WO2012004183A1 - Materiaux biodegradables a base de polymere et de proteines - Google Patents

Materiaux biodegradables a base de polymere et de proteines Download PDF

Info

Publication number
WO2012004183A1
WO2012004183A1 PCT/EP2011/060995 EP2011060995W WO2012004183A1 WO 2012004183 A1 WO2012004183 A1 WO 2012004183A1 EP 2011060995 W EP2011060995 W EP 2011060995W WO 2012004183 A1 WO2012004183 A1 WO 2012004183A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
nacas
biodegradable
polymer
proteins
Prior art date
Application number
PCT/EP2011/060995
Other languages
English (en)
Inventor
Jean-Luc Audic
Original Assignee
Ecole Nationale Superieure De Chimie De Rennes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Nationale Superieure De Chimie De Rennes filed Critical Ecole Nationale Superieure De Chimie De Rennes
Publication of WO2012004183A1 publication Critical patent/WO2012004183A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/52Mulches
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1438Covering materials therefor; Materials for protective coverings used for soil and plants, e.g. films, canopies, tunnels or cloches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/005Casein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/28Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture specially adapted for farming

Definitions

  • Biodegradable materials based on polymer and protein are described in detail below.
  • the invention relates to a biodegradable material having gas barrier properties.
  • gas barrier material is likely to be used in particular in the field of packaging as a packaging film or in the agricultural field especially as a mulching film.
  • Plastic materials with gas barrier properties are in great demand, particularly in the field of packaging.
  • Gas barrier materials consisting of a single layer of material are known as well as multilayer materials consisting of the combination of several layers, in practice between 3 and 6 or more layers. These multilayer materials are used in particular in the packaging of cosmetic products or that of pharmaceutical products.
  • these monolayer or multilayer materials have the disadvantage of being for the most part from oil, that is to say from a non-renewable raw material, and to be non-biodegradable.
  • An object of the present invention is to provide barrier materials to gases that are biodegradable and thus respond to a concern for the preservation of the environment.
  • An object of the invention is to provide such materials that are derived from a renewable resource.
  • biodegradable material having gas barrier properties, characterized in that it is obtained from a mixture of at least one biodegradable polymer, and proteins, said polymer being an aliphatic and / or aromatic polyester.
  • said at least one biodegradable aliphatic and / or aromatic polyester is selected from the group consisting of poly (butylene adipate-costephthalate) (PB AT), poly (butylene-co-succinate) (PBSA), polyhydroxyalkanoate (PHA), polycaprolactone (PCL) and polyester amide (PEA).
  • PB AT poly (butylene adipate-costephthalate)
  • PBSA poly (butylene-co-succinate)
  • PHA polyhydroxyalkanoate
  • PCL polycaprolactone
  • PET polyester amide
  • said proteins are of the casein type.
  • said caseins are of the type caseinate of sodium, potassium or calcium.
  • the material according to the invention further comprises:
  • At least one plasticizer such as glycerol
  • the polymer / protein mass ratio of the material according to the invention is between 99/1 and 50/50.
  • the plasticizer content of the material according to the present invention is between 0 and 40% cumulative weight of biodegradable polymer and proteins.
  • the water content of the material according to the present invention is between 0 and 20% cumulative weight of biodegradable polymer and proteins.
  • the material according to the invention is, in a variant, obtained by mixing its constituents in a mixer and then by hot pressing said mixture.
  • this material is preferably obtained by extrusion-inflation.
  • the invention also covers any use of a material according to the invention for the production of packaging films as well as for the production of agricultural mulch films.
  • FIG. 1 represents a specimen of the type 1BA
  • FIG. 2 represents examples of tensile curves obtained for plasticized films
  • FIG. 3 represents the evolution of the elongation at break as a function of the PBAT / NaCAS mixtures
  • FIG. 4 represents the evolution of the elastic modulus as a function of the PBAT / NaCAS mixtures
  • FIG. 5 represents the evolution of the stress at break as a function of the PBAT / NaCAS mixtures
  • FIG. 6 represents the elastic modules determined for the mixtures C, H and I
  • Figure 7 shows the elongations at break determined for mixtures C, H and I
  • FIG. 8 represents the traction-elongation curve obtained for the mixture
  • FIG. 9 represents the tensile-elongation curves obtained for a PBS 70% NaCAS 30% Gly 10%
  • FIG. 10 shows the tensile-elongation patterns obtained for a 70% NaCAS 30% Gly 20% PBS
  • Figure 11 shows the oxygen permeability of PBAT / NaCAS films compared to other commercial polymers.
  • This experimental device operates in a discontinuous manner and is composed of a main chamber in which turn 2 rotors in the form of a helix.
  • the volume of the chamber is 70 cm 3 and is limited by a manual shutter on the top allowing the incorporation of mixtures and additives.
  • the rotors are inscribed in the rear wall (TM1) which joins the main chamber (TM2), itself closed by a front plate (TM3). These 3 separate parts are heated electrically and thermo-regulated through channels through which compressed air passes.
  • a thermocouple (TM probe) placed in the chamber measures the material temperature. The torsional torque exerted on the rotors as well as the material temperature are measured continuously.
  • a mold was industrially shaped to order and allowed to obtain plates of homogeneous materials with a thickness of 2.00 mm.
  • This mold consists of 2 steel plates between which is arranged a frame of 2.00 mm thick.
  • the mechanical tests were performed on an Instron (Engineering Corp., Canton, MA) branded apparatus consisting of rubber jaws associated with a pneumatic clamping system.
  • the standard specimen is placed between the jaws and is pulled at a constant speed (10 or 50 mm.min _1 ).
  • the curves recording the evolution of the stress as a function of the elongation make it possible to calculate the elongation at break, the elastic modulus and the maximum stress.
  • the specimens (type 1BA) standard IS0527-2 have the following characteristics (figure 1):
  • a turbo mixer On an industrial scale, a turbo mixer has been used which makes it possible to obtain a premix based on sodium caseinate, glycerol and water.
  • the sodium caseinate formulated to be incorporated into the PB AT on an industrial scale is obtained in the form of a dry blend (or dry mix) corresponding to sodium caseinate powder impregnated with glycerol and water. This mixture is carried out in a turbo mixer brand CACCIA 200 CP.
  • the caseinate is introduced into the apparatus first and then the liquid (water and glycerol).
  • the selected speed is the slow speed, the mixing takes place for 2 minutes.
  • Additized sodium caseinate available in the form of a dry blend is extruded in a WER ER twin-screw extruder. It has 11 thermo-regulated zones and the speed of rotation of the twin-screw can be adjusted precisely as the rate of incorporation of the material (and thus the induced rotor torque).
  • the inflation extrusion was then performed on a CMG 4530 / HTM line equipped with a single screw.
  • the oxygen permeability measuring device used is a MOCON OXTRA. It makes it possible to determine the oxygen permeability of polymer films. The tests are carried out at 23 ° C., 0% relative humidity and 1 atm.
  • the mixtures are made in an internal mixer.
  • a premix is made in a mortar, the sodium caseinate is impregnated with glycerol (if there is in the formulation).
  • compositions of the mixtures and the processing parameters are shown in Table 2.
  • a chamber filling rate of 70% is used.
  • Hot pressing the melted mixtures obtained with Haake are directly pressed in a mold heated for 3 hours in order to obtain plates 2 mm thick (Table 2).
  • Table 2 composition of the blends and conditions of mixing in a Haake internal mixer (laboratory scale)
  • Dry-blend a dry or dry blend is obtained using a turbo mixer CACCIA 200 CP. This mixture corresponds to a powder impregnated with glycerol and water.
  • the glycerol contents vary between 10 and 50% by weight of NaCAS, the water contents vary between 5 and 30% by weight of NaCAS.
  • the caseinate powder is introduced first and then the liquid composed of water and glycerol. The device is set to slow speed, the mixing takes place for 2 minutes.
  • Table 3 Extrusion condition of the dry blend blend NaCAS / glycerol / water on twin-screw extruder.
  • the granules obtained at the mill outlet are extruded on the CMG 4530 / HTM line.
  • the line is started and stabilized with pure Ecoflex and then the formulated sodium caseinate granules are gradually introduced without interrupting the line.
  • the extrusion-inflation conditions are summarized in Table 4
  • Width of width 500 mm
  • Table 4 Extrusion-blowing conditions of the PBAT / NaCAS / glycerol / water mixtures on line CMG 4530 / HTM.
  • the material has a good elastic recovery (hysteresis), that is to say that the material both to find the basic structure.
  • the data extracted from the tensile-elongation curves give access to the values of elongation at break, tensile stress (maximum stress) and elastic modulus.
  • Figure 5 shows a decrease in breaking stress as the NaCAS content increases to 30% NaCAS (D) or the value reaches a lower limit of almost 26 MPa. For higher levels of NaCAS, the maximum stress then steadily increases to 35 MPa for (G) PBAT / NaCAS: 40/60 mixtures.
  • FIG. 8 shows the typical tensile curve obtained for the sample (J), having a high content of NaCAS and sufficiently plasticized to exhibit interesting characteristics.
  • a material with such a tensile-elongation curve can be used in the manufacture of food packaging: it has an elongation at break of more than 150% for a maximum stress of 18 MPa, and a steady increase of the stress in function of lengthening.
  • Oxygen permeability is determined on a Mocon OX-TRAN® 2/21 apparatus at 23 ° C, 0%> relative humidity and a pressure of 760 mm of mercury on 50 cm 2 samples.
  • Table 7 gives the oxygen permeability values of the materials obtained from the formulations (B), (C) and (D). This table shows that the higher the NaCAS content, the greater the oxygen impermeability increases.
  • Table 7 Evolution of the permeability as a function of the NaCAS content of the mixtures.
  • Films were manufactured on an industrial scale according to the protocol described above by extrusion, grinding and extrusion inflation.
  • the formulations correspond to a PBAT / NaCAS / Gly / Water mixture where the PB AT content varies between 50 and 100%, the NaCAS content varies between 50 and 100%, the glycerol content varies between 0 and 40% and the content in water varies between 0 and 40%.
  • an oxygen permeability of less than 1000 cc.mm.m "2 .24h _1 ( Figure 1 1).
  • the films obtained, a thickness of 50 to 100 ⁇ can be used in barrier applications given their mechanical properties and oxygen barrier.
  • the impermeability of the materials studied is exclusively related to the presence of the protein fraction (here in the form of sodium caseinate). Also, in the explored formulations where the PB AT has been replaced by other biodegradable polyesters (PBS, PHA) the barrier properties will be estimated similar. Table 8 summarizes patents for materials that may be related to this patent.
  • FR2766199 A polyester film is coated with a polyvinyl alcohol layer. It is a multilayer application requiring a suitable implementation that does not use biodegradable or compostable materials.
  • PLA is mixed with PBAT or PHB. Barrier properties are worse than with our material.
  • PLA polylactic acid is not a protein and therefore differs from sodium caseinate.
  • CN101550275 Although the soybean and xylan protein isolate film described is biobased and biodegradable, it is not a mixture with PBAT and no claim is made about the possible barrier properties of this product. material.
  • EP1460109 The described film is composed of PA and polyolefin has barrier properties but is not made of biodegradable or biobased materials. It contains neither PBAT nor sodium caseinate.
  • Table 8 Patents related to themes and applications close to the technology described in this document.

Abstract

Matériau biodégradable possédant des propriétés barrières aux gaz, caractérisé en ce qu'il est obtenu à partir d'un mélange d'au moins un polymère biodégradable et de protéines, ledit polymère étant un polyester aliphatique et/ou aromatique. Un tel matériau peut être utilisé pour la réalisation de film d'emballages ou de films de paillage agricole.

Description

Matériaux biodégradables à base de polymère et de protéines.
Domaine de l'invention
L'invention concerne un matériau biodégradable présentant des propriétés de barrière aux gaz.
Un tel matériau dit « matériau barrière aux gaz » est susceptible d'être utilisé notamment dans le domaine de l'emballage à titre de film d'emballage ou dans le domaine agricole notamment comme film de paillage. Art antérieur
Les matériaux plastiques présentant des propriétés de barrières aux gaz sont très recherchés notamment dans le domaine de l'emballage.
Il sont notamment utilisés pour améliorer la conservation des aliments.
On connaît des matériaux barrières aux gaz constitués d'une seule couche de matériau ainsi que des matériaux multicouches constitués par l'association de plusieurs couches, en pratique entre 3 et 6 couches ou plus. Ces matériaux multicouches sont notamment utilisés dans le conditionnement des produits cosmétiques ou celui des produits pharmaceutiques.
Toutefois, ces matériaux monocouches ou multicouches présentent l'inconvénient d'être pour la majorité issus du pétrole, c'est-à-dire d'une matière première non renouvelable, et d'être non biodégradables.
Ils contribuent donc à l'augmentation du volume des déchets, notamment municipaux, liés à l'emballage et au suremballage, et coroUairement à l'augmentation des coûts d'enfouissement, problème qui s'accroît du fait de la diminution du nombre de sites d'enfouissement,
Ces matériaux, tout particulièrement les matériaux multicouches, présentent pour certains aussi l'inconvénient d'être difficilement recyclables.
L'incinération de tels déchets contribue par ailleurs à l'accroissement du taux de C02 atmosphérique. Certains matériaux barrières aux gaz sont d'ailleurs revêtus de dépôts métallisés qui ne peuvent pas être incinérés et ne sont pas recyclables.
Au rang des inconvénients de nombreux matériaux barrières au gaz du marché, on citera aussi le fait que certains matériaux multicouches sont sujet à une délamination rapide et sont coûteux à produire,
Un objectif de la présente invention est de proposer des matériaux barrières aux gaz qui sont biodégradables et répondent ainsi à un souci de préservation de 1 ' environnement
Un objectif de l'invention est de proposer de tels matériaux qui sont issus d'une ressource renouvelable.
On connaît dans l'art antérieur des matériaux barrières constitués de protéines seules.
Ces matériaux possèdent les propriétés requises pour une utilisation dans l'emballage alimentaire traditionnel : ils sont souples, élastiques, extensibles et relativement transparents. Le glycérol et l'eau permettent de plastifier le caséinate de sodium et d'améliorer sa dispersion dans la phase polyester biodégradable. La phase protéique plastifiée confère au matériau final ses propriétés barrières vis-à-vis de l'oxygène et du dioxyde de carbone.
Toutefois les matériaux barrières aux gaz obtenus à partir de protéines seules présentent l'inconvénient d'être solubles dans l'eau ce qui limite considérablement leur champ d'utilisation. C'est donc encore un objectif de l'invention de fournir un matériau barrière aux gaz qui ne soit pas soluble dans l'eau. Exposé de l'invention
Les objectifs cités ci-dessus, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne un matériau biodégradable possédant des propriétés barrières aux gaz, caractérisé en ce qu'il est obtenu à partir d'un mélange d'au moins un polymère biodégradable, et de protéines, ledit polymère étant un polyester aliphatique et/ou aromatique.
Préférentiellement, ledit au moins un polyester aliphatique et/ou aromatique biodégradable est choisi dans le groupe constitué par le poly(butylene adipate-co- terephtalate) (PB AT), le poly(butylene-co-succinate) (PBSA), le polyhydroxyalkanoate (PHA), la polycaprolactone (PCL) et la polyester amide (PEA).
Préférentiellement, lesdites protéines sont du genre caséine.
Avantageusement, lesdites caséines sont du genre caséinate de sodium, de potassium ou de calcium.
Préférentiellement, le matériau selon l'invention comprend en outre :
au moins un plastifiant tel que le glycérol
et/ou
de l'eau.
Préférentiellement, le ratio en masse polymère/protéines du matériau selon l'invention est compris entre 99/1 et 50/50.
Préférentiellement, la teneur en plastifiant du matériau selon la présente invention est comprise entre 0 et 40 % en poids cumulés de de polymère biodégradable et de protéines.
Préférentiellement, la teneur en eau du matériau selon la présente invention est comprise entre 0 et 20 % en poids cumulés de polymère biodégradables et de protéines.
Le matériau selon l'invention est, selon une variante, obtenu par mélange de ses constituants dans un mélangeur puis par pressage à chaud dudit mélange.
Toutefois, préférentiellement, ce matériau est obtenu par extrusion-gonflage L'invention couvre également toute utilisation d'un matériau selon l'invention pour la réalisation de films d'emballages ainsi que pour la réalisation de films paillage agricole.
Modes de réalisation
L'invention, ainsi que les avantages qu'elle présente, seront plus facilement compris grâce à la description qui va suivre de modes non limitatifs de réalisation de celle-ci, en référence aux dessins dans lesquels : la figure 1 représente une éprouvette de type 1BA ;
- la figure 2 représente des exemples de courbes de traction obtenues pour des films plastifiés ;
la figure 3 représente l'évolution de l'allongement à la rupture en fonction des mélanges PBAT/NaCAS ;
la figure 4 représente l'évolution du module élastique en fonction des mélanges PBAT/NaCAS ;
la figure 5 représente l'évolution de la contrainte à la rupture en fonction des mélanges PBAT/NaCAS ;
la figure 6 représente les modules élastiques déterminé pour les mélanges C, H et l ; la figure 7 représente les allongements à la rupture déterminés pour les mélanges C, H et I ;
la figure 8 représente la courbe de traction-allongement obtenue pour le mélange
J ;
la figure 9 représente les courbes de traction-allongement obtenue pour un PBS 70% NaCAS 30% Gly 10% ;
la figure 10 représente les ourbes de traction-allongement obtenue pour un PBS 70% NaCAS 30% Gly 20% ;
la figure 1 1 représente la perméabilité à l'oxygène de films PBAT/NaCAS en comparaison d'autres polymères commerciaux.
Produits :
Les polymères selon le tableau 1 suivants ont été utilisés dans le cadre de la en œuvre des modes de réalisation de l'invention.
Figure imgf000004_0001
Tableau 1 : matériaux et additifs utilisés
Les matériaux selon ces différents modes de réalisation ont été fabriqués à l'échelle du laboratoire et testés et fabriqués à l'échelle industrielle. Les équipements utilisés pour ces fabrications et les étapes de fabrication sont détaillés ci-après, ainsi que la caractérisation des matériaux obtenus.
Equipements
Fabrication et tests à l'échelle du laboratoire Les mélanges effectués au laboratoire ont été réalisés sur un mélangeur interne
Haake poly drive.
Ce dispositif expérimental fonctionne de manière discontinue et est composé d'une chambre principale dans laquelle tournent en sens contraire 2 rotors en forme d'hélice. Le volume de la chambre est de 70 cm3 et est limité par un obturateur manuel sur le dessus permettant l'incorporation des mélanges et des additifs. Les rotors sont inscrits dans la paroi arrière (TM1) qui joint la chambre principale (TM2), elle-même fermée par une plaque frontale (TM3). Ces 3 parties distinctes sont chauffées électriquement et thermo-régulées par l'intermédiaire de canaux traversés par de l'air comprimé. Un thermocouple (sonde TM) placé dans la chambre mesure la température matière. Le couple de torsion exercé sur les rotors ainsi que la température matière sont mesurés en continu. Trois paramètres machine peuvent être ajustés : la température (TM, TM1, TM2 et TM3), le taux de remplissage de la chambre principale, la vitesse de rotation des rotors. Les mélanges obtenus ont été pressés à l'aide d'une presse hydraulique chauffante Carver modèle 3860-416 composée de deux plateaux chauffants, d'un levier de pression. Des pressions de l'ordre de 11 tonnes peuvent être atteintes.
Un moule a été façonné industriellement sur commande et a permis d'obtenir des plaques de matériaux homogènes d'une épaisseur de 2,00 mm. Ce moule est composé de 2 plaques en acier entre lesquelles est disposé un cadre de 2,00 mm d'épaisseur.
Un emporte pièce permettant la découpe d'éprouvettes de traction normalisées (ISO 527-2B, type 1BA) dans les plaques de 2 mm obtenues sous presse a été mis en oeuvre.
Tous les mélanges réalisés au mélangeur interne ont été pressés de manière à obtenir des plaques de 2 mm d'épaisseur dans lesquelles des éprouvettes de traction normalisées ont été découpées.
Les tests mécaniques ont été effectués sur un appareil de marque Instron (engineering Corp., Canton, MA) composé de mors en caoutchouc associés à un système pneumatique de serrage. L'éprouvette normalisée est placée entre les mors et subit une traction à vitesse constante (10 ou 50 mm.min_1). Les courbes enregistrant l'évolution de la contrainte en fonction de l'allongement permettent de calculer l'allongement à la rupture, le module élastique et la contrainte maximale.
Les éprouvettes (type 1BA) norme IS0527-2 possèdent les caractéristiques suivantes (figure 1):
Longueur étirable : 53 mm
Largeur centrale : 5,05 mm
Epaisseur moyenne : 1,86 mm
- Surface : 9,393 mm2
Grâce à l'appareil de traction, il a été possible d'obtenir pour chacun des échantillons des courbes de traction qui expriment l'évolution de la contrainte en fonction de l'allongement. La figure 2 représente les courbes typiques obtenues et les grandeurs mesurées. Ces courbes vont permettre de calculer différents paramètres qui décrivent le comportement mécanique d'un matériau :
l'allongement à la rupture
le module élastique
la contrainte maximum
L'analyse de ces courbes de traction apporte des informations sur le caractère plastique et élastique du matériau. Enfin, durant les différents tests de tractions, lors de la rupture, il est possible (ou non) d'observer une reprise élastique (hystérésis), c'est-à- dire que la matière tend à retrouver la structure de base.
Fabrication et tests à l'échelle industrielle :
A l'échelle industrielle on a utilisé un turbo mélangeur permettant d'obtenir un pré-mélange à base de caséinate de sodium, de glycérol et d'eau. Le caséinate de sodium formulé pour être incorporé au PB AT à l'échelle industrielle est obtenu sous forme d'un dry blend (ou mélange sec) correspondant à de la poudre de caséinate de sodium imprégnée de glycérol et d'eau. Ce mélange s'effectue dans un turbo mélangeur de marque CACCIA 200 CP. Le caséinate est introduit dans l'appareil en premier puis le liquide (eau et glycérol). La vitesse sélectionnée est la vitesse lente, le malaxage se déroule pendant 2 minutes. Le caséinate de sodium additivé disponible sous forme d'un dry blend est extrudé dans une extrudeuse bi-vis de marque WER ER. Elle dispose de 11 zones thermo-régulées et la vitesse de rotation de la bi-vis peut être réglée précisément comme le débit d'incorporation de la matière (et donc le couple rotor induit).
L'extrusion gonflage a ensuite été réalisée sur une ligne CMG 4530 / HTM équipée d'une monovis. Dont les paramètres sont les suivants : diamètre de vis 45 mm, rapport L/D = 30, puissance de chauffe 9,9 KW ; Outillage : filière diamètre 100, poinçon diamètre 98
L'appareil de mesure de la Perméabilité à l'oxygène : de mesure utilisé est un OXTRA de MOCON. Il permet de déterminer la perméabilité à l'oxygène de films polymères. Les tests sont réalisés à 23°C, 0% d'humidité relative et 1 atm.
Fabrication : Mélanges à l'échelle laboratoire :
Les mélanges sont réalisés en mélangeur interne. Un pré-mélange est réalisé dans un mortier, le caséinate de sodium y est imprégné de glycérol (s'il y en a dans la formulation).
Les compositions des mélanges et les paramètres de mises en œuvre sont indiqués dans le tableau 2. Un taux de remplissage de la chambre de 70% est utilisé.
Pressage à chaud : les mélanges fondus obtenus au Haake sont directement pressés dans un moule chauffé pendant 3 heures afin d'obtenir des plaques de 2 mm d'épaisseur (Tableau 2).
Figure imgf000006_0001
Tableau 2 : composition des mélanges et conditions de mise en œuyre en mélangeur interne Haake (échelle laboratoire)
D'autres formulations ont été étudiées sur les mêmes bases, seul le polyester (PBAT) a été remplacé par d'autres polyesters commerciaux cités en tableau 1 : PHA et PBS afin de vérifier l'extrapolation des résultats à l'ensemble des polyesters biodégradables. Dans tous les cas, les mélanges ont été possibles et ont donné des résultats très similaires (aspect homogène, souplesse...) Mélanges à l'échelle industrielle
1) Dry-blend : un mélange sec ou dry blend est obtenu à l'aide d'un turbo mélangeur CACCIA 200 CP. Ce mélange correspond à une poudre imprégnée de glycérol et d'eau. Les teneurs en glycérol varient entre 10 et 50 % en masse de NaCAS, les teneurs en eau varient entre 5 et 30 % en masse de NaCAS. La poudre de caséinate est introduite en premier puis le liquide composé d'eau et de glycérol. L'appareil est réglé sur vitesse lente, le malaxage se déroule pendant 2 minutes.
2) Extrusion bi-vis du dry blend NaCAS plastifié : le mélange sec est extrudé sur l'extrudeuse bi-vis WERNER. La bi-vis est équipée d'une zone de dégazage qui permet d'évacuer la vapeur d'eau. Les paramètres de mise en œuvre sont résumés dans le tableau 3. Le système de découpe n'étant pas adapté, c'est un jonc qui est récupéré et broyé sur un broyeur rapide SECMI à 1400 tours/min.
Figure imgf000007_0001
Tableau 3 : Condition d'extrusion du mélange dry blend NaCAS/glycérol/eau sur extrudeuse bi-vis.
3) Extrusion-gonf age :
Les granulés obtenus en sortie de broyeur sont extrudés sur la ligne CMG 4530 / HTM. La ligne est démarrée et stabilisée avec de l'Ecoflex pur puis on introduit graduellement les granulés de caséinate de sodium formulés sans interrompre la ligne. Les conditions d'extrusion-gonflage sont résumées dans le tableau 4
REGLAGE Extrusion gonflage
Ligne CMG 4530 / HTM
Filière ø 100 - poinçon ø 98
Essai N°l
Ecoflex FBX 7011 + 20% caséine
Température extrudeuse et filière
Zone de chauffe (ZI) : 140 °C
Zone de chauffe (Z2) : 140 °C
Zone de chauffe (Z3) : 140 °C
Zone de chauffe (Z4) : 130 °C
Zone de chauffe filière (Z5) : 125 °C
Zone de chauffe filière (Z6) : 125 °C
Zone de chauffe filière (Z7) : 125 °C
Extrudeuse et tirage
Vitesse d' extrusion : 31 tr/mn
Ampérage moteur : 14 A
Vitesse de tirage : 4 m/mn
Air extérieur : 8 %
Paramètres réels
Pression en bout de vis : 77 b
Largeur de laize : 500 mm
Tableau 4 : Conditions d'extrusion-gonflage des mélanges PBAT/ NaCAS/glycérol/eau sur ligne CMG 4530/HTM.
Caractérisations.
1) Propriétés mécaniques : 1-1) Etude comparative sur le rapport massique PBAT/NaCAS
Les tests de tractions sont effectués sur les différents mélanges décrits dans le tableau 2.
Lors de la rupture, le matériau présente une bonne reprise élastique (hystérésis), c'est-à-dire que la matière tant à retrouver la structure de base. Les données extraites des courbes de traction-allongements permettent d'accéder aux valeurs d'allongement à la rupture, de contrainte à la rupture (contrainte maximum) et de module élastique.
L'évolution de l'allongement à la rupture (figure 3) montre clairement une diminution de l'élongation en fonction de la teneur en NaCAS. Pour des teneurs de l'ordre de 10 à 20% (w/w), il y a une diminution de 30% environ de l'allongement à la rupture par rapport à un matériau composé uniquement de PBAT. Cependant les valeurs d'élongation pour ces matériaux restent supérieures à 350% ce qui confirme que l'élasticité PBAT est conservée lors de l'association avec de faible teneur en NaCAS. En revanche pour des teneurs supérieures à 30%> (w/w) en NaCAS, l'allongement à la rupture diminue fortement pour atteindre des valeurs inférieures à 30%> d'élongation. 30 % est donc la teneur maximale de caseinate pour conserver un matériau aux propriétés acceptables. L'étude du module élastique en fonction de la teneur en NaCAS dont les résultats sont indiqués à la figure 4 confirme les données précédentes : plus la teneur en NaCAS est importante au sein du matériau plus le module élastique augmente. L'évolution du module est faible pour des matériaux possédant moins de 40%> (w/w) de NaCAS avec une augmentation rapide du module pour des teneurs supérieures.
La figure 5 montre une diminution de la contrainte à la rupture lorsque la teneur en NaCAS augmente jusqu'à une teneur de 30 % en NaCAS (D) ou la valeur atteint une limite inférieure à près de 26 MPa. Pour des teneurs supérieures en NaCAS, la contrainte maximale augmente ensuite régulièrement pour atteindre 35 MPa pour les mélanges (G) PBAT/NaCAS : 40/60.
L'association du NaCAS avec le PBAT est possible jusqu'à des proportions de l'ordre de 25-35%) (w/w) en NaCAS tout en conservant des caractéristiques mécaniques intéressantes. Pour ces compositions les propriétés mécaniques sont compatibles avec des applications dans l'emballage alimentaire, les matériaux sont homogènes et les protéines ne sont pas dégradées. En revanche il semble exister une valeur limite d'incorporation de NaCAS au sein de la matrice PBAT déterminée pour une teneur d'environ 30-35%) (w/w). Pour les compositions ayant une teneur supérieure cela engendre une forte diminution de l'allongement à la rupture (inférieur à 30%), ainsi qu'un brunissage de la matière (dégradation des protéines) et l ' apparition d'hétérogénéités au sein du matériau.
1-2) Plastification des mélanges PBAT/NaCAS La présence de glycérol, utilisé comme plastifiant, dans les mélanges PBAT/NaCAS permet d'accroître notablement les propriétés mécaniques : le module élastique (figure 6) diminue considérablement lorsque l'on incorpore le plastifiant, passant de 430 MPa pour un échantillon non plastifié (C) à 68 MPa pour un échantillon contenant 16,7 % en masse de glycérol (I). L'ajout de plastifiant permet, dans une moindre mesure, d'accroître l'allongement à la rupture (figure 7), puisque l'on passe d'un allongement maximum de 380 % pour le mélange non plastifié (C) à près de 410 % pour le mélange (I) contenant 16,7 % de glycérol.
La figure 8 représente la courbe de traction typique obtenue pour l'échantillon (J), ayant une teneur importante en NaCAS et suffisamment plastifié pour présenter des caractéristiques intéressantes. Un matériau présentant une telle courbe de traction- allongement peut être utilisé dans la fabrication d'emballage alimentaire : il possède un allongement à la rupture de plus de 150 % pour une contrainte maximum de 18 MPa, et une augmentation régulière de la contrainte en fonction de l'allongement.
1-3) Extrapolation à d'autres mélanges.
Comme nous l'avons précisé précédemment (page 4, ligne 9) d'autres mélanges ont été testés. A titre d'exemple, des tests de traction-allongement ont été réalisées pour des mélanges à base de PBS. Les tableaux 5 et 6 donnent les valeurs de tractions et d'allongement pour des mélanges PBS-NaCAS-Gly. Les courbes sont représentées sur les figures 9 et 10.
Figure imgf000010_0001
Figure imgf000010_0002
Tableau 5 : Tests de traction-allongement pour un mélange PBS 70% - NaCAS 30% - Gly 10% du mélange NaCAS + PBS
Figure imgf000011_0001
Figure imgf000011_0002
Tableau 6 : Tests de traction-allongement pour un mélange PBS 70% -
NaCAS 30% - Gly 20% du mélange PBS + NaCAS
2) Perméabilité à l'oxygène :
2.1) Matériaux obtenus au laboratoire (mélangeur interne et presse chauffante)
La perméabilité à l'oxygène est déterminée sur un appareil Mocon OX-TRAN® 2/21 à 23°C, à 0 %> d'humidité relative et une pression de 760 mm de mercure sur des échantillons de 50 cm2.
Le tableau 7 donne les valeurs de perméabilité à l'oxygène des matériaux obtenus à partir des formulation (B),(C) et (D). Ce tableau montre que plus la teneur en NaCAS augmente, plus l'imperméabilité à l'oxygène augmente.
PBAT/NaCAS/ Nom du OTR
Glycerol mélange cc.mm.m~2 .24h_1
90/10/0 B 54960
80/20/0 C 47908
70/30/0 D 38400
Tableau 7 : Evolution de la perméabilité en fonction de la teneur en NaCAS des mélanges.
2.2) Matériaux obtenus à l'échelle industrielle
Des films ont été fabriqués à l'échelle industrielle selon le protocole décrit précédemment par extrusion, broyage puis extrusion gonflage. Les formulations correspondent à un mélange PBAT/NaCAS/Gly/Eau où la teneur en PB AT varie entre 50 et 100%, la teneur en NaCAS varie entre 50 et 100%, la teneur en glycérol varie entre 0 et 40 % et la teneur en eau varie entre 0 et 40 %. Dans les conditions optimales de mélange et pour des compositions adaptées, il est possible d'atteindre une perméabilité à l'oxygène inférieure à 1000 cc.mm.m"2 .24h_1 (figure 1 1). Les films obtenus, d'une épaisseur de 50 à 100 μιη peuvent être utilisés dans des applications barrières compte tenus de leurs propriétés mécanique et barrière à l'oxygène.
2.3) Extension à d'autres mélanges à base de polyester biodégradables
L'imperméabilité des matériaux étudiés est exclusivement liée à la présence de la fraction protéique (ici sous forme de caséinate de sodium). Aussi, dans les formulations explorées où le PB AT a été remplacé par d'autres polyesters biodégradables (PBS, PHA) les propriétés barrières seront estimées similaires. Le tableau 8 récapitule les brevets portant sur des matériaux qui pourraient être en rapport avec le présent brevet.
FR2766199 : Un film polyester est revêtu d'une couche d'alcool polyvinylique. Il s'agit d'une application multicouche nécessitant une mise en œuvre adaptée n'utilisant pas de matériaux biodégradables ni compostables.
US2007/0037912 : Du PLA est mélangé à du PBAT ou du PHB. Les propriétés barrières sont moins bonnes qu'avec notre matériau. Le PLA acide polylactique, n'est pas une protéine et diffère donc du caséinate de sodium.
CN101550275 : Le film à base d' isolât de protéine de soja et de xylan décrit est certes biosourcés et biodégradable mais il ce n'est pas un mélange avec du PBAT et de plus aucune revendication n'est faite sur les propriétés barrières éventuelles de ce matériau. EP1460109 : Le film décrit est composé de PA et de polyoléfine possède des propriétés barrières mais n'est pas constitué de matériaux biodégradable ou biosourcé. Il ne contient ni PBAT ni caséinate de sodium.
Figure imgf000012_0001
Tableau 8 : brevets relevant de thématiques et d'applications proches de la technologie décrite dans ce document.

Claims

REVENDICATIONS
1. Matériau biodégradable possédant des propriétés barrières aux gaz, caractérisé en ce qu'il est obtenu à partir d'un mélange d'au moins un polymère biodégradable, et de protéines, ledit polymère étant un polyester aliphatique et/ou aromatique.
2. Matériau selon la revendication 1, caractérisé en ce ledit au moins un polyester aliphatique et/ou aromatique biodégradable est choisi dans le groupe constitué par le poly(butylene adipate-co-terephtalate) (PB AT), le poly(butylene-co-succinate) (PBSA), le polyhydroxyalkanoate (PHA), la polycaprolactone (PCL) et la polyester amide (PEA).
3. Matériau selon la revendication 1, caractérisé en ce que lesdites protéines sont du genre caséine.
4. Matériau selon la revendication 3, caractérisé en ce que lesdites caséines sont du genre caséinate de sodium, de potassium ou de calcium.
5. Matériau selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre : au moins un plastifiant tel que le glycérol et/ou de l'eau.
6. Matériau selon l'une quelconque des revendications 1 à 5 caractérisé en ce que son ratio en masse polymère/protéines est compris entre 99/1 et 50/50.
7. Matériau selon l'une quelconque des revendications 5 ou 6 caractérisé en ce que sa teneur en plastifiant est comprise entre 0 et 40 % en poids cumulés de de polymère biodégradable et de protéines.
8. Matériau selon l'une quelconque des revendications 5 à 7 caractérisé en ce que sa teneur en eau est comprise entre 0 et 20 % en poids cumulés de polymère biodégradables et de protéines.
9. Matériau selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'il est obtenu par mélange de ses constituants dans un mélangeur puis par pressage à chaud dudit mélange.
10. Matériau selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'il est obtenu par extrusion-gonflage
11. Utilisation d'un matériau selon l'une quelconque des revendications 1 à 8 pour la réalisation de films d'emballages.
12. Utilisation d'un matériau selon l'une quelconque des revendications 1 à 8 pour la réalisation de films paillage agricole.
PCT/EP2011/060995 2010-07-05 2011-06-30 Materiaux biodegradables a base de polymere et de proteines WO2012004183A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1002815 2010-07-05
FR1002815A FR2962129B1 (fr) 2010-07-05 2010-07-05 Materiau polymere biodegradable barriere et film contenant ce materiau

Publications (1)

Publication Number Publication Date
WO2012004183A1 true WO2012004183A1 (fr) 2012-01-12

Family

ID=43014502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/060995 WO2012004183A1 (fr) 2010-07-05 2011-06-30 Materiaux biodegradables a base de polymere et de proteines

Country Status (2)

Country Link
FR (1) FR2962129B1 (fr)
WO (1) WO2012004183A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773624A (zh) * 2021-09-14 2021-12-10 中南大学 一种聚乳酸类共混改性材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957214B (zh) * 2017-12-14 2022-03-15 上海东升新材料有限公司 一种纳米氧化物及大豆分离蛋白改性聚己二酸/对苯二甲酸丁二酯复合材料及其制备方法
JPWO2021241712A1 (fr) * 2020-05-28 2021-12-02
IT202100029519A1 (it) * 2021-11-23 2023-05-23 Plasta Rei S R L Materiale polimerico con componente di origine biologica

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766199A1 (fr) 1997-07-17 1999-01-22 Toray Plastics Europ Sa Films polyester composites a proprietes barriere
WO1999043497A1 (fr) * 1998-02-25 1999-09-02 Campina Melkunie B.V. Kaasgroep Stratifie biodegradable et feuille d'emballage comprenant ce stratifie
EP1460109A1 (fr) 2003-03-17 2004-09-22 Atofina Mélanges de polyamide et de polyoléfine à matrice polyamide et contenant des nanocharges
US20060043629A1 (en) * 2004-08-27 2006-03-02 Board Of Trustees Of Michigan State University Cellulosic biomass soy flour based biocomposites and process for manufacturing thereof
US20070037912A1 (en) 2005-08-12 2007-02-15 Board Of Trustees Of Michigan State University Biodegradable polymeric nanocomposite compositions particularly for packaging
US20080274885A1 (en) * 2005-12-22 2008-11-06 Basf Se Biodegradable Seed Dressing Formulations
CN101550275A (zh) 2009-04-23 2009-10-07 桂林工学院 可食性大豆分离蛋白/木聚糖复合膜及其制备方法
WO2010133560A1 (fr) * 2009-05-19 2010-11-25 Wacker Chemie Ag Bioplastiques
WO2011001128A1 (fr) * 2009-07-03 2011-01-06 Ulice Procédé de production de matériau biodégradable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766199A1 (fr) 1997-07-17 1999-01-22 Toray Plastics Europ Sa Films polyester composites a proprietes barriere
WO1999043497A1 (fr) * 1998-02-25 1999-09-02 Campina Melkunie B.V. Kaasgroep Stratifie biodegradable et feuille d'emballage comprenant ce stratifie
EP1460109A1 (fr) 2003-03-17 2004-09-22 Atofina Mélanges de polyamide et de polyoléfine à matrice polyamide et contenant des nanocharges
US20060043629A1 (en) * 2004-08-27 2006-03-02 Board Of Trustees Of Michigan State University Cellulosic biomass soy flour based biocomposites and process for manufacturing thereof
US20070037912A1 (en) 2005-08-12 2007-02-15 Board Of Trustees Of Michigan State University Biodegradable polymeric nanocomposite compositions particularly for packaging
US20080274885A1 (en) * 2005-12-22 2008-11-06 Basf Se Biodegradable Seed Dressing Formulations
CN101550275A (zh) 2009-04-23 2009-10-07 桂林工学院 可食性大豆分离蛋白/木聚糖复合膜及其制备方法
WO2010133560A1 (fr) * 2009-05-19 2010-11-25 Wacker Chemie Ag Bioplastiques
WO2011001128A1 (fr) * 2009-07-03 2011-01-06 Ulice Procédé de production de matériau biodégradable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773624A (zh) * 2021-09-14 2021-12-10 中南大学 一种聚乳酸类共混改性材料及其制备方法

Also Published As

Publication number Publication date
FR2962129A1 (fr) 2012-01-06
FR2962129B1 (fr) 2012-08-10

Similar Documents

Publication Publication Date Title
Raj et al. Low density polyethylene/starch blend films for food packaging applications
EP2310447B1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
Bondeson et al. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites
Pushpadass et al. Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films
Bondeson et al. All cellulose nanocomposites produced by extrusion
EP0579546B1 (fr) Composition thermoformable, son procédé de préparation et son utilisation pour l'obtention d'articles thermoformés
WO2012004183A1 (fr) Materiaux biodegradables a base de polymere et de proteines
Moghaddam et al. Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile, thermal and moisture sorption properties of plasticized polylactic acid/TPS blends
WO2011117522A1 (fr) Procédé de préparation d'un matériau composite élastomérique
CA2195797A1 (fr) Film ayant une faible permeabilite aux hydrocarbures
WO2020008029A1 (fr) Matiere plastique à haute teneur en pla comprenant un ester de citrate
Podolyák et al. Hydrogen bonding interactions in poly (ethylene-co-vinyl alcohol)/lignin blends
WO2008003671A2 (fr) Film biodegradable
EP3221390A1 (fr) Composition de polyester et d'amidon thermoplastique aux propriétés mécaniques améliorées
EP2596051A1 (fr) Granule thermoplastique a base de caseine et/ou de caseinate, composition et procede de fabrication
WO2011001128A1 (fr) Procédé de production de matériau biodégradable
Aversa et al. Addition of thermoplastic starch (TPS) to binary blends of poly (lactic acid)(PLA) with poly (butylene adipate-co-terephthalate)(PBAT): Extrusion compounding, cast extrusion and thermoforming of home compostable materials
CA2342723A1 (fr) Materiau biodegradable a base de polymere et de farine cerealiere, son procede de fabrication et ses utilisations
FR2705965A1 (fr) Composition pour la fabrication d'un film essentiellement biodégradable et film ainsi obtenu.
EP3494158B1 (fr) Polyester thermoplastique semi-cristallin pour la fabrication de films bi-orientés
WO2021005205A1 (fr) Matiere plastique à haute teneur en pla comprenant du ppgdge
EP3818105A1 (fr) Matiere plastique à haute teneur en pla comprenant des oligomeres d'acide lactique
WO2023031272A1 (fr) Méthode de fabrication de films étirables biodégradables
CA2595808A1 (fr) Materiau multicouches au moins partiellement biodegradable et procede de fabrication correspondant
FR3087384A1 (fr) Film biodégradable à couches multiples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11728283

Country of ref document: EP

Kind code of ref document: A1