WO2012002118A1 - Dielectric ceramic material and laminated ceramic capacitor comprising same - Google Patents

Dielectric ceramic material and laminated ceramic capacitor comprising same Download PDF

Info

Publication number
WO2012002118A1
WO2012002118A1 PCT/JP2011/063129 JP2011063129W WO2012002118A1 WO 2012002118 A1 WO2012002118 A1 WO 2012002118A1 JP 2011063129 W JP2011063129 W JP 2011063129W WO 2012002118 A1 WO2012002118 A1 WO 2012002118A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
dielectric ceramic
ceramic
component
nitride
Prior art date
Application number
PCT/JP2011/063129
Other languages
French (fr)
Japanese (ja)
Inventor
島田康平
西村仁志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012002118A1 publication Critical patent/WO2012002118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a dielectric ceramic and a capacitor using the dielectric ceramic, and more particularly to a BaTiO 3 based dielectric ceramic and a multilayer ceramic capacitor using the dielectric ceramic as a constituent material of the dielectric layer.
  • the multilayer ceramic capacitor has a ceramic layer (dielectric ceramic layer) 11 in which an internal electrode 12 disposed in a ceramic multilayer body (multilayer ceramic element) 10 is a dielectric layer. And a pair of external electrodes 13a and 13b are disposed on both end faces of the ceramic laminate 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end faces. is doing.
  • a BaTiO 3 -based ceramic material having a high dielectric constant is widely used as the dielectric layer.
  • Patent Document 1 discloses a barium titanate powder and 100 mol of this barium titanate in terms of metal ions, 0.1 to 0.3 mol of Mn, 1.0 to 2.0 mol of Dy, Contains a metal compound containing 0.3 to 1.0 mol Mg, 0.5 to 1.5 mol Ba, 0.5 to 1.5 mol Ca and 1.0 to 2.5 mol Si, and aqueous ammonia. There has been proposed a method for producing a reduction-resistant dielectric composition through a step of preparing a mixed solution and heat-treating powder obtained from the mixed solution (see Patent Document 1).
  • Patent Document 1 proposes a multilayer ceramic capacitor having a dielectric layer formed from the reduction-resistant dielectric composition produced as described above and a method for producing the same.
  • the invention of the present application can be sintered at a low temperature without requiring a baking at a very high temperature without going through a step of preparing a mixed solution containing a metal compound and aqueous ammonia as in Patent Document 1.
  • An object of the present invention is to provide a dielectric ceramic having characteristics that can be used for a multilayer ceramic capacitor and the like, and a multilayer ceramic capacitor using the dielectric ceramic.
  • the dielectric ceramic of the present invention is ABO 3 (A site is Ba and may contain at least one of Sr and Ca in addition to Ba, and B site is Ti and contains at least one of Zr and Hf in addition to Ti.
  • the main component is a perovskite type compound represented by O)
  • the additive component is characterized by containing at least one selected from the group consisting of nitrides D: BN, AlN, Si 3 N 4 , TaN, ZrN and TiN represented by D below.
  • the dielectric ceramic of the present invention further includes Si, R (R is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and And M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W and V). It is possible to contain at least one selected from the group.
  • the additive amount of the nitride D which is an additive component, is 0.5 mol part ⁇ D ⁇ 5.0 mol part with respect to 100 mol part of the perovskite type compound whose main component is the content in the dielectric ceramic. Such a range is desirable.
  • the multilayer ceramic capacitor of the present invention is A ceramic laminate having a structure in which a plurality of internal electrodes are laminated so as to face each other through a dielectric ceramic layer, and one end of the internal electrode is drawn out to a predetermined surface, and the ceramic laminate
  • the multilayer ceramic capacitor comprising a pair of external electrodes arranged to be electrically connected to the internal electrode on the surface from which one end of the internal electrode is drawn
  • the dielectric ceramic layer is made of the dielectric ceramic of the present invention.
  • the multilayer ceramic capacitor of the present invention can also be applied when the internal electrode includes a base metal.
  • the multilayer ceramic capacitor of the present invention can also be applied when the external electrode includes a base metal.
  • the dielectric ceramic of the present invention is mainly composed of a BaTiO 3 -based perovskite compound represented by ABO 3 , and nitride D (D is BN, AlN, Si 3 N) as an additive component. 4 , at least one selected from the group consisting of TaN, ZrN, and TiN) is provided, and a dielectric ceramic that can be sintered at a low temperature and has practical characteristics is provided. Can do.
  • the nitride contributes as a sintering aid, enabling sintering at a low temperature, and a method in which no nitride is added (for example, the method of Patent Document 1 described above). It is possible to provide a dielectric ceramic having electrical characteristics equivalent to or better than those of dielectric ceramics manufactured by the conventional method.
  • Si is at least one selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y
  • M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W, and V).
  • the addition amount of the nitride D as an additive component is set to a range of 0.5 mol part ⁇ D ⁇ 5.0 mol part with respect to 100 mol part of the perovskite compound as the main component, thereby firing at a low temperature. Even in this case, a dielectric ceramic having practical characteristics can be obtained more reliably.
  • the multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor having a structure in which internal electrodes are laminated so as to face each other through a dielectric ceramic layer.
  • the dielectric ceramic layer is made of the dielectric ceramic of the present invention. Since the dielectric ceramic layer is used, a multilayer ceramic capacitor having desired characteristics can be obtained.
  • the dielectric ceramic of the present invention can be sintered at a low temperature, the dielectric ceramic layer can be sufficiently sintered even when the internal electrode contains a base metal or when the external electrode contains a base metal.
  • the dielectric ceramic layer can be sufficiently sintered even when the internal electrode contains a base metal or when the external electrode contains a base metal.
  • BaCO 3 powder, TiO 2 powder, etc. which are main component raw materials, are prepared as starting raw materials, and a perovskite complex oxide represented by ABO 3 , that is, BaTiO 3 based oxidation.
  • ABO 3 a perovskite complex oxide represented by ABO 3 , that is, BaTiO 3 based oxidation.
  • the A site is Ba and may contain at least one of Sr and Ca in addition to Ba
  • the B site is Ti and contains at least one of Zr and Hf in addition to Ti.
  • the sample was weighed so as to have a composition of O) and then mixed by a ball mill. Then, this mixed powder was heat-treated at 1150 ° C. to obtain a BaTiO 3 -based powder.
  • the average particle size of the BaTiO 3 powder was about 0.15 ⁇ m.
  • the ratio (A / B ratio) between the A site and the B site of the BaTiO 3 powder was changed.
  • the BaTiO 3 powder and Si, R (R is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y are selected. At least one), M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W and V), and a nitride D (D is And at least one selected from the group consisting of BN, AlN, Si 3 N 4 , TaN, ZrN and TiN), respectively, and weighed so as to have the compositions shown in Table 1, Table 2A, Table 2B and Table 2C. Was mixed and dried to obtain a dielectric material composition (dielectric ceramic material). Note that oxide powders were used as raw materials for Si, R, and M.
  • dielectric raw material blends (dielectric ceramic raw materials) of sample numbers R1 to R6 in Table 1 are comparative dielectric raw material blends that do not contain nitride D, and are shown in Tables 2A, 2B, and 2C.
  • the dielectric raw material blends (dielectric ceramic raw materials) of sample numbers 1 to 31 are dielectric raw material blends containing nitride D that becomes the dielectric ceramic according to the example of the present invention after firing.
  • the main component BaTiO 3 used this time was prepared by a solid phase synthesis method and heat-treated at a temperature at which a desired particle size was obtained, but BaTiO 3 prepared by a hydrothermal synthesis method, a hydrolysis method or the like was used. It is also possible to use it. Further, the raw material for preparing BaTiO 3 and the compound form of the additive component are not limited to oxides and carbonates, and various forms such as chlorides and metal organic compounds can be used.
  • the case where the main component ABO 3 does not have a stoichiometric composition is included. Specifically, if the molar ratio A / B of A and B is in the range of 0.950 to 1.050, ABO 3 in the present invention can be obtained.
  • this laminated single plate was analyzed for porcelain structure by energy dispersive X-ray spectroscopy (STEM-EDX) using a scanning transmission electron microscope, and 10 fields of 2 ⁇ m ⁇ 2 ⁇ m region were confirmed, and additive component D (nitriding) It was confirmed that the product was present in the porcelain.
  • STEM-EDX energy dispersive X-ray spectroscopy
  • Samples Nos. 1 to 31 in Tables 2A, 2B, and 2C are samples (examples) having the requirements of the present invention, and a dense porcelain having a BaTiO 3 theoretical density ratio of 85% or more is obtained. It was confirmed. This is because the samples Nos. 1 to 31 contain nitrides (BN, AlN, Si 3 N 4 , TiN, TaN, ZrN), so that the sintering of the ceramic is promoted and the BaTiO 3 theory A dense porcelain having a density ratio of 85% or more could be obtained.
  • nitrides BN, AlN, Si 3 N 4 , TiN, TaN, ZrN
  • the ceramic does not sinter sufficiently even when firing at a temperature of 1200 ° C. or higher, and a BaTiO 3 theoretical density ratio of 85% can be realized. It was confirmed that it was not possible. Since the samples of these comparative examples do not contain nitrides (BN, AlN, Si 3 N 4 , TiN, TaN, ZrN) that promote the sintering of ceramics, sufficient sinterability can be ensured. It was not.
  • the samples of the comparative examples of the sample numbers R1 to R5 do not contain the nitride D but also do not contain the Si, R component, and M component.
  • the BaTiO 3 theoretical density ratio is 85%.
  • the sample of the comparative example of sample number R6 did not include nitride D, it was a sample containing Si, R component, and M component.
  • this sample of R6 is also a BaTiO 3 theory. A density ratio of 85% could not be realized.
  • the BaTiO 3 theoretical density ratio is also obtained when the composition includes at least one of Si, R component, and M component as in sample numbers 13 to 31. It was confirmed that a dielectric ceramic having a high density and excellent sinterability can be obtained. In addition, by setting it as the composition containing at least 1 or more of Si, R component, and M component, it becomes possible to control a characteristic and to obtain the dielectric ceramic provided with the desired characteristic.
  • an internal electrode 12 disposed inside a monolithic ceramic element (fired ceramic laminate) 10 is laminated via a dielectric layer (dielectric ceramic layer) 11, and A pair of external electrodes 13 a and 13 b are arranged on both end faces of the multilayer ceramic element 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end face alternately.
  • a method for manufacturing the multilayer ceramic capacitor will be described.
  • a polyvinyl butyral binder and an organic solvent were added to the dielectric material composition of Sample Nos. 1 to 31 prepared in Example 1 (A), and the ball mill was used for a predetermined time. And wet mixing to prepare a ceramic slurry.
  • the ceramic slurry was formed into a sheet by the doctor blade method, and a ceramic green sheet having a rectangular shape after firing, that is, a dielectric ceramic layer thickness of 3.0 ⁇ m was produced.
  • a conductive paste containing nickel powder as a conductive component was screen-printed to form a conductive paste layer (internal electrode pattern) that became an internal electrode after firing.
  • a predetermined number of ceramic green sheets on which internal electrode patterns are formed are stacked in such a manner that the internal electrode patterns are alternately drawn to the opposite side, and further, a ceramic in which no conductive paste pattern is formed on both upper and lower sides
  • a laminated block was produced by laminating green sheets as outer layers. There are no particular restrictions on the order of lamination of the ceramic green sheets.
  • an unfired laminate obtained by cutting the laminate block to a predetermined size is debindered in an N 2 atmosphere, and then H 2 —N 2 — with an oxygen partial pressure of 10 ⁇ 10 MPa. Firing was performed at 1200 ° C. in a reducing atmosphere composed of H 2 O gas to obtain a fired laminated body (ceramic laminated body).
  • a conductive layer containing copper powder as a conductive component and B 2 O 3 —Li 2 O—SiO 2 —BaO glass frit is formed on both end surfaces of the fired ceramic laminate from which the internal electrodes are drawn.
  • an external electrode electrically connected to the internal electrode was formed by baking at 800 ° C. Thereby, a multilayer ceramic capacitor having a structure as shown in FIG. 1 is obtained.
  • the outer dimensions of the obtained multilayer ceramic capacitor are: length: 2.0 mm, width: 1.25 mm, thickness: 1.0 mm, and a dielectric layer (dielectric ceramic layer) interposed between the internal electrodes 12 ) 11 had a thickness of 3.0 ⁇ m.
  • the number of effective dielectric layers (capacitor forming layers) was 10, and the counter electrode area per layer was 1.6 mm 2 .
  • nitride D is contained, and the content ratio of D is 0.5 mol part ⁇ D ⁇ 5.0 mol part with respect to 100 mol part of perovskite type compound as the main component.
  • the dielectric ceramic layer satisfies the requirement of relative dielectric constant 2000 ⁇ ⁇ r, and good electrical characteristics It was confirmed that
  • the additive of the nitride D is usually 0.5 mol part ⁇ D ⁇ 5.0 mol part with respect to 100 mol part of the perovskite type compound which is the main component. It can be seen that it is desirable to set the range.
  • the ratio of A site to B site (A / B (mol ratio)) is in the range of 0.950 to 1.050, and at least in this range. It was confirmed that a practical dielectric ceramic could be obtained.
  • one or more of Si, R component, and M component are blended to control the characteristics and are suitable for use.
  • a dielectric ceramic having characteristics can be obtained. That is, according to the present invention, it is possible to provide a dielectric ceramic that can be sintered at a low temperature and has a high degree of freedom in characteristics.
  • a part of Ba constituting the BaTiO 3 ceramic particles is replaced with Ca and / or Sr, or a part of Ti is replaced with Zr. It is also possible to substitute with Hf and / or Hf, in which case the characteristics can be controlled to obtain a dielectric ceramic having desired characteristics.
  • the dielectric ceramic of the present invention is used as a dielectric layer of a multilayer ceramic capacitor as an example.
  • the dielectric ceramic according to the present invention is not limited to a multilayer ceramic capacitor, and is an LC composite. It can also be applied to parts.
  • the present invention is not limited to the above embodiment in other points as well, and the types of raw materials, specific conditions of the manufacturing process, nitride D, Si, and the like when the dielectric ceramic of the present invention is manufactured. With respect to specific blending ratios of R component, M component, etc., various applications and modifications can be added within the scope of the invention.
  • Multilayer Ceramic Element 11 Ceramic Layer (Dielectric Ceramic Layer) 12 Internal electrode layer 13a, 13b External electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

Disclosed are: a dielectric ceramic material which can be sintered at a low temperature and has practically available properties; and a laminated ceramic capacitor which comprises the dielectric ceramic material. The dielectric ceramic material has a composition which contains a perovskite-type compound represented by the following formula: ABO3 as the main component and a nitride (D) (at least one compound selected from the group consisting of BN, AlN, Si3N4, TaN, ZrN and TiN) as an additive component. The amount of the nitride (D) to be added is such an amount that the content of the nitride (D) in the dielectric ceramic material becomes 0.5 to 5.0 parts by mole inclusive relative to 100 parts by mole of the perovskite-type compound that is the main component. The dielectric ceramic material additionally contains at least one component selected from Si, R (any one of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y), and M (any one of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W and V).

Description

誘電体セラミックおよびそれを用いた積層セラミックコンデンサDielectric ceramic and multilayer ceramic capacitor using the same
 本発明は誘電体セラミックおよびそれを用いたコンデンサに関し、詳しくは、BaTiO3系の誘電体セラミックおよびそれを誘電体層の構成材料として用いた積層セラミックコンデンサに関する。 The present invention relates to a dielectric ceramic and a capacitor using the dielectric ceramic, and more particularly to a BaTiO 3 based dielectric ceramic and a multilayer ceramic capacitor using the dielectric ceramic as a constituent material of the dielectric layer.
 近年、電子機器の小型・軽量化にともない、小型で、大容量を取得することが可能な積層セラミックコンデンサが広く用いられている。この積層セラミックコンデンサは、例えば、図1に示すように、セラミック積層体(積層セラミック素子)10の内部に配設された内部電極12が、誘電体層であるセラミック層(誘電体セラミック層)11を介して積層され、かつ、セラミック積層体10の両端面には、交互に逆側の端面に露出した内部電極12と導通するように一対の外部電極13a,13bが配設された構造を有している。 In recent years, with the reduction in size and weight of electronic devices, multilayer ceramic capacitors that are small in size and capable of acquiring a large capacity have been widely used. For example, as shown in FIG. 1, the multilayer ceramic capacitor has a ceramic layer (dielectric ceramic layer) 11 in which an internal electrode 12 disposed in a ceramic multilayer body (multilayer ceramic element) 10 is a dielectric layer. And a pair of external electrodes 13a and 13b are disposed on both end faces of the ceramic laminate 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end faces. is doing.
 そして、このような積層セラミックコンデンサにおいては、誘電体層として、高い誘電率を有するBaTiO3系のセラミック材料が広く用いられている。 In such a multilayer ceramic capacitor, a BaTiO 3 -based ceramic material having a high dielectric constant is widely used as the dielectric layer.
 さらに、電気特性や、信頼性(寿命特性)などの特性を向上させる目的で、種々の副成分、例えば、希土類元素やMgなどを添加したものが用いられている。 Furthermore, for the purpose of improving characteristics such as electrical characteristics and reliability (life characteristics), those added with various subcomponents such as rare earth elements and Mg are used.
 そして、特許文献1には、チタン酸バリウム粉末と、このチタン酸バリウム100molに対し、金属イオン換算により表示して、0.1~0.3molのMn、1.0~2.0molのDy、0.3~1.0molのMg、0.5~1.5molのBa、0.5~1.5molのCaおよび1.0~2.5molのSiを含む金属化合物と、アンモニア水とを含む混合液を調製し、この混合液から得た粉末を熱処理する工程を経て、耐還元性誘電体組成物を製造する方法が提案されている(特許文献1参照)。 Patent Document 1 discloses a barium titanate powder and 100 mol of this barium titanate in terms of metal ions, 0.1 to 0.3 mol of Mn, 1.0 to 2.0 mol of Dy, Contains a metal compound containing 0.3 to 1.0 mol Mg, 0.5 to 1.5 mol Ba, 0.5 to 1.5 mol Ca and 1.0 to 2.5 mol Si, and aqueous ammonia. There has been proposed a method for producing a reduction-resistant dielectric composition through a step of preparing a mixed solution and heat-treating powder obtained from the mixed solution (see Patent Document 1).
 また、この特許文献1には、上述のようにして製造された耐還元性誘電体組成物から形成された誘電体層を有する積層セラミックコンデンサおよびその製造方法が提案されている。 Further, this Patent Document 1 proposes a multilayer ceramic capacitor having a dielectric layer formed from the reduction-resistant dielectric composition produced as described above and a method for producing the same.
 そして、上述の耐還元性誘電体組成物を用いることにより、初期特性および耐久性などの諸特性のばらつきの少ない積層セラミックコンデンサを歩留まりよく製造できるとされている。 And by using the above-mentioned reduction-resistant dielectric composition, it is said that a multilayer ceramic capacitor with little variation in various characteristics such as initial characteristics and durability can be manufactured with high yield.
特開2000-173854号公報JP 2000-173854 A
 本願発明は、特許文献1のように、金属化合物と、アンモニア水とを含む混合液を調製する工程を経ることなく、それほど高い温度で焼成することを必要とせず、低温で焼結させることが可能で、積層セラミックコンデンサなどに用いることが可能な特性を備えた誘電体セラミックおよびそれを用いた積層セラミックコンデンサを提供することを目的とする。 The invention of the present application can be sintered at a low temperature without requiring a baking at a very high temperature without going through a step of preparing a mixed solution containing a metal compound and aqueous ammonia as in Patent Document 1. An object of the present invention is to provide a dielectric ceramic having characteristics that can be used for a multilayer ceramic capacitor and the like, and a multilayer ceramic capacitor using the dielectric ceramic.
 上記課題を解決するため、本発明の誘電体セラミックは、
 ABO3(AサイトはBaであって、Ba以外にSrおよびCaの少なくとも1種を含んでいてもよく、また、BサイトはTiであって、Ti以外にZrおよびHfの少なくとも1種を含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物を主成分とし、
 添加成分として、下記のDで表される窒化物
 D:BN,AlN,Si34,TaN,ZrNおよびTiNからなる群より選ばれる少なくとも1種を
含有することを特徴としている。
In order to solve the above problems, the dielectric ceramic of the present invention is
ABO 3 (A site is Ba and may contain at least one of Sr and Ca in addition to Ba, and B site is Ti and contains at least one of Zr and Hf in addition to Ti. The main component is a perovskite type compound represented by O)
The additive component is characterized by containing at least one selected from the group consisting of nitrides D: BN, AlN, Si 3 N 4 , TaN, ZrN and TiN represented by D below.
 また、本発明の誘電体セラミックは、さらに、添加成分として、Si、R(RはLa,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,LuおよびYからなる群より選ばれる少なくとも1種)、およびM(MはMn,Ni,Co,Fe,Cr,Cu,Mg,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)からなる群より選ばれる少なくとも1種を含有させることが可能である。 The dielectric ceramic of the present invention further includes Si, R (R is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and And M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W and V). It is possible to contain at least one selected from the group.
 また、添加成分である前記窒化物Dの添加量を、誘電体セラミックにおける含有率が、主成分である前記ペロブスカイト型化合物100mol部に対して、0.5mol部≦D≦5.0mol部となるような範囲とすることが望ましい。 Further, the additive amount of the nitride D, which is an additive component, is 0.5 mol part ≦ D ≦ 5.0 mol part with respect to 100 mol part of the perovskite type compound whose main component is the content in the dielectric ceramic. Such a range is desirable.
 また、本発明の積層セラミックコンデンサは、
 複数の内部電極が、誘電体セラミック層を介して互いに対向するように積層され、前記内部電極の一方端部が所定の面に引き出された構造を有するセラミック積層体を備えるとともに、前記セラミック積層体の前記内部電極の一方端部が引き出された面に前記内部電極と導通するように配設された一対の外部電極を備えた積層セラミックコンデンサにおいて、
 前記の誘電体セラミック層が、本発明の誘電体セラミックからなること
 を特徴としている。
The multilayer ceramic capacitor of the present invention is
A ceramic laminate having a structure in which a plurality of internal electrodes are laminated so as to face each other through a dielectric ceramic layer, and one end of the internal electrode is drawn out to a predetermined surface, and the ceramic laminate In the multilayer ceramic capacitor comprising a pair of external electrodes arranged to be electrically connected to the internal electrode on the surface from which one end of the internal electrode is drawn,
The dielectric ceramic layer is made of the dielectric ceramic of the present invention.
 本発明の積層セラミックコンデンサは、前記内部電極が、卑金属を含むものである場合にも適用することができる。 The multilayer ceramic capacitor of the present invention can also be applied when the internal electrode includes a base metal.
 また、本発明の積層セラミックコンデンサは、前記外部電極が、卑金属を含むものである場合にも適用することができる。 The multilayer ceramic capacitor of the present invention can also be applied when the external electrode includes a base metal.
 上記課題を解決するため、本発明の誘電体セラミックは、ABO3で表されるBaTiO3系のペロブスカイト型化合物を主成分とし、添加成分として、窒化物D(DはBN,AlN,Si34,TaN,ZrNおよびTiNからなる群より選ばれる少なくとも1種)を含有させるようにしているので、低温で焼結することが可能で、実用可能な特性を備えた誘電体セラミックを提供することができる。 In order to solve the above problems, the dielectric ceramic of the present invention is mainly composed of a BaTiO 3 -based perovskite compound represented by ABO 3 , and nitride D (D is BN, AlN, Si 3 N) as an additive component. 4 , at least one selected from the group consisting of TaN, ZrN, and TiN) is provided, and a dielectric ceramic that can be sintered at a low temperature and has practical characteristics is provided. Can do.
 すなわち、上記窒化物を添加することで、窒化物が焼結助剤として寄与し、低温での焼結が可能になるとともに、窒化物を添加しない方法(例えば、上述の特許文献1の方法)やその他の従来の方法で製造される誘電体セラミックの電気特性と同等もしくはそれ以上の電気特性を備えた誘電体セラミックを提供することが可能になる。 That is, by adding the nitride, the nitride contributes as a sintering aid, enabling sintering at a low temperature, and a method in which no nitride is added (for example, the method of Patent Document 1 described above). It is possible to provide a dielectric ceramic having electrical characteristics equivalent to or better than those of dielectric ceramics manufactured by the conventional method.
 さらに、添加成分として、Si,R(RはLa,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,LuおよびYからなる群より選ばれる少なくとも1種)、およびM(MはMn,Ni,Co,Fe,Cr,Cu,Mg,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)からなる群より選ばれる少なくとも1種を含有させることにより、特性を制御して、所望の特性を備えた誘電体セラミックを得ることが可能になる。 Further, as an additive component, Si, R (R is at least one selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) ) And M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W, and V). Thus, it becomes possible to obtain a dielectric ceramic having desired characteristics by controlling the characteristics.
 また、添加成分である窒化物Dの添加量を、主成分である前記ペロブスカイト型化合物100mol部に対して、0.5mol部≦D≦5.0mol部の範囲にすることにより、低温で焼成した場合にも、実用可能な特性を備えた誘電体セラミックをさらに確実に得ることが可能になる。 Further, the addition amount of the nitride D as an additive component is set to a range of 0.5 mol part ≦ D ≦ 5.0 mol part with respect to 100 mol part of the perovskite compound as the main component, thereby firing at a low temperature. Even in this case, a dielectric ceramic having practical characteristics can be obtained more reliably.
 また、本発明の積層セラミックコンデンサは、内部電極が誘電体セラミック層を介して互いに対向するように積層された構造を有する積層セラミックコンデンサにおいて、誘電体セラミック層として、本願発明の誘電体セラミックからなる誘電体セラミック層を用いているので、所望の特性を有する積層セラミックコンデンサを得ることができる。 The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor having a structure in which internal electrodes are laminated so as to face each other through a dielectric ceramic layer. The dielectric ceramic layer is made of the dielectric ceramic of the present invention. Since the dielectric ceramic layer is used, a multilayer ceramic capacitor having desired characteristics can be obtained.
 また、本発明の誘電体セラミックは低温焼結が可能であることから、内部電極が、卑金属を含むものである場合や、外部電極が、卑金属を含むものである場合にも、誘電体セラミック層が十分に焼結し、かつ、良好な内部電極や外部電極を備えた、特性の安定した積層セラミックコンデンサを提供することが可能になる。 Further, since the dielectric ceramic of the present invention can be sintered at a low temperature, the dielectric ceramic layer can be sufficiently sintered even when the internal electrode contains a base metal or when the external electrode contains a base metal. In addition, it is possible to provide a monolithic ceramic capacitor having a stable characteristic and having excellent internal electrodes and external electrodes.
本発明の実施例にかかる積層セラミックコンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer ceramic capacitor concerning the Example of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
 (A)誘電体セラミック原料の作製
 まず、出発原料として、主成分原料であるBaCO3粉末、TiO2粉末等を準備して、ABO3で表されるペロブスカイト系複合酸化物、すなわちBaTiO3系酸化物(AサイトはBaであって、Ba以外にSrおよびCaの少なくとも1種を含んでいてもよく、また、BサイトはTiであって、Ti以外にZrおよびHfの少なくとも1種を含んでいてもよく、Oは酸素)の組成になるように秤量した後、ボールミルにより混合した。それから、この混合粉末を1150℃で熱処理することにより、BaTiO3系粉末を得た。このBaTiO3系粉末の平均粒径は0.15μm程度であった。
 また、実施例では、BaTiO3系粉末のAサイトとBサイトの比(A/B比)を変化させた。
(A) Preparation of dielectric ceramic raw material First, BaCO 3 powder, TiO 2 powder, etc., which are main component raw materials, are prepared as starting raw materials, and a perovskite complex oxide represented by ABO 3 , that is, BaTiO 3 based oxidation. (The A site is Ba and may contain at least one of Sr and Ca in addition to Ba, and the B site is Ti and contains at least one of Zr and Hf in addition to Ti. The sample was weighed so as to have a composition of O) and then mixed by a ball mill. Then, this mixed powder was heat-treated at 1150 ° C. to obtain a BaTiO 3 -based powder. The average particle size of the BaTiO 3 powder was about 0.15 μm.
In the examples, the ratio (A / B ratio) between the A site and the B site of the BaTiO 3 powder was changed.
 それから、上記BaTiO3系粉末と、Si,R(RはLa,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,LuおよびYからなる群より選ばれる少なくとも1種),M(MはMn,Ni,Co,Fe,Cr,Cu,Mg,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)、および窒化物であるD(DはBN,AlN,Si34,TaN,ZrNおよびTiNからなる群より選ばれる少なくとも1種)を、それぞれ表1、表2A、表2B、表2Cに示す配合物となるよう秤量した後、ボールミルにより混合・乾燥し、誘電体原料配合物(誘電体セラミック原料)とした。
 なお、Si,RおよびMの原料としては、いずれも酸化物粉末を用いた。
Then, the BaTiO 3 powder and Si, R (R is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y are selected. At least one), M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W and V), and a nitride D (D is And at least one selected from the group consisting of BN, AlN, Si 3 N 4 , TaN, ZrN and TiN), respectively, and weighed so as to have the compositions shown in Table 1, Table 2A, Table 2B and Table 2C. Was mixed and dried to obtain a dielectric material composition (dielectric ceramic material).
Note that oxide powders were used as raw materials for Si, R, and M.
 なお、表1の試料番号R1~R6の誘電体原料配合物(誘電体セラミック原料)は、窒化物Dを含まない比較用の誘電体原料配合物であり、表2A、表2B、表2Cの試料番号1~31の誘電体原料配合物(誘電体セラミック原料)は、焼成後に本発明の実施例にかかる誘電体セラミックとなる窒化物Dを含む誘電体原料配合物である。 Note that the dielectric raw material blends (dielectric ceramic raw materials) of sample numbers R1 to R6 in Table 1 are comparative dielectric raw material blends that do not contain nitride D, and are shown in Tables 2A, 2B, and 2C. The dielectric raw material blends (dielectric ceramic raw materials) of sample numbers 1 to 31 are dielectric raw material blends containing nitride D that becomes the dielectric ceramic according to the example of the present invention after firing.
 なお、今回使用した主成分BaTiO3は固相合成法により作製し、所望の粒径が得られる温度で熱処理したものであるが、水熱合成法、加水分解法などで作製されたBaTiO3を用いることも可能である。
 また、BaTiO3作製用の素材、添加成分の化合物形態は酸化物,炭酸物に限らず、塩化物、金属有機化合物など種々の形態のものを用いることが可能である。
The main component BaTiO 3 used this time was prepared by a solid phase synthesis method and heat-treated at a temperature at which a desired particle size was obtained, but BaTiO 3 prepared by a hydrothermal synthesis method, a hydrolysis method or the like was used. It is also possible to use it.
Further, the raw material for preparing BaTiO 3 and the compound form of the additive component are not limited to oxides and carbonates, and various forms such as chlorides and metal organic compounds can be used.
 また、本発明において、主成分ABO3は化学量論組成ではない場合も含む。具体的にはAとBのmol比A/Bが0.950~1.050の範囲であれば本願発明におけるABO3とすることができる。 Further, in the present invention, the case where the main component ABO 3 does not have a stoichiometric composition is included. Specifically, if the molar ratio A / B of A and B is in the range of 0.950 to 1.050, ABO 3 in the present invention can be obtained.
 (B)積層単板の作製
 上記(A)の工程で作製した試料番号R1~R6および試料番号1~31の誘電体原料配合物(誘電体セラミック原料)に、ポリビニルブチラール系バインダーおよび有機溶媒(この実施例1ではエタノール)を加えて、ボールミルにより所定時間、湿式混合し、セラミックスラリーを作製した。
 このセラミックスラリーをドクターブレード法によりシート成形し、厚みが4μmの矩形のセラミックグリーンシートを作製した。
(B) Production of laminated single plate A dielectric material mixture (dielectric ceramic material) of sample numbers R1 to R6 and sample numbers 1 to 31 produced in the step (A) above was added to a polyvinyl butyral binder and an organic solvent ( In Example 1, ethanol) was added and wet-mixed for a predetermined time with a ball mill to prepare a ceramic slurry.
This ceramic slurry was formed into a sheet by a doctor blade method to produce a rectangular ceramic green sheet having a thickness of 4 μm.
 次に、上述のようにして作製したセラミックグリーンシートを複数枚積層し、未焼成の積層単板を作製した。この未焼成の積層単板をN2雰囲気中にて熱処理し、バインダーを除去した後、酸素分圧10-10MPaのH2-N2-H2Oガスからなる還元性雰囲気中にて1200℃で焼成し、焼成済みの積層単板を得た。 Next, a plurality of ceramic green sheets produced as described above were laminated to produce an unfired laminated single plate. This unfired laminated single plate was heat-treated in an N 2 atmosphere to remove the binder, and then 1200 in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas having an oxygen partial pressure of 10 −10 MPa. Firing was performed at 0 ° C. to obtain a fired laminated single plate.
 それから、この積層単板を、走査透過電子顕微鏡を用いたエネルギー分散X線分光法(STEM-EDX)により磁器構造を分析し、2μm×2μmの領域を10視野確認して、添加成分D(窒化物)が磁器中に存在していることを確認した。 Then, this laminated single plate was analyzed for porcelain structure by energy dispersive X-ray spectroscopy (STEM-EDX) using a scanning transmission electron microscope, and 10 fields of 2 μm × 2 μm region were confirmed, and additive component D (nitriding) It was confirmed that the product was present in the porcelain.
 また、焼成後の積層単板の寸法および重量から密度を求め、BaTiO3の理論密度比を求めることにより焼結状態を確認した。
 その結果を表1、表2A,表2B,表2Cに示す。
Further, the density was determined from the size and weight of the laminated single plate after firing, and the sintered state was confirmed by determining the theoretical density ratio of BaTiO 3 .
The results are shown in Table 1, Table 2A, Table 2B, and Table 2C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <積層単板の焼結状態についての評価>
 表2A,表2B,表2Cの試料番号1~31の試料は、本発明の要件を備えた試料(実施例の試料)であり、BaTiO3理論密度比85%以上の緻密な磁器が得られることが確認された。これは、試料番号1~31の試料には、窒化物(BN,AlN,Si34,TiN,TaN,ZrN)が含まれていることから、セラミックの焼結が促進され、BaTiO3理論密度比が85%以上の緻密な磁器を得ることができたものである。
<Evaluation of sintered state of laminated single plate>
Samples Nos. 1 to 31 in Tables 2A, 2B, and 2C are samples (examples) having the requirements of the present invention, and a dense porcelain having a BaTiO 3 theoretical density ratio of 85% or more is obtained. It was confirmed. This is because the samples Nos. 1 to 31 contain nitrides (BN, AlN, Si 3 N 4 , TiN, TaN, ZrN), so that the sintering of the ceramic is promoted and the BaTiO 3 theory A dense porcelain having a density ratio of 85% or more could be obtained.
 一方、表1の試料番号R1~R6の比較例の試料の場合、1200℃以上の温度で焼成を行ってもセラミックが十分に焼結せず、BaTiO3理論密度比85%を実現することができないことが確認された。これらの比較例の試料は、セラミックの焼結を促進させる窒化物(BN,AlN,Si34,TiN,TaN,ZrN)を含まないことから、十分な焼結性を確保することができなかったものである。 On the other hand, in the case of the comparative samples of sample numbers R1 to R6 in Table 1, the ceramic does not sinter sufficiently even when firing at a temperature of 1200 ° C. or higher, and a BaTiO 3 theoretical density ratio of 85% can be realized. It was confirmed that it was not possible. Since the samples of these comparative examples do not contain nitrides (BN, AlN, Si 3 N 4 , TiN, TaN, ZrN) that promote the sintering of ceramics, sufficient sinterability can be ensured. It was not.
 なお、試料番号R1~R5の比較例の試料は、窒化物Dを含まないばかりでなく、Si、R成分、M成分を含まない試料であり、上述のようにBaTiO3理論密度比85%を実現することができず、試料番号R6の比較例の試料は、窒化物Dを含まないものの、Si、R成分、およびM成分を含む試料であったが、このR6の試料も、BaTiO3理論密度比85%を実現することはできなかった。 Note that the samples of the comparative examples of the sample numbers R1 to R5 do not contain the nitride D but also do not contain the Si, R component, and M component. As described above, the BaTiO 3 theoretical density ratio is 85%. Although the sample of the comparative example of sample number R6 did not include nitride D, it was a sample containing Si, R component, and M component. However, this sample of R6 is also a BaTiO 3 theory. A density ratio of 85% could not be realized.
 これに対し、窒化物Dを含む実施例の試料の場合、試料番号1~12の試料のように、Si、R成分、およびM成分を含まない場合にも、BaTiO3理論密度比85%を実現することが可能で、焼結性に優れた緻密性の高い誘電体セラミックが得られることが確認された。 In contrast, in the case of the sample of the example including the nitride D, even when the Si, R component, and M component are not included as in the samples of sample numbers 1 to 12, the BaTiO 3 theoretical density ratio is 85%. It was confirmed that a dielectric ceramic with high density and excellent sinterability could be obtained.
 また、窒化物Dを含む実施例の試料の場合、試料番号13~31のように、Si、R成分、およびM成分の少なくとも1つ以上を含む組成とした場合にも、BaTiO3理論密度比85%を実現することが可能で、焼結性に優れた緻密性の高い誘電体セラミックが得られることが確認された。なお、Si、R成分、およびM成分の少なくとも1つ以上を含む組成とすることにより、特性を制御して、所望の特性を備えた誘電体セラミックを得ることが可能になる。 Further, in the case of the sample of the example including the nitride D, the BaTiO 3 theoretical density ratio is also obtained when the composition includes at least one of Si, R component, and M component as in sample numbers 13 to 31. It was confirmed that a dielectric ceramic having a high density and excellent sinterability can be obtained. In addition, by setting it as the composition containing at least 1 or more of Si, R component, and M component, it becomes possible to control a characteristic and to obtain the dielectric ceramic provided with the desired characteristic.
 (C)積層セラミックコンデンサの作製
 上記(A)で作製した誘電体原料配合物(誘電体セラミック原料)を用いて、図1に示すような構造を有する積層セラミックコンデンサを作製した。
(C) Production of Multilayer Ceramic Capacitor A multilayer ceramic capacitor having a structure as shown in FIG. 1 was produced using the dielectric material composition (dielectric ceramic material) produced in (A) above.
 なお、この積層セラミックコンデンサは、積層セラミック素子(焼成済みのセラミック積層体)10の内部に配設された内部電極12が、誘電体層(誘電体セラミック層)11を介して積層され、かつ、積層セラミック素子10の両端面には、交互に逆側の端面に露出した内部電極12と導通するように一対の外部電極13a,13bが配設された構造を有している。
 以下、この積層セラミックコンデンサの製造方法について説明する。
In this monolithic ceramic capacitor, an internal electrode 12 disposed inside a monolithic ceramic element (fired ceramic laminate) 10 is laminated via a dielectric layer (dielectric ceramic layer) 11, and A pair of external electrodes 13 a and 13 b are arranged on both end faces of the multilayer ceramic element 10 so as to be electrically connected to the internal electrodes 12 exposed on the opposite end face alternately.
Hereinafter, a method for manufacturing the multilayer ceramic capacitor will be described.
 まず、上記実施例1の(A)で作製した、試料番号1~31の誘電体原料配合物にポリビニルブチラール系バインダーおよび有機溶媒(この実施例1ではエタノール)を加えて、ボールミルにより所定の時間、湿式混合し、セラミックスラリーを作製した。 First, a polyvinyl butyral binder and an organic solvent (ethanol in this Example 1) were added to the dielectric material composition of Sample Nos. 1 to 31 prepared in Example 1 (A), and the ball mill was used for a predetermined time. And wet mixing to prepare a ceramic slurry.
 このセラミックスラリーをドクターブレード法によりシート成形し、矩形で、焼成後の厚み、すなわち、誘電体セラミック層厚が3.0μmになるようなセラミックグリーンシートを作製した。 The ceramic slurry was formed into a sheet by the doctor blade method, and a ceramic green sheet having a rectangular shape after firing, that is, a dielectric ceramic layer thickness of 3.0 μm was produced.
 次に、このセラミックグリーンシート上に、ニッケル粉末を導電成分とする導電ペーストをスクリーン印刷し、焼成後に内部電極となる導電ペースト層(内部電極パターン)を形成した。 Next, on this ceramic green sheet, a conductive paste containing nickel powder as a conductive component was screen-printed to form a conductive paste layer (internal electrode pattern) that became an internal electrode after firing.
 それから、内部電極パターンが形成されたセラミックグリーンシートを、内部電極パターンが交互に逆側に引き出されるような態様で所定枚数積層し、さらに、上下両面側に、導電ペーストパターンが形成されていないセラミックグリーンシートを外層として積層することにより、積層ブロックを作製した。なお、各セラミックグリーンシートの積層の順に特別の制約はない。 Then, a predetermined number of ceramic green sheets on which internal electrode patterns are formed are stacked in such a manner that the internal electrode patterns are alternately drawn to the opposite side, and further, a ceramic in which no conductive paste pattern is formed on both upper and lower sides A laminated block was produced by laminating green sheets as outer layers. There are no particular restrictions on the order of lamination of the ceramic green sheets.
 次に、この積層ブロックを所定の寸法となるようにカットして得た未焼成の積層体を、N2雰囲気中で脱バインダーした後、酸素分圧10-10MPaのH2-N2-H2Oガスからなる還元性雰囲気中で、1200℃で焼成し、焼成済みの積層体(セラミック積層体)を得た。 Next, an unfired laminate obtained by cutting the laminate block to a predetermined size is debindered in an N 2 atmosphere, and then H 2 —N 2 — with an oxygen partial pressure of 10 −10 MPa. Firing was performed at 1200 ° C. in a reducing atmosphere composed of H 2 O gas to obtain a fired laminated body (ceramic laminated body).
 それから、焼成済みのセラミック積層体の、内部電極が引き出された両端面に、導電成分である銅粉末と、B23-Li2O-SiO2-BaO系のガラスフリットとを含有する導電ペーストを塗布した後、800℃で焼き付けることにより、内部電極と電気的に接続された外部電極を形成した。
 これにより、図1に示すような構造を有する積層セラミックコンデンサが得られる。
Then, a conductive layer containing copper powder as a conductive component and B 2 O 3 —Li 2 O—SiO 2 —BaO glass frit is formed on both end surfaces of the fired ceramic laminate from which the internal electrodes are drawn. After applying the paste, an external electrode electrically connected to the internal electrode was formed by baking at 800 ° C.
Thereby, a multilayer ceramic capacitor having a structure as shown in FIG. 1 is obtained.
 なお、得られた積層セラミックコンデンサの外形寸法は、長さ:2.0mm、幅:1.25mm、厚さ:1.0mmであり、内部電極12間に介在する誘電体層(誘電体セラミック層)11の厚みは3.0μmであった。
 また、有効誘電体層(コンデンサ形成層)の層数は10であり、一層当たりの対向電極面積は1.6mm2であった。
The outer dimensions of the obtained multilayer ceramic capacitor are: length: 2.0 mm, width: 1.25 mm, thickness: 1.0 mm, and a dielectric layer (dielectric ceramic layer) interposed between the internal electrodes 12 ) 11 had a thickness of 3.0 μm.
The number of effective dielectric layers (capacitor forming layers) was 10, and the counter electrode area per layer was 1.6 mm 2 .
 なお、試料番号R1~R6の誘電体原料配合物は、BaTiO3理論密度比85%を実現できず、焼結性が不十分で、特性の良好な積層セラミックコンデンサを得ることができないことが明らかであることから、試料番号R1~R6の誘電体原料配合物を用いた積層セラミックコンデンサは製造しなかった。 It is clear that the dielectric raw material blends of sample numbers R1 to R6 cannot realize a BaTiO 3 theoretical density ratio of 85%, have insufficient sinterability, and cannot obtain a multilayer ceramic capacitor with good characteristics. Therefore, a multilayer ceramic capacitor using the dielectric material composition of sample numbers R1 to R6 was not manufactured.
 (D)積層セラミックコンデンサの特性の測定および評価
 上述のようにして作製した試料番号1~31の各試料(積層セラミックコンデンサ)について、温度25℃,1kHz,1.0Vrmsの条件下で静電容量を測定し、得られた静電容量の値から、誘電体セラミック層の室温での比誘電率を計算により求めた。
 各試料の誘電体セラミック層について求めた比誘電率の値を表2A,表2B,2Cに併せて示す。
(D) Measurement and Evaluation of Characteristics of Multilayer Ceramic Capacitor Each of Sample Nos. 1-31 (Multilayer Ceramic Capacitor) produced as described above has a capacitance under the conditions of a temperature of 25 ° C., 1 kHz, and 1.0 Vrms. Was measured, and the relative dielectric constant at room temperature of the dielectric ceramic layer was calculated from the obtained capacitance value.
Tables 2A, 2B, and 2C show the relative dielectric constant values obtained for the dielectric ceramic layers of the respective samples.
 表2A,表2B,表2Cより、窒化物Dを含有し、かつ、Dの含有割合が、主成分であるペロブスカイト型化合物100mol部に対して、0.5mol部≦D≦5.0mol部の要件を満たす、試料番号1~3,5~9,11~18,20~25、27~31の試料の場合、誘電体セラミック層が比誘電率2000≦εrの要件を満たし、良好な電気特性が得られることが確認された。 From Table 2A, Table 2B, and Table 2C, nitride D is contained, and the content ratio of D is 0.5 mol part ≦ D ≦ 5.0 mol part with respect to 100 mol part of perovskite type compound as the main component. In the case of samples Nos. 1 to 3, 5 to 9, 11 to 18, 20 to 25, and 27 to 31 satisfying the requirements, the dielectric ceramic layer satisfies the requirement of relative dielectric constant 2000 ≦ εr, and good electrical characteristics It was confirmed that
 一方、窒化物Dを含有するが、その含有割合が、0.5mol部≦D≦5.0mol部の要件を満たさない(窒化物Dの含有割合が0.5mol部を下回っている)、試料番号4,10,19,26の試料の場合、比誘電率は1820~1950と、2000を少し下回ったが、用途によっては実用可能なものであることが確認された。 On the other hand, a sample containing nitride D, but the content ratio does not satisfy the requirement of 0.5 mol part ≦ D ≦ 5.0 mol part (the content ratio of nitride D is less than 0.5 mol part). In the case of the samples Nos. 4, 10, 19, and 26, the relative dielectric constant was 1820 to 1950, which was slightly lower than 2000, but it was confirmed that it was practical depending on the application.
 なお、表2A,表2B,表2Cには示していないが、窒化物Dの含有割合が5.0mol部を超えると、焼結が進みすぎる傾向があることが確認されている。ただし、窒化物Dの含有割合が5.0mol部を超える場合にも、他の成分の組成を調整したり、焼結抑制用の成分を添加したりすることにより誘電体セラミックとして使用することは可能である。 Although not shown in Tables 2A, 2B, and 2C, it has been confirmed that when the content ratio of nitride D exceeds 5.0 mol parts, sintering tends to proceed excessively. However, even when the content ratio of nitride D exceeds 5.0 mol part, it is not possible to use it as a dielectric ceramic by adjusting the composition of other components or adding a component for suppressing sintering. Is possible.
 上記実施例の結果から、本発明の誘電体セラミックにおいては、窒化物Dの添加料は、通常、主成分であるペロブスカイト型化合物100mol部に対して、0.5mol部≦D≦5.0mol部の範囲とすることが望ましいことがわかる。 From the results of the above examples, in the dielectric ceramic of the present invention, the additive of the nitride D is usually 0.5 mol part ≦ D ≦ 5.0 mol part with respect to 100 mol part of the perovskite type compound which is the main component. It can be seen that it is desirable to set the range.
 また、表2A,表2B,表2Cに示した試料における、AサイトとBサイトの比(A/B(mol比))は0.950~1.050の範囲にあり、少なくともこの範囲においては、実用可能な誘電体セラミックが得られることが確認された。 In the samples shown in Table 2A, Table 2B, and Table 2C, the ratio of A site to B site (A / B (mol ratio)) is in the range of 0.950 to 1.050, and at least in this range. It was confirmed that a practical dielectric ceramic could be obtained.
 また、Si、R成分、およびM成分を配合しない場合(試料番号1~11)、および、Si、R成分、およびM成分の少なくとも1種を配合した場合(試料番号12~28)のいずれの場合にも、実用可能な比誘電率を有する誘電体セラミックが得られることが確認された。 In addition, when Si, R component, and M component are not blended (sample numbers 1 to 11), and when at least one of Si, R component, and M components are blended (sample numbers 12 to 28) In some cases, it was confirmed that a dielectric ceramic having a practical dielectric constant can be obtained.
 したがって、本発明によれば、窒化物Dに加えて、必要に応じて、Si、R成分、およびM成分の1種または2種以上を配合することにより、特性を制御して用途に適した特性を備えた誘電体セラミックを得ることができる。すなわち、本発明によれば、低温で焼結させることが可能で、特性の自由度の高い誘電体セラミックを提供することが可能になる。 Therefore, according to the present invention, in addition to the nitride D, if necessary, one or more of Si, R component, and M component are blended to control the characteristics and are suitable for use. A dielectric ceramic having characteristics can be obtained. That is, according to the present invention, it is possible to provide a dielectric ceramic that can be sintered at a low temperature and has a high degree of freedom in characteristics.
 なお、本発明においては、表2A,表2B,表2Cなどに示すように、BaTiO3系セラミック粒子を構成するBaの一部をCaおよび/またはSrで置換したり、Tiの一部をZrおよび/またはHfで置換したりすることも可能であり、その場合には、特性を制御して、所望の特性を備えた誘電体セラミックを得ることができる。 In the present invention, as shown in Tables 2A, 2B, 2C, etc., a part of Ba constituting the BaTiO 3 ceramic particles is replaced with Ca and / or Sr, or a part of Ti is replaced with Zr. It is also possible to substitute with Hf and / or Hf, in which case the characteristics can be controlled to obtain a dielectric ceramic having desired characteristics.
 また、この実施例では、本発明の誘電体セラミックを、積層セラミックコンデンサの誘電体層として用いる場合を例にとって説明したが、本発明にかかる誘電体セラミックは、積層セラミックコンデンサに限らず、LC複合部品などにも適用することが可能である。 Further, in this embodiment, the case where the dielectric ceramic of the present invention is used as a dielectric layer of a multilayer ceramic capacitor has been described as an example. However, the dielectric ceramic according to the present invention is not limited to a multilayer ceramic capacitor, and is an LC composite. It can also be applied to parts.
 本発明はさらにその他の点においても上記実施例に限定されるものではなく、本発明の誘電体セラミックを製造する場合の各原料の種類、製造工程の具体的な条件、窒化物Dや、Si、R成分、M成分などの具体的な配合割合などに関し、発明の範囲内において種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment in other points as well, and the types of raw materials, specific conditions of the manufacturing process, nitride D, Si, and the like when the dielectric ceramic of the present invention is manufactured. With respect to specific blending ratios of R component, M component, etc., various applications and modifications can be added within the scope of the invention.
 10       積層セラミック素子
 11       セラミック層(誘電体セラミック層)
 12       内部電極層
 13a,13b  外部電極
10 Multilayer Ceramic Element 11 Ceramic Layer (Dielectric Ceramic Layer)
12 Internal electrode layer 13a, 13b External electrode

Claims (6)

  1.  ABO3(AサイトはBaであって、Ba以外にSrおよびCaの少なくとも1種を含んでいてもよく、また、BサイトはTiであって、Ti以外にZrおよびHfの少なくとも1種を含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物を主成分とし、
     添加成分として、下記のDで表される窒化物
     D:BN,AlN,Si34,TaN,ZrNおよびTiNからなる群より選ばれる少なくとも1種
     を含有していることを特徴とする誘電体セラミック。
    ABO 3 (A site is Ba and may contain at least one of Sr and Ca in addition to Ba, and B site is Ti and contains at least one of Zr and Hf in addition to Ti. The main component is a perovskite type compound represented by O)
    A dielectric characterized in that it contains at least one selected from the group consisting of nitrides D: BN, AlN, Si 3 N 4 , TaN, ZrN and TiN represented by the following D as an additive component ceramic.
  2.  さらに、添加成分として、Si,R(RはLa,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,LuおよびYからなる群より選ばれる少なくとも1種)、およびM(MはMn,Ni,Co,Fe,Cr,Cu,Mg,Al,Mo,WおよびVからなる群より選ばれる少なくとも1種)からなる群より選ばれる少なくとも1種を含有することを特徴とする請求項1記載の誘電体セラミック。 Further, as an additive component, Si, R (R is at least one selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) ), And M (M is at least one selected from the group consisting of Mn, Ni, Co, Fe, Cr, Cu, Mg, Al, Mo, W, and V). The dielectric ceramic according to claim 1.
  3.  添加成分である前記窒化物Dの添加量を、誘電体セラミックにおける含有率が、主成分である前記ペロブスカイト型化合物100mol部に対して、0.5mol部≦D≦5.0mol部となるような範囲としたことを特徴とする請求項1または2記載の誘電体セラミック。 The additive amount of the nitride D as an additive component is such that the content in the dielectric ceramic is 0.5 mol part ≦ D ≦ 5.0 mol part with respect to 100 mol part of the perovskite compound as the main component. 3. The dielectric ceramic according to claim 1, wherein the dielectric ceramic is in a range.
  4.  複数の内部電極が、誘電体セラミック層を介して互いに対向するように積層され、前記内部電極の一方端部が所定の面に引き出された構造を有するセラミック積層体を備えるとともに、前記セラミック積層体の前記内部電極の一方端部が引き出された面に前記内部電極と導通するように配設された一対の外部電極を備えた積層セラミックコンデンサにおいて、
     前記の誘電体セラミック層が、請求項1~3のいずれかに記載の誘電体セラミックからなること
     を特徴とする積層セラミックコンデンサ。
    A ceramic laminate having a structure in which a plurality of internal electrodes are laminated so as to face each other through a dielectric ceramic layer, and one end of the internal electrode is drawn out to a predetermined surface, and the ceramic laminate In the multilayer ceramic capacitor comprising a pair of external electrodes arranged to be electrically connected to the internal electrode on the surface from which one end of the internal electrode is drawn,
    A multilayer ceramic capacitor, wherein the dielectric ceramic layer is made of the dielectric ceramic according to any one of claims 1 to 3.
  5.  前記内部電極が、卑金属を含むものであることを特徴とする、請求項4に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 4, wherein the internal electrode contains a base metal.
  6.  前記外部電極が、卑金属を含むものであることを特徴とする、請求項5に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 5, wherein the external electrode contains a base metal.
PCT/JP2011/063129 2010-06-28 2011-06-08 Dielectric ceramic material and laminated ceramic capacitor comprising same WO2012002118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010146076 2010-06-28
JP2010-146076 2010-06-28

Publications (1)

Publication Number Publication Date
WO2012002118A1 true WO2012002118A1 (en) 2012-01-05

Family

ID=45401848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063129 WO2012002118A1 (en) 2010-06-28 2011-06-08 Dielectric ceramic material and laminated ceramic capacitor comprising same

Country Status (1)

Country Link
WO (1) WO2012002118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799811C1 (en) * 2022-12-30 2023-07-12 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Method for manufacturing a thin-film capacitor for electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition
JP2000072538A (en) * 1998-08-25 2000-03-07 Murata Mfg Co Ltd Production of barium titanate-based ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition
JP2000072538A (en) * 1998-08-25 2000-03-07 Murata Mfg Co Ltd Production of barium titanate-based ceramic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HO, IN-CHYUAN: "Semiconducting Barium Titanate Ceramics Prepared by Boron-Containing Liquid- Phase Sintering", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 77, no. 3, 1994, pages 829 - 832, XP000673643, DOI: doi:10.1111/j.1151-2916.1994.tb05372.x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799811C1 (en) * 2022-12-30 2023-07-12 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Method for manufacturing a thin-film capacitor for electronic equipment

Similar Documents

Publication Publication Date Title
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4720193B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
JP5067401B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
JP2007331956A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP2002164247A (en) Dielectric ceramic composition and layered ceramic capacitor
KR20070106396A (en) Dielectric ceramics and multi layer ceramic capacitor
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP6316985B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6257802B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR20010030242A (en) Dielectric Ceramic Composition and Monolithic Ceramic Capacitor
US7239501B2 (en) Dielectric ceramic composition and laminated ceramic capacitor
KR100826785B1 (en) Dielectric ceramic composition, process for producing the same, and stacked type ceramic capacitor
KR101650745B1 (en) Laminate ceramic capacitor and method for producing same
KR20180067631A (en) Dielectric ceramic composition, multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
WO2012096223A1 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
KR101650746B1 (en) Laminate ceramic capacitor and method for producing same
JP2008201616A (en) Dielectric ceramic and laminated ceramic capacitor
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP