WO2012002499A1 - Substrate treating device and substrate cooling method - Google Patents

Substrate treating device and substrate cooling method Download PDF

Info

Publication number
WO2012002499A1
WO2012002499A1 PCT/JP2011/065069 JP2011065069W WO2012002499A1 WO 2012002499 A1 WO2012002499 A1 WO 2012002499A1 JP 2011065069 W JP2011065069 W JP 2011065069W WO 2012002499 A1 WO2012002499 A1 WO 2012002499A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
stage
pressure
space
chamber
Prior art date
Application number
PCT/JP2011/065069
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 佳詞
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012522696A priority Critical patent/JP5462946B2/en
Publication of WO2012002499A1 publication Critical patent/WO2012002499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate cooling method including a load lock chamber into which a substrate is carried in or out. More specifically, the present invention relates to a substrate processing apparatus and a substrate cooling method capable of taking out a substrate out of the load lock chamber after appropriately cooling a heated substrate in the load lock chamber.
  • a semiconductor manufacturing apparatus generally has a plurality of processing chambers for processing a semiconductor substrate under reduced pressure or in vacuum.
  • the semiconductor substrate is continuously introduced into a plurality of processing chambers in which the manufacturing process is performed according to a predetermined manufacturing process.
  • a predetermined process is performed on the substrate.
  • the inside of the processing chamber is normally kept in vacuum before and after the start of a predetermined process according to the manufacturing process. For this reason, when a semiconductor substrate is carried in or out of the processing chamber, a load lock chamber is required. In this load lock chamber, the internal pressure is reduced to a vacuum or returned to atmospheric pressure.
  • a multi-chamber semiconductor manufacturing apparatus is configured for one or a plurality of load lock chambers for accommodating a substrate to be processed and a substrate to be processed around a core chamber (transfer chamber) in which a substrate transfer robot is disposed. It has a structure in which a plurality of processing chambers for performing predetermined vacuum processing such as film and etching are arranged.
  • the step of transporting the substrate between the load lock chamber and the processing chamber and the step of transporting the substrate between the one processing chamber and the other processing chamber include a substrate transport robot disposed in the core chamber. It is performed by using (for example, refer patent document 1).
  • a general transfer process in which the semiconductor substrate is transferred from the load lock chamber to the processing chamber is as follows.
  • the semiconductor substrate is introduced into the load lock chamber in the air atmosphere, and then the inside of the load lock chamber is decompressed to become a vacuum atmosphere.
  • the semiconductor substrate is transferred from the load lock chamber to the processing chamber via the core chamber by the substrate transfer robot installed in the core chamber adjacent to the load lock chamber.
  • processing operations for example, etching, oxidation, chemical vapor deposition, etc.
  • the processed semiconductor substrate is returned from the processing chamber via the core chamber to the load lock chamber by the substrate transfer robot in the same manner as when the semiconductor substrate is transferred to the processing chamber.
  • the inside of the load lock chamber is kept in a vacuum after the substrate is transferred from the load lock chamber to the processing chamber.
  • a purge gas such as nitrogen (N 2 ) is supplied into the load lock chamber, and the pressure in the load lock chamber is returned to atmospheric pressure (open to the atmosphere). After the pressure in the load lock chamber reaches atmospheric pressure, the processed semiconductor substrate is transferred to the substrate cassette, and the next processing step is performed.
  • the process when a process such as film formation is performed on a substrate, the process is performed at a high temperature.
  • the processed substrate is taken out of the processing chamber while being maintained at a high temperature of, for example, about 500 ° C., and transferred to the load lock chamber.
  • a high temperature for example, about 500 ° C.
  • the substrate is oxidized.
  • inconveniences such as melting of the resin storage container usually occur.
  • the substrate is cooled while the pressure in the load lock chamber is returned from the vacuum to the atmospheric pressure.
  • the substrate is placed on a stage disposed in the load lock chamber, and the substrate is cooled by exchanging heat between the stage and the substrate.
  • the substrate will be warped and a part of the substrate will be separated from the stage, resulting in a problem that the cooling time of the substrate becomes very slow. there were.
  • the substrate breaks due to the impact of warping.
  • the present invention has been made in consideration of such circumstances, and there is provided a substrate processing apparatus capable of uniformly and quickly cooling a substrate without temperature variation within the substrate surface when the substrate is cooled.
  • the primary purpose is to provide it.
  • the present invention provides a substrate cooling method capable of uniformly and quickly cooling a substrate without temperature variation in the substrate surface when the substrate is cooled in the substrate processing apparatus. Second purpose.
  • the substrate processing apparatus has a chamber and a surface provided with a groove, and is placed in the chamber, and a substrate is placed so as to form a minute gap on the surface.
  • a stage that cools the substrate by exchanging heat in contact with the substrate, and a first space that is located above the first surface of the substrate placed on the stage and is a space in the chamber
  • the gas supply unit for introducing a predetermined gas into the space, and the first pressure in the first space is located below the substrate and provided between the stage and the second surface of the substrate
  • a control unit that controls the first pressure and the second pressure so as to be larger than the second pressure in the second space including the gap and the groove.
  • the control unit is configured so that a pressure difference between the first pressure and the second pressure is 5 ⁇ 10 [Pa] or more and 1 ⁇ 10 5 [Pa] or less.
  • the gas introduced into the first space by the gas supply unit is a gas supplied into the chamber when the atmosphere in the chamber is returned from a vacuum to an atmospheric atmosphere.
  • the stage has a contact portion where the second surface of the substrate contacts the stage, and the surface roughness Ra at the contact portion is 1.0 ⁇ m.
  • the gap of 3.5 cm 3 or more is provided between the stage and the second surface of the substrate in a state where the substrate is installed on the stage. Preferably it is present.
  • a contact area where the stage and the substrate are in contact is represented by S1
  • a non-contact area where the stage and the substrate are not in contact is represented by S2.
  • the ratio S1 / S2 in the outer peripheral area of the stage is preferably smaller than the ratio S1 / S2 in the central area of the stage.
  • the stage has a contact portion where the second surface of the substrate and the stage are in contact with each other, and the height of the contact portion located in the central area of the stage is high. It is preferable that the height is lower than the height of the contact portion located in the outer peripheral area of the stage.
  • the substrate cooling method according to the second aspect of the present invention includes a chamber and a surface provided with a groove, and the substrate is placed in the chamber so as to form a minute gap on the surface.
  • a substrate processing apparatus including a gas supply unit that introduces a predetermined gas into the space is used.
  • the first pressure in the first space is more than that of the substrate.
  • the first pressure and the second pressure are set to be larger than a second pressure of a second space that is located on the lower side and includes the gap and the groove provided between the stage and the second surface of the substrate.
  • the second pressure is controlled for a predetermined time.
  • a substrate processing apparatus includes a gas supply unit that introduces a predetermined gas into a first space located above a first surface of a substrate placed on a stage.
  • a control unit is provided that controls the pressures P 1 and P 2 for a predetermined time so that the first pressure P 1 is greater than the second pressure P 2 in the second space. For this reason, when the substrate is cooled by bringing the substrate and the stage into contact with each other for heat exchange, the substrate is pressed onto the stage due to a pressure difference between the first space and the second space. For this reason, the board
  • the present invention can provide a substrate processing apparatus that can cool the substrate uniformly and quickly without variation in temperature within the substrate surface.
  • the contact area between the substrate and the stage can be controlled when the stage is designed. For this reason, it is possible to prevent excessive concave warpage from occurring in the substrate.
  • the first pressure P1 in the first space is the second pressure in the second space.
  • the pressures P 1 and P 2 are controlled for a predetermined time so as to be larger than the two pressures P 2 .
  • substrate is pressed on a stage by the effect
  • substrate does not lift from a stage, but the contact area which a stage and a board
  • FIG. 1 is a schematic configuration diagram of a multi-chamber type vacuum processing apparatus to which an embodiment of the present invention is applied. It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. In the substrate processing apparatus of one Embodiment of this invention, it is a top view which shows an example of a stage. In the substrate processing apparatus of one Embodiment of this invention, it is a top view which shows an example of a stage. It is sectional drawing which shows an example of a stage in the substrate processing apparatus of one Embodiment of this invention.
  • FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method.
  • FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method.
  • FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method.
  • FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method.
  • FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method.
  • the substrate processing apparatus of an embodiment of the present invention it is a graph showing how the pressure difference (differential pressure) is generated between the pressure P 1 of the first space ⁇ and the pressure P 2 of the second space beta.
  • It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. It is a top view which shows an example of the stage with which the substrate processing apparatus of FIG. 11 is provided.
  • the present invention is not limited to the load lock chamber, and can be applied to various substrate processing apparatuses.
  • the load lock chamber is a chamber connected to the process chamber (processing chamber), and is an apparatus used when a substrate processed in the process chamber is taken out to the atmosphere.
  • FIG. 1 is a schematic configuration diagram of a multi-chamber type vacuum processing apparatus 1 according to an embodiment of the present invention.
  • the vacuum processing apparatus 1 includes load lock chambers 3A and 3B (3) for accommodating a substrate to be processed (hereinafter also simply referred to as “substrate”), and processing chambers 4A to 4D (for performing predetermined vacuum processing on the substrate). 4) and a core chamber (transfer chamber) 5 for transferring the substrate between the load lock chambers 3A and 3B and the processing chambers 4A to 4D.
  • the load lock chambers 3A and 3B (3) have the same configuration, and a substrate stocker (not shown) capable of accommodating a predetermined number of substrates is installed therein. Exhaust systems are connected to the load lock chambers 3A and 3B, respectively, and the load lock chambers 3A and 3B can be independently evacuated so as to be evacuated (vacuum exhaust).
  • the load lock chambers 3A and 3B are not limited to being installed as in the illustrated example, and may be singular.
  • the processing chambers 4A to 4D (4) are configured by an etching chamber, a heating chamber, a film forming chamber (sputtering chamber, CVD chamber), and the like. In this embodiment, all of the processing chambers 4A to 4D (4) are formed. It is a room.
  • An exhaust system (not shown) is connected to each of the processing chambers 4A to 4D, and the processing chambers 4A to 4D can be independently evacuated so as to be evacuated (vacuum exhaust).
  • Each processing chamber 4A to 4D is connected to a gas supply source (not shown) of a predetermined film forming gas (reaction gas, source gas, inert gas, etc.) corresponding to the process.
  • the core chamber 5 has a substrate transfer robot 6 therein, and the substrate 2 is transferred between the load lock chambers 3A and 3B and the processing chambers 4A to 4D or between the processing chambers 4A to 4D. It is configured.
  • An exhaust system (not shown) is connected to the core chamber 5, and the core chamber 5 can be independently evacuated so as to be evacuated (vacuum exhaust).
  • a gas source (not shown) is connected to the core chamber 5, and the internal pressure of the core chamber 5 can be maintained at a predetermined pressure by the pressure adjusting gas introduced from the gas source to the core chamber 5.
  • FIG. 2 is a cross-sectional view schematically showing an embodiment of the substrate processing apparatus of the present invention provided in the load lock chamber 3.
  • the substrate processing apparatus 10 (3) of this embodiment includes a chamber 11, a stage 12, and a gas supply unit 15.
  • the stage 12 is disposed in the chamber 11 and has a surface 12 a provided with a groove 13. On the surface 12 a, the substrate 2 is placed so as to form a minute gap 19. Further, the stage 12 contacts the second surface 2 b (other surface) of the substrate 2 and heat-exchanges with the substrate 2 to cool the substrate 2.
  • the gas supply unit 15 is located above the first surface 2a (one surface) of the substrate 2 placed on the stage 12, and supplies a predetermined gas to the first space ⁇ which is a space in the chamber 11. Introduce.
  • the substrate processing apparatus 10 (3) of the present embodiment includes a control unit that controls the pressure in the space above the substrate 2 (first pressure) and the pressure in the space below the substrate 2 (second pressure).
  • first pressure the pressure in the space above the substrate 2
  • second pressure the pressure in the space below the substrate 2
  • the control unit controls the pressures P 1 and P 2 so as to be larger than the second pressure P 2 (measured value measured by the pressure gauge 17d) of the second space ⁇ including the gap 19 and the groove 13 provided in To control.
  • the first controller 17 ⁇ includes, for example, a pressure gauge 17a, a flow meter 17b, a valve 17c, and the like.
  • the second controller 17 ⁇ includes, for example, a pressure gauge 17d, a flow meter 17e, a valve 17f, an exhaust part 17g, and the like. Further, in the second control unit 17 ⁇ in the substrate processing apparatus 10 shown in FIG. 2, the second space ⁇ and the air atmosphere are separated from the pressure gauge 17d, the flow meter 17e, the valve 17f, and the exhaust unit 17g.
  • a valve 17h for communication is arranged.
  • the substrate processing apparatus 10 of the present embodiment includes a gas supply unit 15 that introduces a predetermined gas into the first space ⁇ , and the pressure P 1 in the first space ⁇ is greater than the pressure P 2 in the second space ⁇ .
  • the control units 17 ⁇ and 17 ⁇ (17) for controlling the pressures P 1 and P 2 are provided. For this reason, when the substrate 2 is cooled by heat exchange using the gas in the second space ⁇ while bringing the substrate 2 and the stage 12 into contact, the pressure difference (differential pressure) between the pressures P 1 and P 2 is a predetermined time. Only occurs. Therefore, the substrate 2 is pressed onto the stage 12 by the pressure difference between the first space ⁇ and the second space ⁇ .
  • the manner in which the pressure difference (differential pressure) between the pressures P 1 and P 2 is generated is illustrated by the graph shown in FIG.
  • the pressure P 1 in the first space ⁇ fluctuates (behaves) as shown by the solid line shown in FIG. 10, and the pressure P 2 in the second space ⁇ changes in FIG. It fluctuates as shown by the alternate long and short dash line (behavior). That is, as soon as the supply of gas is started, while the pressure P 1 of the first space ⁇ is increased, the pressure P 2 of the second space ⁇ is a predetermined time (in FIG. 10, approximately 5 seconds), It shows a tendency for pressure rise to be delayed.
  • the substrate 2 is pressed onto the stage 12 due to the pressure difference (differential pressure) between the pressures P 1 and P 2 . Further, when the pressure P 2 equal to or higher than 50 Pa, the heat exchange with gas in the second space ⁇ acts primarily heat the substrate 2 is held is moved aggressively toward the stage 12, thus marked substrate The action / effect of the present invention is exhibited so that the cooling of the liquid crystal becomes possible.
  • the exhaust part 16 is connected to the chamber 11, and it is possible to exhaust independently so that the inside of the chamber 11 becomes a vacuum (vacuum exhaust).
  • a gas supply unit 15 is connected to the chamber 11, and the gas introduced into the chamber 11 from the gas supply unit 15 can maintain the internal pressure of the chamber 11 at a predetermined pressure.
  • the stage 12 is disposed in the chamber 11 and has a surface 12 a provided with a groove 13. Further, the substrate 2 is placed on the surface 12 a of the stage 12 so as to have a minute gap 19. When the stage 12 and the substrate 2 come into contact and exchange heat, the substrate 2 is cooled.
  • a bank having a height of about 1 mm is provided on the outer periphery of the stage 12, so that the position of the substrate 2 can be prevented from shifting.
  • the stage 12 is provided with a plurality of through holes 18.
  • an elevating pin 20 used for elevating the substrate 2 is inserted. Further, the elevating pins 20 can protrude from the surface (upper surface) of the stage 12 through the through hole 18 or can be lowered (sunk).
  • the elevating pin 20 is fixed to a rod 21 and is connected to a driving mechanism 23 such as an air cylinder via an extendable bellows 22.
  • the driving mechanism 23 such as an air cylinder
  • the rod 21 moves up and down.
  • the lifting pins 20 are projected from the surface (upper surface) of the stage 12.
  • the elevating pins 20 are lowered (depressed) from the surface 12 a (upper surface) of the stage 12.
  • a groove 13 is formed in the stage 12.
  • the gas introduced into the chamber 11 from the gas supply portion 15 enters the space between the substrate 2 and the stage 12 through the groove portion 13.
  • the gas that has entered the gap portion 19 mainly acts as a heat medium, so that heat exchange is promoted between the stage 12 and the substrate 2, so that the substrate 2 is efficiently cooled.
  • the outer periphery of the substrate 2 is compared with the center (inner periphery) of the substrate 2.
  • the stage 12 may be designed so that the area of the groove 13 is increased in the plan view of the stage 12.
  • the cooling rate of the substrate 2 can be controlled, and the occurrence of uneven cooling in the central portion and the outer peripheral portion of the substrate 2 can be reduced, so that the occurrence of warpage of the substrate 2 can be suppressed.
  • FIG. 3 is a cross-sectional view schematically showing an embodiment of the substrate processing apparatus according to the present invention in the load lock chamber 100 (3).
  • the apparatus shown in FIG. 3 includes only the first control unit 17 ⁇ (17) as the control unit, and the second control unit 17 ⁇ (17) is omitted.
  • This structure is different from the apparatus shown in FIG.
  • the pressure difference (differential pressure) between the pressures P 1 and P 2 generated only for a predetermined time (for example, the elapsed time (horizontal axis) after gas introduction as shown in FIG. 10) If the relationship between the pressures P 1 and P 2 ) can be grasped, the pressure gauge 17 a and the flow meter 17 b constituting the second control unit 17 ⁇ (17) or the first control unit 17 ⁇ are not necessarily provided. Not necessary.
  • JP 2009-206270 A Patent Document 1
  • a projection wafer support pin
  • the substrate is supported at a position slightly separated from the stage by the wafer support pin.
  • the groove portion 13 is provided in the stage 12.
  • the groove portion 13 in the stage 12 a space in which the stage 12 and the substrate 2 are not in contact with each other is periodically provided, and the substrate 2 can be prevented from sliding from the stage 12.
  • the space between the second surface 2b and the stage 12 is kept in a vacuum state. For this reason, if the raising / lowering pins 20 are lifted up and the substrate 2 is lifted during substrate transport, the substrate 2 slightly jumps from the stage 12. Therefore, by providing the groove 13 in one or more parts of the stage 12, the pressure of the space (first space ⁇ ) where the first surface 2a of the substrate 2 is exposed and the second surface 2b of the substrate 2 are exposed.
  • the cooling of the substrate 2 can be completed while preventing the substrate 2 from warping so that a difference (pressure difference) from the pressure in the space (second space ⁇ ) acts and the substrate 2 becomes concave.
  • a difference pressure difference
  • the substrate 2 can also be prevented from jumping from the stage 12. .
  • the formation of the groove 13 in the stage 12 also has an effect of reducing the amount of dust attached to the second surface 2b of the substrate 2.
  • the form of the groove 13 is not particularly limited.
  • the groove 13 may be provided concentrically, or, for example, as shown in FIG. 5, the grooves 13 are provided radially. It may be done.
  • the structure where the radial groove part 13 and the concentric groove part 13 were combined may be employ
  • the surface roughness Ra of the portion 14 (contact portion) that constitutes the stage 12 and contacts the second surface 2b of the substrate 2 is 1.0 ⁇ m or more.
  • the maximum temperature difference between the outer peripheral area and the central area of the substrate 2 varies depending on the relationship between the surface roughness of the portion 14 of the stage 12 and the gas introduction speed.
  • the surface roughness Ra of the stage 12 is 1 ⁇ m or less, it becomes difficult for gas to enter the gap portion 19 located in the central region of the substrate 2 between the second surface 2b of the substrate 2 and the stage 12, A temperature difference between the outer peripheral region and the central region is likely to occur.
  • the outer peripheral region of the substrate 2 contracts due to cooling, and the central region of the substrate 2 does not contract.
  • a gap 19 having a gap of 3.5 cm 3 or more exists between the stage 12 and the second surface 2b of the substrate 2 in a state where the substrate 2 is placed on the stage 12.
  • a space (gap portion 19) of 3.5 cm 3 or more it is provided under the substrate 2 when the substrate is placed on the stage by lowering the lifter under a high pressure such as 1 ⁇ 10 5 Pa. It is possible to prevent the substrate from slipping due to an increase in the pressure of the remaining space (gap portion 19).
  • a gap 19 having a predetermined volume or more between the stage 12 and the second surface 2b of the substrate 2 when the gas is introduced into the first space ⁇ , the gap between the substrate 2 and the stage 12 is increased. Gas can enter the gap portion 19 efficiently, and the substrate 2 can be cooled more efficiently.
  • the contact area where the stage 12 and the substrate 2 are in contact is represented by S1
  • the non-contact area where the stage 12 and the substrate 2 are not in contact is represented by S2.
  • the ratio (S1 / S2) between the contact area S1 and the non-contact area S2 may be smaller in the outer peripheral area (ratio S1 / S2) than in the central area of the stage 12 (ratio S1 / S2). preferable. That is, in the structure in which the ratio is set in this way, the contact area ratio is changed so that the central area of the substrate 2 cools faster than the outer peripheral area of the substrate 2.
  • ratio S1 / S2 By increasing the value (ratio S1 / S2) in the central region of the stage 12, that is, by increasing the contact area where the substrate 2 and the stage 12 contact in the central region, the center of the substrate 2 is larger than the peripheral region of the substrate 2. The area can be cooled quickly.
  • the stage 12 when providing the groove part 13 on the stage 12 concentrically, the stage 12 may be comprised as shown in FIG. Specifically, in the portion 14 of the stage 12 that contacts the second surface 2b of the substrate 2, the height h1 of the portion 14 located in the central region 14c is higher than the height h2 of the portion 14 located in the outer peripheral region 14p. It may be lowered. If the heights of the portions 14 are all the same, when the substrate 2 is warped so as to be deformed into a concave shape, the space between the substrate 2 and the stage 12 cannot be sealed in the outer peripheral area of the substrate 2. End up.
  • the gas supply unit 15 is located above the first surface 2 a of the substrate 2 placed on the stage 12 and introduces a predetermined gas into the first space ⁇ that is a space in the chamber 11.
  • the gas introduced into the first space ⁇ enters the space (second space ⁇ ) between the substrate 2 and the stage 12 through the groove 13 formed in the stage 12, and passes through the gas existing in the second space ⁇ .
  • the gas introduced into the first space ⁇ by the gas supply unit 15 is a gas that is supplied into the chamber 11 when the atmosphere in the chamber 11 is returned from a vacuum to an air atmosphere.
  • the type of such gas is not particularly limited, and examples thereof include chemically stable gases such as nitrogen, argon, helium, and xenon.
  • the substrate processing apparatus 10 (3) of this embodiment includes a control unit 17.
  • the controller 17 is configured such that the first pressure P 1 in the first space ⁇ is located below the substrate 2, and the gap 19 and the groove provided between the stage 12 and the second surface 2 b of the substrate 2.
  • the first pressure P 1 and the second pressure P 2 are controlled so as to be larger than the second pressure P 2 in the second space ⁇ including 13.
  • the first pressure P 1 in the first space ⁇ is greater than the second pressure P 2 in the second space ⁇ .
  • the substrate 2 is pressed onto the stage 12 by the pressure difference between the first space ⁇ and the second space ⁇ . For this reason, the curvature which the board
  • the substrate processing apparatus 10 of the present embodiment there is no temperature variation in the substrate surface, and the substrate 2 can be cooled uniformly and quickly.
  • the first control unit 17 ⁇ (17) includes, for example, a pressure gauge 17a, a flow meter 17b, a valve 17c, and the like.
  • the second controller 17 ⁇ includes, for example, a pressure gauge 17d, a flow meter 17e, a valve 17f, an exhaust part 17g, and the like.
  • the first controller 17 ⁇ and the second controller 17 ⁇ monitor the pressure (P 1 , P 2 ) in the chamber 11 and adjust the amount of gas introduced into the chamber 11 from the gas supply unit 15. .
  • the control unit 17 (17 ⁇ , 17 ⁇ ) has a difference between the pressure P 1 and the pressure P 2 of 5 ⁇ 10 [Pa] or more and 1 ⁇ 10 5 [Pa] or less (that is, 50 [Pa] to 100000 [Pa]). It is preferable to control the pressures P 1 and P 2 for a predetermined time.
  • the pressure difference is small, the force for pressing the substrate 2 against the stage 12 is weak, and it is difficult to sufficiently suppress the warpage of the substrate 2.
  • the pressure difference is too large, stress is applied to the substrate 2 at the end of the gap portion 19 and substrate cracking is likely to occur, which is not preferable.
  • a relatively high pressure difference is required. If the substrate is warped and the substrate is easily cracked, it is preferable to disperse the gaps 19 and the grooves 13 of the stage 12 and to design the stage 12 appropriately so as to reduce stress concentration.
  • the gaps 19 and the grooves 13 are arranged so as to be dispersed in the present invention
  • a structure in which the gaps 19 and the grooves 13 are alternately arranged concentrically is exemplified.
  • a structure in which the gaps 19 and the grooves 13 are arranged such that a plurality of gaps 19 are formed in a dot shape on the stage 12 and the grooves 13 are formed between the adjacent gaps 19 is exemplified.
  • the structure in which the gaps 19 and the grooves 13 in the present invention are arranged to be dispersed is not limited to the two illustrated. That is, any configuration may be employed as long as the portion (gap portion 19) that supports the substrate 2 per unit area can be arranged on the stage 12 in a dispersed manner.
  • a cooling medium flow path (not shown) for circulating a cooling medium such as cooling water may be provided in the stage 12.
  • a cooling medium such as cooling water
  • heat exchange can be promoted between the substrate 2 placed on the stage 12 and the stage 12, and the substrate 2 can be efficiently cooled.
  • the substrate 2 is introduced into the load lock chamber 3 in an air atmosphere, and then the inside of the load lock chamber 3 is depressurized to a vacuum atmosphere. Subsequently, the substrate 2 is transferred from the load lock chamber 3 to the processing chamber 4 via the core chamber 5 by the substrate transfer robot 6 installed in the core chamber 5 adjacent to the load lock chamber 3. Thereafter, processing operations (for example, etching, oxidation, chemical vapor deposition, etc.) are performed on the substrate 2 in the processing chamber 4 (process chamber).
  • processing operations for example, etching, oxidation, chemical vapor deposition, etc.
  • the processed substrate 2 is returned from the processing chamber 4 via the core chamber 5 to the load lock chamber 3 by the substrate transfer robot 6 in the same manner as when the substrate 2 is transferred to the processing chamber 4.
  • the inside of the load lock chamber 3 is kept in a vacuum after the substrate 2 is transferred from the load lock chamber 3 to the processing chamber 4 described above.
  • a purge gas such as nitrogen (N 2 ) is supplied into the load lock chamber 3, and the pressure of the load lock chamber 3 is returned to the atmospheric pressure (hereinafter, released to the atmosphere).
  • the heated substrate 2 is cooled by the stage 12 provided in the load lock chamber 3. After the pressure in the load lock chamber 3 reaches atmospheric pressure, the processed substrate 2 is transferred to the substrate cassette, and the next processing step is performed.
  • the first pressure P 1 in the first space ⁇ is higher than that of the substrate 2. as it is larger than the stage 12 and the second pressure P 2 of the second space ⁇ including the gap portion 19 and the groove 13 provided between the second face 2b of the substrate 2 as well as positioned on the lower side, first to control the pressure P 1 and the second pressure P 2.
  • the process is completed in 15 seconds.
  • the distance is 2 mm, it takes 1 minute or more.
  • the silicon substrate is cooled so that the temperature of the silicon substrate having a diameter of 300 mm and a thickness of 0.7 mm is changed from 500 ° C. to room temperature, if the outer peripheral region of the silicon substrate is rapidly cooled to room temperature, the silicon substrate is 2 mm in thickness. The above warpage may occur.
  • the central region of the silicon substrate is raised, the silicon substrate is warped in a convex shape, the central region of the silicon substrate is separated from the surface of the stage 12, and the cooling rate of the central region of the silicon substrate is rapidly increased. descend.
  • the state where the warpage of the substrate 2 is 2 mm or more is maintained. Further, when the temperature in the central area approaches the temperature in the outer peripheral area, the warped substrate 2 starts to return to its original shape and cools rapidly. For this reason, when the substrate 2 having warpage returns to its original shape, the gas present in the space between the substrate 2 and the stage 12 remains and does not flow so as to have directionality. For this reason, the substrate 2 may slide on the stage 12. In addition, when the substrate 2 warps in a shape opposite to the convex shape, that is, when the substrate 2 warps in a concave shape, the substrate 2 jumps on the stage 12 by reaction when the substrate 2 having warpage returns to the original shape. As a result, the position of the substrate 2 on the stage 12 may shift.
  • the substrate 2 is cooled by bringing the substrate 2 and the stage 12 into contact with each other and exchanging heat.
  • the pressure P 1 of the first space ⁇ is to be greater than the pressure P 2 of the second space beta, for a predetermined time control the pressure P 1, P 2.
  • the second space ⁇ is a space that is located below the substrate 2 and includes a gap portion 19 and a groove portion 13 provided between the stage 12 and the second surface 2 b of the substrate 2.
  • substrate 2 is pressed on the stage 12 by the pressure difference of 1st space (alpha) and 2nd space (beta), and it suppresses generating the curvature which the board
  • substrate 2 does not float from the stage 12, the contact area where the stage 12 and the board
  • the substrate cooling method of the present invention there is no temperature variation in the substrate surface, and the substrate 2 can be uniformly and rapidly cooled.
  • the substrate 2 when the substrate 2 is transported by the vacuum chuck of the atmospheric transport robot while the outer peripheral region of the substrate 2 is cooled while the central region of the substrate 2 is heated, the warp of the substrate 2 is large. Therefore, the problem that the vacuum chuck cannot be performed can be avoided.
  • a groove (not shown) exists between the stage 12 and the substrate 2.
  • This groove means a fine concavo-convex shape provided on the surface of the gap portion 19 of the stage 12 in contact with the substrate 2. Since such a groove is formed on the surface of the gap portion 19, with the passage of time as shown in FIG. 10, the pressure P 2 of the pressure P 1 and the second space ⁇ of the first space ⁇ is equal to Become. For this reason, even in the configuration shown in FIG. 3, the above-described problem of scratching can be avoided.
  • FIG. 7A and 7B show the results when the substrate is cooled by the method of the present invention.
  • FIG. 7A shows the points (A to E) of the substrate when the substrate is cooled
  • FIG. 7B shows the relationship between the temperature and the time at each point (A to E).
  • FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B show results when the substrate is cooled by a conventional method. Comparing the result of cooling the substrate according to the present invention shown in FIG. 7B and the result of cooling the substrate by the conventional method shown in FIGS. 8A, 8B, 9A, and 9B, in the present invention, It can be seen that the substrate can be uniformly and rapidly cooled at each point (A to E).
  • the control unit adjusts the pressure of the first space so that the pressure P 1 in the first space becomes larger than the pressure P 2 in the second space, for example, by adjusting the flow rate of the gas.
  • P 1 and P 2 were controlled.
  • the pressure P 1 is such that 1000 Pa, so that P 2 is 400 Pa, and control the pressure P 1, P 2.
  • the pressure difference between the pressure P 1 and the pressure P 2 was 600 Pa.
  • the value (number) in this specific example is only a numerical value at a specific time. This is because the relationship between the pressures P 1 and P 2 changes with time as shown in FIG. 10, and the predetermined time during which the pressure difference (differential pressure) is generated is only about 5 seconds. Absent. In FIG. 10, it is shown that the two pressures (P 1 , P 2 ) are substantially equal at time T approximately 5 seconds after the gas starts flowing in the first space.
  • the pressures P 1 and P 2 are controlled so that the pressure P 1 in the first space is larger than the pressure P 2 in the second space.
  • the substrate was pressed onto the stage by the pressure difference between the first space and the second space, and the convex warpage could be suppressed.
  • the substrate does not float from the stage, and a contact area where the stage and the substrate come into contact with each other can be secured, and the central area of the substrate can be cooled.
  • FIG. 12 is a plan view showing an example of a stage provided in the substrate processing apparatus shown in FIG.
  • reference numeral 15 denotes a VENT pipe
  • reference numeral 17b denotes a VENT filter.
  • the gap portions 19 and the groove portions 13 are alternately arranged concentrically.
  • the stage 12 further includes air removal grooves indicated by reference signs A, B, and C.
  • a ventilation groove A is arranged so as to allow the first space ⁇ and the groove portion 13 to communicate with each other.
  • ventilating grooves B and C are arranged so as to communicate the spaces of the adjacent groove portions 13.
  • FIG. 11 shows a state where the substrate 2 is placed on the stage 12.
  • the substrate 2 that has been heat-treated so as to have a substrate temperature of, for example, 350 ° C. is transferred from a transfer chamber (not shown) into the substrate processing apparatus 200 (3) that functions as an LL (load lock) chamber.
  • the substrate 2 is supported by the lift pins 20 lifted up and placed on the lift pins 20.
  • a partition valve (not shown) that spatially separates the transfer chamber and the LL chamber is closed.
  • the rod 21 is lowered, the elevating pins 20 are lowered, the elevating pins 20 are separated from the substrate 2, and the substrate 2 is placed on the stage 12.
  • the cooling rate of the entire substrate can be controlled by changing the depth or area of the groove 13.
  • the pressure difference between the first space ⁇ and the second space ⁇ can be controlled by changing the conductance of the path through which the gas flows as indicated by arrows A to E. For this reason, the strength of pressing the substrate 2 against the stage 12 can be adjusted. If the warpage of the substrate 2 is large, stable cooling may be difficult. In such a case, it is preferable to cool the substrate 2 stably by lowering the conductance of the gas flow path as indicated by arrows A to E and raising the VENT pressure in the VENT pipe 15. By performing such adjustment, even in the substrate processing apparatus 200 (3) shown in FIG. 11 having the minimum number of accessory parts, stable substrate cooling processing can be performed with the optimum pressing pressure. .
  • the present invention appropriately cools a heated substrate when the heated substrate is moved into a load lock chamber in a film forming process or the like, and the pressure in the load lock chamber is changed from a reduced pressure state to an atmospheric pressure state. Then, the present invention can be widely applied to a substrate processing apparatus and a substrate cooling method for taking out a substrate out of the load lock chamber.
  • 1 vacuum processing device 2 substrates, 3A, 3B (3) load lock chamber, 4A-4D (4) processing chamber, 5 core chamber (transfer chamber), 6 substrate transfer robot, 10, 100 substrate processing device, 11 chamber, 12 stages, 13 grooves, 14 contact parts, 15 gas supply part, 16 exhaust part, 17 ⁇ first control part, 17 ⁇ second control part, 18 through hole, 19 gap part, ⁇ first space, ⁇ second space.

Abstract

The disclosed substrate treating device comprises: a chamber (11); a stage (12), which is arranged in the chamber (11), has a surface (12a) whereon groove sections (13) are provided, has a substrate (2) placed on the surface (12a) so as to form minute gaps (19), and which cools the substrate (2) by coming into contact with the substrate (2) and carrying out heat exchange; a gas supply unit which is located to the upper side of a first surface (2a) of the substrate (2) placed on the stage (12) and which introduces a prescribed gas into a first space (α) which is the space inside the chamber (11); and a control unit (17) which controls a first pressure (P1) and a second pressure (P2) so that the first pressure (P1), which is the pressure of the first space (α), is greater than the second pressure (P2), which is the pressure of a second space (β) that is located to the lower side of the substrate (2) and includes the groove sections (13) and the gaps (19) provided between the stage (12) and a second surface (2b) of the substrate (2).

Description

基板処理装置及び基板冷却方法Substrate processing apparatus and substrate cooling method
 本発明は、基板が搬入又は基板が搬出されるロードロック室を備えた基板処理装置及び基板冷却方法に関する。より詳細には、本発明は、ロードロック室内において、熱を帯びた基板を適切に冷却した後、ロードロック室外へ基板を取り出すことを可能とした基板処理装置及び基板冷却方法に関する。
 本願は、2010年6月30日に出願された特願2010-149945号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a substrate processing apparatus and a substrate cooling method including a load lock chamber into which a substrate is carried in or out. More specifically, the present invention relates to a substrate processing apparatus and a substrate cooling method capable of taking out a substrate out of the load lock chamber after appropriately cooling a heated substrate in the load lock chamber.
This application claims priority based on Japanese Patent Application No. 2010-149945 for which it applied on June 30, 2010, and uses the content here.
 半導体製造装置は、一般的に、半導体基板を減圧下又は真空で処理する複数の処理室を有している。半導体基板は、予め決められた製造工程に従って、製造工程が行われる複数の処理室に連続して導入される。各処理室においては、基板に対して所定の処理が行われる。
 また、処理室の内部は、製造工程に従って、所定の処理の開始前及び終了後において、通常、真空に保持される。このため、半導体基板を処理室に搬入又は搬出する場合、ロードロック室が必要となる。このロードロック室においては、その内部圧力が真空になるように減圧されたり、大気圧に戻されたりする。
A semiconductor manufacturing apparatus generally has a plurality of processing chambers for processing a semiconductor substrate under reduced pressure or in vacuum. The semiconductor substrate is continuously introduced into a plurality of processing chambers in which the manufacturing process is performed according to a predetermined manufacturing process. In each processing chamber, a predetermined process is performed on the substrate.
Further, the inside of the processing chamber is normally kept in vacuum before and after the start of a predetermined process according to the manufacturing process. For this reason, when a semiconductor substrate is carried in or out of the processing chamber, a load lock chamber is required. In this load lock chamber, the internal pressure is reduced to a vacuum or returned to atmospheric pressure.
 このような半導体製造装置として、近年、マルチチャンバ方式の半導体製造装置が多用されている。マルチチャンバ方式の半導体製造装置は、基板搬送ロボットが内部に配置されたコア室(搬送室)の周りに、被処理基板を収容する単数又は複数のロードロック室と、被処理基板に対して成膜、エッチング等の所定の真空処理を行う複数の処理室とが配置された構造を有している。そして、ロードロック室と処理室との間において基板を搬送する工程と、一方の処理室と他方の処理室との間において基板を搬送する工程とは、コア室内に配置された基板搬送ロボットを用いることによって行われている(例えば、特許文献1参照)。 As such a semiconductor manufacturing apparatus, a multi-chamber type semiconductor manufacturing apparatus has been frequently used in recent years. A multi-chamber semiconductor manufacturing apparatus is configured for one or a plurality of load lock chambers for accommodating a substrate to be processed and a substrate to be processed around a core chamber (transfer chamber) in which a substrate transfer robot is disposed. It has a structure in which a plurality of processing chambers for performing predetermined vacuum processing such as film and etching are arranged. The step of transporting the substrate between the load lock chamber and the processing chamber and the step of transporting the substrate between the one processing chamber and the other processing chamber include a substrate transport robot disposed in the core chamber. It is performed by using (for example, refer patent document 1).
 ここで、ロードロック室から処理室に半導体基板が搬送される一般的な搬送工程は以下の通りである。大気雰囲気において半導体基板がロードロック室内に導入され、その後、ロードロック室の内部は、減圧され、真空雰囲気になる。続いて、ロードロック室に隣接するコア室に設置された基板搬送ロボットによって、半導体基板は、ロードロック室からコア室を経由し処理室へ搬送される。その後、プロセスチャンバ内において、半導体基板に対して処理操作(例えば、エッチング、酸化、化学気相蒸着等)が実施される。 Here, a general transfer process in which the semiconductor substrate is transferred from the load lock chamber to the processing chamber is as follows. The semiconductor substrate is introduced into the load lock chamber in the air atmosphere, and then the inside of the load lock chamber is decompressed to become a vacuum atmosphere. Subsequently, the semiconductor substrate is transferred from the load lock chamber to the processing chamber via the core chamber by the substrate transfer robot installed in the core chamber adjacent to the load lock chamber. Thereafter, processing operations (for example, etching, oxidation, chemical vapor deposition, etc.) are performed on the semiconductor substrate in the process chamber.
 処理後の半導体基板は、処理室に半導体基板が搬送される時と同様に、基板搬送ロボットによって処理室からコア室を経由しロードロック室へ戻される。ロードロック室の内部は、前述したロードロック室から処理室に基板が搬送された以降、ずっと真空に保持されている。半導体基板がロードロック室に戻った後、窒素(N)等のパージガスがロードロック室内に供給され、ロードロック室の圧力が大気圧に戻される(大気開放)。ロードロック室の圧力が大気圧に達した後、処理済みの半導体基板を基板カセットに移し、次の処理工程が行われる。 The processed semiconductor substrate is returned from the processing chamber via the core chamber to the load lock chamber by the substrate transfer robot in the same manner as when the semiconductor substrate is transferred to the processing chamber. The inside of the load lock chamber is kept in a vacuum after the substrate is transferred from the load lock chamber to the processing chamber. After the semiconductor substrate returns to the load lock chamber, a purge gas such as nitrogen (N 2 ) is supplied into the load lock chamber, and the pressure in the load lock chamber is returned to atmospheric pressure (open to the atmosphere). After the pressure in the load lock chamber reaches atmospheric pressure, the processed semiconductor substrate is transferred to the substrate cassette, and the next processing step is performed.
 ところで、このようなマルチチャンバ方式の半導体製造装置において、基板に成膜等の処理を施す場合、高温下で処理が施される。処理が施された基板は、例えば、500℃程度の高温が維持された状態で処理室から取り出され、ロードロック室に搬送される。しかしながら、このような高温状態で基板を大気に曝露すると基板が酸化してしまう。また、高温状態の基板を収納容器に収納させると、通常、樹脂製である収納容器が溶ける等の不都合が生じる。 By the way, in such a multi-chamber semiconductor manufacturing apparatus, when a process such as film formation is performed on a substrate, the process is performed at a high temperature. The processed substrate is taken out of the processing chamber while being maintained at a high temperature of, for example, about 500 ° C., and transferred to the load lock chamber. However, when the substrate is exposed to the atmosphere in such a high temperature state, the substrate is oxidized. In addition, when a substrate in a high temperature state is stored in a storage container, inconveniences such as melting of the resin storage container usually occur.
 このような不都合を回避するため、ロードロック室内の圧力を真空から大気圧に戻す間に基板を冷却することが行われている。例えば、ロードロック室内に配置されたステージ上に基板を載置し、ステージと基板との間で熱交換を行うことにより、基板を冷却している。 In order to avoid such inconvenience, the substrate is cooled while the pressure in the load lock chamber is returned from the vacuum to the atmospheric pressure. For example, the substrate is placed on a stage disposed in the load lock chamber, and the substrate is cooled by exchanging heat between the stage and the substrate.
 しかしながら、従来、基板の冷却と大気開放を行うロードロック室において、冷却速度が十分得られない場合があり、大気雰囲気に配置されている搬送ロボットにおいて搬送エラーが発生し、装置が停止するという問題があった。また、基板を十分に冷却するための対策として、ロードロック室において基板を待機させる時間を延ばした場合、スループットの低下を招くという問題があった。 However, conventionally, in a load lock chamber that cools the substrate and opens to the atmosphere, the cooling rate may not be sufficiently obtained, and a transfer error occurs in a transfer robot arranged in the atmosphere, and the apparatus stops. was there. Further, as a measure for sufficiently cooling the substrate, there is a problem in that when the time for waiting the substrate in the load lock chamber is extended, the throughput is lowered.
 更に、基板冷却中に基板面内で冷却温度の分布の差が生じると、基板が反ってしまい、基板の一部がステージから離れてしまうため、基板の冷却時間が非常に遅くなるという問題があった。また、反りの衝撃で基板が割れるという問題があった。 Furthermore, if there is a difference in cooling temperature distribution within the substrate surface during substrate cooling, the substrate will be warped and a part of the substrate will be separated from the stage, resulting in a problem that the cooling time of the substrate becomes very slow. there were. In addition, there is a problem that the substrate breaks due to the impact of warping.
特開2009-206270号公報JP 2009-206270 A
 本発明は、このような事情を考慮してなされたもので、基板の冷却時に、基板面内での温度のバラツキがなく、均一かつ迅速に基板を冷却することが可能な、基板処理装置を提供することを第一の目的とする。
 また、本発明は、基板処理装置において基板を冷却する際に、基板面内での温度のバラツキがなく、均一かつ迅速に基板を冷却することが可能な、基板冷却方法を提供することを第二の目的とする。
The present invention has been made in consideration of such circumstances, and there is provided a substrate processing apparatus capable of uniformly and quickly cooling a substrate without temperature variation within the substrate surface when the substrate is cooled. The primary purpose is to provide it.
In addition, the present invention provides a substrate cooling method capable of uniformly and quickly cooling a substrate without temperature variation in the substrate surface when the substrate is cooled in the substrate processing apparatus. Second purpose.
 本発明の第1態様の基板処理装置は、チャンバと、溝部が設けられた面を有し、前記チャンバ内に配置され、前記面上に微小な隙間部を形成するように基板が載置され、前記基板と接触して熱交換することにより前記基板を冷却するステージと、前記ステージ上に載置された前記基板の第1面よりも上側に位置するとともに前記チャンバ内の空間である第一空間に所定のガスを導入するガス供給部と、前記第一空間の第一圧力が、前記基板よりも下側に位置するとともに前記ステージと前記基板の第2面との間に設けられた前記隙間部及び前記溝部を含む第二空間の第二圧力よりも大きくなるように、前記第一圧力及び前記第二圧力を制御する制御部とを含む。
 本発明の第1態様の基板処理装置においては、前記制御部は、前記第一圧力及び前記第二圧力の圧力差が、5×10[Pa]以上1×10[Pa]以下となるように、前記第一圧力及び前記第二圧力を所定時間制御することが好ましい。
 本発明の第1態様の基板処理装置においては、前記ガス供給部が前記第一空間に導入するガスは、前記チャンバ内の雰囲気を真空から大気雰囲気に戻す際に前記チャンバ内に供給されるガスであることが好ましい。
 本発明の第1態様の基板処理装置においては、前記ステージは、前記基板の前記第2面と前記ステージとが接触する接触部を有し、前記接触部における表面粗さRaは、1.0μm以上であることが好ましい。
 本発明の第1態様の基板処理装置においては、前記ステージ上に前記基板が設置された状態で、前記ステージと前記基板の前記第2面との間に3.5cm以上の前記隙間部が存在することが好ましい。
 本発明の第1態様の基板処理装置においては、前記ステージと前記基板とが接触している接触面積がS1で表され、前記ステージと前記基板とが接触していない非接触面積がS2で表された場合、前記ステージの中央域における比率S1/S2よりも、前記ステージの外周域における比率S1/S2が小さいことが好ましい。
 本発明の第1態様の基板処理装置においては、前記ステージは、前記基板の前記第2面と前記ステージとが接触する接触部を有し、前記ステージの中央域に位置する前記接触部の高さは、前記ステージの外周域に位置する前記接触部の高さよりも低いことが好ましい。
 本発明の第2態様の基板冷却方法は、チャンバと、溝部が設けられた面を有し、前記チャンバ内に配置され、前記面上に微小な隙間部を形成するように基板が載置され、前記基板と接触して熱交換することにより前記基板を冷却するステージと、前記ステージ上に載置された前記基板の第1面よりも上側に位置するとともに前記チャンバ内の空間である第一空間に所定のガスを導入するガス供給部とを備えた基板処理装置を用いる。本発明の第2態様の基板冷却方法においては、前記基板と前記ステージとを接触させて熱交換することにより前記基板を冷却する際に、前記第一空間の第一圧力が、前記基板よりも下側に位置するとともに前記ステージと前記基板の第2面との間に設けられた前記隙間部及び前記溝部を含む第二空間の第二圧力よりも大きくなるように、前記第一圧力及び前記第二圧力を所定時間制御する。
The substrate processing apparatus according to the first aspect of the present invention has a chamber and a surface provided with a groove, and is placed in the chamber, and a substrate is placed so as to form a minute gap on the surface. A stage that cools the substrate by exchanging heat in contact with the substrate, and a first space that is located above the first surface of the substrate placed on the stage and is a space in the chamber The gas supply unit for introducing a predetermined gas into the space, and the first pressure in the first space is located below the substrate and provided between the stage and the second surface of the substrate A control unit that controls the first pressure and the second pressure so as to be larger than the second pressure in the second space including the gap and the groove.
In the substrate processing apparatus according to the first aspect of the present invention, the control unit is configured so that a pressure difference between the first pressure and the second pressure is 5 × 10 [Pa] or more and 1 × 10 5 [Pa] or less. In addition, it is preferable to control the first pressure and the second pressure for a predetermined time.
In the substrate processing apparatus according to the first aspect of the present invention, the gas introduced into the first space by the gas supply unit is a gas supplied into the chamber when the atmosphere in the chamber is returned from a vacuum to an atmospheric atmosphere. It is preferable that
In the substrate processing apparatus according to the first aspect of the present invention, the stage has a contact portion where the second surface of the substrate contacts the stage, and the surface roughness Ra at the contact portion is 1.0 μm. The above is preferable.
In the substrate processing apparatus according to the first aspect of the present invention, the gap of 3.5 cm 3 or more is provided between the stage and the second surface of the substrate in a state where the substrate is installed on the stage. Preferably it is present.
In the substrate processing apparatus of the first aspect of the present invention, a contact area where the stage and the substrate are in contact is represented by S1, and a non-contact area where the stage and the substrate are not in contact is represented by S2. In this case, the ratio S1 / S2 in the outer peripheral area of the stage is preferably smaller than the ratio S1 / S2 in the central area of the stage.
In the substrate processing apparatus according to the first aspect of the present invention, the stage has a contact portion where the second surface of the substrate and the stage are in contact with each other, and the height of the contact portion located in the central area of the stage is high. It is preferable that the height is lower than the height of the contact portion located in the outer peripheral area of the stage.
The substrate cooling method according to the second aspect of the present invention includes a chamber and a surface provided with a groove, and the substrate is placed in the chamber so as to form a minute gap on the surface. A stage that cools the substrate by exchanging heat in contact with the substrate, and a first space that is located above the first surface of the substrate placed on the stage and is a space in the chamber A substrate processing apparatus including a gas supply unit that introduces a predetermined gas into the space is used. In the substrate cooling method according to the second aspect of the present invention, when the substrate is cooled by bringing the substrate into contact with the stage and exchanging heat, the first pressure in the first space is more than that of the substrate. The first pressure and the second pressure are set to be larger than a second pressure of a second space that is located on the lower side and includes the gap and the groove provided between the stage and the second surface of the substrate. The second pressure is controlled for a predetermined time.
 本発明の第1態様の基板処理装置は、ステージ上に載置された基板の第1面よりも上側に位置する第一空間に所定のガスを導入するガス供給部を備え、第一空間の第一圧力Pが、第二空間の第二圧力Pよりも大きくなるように、圧力P,Pを所定時間制御する制御部を有している。このため、基板とステージとを接触させて熱交換することにより基板を冷却する際に、第一空間と第二空間との圧力差により基板がステージ上に押し付けられる。このため、凸状に変形するように反った基板を均一な温度分布を有するように冷却することができる。更に、冷却中に発生する上方に変形する基板の反り(凸状の反り)を抑制することができる。これにより、基板がステージから浮き上がらず、ステージと基板とが接触する接触面積を確保することができる。その結果、本発明は、基板面内での温度のバラツキがなく、均一かつ迅速に基板を冷却することが可能な基板処理装置を提供することができる。上述したステージを採用する場合、ステージの設計時において、基板とステージとの間の接触面積を制御することが可能となる。このため、基板において過度に凹状の反りが発生するのも防止することができる。
 また、本発明の第2態様の基板冷却方法においては、基板とステージとを接触させて熱交換することにより基板を冷却する際に、第一空間の第一圧力Pが第二空間の第二圧力Pよりも大きくなるように、圧力P,Pを所定時間制御している。このため、第一空間と第二空間との圧力差の作用により、基板がステージ上に押し付けられ、上方に変形する基板の反り(凸状の反り)を抑制することができる。これにより、基板がステージから浮き上がらず、ステージと基板とが接触する接触面積を確保することができる。換言すると、ステージと基板との距離が小さい状態を、基板全面(基板裏面の広い領域)に亘って保持することが可能となる。その結果、本発明では、基板面内での温度のバラツキがなく、均一かつ迅速に基板を冷却することが可能な基板冷却方法を提供することができる。
A substrate processing apparatus according to a first aspect of the present invention includes a gas supply unit that introduces a predetermined gas into a first space located above a first surface of a substrate placed on a stage. A control unit is provided that controls the pressures P 1 and P 2 for a predetermined time so that the first pressure P 1 is greater than the second pressure P 2 in the second space. For this reason, when the substrate is cooled by bringing the substrate and the stage into contact with each other for heat exchange, the substrate is pressed onto the stage due to a pressure difference between the first space and the second space. For this reason, the board | substrate which curved so that it may deform | transform into convex shape can be cooled so that it may have uniform temperature distribution. Further, it is possible to suppress the warpage (convex warpage) of the substrate that is deformed upward that occurs during cooling. Thereby, a board | substrate does not lift from a stage, but the contact area which a stage and a board | substrate contact can be ensured. As a result, the present invention can provide a substrate processing apparatus that can cool the substrate uniformly and quickly without variation in temperature within the substrate surface. When the above-described stage is employed, the contact area between the substrate and the stage can be controlled when the stage is designed. For this reason, it is possible to prevent excessive concave warpage from occurring in the substrate.
In the substrate cooling method according to the second aspect of the present invention, when the substrate is cooled by bringing the substrate into contact with the stage and exchanging heat, the first pressure P1 in the first space is the second pressure in the second space. The pressures P 1 and P 2 are controlled for a predetermined time so as to be larger than the two pressures P 2 . For this reason, the board | substrate is pressed on a stage by the effect | action of the pressure difference of 1st space and 2nd space, and the curvature (convex curvature) of the board | substrate which deform | transforms upward can be suppressed. Thereby, a board | substrate does not lift from a stage, but the contact area which a stage and a board | substrate contact can be ensured. In other words, it is possible to hold a state where the distance between the stage and the substrate is small over the entire surface of the substrate (a wide region on the back surface of the substrate). As a result, according to the present invention, it is possible to provide a substrate cooling method capable of uniformly and quickly cooling a substrate without temperature variation within the substrate surface.
本発明の一実施形態を適用したマルチチャンバ方式の真空処理装置の概略構成図である。1 is a schematic configuration diagram of a multi-chamber type vacuum processing apparatus to which an embodiment of the present invention is applied. 本発明の一実施形態の基板処理装置(ロードロック室)の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. 本発明の一実施形態の基板処理装置(ロードロック室)の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. 本発明の一実施形態の基板処理装置において、ステージの一例を示す平面図である。In the substrate processing apparatus of one Embodiment of this invention, it is a top view which shows an example of a stage. 本発明の一実施形態の基板処理装置において、ステージの一例を示す平面図である。In the substrate processing apparatus of one Embodiment of this invention, it is a top view which shows an example of a stage. 本発明の一実施形態の基板処理装置において、ステージの一例を示す断面図である。It is sectional drawing which shows an example of a stage in the substrate processing apparatus of one Embodiment of this invention. 実験例において測定した基板の各地点(A~E)を示す図である。It is a figure which shows each point (AE) of the board | substrate measured in the experiment example. 実験例において測定した基板の各地点(A~E)を示す図である。It is a figure which shows each point (AE) of the board | substrate measured in the experiment example. 従来の方法により基板を冷却する際に、基板の各地点(A~E)における温度と時間との関係を示す図である。FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method. 従来の方法により基板を冷却する際に、基板の各地点(A~E)における温度と時間との関係を示す図である。FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method. 従来の方法により基板を冷却する際に、基板の各地点(A~E)における温度と時間との関係を示す図である。FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method. 従来の方法により基板を冷却する際に、基板の各地点(A~E)における温度と時間との関係を示す図である。FIG. 6 is a diagram showing a relationship between temperature and time at each point (A to E) of a substrate when the substrate is cooled by a conventional method. 本発明の一実施形態の基板処理装置において、第一空間αの圧力Pと第二空間βの圧力Pとの間に圧力差(差圧)が発生する様子を示すグラフである。In the substrate processing apparatus of an embodiment of the present invention, it is a graph showing how the pressure difference (differential pressure) is generated between the pressure P 1 of the first space α and the pressure P 2 of the second space beta. 本発明の一実施形態の基板処理装置(ロードロック室)の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the substrate processing apparatus (load lock chamber) of one Embodiment of this invention. 図11の基板処理装置が備えるステージの一例を示す平面図である。It is a top view which shows an example of the stage with which the substrate processing apparatus of FIG. 11 is provided.
 以下、本発明の基板処理装置について、図面を参照しながら詳しく説明する。なお、以下の説明で使用する図面においては、各構成要素を図面上で認識し得る程度の大きさとするため、便宜上、各構成要素の寸法及び比率を実際のものとは適宜に異ならせており、本発明の特徴を判り易く説明している。 Hereinafter, the substrate processing apparatus of the present invention will be described in detail with reference to the drawings. In the drawings used in the following description, for the sake of convenience, the dimensions and ratios of the respective components are appropriately changed from the actual ones in order to make the respective components large enough to be recognized on the drawings. The features of the present invention are explained in an easy-to-understand manner.
 本実施形態では、本発明をマルチチャンバ方式の真空処理装置において、ロードロック室に適用した場合を一例として挙げて説明する。本発明は、ロードロック室に限定されず、種々の基板処理装置に適用することができる。なお、ここでロードロック室は、プロセス室(処理室)に接続されたチャンバであり、プロセス室において処理された基板を大気雰囲気へ取り出す際に使用される装置である。 In the present embodiment, a case where the present invention is applied to a load lock chamber in a multi-chamber vacuum processing apparatus will be described as an example. The present invention is not limited to the load lock chamber, and can be applied to various substrate processing apparatuses. Here, the load lock chamber is a chamber connected to the process chamber (processing chamber), and is an apparatus used when a substrate processed in the process chamber is taken out to the atmosphere.
 図1は、本発明の実施形態によるマルチチャンバ方式の真空処理装置1の概略構成図である。この真空処理装置1は、被処理基板(以下単に「基板」ともいう。)を収容するロードロック室3A,3B(3)と、基板に対して所定の真空処理を行う処理室4A~4D(4)と、ロードロック室3A,3Bと処理室4A~4Dとの間における基板の受け渡しを行うコア室(搬送室)5とを備えている。 FIG. 1 is a schematic configuration diagram of a multi-chamber type vacuum processing apparatus 1 according to an embodiment of the present invention. The vacuum processing apparatus 1 includes load lock chambers 3A and 3B (3) for accommodating a substrate to be processed (hereinafter also simply referred to as “substrate”), and processing chambers 4A to 4D (for performing predetermined vacuum processing on the substrate). 4) and a core chamber (transfer chamber) 5 for transferring the substrate between the load lock chambers 3A and 3B and the processing chambers 4A to 4D.
 ロードロック室3A,3B(3)は同一の構成を有しており、内部に所定枚数の基板を収容可能な基板ストッカ(図示略)が設置されている。ロードロック室3A,3Bには排気システムがそれぞれ接続されており、ロードロック室3A,3Bの各々の内部が真空になるように独立して排気することが可能である(真空排気)。なお、ロードロック室3A,3Bは図示の例のように複数設置される場合に限らず、単数であってもよい。 The load lock chambers 3A and 3B (3) have the same configuration, and a substrate stocker (not shown) capable of accommodating a predetermined number of substrates is installed therein. Exhaust systems are connected to the load lock chambers 3A and 3B, respectively, and the load lock chambers 3A and 3B can be independently evacuated so as to be evacuated (vacuum exhaust). The load lock chambers 3A and 3B are not limited to being installed as in the illustrated example, and may be singular.
 処理室4A~4D(4)は、エッチング室、加熱室、成膜室(スパッタ室、CVD室)等で構成され、本実施形態では、処理室4A~4D(4)のいずれもが成膜室である。処理室4A~4Dには排気システム(図示略)がそれぞれ接続されており、処理室4A~4Dの各々の内部が真空になるように独立して排気することが可能である(真空排気)。また、各処理室4A~4Dには、プロセスに応じた所定の成膜ガス(反応ガス、原料ガス、不活性ガス等)のガス供給源(図示略)がそれぞれ接続されている。 The processing chambers 4A to 4D (4) are configured by an etching chamber, a heating chamber, a film forming chamber (sputtering chamber, CVD chamber), and the like. In this embodiment, all of the processing chambers 4A to 4D (4) are formed. It is a room. An exhaust system (not shown) is connected to each of the processing chambers 4A to 4D, and the processing chambers 4A to 4D can be independently evacuated so as to be evacuated (vacuum exhaust). Each processing chamber 4A to 4D is connected to a gas supply source (not shown) of a predetermined film forming gas (reaction gas, source gas, inert gas, etc.) corresponding to the process.
 コア室5は、内部に基板搬送ロボット6を有しており、ロードロック室3A,3Bと処理室4A~4Dとの間、あるいは処理室4A~4Dの間において、基板2の受け渡しを行うように構成されている。コア室5には排気システム(図示略)が接続されており、コア室5の内部が真空になるように独立して排気することが可能である(真空排気)。また、コア室5にはガス源(図示略)が接続されており、ガス源からコア室5に導入される調圧ガスによって、コア室5の内部圧力を所定圧に維持することができる。 The core chamber 5 has a substrate transfer robot 6 therein, and the substrate 2 is transferred between the load lock chambers 3A and 3B and the processing chambers 4A to 4D or between the processing chambers 4A to 4D. It is configured. An exhaust system (not shown) is connected to the core chamber 5, and the core chamber 5 can be independently evacuated so as to be evacuated (vacuum exhaust). In addition, a gas source (not shown) is connected to the core chamber 5, and the internal pressure of the core chamber 5 can be maintained at a predetermined pressure by the pressure adjusting gas introduced from the gas source to the core chamber 5.
 図2は、ロードロック室3内に設けられた本発明の基板処理装置の一実施形態を模式的に示す断面図である。
 本実施形態の基板処理装置10(3)は、チャンバ11と、ステージ12と、ガス供給部15とを備える。ステージ12は、チャンバ11内に配置されており、溝部13が設けられた面12aを有する。面12a上には、微小な隙間部19を形成するように基板2が載置される。また、ステージ12は、基板2の第2面2b(他面)と接触し、基板2と熱交換することにより、基板2を冷却する。また、ガス供給部15は、ステージ12上に載置された基板2の第1面2a(一面)よりも上側に位置するとともにチャンバ11内の空間である第一空間αに、所定のガスを導入する。
FIG. 2 is a cross-sectional view schematically showing an embodiment of the substrate processing apparatus of the present invention provided in the load lock chamber 3.
The substrate processing apparatus 10 (3) of this embodiment includes a chamber 11, a stage 12, and a gas supply unit 15. The stage 12 is disposed in the chamber 11 and has a surface 12 a provided with a groove 13. On the surface 12 a, the substrate 2 is placed so as to form a minute gap 19. Further, the stage 12 contacts the second surface 2 b (other surface) of the substrate 2 and heat-exchanges with the substrate 2 to cool the substrate 2. Further, the gas supply unit 15 is located above the first surface 2a (one surface) of the substrate 2 placed on the stage 12, and supplies a predetermined gas to the first space α which is a space in the chamber 11. Introduce.
 更に、本実施形態の基板処理装置10(3)は、基板2の上側の空間の圧力(第一圧力)と基板2の下側の空間の圧力(第二圧力)とを制御する制御部を有する。具体的に、第一空間αの第一圧力P(圧力計17aによって測定される測定値)が、基板2よりも下側に位置するとともにステージ12と基板2の第2面2bとの間に設けられた隙間部19及び溝部13を含む第二空間βの第二圧力P(圧力計17dによって測定される測定値)よりも大きくなるように、制御部は、圧力P,Pを制御する。
 図2に示された基板処理装置10(3)においては、制御部の構造として、圧力Pを制御する第一制御部17α(17)と、圧力Pを制御する第二制御部17β(17)とが、個別に設けられた構造が示されている。第一制御部17αは、例えば、圧力計17a、流量計17b、バルブ17c等から構成されている。第二制御部17βは、例えば、圧力計17d、流量計17e、バルブ17f、排気部17g等から構成されている。また、図2に示された基板処理装置10における第二制御部17βにおいては、上述した圧力計17d、流量計17e、バルブ17f、排気部17gとは別に、第二空間βと大気雰囲気とを連通させるバルブ17hが配置されている。
Further, the substrate processing apparatus 10 (3) of the present embodiment includes a control unit that controls the pressure in the space above the substrate 2 (first pressure) and the pressure in the space below the substrate 2 (second pressure). Have. Specifically, the first pressure P 1 (measured value measured by the pressure gauge 17 a) in the first space α is positioned below the substrate 2 and between the stage 12 and the second surface 2 b of the substrate 2. The control unit controls the pressures P 1 and P 2 so as to be larger than the second pressure P 2 (measured value measured by the pressure gauge 17d) of the second space β including the gap 19 and the groove 13 provided in To control.
In the substrate processing apparatus 10 (3) shown in FIG. 2, the structure of the control unit, a first control unit 17.alpha (17) to control the pressure P 1, the second control unit 17β for controlling the pressure P 2 ( 17) shows an individually provided structure. The first controller 17α includes, for example, a pressure gauge 17a, a flow meter 17b, a valve 17c, and the like. The second controller 17β includes, for example, a pressure gauge 17d, a flow meter 17e, a valve 17f, an exhaust part 17g, and the like. Further, in the second control unit 17β in the substrate processing apparatus 10 shown in FIG. 2, the second space β and the air atmosphere are separated from the pressure gauge 17d, the flow meter 17e, the valve 17f, and the exhaust unit 17g. A valve 17h for communication is arranged.
 本実施形態の基板処理装置10は、第一空間αに所定のガスを導入するガス供給部15を備え、第一空間αの圧力Pが、第二空間βの圧力Pよりも大きくなるように圧力P,Pを制御する制御部17α、17β(17)を有している。このため、基板2とステージ12とを接触させつつ第二空間β内のガスを用いた熱交換によって基板2を冷却する際に、圧力P,Pの圧力差(差圧)が所定時間だけ発生する。ゆえに、第一空間αと第二空間βとの圧力差により基板2がステージ12上に押し付けられる。このため、基板2の中央部がその外周部よりも上方に位置するような反り(凸状の反り)の発生を抑制することができる。これにより、基板2がステージ12から浮き上がらず、ステージ12と基板2とが接触する接触面積(すなわち、基板2の全面において、ステージ12と基板2との距離が近い状態を有する領域の総面積)を確保することができる。その結果、本実施形態の基板処理装置10においては、基板面内での温度のバラツキがなく、均一かつ迅速に基板2を冷却することができる。 The substrate processing apparatus 10 of the present embodiment includes a gas supply unit 15 that introduces a predetermined gas into the first space α, and the pressure P 1 in the first space α is greater than the pressure P 2 in the second space β. As described above, the control units 17α and 17β (17) for controlling the pressures P 1 and P 2 are provided. For this reason, when the substrate 2 is cooled by heat exchange using the gas in the second space β while bringing the substrate 2 and the stage 12 into contact, the pressure difference (differential pressure) between the pressures P 1 and P 2 is a predetermined time. Only occurs. Therefore, the substrate 2 is pressed onto the stage 12 by the pressure difference between the first space α and the second space β. For this reason, generation | occurrence | production of the curvature (convex-shaped curvature) that the center part of the board | substrate 2 is located above the outer peripheral part can be suppressed. Thereby, the substrate 2 is not lifted from the stage 12, and the contact area where the stage 12 and the substrate 2 are in contact (that is, the total area of the region having the state where the distance between the stage 12 and the substrate 2 is close to the entire surface of the substrate 2). Can be secured. As a result, in the substrate processing apparatus 10 of the present embodiment, there is no temperature variation in the substrate surface, and the substrate 2 can be cooled uniformly and quickly.
 圧力P,Pの圧力差(差圧)が発生する様子は、図10に示すグラフにより、例示される。第一空間αにガスの供給が開始されると、第一空間αの圧力Pは図10に示す実線で示すように変動し(挙動)、第二空間βの圧力Pは図10に示す一点鎖線で示すように変動する(挙動)。すなわち、ガスの供給が開始されると直ちに、第一空間αの圧力Pは上昇するのに対して、第二空間βの圧力Pは所定時間だけ(図10では、およそ5秒)、圧力上昇が遅れる傾向を示す。
 上述した所定時間の範囲内では、圧力P,Pの圧力差(差圧)が生じることによって、基板2はステージ12上に押し付けられる。また、圧力Pが50Pa以上になると、第二空間β内のガスによる熱交換が主に作用し、基板2が保持されている熱量がステージ12に向けて積極的に移動し、ひいては著しい基板の冷却が可能となるという、本発明の作用・効果が発揮される。
The manner in which the pressure difference (differential pressure) between the pressures P 1 and P 2 is generated is illustrated by the graph shown in FIG. When the supply of gas to the first space α is started, the pressure P 1 in the first space α fluctuates (behaves) as shown by the solid line shown in FIG. 10, and the pressure P 2 in the second space β changes in FIG. It fluctuates as shown by the alternate long and short dash line (behavior). That is, as soon as the supply of gas is started, while the pressure P 1 of the first space α is increased, the pressure P 2 of the second space β is a predetermined time (in FIG. 10, approximately 5 seconds), It shows a tendency for pressure rise to be delayed.
Within the predetermined time range described above, the substrate 2 is pressed onto the stage 12 due to the pressure difference (differential pressure) between the pressures P 1 and P 2 . Further, when the pressure P 2 equal to or higher than 50 Pa, the heat exchange with gas in the second space β acts primarily heat the substrate 2 is held is moved aggressively toward the stage 12, thus marked substrate The action / effect of the present invention is exhibited so that the cooling of the liquid crystal becomes possible.
 チャンバ11には排気部16が接続されており、チャンバ11の内部が真空になるように独立して排気することが可能である(真空排気)。また、チャンバ11にはガス供給部15が接続されており、ガス供給部15からチャンバ11に導入されるガスによって、チャンバ11の内部圧力を所定圧に維持することができる。 The exhaust part 16 is connected to the chamber 11, and it is possible to exhaust independently so that the inside of the chamber 11 becomes a vacuum (vacuum exhaust). In addition, a gas supply unit 15 is connected to the chamber 11, and the gas introduced into the chamber 11 from the gas supply unit 15 can maintain the internal pressure of the chamber 11 at a predetermined pressure.
 ステージ12は、チャンバ11内に配置され、溝部13が設けられた面12aを有する。また、ステージ12の面12a上には、微小な隙間部19を有するように基板2が載置される。ステージ12と基板2とが接触して熱交換することにより、基板2は冷却される。
 ステージ12の外周には、1mm程度の高さを有する土手が設けられており、基板2の位置がずれてしまうことを防止することができる。
The stage 12 is disposed in the chamber 11 and has a surface 12 a provided with a groove 13. Further, the substrate 2 is placed on the surface 12 a of the stage 12 so as to have a minute gap 19. When the stage 12 and the substrate 2 come into contact and exchange heat, the substrate 2 is cooled.
A bank having a height of about 1 mm is provided on the outer periphery of the stage 12, so that the position of the substrate 2 can be prevented from shifting.
 また、ステージ12には、複数の貫通孔18が設けられている。この貫通孔18には、基板2を昇降させるために用いられる昇降ピン20が挿通されている。また、昇降ピン20は、貫通孔18を通じて、ステージ12の表面(上面)からに対して突出したり、下降させたり(没したり)することが可能である。昇降ピン20は、ロッド21に固着され、伸縮可能なベローズ22を介して、エアシリンダ等の駆動機構23に接続されている。 The stage 12 is provided with a plurality of through holes 18. In the through hole 18, an elevating pin 20 used for elevating the substrate 2 is inserted. Further, the elevating pins 20 can protrude from the surface (upper surface) of the stage 12 through the through hole 18 or can be lowered (sunk). The elevating pin 20 is fixed to a rod 21 and is connected to a driving mechanism 23 such as an air cylinder via an extendable bellows 22.
 そして、エアシリンダ等の駆動機構23が駆動することにより、ロッド21は昇降する。基板2を受け渡しする場合には、昇降ピン20をステージ12の表面(上面)から突出させる。また、基板2をステージ12の表面12a(上面)に載置する場合には、昇降ピン20をステージ12の表面12a(上面)よりも下降させる(陥没させる)。 And, when the driving mechanism 23 such as an air cylinder is driven, the rod 21 moves up and down. When delivering the substrate 2, the lifting pins 20 are projected from the surface (upper surface) of the stage 12. When the substrate 2 is placed on the surface 12 a (upper surface) of the stage 12, the elevating pins 20 are lowered (depressed) from the surface 12 a (upper surface) of the stage 12.
 また、本実施形態の基板処理装置10において、ステージ12には溝部13が形成されている。ステージ12に溝部13を設けることで、ガス供給部15からチャンバ11内に導入されたガスが、この溝部13を通じて基板2とステージ12との間の空間に入り込む。これによって、主に隙間部19に入り込んだガスが熱媒体として働くことによって、ステージ12と基板2との間で熱交換が促進されるので、基板2は効率的に冷却される。 Further, in the substrate processing apparatus 10 of the present embodiment, a groove 13 is formed in the stage 12. By providing the groove portion 13 in the stage 12, the gas introduced into the chamber 11 from the gas supply portion 15 enters the space between the substrate 2 and the stage 12 through the groove portion 13. As a result, the gas that has entered the gap portion 19 mainly acts as a heat medium, so that heat exchange is promoted between the stage 12 and the substrate 2, so that the substrate 2 is efficiently cooled.
 更に、基板2の外周部が急激に冷却されることに起因して基板2が凸状に反ってしまうことを防止するために、基板2の中央部(内周部)に比べて外周部において接触領域を減らす策の一つとして、ステージ12の平面図において溝部13の面積が大きくなるようにステージ12を設計するとよい。これにより、基板2の冷却速度を制御し、基板2の中央部と外周部とにおける冷却の偏りの発生を軽減することができるので、ひいては基板2の反り発生を抑えられる。 Further, in order to prevent the substrate 2 from warping in a convex shape due to the rapid cooling of the outer periphery of the substrate 2, the outer periphery of the substrate 2 is compared with the center (inner periphery) of the substrate 2. As one of the measures for reducing the contact area, the stage 12 may be designed so that the area of the groove 13 is increased in the plan view of the stage 12. As a result, the cooling rate of the substrate 2 can be controlled, and the occurrence of uneven cooling in the central portion and the outer peripheral portion of the substrate 2 can be reduced, so that the occurrence of warpage of the substrate 2 can be suppressed.
 図3は、ロードロック室100(3)において、本発明に係る基板処理装置の一実施形態を模式的に示す断面図である。図3に示す装置は、制御部として第一制御部17α(17)のみ備えており、第二制御部17β(17)が省略されている。この構造は、図2に示す装置とは異なっている。図2に示す基板処理装置において、所定時間だけ発生する圧力P,Pの圧力差(差圧)の傾向(たとえば、図10に示すような、ガス導入後の経過時間(横軸)と圧力P,Pの挙動との関係)が把握することができている場合には、第二制御部17β(17)又は第一制御部17αを構成する圧力計17a及び流量計17bは必ずしも必要ではない。 FIG. 3 is a cross-sectional view schematically showing an embodiment of the substrate processing apparatus according to the present invention in the load lock chamber 100 (3). The apparatus shown in FIG. 3 includes only the first control unit 17α (17) as the control unit, and the second control unit 17β (17) is omitted. This structure is different from the apparatus shown in FIG. In the substrate processing apparatus shown in FIG. 2, the pressure difference (differential pressure) between the pressures P 1 and P 2 generated only for a predetermined time (for example, the elapsed time (horizontal axis) after gas introduction as shown in FIG. 10) If the relationship between the pressures P 1 and P 2 ) can be grasped, the pressure gauge 17 a and the flow meter 17 b constituting the second control unit 17 β (17) or the first control unit 17 α are not necessarily provided. Not necessary.
 なお、特開2009-206270号公報(特許文献1)では、ステージ(下部クーリングプレート)に突起(ウエハ支持ピン)を設け、このウエハ支持ピンにより、基板がステージと僅かに離隔した位置に支持されている。
 これに対し、本発明の実施形態では、ステージ12に溝部13が設けられている。ステージ12に突起ではなく溝部13を設けることで、基板2とステージ12とは点で接触しておらず(即ち、点接触ではなく)、面で接触する(面接触)。これにより、基板2とステージ12とが接触する接触面積を広く確保することができ、ステージ12と基板2との間で熱交換が行われ、冷却効率を高めることができる。
In JP 2009-206270 A (Patent Document 1), a projection (wafer support pin) is provided on a stage (lower cooling plate), and the substrate is supported at a position slightly separated from the stage by the wafer support pin. ing.
In contrast, in the embodiment of the present invention, the groove portion 13 is provided in the stage 12. By providing the groove portion 13 instead of the protrusion on the stage 12, the substrate 2 and the stage 12 are not in contact with each other (that is, not in point contact) but in contact with each other (surface contact). As a result, a wide contact area between the substrate 2 and the stage 12 can be ensured, and heat exchange can be performed between the stage 12 and the substrate 2 to improve cooling efficiency.
 また、ステージ12に溝部13を設けることで、ステージ12と基板2とが非接触となる空間が周期的に設けられ、ステージ12から基板2がスライドすることを防止することができる。基板2の第2面2bとステージ12との間にガス導入溝が一つも形成されていない構成では、第2面2bとステージ12との間が真空状態に保たれてしまう。このため、基板搬送時に昇降ピン20がリフトアップして基板2が持ち上げられると、基板2がステージ12から少し跳ねてしまう。従って、溝部13をステージ12の一箇所以上の部位に設けることにより、基板2の第1面2aが露出している空間(第一空間α)の圧力と基板2の第2面2bが露出している空間(第二空間β)の圧力との差(圧力差)が作用し、基板2が凹形状となるように反ってしまうことを防ぎながら、基板2の冷却を完了させることができる。一定時間が経過した後において第一空間αと第二空間βとの差圧が殆ど無くなるように最適な溝部13のコンダクタンスを決定することで、基板2がステージ12から跳ねることも防ぐことができる。
 なお、ステージ12に溝部13を形成することで、基板2の第2面2bに付着するダストの量を低減する効果もある。
Further, by providing the groove portion 13 in the stage 12, a space in which the stage 12 and the substrate 2 are not in contact with each other is periodically provided, and the substrate 2 can be prevented from sliding from the stage 12. In a configuration in which no gas introduction groove is formed between the second surface 2b of the substrate 2 and the stage 12, the space between the second surface 2b and the stage 12 is kept in a vacuum state. For this reason, if the raising / lowering pins 20 are lifted up and the substrate 2 is lifted during substrate transport, the substrate 2 slightly jumps from the stage 12. Therefore, by providing the groove 13 in one or more parts of the stage 12, the pressure of the space (first space α) where the first surface 2a of the substrate 2 is exposed and the second surface 2b of the substrate 2 are exposed. The cooling of the substrate 2 can be completed while preventing the substrate 2 from warping so that a difference (pressure difference) from the pressure in the space (second space β) acts and the substrate 2 becomes concave. By determining the optimum conductance of the groove 13 so that there is almost no differential pressure between the first space α and the second space β after a certain time has elapsed, the substrate 2 can also be prevented from jumping from the stage 12. .
Note that the formation of the groove 13 in the stage 12 also has an effect of reducing the amount of dust attached to the second surface 2b of the substrate 2.
 このような溝部13の形態としては特に限定されず、例えば図4に示すように、溝部13が同心円状に設けられていてもよいし、例えば図5に示すように、溝部13が放射状に設けられていてもよい。また、放射状の溝部13と同心円状の溝部13とが組み合わされた構造が採用されてもよい。 The form of the groove 13 is not particularly limited. For example, as shown in FIG. 4, the groove 13 may be provided concentrically, or, for example, as shown in FIG. 5, the grooves 13 are provided radially. It may be done. Moreover, the structure where the radial groove part 13 and the concentric groove part 13 were combined may be employ | adopted.
 また、前記ステージ12を構成し、前記基板2の第2面2bと接触する部位14(接触部)の表面粗さRaが、1.0μm以上であることが好ましい。基板2より上側に位置する空間にガスを導入すると、基板2の外側から、基板2とステージ12との間の隙間部19にガスが入り込む。隙間部19に導入されたガスによって、基板2とステージ12との熱交換が行われ、基板2の外周域が基板2の中央域よりも速く冷却される。 Further, it is preferable that the surface roughness Ra of the portion 14 (contact portion) that constitutes the stage 12 and contacts the second surface 2b of the substrate 2 is 1.0 μm or more. When gas is introduced into the space located above the substrate 2, the gas enters the gap 19 between the substrate 2 and the stage 12 from the outside of the substrate 2. Heat exchange between the substrate 2 and the stage 12 is performed by the gas introduced into the gap portion 19, and the outer peripheral area of the substrate 2 is cooled faster than the central area of the substrate 2.
 ステージ12の部位14の表面粗さとガスの導入速度の関係によって基板2の外周域と中央域の最大温度差は変化する。特に、ステージ12の表面粗さRaが1μm以下の場合には、基板2の第2面2bとステージ12との間において、基板2の中央域に位置する隙間部19にガスが入り難くなり、外周域と中央域の温度差が発生し易い。結果として、基板2の外周域が冷却により収縮して、基板2の中央域が収縮しない状態が生じる。これにより、基板2の外周域が収縮する応力が発生し、基板2が凸状に変形する反りが発生する。結果として、基板2とステージ12とが接触する接触面積を十分に確保することができず、基板2の冷却を迅速かつ均一に行うことが困難となる。 The maximum temperature difference between the outer peripheral area and the central area of the substrate 2 varies depending on the relationship between the surface roughness of the portion 14 of the stage 12 and the gas introduction speed. In particular, when the surface roughness Ra of the stage 12 is 1 μm or less, it becomes difficult for gas to enter the gap portion 19 located in the central region of the substrate 2 between the second surface 2b of the substrate 2 and the stage 12, A temperature difference between the outer peripheral region and the central region is likely to occur. As a result, the outer peripheral region of the substrate 2 contracts due to cooling, and the central region of the substrate 2 does not contract. Thereby, the stress which the outer peripheral area of the board | substrate 2 shrink | contracts generate | occur | produces, and the curvature which the board | substrate 2 deform | transforms into convex shape generate | occur | produces. As a result, a sufficient contact area between the substrate 2 and the stage 12 cannot be secured, and it becomes difficult to cool the substrate 2 quickly and uniformly.
 ステージ12の表面粗さRaが1.0μm以上になるように、ステージ12の表面を粗くすることによって、基板2とステージ12との間の隙間部19にガスを導入することが可能になり、基板2を効率よく冷却することが可能である。 By roughening the surface of the stage 12 so that the surface roughness Ra of the stage 12 is 1.0 μm or more, it becomes possible to introduce gas into the gap portion 19 between the substrate 2 and the stage 12, It is possible to cool the substrate 2 efficiently.
 更に、ステージ12上に基板2が設置された状態で、ステージ12と基板2の第2面2bとの間に3.5cm以上の隙間を有する隙間部19が存在することが好ましい。3.5cm以上の空間(隙間部19)が形成されていると、1×10Paなどの高圧下において、リフタを下げて基板をステージに設置する際に、基板2の下に設けられた空間(隙間部19)の圧力が上昇して基板が横滑りすることを防ぐことができる。
 ステージ12と基板2の第2面2bとの間に所定以上の容積を有する隙間部19を確保することで、ガスを第一空間αに導入した際に、基板2とステージ12との間の隙間部19に効率よくガスを入り込ませることができ、基板2をより効率よく冷却することができる。
Furthermore, it is preferable that a gap 19 having a gap of 3.5 cm 3 or more exists between the stage 12 and the second surface 2b of the substrate 2 in a state where the substrate 2 is placed on the stage 12. When a space (gap portion 19) of 3.5 cm 3 or more is formed, it is provided under the substrate 2 when the substrate is placed on the stage by lowering the lifter under a high pressure such as 1 × 10 5 Pa. It is possible to prevent the substrate from slipping due to an increase in the pressure of the remaining space (gap portion 19).
By securing a gap 19 having a predetermined volume or more between the stage 12 and the second surface 2b of the substrate 2, when the gas is introduced into the first space α, the gap between the substrate 2 and the stage 12 is increased. Gas can enter the gap portion 19 efficiently, and the substrate 2 can be cooled more efficiently.
 なお、ステージ12に溝部13を同心円状に設ける場合、ステージ12と基板2とが接触している接触面積をS1で表し、ステージ12と基板2とが接触していない非接触面積をS2で表したとき、接触面積S1と非接触面積S2の比率(S1/S2)は、ステージ12の中央域における値(比率S1/S2)よりも、外周域における値(比率S1/S2)が小さいことが好ましい。つまり、このように比率が設定されている構造は、基板2の外周域よりも基板2の中央域が早く冷却するように接触面積の比率に変化をつけている。ステージ12の中央域における値(比率S1/S2)を大きくする、すなわち、中央域における基板2とステージ12とが接触する接触面積を大きくすることで、基板2の外周域よりも基板2の中央域を早く冷却することができる。 When the groove 13 is provided concentrically on the stage 12, the contact area where the stage 12 and the substrate 2 are in contact is represented by S1, and the non-contact area where the stage 12 and the substrate 2 are not in contact is represented by S2. When this is done, the ratio (S1 / S2) between the contact area S1 and the non-contact area S2 may be smaller in the outer peripheral area (ratio S1 / S2) than in the central area of the stage 12 (ratio S1 / S2). preferable. That is, in the structure in which the ratio is set in this way, the contact area ratio is changed so that the central area of the substrate 2 cools faster than the outer peripheral area of the substrate 2. By increasing the value (ratio S1 / S2) in the central region of the stage 12, that is, by increasing the contact area where the substrate 2 and the stage 12 contact in the central region, the center of the substrate 2 is larger than the peripheral region of the substrate 2. The area can be cooled quickly.
 また、ステージ12上に溝部13を同心円状に設ける場合、図6に示すように、ステージ12が構成されてもよい。具体的には、基板2の第2面2bと接触するステージ12の部位14において、中央域14cに位置する部位14の高さh1が、外周域14pに位置する部位14の高さh2よりも低くしてもよい。
 部位14の高さが全て同じであると、基板2が凹状に変形するように反った場合、基板2の外周域において、基板2とステージ12との間の空間をシールすることができなくなってしまう。この問題を解決するため、外周域14pから中央域14cに向う方向において、部位14の高さが徐々に低くなるように部位14の高さを決定することにより、基板2の外周域14pにおいて、ステージ12と基板2との接触を確保することができる。
Moreover, when providing the groove part 13 on the stage 12 concentrically, the stage 12 may be comprised as shown in FIG. Specifically, in the portion 14 of the stage 12 that contacts the second surface 2b of the substrate 2, the height h1 of the portion 14 located in the central region 14c is higher than the height h2 of the portion 14 located in the outer peripheral region 14p. It may be lowered.
If the heights of the portions 14 are all the same, when the substrate 2 is warped so as to be deformed into a concave shape, the space between the substrate 2 and the stage 12 cannot be sealed in the outer peripheral area of the substrate 2. End up. In order to solve this problem, by determining the height of the portion 14 so that the height of the portion 14 gradually decreases in the direction from the outer peripheral region 14p to the central region 14c, in the outer peripheral region 14p of the substrate 2, Contact between the stage 12 and the substrate 2 can be ensured.
 ガス供給部15は、ステージ12上に載置された基板2の第1面2aよりも上側に位置するとともにチャンバ11内の空間である第一空間αに所定のガスを導入する。第一空間αに導入されたガスは、ステージ12に形成された溝部13を通じて基板2とステージ12との間の空間(第二空間β)に入り込み、第二空間β内に存在するガスを介して熱交換が行われ、基板2が冷却される。
 ガス供給部15が、第一空間αに導入するガスは、チャンバ11内の雰囲気を真空から大気雰囲気に戻す際にチャンバ11内に供給されるガスである。このようなガスの種類としては、特に限定されず、例えば、窒素、アルゴン、ヘリウム、キセノン等、化学的に安定なガスが挙げられる。
The gas supply unit 15 is located above the first surface 2 a of the substrate 2 placed on the stage 12 and introduces a predetermined gas into the first space α that is a space in the chamber 11. The gas introduced into the first space α enters the space (second space β) between the substrate 2 and the stage 12 through the groove 13 formed in the stage 12, and passes through the gas existing in the second space β. Thus, heat exchange is performed and the substrate 2 is cooled.
The gas introduced into the first space α by the gas supply unit 15 is a gas that is supplied into the chamber 11 when the atmosphere in the chamber 11 is returned from a vacuum to an air atmosphere. The type of such gas is not particularly limited, and examples thereof include chemically stable gases such as nitrogen, argon, helium, and xenon.
 そして、本実施形態の基板処理装置10(3)は、制御部17を備えている。この制御部17は、第一空間αの第一圧力Pが、基板2よりも下側に位置し、ステージ12と基板2の第2面2bとの間に設けられた隙間部19及び溝部13を含む第二空間βの第二圧力Pよりも大きくなるように、第一圧力P及び第二圧力Pを制御する。 The substrate processing apparatus 10 (3) of this embodiment includes a control unit 17. The controller 17 is configured such that the first pressure P 1 in the first space α is located below the substrate 2, and the gap 19 and the groove provided between the stage 12 and the second surface 2 b of the substrate 2. The first pressure P 1 and the second pressure P 2 are controlled so as to be larger than the second pressure P 2 in the second space β including 13.
 基板2とステージ12とを接触させて熱交換することにより基板2を冷却する際に、第一空間αの第一圧力Pが、第二空間βの第二圧力Pよりも大きくなるように制御されることで、第一空間αと第二空間βとの圧力差により基板2がステージ12上に押し付けられる。このため、基板2が凸状に変形する反りを抑制することができる。これにより、基板2がステージ12から浮き上がらず、ステージ12と基板2とが接触する接触面積を確保することができる。その結果、本実施形態の基板処理装置10においては、基板面内での温度のバラツキがなく、均一かつ迅速に基板2を冷却することができる。 When the substrate 2 is cooled by bringing the substrate 2 and the stage 12 into contact with each other for heat exchange, the first pressure P 1 in the first space α is greater than the second pressure P 2 in the second space β. The substrate 2 is pressed onto the stage 12 by the pressure difference between the first space α and the second space β. For this reason, the curvature which the board | substrate 2 deform | transforms into convex shape can be suppressed. Thereby, the board | substrate 2 does not float up from the stage 12, and the contact area where the stage 12 and the board | substrate 2 contact can be ensured. As a result, in the substrate processing apparatus 10 of the present embodiment, there is no temperature variation in the substrate surface, and the substrate 2 can be cooled uniformly and quickly.
 例えば、図2に示す基板処理装置においては、第一制御部17α(17)は、例えば、圧力計17a、流量計17b、バルブ17c等から構成されている。第二制御部17βは、例えば、圧力計17d、流量計17e、バルブ17f、排気部17g等から構成されている。また、第一制御部17α及び第二制御部17βは、チャンバ11内の圧力(P,P)をモニタリングするとともに、ガス供給部15からチャンバ11内に導入されるガスの量を調整する。 For example, in the substrate processing apparatus shown in FIG. 2, the first control unit 17α (17) includes, for example, a pressure gauge 17a, a flow meter 17b, a valve 17c, and the like. The second controller 17β includes, for example, a pressure gauge 17d, a flow meter 17e, a valve 17f, an exhaust part 17g, and the like. The first controller 17α and the second controller 17β monitor the pressure (P 1 , P 2 ) in the chamber 11 and adjust the amount of gas introduced into the chamber 11 from the gas supply unit 15. .
 制御部17(17α、17β)は、圧力Pと圧力Pの差が、5×10[Pa]以上1×10[Pa]以下(すなわち、50[Pa]~100000[Pa])となるように、圧力P,Pを所定時間制御することが好ましい。圧力差が小さいと、基板2をステージ12に押し付ける力が弱く、基板2の反りを十分に抑えることが難しい。一方、圧力差が大きすぎると、隙間部19の端において基板2に対して応力が加わり、基板割れが発生しやすくなり、好ましくない。しかしながら、基板の反りが大きい場合は、比較的高い圧力差が必要となる。基板の反りが大きく、基板が割れやすい場合には、ステージ12の隙間部19及び溝部13を分散的に配置し、応力集中が緩和されるようにステージ12を適切に設計することが好ましい。 The control unit 17 (17α, 17β) has a difference between the pressure P 1 and the pressure P 2 of 5 × 10 [Pa] or more and 1 × 10 5 [Pa] or less (that is, 50 [Pa] to 100000 [Pa]). It is preferable to control the pressures P 1 and P 2 for a predetermined time. When the pressure difference is small, the force for pressing the substrate 2 against the stage 12 is weak, and it is difficult to sufficiently suppress the warpage of the substrate 2. On the other hand, if the pressure difference is too large, stress is applied to the substrate 2 at the end of the gap portion 19 and substrate cracking is likely to occur, which is not preferable. However, when the warpage of the substrate is large, a relatively high pressure difference is required. If the substrate is warped and the substrate is easily cracked, it is preferable to disperse the gaps 19 and the grooves 13 of the stage 12 and to design the stage 12 appropriately so as to reduce stress concentration.
 本発明における隙間部19及び溝部13が分散するように配置されている構造の一例としては、例えば、隙間部19と溝部13とが交互に同心円状に配置された構造が挙げられる。または、ステージ12上に複数の隙間部19がドット状に形成され、隣接する隙間部19の間に溝部13が形成されるように、隙間部19と溝部13とが配置された構造が挙げられる。しかしながら、本発明における隙間部19及び溝部13が分散するように配置されている構造は、この例示した2つに限定されない。すなわち、単位面積あたりで基板2を支持する部分(隙間部19)が分散的にステージ12上に配置することが可能であれば、いかなる構成も採用される。 As an example of the structure in which the gaps 19 and the grooves 13 are arranged so as to be dispersed in the present invention, for example, a structure in which the gaps 19 and the grooves 13 are alternately arranged concentrically is exemplified. Alternatively, a structure in which the gaps 19 and the grooves 13 are arranged such that a plurality of gaps 19 are formed in a dot shape on the stage 12 and the grooves 13 are formed between the adjacent gaps 19 is exemplified. . However, the structure in which the gaps 19 and the grooves 13 in the present invention are arranged to be dispersed is not limited to the two illustrated. That is, any configuration may be employed as long as the portion (gap portion 19) that supports the substrate 2 per unit area can be arranged on the stage 12 in a dispersed manner.
 なお、ステージ12内に、冷却水等の冷却媒体を循環させる冷却媒体流路(図示略)が設けられていてもよい。冷却媒体流路に冷却媒体を流すことで、ステージ12上に載置された基板2とステージ12との間で熱交換を促進させ、基板2を効率よく冷却することができる。 A cooling medium flow path (not shown) for circulating a cooling medium such as cooling water may be provided in the stage 12. By causing the cooling medium to flow through the cooling medium flow path, heat exchange can be promoted between the substrate 2 placed on the stage 12 and the stage 12, and the substrate 2 can be efficiently cooled.
 次に、このようなマルチチャンバ方式の真空処理装置1において、ロードロック室を用いて基板2を処理室に搬送する一般的な搬送工程を説明する。
 まず、大気雰囲気において基板2がロードロック室3内に導入され、その後、ロードロック室3の内部は、減圧され、真空雰囲気になる。続いて、ロードロック室3に隣接するコア室5に設置された基板搬送ロボット6によって、基板2は、ロードロック室3からコア室5を経由し処理室4へ搬送される。その後、処理室4(プロセスチャンバ)内において、基板2に対して処理操作(例えば、エッチング、酸化、化学気相蒸着等)が実施される。
Next, a general transfer process for transferring the substrate 2 to the processing chamber using the load lock chamber in the multi-chamber type vacuum processing apparatus 1 will be described.
First, the substrate 2 is introduced into the load lock chamber 3 in an air atmosphere, and then the inside of the load lock chamber 3 is depressurized to a vacuum atmosphere. Subsequently, the substrate 2 is transferred from the load lock chamber 3 to the processing chamber 4 via the core chamber 5 by the substrate transfer robot 6 installed in the core chamber 5 adjacent to the load lock chamber 3. Thereafter, processing operations (for example, etching, oxidation, chemical vapor deposition, etc.) are performed on the substrate 2 in the processing chamber 4 (process chamber).
 処理後の基板2は、処理室4に基板2が搬送される時と同様に、基板搬送ロボット6によって処理室4からコア室5を経由しロードロック室3へ戻される。ロードロック室3の内部は、前述したロードロック室3から処理室4に基板2が搬送された以降、ずっと真空に保持されている。基板2がロードロック室3に戻った後、窒素(N)等のパージガスがロードロック室3内に供給され、ロードロック室3の圧力が大気圧に戻される(以下、大気開放)。また、加熱された基板2は、ロードロック室3内に設けられた上記のステージ12よって冷却される。ロードロック室3の圧力が大気圧に達した後、処理済みの基板2を基板カセットに移し、次の処理工程が行われる。 The processed substrate 2 is returned from the processing chamber 4 via the core chamber 5 to the load lock chamber 3 by the substrate transfer robot 6 in the same manner as when the substrate 2 is transferred to the processing chamber 4. The inside of the load lock chamber 3 is kept in a vacuum after the substrate 2 is transferred from the load lock chamber 3 to the processing chamber 4 described above. After the substrate 2 returns to the load lock chamber 3, a purge gas such as nitrogen (N 2 ) is supplied into the load lock chamber 3, and the pressure of the load lock chamber 3 is returned to the atmospheric pressure (hereinafter, released to the atmosphere). Further, the heated substrate 2 is cooled by the stage 12 provided in the load lock chamber 3. After the pressure in the load lock chamber 3 reaches atmospheric pressure, the processed substrate 2 is transferred to the substrate cassette, and the next processing step is performed.
 本発明の実施形態の基板冷却方法は、基板2とステージ12とを接触させて熱交換することにより基板2を冷却する際に、第一空間αの第一圧力Pが、基板2よりも下側に位置するとともにステージ12と基板2の第2面2bとの間に設けられた隙間部19及び溝部13を含む第二空間βの第二圧力Pよりも大きくなるように、第一圧力P及び第二圧力Pを制御する。 In the substrate cooling method according to the embodiment of the present invention, when the substrate 2 is cooled by bringing the substrate 2 and the stage 12 into contact with each other and exchanging heat, the first pressure P 1 in the first space α is higher than that of the substrate 2. as it is larger than the stage 12 and the second pressure P 2 of the second space β including the gap portion 19 and the groove 13 provided between the second face 2b of the substrate 2 as well as positioned on the lower side, first to control the pressure P 1 and the second pressure P 2.
 従来、減圧下において、基板2とステージ12との間で生じる熱交換によって必要な温度まで基板2を冷却するためには、その距離が0.3mmである場合には15秒で完了し、その距離が2mmである場合には1分以上かかってしまう。
 例えば、直径300mm、厚さ0.7mmのシリコン基板の温度を500℃から常温になるようにシリコン基板を冷却する際、シリコン基板の外周域が急激に常温に冷却されると、シリコン基板において2mm以上の反りが発生することがある。この結果、シリコン基板の上側方向において、シリコン基板の中央域が盛り上がり、シリコン基板が凸状に反り、ステージ12の表面からシリコン基板の中央域が離れ、シリコン基板の中央域の冷却速度は急激に低下する。
Conventionally, in order to cool the substrate 2 to a necessary temperature by heat exchange generated between the substrate 2 and the stage 12 under reduced pressure, when the distance is 0.3 mm, the process is completed in 15 seconds. When the distance is 2 mm, it takes 1 minute or more.
For example, when the silicon substrate is cooled so that the temperature of the silicon substrate having a diameter of 300 mm and a thickness of 0.7 mm is changed from 500 ° C. to room temperature, if the outer peripheral region of the silicon substrate is rapidly cooled to room temperature, the silicon substrate is 2 mm in thickness. The above warpage may occur. As a result, in the upper direction of the silicon substrate, the central region of the silicon substrate is raised, the silicon substrate is warped in a convex shape, the central region of the silicon substrate is separated from the surface of the stage 12, and the cooling rate of the central region of the silicon substrate is rapidly increased. descend.
 結果として、基板2の反りが2mm以上である状態が維持される。また、中央域の温度が外周域の温度と近付いてくると、反りを有する基板2が元の形状に戻り始めると共に急激に冷却が始まる。このため、反りを有する基板2が元の形状に戻る際に、基板2とステージ12との間の空間に存在したガスは残留し、方向性を有するように流動しない。このため、ステージ12上において、基板2がスライドすることがある。また、凸状形状とは逆の形状、即ち、凹状に基板2が反る場合などにおいては、反りを有する基板2が元の形状に戻る際に、反動で基板2がステージ12上で跳ねてしまい、ステージ12上における基板2の位置がずれてしまうことなどがある。 As a result, the state where the warpage of the substrate 2 is 2 mm or more is maintained. Further, when the temperature in the central area approaches the temperature in the outer peripheral area, the warped substrate 2 starts to return to its original shape and cools rapidly. For this reason, when the substrate 2 having warpage returns to its original shape, the gas present in the space between the substrate 2 and the stage 12 remains and does not flow so as to have directionality. For this reason, the substrate 2 may slide on the stage 12. In addition, when the substrate 2 warps in a shape opposite to the convex shape, that is, when the substrate 2 warps in a concave shape, the substrate 2 jumps on the stage 12 by reaction when the substrate 2 having warpage returns to the original shape. As a result, the position of the substrate 2 on the stage 12 may shift.
 これに対し、本発明の基板冷却方法においては、図10に示すように、基板2とステージ12とを接触させて熱交換することにより基板2を冷却する。その際に、第一空間αの圧力Pが第二空間βの圧力Pよりも大きくなるように、圧力P,Pを所定時間制御する。ここで、第二空間βは、基板2よりも下側に位置し、ステージ12と基板2の第2面2bとの間に設けられた隙間部19及び溝部13を含む空間である。そして、その所定時間においては、第一空間αと第二空間βとの圧力差により基板2がステージ12上に押し付けられ、基板2が凸状に変形するような反りが発生することを抑制することができる。これにより、基板2がステージ12から浮き上がらず、ステージ12と基板2とが接触する接触面積を確保し、基板2の中央域が冷却することができないという問題を解決することができる。その結果、本発明の基板冷却方法では、基板面内での温度のバラツキがなく、均一かつ迅速に基板2を冷却することができる。 On the other hand, in the substrate cooling method of the present invention, as shown in FIG. 10, the substrate 2 is cooled by bringing the substrate 2 and the stage 12 into contact with each other and exchanging heat. At that time, the pressure P 1 of the first space α is to be greater than the pressure P 2 of the second space beta, for a predetermined time control the pressure P 1, P 2. Here, the second space β is a space that is located below the substrate 2 and includes a gap portion 19 and a groove portion 13 provided between the stage 12 and the second surface 2 b of the substrate 2. And in the predetermined time, the board | substrate 2 is pressed on the stage 12 by the pressure difference of 1st space (alpha) and 2nd space (beta), and it suppresses generating the curvature which the board | substrate 2 deform | transforms into convex shape. be able to. Thereby, the board | substrate 2 does not float from the stage 12, the contact area where the stage 12 and the board | substrate 2 contact is ensured, and the problem that the center area | region of the board | substrate 2 cannot be cooled can be solved. As a result, in the substrate cooling method of the present invention, there is no temperature variation in the substrate surface, and the substrate 2 can be uniformly and rapidly cooled.
 更に、本発明によれば、基板2の中央域が加熱されたまま基板2の外周域が冷却された状態で大気搬送ロボットのバキュームチャックによって基板2を搬送する際、基板2の反りが大きいためにバキュームチャックすることができないという問題を回避することができる。 Furthermore, according to the present invention, when the substrate 2 is transported by the vacuum chuck of the atmospheric transport robot while the outer peripheral region of the substrate 2 is cooled while the central region of the substrate 2 is heated, the warp of the substrate 2 is large. Therefore, the problem that the vacuum chuck cannot be performed can be avoided.
 第一空間αの圧力Pが大気圧となり基板2の冷却が終了したら、チャンバ11の下側に設けられたバルブ17hを開き、第二空間βの圧力Pを第一空間αの圧力Pと同じにする。これにより、昇降ピン20によって基板2をリフトアップする時に、基板2がステージ12から跳ねることを防止することができる。すなわち、基板2をステージ12から離脱させる際、ステージ12が基板2を吸引する効果によって、基板2が振動したり、基板2の第2面2bに傷がついてしまう問題も回避することができる。 When the pressure P 1 in the first space α becomes atmospheric pressure and the cooling of the substrate 2 is finished, the valve 17 h provided on the lower side of the chamber 11 is opened, and the pressure P 2 in the second space β is changed to the pressure P in the first space α. Same as 1 . Thereby, it is possible to prevent the substrate 2 from jumping from the stage 12 when the substrate 2 is lifted up by the lift pins 20. That is, when the substrate 2 is detached from the stage 12, problems that the substrate 2 vibrates or the second surface 2b of the substrate 2 is damaged due to the effect of the stage 12 sucking the substrate 2 can be avoided.
 また、図3においては、ステージ12と基板2との間に不図示の溝が存在している。この溝は、基板2と接触するステージ12の隙間部19の面に設けられた微細な凹凸形状を意味する。このような溝が隙間部19の面に形成されているので、図10に示すように時間の経過に伴って、第一空間αの圧力Pと第二空間βの圧力Pは同等となる。このため、図3に示す構成においても、上述した傷がついてしまう問題を回避することができる。 In FIG. 3, a groove (not shown) exists between the stage 12 and the substrate 2. This groove means a fine concavo-convex shape provided on the surface of the gap portion 19 of the stage 12 in contact with the substrate 2. Since such a groove is formed on the surface of the gap portion 19, with the passage of time as shown in FIG. 10, the pressure P 2 of the pressure P 1 and the second space β of the first space α is equal to Become. For this reason, even in the configuration shown in FIG. 3, the above-described problem of scratching can be avoided.
 次に、本発明の効果を確認するために行った実験例について説明する。
 図7A及び図7Bは、本発明の方法により基板を冷却した場合の結果を示している。図7Aは、基板を冷却する際の基板の各地点(A~E)を示しており、図7Bは、各地点(A~E)における温度と時間との関係を示している。一方、図8A,図8B,図9A,及び図9Bは、従来の方法により基板を冷却した場合の結果である。
 図7Bに示された本発明によって基板を冷却した結果と、図8A,図8B,図9A,及び図9Bに示された従来方法によって基板を冷却した結果とを比較すると、本発明においては、各地点(A~E)において均一かつ迅速に基板を冷却することが可能であることが分かる。
Next, experimental examples conducted for confirming the effects of the present invention will be described.
7A and 7B show the results when the substrate is cooled by the method of the present invention. FIG. 7A shows the points (A to E) of the substrate when the substrate is cooled, and FIG. 7B shows the relationship between the temperature and the time at each point (A to E). On the other hand, FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B show results when the substrate is cooled by a conventional method.
Comparing the result of cooling the substrate according to the present invention shown in FIG. 7B and the result of cooling the substrate by the conventional method shown in FIGS. 8A, 8B, 9A, and 9B, in the present invention, It can be seen that the substrate can be uniformly and rapidly cooled at each point (A to E).
 すなわち、本発明では、基板を冷却する際に、制御部は、例えばガスの流量を調節することにより、第一空間の圧力Pが第二空間の圧力Pよりも大きくなるように、圧力P,Pを制御した。具体的には、圧力Pが1000Paとなるように、Pが400Paとなるように、圧力P,Pを制御した。圧力Pと圧力Pとの圧力差は600Paであった。
 上述した説明から明らかな通り、この具体例の値(数字)は、ある特定の時刻における数値に過ぎない。何故ならば、圧力P,Pの関係は、図10に示す通り時間の経過に伴って変化しており、圧力差(差圧)が発生している所定時間は、5秒間程度に過ぎない。なお、図10においては、第一空間内にガスを流し始めてから、およそ5秒後の時刻Tに、2つの圧力(P,P)がほぼ等しくなることが示されている。
That is, in the present invention, when the substrate is cooled, the control unit adjusts the pressure of the first space so that the pressure P 1 in the first space becomes larger than the pressure P 2 in the second space, for example, by adjusting the flow rate of the gas. P 1 and P 2 were controlled. Specifically, the pressure P 1 is such that 1000 Pa, so that P 2 is 400 Pa, and control the pressure P 1, P 2. The pressure difference between the pressure P 1 and the pressure P 2 was 600 Pa.
As is clear from the above description, the value (number) in this specific example is only a numerical value at a specific time. This is because the relationship between the pressures P 1 and P 2 changes with time as shown in FIG. 10, and the predetermined time during which the pressure difference (differential pressure) is generated is only about 5 seconds. Absent. In FIG. 10, it is shown that the two pressures (P 1 , P 2 ) are substantially equal at time T approximately 5 seconds after the gas starts flowing in the first space.
 図8A及び図8Bでは、基板の外周域のみが冷却されたため、基板の中央域が盛り上がるように、基板が凸状に変形するように反ってしまい、その結果、ステージ面から基板の中央域が離れ、基板の中央域の冷却速度は急激に低下してしまっている。 In FIG. 8A and FIG. 8B, since only the outer peripheral area of the substrate is cooled, the substrate warps so that the central area of the substrate rises, and as a result, the central area of the substrate extends from the stage surface. The cooling rate in the central area of the substrate has dropped rapidly.
 これに対し、図7Bに示すように本発明では、第一空間の圧力Pが第二空間の圧力Pよりも大きくなるように、前記圧力P,Pを制御したことで、第一空間と第二空間との圧力差により基板がステージ上に押し付けられ、凸状の反りを抑制することができた。これにより基板がステージから浮き上がらず、ステージと基板とが接触する接触面積を確保し、基板の中央域を冷却することができるようになった。その結果、基板面内での温度のバラツキがなく、均一かつ迅速に基板を冷却することができることが確認された。 On the other hand, as shown in FIG. 7B, in the present invention, the pressures P 1 and P 2 are controlled so that the pressure P 1 in the first space is larger than the pressure P 2 in the second space. The substrate was pressed onto the stage by the pressure difference between the first space and the second space, and the convex warpage could be suppressed. As a result, the substrate does not float from the stage, and a contact area where the stage and the substrate come into contact with each other can be secured, and the central area of the substrate can be cooled. As a result, it was confirmed that there was no temperature variation in the substrate surface and the substrate could be cooled uniformly and quickly.
 図11に示す基板処理装置200(3)は、最も簡素化された装置である。図12は、図11に示す基板処理装置が備えるステージの一例を示す平面図である。ここで、符号15はVENT配管、符号17bはVENTフィルターを表す。
 図12に示すステージ12においては、隙間部19及び溝部13が交互に同心円状に配置されている。また、ステージ12は、符号A、B、Cで示す気抜き溝を更に備える。第一空間αと溝部13とを連通させるように気抜き溝Aが配置されている。また、隣接する溝部13の空間を連通させるように気抜き溝B、Cが配置されている。
 図11は、基板2がステージ12に載置された状態を示している。図11を参照して、基板2がステージ12に載置される工程について説明する。
 まず、搬送室(不図示)からLL(ロードロック)室として機能する基板処理装置200(3)内に、例えば、350℃の基板温度を有するように熱処理された基板2が搬送される。このとき、基板2は、リフトアップされた昇降ピン20によって支持され、昇降ピン20上に載置される。その後、搬送室とLL室とを空間的に区分する仕切りバルブ(不図示)が閉じる。引き続き、ロッド21を下降させることにより昇降ピン20が下降し、昇降ピン20は基板2から離れ、基板2がステージ12に載置される。
The substrate processing apparatus 200 (3) shown in FIG. 11 is the most simplified apparatus. FIG. 12 is a plan view showing an example of a stage provided in the substrate processing apparatus shown in FIG. Here, reference numeral 15 denotes a VENT pipe, and reference numeral 17b denotes a VENT filter.
In the stage 12 shown in FIG. 12, the gap portions 19 and the groove portions 13 are alternately arranged concentrically. In addition, the stage 12 further includes air removal grooves indicated by reference signs A, B, and C. A ventilation groove A is arranged so as to allow the first space α and the groove portion 13 to communicate with each other. In addition, ventilating grooves B and C are arranged so as to communicate the spaces of the adjacent groove portions 13.
FIG. 11 shows a state where the substrate 2 is placed on the stage 12. A process of placing the substrate 2 on the stage 12 will be described with reference to FIG.
First, the substrate 2 that has been heat-treated so as to have a substrate temperature of, for example, 350 ° C. is transferred from a transfer chamber (not shown) into the substrate processing apparatus 200 (3) that functions as an LL (load lock) chamber. At this time, the substrate 2 is supported by the lift pins 20 lifted up and placed on the lift pins 20. Thereafter, a partition valve (not shown) that spatially separates the transfer chamber and the LL chamber is closed. Subsequently, when the rod 21 is lowered, the elevating pins 20 are lowered, the elevating pins 20 are separated from the substrate 2, and the substrate 2 is placed on the stage 12.
 このような図11に示す状態において、LL室の排気バルブ(不図示)を閉じ、バルブ17cを開くと、第一空間αの圧力P及び第二空間βの圧力Pのそれぞれは、図10のグラフに示すように、圧力上昇カーブを描く。
 その際、バルブ17cを通じて基板処理装置200(3)へ導入されるガス(VENTガス)は、まず、第一空間α内に放出され、その後、矢印A、B、Cで示された経路を通じて、第二空間β内に順に流動し、更に、矢印D、Eで示された方向に流れる。その結果、第二空間βの圧力Pは、第一空間αの圧力Pに比べて低くなる(P>P)。第一空間αと第二空間βとの圧力差が作用することによって、基板2はステージ12に押しつけられるため、基板2とステージ12との間の距離を安定に保つことができる。
In the state shown in this FIG. 11, it closed exhaust valve of LL chamber (not shown), opening the valve 17c, each of the pressure P 2 of the pressure P 1 and the second space β the first space alpha, FIG. As shown in the graph of FIG. 10, a pressure rise curve is drawn.
At that time, the gas (VENT gas) introduced into the substrate processing apparatus 200 (3) through the valve 17c is first released into the first space α, and then passes through the paths indicated by arrows A, B, and C. It flows in the second space β in order, and further flows in the directions indicated by arrows D and E. As a result, the pressure P 2 in the second space β is lower than the pressure P 1 in the first space α (P 1 > P 2 ). Since the pressure difference between the first space α and the second space β acts, the substrate 2 is pressed against the stage 12, so that the distance between the substrate 2 and the stage 12 can be kept stable.
 また、溝部13の深さ又は面積を変えることにより、基板全体の冷却速度を制御することができる。また、第一空間αと第二空間βとの圧力差は、矢印A~Eで示すようにガスが流動する経路のコンダクタンスを変更することにより制御することができる。このため、基板2をステージ12に押しつける力の強弱が調整することができる。
 基板2の反りが大きいと、安定した冷却が難しい場合がある。このような場合には、矢印A~Eで示すようにガスが流動する経路のコンダクタンスを下げると共に、VENT配管15のVENT圧力を上げることで、基板2を安定的に冷却することが好ましい。
 このような調整を施すことにより、最低限の部品点数の付属部品を備えた図11に示す基板処理装置200(3)においても、最適な押しつけ圧力で、安定した基板の冷却処理が可能となる。
Further, the cooling rate of the entire substrate can be controlled by changing the depth or area of the groove 13. Further, the pressure difference between the first space α and the second space β can be controlled by changing the conductance of the path through which the gas flows as indicated by arrows A to E. For this reason, the strength of pressing the substrate 2 against the stage 12 can be adjusted.
If the warpage of the substrate 2 is large, stable cooling may be difficult. In such a case, it is preferable to cool the substrate 2 stably by lowering the conductance of the gas flow path as indicated by arrows A to E and raising the VENT pressure in the VENT pipe 15.
By performing such adjustment, even in the substrate processing apparatus 200 (3) shown in FIG. 11 having the minimum number of accessory parts, stable substrate cooling processing can be performed with the optimum pressing pressure. .
 以上、本発明の基板処理装置及び基板冷却方法について説明してきたが、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The substrate processing apparatus and the substrate cooling method of the present invention have been described above. However, the technical scope of the present invention is not limited to the above-described embodiment, and various modifications are made without departing from the spirit of the present invention. Is possible.
 本発明は、成膜プロセス等において熱を帯びた基板をロードロック室内に移動させて、ロードロック室内の圧力を減圧状態から大気圧状態する変更する際に、熱を帯びた基板を適切に冷却した後、ロードロック室外へ基板を取り出す、基板処理装置及び基板冷却方法に広く適用可能である。 The present invention appropriately cools a heated substrate when the heated substrate is moved into a load lock chamber in a film forming process or the like, and the pressure in the load lock chamber is changed from a reduced pressure state to an atmospheric pressure state. Then, the present invention can be widely applied to a substrate processing apparatus and a substrate cooling method for taking out a substrate out of the load lock chamber.
 1 真空処理装置、2 基板、3A,3B(3) ロードロック室、4A~4D(4) 処理室、5 コア室(搬送室)、6 基板搬送ロボット、 10、100 基板処理装置、11 チャンバ、12 ステージ、13 溝部、14 接触する部位、15 ガス供給部、16 排気部、17α 第一制御部、17β 第二制御部、18 貫通孔、19 隙間部、α 第一空間、β 第二空間。 1 vacuum processing device, 2 substrates, 3A, 3B (3) load lock chamber, 4A-4D (4) processing chamber, 5 core chamber (transfer chamber), 6 substrate transfer robot, 10, 100 substrate processing device, 11 chamber, 12 stages, 13 grooves, 14 contact parts, 15 gas supply part, 16 exhaust part, 17α first control part, 17β second control part, 18 through hole, 19 gap part, α first space, β second space.

Claims (8)

  1.  基板処理装置であって、
     チャンバと、
     溝部が設けられた面を有し、前記チャンバ内に配置され、前記面上に微小な隙間部を形成するように基板が載置され、前記基板と接触して熱交換することにより前記基板を冷却するステージと、
     前記ステージ上に載置された前記基板の第1面よりも上側に位置するとともに前記チャンバ内の空間である第一空間に所定のガスを導入するガス供給部と、
     前記第一空間の第一圧力が、前記基板よりも下側に位置するとともに前記ステージと前記基板の第2面との間に設けられた前記隙間部及び前記溝部を含む第二空間の第二圧力よりも大きくなるように、前記第一圧力及び前記第二圧力を制御する制御部と
     を含むことを特徴とする基板処理装置。
    A substrate processing apparatus,
    A chamber;
    The substrate has a surface provided with a groove, and is disposed in the chamber. The substrate is placed on the surface so as to form a minute gap, and the substrate is contacted with the substrate to exchange heat. A stage to cool,
    A gas supply unit that is positioned above the first surface of the substrate placed on the stage and introduces a predetermined gas into a first space that is a space in the chamber;
    The first pressure in the first space is located below the substrate, and the second space in the second space includes the gap and the groove provided between the stage and the second surface of the substrate. And a control unit that controls the first pressure and the second pressure so as to be larger than the pressure.
  2.  請求項1に記載の基板処理装置であって、
     前記制御部は、前記第一圧力及び前記第二圧力の圧力差が、5×10[Pa]以上1×10[Pa]以下となるように、前記第一圧力及び前記第二圧力を所定時間制御する
     ことを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1,
    The control unit determines the first pressure and the second pressure so that a pressure difference between the first pressure and the second pressure is 5 × 10 [Pa] or more and 1 × 10 5 [Pa] or less. A substrate processing apparatus characterized by time control.
  3.  請求項1又は請求項2に記載の基板処理装置であって、
     前記ガス供給部が前記第一空間に導入するガスは、前記チャンバ内の雰囲気を真空から大気雰囲気に戻す際に前記チャンバ内に供給されるガスである
     ことを特徴とする基板処理装置。
    The substrate processing apparatus according to claim 1 or 2, wherein
    The gas introduced into the first space by the gas supply unit is a gas that is supplied into the chamber when returning the atmosphere in the chamber from a vacuum to an air atmosphere.
  4.  請求項1から請求項3のいずれか一項に記載の基板処理装置であって、
     前記ステージは、前記基板の前記第2面と前記ステージとが接触する接触部を有し、
     前記接触部における表面粗さRaは、1.0μm以上である
     ことを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 3, wherein
    The stage has a contact portion where the second surface of the substrate and the stage are in contact with each other,
    Surface roughness Ra in the said contact part is 1.0 micrometer or more. The substrate processing apparatus characterized by the above-mentioned.
  5.  請求項1から請求項4のいずれか一項に記載の基板処理装置であって、
     前記ステージ上に前記基板が設置された状態で、前記ステージと前記基板の前記第2面との間に3.5cm以上の前記隙間部が存在する
     ことを特徴とする基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 4, wherein:
    The substrate processing apparatus, wherein the gap portion of 3.5 cm 3 or more exists between the stage and the second surface of the substrate in a state where the substrate is placed on the stage.
  6.  請求項1から請求項5のいずれか一項に記載の基板処理装置であって、
     前記ステージと前記基板とが接触している接触面積がS1で表され、前記ステージと前記基板とが接触していない非接触面積がS2で表された場合、
     前記ステージの中央域における比率S1/S2よりも、前記ステージの外周域における比率S1/S2が小さい
     ことを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 5,
    When the contact area where the stage and the substrate are in contact is represented by S1, and the non-contact area where the stage and the substrate are not in contact is represented by S2,
    The substrate processing apparatus, wherein the ratio S1 / S2 in the outer peripheral area of the stage is smaller than the ratio S1 / S2 in the central area of the stage.
  7.  請求項1から請求項6のいずれか一項に記載の基板処理装置であって、
     前記ステージは、前記基板の前記第2面と前記ステージとが接触する接触部を有し、
     前記ステージの中央域に位置する前記接触部の高さは、前記ステージの外周域に位置する前記接触部の高さよりも低い
     ことを特徴とする基板処理装置。
    A substrate processing apparatus according to any one of claims 1 to 6,
    The stage has a contact portion where the second surface of the substrate and the stage are in contact with each other,
    The substrate processing apparatus, wherein a height of the contact portion located in a central area of the stage is lower than a height of the contact portion located in an outer peripheral area of the stage.
  8.  基板冷却方法であって、
     チャンバと、溝部が設けられた面を有し、前記チャンバ内に配置され、前記面上に微小な隙間部を形成するように基板が載置され、前記基板と接触して熱交換することにより前記基板を冷却するステージと、前記ステージ上に載置された前記基板の第1面よりも上側に位置するとともに前記チャンバ内の空間である第一空間に所定のガスを導入するガス供給部とを備えた基板処理装置を用い、
     前記基板と前記ステージとを接触させて熱交換することにより前記基板を冷却する際に、
     前記第一空間の第一圧力が、前記基板よりも下側に位置するとともに前記ステージと前記基板の第2面との間に設けられた前記隙間部及び前記溝部を含む第二空間の第二圧力よりも大きくなるように、前記第一圧力及び前記第二圧力を所定時間制御する
     ことを特徴とする基板冷却方法。
    A substrate cooling method,
    A chamber and a surface provided with a groove, disposed in the chamber, a substrate is placed so as to form a minute gap on the surface, and is in contact with the substrate to exchange heat; A stage that cools the substrate, and a gas supply unit that is located above a first surface of the substrate placed on the stage and introduces a predetermined gas into a first space that is a space in the chamber; Using a substrate processing apparatus equipped with
    When cooling the substrate by bringing the substrate and the stage into contact and exchanging heat,
    The first pressure in the first space is located below the substrate, and the second space in the second space includes the gap and the groove provided between the stage and the second surface of the substrate. The substrate cooling method, wherein the first pressure and the second pressure are controlled for a predetermined time so as to be larger than the pressure.
PCT/JP2011/065069 2010-06-30 2011-06-30 Substrate treating device and substrate cooling method WO2012002499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522696A JP5462946B2 (en) 2010-06-30 2011-06-30 Substrate processing apparatus and substrate cooling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010149945 2010-06-30
JP2010-149945 2010-06-30

Publications (1)

Publication Number Publication Date
WO2012002499A1 true WO2012002499A1 (en) 2012-01-05

Family

ID=45402202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065069 WO2012002499A1 (en) 2010-06-30 2011-06-30 Substrate treating device and substrate cooling method

Country Status (3)

Country Link
JP (1) JP5462946B2 (en)
TW (1) TWI429873B (en)
WO (1) WO2012002499A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011313A (en) * 2012-06-29 2014-01-20 Kyocera Corp Passage member, heat exchanger employing the same and semiconductor manufacturing apparatus
KR101441484B1 (en) * 2012-12-28 2014-09-17 주식회사 에스에프에이 Deposition system for manufacturing oled
JP2015135905A (en) * 2014-01-17 2015-07-27 東京エレクトロン株式会社 vacuum processing apparatus and vacuum processing method
CN112071801A (en) * 2020-09-16 2020-12-11 北京北方华创微电子装备有限公司 Thimble lifting device and semiconductor process cavity
WO2021192001A1 (en) * 2020-03-24 2021-09-30 株式会社日立ハイテク Vacuum processing device
KR20210122198A (en) * 2020-03-31 2021-10-08 시바우라 메카트로닉스 가부시끼가이샤 Substrate processing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230116078A (en) * 2014-05-21 2023-08-03 어플라이드 머티어리얼스, 인코포레이티드 Thermal processing susceptor
US11145532B2 (en) 2018-12-21 2021-10-12 Toto Ltd. Electrostatic chuck
JP2020102618A (en) 2018-12-21 2020-07-02 Toto株式会社 Electrostatic chuck
JP7280132B2 (en) 2019-07-12 2023-05-23 株式会社アルバック Vacuum chamber and substrate processing equipment
WO2021044623A1 (en) * 2019-09-06 2021-03-11 キヤノンアネルバ株式会社 Load lock device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313954A (en) * 1988-06-14 1989-12-19 Fujitsu Ltd Static chuck
JPH08186074A (en) * 1994-12-28 1996-07-16 Hitachi Ltd Sputtering device
JP2002252271A (en) * 2001-02-26 2002-09-06 Anelva Corp Substrate holding device for substrate processing apparatus
JP2004519104A (en) * 2000-12-22 2004-06-24 エーエスエム アメリカ インコーポレイテッド Susceptor pocket cross section for enhanced process performance
JP2008251574A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Electrostatic chuck, manufacturing method thereof and manufacturing method of semiconductor device
JP2009182235A (en) * 2008-01-31 2009-08-13 Tokyo Electron Ltd Load lock apparatus and substrate cooling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313954A (en) * 1988-06-14 1989-12-19 Fujitsu Ltd Static chuck
JPH08186074A (en) * 1994-12-28 1996-07-16 Hitachi Ltd Sputtering device
JP2004519104A (en) * 2000-12-22 2004-06-24 エーエスエム アメリカ インコーポレイテッド Susceptor pocket cross section for enhanced process performance
JP2002252271A (en) * 2001-02-26 2002-09-06 Anelva Corp Substrate holding device for substrate processing apparatus
JP2008251574A (en) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd Electrostatic chuck, manufacturing method thereof and manufacturing method of semiconductor device
JP2009182235A (en) * 2008-01-31 2009-08-13 Tokyo Electron Ltd Load lock apparatus and substrate cooling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011313A (en) * 2012-06-29 2014-01-20 Kyocera Corp Passage member, heat exchanger employing the same and semiconductor manufacturing apparatus
KR101441484B1 (en) * 2012-12-28 2014-09-17 주식회사 에스에프에이 Deposition system for manufacturing oled
JP2015135905A (en) * 2014-01-17 2015-07-27 東京エレクトロン株式会社 vacuum processing apparatus and vacuum processing method
KR101876613B1 (en) * 2014-01-17 2018-07-09 도쿄엘렉트론가부시키가이샤 Vacuum-processing apparatus and vacuum-processing method
WO2021192001A1 (en) * 2020-03-24 2021-09-30 株式会社日立ハイテク Vacuum processing device
JP6990800B1 (en) * 2020-03-24 2022-01-14 株式会社日立ハイテク Vacuum processing equipment
KR20210122198A (en) * 2020-03-31 2021-10-08 시바우라 메카트로닉스 가부시끼가이샤 Substrate processing device
KR102607166B1 (en) 2020-03-31 2023-11-29 시바우라 메카트로닉스 가부시끼가이샤 Substrate processing device
CN112071801A (en) * 2020-09-16 2020-12-11 北京北方华创微电子装备有限公司 Thimble lifting device and semiconductor process cavity

Also Published As

Publication number Publication date
TWI429873B (en) 2014-03-11
JP5462946B2 (en) 2014-04-02
TW201213758A (en) 2012-04-01
JPWO2012002499A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5462946B2 (en) Substrate processing apparatus and substrate cooling method
JP6339057B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP6240695B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP6541374B2 (en) Substrate processing equipment
TWI637440B (en) Substrate processing system, manufacturing method of semiconductor device, program, and recording medium
KR101665371B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US10546761B2 (en) Substrate processing apparatus
JP5689483B2 (en) Substrate processing apparatus, substrate support, and method for manufacturing semiconductor device
JP6318139B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JPWO2007018139A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2019062194A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
CN108695193B (en) Substrate processing method, recording medium, and substrate processing apparatus
JP7124103B2 (en) SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
KR20110112074A (en) Apparatus and method for treating substates
JP2012195427A (en) Substrate processing apparatus and substrate processing method
JP2018067582A (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
US20080199610A1 (en) Substrate processing apparatus, and substrate processing method
US20180286725A1 (en) Substrate retrainer and substrate processing apparatus
JP2011071412A (en) Device for processing substrate
JP4404666B2 (en) Substrate support, substrate processing apparatus, and semiconductor device manufacturing method
JP4869952B2 (en) Heat treatment equipment
TWI835206B (en) Substrate processing apparatus, substrate processing method, semiconductor device manufacturing method and program
JP4800226B2 (en) Heat treatment equipment
US20220319877A1 (en) Substrate processing apparatus and substrate processing method
JP2018095916A (en) Substrate treatment apparatus, lithography temperature manufacturing method, program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800961

Country of ref document: EP

Kind code of ref document: A1