WO2012005098A1 - Cu-ga alloy, and cu-ga alloy sputtering target - Google Patents

Cu-ga alloy, and cu-ga alloy sputtering target Download PDF

Info

Publication number
WO2012005098A1
WO2012005098A1 PCT/JP2011/063802 JP2011063802W WO2012005098A1 WO 2012005098 A1 WO2012005098 A1 WO 2012005098A1 JP 2011063802 W JP2011063802 W JP 2011063802W WO 2012005098 A1 WO2012005098 A1 WO 2012005098A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
phase
circle diameter
equivalent circle
ingot
Prior art date
Application number
PCT/JP2011/063802
Other languages
French (fr)
Japanese (ja)
Inventor
智泰 矢野
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201180031289.8A priority Critical patent/CN102959107A/en
Publication of WO2012005098A1 publication Critical patent/WO2012005098A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a Cu—Ga alloy and a Cu—Ga alloy sputtering target, and more specifically, a Cu—Ga alloy that can be rolled even when the Ga content is large, and a Cu—Ga alloy sputtering obtained from the alloy. Regarding the target.
  • a Mo electrode layer to be a positive electrode is formed on a soda lime glass substrate, and a light absorption layer made of a Cu—In—Ga—Se alloy film is formed on the Mo electrode layer.
  • a buffer layer made of ZnS, CdS or the like is formed on the light absorption layer, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer.
  • a method of forming a Cu—In—Ga—Se alloy film by a sputtering method is proposed as a method for forming a light absorption layer made of a Cu—In—Ga—Se alloy film, instead of the vapor deposition method which is slow in film formation speed and cost Has been.
  • a Cu—Ga alloy film is formed by sputtering using a Cu—Ga target and formed on the Cu—Ga alloy film.
  • a method of forming a Cu—In—Ga—Se alloy film by forming a laminated film by sputtering using an In target and then heat-treating the laminated film in a Se atmosphere.
  • This method can also be performed by forming the laminated film in the reverse order, that is, by forming a Cu—Ga film on the In film.
  • a Cu—Ga alloy target a Cu—Ga alloy target containing Ga: 1 to 40% by weight and the balance being Cu is known.
  • a powder sintering method such as hot pressing and a casting method such as a vacuum melting method are used.
  • a Cu—Ga alloy sputtering target manufactured by a powder sintering method for example, JP-A-2008-138232 discloses a Cu—Ga alloy powder having a Ga content of 30% by mass or more and pure copper powder or Ga content.
  • a Cu—Ga alloy sputtering target obtained by hot pressing a mixed powder with a Cu—Ga alloy powder whose amount is 15 mass% or less is disclosed.
  • the Cu—Ga alloy sputtering target manufactured by the hot press method has a drawback that it has a fine structure, but has a high oxygen concentration and a low sputtering rate.
  • a Cu—Ga alloy sputtering target manufactured by a casting method has an advantage that the oxygen concentration is low and the sputtering rate is fast.
  • an ingot made of a Cu—Ga alloy produced by a casting method does not have a fine structure, and is easily segregated and easily cracked. Therefore, a sputtering target is formed by plastic working such as rolling. Has the disadvantage of being difficult. If the sputtering target cannot be formed by rolling, the productivity of the sputtering target cannot be improved.
  • the Ga concentration of the Cu—Ga alloy is 25% by mass or more, the hardness is high and the possibility of cracking is extremely high, so that it is particularly difficult to perform plastic working such as rolling.
  • Japanese Patent Application Laid-Open No. 2000-073163 discloses a method of controlling Ga from 15 to 15 while controlling the cooling rate using a mold having heating means and cooling means.
  • An ingot produced by casting a Cu-Ga alloy material containing 70% by mass to produce an ingot, forming island-like holes in the ingot, and injecting molten In into the holes is disclosed. ing.
  • the ingot disclosed in Japanese Patent Laid-Open No. 2000-073163 suppresses segregation and brittleness by slowing the cooling rate, and it is possible to form a sputtering target by cutting. If the speed is slowed down, one crystal at a time becomes large, so that rolling cannot be performed.
  • the present invention provides a Cu—Ga alloy that can be rolled even if the Ga content is high, and a Cu—Ga alloy sputtering target that can be produced by rolling even if the Ga content is high. For the purpose.
  • the inventor of the present invention is concerned with the brittleness of an ingot made of a Cu—Ga alloy obtained by a casting method, which is composed of a phase having a Ga concentration of 30 to 35% by mass, for example, a phase called a ⁇ phase.
  • the inventors have found that the ease of cracking can be controlled by adjusting the size and abundance ratio of the ⁇ phase, and have completed the present invention.
  • the present invention is a Cu—Ga alloy containing 25 to 30% by mass of Ga, the balance being Cu, and having a Ga concentration of 30 to 35% by mass appearing in a structure image obtained by an electron microscope.
  • the Cu—Ga alloy is characterized in that the average equivalent circle diameter of the ⁇ phase is 50 ⁇ m or less and the maximum equivalent circle diameter is 200 ⁇ m or less.
  • the total ratio of the area of the ⁇ phase to the area of the tissue image is 5 to 70%, An alloy for producing a sputtering target.
  • Another invention is a Cu—Ga alloy sputtering target obtained by rolling the Cu—Ga alloy.
  • the structure of the Cu—Ga alloy of the present invention has a specific phase structure, cracks and chips are hardly generated even when it is produced by a casting method. Therefore, Ga is highly concentrated at 25 to 30% by mass. It can be rolled while containing. For this reason, it is possible to manufacture a sputtering target with a large Ga content by rolling, and the productivity of the sputtering target can be improved.
  • the sputtering rate is faster than a Cu—Ga alloy sputtering target produced by a powder sintering method such as hot pressing.
  • FIG. 1 is an example of a structure image obtained by observing a cross-section of a Cu—Ga alloy of the present invention produced using a carbon mold at a magnification of 200 times with a scanning electron microscope.
  • FIG. 2 is an example of a structure image obtained by observing a cross section of the Cu—Ga alloy of the present invention manufactured using a water-cooled copper mold with a scanning electron microscope at a magnification of 200 times.
  • the Cu—Ga alloy of the present invention contains 25 to 30% by mass of Ga, the balance is Cu, the average equivalent circle diameter of the ⁇ phase appearing in the structure image obtained with an electron microscope is 50 ⁇ m or less, and the maximum circle The equivalent diameter is 200 ⁇ m or less.
  • the ⁇ phase is a phase having a Ga concentration of 30 to 35% by mass. Whether or not the phase appearing in the tissue image is a ⁇ phase can be confirmed by observing a difference in contrast due to a Ga concentration difference in an image (component image) corresponding to the average atomic weight obtained with an electron microscope. it can.
  • the equivalent circle diameter is a diameter of a circle having a Ga concentration of 30 to 35 mass% in the component image obtained above, that is, a circle having the same area as the area of the ⁇ phase.
  • the average equivalent circle diameter is an average value of equivalent circle diameters of all ⁇ phases appearing in the tissue image.
  • the maximum equivalent circle diameter is the largest equivalent circle diameter among all equivalent circle diameters of the ⁇ phase appearing in the tissue image.
  • the equivalent circle diameter of the ⁇ phase in a component image of 0.3 mm 2 obtained at a magnification of 200 times, a boundary between the ⁇ phase and another phase is determined, and then image processing is performed. The area of the ⁇ phase is calculated, and a circle having the area is assumed, and the diameter is set as the equivalent circle diameter of the ⁇ phase.
  • the average equivalent circle diameter of the ⁇ phase is obtained by calculating the equivalent circle diameter for all the ⁇ phases appearing in the component image as described above and averaging these. Further, as described above, the equivalent circle diameter is obtained for all the ⁇ phases appearing in the component image, and the maximum value among them is set as the maximum equivalent circle diameter of the ⁇ phase.
  • a Cu—Ga alloy is composed of a phase in which Ga is dissolved in Cu and a phase ( ⁇ phase) in which the Ga concentration is 20 to 25% by mass.
  • ⁇ phase a phase in which the Ga concentration is 20 to 25% by mass.
  • the Ga content is about 25% by mass or more, it is observed from an electron microscope that it is composed of two phases of a phase ( ⁇ phase) having a Ga concentration of 30 to 35% by mass and a ⁇ phase. It is confirmed.
  • the average equivalent circle diameter of the ⁇ phase appearing in the structure image obtained with an electron microscope is 50 ⁇ m or less, and the maximum equivalent circle diameter of the ⁇ phase is 200 ⁇ m or less. That is, the Cu—Ga alloy of the present invention has a uniform structure including a ⁇ phase having an average equivalent circle diameter of 50 ⁇ m or less and an equivalent circle diameter of 200 ⁇ m or less.
  • the average equivalent circle diameter of the ⁇ phase is greater than 50 ⁇ m or the maximum equivalent circle diameter is greater than 200 ⁇ m, cracks are likely to occur during processing such as rolling. This is because the ⁇ phase is a soft and low brittle phase, whereas the ⁇ phase is harder and more brittle than the ⁇ phase, so the average equivalent circle diameter is larger than 50 ⁇ m or equivalent to a circle. It is considered that when a ⁇ phase having a diameter larger than 200 ⁇ m exists, cracks are likely to occur at the portion of the ⁇ phase having a large equivalent circle diameter when a physical force is applied to the alloy.
  • the average equivalent circular diameter of the ⁇ phase is preferably 45 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the maximum equivalent circle diameter of the ⁇ phase is preferably 150 ⁇ m or less, and more preferably 120 ⁇ m or less.
  • the lower limit of the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase is not particularly limited. According to the ordinary method for producing the Cu—Ga alloy of the present invention described later, the lower limit value of the average equivalent circle diameter of the ⁇ phase is approximately 10 ⁇ m, and the lower limit value of the maximum equivalent circle diameter is approximately 30 ⁇ m.
  • the ratio of the total area of the ⁇ phase to the area of the structure image is preferably 5 to 70%.
  • the larger the amount of Ga contained in this alloy the larger the total area of the ⁇ phase appearing in the structure image, but even if the amount of Ga contained in the alloy is the same, whether Ga is contained in the ⁇ phase Therefore, the total area of the ⁇ phase appearing in the structure image may be different.
  • the area ratio is greater than 70%, the proportion of the highly brittle ⁇ phase increases, so that even if the average equivalent circle diameter of the ⁇ phase is 50 ⁇ m or less and the maximum equivalent circle diameter is 200 ⁇ m or less, rolling is performed. There is a high possibility of cracking during processing such as.
  • the Ga content of the Cu—Ga alloy is 25 to 30% by mass, the area ratio is usually not less than 5% by mass.
  • the ratio R of the total area of the ⁇ phase with respect to the area of the tissue image is calculated in the same manner as described above for the area of all ⁇ phases appearing in the component image obtained at a magnification of 200 times.
  • S is the area
  • R (%) (S ⁇ / S) ⁇ 100.
  • the Cu—Ga alloy of the present invention contains 25 to 30% by mass of Ga and the balance is Cu.
  • a sputtering target capable of forming a Cu—Ga film effective as a light absorption layer of a solar cell can be manufactured. Further, if the Cu—Ga alloy has such a composition, cracks are likely to occur as described above, and therefore there is a high need to control these cracks. Note that the Cu—Ga alloy of the present invention may contain unavoidable impurities in addition to Ga and Cu.
  • the shape of the Cu—Ga alloy of the present invention is not particularly limited, and the shape can be appropriately determined according to the use of the alloy.
  • a sputtering target can be produced by rolling the Cu—Ga alloy of the present invention.
  • a rolling method performed when the sputtering target is produced from the Cu—Ga alloy of the present invention a known rolling method performed on a normal alloy, for example, an alloy plate is adjusted to a predetermined rolling temperature, and a rolling mill is used.
  • An example is a method in which the alloy is rolled at a predetermined rolling reduction, and this is repeated as appropriate to gradually reduce the thickness of the alloy.
  • the rolling temperature is usually 500 to 850 ° C., preferably 700 to 850 ° C., more preferably 750 to 800 ° C.
  • the rolling temperature is lower than 500 ° C.
  • the ⁇ phase does not become sufficiently soft, so that the alloy cannot withstand deformation due to rolling, and surface cracks and cracks are generated by rolling, making it difficult to obtain a sputtering target that can withstand use.
  • the rolling temperature is higher than 850 ° C., there is a possibility that the material is melted by heat generated by deformation due to rolling or partly melted during heating.
  • a normal rolling mill used for rolling an alloy for example, a rolling mill having a pair of rolling rollers can be used.
  • the rolling reduction is preferably 2 to 23%.
  • the maximum rolling reduction that can be used that is, the maximum value of the rolling reduction at which cracking does not occur even when rolling, depends on the rolling temperature and Ga concentration. The higher the rolling temperature and the lower the Ga concentration, the higher the maximum rolling reduction.
  • the reduction ratio r is given by the following equation, where h 1 is the thickness of the alloy sheet after rolling once and h 2 is the thickness of the alloy sheet before rolling.
  • the sputtering target thus obtained is joined to a backing plate and used for sputtering.
  • the method for producing the Cu—Ga alloy of the present invention is not particularly limited, and for example, a casting method such as a vacuum melting casting method, an atmospheric melting casting method and a semi-continuous casting method can be used.
  • the Cu—Ga alloy of the present invention can be efficiently produced by a melting casting method including the following melting process and casting process.
  • Cu pure metal, Ga pure metal and Cu-Ga alloy can be used, a combination of Cu pure metal and Ga pure metal, Cu-Ga alloy only, Cu pure metal and Cu Any of a combination of a —Ga alloy, a combination of a pure metal of Ga and a Cu—Ga alloy, and a combination of a pure metal of Cu, a pure metal of Ga, and a Cu—Ga alloy may be used.
  • the mixing ratio of each metal material is such that the Ga content of the Cu—Ga alloy produced through the main melting step and the casting step is 25 to 30% by mass.
  • .Mix the blended metal material in a melting furnace As the melting furnace, a melting furnace used in a normal melting casting method can be used, and for example, a high-frequency melting furnace, an electric furnace, or the like can be used. Among these, a high frequency melting furnace is preferable. In the high-frequency melting furnace, sufficient stirring is performed during melting, so that the molten metal has a uniform composition distribution, segregation and coarse particles are unlikely to occur in the ingot produced through the casting process, It is easy to reduce the equivalent circle diameter of the ⁇ phase.
  • a melting furnace used in a normal melting casting method can be used, and for example, a high-frequency melting furnace, an electric furnace, or the like can be used. Among these, a high frequency melting furnace is preferable. In the high-frequency melting furnace, sufficient stirring is performed during melting, so that the molten metal has a uniform composition distribution, segregation and coarse particles are unlikely to occur in the ingot produced through the casting process, It is easy to reduce the equivalent circle diameter of the ⁇ phase.
  • the melting temperature is preferably 1200 to 1400 ° C., more preferably 1200 to 1300 ° C.
  • the melting temperature is lower than 1200 ° C.
  • the molten metal is solidified at the stage of pouring the molten metal into the mold, and it becomes difficult to obtain a target ingot.
  • it is preferable that the melting temperature is higher by about 300 to 500 ° C. than the melting point of the alloy to be produced.
  • the melting temperature is higher than 1400 ° C., the cooling time becomes longer in the casting process, so that the growth of the structure proceeds during that time, segregation and coarse particles are likely to occur, and it is difficult to reduce the equivalent circle diameter of the ⁇ phase. It becomes an ingot that tends to be cracked.
  • the equivalent circle diameter of the ⁇ phase can be reduced. Since the equivalent circle diameter of the ⁇ phase has a correlation with the cooling rate of the molten metal as described later, if the casting rate is low, it becomes difficult to quickly cool the entire molten metal, and the ⁇ phase grows during cooling. It is considered that the equivalent circle diameter of the ⁇ phase will increase. On the other hand, when the casting speed is high, the entire molten metal can be rapidly cooled, so that growth of the ⁇ phase during cooling can be suppressed, and as a result, the equivalent circle diameter of the ⁇ phase is considered to be small.
  • the equivalent circle diameter of the ⁇ phase can be reduced even if the casting speed is low. For this reason, when the water-cooled copper mold is used, it is easy to reduce the equivalent circle diameter of the ⁇ phase even if the casting speed is reduced compared to the case where the carbon mold is used.
  • the casting speed is preferably 200 to 1000 g / sec, more preferably 400 to 800 g / sec.
  • the casting speed is preferably 200 to 800 g / sec, more preferably 250 to 600 g / sec.
  • the cooling rate of the molten metal is an important point in producing the Ga—Cu alloy of the present invention.
  • the cooling rate is low, the ⁇ phase grows during cooling, and the equivalent circle diameter of the ⁇ phase increases.
  • the cooling rate is large, the growth rate of the ⁇ phase is small, the structure of the alloy is refined, and the equivalent circle diameter of the ⁇ phase is small.
  • a suitable cooling rate is 5 to 500 ° C./min. If the cooling rate is less than 5 ° C./min, the alloy structure becomes coarse, and it becomes difficult to make the average equivalent circle diameter of the ⁇ phase 50 ⁇ m or less, or to make the maximum equivalent circle diameter 200 ⁇ m or less.
  • the cooling rate is higher than 500 ° C./min, the molten metal will harden in a short time when entering the mold, and it will not become a continuous ingot, but the ingot will be wrinkled or the ingot will be layered. Tend.
  • a more preferable cooling rate is 10 to 150 ° C./min, and a further preferable cooling rate is 20 to 100 ° C./min.
  • a mold used in a normal melt casting method can be used, and for example, a water-cooled copper mold and a carbon mold can be used.
  • the water-cooled copper mold is preferable in that it can take a large cooling rate, and as described above, it is easy to refine the structure of the alloy and reduce the equivalent circle diameter of the ⁇ phase.
  • the cooling rate can usually be 40 to 200 ° C./min
  • the cooling rate can be usually 5 to 20 ° C./min. .
  • the shape and dimensions of the mold are not particularly limited, but as described above, it is preferable that the cooling rate is high. Therefore, the shape and dimensions that can increase the cooling rate are preferable.
  • FIG. 2 shows an example of a structure image obtained by observing a cross section of the Cu—Ga alloy of the present invention with a scanning electron microscope at a magnification of 200 times.
  • pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, melted at 1200 ° C. in a high-frequency melting furnace to produce a molten metal, and then the former Cu—Ga.
  • this molten metal was poured into a carbon mold and cooled at a cooling rate of 10 to 20 ° C./min.
  • this molten metal was poured into a water-cooled copper mold. And cooled at a cooling rate of 20 to 60 ° C./min.
  • the portion displayed in light color is the ⁇ phase
  • the portion displayed in dark color is the ⁇ phase.
  • Both Cu—Ga alloys differ only in the mold used in the production process and the cooling rate, but from the comparison between FIG. 1 and FIG. 2, the Cu—Ga alloy of the present invention produced using a water-cooled copper mold. It can be seen that the Ga alloy has a smaller equivalent circle diameter of the ⁇ phase than the Cu—Ga alloy of the present invention manufactured using a carbon mold.
  • an ingot that is the Cu—Ga alloy of the present invention is obtained.
  • Comparative Production Example 2 A molten metal was produced under the same conditions as in Comparative Production Example 1. This molten metal was poured into a 460 mm ⁇ 160 mm ⁇ 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the melt began to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. In this ingot, many defects were generated at the portion where solidification occurred, and the ingot was not good. The results are summarized in Table 1.
  • Production Example 2 A molten metal was produced under the same conditions as in Production Example 1. This molten metal was poured into a 460 mm ⁇ 160 mm ⁇ 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase. The results are summarized in Table 1. According to the above production conditions, a good ingot which is the Cu—Ga alloy of the present invention was obtained.
  • Production Example 4 An ingot was produced under the same conditions as in Production Example 1, except that a Cu—Ga alloy having a Ga concentration of 28 mass% was used instead of pure Cu and pure Ga. This ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase.
  • the average equivalent circle diameter of the ⁇ phase was 50 ⁇ m or less and the maximum circle The equivalent diameter was 200 ⁇ m or less.
  • the metal materials include a combination of pure Cu and Ga pure metals, a Cu—Ga alloy only, a combination of pure Cu and Cu—Ga alloys, pure Ga metal and Cu— It was found that a Cu—Ga alloy having an average equivalent circle diameter of the ⁇ phase of 50 ⁇ m or less and a maximum equivalent circle diameter of 200 ⁇ m or less can be obtained by any combination with the Ga alloy. From this result, even in a combination of pure Cu metal, pure Ga metal, and Cu—Ga alloy, the average equivalent circle diameter of the ⁇ phase is 50 ⁇ m or less, and the maximum equivalent circle diameter is 200 ⁇ m or less. It is presumed that a Ga alloy can be obtained.
  • Examples 1 to 3, Comparative Examples 1 to 3 Pure Cu and pure Ga are weighed so that the Ga concentration becomes the value shown in Table 3, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Denpa Kogyo Co., Ltd.) in an Ar atmosphere at 15 ° C. / The temperature was raised at min, and after confirming that the raw material had melted, the molten metal temperature was maintained at 1200 ° C. The obtained molten metal was poured into a carbon mold of 550 mm ⁇ 145 mm ⁇ 30 mm at a casting speed shown in Table 3. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C.
  • FVM-30 high-frequency vacuum melting furnace
  • the ingot having an average equivalent circle diameter of ⁇ phase of 50 ⁇ m or less and a maximum equivalent circle diameter of 200 ⁇ m or less can be rolled, and the average equivalent circle diameter and maximum equivalent circle diameter of the ⁇ phase can be obtained. It was found that the smaller the is, the wider the temperature range that can be rolled.
  • Example 3 and Comparative Example 2 even if the Ga concentration is the same, the ingot produced under the condition where the casting speed is low is higher than the ingot produced under the condition where the casting speed is high. However, the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase were large, and it was not possible to obtain a rolled sheet free from cracks and cracks.
  • Example 5 From the obtained tissue image, the average equivalent circle diameter of the ⁇ phase, the maximum equivalent circle diameter, and the ratio of the total area of the ⁇ phase to the area of the tissue image (area ratio) were determined by the method described above. In Comparative Example 4, since only the ⁇ phase appeared in the tissue image and the ⁇ phase could not be confirmed, the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase were not obtained. In Comparative Example 5, since the tissue image was composed of only the ⁇ phase, the average equivalent circle diameter and the maximum equivalent circle diameter of the ⁇ phase were not obtained. The results are shown in Table 5.
  • Example 4 Further, the ingots other than the ingot obtained in Comparative Example 4 were rolled under the same conditions as in Example 1, and the obtained rolled plate, that is, the presence or absence of cracks and cracks generated in the sputtering target was visually observed. Evaluation was performed according to the same criteria as in Example 1. The results are shown in Table 4. Note that “ ⁇ ” in the rolling temperature column of Table 4 means that rolling was not performed.
  • Example 6 and Example 7 when the water-cooled copper mold is used, as shown in Example 6 and Example 7, when the Ga concentration is the same, the casting speed is low. There was no significant difference in the average equivalent circle diameter of the ⁇ phase between the produced ingot and the ingot produced under a condition where the casting speed was high. Ingots produced using a water-cooled copper mold have a smaller average equivalent circle diameter and maximum equivalent circle diameter of the ⁇ phase when the Ga concentration is the same as that of an ingot produced using a carbon mold. all right. These are considered because the water-cooled copper mold has a higher cooling rate than the carbon mold.
  • Example 4 the ingots other than the ingots obtained in Comparative Example 4 and Example 7 were rolled under the same conditions as in Example 1 except that a reduction rate different from that in Example 1 was adopted.
  • Several types of reduction ratios to be adopted were selected, and rolling was performed for each reduction ratio.
  • Table 5 shows the highest rolling reduction (maximum rolling reduction) at which no cracks occurred in the rolled sheet among the rolling reductions employed. “B”, “D”, and “ ⁇ ” in Table 5 have the same meanings as “B”, “D”, and “—” shown in Table 3, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Continuous Casting (AREA)

Abstract

Disclosed is a Cu-Ga alloy which comprises 25-30 mass% of Ga and a reminder made up by Cu, and which is characterized in that a γ-phase (that is a phase having a Ga concentration appearing on a structure image obtained on an electron microscope of 30-35 mass%) has an average equivalent circle diameter of 50 μm or less and a largest equivalent circle diameter of 200 μm or less. The Cu-Ga alloy rarely undergoes breakage, cracking or the like even when produced by a casting method due to the specific phase structure contained in the structure thereof, and therefore the alloy can be subjected to rolling processing in spite of a fact that the alloy contains Ga at a concentration as high as 25-30 mass%. Therefore, it becomes possible to produce a sputtering target having a high Ga content by rolling, and the productivity of the sputtering target can be improved. When the Cu-Ga alloy is produced by a casting method, the sputtering rate becomes higher compared with that for a Cu-Ga alloy sputtering target that is produced by a powder sintering method such as hot pressing.

Description

Cu-Ga合金およびCu-Ga合金スパッタリングターゲットCu-Ga alloy and Cu-Ga alloy sputtering target
 本発明は、Cu-Ga合金およびCu-Ga合金スパッタリングターゲットに関し、さらに詳しくは、Gaの含有量が多くても圧延加工が可能なCu-Ga合金、および前記合金から得られるCu-Ga合金スパッタリングターゲットに関する。 The present invention relates to a Cu—Ga alloy and a Cu—Ga alloy sputtering target, and more specifically, a Cu—Ga alloy that can be rolled even when the Ga content is large, and a Cu—Ga alloy sputtering obtained from the alloy. Regarding the target.
 近年、化合物半導体による薄膜太陽電池が実用化されている。この薄膜太陽電池においては、一般に、ソーダライムガラス基板の上にプラス電極となるMo電極層が形成され、このMo電極層の上にCu-In-Ga-Se合金膜からなる光吸収層が形成され、この光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成されている。 In recent years, thin film solar cells using compound semiconductors have been put into practical use. In this thin film solar cell, generally, a Mo electrode layer to be a positive electrode is formed on a soda lime glass substrate, and a light absorption layer made of a Cu—In—Ga—Se alloy film is formed on the Mo electrode layer. A buffer layer made of ZnS, CdS or the like is formed on the light absorption layer, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer.
 Cu-In-Ga-Se合金膜からなる光吸収層の形成方法として、成膜速度が遅くコストのかかる蒸着法に替わり、スパッタ法によってCu-In-Ga-Se合金膜を形成する方法が提案されている。 A method of forming a Cu—In—Ga—Se alloy film by a sputtering method is proposed as a method for forming a light absorption layer made of a Cu—In—Ga—Se alloy film, instead of the vapor deposition method which is slow in film formation speed and cost Has been.
 このCu-In-Ga-Se合金膜をスパッタ法により成膜する方法としては、Cu-Gaターゲットを使用してスパッタによりCu-Ga合金膜を成膜し、このCu-Ga合金膜の上にInターゲットを使用してスパッタすることにより積層膜を形成した後、この積層膜をSe雰囲気中で熱処理してCu-In-Ga-Se合金膜を形成する方法が提案されている。この方法は、積層膜を形成する順番が逆、すなわちIn膜の上にCu-Ga膜を形成することでも可能である。Cu-Ga合金ターゲットとしては、Ga:1~40重量%を含有し、残部がCuからなるCu-Ga合金ターゲットが知られている。 As a method of forming this Cu—In—Ga—Se alloy film by sputtering, a Cu—Ga alloy film is formed by sputtering using a Cu—Ga target and formed on the Cu—Ga alloy film. There has been proposed a method of forming a Cu—In—Ga—Se alloy film by forming a laminated film by sputtering using an In target and then heat-treating the laminated film in a Se atmosphere. This method can also be performed by forming the laminated film in the reverse order, that is, by forming a Cu—Ga film on the In film. As a Cu—Ga alloy target, a Cu—Ga alloy target containing Ga: 1 to 40% by weight and the balance being Cu is known.
 このCu-Ga合金スパッタリングターゲットの製造方法としては、ホットプレス等の粉末焼結法および真空溶解法等の鋳造法が使用される。粉末焼結法により製造されたCu-Ga合金スパッタリングターゲットとしては、たとえば特開2008-138232号公報に、Gaの含有量が30質量%以上であるCu-Ga合金粉末と純銅粉末またはGaの含有量が15質量%以下であるCu-Ga合金粉末との混合粉末をホットプレスして得られたCu-Ga合金スパッタリングターゲットが開示されている。しかし、ホットプレス法で製造されたCu-Ga合金スパッタリングターゲットは、微細な組織を有する一方、酸素濃度が高く、スパッタレートが遅いという欠点がある。 As a method for producing this Cu—Ga alloy sputtering target, a powder sintering method such as hot pressing and a casting method such as a vacuum melting method are used. As a Cu—Ga alloy sputtering target manufactured by a powder sintering method, for example, JP-A-2008-138232 discloses a Cu—Ga alloy powder having a Ga content of 30% by mass or more and pure copper powder or Ga content. A Cu—Ga alloy sputtering target obtained by hot pressing a mixed powder with a Cu—Ga alloy powder whose amount is 15 mass% or less is disclosed. However, the Cu—Ga alloy sputtering target manufactured by the hot press method has a drawback that it has a fine structure, but has a high oxygen concentration and a low sputtering rate.
 これに対し鋳造法で製造されたCu-Ga合金スパッタリングターゲットは、酸素濃度が低く、スパッタレートが速いという利点がある。しかしその一方で、鋳造法で製造されたCu-Ga合金からなる鋳塊は、微細な組織とならず、偏析しやすく、割れが生じやすいので、圧延等の塑性加工によりスパッタリングターゲットを成形することが困難であるという欠点がある。圧延によりスパッタリングターゲットを成形することができないと、スパッタリングターゲットの生産性の向上を図ることができない。Cu-Ga合金のGa濃度が25質量%以上であると、硬度が高く、割れが発生する可能性が著しく大きいので、圧延等の塑性加工を施すことが特に困難である。 On the other hand, a Cu—Ga alloy sputtering target manufactured by a casting method has an advantage that the oxygen concentration is low and the sputtering rate is fast. However, on the other hand, an ingot made of a Cu—Ga alloy produced by a casting method does not have a fine structure, and is easily segregated and easily cracked. Therefore, a sputtering target is formed by plastic working such as rolling. Has the disadvantage of being difficult. If the sputtering target cannot be formed by rolling, the productivity of the sputtering target cannot be improved. When the Ga concentration of the Cu—Ga alloy is 25% by mass or more, the hardness is high and the possibility of cracking is extremely high, so that it is particularly difficult to perform plastic working such as rolling.
 鋳造法によるこのような偏析や脆性割れといった欠点を解消する技術として、特開2000-073163号公報に、加熱手段および冷却手段を備えたモールドを用いて冷却速度をコントロールしながら、Gaを15~70質量%含むCu-Ga合金材料を鋳造して鋳塊を作製し、この鋳塊に島状に空孔を設け、この空孔にInの溶湯を注入して製造された鋳塊が開示されている。 As a technique for solving such defects such as segregation and brittle cracks caused by the casting method, Japanese Patent Application Laid-Open No. 2000-073163 discloses a method of controlling Ga from 15 to 15 while controlling the cooling rate using a mold having heating means and cooling means. An ingot produced by casting a Cu-Ga alloy material containing 70% by mass to produce an ingot, forming island-like holes in the ingot, and injecting molten In into the holes is disclosed. ing.
特開2008-138232号公報JP 2008-138232 A 特開2000-073163号公報JP 2000-073163 A
 特開2000-073163号公報に開示された前記鋳塊は、冷却速度を遅くすることで、偏析や脆性を抑制しており、切削加工によりスパッタリングターゲットを形成することが可能であるが、冷却速度を遅くすると、1個1個の結晶が大きくなるため、圧延することができない。 The ingot disclosed in Japanese Patent Laid-Open No. 2000-073163 suppresses segregation and brittleness by slowing the cooling rate, and it is possible to form a sputtering target by cutting. If the speed is slowed down, one crystal at a time becomes large, so that rolling cannot be performed.
 本発明は、Ga含有量が多くても圧延加工を施すことが可能であるCu-Ga合金、およびGa含有量が多くても圧延加工により製造することのできるCu-Ga合金スパッタリングターゲットを提供することを目的とする。 The present invention provides a Cu—Ga alloy that can be rolled even if the Ga content is high, and a Cu—Ga alloy sputtering target that can be produced by rolling even if the Ga content is high. For the purpose.
 本発明者は、鋳造法により得られたCu-Ga合金からなる鋳塊の脆性には、合金を構成する、Ga濃度が30~35質量%である相、たとえばγ相と呼ばれる相が関与しており、このγ相の大きさおよび存在比率を調整することにより割れやすさを制御することができることを見出し、本発明を完成するに至った。 The inventor of the present invention is concerned with the brittleness of an ingot made of a Cu—Ga alloy obtained by a casting method, which is composed of a phase having a Ga concentration of 30 to 35% by mass, for example, a phase called a γ phase. The inventors have found that the ease of cracking can be controlled by adjusting the size and abundance ratio of the γ phase, and have completed the present invention.
 すなわち本発明は、Gaを25~30質量%含有し、残部がCuであるCu-Ga合金であって、電子顕微鏡で得られた組織画像に現れるGa濃度が30~35質量%の相であるγ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であることを特徴とするCu-Ga合金である。 That is, the present invention is a Cu—Ga alloy containing 25 to 30% by mass of Ga, the balance being Cu, and having a Ga concentration of 30 to 35% by mass appearing in a structure image obtained by an electron microscope. The Cu—Ga alloy is characterized in that the average equivalent circle diameter of the γ phase is 50 μm or less and the maximum equivalent circle diameter is 200 μm or less.
 前記Cu-Ga合金の好適な態様として、
 前記組織画像の面積に対するγ相の面積の合計の比率が5~70%であり、
 スパッタリングターゲット製造用合金である。
As a preferred embodiment of the Cu-Ga alloy,
The total ratio of the area of the γ phase to the area of the tissue image is 5 to 70%,
An alloy for producing a sputtering target.
 また他の発明は、前記Cu-Ga合金を圧延して得られるCu-Ga合金スパッタリングターゲットである。 Another invention is a Cu—Ga alloy sputtering target obtained by rolling the Cu—Ga alloy.
 本発明のCu-Ga合金は、組織が特定の相構造を有することにより、鋳造法で作製した場合であっても割れや欠け等が生じにくいので、Gaを25~30質量%と高い濃度で含有していながら圧延加工を施すことが可能である。このため、Gaの含有量の多いスパッタリングターゲットを圧延により製造することが可能であり、スパッタリングターゲットの生産性の向上を図ることができる。また、本発明のCu-Ga合金が鋳造法で作製された場合には、ホットプレス等の粉末焼結法により製造されたCu-Ga合金スパッタリングターゲットと比較してスパッタレートが速い。 Since the structure of the Cu—Ga alloy of the present invention has a specific phase structure, cracks and chips are hardly generated even when it is produced by a casting method. Therefore, Ga is highly concentrated at 25 to 30% by mass. It can be rolled while containing. For this reason, it is possible to manufacture a sputtering target with a large Ga content by rolling, and the productivity of the sputtering target can be improved. In addition, when the Cu—Ga alloy of the present invention is produced by a casting method, the sputtering rate is faster than a Cu—Ga alloy sputtering target produced by a powder sintering method such as hot pressing.
図1は、カーボン鋳型を用いて製造された本発明のCu-Ga合金の断面を走査型電子顕微鏡により倍率200倍で観察して得られた組織画像の一例である。FIG. 1 is an example of a structure image obtained by observing a cross-section of a Cu—Ga alloy of the present invention produced using a carbon mold at a magnification of 200 times with a scanning electron microscope. 図2は、水冷銅鋳型を用いて製造された本発明のCu-Ga合金の断面を走査型電子顕微鏡により倍率200倍で観察して得られた組織画像の一例である。FIG. 2 is an example of a structure image obtained by observing a cross section of the Cu—Ga alloy of the present invention manufactured using a water-cooled copper mold with a scanning electron microscope at a magnification of 200 times.
 本発明のCu-Ga合金は、Gaを25~30質量%含有し、残部がCuであり、電子顕微鏡で得られた組織画像に現れるγ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であることを特徴とする。ここでγ相とは、Ga濃度が30~35質量%の相である。組織画像に現れる相がγ相であるか否かは、電子顕微鏡にて得られる平均原子量に対応する像(コンポ像)にて、Ga濃度差によるコントラストの違いを観察することにより確認することができる。円相当径とは、上記で得られたコンポ像のGa濃度が30~35質量%の領域、つまりγ相の面積と同じ面積を有する円の直径である。平均円相当径とは、前記組織画像に現れるすべてのγ相の円相当径の平均値である。最大円相当径とは、前記組織画像に現れるすべてのγ相の円相当径のうちで最大の円相当径である。 The Cu—Ga alloy of the present invention contains 25 to 30% by mass of Ga, the balance is Cu, the average equivalent circle diameter of the γ phase appearing in the structure image obtained with an electron microscope is 50 μm or less, and the maximum circle The equivalent diameter is 200 μm or less. Here, the γ phase is a phase having a Ga concentration of 30 to 35% by mass. Whether or not the phase appearing in the tissue image is a γ phase can be confirmed by observing a difference in contrast due to a Ga concentration difference in an image (component image) corresponding to the average atomic weight obtained with an electron microscope. it can. The equivalent circle diameter is a diameter of a circle having a Ga concentration of 30 to 35 mass% in the component image obtained above, that is, a circle having the same area as the area of the γ phase. The average equivalent circle diameter is an average value of equivalent circle diameters of all γ phases appearing in the tissue image. The maximum equivalent circle diameter is the largest equivalent circle diameter among all equivalent circle diameters of the γ phase appearing in the tissue image.
 γ相の円相当径の具体的な求め方としては、倍率200倍で得られた0.3mm2のコンポ像において、γ相と他の相との境界を判断した上、画像処理を行ってそのγ相の面積を算出し、その面積を有する円を想定して、その直径をそのγ相の円相当径とする。γ相の平均円相当径は、前記コンポ像に現れるすべてのγ相について前述のように円相当径を求め、これらを平均することにより得られる。また、前記コンポ像に現れるすべてのγ相について前述のように円相当径を求め、これらの中の最大値をγ相の最大円相当径とする。 As a specific method for obtaining the equivalent circle diameter of the γ phase, in a component image of 0.3 mm 2 obtained at a magnification of 200 times, a boundary between the γ phase and another phase is determined, and then image processing is performed. The area of the γ phase is calculated, and a circle having the area is assumed, and the diameter is set as the equivalent circle diameter of the γ phase. The average equivalent circle diameter of the γ phase is obtained by calculating the equivalent circle diameter for all the γ phases appearing in the component image as described above and averaging these. Further, as described above, the equivalent circle diameter is obtained for all the γ phases appearing in the component image, and the maximum value among them is set as the maximum equivalent circle diameter of the γ phase.
 一般にCu-Ga合金は、Gaの含有量が約25質量%未満である場合には、CuにGaが固溶した相とGa濃度が20~25質量%である相(β相)とから構成されているが、Gaの含有量が約25質量%以上になると、Ga濃度が30~35質量%である相(γ相)とβ相との二相から構成されることが電子顕微鏡観察から確認される。 In general, when the Ga content is less than about 25% by mass, a Cu—Ga alloy is composed of a phase in which Ga is dissolved in Cu and a phase (β phase) in which the Ga concentration is 20 to 25% by mass. However, when the Ga content is about 25% by mass or more, it is observed from an electron microscope that it is composed of two phases of a phase (γ phase) having a Ga concentration of 30 to 35% by mass and a β phase. It is confirmed.
 本発明のCu-Ga合金においては、電子顕微鏡で得られる組織画像に現れるγ相の平均円相当径が50μm以下であり、γ相の最大円相当径が200μm以下である。つまり、本発明のCu-Ga合金は、平均円相当径が50μm以下であり、円相当径が200μm以下であるγ相を含む均一な組織を有する。 In the Cu—Ga alloy of the present invention, the average equivalent circle diameter of the γ phase appearing in the structure image obtained with an electron microscope is 50 μm or less, and the maximum equivalent circle diameter of the γ phase is 200 μm or less. That is, the Cu—Ga alloy of the present invention has a uniform structure including a γ phase having an average equivalent circle diameter of 50 μm or less and an equivalent circle diameter of 200 μm or less.
 γ相の平均円相当径が50μmより大きいか、または最大円相当径が200μmより大きいと、圧延等の加工時に割れが発生しやすい。これは、β相は柔らかく、脆性が低い相であるのに対し、γ相はβ相に比較して硬く、脆性が高い相であるので、平均円相当径が50μmより大きいか、または円相当径が200μmより大きいγ相が存在すると、合金に物理的な力加えられた場合に円相当径が大きいγ相の部分で割れが生じやすいからだと考えられる。一方、γ相の平均円相当径が50μm以下であり、かつ最大円相当径が200μm以下であると、このような割れが生じやすい大きなγ相が存在しないか、存在しても少ないので、圧延等の加工時に割れが発生しにくいと考えられる。 If the average equivalent circle diameter of the γ phase is greater than 50 μm or the maximum equivalent circle diameter is greater than 200 μm, cracks are likely to occur during processing such as rolling. This is because the β phase is a soft and low brittle phase, whereas the γ phase is harder and more brittle than the β phase, so the average equivalent circle diameter is larger than 50 μm or equivalent to a circle. It is considered that when a γ phase having a diameter larger than 200 μm exists, cracks are likely to occur at the portion of the γ phase having a large equivalent circle diameter when a physical force is applied to the alloy. On the other hand, if the average equivalent circle diameter of the γ phase is 50 μm or less and the maximum equivalent circle diameter is 200 μm or less, there is no large γ phase that is prone to such cracking or there is little, so rolling It is considered that cracks are unlikely to occur during processing such as.
 このような理由から、γ相の平均円相当径および最大円相当径は小さいほど好ましい。γ相の平均円相当径としては好ましくは45μm以下であり、さらに好ましくは30μm以下である。γ相の最大円相当径としては好ましくは150μm以下であり、さらに好ましくは120μm以下である。 For these reasons, the smaller the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase, the better. The average equivalent circular diameter of the γ phase is preferably 45 μm or less, and more preferably 30 μm or less. The maximum equivalent circle diameter of the γ phase is preferably 150 μm or less, and more preferably 120 μm or less.
 また上記理由から、γ相の平均円相当径および最大円相当径の下限値は特に制限されない。後述する本発明のCu-Ga合金の通常の製造方法に従えば、γ相の平均円相当径の下限値はおおよそ10μmであり、最大円相当径の下限値はおおよそ30μmである。 For the above reasons, the lower limit of the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase is not particularly limited. According to the ordinary method for producing the Cu—Ga alloy of the present invention described later, the lower limit value of the average equivalent circle diameter of the γ phase is approximately 10 μm, and the lower limit value of the maximum equivalent circle diameter is approximately 30 μm.
 また本発明のCu-Ga合金においては、前記組織画像の面積に対するγ相の面積の合計の比率(以下、面積比ともいう)が5~70%であることが好ましい。一般にこの合金に含まれるGaの量が多いほど前記組織画像に現れるγ相の面積の合計は大きくなるが、合金に含まれるGaの量が同じ場合でも、Gaがγ相に含まれるかβ相に含まれるかは合金ごとに相違しうるので、前記組織画像に現れるγ相の面積の合計が相違することはありうる。前記面積比が70%より大きいと、脆性の高いγ相の占める割合が大きくなることから、γ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であっても、圧延等の加工時に割れが発生する可能性が高くなる。また、Cu-Ga合金のGa含有量が25~30質量%である場合には、通常前記面積比が5質量%より小さくなることはない。 In the Cu—Ga alloy of the present invention, the ratio of the total area of the γ phase to the area of the structure image (hereinafter also referred to as area ratio) is preferably 5 to 70%. In general, the larger the amount of Ga contained in this alloy, the larger the total area of the γ phase appearing in the structure image, but even if the amount of Ga contained in the alloy is the same, whether Ga is contained in the γ phase Therefore, the total area of the γ phase appearing in the structure image may be different. If the area ratio is greater than 70%, the proportion of the highly brittle γ phase increases, so that even if the average equivalent circle diameter of the γ phase is 50 μm or less and the maximum equivalent circle diameter is 200 μm or less, rolling is performed. There is a high possibility of cracking during processing such as. In addition, when the Ga content of the Cu—Ga alloy is 25 to 30% by mass, the area ratio is usually not less than 5% by mass.
 前記組織画像の面積に対するγ相の面積の合計の比率Rは、倍率200倍で得られたコンポ像に現れるすべてのγ相の面積を上記と同様に算出し、その合計をSγとし、コンポ像の面積をSとしたとき、R(%)=(Sγ/S)×100で与えられる。 The ratio R of the total area of the γ phase with respect to the area of the tissue image is calculated in the same manner as described above for the area of all γ phases appearing in the component image obtained at a magnification of 200 times. Where S is the area, R (%) = (Sγ / S) × 100.
 本発明のCu-Ga合金は、Gaを25~30質量%含有し、残部がCuである。Cu-Ga合金がこのような組成を有すると、太陽電池の光吸収層等として有効なCu-Ga膜を形成できるスパッタリングターゲットを製造することができる。またCu-Ga合金がこのような組成を有すると、前述のとおり割れが生じやすいので、この割れを制御する必要性が高い。なお、本発明のCu-Ga合金は、GaおよびCuの他、不可避的な不純物を含有することはありうる。 The Cu—Ga alloy of the present invention contains 25 to 30% by mass of Ga and the balance is Cu. When the Cu—Ga alloy has such a composition, a sputtering target capable of forming a Cu—Ga film effective as a light absorption layer of a solar cell can be manufactured. Further, if the Cu—Ga alloy has such a composition, cracks are likely to occur as described above, and therefore there is a high need to control these cracks. Note that the Cu—Ga alloy of the present invention may contain unavoidable impurities in addition to Ga and Cu.
 本発明のCu-Ga合金の形状には特に制限はなく、この合金の用途に応じて適宜形状を決定することができる。 The shape of the Cu—Ga alloy of the present invention is not particularly limited, and the shape can be appropriately determined according to the use of the alloy.
 本発明のCu-Ga合金は、上記のとおり、物理的な力が負荷されても割れにくいので、適宜塑性加工を施すことにより、各種の製品を製造することができる。たとえば、本発明のCu-Ga合金に圧延加工を施すことにより、スパッタリングターゲットを製造することができる。 As described above, since the Cu—Ga alloy of the present invention is not easily broken even when a physical force is applied, various products can be manufactured by appropriately performing plastic working. For example, a sputtering target can be produced by rolling the Cu—Ga alloy of the present invention.
 本発明のCu-Ga合金からスパッタリングターゲットを作製するときに行われる圧延方法としては、通常の合金に対して行われる公知の圧延方法、たとえば合金板を所定の圧延温度に調整し、圧延機により所定の圧下率にて合金を圧延し、適宜これを繰り返して合金の厚さを徐々に薄くしていく方法を挙げることができる。 As a rolling method performed when the sputtering target is produced from the Cu—Ga alloy of the present invention, a known rolling method performed on a normal alloy, for example, an alloy plate is adjusted to a predetermined rolling temperature, and a rolling mill is used. An example is a method in which the alloy is rolled at a predetermined rolling reduction, and this is repeated as appropriate to gradually reduce the thickness of the alloy.
 圧延温度としては、通常500~850℃、好ましくは700~850℃、より好ましくは750~800℃である。圧延温度が500℃より低いと、β相が十分に柔らかくならないので、合金が圧延による変形に耐えられず、圧延により表面クラックや割れが生じ、使用に耐え得るスパッタリングターゲットを得ることが困難である。一方、圧延温度が850℃より高いと、圧延による変形に伴う発熱によって融解したり、加熱中に一部が融解したりするおそれがある。 The rolling temperature is usually 500 to 850 ° C., preferably 700 to 850 ° C., more preferably 750 to 800 ° C. When the rolling temperature is lower than 500 ° C., the β phase does not become sufficiently soft, so that the alloy cannot withstand deformation due to rolling, and surface cracks and cracks are generated by rolling, making it difficult to obtain a sputtering target that can withstand use. . On the other hand, when the rolling temperature is higher than 850 ° C., there is a possibility that the material is melted by heat generated by deformation due to rolling or partly melted during heating.
 圧延機としては、合金の圧延に用いられる通常の圧延機、たとえば一対の圧延ローラを備えた圧延機を用いることができる。 As the rolling mill, a normal rolling mill used for rolling an alloy, for example, a rolling mill having a pair of rolling rollers can be used.
 圧下率は、2~23%であることが好ましい。圧下率が2%より小さいと、合金板が所望の厚みになるまでに行う圧延工程の回数が多くなるので、生産性が低くなる。圧下率が23%より大きいと、合金板に割れが生じやすく、また圧延機にかかる負荷が多大となる。圧下率は、合金板に割れが生じない範囲内で高い値に設定して行うことが、生産性の点で好ましい。用い得る最大圧下率、すなわち圧延しても割れが生じない圧下率の最大値は圧延温度やGa濃度に依存し、圧延温度が高いほど、またGa濃度が低いほど最大圧下率は高くなる。圧下率rは、1回圧延した後の合金板の厚みをh1、圧延前の合金板の厚みをh2としたとき、次式で与えられる。 The rolling reduction is preferably 2 to 23%. When the rolling reduction is less than 2%, the number of rolling steps to be performed until the alloy plate reaches a desired thickness increases, and thus the productivity decreases. If the rolling reduction is greater than 23%, the alloy plate is likely to crack, and the load on the rolling mill becomes large. It is preferable in terms of productivity that the reduction ratio is set to a high value within a range in which the alloy plate is not cracked. The maximum rolling reduction that can be used, that is, the maximum value of the rolling reduction at which cracking does not occur even when rolling, depends on the rolling temperature and Ga concentration. The higher the rolling temperature and the lower the Ga concentration, the higher the maximum rolling reduction. The reduction ratio r is given by the following equation, where h 1 is the thickness of the alloy sheet after rolling once and h 2 is the thickness of the alloy sheet before rolling.
Figure JPOXMLDOC01-appb-M000001
 このようにして得られたスパッタリングターゲットは、バッキングプレートに接合されて、スパッタリングに供される。
Figure JPOXMLDOC01-appb-M000001
The sputtering target thus obtained is joined to a backing plate and used for sputtering.
 本発明のCu-Ga合金の製造方法には特に制限はなく、たとえば、真空溶解鋳造法、大気溶解鋳造法および半連続鋳造法等の鋳造法を用いることができる。本発明のCu-Ga合金は、以下のような溶解工程および鋳造工程を含む溶解鋳造法により効率的に製造することができる。 The method for producing the Cu—Ga alloy of the present invention is not particularly limited, and for example, a casting method such as a vacuum melting casting method, an atmospheric melting casting method and a semi-continuous casting method can be used. The Cu—Ga alloy of the present invention can be efficiently produced by a melting casting method including the following melting process and casting process.
 [溶解工程]
 各金属材料を配合して、溶解して溶湯を得る。
[Dissolution process]
Each metal material is mixed and melted to obtain a molten metal.
 金属材料としては、Cuの純金属、Gaの純金属およびCu-Ga合金を用いることができ、Cuの純金属とGaの純金属との組み合わせ、Cu-Ga合金のみ、Cuの純金属とCu-Ga合金との組み合わせ、Gaの純金属とCu-Ga合金との組み合わせ、およびCuの純金属とGaの純金属とCu-Ga合金との組み合わせのいずれであってもよい。 As the metal material, Cu pure metal, Ga pure metal and Cu-Ga alloy can be used, a combination of Cu pure metal and Ga pure metal, Cu-Ga alloy only, Cu pure metal and Cu Any of a combination of a —Ga alloy, a combination of a pure metal of Ga and a Cu—Ga alloy, and a combination of a pure metal of Cu, a pure metal of Ga, and a Cu—Ga alloy may be used.
 各金属材料の配合比率は、本溶解工程および鋳造工程を経て製造されるCu-Ga合金のGaの含有量が25~30質量%となる比率とする。 The mixing ratio of each metal material is such that the Ga content of the Cu—Ga alloy produced through the main melting step and the casting step is 25 to 30% by mass.
 配合された金属材料を溶解炉で溶解する。溶解炉としては、通常の溶解鋳造法で使用される溶解炉を用いることができ、たとえば高周波溶解炉および電気炉等を使用することができる。これらの中でも高周波溶解炉が好ましい。高周波溶解炉では、溶解中に十分な撹拌が行われ、溶湯が均一な組成分布を有するようにすることができるので、鋳造工程を経て製造される鋳塊において偏析や粗大粒子が発生しにくく、γ相の円相当径を小さくすることが容易である。これに対し、電気炉では、溶解中の撹拌が不十分になりやすく、溶湯に組成分布が生じる可能性が高いので、鋳造工程を経て製造される鋳塊において偏析や粗大粒子が発生しやすく、γ相の円相当径を小さくすることが難しい。特に、金属材料として、Cuの純金属とGaの純金属との組み合わせのように、組成が大きく異なる金属材料を混ぜて使用する場合には、電気炉では溶解中の撹拌が不十分になる可能性が高い。ただし、電気炉を用いても、撹拌棒等を用いて、溶解した金属材料を十分に撹拌することにより、均一な組成分布を有する溶湯を得ることができ、上記の問題点を解消することは可能である。しかし、撹拌棒等が原因となって溶湯にコンタミが生じるおそれがある。 .Mix the blended metal material in a melting furnace. As the melting furnace, a melting furnace used in a normal melting casting method can be used, and for example, a high-frequency melting furnace, an electric furnace, or the like can be used. Among these, a high frequency melting furnace is preferable. In the high-frequency melting furnace, sufficient stirring is performed during melting, so that the molten metal has a uniform composition distribution, segregation and coarse particles are unlikely to occur in the ingot produced through the casting process, It is easy to reduce the equivalent circle diameter of the γ phase. On the other hand, in an electric furnace, stirring during melting tends to be insufficient, and composition distribution is likely to occur in the molten metal, so segregation and coarse particles are likely to occur in the ingot produced through the casting process, It is difficult to reduce the equivalent circle diameter of the γ phase. In particular, when mixing and using metal materials with greatly different compositions, such as a combination of pure Cu and pure Ga metals, the electric furnace may be insufficiently stirred during melting. High nature. However, even if an electric furnace is used, a molten metal material having a uniform composition distribution can be obtained by sufficiently stirring the molten metal material using a stirring rod or the like, and the above problems can be solved. Is possible. However, contamination may occur in the molten metal due to a stirring rod or the like.
 溶解温度としては、1200~1400℃が好ましく、さらに好ましくは1200~1300℃である。溶解温度が1200℃より低いと、溶湯を鋳型に注入する段階で溶湯が凝固してしまい、目的とする鋳塊を得ることが困難になる。このような問題を回避するためには、製造する合金の融点より300~500℃くらい高い溶解温度とすることが好ましい。一方、溶解温度が1400℃より高いと、鋳造工程において冷却時間が長くなるので、その間に組織の成長が進み、偏析や粗大粒子が生じやすくなり、γ相の円相当径を小さくすることが困難になり、割れが生じやすい鋳塊となる。 The melting temperature is preferably 1200 to 1400 ° C., more preferably 1200 to 1300 ° C. When the melting temperature is lower than 1200 ° C., the molten metal is solidified at the stage of pouring the molten metal into the mold, and it becomes difficult to obtain a target ingot. In order to avoid such a problem, it is preferable that the melting temperature is higher by about 300 to 500 ° C. than the melting point of the alloy to be produced. On the other hand, if the melting temperature is higher than 1400 ° C., the cooling time becomes longer in the casting process, so that the growth of the structure proceeds during that time, segregation and coarse particles are likely to occur, and it is difficult to reduce the equivalent circle diameter of the γ phase. It becomes an ingot that tends to be cracked.
 [鋳造工程]
 溶解工程で得た溶湯を鋳型に注入し、次いでこれを冷却して鋳塊を得る。
[Casting process]
The molten metal obtained in the melting step is poured into a mold and then cooled to obtain an ingot.
 溶湯を鋳型に注入する速度、すなわち鋳湯速度は大きいほうが、γ相の円相当径を小さくすることができるので好ましい。γ相の円相当径は溶湯の冷却速度と後述のような相関があるので、鋳湯速度が小さいと、溶湯全体の冷却を速やかに行うことが困難になり、冷却中にγ相の成長が進み、γ相の円相当径が大きくなると考えられる。一方、鋳湯速度が大きいと、溶湯全体の冷却を速やかに進行させることができるので、冷却中のγ相の成長を抑制でき、その結果、γ相の円相当径が小さくなると考えられる。ただし、鋳型に注入された溶湯を速やかに冷却することができれば、鋳湯速度が小さくても、γ相の円相当径を小さくすることは可能である。このため、水冷銅鋳型を用いた場合には、カーボン鋳型を用いた場合より、鋳湯速度を小さくしても、γ相の円相当径を小さくすることは容易である。 It is preferable to increase the speed at which the molten metal is poured into the mold, that is, the casting speed, because the equivalent circle diameter of the γ phase can be reduced. Since the equivalent circle diameter of the γ phase has a correlation with the cooling rate of the molten metal as described later, if the casting rate is low, it becomes difficult to quickly cool the entire molten metal, and the γ phase grows during cooling. It is considered that the equivalent circle diameter of the γ phase will increase. On the other hand, when the casting speed is high, the entire molten metal can be rapidly cooled, so that growth of the γ phase during cooling can be suppressed, and as a result, the equivalent circle diameter of the γ phase is considered to be small. However, if the molten metal poured into the mold can be quickly cooled, the equivalent circle diameter of the γ phase can be reduced even if the casting speed is low. For this reason, when the water-cooled copper mold is used, it is easy to reduce the equivalent circle diameter of the γ phase even if the casting speed is reduced compared to the case where the carbon mold is used.
 たとえば、550mm×145mm×30mmのカーボン鋳型に1200~1400℃の溶湯を鋳湯する場合、鋳湯速度は好ましくは200~1000g/secであり、より好ましくは400~800g/secである。460mm×160mm×30mmの水冷銅鋳型に1200~1400℃の溶湯を鋳湯する場合、鋳湯速度は好ましくは200~800g/secであり、より好ましくは250~600g/secである。 For example, when a molten metal of 1200 to 1400 ° C. is cast into a carbon mold of 550 mm × 145 mm × 30 mm, the casting speed is preferably 200 to 1000 g / sec, more preferably 400 to 800 g / sec. When casting a molten metal at 1200 to 1400 ° C. in a water-cooled copper mold of 460 mm × 160 mm × 30 mm, the casting speed is preferably 200 to 800 g / sec, more preferably 250 to 600 g / sec.
 溶湯の冷却速度は、本発明のGa-Cu合金を製造する上での重要なポイントである。冷却速度が小さいと、冷却中にγ相の成長が進み、γ相の円相当径が大きくなる。一方、冷却速度が大きいと、γ相の成長速度が小さく、合金の組織が微細化し、γ相の円相当径が小さくなる。好適な冷却速度は5~500℃/minである。冷却速度が5℃/minより小さいと、合金の組織が粗大化し、γ相の平均円相当径を50μm以下にしたり、最大円相当径を200μm以下にしたりすることが困難になる。一方、冷却速度が500℃/minより大きいと、溶湯が鋳型に入ると短時間で固まってしまい、連続的な鋳塊にならず、鋳塊にしわが入ったり、鋳塊が層状になったりする傾向がある。より好ましい冷却速度は10~150℃/minであり、さらに好ましい冷却速度は20~100℃/minである。 The cooling rate of the molten metal is an important point in producing the Ga—Cu alloy of the present invention. When the cooling rate is low, the γ phase grows during cooling, and the equivalent circle diameter of the γ phase increases. On the other hand, when the cooling rate is large, the growth rate of the γ phase is small, the structure of the alloy is refined, and the equivalent circle diameter of the γ phase is small. A suitable cooling rate is 5 to 500 ° C./min. If the cooling rate is less than 5 ° C./min, the alloy structure becomes coarse, and it becomes difficult to make the average equivalent circle diameter of the γ phase 50 μm or less, or to make the maximum equivalent circle diameter 200 μm or less. On the other hand, if the cooling rate is higher than 500 ° C./min, the molten metal will harden in a short time when entering the mold, and it will not become a continuous ingot, but the ingot will be wrinkled or the ingot will be layered. Tend. A more preferable cooling rate is 10 to 150 ° C./min, and a further preferable cooling rate is 20 to 100 ° C./min.
 鋳型としては、通常の溶解鋳造法で使用される鋳型を用いることができ、たとえば水冷銅鋳型およびカーボン鋳型等を使用することができる。これらの中でも水冷銅鋳型が、大きな冷却速度を採ることができ、上述のとおり合金の組織を微細化させ、γ相の円相当径を小さくすることが容易である点で好ましい。水冷銅鋳型を使用した場合には、冷却速度を通常40~200℃/minとすることができ、カーボン鋳型を使用した場合には、冷却速度を通常5~20℃/minとすることができる。 As the mold, a mold used in a normal melt casting method can be used, and for example, a water-cooled copper mold and a carbon mold can be used. Among these, the water-cooled copper mold is preferable in that it can take a large cooling rate, and as described above, it is easy to refine the structure of the alloy and reduce the equivalent circle diameter of the γ phase. When a water-cooled copper mold is used, the cooling rate can usually be 40 to 200 ° C./min, and when a carbon mold is used, the cooling rate can be usually 5 to 20 ° C./min. .
 鋳型の形状および寸法については、特に制限はないが、前述のとおり冷却速度は大きい方が好ましいことから、冷却速度を大きくすることのできる形状および寸法であることが好ましい。 The shape and dimensions of the mold are not particularly limited, but as described above, it is preferable that the cooling rate is high. Therefore, the shape and dimensions that can increase the cooling rate are preferable.
 カーボン鋳型を用いて製造された本発明のCu-Ga合金の断面を走査型電子顕微鏡により倍率200倍で観察して得られた組織画像の一例を図1に、水冷銅鋳型を用いて製造された本発明のCu-Ga合金の断面を走査型電子顕微鏡により倍率200倍で観察して得られた組織画像の一例を図2に示す。いずれのCu-Ga合金についても、Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波溶解炉で1200℃にて溶解して溶湯を製造した後、前者のCu-Ga合金については、この溶湯をカーボン鋳型に注入し、10~20℃/minの冷却速度で冷却して得られたものであり、後者のCu-Ga合金については、この溶湯を水冷銅鋳型に注入し、20~60℃/minの冷却速度で冷却して得られたものである。いずれの組織画像においても、淡い色で表示されている部分がγ相であり、濃い色で表示されている部分がβ相である。両Cu-Ga合金は、その製造過程において使用された鋳型および冷却速度が相違するのみであるが、図1と図2との比較より、水冷銅鋳型を用いて製造された本発明のCu-Ga合金においては、カーボン鋳型を用いて製造された本発明のCu-Ga合金よりも、γ相の円相当径が小さいことがわかる。 An example of a structure image obtained by observing a cross-section of the Cu—Ga alloy of the present invention manufactured using a carbon mold with a scanning electron microscope at a magnification of 200 times is manufactured using a water-cooled copper mold. FIG. 2 shows an example of a structure image obtained by observing a cross section of the Cu—Ga alloy of the present invention with a scanning electron microscope at a magnification of 200 times. For any Cu—Ga alloy, pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, melted at 1200 ° C. in a high-frequency melting furnace to produce a molten metal, and then the former Cu—Ga. For the alloy, this molten metal was poured into a carbon mold and cooled at a cooling rate of 10 to 20 ° C./min. For the latter Cu—Ga alloy, this molten metal was poured into a water-cooled copper mold. And cooled at a cooling rate of 20 to 60 ° C./min. In any tissue image, the portion displayed in light color is the γ phase, and the portion displayed in dark color is the β phase. Both Cu—Ga alloys differ only in the mold used in the production process and the cooling rate, but from the comparison between FIG. 1 and FIG. 2, the Cu—Ga alloy of the present invention produced using a water-cooled copper mold. It can be seen that the Ga alloy has a smaller equivalent circle diameter of the γ phase than the Cu—Ga alloy of the present invention manufactured using a carbon mold.
 以上のような溶解工程および鋳造工程を含む製造方法により、本発明のCu-Ga合金である鋳塊が得られる。 By the manufacturing method including the melting step and the casting step as described above, an ingot that is the Cu—Ga alloy of the present invention is obtained.
 (比較製造例1)
 Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1000℃で保持した。得られた溶湯を鋳湯速度500g/secで550mm×145mm×30mmのカーボン鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めた。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度で200℃まで冷却して鋳塊を得た。この鋳塊は、凝固が断続的に起こったため、層状をなしており、良好な鋳塊にはならなかった。結果を表1にまとめた。
(Comparative Production Example 1)
Pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C./min. The temperature was raised and after confirming that the raw material had melted, the molten metal temperature was maintained at 1000 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed of 500 g / sec. At this time, the melt began to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C. at a cooling rate of about 13 ° C./min to obtain an ingot. Since this ingot was solidified intermittently, it was layered and did not become a good ingot. The results are summarized in Table 1.
 (比較製造例2)
 比較製造例1と同条件で溶湯を製造した。この溶湯を鋳湯速度500g/secで460mm×160mm×30mmの水冷銅鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めた。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して鋳塊を得た。この鋳塊は、凝固が起こった箇所に多数の欠陥が生じており、良好な鋳塊にはならなかった。結果を表1にまとめた。
(Comparative Production Example 2)
A molten metal was produced under the same conditions as in Comparative Production Example 1. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the melt began to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. In this ingot, many defects were generated at the portion where solidification occurred, and the ingot was not good. The results are summarized in Table 1.
 (比較製造例3)
 Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1100℃で保持した。得られた溶湯を鋳湯速度500g/secで550mm×145mm×30mmのカーボン鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めた。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度200℃まで冷却して鋳塊を得た。この鋳塊は、凝固が断続的に起こったため、比較製造例1で得られた鋳塊ほどではないが、層状をなしており、良好な鋳塊にはならなかった。結果を表1にまとめた。
(Comparative Production Example 3)
Pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C./min. The temperature was raised and after confirming that the raw material had melted, the molten metal temperature was maintained at 1100 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed of 500 g / sec. At this time, the melt began to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to a cooling rate of about 13 ° C./min to 200 ° C. to obtain an ingot. Since this ingot was solidified intermittently, it was not as good as the ingot obtained in Comparative Production Example 1, but it was layered and did not become a good ingot. The results are summarized in Table 1.
 (比較製造例4)
 比較製造例3と同条件で溶湯を製造した。この溶湯を鋳湯速度500g/secで460mm×160mm×30mmの水冷銅鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めた。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して鋳塊を得た。この鋳塊は、比較製造例2で得られた鋳塊ほどではないが、凝固が起こった箇所に多数の欠陥が生じており、良好な鋳塊にはならなかった。結果を表1にまとめた。
(Comparative Production Example 4)
A molten metal was produced under the same conditions as in Comparative Production Example 3. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the melt began to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. Although this ingot was not as large as the ingot obtained in Comparative Production Example 2, a number of defects were generated at the locations where solidification occurred, and the ingot was not good. The results are summarized in Table 1.
 (製造例1)
 Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1200℃で保持した。得られた溶湯を鋳湯速度500g/secで550mm×145mm×30mmのカーボン鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度で200℃まで冷却して鋳塊を得た。この鋳塊を10mm角程度の大きさに切断して、鏡面研磨して、その断面を走査型電子顕微鏡(JEOL(株)製、JSM-6380A)により倍率200倍で観察した。上述の方法により、得られた組織画像からγ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件により、本発明のCu-Ga合金である良好な鋳塊が得られた。
(Production Example 1)
Pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C./min. The temperature was raised and after confirming that the raw material had melted, the molten metal temperature was maintained at 1200 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C. at a cooling rate of about 13 ° C./min to obtain an ingot. This ingot was cut into a size of about 10 mm square, mirror-polished, and the cross section was observed with a scanning electron microscope (manufactured by JEOL Co., Ltd., JSM-6380A) at a magnification of 200 times. By the above-described method, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were obtained from the obtained tissue image. The results are summarized in Table 1. According to the above production conditions, a good ingot which is the Cu—Ga alloy of the present invention was obtained.
 (製造例2)
 製造例1と同条件で溶湯を製造した。この溶湯を鋳湯速度500g/secで460mm×160mm×30mmの水冷銅鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して鋳塊を得た。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件により、本発明のCu-Ga合金である良好な鋳塊が得られた。
(Production Example 2)
A molten metal was produced under the same conditions as in Production Example 1. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The results are summarized in Table 1. According to the above production conditions, a good ingot which is the Cu—Ga alloy of the present invention was obtained.
 (比較製造例5)
 Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1300℃で保持した。得られた溶湯を鋳湯速度500g/secで550mm×145mm×30mmのカーボン鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度で200℃まで冷却して鋳塊を得た。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件においては、良好な鋳塊は得られたが、γ相の平均円相当径が50μmより大きく、本発明のCu-Ga合金は得られなかった。
(Comparative Production Example 5)
Pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C./min. The temperature was raised and after confirming that the raw material had melted, the molten metal temperature was maintained at 1300 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C. at a cooling rate of about 13 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The results are summarized in Table 1. Under the above production conditions, a good ingot was obtained, but the average equivalent circle diameter of the γ phase was larger than 50 μm, and the Cu—Ga alloy of the present invention could not be obtained.
 (製造例3)
 比較製造例5と同条件で溶湯を製造した。この溶湯を鋳湯速度500g/secで460mm×160mm×30mmの水冷銅鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して鋳塊を得た。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件により、本発明のCu-Ga合金である良好な鋳塊が得られた。
(Production Example 3)
A molten metal was produced under the same conditions as in Comparative Production Example 5. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The results are summarized in Table 1. According to the above production conditions, a good ingot which is the Cu—Ga alloy of the present invention was obtained.
 (比較製造例6)
 Ga濃度が28質量%になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1400℃で保持した。得られた溶湯を鋳湯速度500g/secで550mm×145mm×30mmのカーボン鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度で200℃まで冷却して鋳塊を得た。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件においては、良好な鋳塊は得られたが、γ相の平均円相当径が50μmより大きく、本発明のCu-Ga合金は得られなかった。
(Comparative Production Example 6)
Pure Cu and pure Ga were weighed so that the Ga concentration was 28% by mass, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C./min. The temperature was raised and after confirming that the raw material had melted, the molten metal temperature was maintained at 1400 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C. at a cooling rate of about 13 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The results are summarized in Table 1. Under the above production conditions, a good ingot was obtained, but the average equivalent circle diameter of the γ phase was larger than 50 μm, and the Cu—Ga alloy of the present invention could not be obtained.
 (比較製造例7)
 比較製造例6と同条件で溶湯を製造した。この溶湯を鋳湯速度500g/secで460mm×160mm×30mmの水冷銅鋳型に注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して鋳塊を得た。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めた。結果を表1にまとめた。以上の製造条件においては、良好な鋳塊は得られたが、γ相の平均円相当径が50μmより大きく、本発明のCu-Ga合金は得られなかった。
(Comparative Production Example 7)
A molten metal was produced under the same conditions as in Comparative Production Example 6. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at a casting speed of 500 g / sec. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot. The ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The results are summarized in Table 1. Under the above production conditions, a good ingot was obtained, but the average equivalent circle diameter of the γ phase was larger than 50 μm, and the Cu—Ga alloy of the present invention could not be obtained.
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果より、溶解温度を、製造するCu-Ga合金の融点より300~500℃くらい高くしないと、鋳型への注入が完了する前に溶湯が凝固し始め、良好な鋳塊が得られないことがわかった。
Figure JPOXMLDOC01-appb-T000002
From the results shown in Table 1, if the melting temperature is not higher by about 300 to 500 ° C. than the melting point of the Cu—Ga alloy to be produced, the molten metal begins to solidify before the injection into the mold is completed, and a good ingot is obtained. I found out I couldn't get it.
 水冷銅鋳型を用いたほうが、カーボン鋳型を用いるよりも、γ相の平均円相当径が小さいCu-Ga合金が得られることもわかった。これは、既述のとおり、水冷銅鋳型を用いたほうが冷却速度を大きくすることができるからだと考えられる。 It was also found that a Cu—Ga alloy having a smaller average equivalent circle diameter of the γ phase can be obtained by using a water-cooled copper mold than by using a carbon mold. This is probably because the cooling rate can be increased by using the water-cooled copper mold as described above.
 また、溶解温度が高くなると、γ相の平均円相当径が大きくなることがわかった。これは、溶解温度が高いと冷却時間が長くなるので、組織が大きく成長してしまうからであると考えられる。 It was also found that the average equivalent circular diameter of the γ phase increases as the melting temperature increases. This is considered to be because the cooling time becomes longer when the melting temperature is high, and the tissue grows greatly.
 (製造例4)
 純Cuおよび純Gaの替わりに、Ga濃度が28質量%であるCu-Ga合金を使用したこと以外は製造例1と同条件で鋳塊を製造した。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めたところ、γ相の平均円相当径は50μm以下、最大円相当径は200μm以下であった。
(Production Example 4)
An ingot was produced under the same conditions as in Production Example 1, except that a Cu—Ga alloy having a Ga concentration of 28 mass% was used instead of pure Cu and pure Ga. This ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The average equivalent circle diameter of the γ phase was 50 μm or less and the maximum circle The equivalent diameter was 200 μm or less.
 (製造例5)
 純Cuおよび純Gaの替わりに、純CuおよびGa濃度が32質量%であるCu-Ga合金を使用し、Ga濃度が28質量%になるように両者を秤量したこと以外は製造例1と同条件で鋳塊を製造した。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めたところ、γ相の平均円相当径は50μm以下、最大円相当径は200μm以下であった。
(Production Example 5)
Instead of pure Cu and pure Ga, a Cu—Ga alloy having a pure Cu and Ga concentration of 32% by mass was used, and both were weighed so that the Ga concentration was 28% by mass. An ingot was produced under the conditions. This ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The average equivalent circle diameter of the γ phase was 50 μm or less and the maximum circle The equivalent diameter was 200 μm or less.
 (製造例6)
 純Cuおよび純Gaの替わりに、純GaおよびGa濃度が20質量%であるCu-Ga合金を使用し、Ga濃度が28質量%になるように両者を秤量したこと以外は製造例1と同条件で鋳塊を製造した。この鋳塊につき、製造例1と同条件で走査型電子顕微鏡観察を行い、γ相の平均円相当径および最大円相当径を求めたところ、γ相の平均円相当径は50μm以下、最大円相当径は200μm以下であった。
(Production Example 6)
Instead of pure Cu and pure Ga, a Cu—Ga alloy having a pure Ga and Ga concentration of 20% by mass was used, and both were weighed so that the Ga concentration was 28% by mass. An ingot was produced under the conditions. This ingot was observed with a scanning electron microscope under the same conditions as in Production Example 1 to determine the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase. The average equivalent circle diameter of the γ phase was 50 μm or less and the maximum circle The equivalent diameter was 200 μm or less.
 これらの結果を、製造例1の結果とともに、表2に示した。 These results are shown in Table 2 together with the results of Production Example 1.
Figure JPOXMLDOC01-appb-T000003
 表2の結果より、金属材料としては、Cuの純金属とGaの純金属との組み合わせ、Cu-Ga合金のみ、Cuの純金属とCu-Ga合金との組み合わせ、Gaの純金属とCu-Ga合金との組み合わせのいずれであっても、γ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であるCu-Ga合金を得ることができることがわかった。この結果より、Cuの純金属とGaの純金属とCu-Ga合金との組み合わせであっても、γ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であるCu-Ga合金を得ることができると推測される。
Figure JPOXMLDOC01-appb-T000003
From the results shown in Table 2, the metal materials include a combination of pure Cu and Ga pure metals, a Cu—Ga alloy only, a combination of pure Cu and Cu—Ga alloys, pure Ga metal and Cu— It was found that a Cu—Ga alloy having an average equivalent circle diameter of the γ phase of 50 μm or less and a maximum equivalent circle diameter of 200 μm or less can be obtained by any combination with the Ga alloy. From this result, even in a combination of pure Cu metal, pure Ga metal, and Cu—Ga alloy, the average equivalent circle diameter of the γ phase is 50 μm or less, and the maximum equivalent circle diameter is 200 μm or less. It is presumed that a Ga alloy can be obtained.
 (実施例1~3、比較例1~3)
 Ga濃度が表3に示した値になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し、原料が溶落したのを確認した後、溶湯温度1200℃で保持した。得られた溶湯を550mm×145mm×30mmのカーボン鋳型に表3に示した鋳湯速度で注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。カーボン鋳型に注入された溶湯を約13℃/minの冷却速度で200℃まで冷却して、450mm×13.5mm×28mmの鋳塊を得た。この鋳塊を10mm角程度の大きさに切断して、鏡面研磨して、その断面を走査型電子顕微鏡(JEOL(株)製、JSM-6380A)により倍率200倍で観察した。得られた組織画像から前述の方法によりγ相の平均円相当径、最大円相当径および前記組織画像の面積に対するγ相の面積の合計の比率(面積比)を求めた。比較例1においては、組織画像にはβ相のみが現れ、γ相は確認できなかったので、γ相の平均円相当径および最大円相当径は求められなかった。比較例3においては、組織画像はγ相のみからなっていたので、γ相の平均円相当径および最大円相当径は求められなかった。結果を表3に示した。
(Examples 1 to 3, Comparative Examples 1 to 3)
Pure Cu and pure Ga are weighed so that the Ga concentration becomes the value shown in Table 3, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Denpa Kogyo Co., Ltd.) in an Ar atmosphere at 15 ° C. / The temperature was raised at min, and after confirming that the raw material had melted, the molten metal temperature was maintained at 1200 ° C. The obtained molten metal was poured into a carbon mold of 550 mm × 145 mm × 30 mm at a casting speed shown in Table 3. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the carbon mold was cooled to 200 ° C. at a cooling rate of about 13 ° C./min to obtain an ingot of 450 mm × 13.5 mm × 28 mm. This ingot was cut into a size of about 10 mm square, mirror-polished, and the cross section was observed with a scanning electron microscope (manufactured by JEOL Co., Ltd., JSM-6380A) at a magnification of 200 times. From the obtained tissue image, the average equivalent circle diameter of the γ phase, the maximum equivalent circle diameter, and the ratio of the total area of the γ phase to the area of the tissue image (area ratio) were determined by the method described above. In Comparative Example 1, since only the β phase appeared in the tissue image and the γ phase could not be confirmed, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were not obtained. In Comparative Example 3, since the tissue image was composed of only the γ phase, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were not obtained. The results are shown in Table 3.
 また、比較例1で得られた鋳塊以外の鋳塊に対して以下の条件で圧延を行い、得られた圧延板すなわちスパッタリングターゲットに生じた割れおよびヒビの有無を目視により、以下の基準で評価した。結果を表3に示した。なお表3中の圧延温度欄の「-」は、圧延を行わなかったことを意味する。 Moreover, it rolls on the following conditions with respect to ingots other than the ingot obtained by the comparative example 1, and the presence or absence of the crack and crack which arose in the obtained rolled sheet, ie, a sputtering target, visually, on the following references | standards evaluated. The results are shown in Table 3. In Table 3, “−” in the rolling temperature column means that rolling was not performed.
 A:圧延板に割れおよびヒビが認められなかった
 B:圧延板に割れが認められた
 C:圧延板に割れは認められなかったが、ヒビが認められた
 D:圧延中に鋳塊が溶解して、圧延不能となった
 [圧延条件]
 鋳塊を電気炉で、表3に示した圧延温度で30分間加温した。この鋳塊に対して、圧延機(日本クロス圧延(株)製、9LCD/500W熱間2段圧延機)を用いて、表3に示した圧下率、ロール速度1.0m/secにて、その厚みが、鋳塊の圧延前の厚みである30mmから11mmになるまで圧延操作を繰り返し行った。
A: No cracks or cracks were observed on the rolled sheet B: Cracks were observed on the rolled sheet C: No cracks were observed on the rolled sheet, but cracks were observed D: The ingot melted during rolling [Rolling conditions]
The ingot was heated in an electric furnace at the rolling temperature shown in Table 3 for 30 minutes. For this ingot, using a rolling mill (9LCD / 500W hot two-stage rolling mill manufactured by Nippon Cross Rolling Co., Ltd.), at a rolling reduction shown in Table 3 and a roll speed of 1.0 m / sec, The rolling operation was repeated until the thickness was changed from 30 mm to 11 mm, which is the thickness of the ingot before rolling.
Figure JPOXMLDOC01-appb-T000004
 表3の結果より、γ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下である鋳塊は、圧延が可能であり、γ相の平均円相当径および最大円相当径が小さいほど、圧延可能温度範囲が広いことがわかった。また、実施例3および比較例2に示したとおり、Ga濃度が同じであっても、鋳湯速度が遅い条件で作製された鋳塊は、鋳湯速度が速い条件で作成された鋳塊よりも、γ相の平均円相当径および最大円相当径が大きくなり、割れおよびヒビが認められない圧延板を得ることができなかった。
Figure JPOXMLDOC01-appb-T000004
From the results in Table 3, the ingot having an average equivalent circle diameter of γ phase of 50 μm or less and a maximum equivalent circle diameter of 200 μm or less can be rolled, and the average equivalent circle diameter and maximum equivalent circle diameter of the γ phase can be obtained. It was found that the smaller the is, the wider the temperature range that can be rolled. In addition, as shown in Example 3 and Comparative Example 2, even if the Ga concentration is the same, the ingot produced under the condition where the casting speed is low is higher than the ingot produced under the condition where the casting speed is high. However, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were large, and it was not possible to obtain a rolled sheet free from cracks and cracks.
 (実施例4~7、比較例4~5)
 Ga濃度が表4に示した値になるように純Cuおよび純Gaを秤量し、高周波真空溶解炉(富士電波工業(株)製、FVM-30)を用いて、Ar雰囲気中、15℃/minにて昇温し原料が溶落したのを確認した後、溶湯温度1200℃で保持した。この溶湯を460mm×160mm×30mmの水冷銅鋳型に表4に示した鋳湯速度で注入した。このとき、注入が完了する前に溶湯が凝固し始めることはなかった。水冷銅鋳型に注入された溶湯を約100℃/minの冷却速度で50℃まで冷却して、410mm×155mm×29mmの鋳塊を得た。この鋳塊を実施例1と同様にして走査型電子顕微鏡観察した。得られた組織画像から前述の方法によりγ相の平均円相当径、最大円相当径および前記組織画像の面積に対するγ相の面積の合計の比率(面積比)を求めた。比較例4においては、組織画像にはβ相のみが現れ、γ相は確認できなかったので、γ相の平均円相当径および最大円相当径は求められなかった。比較例5においては、組織画像はγ相のみからなっていたので、γ相の平均円相当径および最大円相当径は求められなかった。結果を表5に示した。
(Examples 4 to 7, Comparative Examples 4 to 5)
Pure Cu and pure Ga were weighed so that the Ga concentration would be the value shown in Table 4, and using a high-frequency vacuum melting furnace (FVM-30, manufactured by Fuji Radio Industry Co., Ltd.) in an Ar atmosphere at 15 ° C. / The temperature was raised at min and it was confirmed that the raw material had melted, and then the molten metal temperature was maintained at 1200 ° C. This molten metal was poured into a 460 mm × 160 mm × 30 mm water-cooled copper mold at the casting speed shown in Table 4. At this time, the molten metal did not begin to solidify before the injection was completed. The molten metal poured into the water-cooled copper mold was cooled to 50 ° C. at a cooling rate of about 100 ° C./min to obtain an ingot of 410 mm × 155 mm × 29 mm. This ingot was observed with a scanning electron microscope in the same manner as in Example 1. From the obtained tissue image, the average equivalent circle diameter of the γ phase, the maximum equivalent circle diameter, and the ratio of the total area of the γ phase to the area of the tissue image (area ratio) were determined by the method described above. In Comparative Example 4, since only the β phase appeared in the tissue image and the γ phase could not be confirmed, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were not obtained. In Comparative Example 5, since the tissue image was composed of only the γ phase, the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were not obtained. The results are shown in Table 5.
 また、比較例4で得られた鋳塊以外の鋳塊に対して実施例1と同条件で圧延を行い、得られた圧延板すなわちスパッタリングターゲットに生じた割れおよびヒビの有無を目視により、実施例1と同じ基準で評価した。結果を表4示した。なお表4の圧延温度欄の「-」は、圧延を行わなかったことを意味する。 Further, the ingots other than the ingot obtained in Comparative Example 4 were rolled under the same conditions as in Example 1, and the obtained rolled plate, that is, the presence or absence of cracks and cracks generated in the sputtering target was visually observed. Evaluation was performed according to the same criteria as in Example 1. The results are shown in Table 4. Note that “−” in the rolling temperature column of Table 4 means that rolling was not performed.
Figure JPOXMLDOC01-appb-T000005
 表4の結果より、水冷銅鋳型を用いて作製した場合であっても、γ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下である鋳塊は、圧延が可能であり、γ相の平均円相当径および最大円相当径が小さいほど、圧延可能温度範囲が広いことがわかった。
Figure JPOXMLDOC01-appb-T000005
From the results shown in Table 4, even in the case of using a water-cooled copper mold, an ingot having an average equivalent circle diameter of γ phase of 50 μm or less and a maximum equivalent circle diameter of 200 μm or less can be rolled. In other words, it was found that the rolling temperature range was wider as the average equivalent circle diameter and the maximum equivalent circle diameter of the γ phase were smaller.
 カーボン鋳型を用いて作製した場合と異なり、水冷銅鋳型を用いて作製した場合には、実施例6および実施例7に示したとおり、Ga濃度が同じである場合、鋳湯速度が遅い条件で作製された鋳塊と鋳湯速度が速い条件で作製された鋳塊との間には、γ相の平均円相当径に大きな差はなかった。また、水冷銅鋳型を用いて作製した鋳塊は、カーボン鋳型を用いて作製した鋳塊よりも、Ga濃度が同じである場合、γ相の平均円相当径および最大円相当径が小さいことがわかった。これらは、水冷銅鋳型のほうが、カーボン鋳型よりも冷却速度が大きいからであると考えられる。 Unlike the case where the carbon mold is used, when the water-cooled copper mold is used, as shown in Example 6 and Example 7, when the Ga concentration is the same, the casting speed is low. There was no significant difference in the average equivalent circle diameter of the γ phase between the produced ingot and the ingot produced under a condition where the casting speed was high. Ingots produced using a water-cooled copper mold have a smaller average equivalent circle diameter and maximum equivalent circle diameter of the γ phase when the Ga concentration is the same as that of an ingot produced using a carbon mold. all right. These are considered because the water-cooled copper mold has a higher cooling rate than the carbon mold.
 また、比較例4および実施例7で得られた鋳塊以外の鋳塊に対して、実施例1とは異なる圧下率を採用したこと以外は実施例1と同条件で圧延を行った。採用する圧下率を数種類選択して、その圧下率ごとに圧延を行った。採用した圧下率の中で、圧延板に割れが生じなかった最も高い圧下率(最大圧下率)を表5に示した。表5中の「B」、「D」および「―」は、それぞれ表3に示した「B」、「D」および「―」と同様の意味を表す。 Also, the ingots other than the ingots obtained in Comparative Example 4 and Example 7 were rolled under the same conditions as in Example 1 except that a reduction rate different from that in Example 1 was adopted. Several types of reduction ratios to be adopted were selected, and rolling was performed for each reduction ratio. Table 5 shows the highest rolling reduction (maximum rolling reduction) at which no cracks occurred in the rolled sheet among the rolling reductions employed. “B”, “D”, and “−” in Table 5 have the same meanings as “B”, “D”, and “—” shown in Table 3, respectively.
Figure JPOXMLDOC01-appb-T000006
 表5の結果より、本発明のCu-Ga合金においては、9~23%という大きな圧下率で圧延を行うことが可能であることがわかった。このため、本発明のCu-Ga合金から圧延によりCu-Ga合金スパッタリングターゲットを製造すれば、高い生産性が確保できる。
Figure JPOXMLDOC01-appb-T000006
From the results in Table 5, it was found that the Cu—Ga alloy of the present invention can be rolled at a large reduction rate of 9 to 23%. For this reason, when a Cu—Ga alloy sputtering target is produced from the Cu—Ga alloy of the present invention by rolling, high productivity can be secured.

Claims (4)

  1.  Gaを25~30質量%含有し、残部がCuであるCu-Ga合金であって、電子顕微鏡で得られた組織画像に現れるGa濃度が30~35質量%の相であるγ相の平均円相当径が50μm以下であり、最大円相当径が200μm以下であることを特徴とするCu-Ga合金。 An average circle of γ phase containing 25 to 30% by mass of Ga with a balance of Cu—Ga alloy having a Ga concentration of 30 to 35% by mass appearing in a structure image obtained by an electron microscope A Cu—Ga alloy having an equivalent diameter of 50 μm or less and a maximum equivalent circle diameter of 200 μm or less.
  2.  前記組織画像の面積に対するγ相の面積の合計の比率が5~70%であることを特徴とする請求項1に記載のCu-Ga合金。 2. The Cu—Ga alloy according to claim 1, wherein the ratio of the total area of the γ phase to the area of the tissue image is 5 to 70%.
  3.  スパッタリングターゲット製造用合金である請求項1または2に記載のCu-Ga合金。 The Cu-Ga alloy according to claim 1 or 2, which is an alloy for producing a sputtering target.
  4.  請求項3に記載のCu-Ga合金を圧延して得られるCu-Ga合金スパッタリングターゲット。 A Cu-Ga alloy sputtering target obtained by rolling the Cu-Ga alloy according to claim 3.
PCT/JP2011/063802 2010-07-06 2011-06-16 Cu-ga alloy, and cu-ga alloy sputtering target WO2012005098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180031289.8A CN102959107A (en) 2010-07-06 2011-06-16 Cu-Ga alloy, and Cu-Ga alloy sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010153880A JP2012017481A (en) 2010-07-06 2010-07-06 Cu-Ga ALLOY AND Cu-Ga ALLOY SPUTTERING TARGET
JP2010-153880 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012005098A1 true WO2012005098A1 (en) 2012-01-12

Family

ID=45441084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063802 WO2012005098A1 (en) 2010-07-06 2011-06-16 Cu-ga alloy, and cu-ga alloy sputtering target

Country Status (4)

Country Link
JP (1) JP2012017481A (en)
CN (1) CN102959107A (en)
TW (1) TW201204844A (en)
WO (1) WO2012005098A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031381A1 (en) * 2011-08-29 2013-03-07 Jx日鉱日石金属株式会社 Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP2013204081A (en) * 2012-03-28 2013-10-07 Jx Nippon Mining & Metals Corp Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
WO2014129648A1 (en) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 Sputtering target and production method therefor
JP2015028213A (en) * 2013-02-25 2015-02-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
CN104718308A (en) * 2012-10-17 2015-06-17 三菱综合材料株式会社 Cu-Ga binary sputtering target and method for producing same
TWI617681B (en) * 2013-08-01 2018-03-11 三菱綜合材料股份有限公司 Cu-ga alloy sputtering target and method of producing the same
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142175A (en) * 2012-01-11 2013-07-22 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP5672252B2 (en) * 2012-01-31 2015-02-18 新日鐵住金株式会社 Cu-Ga sputtering target and manufacturing method thereof
JP5960282B2 (en) * 2012-11-13 2016-08-02 Jx金属株式会社 Cu-Ga alloy sputtering target and method for producing the same
JP5882248B2 (en) * 2013-03-21 2016-03-09 Jx金属株式会社 Cu-Ga alloy sputtering target, casting product for the sputtering target, and production method thereof
JP5622012B2 (en) * 2013-03-29 2014-11-12 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method thereof
JP5743119B1 (en) * 2014-01-28 2015-07-01 三菱マテリアル株式会社 Cu-Ga alloy sputtering target and method for producing the same
JP6634750B2 (en) * 2014-09-22 2020-01-22 三菱マテリアル株式会社 Sputtering target and method for manufacturing the same
JP6147788B2 (en) * 2015-03-26 2017-06-14 Jx金属株式会社 Cu-Ga alloy sputtering target
WO2016158293A1 (en) * 2015-03-30 2016-10-06 三菱マテリアル株式会社 Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET
JP6583019B2 (en) * 2015-03-30 2019-10-02 三菱マテリアル株式会社 Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
CN109136635A (en) * 2018-11-13 2019-01-04 江苏迪丞光电材料有限公司 The preparation method and target of copper gallium alloy sputtering target material
CN110218981A (en) * 2019-06-28 2019-09-10 先导薄膜材料(广东)有限公司 A kind of copper gallium target and preparation method thereof
CN114086132B (en) * 2021-11-26 2023-11-17 先导薄膜材料(广东)有限公司 Copper-gallium target material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119749A (en) * 1984-07-06 1986-01-28 Hitachi Ltd Spectral reflectance variable alloy and recording material
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2009262234A (en) * 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd METHOD FOR ROLLING Cu-Ga ALLOY
JP2010116580A (en) * 2008-11-11 2010-05-27 Solar Applied Materials Technology Corp Sputtering target of copper-gallium alloy, method for manufacturing the same, and related application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119749A (en) * 1984-07-06 1986-01-28 Hitachi Ltd Spectral reflectance variable alloy and recording material
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2009262234A (en) * 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd METHOD FOR ROLLING Cu-Ga ALLOY
JP2010116580A (en) * 2008-11-11 2010-05-27 Solar Applied Materials Technology Corp Sputtering target of copper-gallium alloy, method for manufacturing the same, and related application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031381A1 (en) * 2011-08-29 2013-03-07 Jx日鉱日石金属株式会社 Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP2013204081A (en) * 2012-03-28 2013-10-07 Jx Nippon Mining & Metals Corp Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
CN104718308A (en) * 2012-10-17 2015-06-17 三菱综合材料株式会社 Cu-Ga binary sputtering target and method for producing same
TWI576446B (en) * 2012-10-17 2017-04-01 三菱綜合材料股份有限公司 Cu-ga binary alloy sputtering target and method of producing the same
US10283332B2 (en) 2012-10-17 2019-05-07 Mitsubishi Materials Corporation Cu—Ga binary alloy sputtering target and method of producing the same
WO2014129648A1 (en) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 Sputtering target and production method therefor
JP2015028213A (en) * 2013-02-25 2015-02-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same
TWI617681B (en) * 2013-08-01 2018-03-11 三菱綜合材料股份有限公司 Cu-ga alloy sputtering target and method of producing the same

Also Published As

Publication number Publication date
CN102959107A (en) 2013-03-06
JP2012017481A (en) 2012-01-26
TW201204844A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2012005098A1 (en) Cu-ga alloy, and cu-ga alloy sputtering target
WO2014129648A1 (en) Sputtering target and production method therefor
TWI500777B (en) High purity titanium ingot, its manufacturing method and titanium sputtering target
TWI617680B (en) Cu-Ga alloy sputtering target and manufacturing method thereof
JP4415303B2 (en) Sputtering target for thin film formation
TW201319287A (en) Sputtering target and method for producing same
US20110036534A1 (en) Process for producing lithium-containing alloy material
JP5708315B2 (en) Copper alloy sputtering target
CN107151753A (en) A kind of method that suppression A7N01 aluminum alloy surfaces coarse grain ring is produced
TWI438296B (en) Sputtering target and its manufacturing method
JP6274026B2 (en) Copper alloy sputtering target and method for producing copper alloy sputtering target
JP5750393B2 (en) Cu-Ga alloy sputtering target and method for producing the same
CN105950913B (en) A kind of High-strength high-plasticity Zn Cu Ti alloys and preparation method thereof
WO2018163861A1 (en) Cu-Ni ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
KR102175426B1 (en) High strength and high conductivity copper alloy and manufacturing method thereof
KR102044983B1 (en) High corrosion resistant magnesium alloy and method for manufacturing the same
KR101644283B1 (en) Hot rolled copper alloy sheet for sputtering target, and sputtering target
JP2018145518A (en) Cu-Ni alloy sputtering target
KR102655452B1 (en) Manufacturing method of high-purity fe-ni alloy for fine metal mask and high-purity fe-ni alloy manufactured thereby
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JP5510812B2 (en) Cu alloy film for wiring film and sputtering target material for forming wiring film
CN115821122A (en) Block nanometer-level-fault aluminum alloy material and preparation and cold rolling methods thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031289.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803434

Country of ref document: EP

Kind code of ref document: A1