/Mn)は1.01~10が好ましく、より好ましくは1.1~5、更に好ましくは1.2~3である。 The molecular weight distribution (weight average molecular weight / number average molecular weight = Mw / Mn) of the polymer (A) according to the present invention is preferably 1.01 to 10, more preferably 1.1 to 5, and still more preferably 1.2 to 3. It is.
 本発明に係る数平均分子量、重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(以下「GPC」と略す。)を用いて行われる。 The number average molecular weight and the weight average molecular weight according to the present invention are measured using gel permeation chromatography (hereinafter abbreviated as “GPC”).
 測定条件は以下の通りである。 The measurement conditions are as follows.
 装置:Wagers2695(Separations Module)
 検出器:Waters 2414 (Refractive Index Detector)
 カラム:Shodex Asahipak GF-7M HQ
 溶離液:ジメチルホルムアミド(20mM LiBr)
 流速:1.0ml/min
 温度:40℃
 ポリマー(A)は、ラジカル重合により得られるが、特にリビングラジカル重合により合成されることが好ましい。
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
The polymer (A) is obtained by radical polymerization, but is particularly preferably synthesized by living radical polymerization.
 重合に用いられるモノマーとしては、上記一般式1、一般式2および一般式3に対応するモノマーの他に、メチル(メタ)アクリレート、エチル(メタ)アクリレート、スチレンなどを用いることができる。 As monomers used for the polymerization, methyl (meth) acrylate, ethyl (meth) acrylate, styrene and the like can be used in addition to the monomers corresponding to the above general formula 1, general formula 2 and general formula 3.
 リビングラジカル重合に用いられる溶剤は、反応条件化で不活性であり、モノマー、生成するポリマーを溶解できれば特に制限はないが、アルコール系溶媒と水の混合溶媒が好ましい。 The solvent used in the living radical polymerization is inactive under reaction conditions and is not particularly limited as long as the monomer and the polymer to be formed can be dissolved, but a mixed solvent of an alcohol solvent and water is preferable.
 リビングラジカル重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。 The living radical polymerization temperature varies depending on the initiator used, but is generally -10 to 250 ° C, preferably 0 to 200 ° C, more preferably 10 to 100 ° C.
 以下に、一般式1、2、3で表される重合単位を与えるモノマーおよびポリマー(A)の具体例を挙げる。 Specific examples of the monomer and polymer (A) that give polymerization units represented by general formulas 1, 2, and 3 are given below.
 一般式1で表される構造単位を与えるモノマー
 a1:2-ヒドロキシエチルビニルエーテル
 b1:3-ヒドロキシプロピルビニルエーテル
 c1:4-ヒドロキシブチルビニルエーテル
 d1:5-ヒドロキシペンチルビニルエーテル
 一般式2で表される構造単位を与えるモノマー
 a2:2-ヒドロキシエチルアクリレート
 b2:2-ヒドロキシエチルメタクリレート
 c2:3-ヒドロキシプロピルメタクリレート
 d2:4-ヒドロキシブチルアクリレート
 e2:5-ヒドロキシペンチルアクリレート
 一般式3で表される構造単位を与えるモノマー
 a3:2-ヒドロキシエチルアクリルアミド
 b3:2-ヒドロキシエチルメタクリルアミド
 c3:3-ヒドロキシプロピルメタクリルアミド
 d3:4-ヒドロキシブチルアクリルアミド
 e3:5-ヒドロキシペンチルアクリルアミド
Monomers giving structural units represented by general formula 1 a1: 2-hydroxyethyl vinyl ether b1: 3-hydroxypropyl vinyl ether c1: 4-hydroxybutyl vinyl ether d1: 5-hydroxypentyl vinyl ether Structural unit represented by general formula 2 Monomers to be provided a2: 2-hydroxyethyl acrylate b2: 2-hydroxyethyl methacrylate c2: 3-hydroxypropyl methacrylate d2: 4-hydroxybutyl acrylate e2: 5-hydroxypentyl acrylate Monomer to give a structural unit represented by the general formula 3 a3 : 2-hydroxyethyl acrylamide b3: 2-hydroxyethyl methacrylamide c3: 3-hydroxypropyl methacrylamide d3: 4-hydroxybutyl acrylamide e 3: 5-hydroxypentylacrylamide
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (導電性ポリマー層)
 本発明に係る導電性ポリマー層は、上記の導電性ポリマーおよびポリマー(A)を含む塗布液を、下述するように導電性金属層上に塗布し、乾燥することで得られる。
(Conductive polymer layer)
The conductive polymer layer according to the present invention is obtained by applying a coating solution containing the above conductive polymer and polymer (A) onto the conductive metal layer as described below and drying.
 導電性ポリマーとポリマー(A)の比率は、透明性と導電性の面から、導電性ポリマーを100質量部とした時、ポリマー(A)が30~900質量部であることが好ましく、100質量部以上であることがより好ましい。 The ratio of the conductive polymer to the polymer (A) is preferably from 30 to 900 parts by mass of the polymer (A) when the conductive polymer is 100 parts by mass in terms of transparency and conductivity. More preferably, it is at least part.
 導電性ポリマー層を形成する方法としては、π共役系導電性高分子とポリアニオンとを含んで成る導電性ポリマーとポリマー(A)と水系溶媒とを少なくとも含んでなる塗布液を、液相製膜法で塗布、乾燥することで形成することが好ましい。 As a method for forming a conductive polymer layer, a coating solution containing at least a conductive polymer containing a π-conjugated conductive polymer and a polyanion, a polymer (A), and an aqueous solvent is used. It is preferably formed by applying and drying by a method.
 導電性ポリマーとポリマー(A)とを含んでなる塗布液中の固形分の濃度は0.5~30質量%であることが好ましく、1~20質量%であることが、液の停滞安定性、塗布膜の平滑性や、リーク防止効果の発現の視点で、より好ましい。 The concentration of solid content in the coating solution containing the conductive polymer and the polymer (A) is preferably 0.5 to 30% by mass, and preferably 1 to 20% by mass. From the viewpoint of the smoothness of the coating film and the expression of the leak prevention effect, it is more preferable.
 導電性ポリマーとポリマー(A)を含有する導電性ポリマー層の塗布乾燥膜厚は30~2000nmであることが好ましい。 The coating dry film thickness of the conductive polymer layer containing the conductive polymer and the polymer (A) is preferably 30 to 2000 nm.
 100nmを切る領域では導電性の低下が大きくなることから100nm以上であることがより好ましく、対向電極との電極間電流リーク防止を高める視点からは200nm以上であることがさらに好ましい。また、高い透過率を維持する視点から1000nm以下であることがより好ましい。 In the region of less than 100 nm, the decrease in conductivity is large, so that it is more preferably 100 nm or more, and more preferably 200 nm or more from the viewpoint of enhancing prevention of inter-electrode current leakage with the counter electrode. Further, it is more preferably 1000 nm or less from the viewpoint of maintaining high transmittance.
 塗布した後、適宜乾燥処理を施す。乾燥処理の条件として特に制限はないが、基材や導電性ポリマー含有層が損傷しない範囲の温度で乾燥処理することが好ましい。例えば、80から150℃で10秒から10分の乾燥処理をすることができる。 ) After coating, dry treatment is performed as appropriate. Although there is no restriction | limiting in particular as conditions of a drying process, It is preferable to dry-process at the temperature of the range which does not damage a base material and a conductive polymer content layer. For example, a drying process can be performed at 80 to 150 ° C. for 10 seconds to 10 minutes.
 工程(3)での化学エッチング処理をより効率的に行うために、導電性ポリマー層に、下記の固定化処理を行うことが好ましい。 In order to perform the chemical etching process in step (3) more efficiently, it is preferable to perform the following immobilization process on the conductive polymer layer.
 固定化処理の方法としては、導電性ポリマー層を加熱処理により、難溶性或いは不溶性化する方法が好ましく用いられる。この加熱処理は、前述の乾燥処理と同時に行ってもよい。 As the immobilization treatment method, a method in which the conductive polymer layer is hardly soluble or insoluble by heat treatment is preferably used. This heat treatment may be performed simultaneously with the aforementioned drying treatment.
 特に、ポリアニオンがアニオン性基として、スルホ基を有するポリアニオンである場合、塗布後乾燥処理により、膜を形成した後に、100~200℃の範囲内の温度で5分以上の追加の加熱処理を施すことが好ましい。これにより、導電性ポリマー層の固定化が行われ、洗浄耐性、溶媒耐性が著しく向上する。 In particular, when the polyanion is a polyanion having a sulfo group as an anionic group, an additional heat treatment is performed for 5 minutes or more at a temperature in the range of 100 to 200 ° C. after forming a film by a drying treatment after coating. It is preferable. As a result, the conductive polymer layer is fixed, and the washing resistance and solvent resistance are remarkably improved.
 (工程(3))
 工程(3)では、上記工程(1)、(2)により得られた、支持体上に導電性金属層および導電性ポリマー層を有する透明電極板に、化学エッチング処理を施し透明電極を作製する。
(Process (3))
In step (3), the transparent electrode plate obtained by the above steps (1) and (2) having a conductive metal layer and a conductive polymer layer on the support is subjected to a chemical etching treatment to produce a transparent electrode. .
 〔化学エッチング処理〕
 本発明に係る化学エッチング処理とは、溶液である下述するエッチング液による処理のことをいい、化学エッチング処理は、少なくとも透明電極板の導電性ポリマー層を有する表面(電極層表面)に、エッチング液を接触させることにより行われる。
[Chemical etching treatment]
The chemical etching treatment according to the present invention refers to a treatment with an etching solution described below, which is a solution. The chemical etching treatment is performed by etching at least a surface (electrode layer surface) having a conductive polymer layer of a transparent electrode plate. It is performed by bringing the liquid into contact.
 エッチング液の組成としては、一般的な金属エッチング用処理液を用いることができるが、取り扱いの安全性および、銀を用いた導電性金属層のエッチング性の観点から、ハロゲン化銀カラー写真感光材料の現像処理に使用する漂白定着液を好ましく用いることができる。 As the composition of the etching solution, a general processing solution for metal etching can be used. From the viewpoint of handling safety and etching property of the conductive metal layer using silver, a silver halide color photographic light-sensitive material is used. The bleach-fixing solution used in the development processing can be preferably used.
 溶液は水溶液であることが好ましいが、下記に記載される漂白剤や定着剤等を溶解することができれば、エタノール等の有機溶媒でもよい。漂白定着液において用いられる漂白剤としては、公知の漂白剤も用いることができ、特に鉄(III)の有機錯塩(例えばアミノポリカルボン酸類の錯塩)、またはクエン酸、酒石酸、リンゴ酸等の有機酸、過硫酸塩、過酸化水素等が好ましい。これらのうち、鉄(III)の有機錯塩は迅速処理と環境汚染防止の観点から特に好ましい。 The solution is preferably an aqueous solution, but an organic solvent such as ethanol may be used as long as it can dissolve the bleaching agent and fixing agent described below. As a bleaching agent used in the bleach-fixing solution, a known bleaching agent can also be used. In particular, an organic complex salt of iron (III) (for example, a complex salt of an aminopolycarboxylic acid) or an organic compound such as citric acid, tartaric acid, malic acid or the like. Acid, persulfate, hydrogen peroxide and the like are preferable. Of these, an organic complex salt of iron (III) is particularly preferable from the viewpoint of rapid processing and prevention of environmental pollution.
 鉄(III)の有機錯塩を形成するために有用なアミノポリカルボン酸、またはそれらの塩を列挙すると、生分解性のあるエチレンジアミンジ琥珀酸(SS体)、N-(2-カルボキシラートエチル)-L-アスパラギン酸、β-アラニンジ酢酸、メチルイミノジ酢酸をはじめ、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、1,3-ジアミノプロパン四酢酸、プロピレンジアミン四酢酸、ニトリロ三酢酸、シクロヘキサンジアミン四酢酸、イミノ二酢酸、グリコールエーテルジアミン四酢酸等のほか、欧州特許0789275号公報の一般式(I)または(II)で表される化合物を挙げることができる。 Examples of aminopolycarboxylic acids useful for forming organic complex salts of iron (III), or salts thereof, include biodegradable ethylenediamine disuccinic acid (SS form), N- (2-carboxylate ethyl) -L-aspartic acid, β-alanine diacetic acid, methyliminodiacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, 1,3-diaminopropanetetraacetic acid, propylenediaminetetraacetic acid, nitrilotriacetic acid, cyclohexanediaminetetraacetic acid, iminodiacetic acid In addition to glycol ether diamine tetraacetic acid, compounds represented by general formula (I) or (II) of European Patent 0789275 can be mentioned.
 これらの化合物はナトリウム、カリウム、チリウムまたはアンモニウム塩のいずれでもよい。これらの化合物の中で、エチレンジアミンジ琥珀酸(SS体)、N-(2-カルボキシラートエチル)-L-アスパラギン酸、β-アラニンジ酢酸、エチレンジアミン四酢酸、1,3-ジアミノプロパン四酢酸、メチルイミノ二酢酸はその鉄(III)錯塩が好ましい。 These compounds may be sodium, potassium, thylium or ammonium salts. Among these compounds, ethylenediamine disuccinic acid (SS form), N- (2-carboxylateethyl) -L-aspartic acid, β-alanine diacetic acid, ethylenediaminetetraacetic acid, 1,3-diaminopropanetetraacetic acid, methylimino The diacetic acid is preferably its iron (III) complex salt.
 これらの第2鉄イオン錯塩は錯塩の形で使用してもよいし、第2鉄塩、例えば硫酸第2鉄、塩化第2鉄、硝酸第2鉄、硫酸第2鉄アンモニウム、燐酸第2鉄等とアミノポリカルボン酸等のキレート剤とを用いて溶液中で第2鉄イオン錯塩を形成させてもよい。 These ferric ion complex salts may be used in the form of complex salts or ferric salts such as ferric sulfate, ferric chloride, ferric nitrate, ferric ammonium sulfate, ferric phosphate. And a ferric ion complex salt may be formed in a solution using a chelating agent such as aminopolycarboxylic acid.
 また、キレート剤を、第2鉄イオン錯塩を形成する以上に過剰に用いてもよい。鉄錯体の中でもアミノポリカルボン酸鉄錯体が好ましく、その添加量は0.01~1.0モル/リットル、好ましくは0.05~0.50モル/リットル、さらに好ましくは0.10~0.50モル/リットル、さらに好ましくは0.15~0.40モル/リットルである。 In addition, the chelating agent may be used in excess of the ferric ion complex salt. Among the iron complexes, aminopolycarboxylic acid iron complexes are preferable, and the addition amount is 0.01 to 1.0 mol / liter, preferably 0.05 to 0.50 mol / liter, and more preferably 0.10 to 0.00. 50 mol / liter, more preferably 0.15 to 0.40 mol / liter.
 漂白定着液に使用される定着剤は、公知の定着剤、即ちチオ硫酸ナトリウム、チオ硫酸アンモニウム等のチオ硫酸塩、チオシアン酸ナトリウム、チオシアン酸アンモニウム等のチオシアン酸塩、エチレンビスチオグリコール酸、3,6-ジチア-1,8-オクタンジオール等のチオエーテル化合物およびチオ尿素類等の水溶性のハロゲン化銀溶解剤であり、これらを1種あるいは2種以上混合して使用することができる。 Fixing agents used in the bleach-fixing solution are known fixing agents, that is, thiosulfates such as sodium thiosulfate and ammonium thiosulfate, thiocyanates such as sodium thiocyanate and ammonium thiocyanate, ethylenebisthioglycolic acid, 3, These are water-soluble silver halide solubilizers such as thioether compounds such as 6-dithia-1,8-octanediol and thioureas, and these can be used alone or in combination.
 また、特開昭55-155354号公報に記載された定着剤と多量の沃化カリウムの如きハロゲン化物等の組み合わせからなる特殊な漂白定着剤等も用いることができる。 A special bleach-fixing agent comprising a combination of a fixing agent described in JP-A-55-155354 and a large amount of a halide such as potassium iodide can also be used.
 本発明においては、チオ硫酸塩特にチオ硫酸アンモニウム塩の使用が好ましい。1リットル当たりの定着剤の量は、0.3~2モルが好ましく、さらに好ましくは0.5~1.0モルの範囲である。 In the present invention, it is preferable to use thiosulfate, particularly ammonium thiosulfate. The amount of the fixing agent per liter is preferably 0.3 to 2 mol, and more preferably 0.5 to 1.0 mol.
 本発明に使用される漂白定着液のpH領域は、3~8が好ましく、さらには4~7が特に好ましい。pHを調整するためには、必要に応じて塩酸、硫酸、硝酸、重炭酸塩、アンモニア、苛性カリ、苛性ソーダ、炭酸ナトリウム、炭酸カリウム等を添加することができる。 The pH range of the bleach-fixing solution used in the present invention is preferably from 3 to 8, more preferably from 4 to 7. In order to adjust the pH, hydrochloric acid, sulfuric acid, nitric acid, bicarbonate, ammonia, caustic potash, caustic soda, sodium carbonate, potassium carbonate and the like can be added as necessary.
 本発明に係る化学エッチング処理では、導電性ポリマー層の表面に存在する、導電性ポリマーで覆われることがなかった導電性金属層が除去される。 In the chemical etching treatment according to the present invention, the conductive metal layer that is not covered with the conductive polymer and is present on the surface of the conductive polymer layer is removed.
 化学エッチング処理時間は、導電性金属層の不要な突起部分が除去されていれば特に限定されないが、生産性の観点から180秒以下で行うのが好ましく、5秒以上120秒以下がより好ましい。化学エッチング処理後は水洗を行い、エッチング液を十分に洗い流したのち、透明電極を乾燥させる。 The chemical etching treatment time is not particularly limited as long as unnecessary protruding portions of the conductive metal layer are removed, but it is preferably 180 seconds or less from the viewpoint of productivity, and more preferably 5 seconds or more and 120 seconds or less. After the chemical etching treatment, washing is performed with water, and the etching solution is sufficiently washed away, and then the transparent electrode is dried.
 本発明における透明電極の導電部の電気抵抗値としては、表面比抵抗として1000Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257、等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。 In the present invention, the electrical resistance value of the conductive part of the transparent electrode is preferably 1000Ω / □ or less, more preferably 100Ω / □ or less, as the surface specific resistance. The surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
 本発明においては、導電性ポリマー層に上記ポリマー(A)を含有させ、化学エッチング処理を行うことにより、導電性ポリマー層はエッチング処理液をブロックして、表面に露出している導電性金属を効率的に除去でき、結果として平面性に優れ、高い導電性、透明性を維持しているものと推測される。 In the present invention, the conductive polymer layer contains the polymer (A) and is subjected to a chemical etching treatment, so that the conductive polymer layer blocks the etching treatment liquid and removes the conductive metal exposed on the surface. It can be efficiently removed, and as a result, it is presumed that it has excellent flatness and maintains high conductivity and transparency.
 〔有機電子素子〕
 本発明における有機電子素子は、本発明の方法で製造された透明電極と有機機能層とを有する。例えば、本発明の方法で形成された透明電極を第一電極として、この第一電極の上に有機機能層を形成し、さらにこの有機機能層の上に対向電極として第二電極を形成することによって、有機電子素子得ることができる。
[Organic electronic devices]
The organic electronic device in the present invention has a transparent electrode and an organic functional layer produced by the method of the present invention. For example, a transparent electrode formed by the method of the present invention is used as a first electrode, an organic functional layer is formed on the first electrode, and a second electrode is formed on the organic functional layer as a counter electrode. Thus, an organic electronic device can be obtained.
 有機機能層としては、有機発光層、有機光電変換層、液晶ポリマー層など特に限定無く挙げることができるが、本発明は、有機機能層が薄膜でかつ電流駆動系のものである有機発光層、有機光電変換層である場合において、特に有効である。 Examples of the organic functional layer include an organic light emitting layer, an organic photoelectric conversion layer, a liquid crystal polymer layer, and the like, without any particular limitation. This is particularly effective in the case of an organic photoelectric conversion layer.
 また、本発明の透明電極は、下述する有機機能層が、1nm~500nmの厚さである場合に特に有効であり、さらに1~200nmの厚さの有機機能層に対して有効である。 The transparent electrode of the present invention is particularly effective when the organic functional layer described below has a thickness of 1 nm to 500 nm, and further effective for an organic functional layer with a thickness of 1 to 200 nm.
 以下、本発明の有機電子素子が、有機EL素子および有機光電変換素子である場合のその構成要素について説明する。 Hereinafter, the components in the case where the organic electronic device of the present invention is an organic EL device and an organic photoelectric conversion device will be described.
 (有機EL素子)
 <有機機能層構成>
 〔有機発光層〕
 本発明において、有機機能層としての有機発光層を有する有機EL素子は、有機発光層に加えて、ホール注入層、ホール輸送層、電子輸送層、電子注入層、ホールブロック層、電子ブロック層などの有機発光層と併用して発光を制御する層を有しても良い。
(Organic EL device)
<Organic functional layer configuration>
(Organic light emitting layer)
In the present invention, an organic EL device having an organic light emitting layer as an organic functional layer includes a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer, etc. in addition to the organic light emitting layer. A layer for controlling light emission may be used in combination with the organic light emitting layer.
 本発明の透明電極上の導電性ポリマー層は、ホール注入層として働くことも可能であるので、ホール注入層を兼ねることも可能だが、独立にホール注入層を設けても良い。 Since the conductive polymer layer on the transparent electrode of the present invention can also function as a hole injection layer, it can also serve as a hole injection layer, but a hole injection layer may be provided independently.
 構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。 Preferred specific examples of the configuration are shown below, but the present invention is not limited to these.
 (i)(第一電極部)/発光層/電子輸送層/(第二電極部)
 (ii)(第一電極部)/正孔輸送層/発光層/電子輸送層/(第二電極部)
 (iii)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/(第二電極部)
 (iv)(第一電極部)/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
 (v)(第一電極部)/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/(第二電極部)
 ここで、発光層は、発光極大波長が各々430~480nm、510~550nm、600~640nmの範囲にある単色発光層であってもよく、また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよく、さらに発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては、白色発光層であることが好ましい。
(I) (first electrode part) / light emitting layer / electron transport layer / (second electrode part)
(Ii) (first electrode part) / hole transport layer / light emitting layer / electron transport layer / (second electrode part)
(Iii) (first electrode part) / hole transport layer / light emitting layer / hole block layer / electron transport layer / (second electrode part)
(Iv) (first electrode part) / hole transporting layer / light emitting layer / hole blocking layer / electron transporting layer / cathode buffer layer / (second electrode part)
(V) (first electrode part) / anode buffer layer / hole transport layer / light emitting layer / hole block layer / electron transport layer / cathode buffer layer / (second electrode part)
Here, the light emitting layer may be a monochromatic light emitting layer having a light emission maximum wavelength in the range of 430 to 480 nm, 510 to 550 nm, and 600 to 640 nm, respectively, or by laminating at least three of these light emitting layers. A white light emitting layer may be used, and a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL device of the present invention is preferably a white light emitting layer.
 また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、および各種蛍光色素および希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。 In addition, as the light emitting material or doping material that can be used in the organic light emitting layer in the present invention, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzo Xazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinaclide , Rubrene, distyrylbenzene derivatives, di still arylene derivatives and various fluorescent dyes and rare earth metal complex, there are phosphorescent materials, but is not limited thereto. It is also preferable to include 90 to 99.5 parts by mass of a light emitting material selected from these compounds and 0.5 to 10 parts by mass of a doping material.
 有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写などの方法が挙げられる。この有機発光層の厚みは0.5~500nmが好ましく、特に、0.5~200nmが好ましい。 The organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer. The thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
 〔電極〕
 本発明の透明電極は、上記の第一、または第二電極部で使用される。第一電極部が陽極で第二電極部が陰極であることが好ましい態様である。
〔electrode〕
The transparent electrode of the present invention is used in the first or second electrode part. In a preferred embodiment, the first electrode portion is an anode and the second electrode portion is a cathode.
 第二電極部は導電材単独層であっても良いが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。第二電極部の導電材としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。 The second electrode portion may be a conductive material single layer, but in addition to a conductive material, a resin for holding these may be used in combination. As the conductive material of the second electrode portion, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 第二電極部の導電材として金属材料を用いれば第二電極側に来た光は反射されて第一電極部側にもどる。第一電極部の金属ナノワイヤは光の一部を後方に散乱、あるいは反射するが第二電極部の導電材として金属材料を用いることで、この光が再利用可能となりより取り出しの効率が向上する。 If a metal material is used as the conductive material of the second electrode part, the light coming to the second electrode side is reflected and returns to the first electrode part side. The metal nanowire of the first electrode part scatters or reflects part of the light backward, but by using a metal material as the conductive material of the second electrode part, this light can be reused and the extraction efficiency is improved. .
 (有機光電変換素子)
 有機光電変換素子は、第一電極部、バルクヘテロジャンクション構造(p型半導体層およびn型半導体層)を有する光電変換層(以下、バルクヘテロジャンクション層とも呼ぶ)、第二電極部が積層された構造を有する。
(Organic photoelectric conversion element)
The organic photoelectric conversion element has a structure in which a first electrode portion, a photoelectric conversion layer (hereinafter also referred to as a bulk heterojunction layer) having a bulk heterojunction structure (p-type semiconductor layer and n-type semiconductor layer), and a second electrode portion are stacked. Have.
 光電変換層と第二電極部との間に電子輸送層などの中間層を有しても良い。 An intermediate layer such as an electron transport layer may be provided between the photoelectric conversion layer and the second electrode part.
 〔光電変換層〕
 光電変換層は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を構成している。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。
[Photoelectric conversion layer]
The photoelectric conversion layer is a layer that converts light energy into electric energy, and constitutes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
 ここで、電子供与体および電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体および電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons as in the case of an electrode, but donates or accepts electrons by a photoreaction.
 p型半導体材料としては、種々の縮合多環芳香族化合物や共役系化合物が挙げられる。 Examples of p-type semiconductor materials include various condensed polycyclic aromatic compounds and conjugated compounds.
 縮合多環芳香族化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、およびこれらの誘導体や前駆体が挙げられる。 As the condensed polycyclic aromatic compound, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, sarkham anthracene, bisanthene, zestrene, heptazelene, Examples thereof include compounds such as pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, and derivatives and precursors thereof.
 共役系化合物としては、例えば、ポリチオフェンおよびそのオリゴマー、ポリピロールおよびそのオリゴマー、ポリアニリン、ポリフェニレンおよびそのオリゴマー、ポリフェニレンビニレンおよびそのオリゴマー、ポリチエニレンビニレンおよびそのオリゴマー、ポリアセチレン、ポリジアセチレン、テトラチアフルバレン化合物、キノン化合物、テトラシアノキノジメタン等のシアノ化合物、フラーレンおよびこれらの誘導体あるいは混合物を挙げることができる。 Examples of the conjugated compound include polythiophene and its oligomer, polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, tetrathiafulvalene compound, quinone Compounds, cyano compounds such as tetracyanoquinodimethane, fullerenes and derivatives or mixtures thereof.
 また、特にポリチオフェンおよびそのオリゴマーのうち、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。 In particular, among polythiophene and oligomers thereof, α-sexual thiophene α, ω-dihexyl-α-sexual thiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3- An oligomer such as butoxypropyl) -α-sexithiophene can be preferably used.
 その他、高分子p型半導体の例としては、ポリアセチレン、ポリパラフェニレン、ポリピロール、ポリパラフェニレンスルフィド、ポリチオフェン、ポリフェニレンビニレン、ポリカルバゾール、ポリイソチアナフテン、ポリヘプタジイン、ポリキノリン、ポリアニリンなどが挙げられ、さらには特開2006-36755号公報などの置換-無置換交互共重合ポリチオフェン、特開2007-51289号公報、特開2005-76030号公報、J.Amer.Chem.Soc.,2007,p4112、J.Amer.Chem.Soc.,2007,p7246などの縮環チオフェン構造を有するポリマー、WO2008/000664、Adv.Mater.,2007,p4160、Macromolecules,2007,Vol.40,p1981などのチオフェン共重合体などを挙げることができる。 Other examples of the polymer p-type semiconductor include polyacetylene, polyparaphenylene, polypyrrole, polyparaphenylene sulfide, polythiophene, polyphenylene vinylene, polycarbazole, polyisothianaphthene, polyheptadiyne, polyquinoline, polyaniline, and the like. Substituted-unsubstituted alternating copolymer polythiophenes such as JP-A-2006-36755, JP-A-2007-51289, JP-A-2005-76030, J. Pat. Amer. Chem. Soc. , 2007, p4112, J.A. Amer. Chem. Soc. , 2007, p7246, etc., polymers having a condensed ring thiophene structure, WO2008 / 000664, Adv. Mater. , 2007, p4160, Macromolecules, 2007, Vol. Examples thereof include thiophene copolymers such as 40 and p1981.
 さらに、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体、等の有機分子錯体、C60、C70、C76、C78、C84等のフラーレン類、SWNT等のカーボンナノチューブ、メロシアニン色素類、ヘミシアニン色素類等の色素等、さらにポリシラン、ポリゲルマン等のσ共役系ポリマーや特開2000-260999に記載の有機・無機混成材料も用いることができる。 Further, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene (BEDTTTTF) -perchloric acid complex, BEDTTTF-iodine complex, TCNQ-iodine complex, etc. Organic molecular complexes of C60, C70, C76, C78, C84, fullerenes such as SWNT, carbon nanotubes such as SWNT, merocyanine dyes, dyes such as hemicyanine dyes, and σ-conjugated polymers such as polysilane and polygermane Organic / inorganic hybrid materials described in Kai 2000-260999 can also be used.
 これらのπ共役系材料のうちでも、ペンタセン等の縮合多環芳香族化合物、フラーレン類、縮合環テトラカルボン酸ジイミド類、金属フタロシアニン、金属ポルフィリンよりなる群から選ばれた少なくとも1種が好ましい。また、ペンタセン類がより好ましい。 Among these π-conjugated materials, at least one selected from the group consisting of condensed polycyclic aromatic compounds such as pentacene, fullerenes, condensed ring tetracarboxylic acid diimides, metal phthalocyanines, and metal porphyrins is preferable. Further, pentacenes are more preferable.
 ペンタセン類の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986等に記載の置換アセン類およびその誘導体等が挙げられる。 Examples of pentacenes include substituents described in International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, JP-A-2004-107216, etc. A pentacene derivative described in U.S. Patent Application Publication No. 2003/136964 and the like; Amer. Chem. Soc. , Vol127. Examples thereof include substituted acenes described in No. 14.4986 and the like and derivatives thereof.
 これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。 Among these compounds, compounds that are highly soluble in an organic solvent to the extent that a solution process can be performed, can form a crystalline thin film after drying, and can achieve high mobility are preferable.
 そのような化合物としては、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物、および米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、特開2007-224019号公報等に記載のポルフィリンプレカーサー等のような、プレカーサータイプの化合物(前駆体)が挙げられる。 Such compounds include J.M. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, 2706 and the like, and acene-based compounds substituted with a trialkylsilylethynyl group, a pentacene precursor described in US Patent Application Publication No. 2003/136964, etc., and Japanese Patent Application Laid-Open No. 2007-224019 Examples include precursor type compounds (precursors) such as porphyrin precursors.
 これらの中でも、後者のプリカーサータイプの方が好ましく用いることができる。 Among these, the latter precursor type can be preferably used.
 これは、プリカーサータイプの方が、変換後に不溶化するため、バルクヘテロジャンクション層の上に正孔輸送層・電子輸送層・正孔ブロック層・電子ブロック層等を溶液プロセスで形成する際に、バルクヘテロジャンクション層が溶解してしまうことがなくなるため、前記の層を構成する材料とバルクヘテロジャンクション層を形成する材料とが混合することがなくなり、一層の効率向上・寿命向上を達成することができるためである。 This is because the precursor type is insolubilized after conversion, so when forming the hole transport layer, electron transport layer, hole block layer, electron block layer, etc. on the bulk hetero junction layer by solution process, bulk hetero junction This is because the layer does not dissolve and the material constituting the layer and the material forming the bulk heterojunction layer are not mixed, and further improvement in efficiency and life can be achieved. .
 p型半導体材料としては、p型半導体材料前駆体に熱・光・放射線・化学反応を引き起こす化合物の蒸気に晒す、等の方法によって化学構造変化を起こし、p型半導体材料に変換された化合物であることが好ましい。中でも熱によって科学構造変化を起こす化合物が好ましい。 The p-type semiconductor material is a compound that has undergone a chemical structural change by a method such as exposing the precursor of the p-type semiconductor material to vapor of a compound that causes heat, light, radiation, or a chemical reaction, and converted into a p-type semiconductor material. Preferably there is. Among them, compounds that cause a scientific structural change by heat are preferred.
 n型半導体材料の例としては、フラーレン、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む、高分子化合物が挙げられる。 Examples of n-type semiconductor materials include fullerene, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic acid Examples thereof include polymer compounds containing an anhydride, an aromatic carboxylic acid anhydride such as perylenetetracarboxylic acid diimide, or an imidized product thereof as a skeleton.
 中でも、フラーレン含有高分子化合物が好ましい。フラーレン含有高分子化合物としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等を骨格に持つ高分子化合物が挙げられる。フラーレン含有高分子化合物では、フラーレンC60を骨格に持つ高分子化合物(誘導体)が好ましい。 Of these, fullerene-containing polymer compounds are preferred. Fullerene-containing polymer compounds include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Examples thereof include a polymer compound having a skeleton. As the fullerene-containing polymer compound, a polymer compound (derivative) having fullerene C60 as a skeleton is preferable.
 フラーレン含有ポリマーとしては、大別してフラーレンが高分子主鎖からペンダントされたポリマーと、フラーレンが高分子主鎖に含有されるポリマーとに大別されるが、フラーレンがポリマーの主鎖に含有されている化合物が好ましい。 The fullerene-containing polymers are roughly classified into polymers in which fullerene is pendant from a polymer main chain and polymers in which fullerene is contained in the polymer main chain. Fullerene is contained in the polymer main chain. Are preferred.
 これは、フラーレンが主鎖に含有されているポリマーは、ポリマーが分岐構造を有さないため、固体化した際に高密度なパッキングができ、結果として高い移動度を得ることができるためではないかと推定される。 This is not because fullerene is contained in the main chain because the polymer does not have a branched structure, so that it can be packed with high density when solidified, resulting in high mobility. It is estimated that.
 電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。 Examples of a method for forming a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed include a vapor deposition method and a coating method (including a casting method and a spin coating method).
 本発明の光電変換素子を、太陽電池などの光電変換デバイスとして用いる形態としては、光電変換素子を単層で利用してもよいし、積層(タンデム型)して利用してもよい。また、光電変換デバイスは、環境中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。 As a form in which the photoelectric conversion element of the present invention is used as a photoelectric conversion device such as a solar cell, the photoelectric conversion element may be used in a single layer or may be used by being laminated (tandem type). In addition, since the photoelectric conversion device is not deteriorated by oxygen, moisture, or the like in the environment, the photoelectric conversion device is preferably sealed by a known method.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 《透明電極の作製》
 〔透明電極TCF-1の作製;比較例〕
 両面にガスバリア層を設けた厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、ITOを平均膜厚150nmで蒸着したのち、蒸着フィルムを180mm×180mm角に裁断し、透明電極TCF-1を作製した。
<< Preparation of transparent electrode >>
[Preparation of transparent electrode TCF-1; comparative example]
ITO was vapor-deposited with an average film thickness of 150 nm on a 100 μm-thick polyethylene terephthalate film support provided with a gas barrier layer on both sides, and then the vapor-deposited film was cut into 180 mm × 180 mm square to produce a transparent electrode TCF-1.
 〔透明電極TCF-2の作製;比較例〕
 両面にガスバリア層を設けた厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、銀ナノ粒子含有ペースト(三ツ星ベルト社製;MDot-SLP)を、印刷パターン幅50μm・パターン間隔1000μmのライングリッド状パターンを形成したスクリーン印刷用メッシュ(ミタニマイクロニクス株式会社製;MFT325)を用いてスクリーン印刷を行い、120℃で30分加熱したのち、印刷したフィルムを100mm×100mm角に裁断し、パターン幅50μm・パターン間隔1000μm、厚さ1μmの銀グリッドパターンからなる透明電極TCF-2を作製した。
[Preparation of transparent electrode TCF-2; comparative example]
On a 100 μm thick polyethylene terephthalate film support with gas barrier layers on both sides, a silver nanoparticle-containing paste (manufactured by Mitsuboshi Belting Co., Ltd .; MDot-SLP) is formed into a line grid pattern with a print pattern width of 50 μm and a pattern interval of 1000 μm Screen printing is performed using the formed screen printing mesh (Mitani Micronics Co., Ltd .; MFT325), heated at 120 ° C. for 30 minutes, and then the printed film is cut into a 100 mm × 100 mm square, with a pattern width of 50 μm / pattern A transparent electrode TCF-2 having a silver grid pattern with a spacing of 1000 μm and a thickness of 1 μm was produced.
 〔透明電極TCF-3の作製;比較例〕
 TCF-2の上に、下記の方法で調製した導電性ポリマー液CP-1を、乾燥膜厚が500nmとなるようスピンコーターを用いて塗布し、120℃で20分熱処理を施した後、塗布フィルムを100mm×100mm角に裁断する以外はTCF-2と同様にして、透明電極TCF-3を作製した。
[Preparation of transparent electrode TCF-3; comparative example]
A conductive polymer solution CP-1 prepared by the following method is applied onto TCF-2 using a spin coater so as to have a dry film thickness of 500 nm, heat-treated at 120 ° C. for 20 minutes, and then applied. A transparent electrode TCF-3 was produced in the same manner as TCF-2 except that the film was cut into 100 mm × 100 mm square.
 (導電性ポリマー液CP-1の調製)
 (ポリ(2-ヒドロキシエチルアクリレート)の合成)
 50ml三口フラスコに2-ブロモイソブチリルブロミド(7.3g、35mmol)とトリエチルアミン(2.48g、35mmol)およびTHF(20ml)を加え、アイスバスにより内温を0℃に保持した。
(Preparation of conductive polymer liquid CP-1)
(Synthesis of poly (2-hydroxyethyl acrylate))
2-Bromoisobutyryl bromide (7.3 g, 35 mmol), triethylamine (2.48 g, 35 mmol) and THF (20 ml) were added to a 50 ml three-necked flask, and the internal temperature was kept at 0 ° C. with an ice bath.
 この溶液内にオリゴエチレングリコール(10g、23mmol、エチレングリコールユニット7~8、Laporte Specialties社製)の33%THF溶液30mlを滴下した。30分攪拌後、溶液を室温にし、さらに4時間攪拌した。 In this solution, 30 ml of a 33% THF solution of oligoethylene glycol (10 g, 23 mmol, ethylene glycol units 7-8, manufactured by Laporte Specialties) was added dropwise. After stirring for 30 minutes, the solution was brought to room temperature and further stirred for 4 hours.
 THFをロータリーエバポレーターにより減圧除去後、残渣をジエチルエーテルに溶解し、分駅ロートに移した。水を加えエーテル層を3回洗浄後、エーテル層をMgSOにより乾燥させた。エーテルをロータリーエバポレーターにより減圧留去し、開始剤1を8.2g(収率73%)得た。 After THF was removed under reduced pressure by a rotary evaporator, the residue was dissolved in diethyl ether and transferred to a minute funnel. Water was added and the ether layer was washed three times, and then the ether layer was dried with MgSO 4 . The ether was distilled off under reduced pressure using a rotary evaporator to obtain 8.2 g (yield 73%) of initiator 1.
 開始剤1(500mg、1.02mmol)、2-ヒドロキシエチルアクリレート(4.64g、40mmol、東京化成社製)、50:50 v/v% メタノール/水混合溶媒を5mlをシュレンク管に投入し、減圧下液体窒素に10分間シュレンク管を浸した。 5 ml of initiator 1 (500 mg, 1.02 mmol), 2-hydroxyethyl acrylate (4.64 g, 40 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.), 50:50 v / v% methanol / water mixed solvent was put into a Schlenk tube, The Schlenk tube was immersed in liquid nitrogen under reduced pressure for 10 minutes.
 シュレンク管を液体窒素から出し、5分後に窒素置換を行った。この操作を3回行った後、窒素下で、ビピリジン(400mg、2.56mmol)、CuBr(147mg、1.02mmol)を加え、20℃で攪拌した。30分後、ろ紙とシリカを敷いた4cm桐山ロート上に反応溶液を滴下し、減圧で反応溶液を回収した。 The Schlenk tube was taken out of liquid nitrogen and replaced with nitrogen after 5 minutes. After performing this operation three times, bipyridine (400 mg, 2.56 mmol) and CuBr (147 mg, 1.02 mmol) were added under nitrogen, and the mixture was stirred at 20 ° C. After 30 minutes, the reaction solution was dropped onto a 4 cm Kiriyama funnel with filter paper and silica, and the reaction solution was recovered under reduced pressure.
 ロータリーエバポレーターにより溶媒を減圧留去後、50℃で3時間減圧乾燥した。その結果、数平均分子量13100、分子量分布1.17、数平均分子量<1000の含量0%、の水溶性バインダー樹脂1(ポリマー(A))を2.60g(収率84%)得た。 The solvent was distilled off under reduced pressure using a rotary evaporator and then dried under reduced pressure at 50 ° C. for 3 hours. As a result, 2.60 g (yield 84%) of water-soluble binder resin 1 (polymer (A)) having a number average molecular weight of 13,100, a molecular weight distribution of 1.17, and a content of number average molecular weight <1000 of 0% was obtained.
 構造、分子量は各々H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。 The structure and molecular weight were measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) and GPC (Waters 2695, manufactured by Waters), respectively.
 <GPC測定条件>
装置:Wagers2695(Separations Module)
検出器:Waters 2414 (Refractive Index Detector)
カラム:Shodex Asahipak GF-7M HQ
溶離液:ジメチルホルムアミド(20mM LiBr)
流速:1.0ml/min
温度:40℃
 得られた水溶性バインダー樹脂1を純水に溶解し、固形分20%の水溶性バインダー樹脂1水溶液を調製した。
<GPC measurement conditions>
Apparatus: Wagers 2695 (Separations Module)
Detector: Waters 2414 (Refractive Index Detector)
Column: Shodex Asahipak GF-7M HQ
Eluent: Dimethylformamide (20 mM LiBr)
Flow rate: 1.0 ml / min
Temperature: 40 ° C
The obtained water-soluble binder resin 1 was dissolved in pure water to prepare a water-soluble binder resin 1 aqueous solution having a solid content of 20%.
 次いで、下記のようにして導電性ポリマー液CP-1を調製した。 Next, a conductive polymer liquid CP-1 was prepared as follows.
 (導電性ポリマー液CP-1)
 水溶性バインダー樹脂1水溶液(固形分20%水溶液)  0.35g
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)              1.59g
 〔透明電極TCF-4の作製;本発明〕
 TCF-3を、下記の方法で調製したエッチング液BF-1に、25℃で、60秒間浸漬したのち、水洗、乾燥させた以外はTCF-3と同様にして、透明電極TCF-4を作製した。
(Conductive polymer liquid CP-1)
Water-soluble binder resin 1 aqueous solution (solid content 20% aqueous solution) 0.35 g
PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) 1.59 g
[Preparation of Transparent Electrode TCF-4; Present Invention]
A transparent electrode TCF-4 was produced in the same manner as TCF-3 except that TCF-3 was immersed in an etching solution BF-1 prepared by the following method at 25 ° C. for 60 seconds, washed with water and dried. did.
 〈エッチング液BF-1の調製〉
 エチレンジアミン4酢酸第2鉄アンモニウム         60g
 エチレンジアミン4酢酸                   2g
 メタ重亜硫酸ナトリウム                  15g
 チオ硫酸アンモニウム                   70g
 マレイン酸                         5g
 純水で1Lに仕上げ、硫酸またはアンモニア水でpHを5.5に調整し、エッチング液BF-1を調製した。
<Preparation of etching solution BF-1>
Ethylenediaminetetraacetic acid ferric ammonium 60g
Ethylenediaminetetraacetic acid 2g
Sodium metabisulfite 15g
70g ammonium thiosulfate
Maleic acid 5g
Etching solution BF-1 was prepared by finishing to 1 L with pure water and adjusting the pH to 5.5 with sulfuric acid or ammonia water.
 〔透明電極TCF-5の作製;比較例〕
 TCF-3において、導電性ポリマー液CP-1の代わりに、PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)を、乾燥膜厚が150nmとなるようスピンコーターを用いて塗布、乾燥させた以外はTCF-3と同様にして、透明電極TCF-5を作製した。
[Preparation of transparent electrode TCF-5; comparative example]
In TCF-3, instead of the conductive polymer liquid CP-1, PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) was applied to a spin coater so that the dry film thickness was 150 nm. A transparent electrode TCF-5 was produced in the same manner as TCF-3, except that coating and drying were performed using
 〔透明電極TCF-6の作製;比較例〕
 TCF-4において、導電性ポリマー液CP-1を塗布する前に、エッチング液BF-1に60秒間浸漬したのち、水洗、乾燥させた以外はTCF-4と同様にして、透明電極TCF-6を作製した。
[Preparation of transparent electrode TCF-6; comparative example]
In TCF-4, the transparent electrode TCF-6 is the same as TCF-4 except that it is immersed in the etching solution BF-1 for 60 seconds before being coated with the conductive polymer solution CP-1, and then washed and dried. Was made.
 〔透明電極TCF-7の作製;本発明〕
 TCF-4において、銀グリッドパターンの代わりに、下記のように作製した銀ナノワイヤフィルムを用いる以外はTCF-4と同様にして、透明電極TCF-7を作製した。
[Preparation of Transparent Electrode TCF-7; Present Invention]
In TCF-4, a transparent electrode TCF-7 was produced in the same manner as TCF-4 except that a silver nanowire film produced as described below was used instead of the silver grid pattern.
 (銀ナノワイヤフィルムの作製)
 Adv.Mater.,2002,14,833~837に記載の方法を参考に、ポリビニルピロリドンK30(分子量5万;ISP社製)を利用して、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、水洗処理した後、ヒドロキシプロピルメチルセルロース60SH-50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。
(Preparation of silver nanowire film)
Adv. Mater. , 2002, 14, 833 to 837, a silver nanowire having an average minor axis of 75 nm and an average length of 35 μm was prepared using polyvinylpyrrolidone K30 (molecular weight: 50,000; manufactured by ISP). After silver nanowires are filtered and washed with an outer filtration membrane, hydroxypropylmethylcellulose 60SH-50 (manufactured by Shin-Etsu Chemical Co., Ltd.) is redispersed in an aqueous solution containing 25% by mass of silver, and the silver nanowire dispersion liquid is obtained. Prepared.
 調製した銀ナノワイヤ分散液を、両面にガスバリア層を設けた厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、銀ナノワイヤの目付け量が50mg/mとなるように、銀ナノワイヤ分散液をスピンコーターを用いて塗布、乾燥して、銀ナノワイヤフィルムを作製した。 The prepared silver nanowire dispersion is applied to a silver terephthalate film support having a gas barrier layer on both sides and a polyethylene terephthalate film support having a thickness of 100 μm so that the weight of the silver nanowire is 50 mg / m 2. It was applied and dried to produce a silver nanowire film.
 〔透明電極TCF-8の作製;本発明〕
 TCF-7において、銀ナノワイヤフィルムの上に、さらにTCF-2と同じ方法でパターン幅50μm・パターン間隔1000μm、厚さ1μmの銀グリッドパターンを形成した以外はTCF-7と同様にして、透明電極TCF-8を作製した。
[Preparation of Transparent Electrode TCF-8; Present Invention]
In TCF-7, a transparent electrode was formed in the same manner as TCF-7, except that a silver grid pattern having a pattern width of 50 μm, a pattern interval of 1000 μm, and a thickness of 1 μm was formed on the silver nanowire film by the same method as TCF-2. TCF-8 was produced.
 〔透明電極TCF-9の作製;本発明〕
 TCF-4において、導電性ポリマー液CP-1を、下記の様にして調製した導電性ポリマー液CP-2に変更する以外はTCF-4と同様にして、透明電極TCF-9を作製した。
[Production of Transparent Electrode TCF-9; Present Invention]
A transparent electrode TCF-9 was produced in the same manner as TCF-4 except that the conductive polymer liquid CP-1 was changed to the conductive polymer liquid CP-2 prepared as follows in TCF-4.
 (導電性ポリマー液CP-2)
 ポリヒドロキシエチルアクリルアミド(数平均分子量2万、固形分50%水溶液)                        0.14g
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)              1.59g
 〔透明電極TCF-10の作製;本発明〕
 TCF-4において、導電性ポリマー液CP-1を、下記の様にして調製した導電性ポリマー液CP-3に変更する以外はTCF-4と同様にして、透明電極TCF-10を作製した。
(Conductive polymer liquid CP-2)
Polyhydroxyethylacrylamide (number average molecular weight 20,000, solid content 50% aqueous solution) 0.14 g
PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) 1.59 g
[Preparation of transparent electrode TCF-10; the present invention]
A transparent electrode TCF-10 was produced in the same manner as TCF-4 except that the conductive polymer liquid CP-1 in TCF-4 was changed to the conductive polymer liquid CP-3 prepared as follows.
 (導電性ポリマー液CP-3)
 ポリヒドロキシエチルビニルエーテル(数平均分子量2万、固形分50%水溶液)                        0.14g
 PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)              1.59g
 〔透明電極TCF-11の作製;比較例〕
 TCF-4において、水溶性バインダー樹脂1を、ヒドロキシエチルアクリレート(49mol%)、メチルアクリレート(51mol%)の共重合ポリマーとした導電性ポリマー液CP-4とした以外はTCF-4と同様にして、透明電極TCF-11を作製したところ、エッチング液BF-1に60秒間浸漬中に導電性ポリマー層ごと溶出し、透明電極を作製することが出来なかった。
(Conductive polymer liquid CP-3)
Polyhydroxyethyl vinyl ether (number average molecular weight 20,000, solid content 50% aqueous solution) 0.14 g
PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) 1.59 g
[Preparation of transparent electrode TCF-11; comparative example]
TCF-4 was the same as TCF-4 except that the water-soluble binder resin 1 was a conductive polymer liquid CP-4 made of a copolymer of hydroxyethyl acrylate (49 mol%) and methyl acrylate (51 mol%). When the transparent electrode TCF-11 was produced, the entire conductive polymer layer eluted during immersion in the etching solution BF-1 for 60 seconds, and a transparent electrode could not be produced.
 〔透明電極TCF-12~15の作製;本発明〕
 導電性金属層、導電性ポリマー層を表2に記載のものとした他は、TCF-4の作製と同様にして、透明電極TCF-12~15を作製した。
[Preparation of transparent electrodes TCF-12 to 15; the present invention]
Transparent electrodes TCF-12 to 15 were produced in the same manner as TCF-4 except that the conductive metal layer and the conductive polymer layer were those shown in Table 2.
 《透明電極の測定および評価》
 下記方法で、作製した各透明電極の導電部の透過率、表面比抵抗について測定し評価し、透明性と導電性を評価した。
<< Measurement and evaluation of transparent electrodes >>
By the following method, it measured and evaluated about the transmittance | permeability and surface specific resistance of the electroconductive part of each produced transparent electrode, and evaluated transparency and electroconductivity.
 (透過率)
 透過率は、東京電色社製AUTOMATICHAZEMETER(MODEL TC-HIIIDP)を用いて、透明電極の全光線透過率を測定した。
(Transmittance)
For the transmittance, the total light transmittance of the transparent electrode was measured using AUTOMATIC ZEMETER (MODEL TC-HIIIDP) manufactured by Tokyo Denshoku.
 (表面比抵抗)
 表面比抵抗は、ダイアインスツルメンツ製抵抗率計ロレスタGPを用いて透明電極の表面比抵抗を四端子法で測定した。
(Surface resistivity)
For the surface resistivity, the surface resistivity of the transparent electrode was measured by a four-terminal method using a resistivity meter Loresta GP manufactured by Dia Instruments.
 《有機EL素子の作製》
 作製した各透明電極を第一電極(陽極)に用いて、以下の手順でそれぞれ有機EL素子OLED-1~-15を作製した。
<< Production of organic EL element >>
Using the produced transparent electrodes as the first electrode (anode), organic EL elements OLED-1 to -15 were produced in the following procedure.
 電極の上に、PEDOT-PSS CLEVIOS PH510(固形分1.89%)(H.C.Starck社製)を、乾燥膜厚が30nmとなるようスピンコーターを用いて塗布、乾燥させた。 On the electrode, PEDOT-PSS CLEVIOS PH510 (solid content 1.89%) (manufactured by HC Starck) was applied and dried using a spin coater so that the dry film thickness was 30 nm.
 次に、透明電極を市販の真空蒸着装置内にセットし、真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Next, the transparent electrode was set in a commercially available vacuum deposition apparatus, and each of the deposition materials in the vacuum deposition apparatus was filled with the constituent material of each layer in an optimum amount for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
 次いで、以下の手順で各発光層を設けた。 Next, each light emitting layer was provided by the following procedure.
 まず、真空度1×10-4Paまで減圧した後、下記α-NPDの入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、30nmの正孔輸送層を設けた。 First, after depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing the following α-NPD was energized and heated, evaporated at a deposition rate of 0.1 nm / second, and a 30 nm hole transport layer Was established.
 下記Ir-1が13質量%、下記Ir-14が3.7質量%の濃度になるように、Ir-1、Ir-14および下記化合物1-7を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色燐光発光層を形成した。 Ir-1, Ir-14 and the following compound 1-7 were co-deposited at a deposition rate of 0.1 nm / sec so that the following Ir-1 would be 13% by mass and the following Ir-14 would be 3.7% by mass: Then, a green-red phosphorescent light emitting layer having an emission maximum wavelength of 622 nm and a thickness of 10 nm was formed.
 次いで、下記E-66が10質量%になるように、E-66および化合物1-7を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が471nm、厚さ15nmの青色燐光発光層を形成した。 Subsequently, E-66 and compound 1-7 were co-evaporated at a deposition rate of 0.1 nm / second so that the following E-66 was 10% by mass, and a blue phosphorescent emitting layer having an emission maximum wavelength of 471 nm and a thickness of 15 nm. Formed.
 その後、下記M-1を膜厚5nmに蒸着して正孔阻止層を形成し、さらにCsFを膜厚比で10%になるようにM-1と共蒸着し、厚さ45nmの電子輸送層を形成した。 Thereafter, M-1 below is deposited to a thickness of 5 nm to form a hole blocking layer, and CsF is co-deposited with M-1 so that the thickness ratio is 10%, and an electron transport layer having a thickness of 45 nm is formed. Formed.
 各層形成に用いた化合物を下記に示す。 The compounds used for forming each layer are shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 形成した電子輸送層の上に、第一電極用外部取り出し端子および80mm×80mmの第二電極(陰極)形成用材料としてAlを5×10-4Paの真空下にてマスク蒸着し、厚さ100nmの第二電極を形成した。電極間の有機機能層の厚さは、120nmであった。 On the formed electron transport layer, Al was evaporated as a first electrode external take-out terminal and 80 mm × 80 mm second electrode (cathode) forming material under a vacuum of 5 × 10 −4 Pa to obtain a thickness. A second electrode of 100 nm was formed. The thickness of the organic functional layer between the electrodes was 120 nm.
 さらに、第一電極および第二電極の外部取り出し端子が形成できるように、端部を除き第二電極の周囲に接着剤を塗り、ポリエチレンテレフタレートを基材としAlを厚さ300nmで蒸着した可撓性封止部材を貼合した後、熱処理で接着剤を硬化させ封止膜を形成し、発光エリア80mm×80mmの有機EL素子を作製した。 Furthermore, an adhesive is applied to the periphery of the second electrode except for the end portion so that external terminals for the first electrode and the second electrode can be formed, and Al 2 O 3 is vapor deposited at a thickness of 300 nm using polyethylene terephthalate as a base material. After pasting the flexible sealing member, the adhesive was cured by heat treatment to form a sealing film, and an organic EL device having a light emitting area of 80 mm × 80 mm was produced.
 《有機EL素子の測定および評価》
 下記方法で、上記のように作製した各有機EL素子の発光ムラを評価し、有機機能層の性能均一性の指標とし、整流比および輝度変化について評価し、耐久性の指標とした。
<< Measurement and evaluation of organic EL elements >>
By the following method, the light emission unevenness of each organic EL element produced as described above was evaluated, used as an index of performance uniformity of the organic functional layer, evaluated as a rectification ratio and a luminance change, and used as an index of durability.
 (発光ムラ)
 発光ムラは、KEITHLEY製ソースメジャーユニット2400型を用いて、各有機EL素子に直流電圧を印加して輝度が1000cd/mになるよう発光させ、発光状態を下記基準で目視評価した。
(Light emission unevenness)
The light emission unevenness was evaluated by visually evaluating the light emission state according to the following criteria using a source measure unit 2400 type manufactured by KEITHLEY, applying a direct current voltage to each organic EL element to emit light with a luminance of 1000 cd / m 2 .
 ◎:完全に均一発光しており、問題ない
 ○:殆ど均一発光しており、問題ない
 △:部分的に若干発光ムラが見られるが、実用的に許容できる
 ×:全面に渡って発光ムラが見られ、許容できない
 (整流比)
 整流比は、各有機EL素子に、+3V/-3Vの電圧を印加した時の電流値を測定し、下記の計算式により整流比を求め、下記基準で評価した。電極間リークがあると、整流比が低い値となる。10以上であることが実用的範囲である。
A: Completely uniform light emission, no problem. ○: Almost uniform light emission, no problem. Δ: Some light emission unevenness is partially observed, but practically acceptable. X: Light emission unevenness over the entire surface. Seen and unacceptable (rectification ratio)
The rectification ratio was determined by measuring the current value when a voltage of +3 V / −3 V was applied to each organic EL element, obtaining the rectification ratio by the following formula, and evaluating it according to the following criteria. If there is leakage between electrodes, the rectification ratio becomes a low value. It is practical range is 10 2 or more.
 整流比=+3V印加時の電流値/-3V印加時の電流値
 ◎:整流比10以上
 ○:整流比10以上10未満
 △:整流比10以上10未満
 ×:整流比10未満
 (輝度変化)
 各有機EL素子について、初期の輝度が5000cd/mになるよう一定電圧で連続発光させ、輝度が半減するまでの時間を求めた。OLED-1の半減時間を100とし、相対値で評価した。120以上が実用的に良好な範囲である。
Rectification ratio = current value when +3 V is applied / current value when −3 V is applied ◎: Rectification ratio 10 3 or more ○: Rectification ratio 10 2 or more and less than 10 3 Δ: Rectification ratio 10 1 or more and less than 10 2 ×: Rectification ratio 10 1 Less than (brightness change)
Each organic EL element was allowed to emit light continuously at a constant voltage so that the initial luminance was 5000 cd / m 2 , and the time until the luminance was reduced by half was determined. The half time of OLED-1 was set to 100, and the relative value was evaluated. 120 or more is a practically good range.
 測定および評価の結果を表2、3に示す。 Measured and evaluated results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2、3から、本発明の方法により得られた透明電極は、高い透明性、導電性を維持し、それを用いた有機EL素子は、発光ムラが少なく有機機能層の性能均一性に優れ、耐久性に優れることが分かる。 From Tables 2 and 3, the transparent electrode obtained by the method of the present invention maintains high transparency and conductivity, and the organic EL device using the same has little unevenness in light emission and excellent performance uniformity of the organic functional layer. It can be seen that it has excellent durability.

Claims (7)

  1.  透明支持体上に、金属細線構造を有する導電性金属層を形成する工程(1)、
     該工程(1)の後の工程であり、該導電性金属層上に、π共役系導電性高分子とポリアニオンとを有する導電性ポリマーおよび下記のポリマー(A)、を含有する導電性ポリマー層を形成し、透明電極板を作製する工程(2)、
     該工程(2)の後の工程であり、該透明電極板に化学エッチング処理を施し透明電極を作製する工程(3)、
    を有することを特徴とする透明電極の製造方法。
    〔ポリマー(A):下記一般式1、一般式2および一般式3で表される重合単位(繰り返し単位)の少なくとも一つを重合単位として、下記の条件で有するポリマー。
    Figure JPOXMLDOC01-appb-C000001

    〔各式中、X~Xはそれぞれ独立に、水素原子、またはメチル基を表す。R~Rはそれぞれ独立に、炭素数が5以下のアルキレン基を表す。条件:ポリマー(A)の全重合単位に占める上記一般式1の重合単位の割合(モル%)をl、ポリマー(A)の全重合単位に占める上記一般式2の重合単位の割合(モル%)をm、ポリマー(A)の全重合単位に占める上記一般式3の重合単位の割合(モル%)をnとしたとき、50≦l+m+n≦100、0≦l≦100、0≦m≦100、0≦n≦100である。〕
    Forming a conductive metal layer having a fine metal wire structure on the transparent support (1);
    A conductive polymer layer comprising a conductive polymer having a π-conjugated conductive polymer and a polyanion on the conductive metal layer and the following polymer (A), which is a step subsequent to the step (1). Forming a transparent electrode plate (2),
    A step (3) after the step (2), in which the transparent electrode plate is subjected to a chemical etching treatment to produce a transparent electrode;
    The manufacturing method of the transparent electrode characterized by having.
    [Polymer (A): A polymer having at least one of the polymerization units (repeating units) represented by the following general formula 1, general formula 2 and general formula 3 as a polymerization unit under the following conditions.
    Figure JPOXMLDOC01-appb-C000001

    [In each formula, X 1 to X 3 each independently represents a hydrogen atom or a methyl group. R 1 to R 3 each independently represents an alkylene group having 5 or less carbon atoms. Conditions: l (mol%) of the polymerized units of the above general formula 1 in the total polymerized units of the polymer (A), and ratios (mol%) of the polymerized units of the above general formula 2 in all polymerized units of the polymer (A). ) Is m, and the ratio (mol%) of the polymerized units of the above general formula 3 to the total polymerized units of the polymer (A) is n. 50 ≦ l + m + n ≦ 100, 0 ≦ l ≦ 100, 0 ≦ m ≦ 100 0 ≦ n ≦ 100. ]
  2.  前記金属細線構造が、金属グリッドパターンであることを特徴とする請求項1に記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 1, wherein the metal fine wire structure is a metal grid pattern.
  3.  前記導電性金属層が、金属ナノワイヤを含有することを特徴とする請求項1に記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 1, wherein the conductive metal layer contains metal nanowires.
  4.  請求項1から3のいずれか1項に記載の透明電極の製造方法によって製造されたことを特徴とする透明電極。 A transparent electrode manufactured by the method for manufacturing a transparent electrode according to any one of claims 1 to 3.
  5.  請求項4に記載の透明電極を具備することを特徴とする有機電子素子。 An organic electronic device comprising the transparent electrode according to claim 4.
  6.  前記有機電子素子が、有機エレクトロルミネッセンス素子であることを特徴とする請求項5に記載の有機電子素子。 The organic electronic device according to claim 5, wherein the organic electronic device is an organic electroluminescence device.
  7.  前記有機エレクトロルミネッセンス素子が有する有機機能層の厚さが1nm~200nmであることを特徴とする請求項6に記載の有機電子素子。 The organic electronic device according to claim 6, wherein the organic functional layer of the organic electroluminescence device has a thickness of 1 nm to 200 nm.
PCT/JP2011/059149 2010-04-26 2011-04-13 Method for manufacturing transparent electrode, transparent electrode and organic electronic element WO2011136022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512762A JP5673675B2 (en) 2010-04-26 2011-04-13 Method for producing transparent electrode, transparent electrode and organic electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010100694 2010-04-26
JP2010-100694 2010-04-26

Publications (1)

Publication Number Publication Date
WO2011136022A1 true WO2011136022A1 (en) 2011-11-03

Family

ID=44861333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059149 WO2011136022A1 (en) 2010-04-26 2011-04-13 Method for manufacturing transparent electrode, transparent electrode and organic electronic element

Country Status (2)

Country Link
JP (1) JP5673675B2 (en)
WO (1) WO2011136022A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140224322A1 (en) * 2011-09-28 2014-08-14 Konica Minolta, Inc. Transparent electrode, organic electronic element, and method for producing transparent electrode
WO2015068540A1 (en) * 2013-11-06 2015-05-14 星光Pmc株式会社 Metal nanowire dispersion having superior dispersion stability, transparent conductive film, and transparent conductor
EP2844039A4 (en) * 2012-04-23 2016-07-06 Konica Minolta Inc Transparent electrode, electronic device, and organic electroluminescent element
JPWO2014030666A1 (en) * 2012-08-24 2016-07-28 コニカミノルタ株式会社 Transparent electrode, electronic device, and method of manufacturing transparent electrode
JP2016145416A (en) * 2015-01-29 2016-08-12 株式会社ジェイテクト Amorphous hydrocarbon-based film, slide member including the same, and slide system
JP2020038889A (en) * 2018-09-03 2020-03-12 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070354A (en) * 1996-08-28 1998-03-10 Fuji Photo Film Co Ltd Method for forming metal pattern
WO2005027145A1 (en) * 2003-09-11 2005-03-24 Nagase Chemtex Corporation Radiation-sensitive resin composition
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper
JP2009231194A (en) * 2008-03-25 2009-10-08 Konica Minolta Holdings Inc Transparent conductive film, organic electroluminescent element, and manufacturing method of transparent conductive film
JP2010073322A (en) * 2008-09-16 2010-04-02 Konica Minolta Holdings Inc Transparent electrode, its manufacturing method, and organic electroluminescent element using it
JP2010212096A (en) * 2009-03-11 2010-09-24 Konica Minolta Holdings Inc Conductive film and method of manufacturing the same, and organic electroluminescent element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271972B2 (en) * 2003-03-27 2009-06-03 オプトレックス株式会社 Manufacturing method of wiring board for organic EL display device
JP2008218306A (en) * 2007-03-07 2008-09-18 Pioneer Electronic Corp Optical device
JP2009170408A (en) * 2007-12-20 2009-07-30 Shin Etsu Polymer Co Ltd Conductive sheet, manufacturing method therefor, and input device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070354A (en) * 1996-08-28 1998-03-10 Fuji Photo Film Co Ltd Method for forming metal pattern
WO2005027145A1 (en) * 2003-09-11 2005-03-24 Nagase Chemtex Corporation Radiation-sensitive resin composition
JP2008288102A (en) * 2007-05-18 2008-11-27 Fujifilm Corp Transparent conductive film, manufacturing method of transparent conductive film, transparent electrode film, dye-sensitized solar cell, electroluminescent element, and electronic paper
JP2009231194A (en) * 2008-03-25 2009-10-08 Konica Minolta Holdings Inc Transparent conductive film, organic electroluminescent element, and manufacturing method of transparent conductive film
JP2010073322A (en) * 2008-09-16 2010-04-02 Konica Minolta Holdings Inc Transparent electrode, its manufacturing method, and organic electroluminescent element using it
JP2010212096A (en) * 2009-03-11 2010-09-24 Konica Minolta Holdings Inc Conductive film and method of manufacturing the same, and organic electroluminescent element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140224322A1 (en) * 2011-09-28 2014-08-14 Konica Minolta, Inc. Transparent electrode, organic electronic element, and method for producing transparent electrode
US10251267B2 (en) * 2011-09-28 2019-04-02 Konica Minolta, Inc. Transparent electrode, organic electronic element, and method for producing transparent electrode
EP2844039A4 (en) * 2012-04-23 2016-07-06 Konica Minolta Inc Transparent electrode, electronic device, and organic electroluminescent element
US9947889B2 (en) 2012-04-23 2018-04-17 Konica Minolta Inc. Transparent electrode, electronic device, and organic electroluminescent element
JPWO2014030666A1 (en) * 2012-08-24 2016-07-28 コニカミノルタ株式会社 Transparent electrode, electronic device, and method of manufacturing transparent electrode
EP2890221A4 (en) * 2012-08-24 2016-09-14 Konica Minolta Inc Transparent electrode, electronic device, and method for manufacturing transparent electrode
WO2015068540A1 (en) * 2013-11-06 2015-05-14 星光Pmc株式会社 Metal nanowire dispersion having superior dispersion stability, transparent conductive film, and transparent conductor
JP2016145416A (en) * 2015-01-29 2016-08-12 株式会社ジェイテクト Amorphous hydrocarbon-based film, slide member including the same, and slide system
JP2020038889A (en) * 2018-09-03 2020-03-12 信越ポリマー株式会社 Electromagnetic wave shield film and printed wiring board with electromagnetic wave shield film

Also Published As

Publication number Publication date
JP5673675B2 (en) 2015-02-18
JPWO2011136022A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5673674B2 (en) Transparent electrode and organic electronic device using the same
JP5515789B2 (en) Transparent pattern electrode, method for producing the electrode, organic electronic device using the electrode, and method for producing the same
JP5720671B2 (en) Organic electronic device and manufacturing method thereof
JP5673549B2 (en) Organic electronic devices
JP5673675B2 (en) Method for producing transparent electrode, transparent electrode and organic electronic device
JP2012009240A (en) Transparent electrode and method of manufacturing the same, and organic electronic element using the transparent electrode
JP5609307B2 (en) Transparent conductive support
WO2012005116A1 (en) Organic photoelectric conversion element and method for manufacturing same
JP5720680B2 (en) Electrodes for organic electronic devices
JP2011171214A (en) Organic electronic device
WO2011055663A1 (en) Transparent electrode and organic electronic device
JP5600964B2 (en) Transparent conductive film
JP5245128B2 (en) Organic electronic device and manufacturing method thereof
JP5402447B2 (en) Method for manufacturing organic electronic device
JP5741366B2 (en) Manufacturing method of transparent electrode
JP6032271B2 (en) Method for producing transparent electrode and method for producing organic electronic device
JP5245127B2 (en) Organic electronic device
JP2012022959A (en) Method of manufacturing transparent electrode
JP2012256552A (en) Transparent electrode and organic electroluminescent element
JP2011228113A (en) Electrode for organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512762

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11774806

Country of ref document: EP

Kind code of ref document: A1