WO2012001798A1 - Cold air injection mechanism - Google Patents

Cold air injection mechanism Download PDF

Info

Publication number
WO2012001798A1
WO2012001798A1 PCT/JP2010/061213 JP2010061213W WO2012001798A1 WO 2012001798 A1 WO2012001798 A1 WO 2012001798A1 JP 2010061213 W JP2010061213 W JP 2010061213W WO 2012001798 A1 WO2012001798 A1 WO 2012001798A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold air
metal belt
air injection
belt
injection
Prior art date
Application number
PCT/JP2010/061213
Other languages
French (fr)
Japanese (ja)
Inventor
宮西 秀樹
新井 孝広
友彦 松崎
良二 軽部
津幡 行一
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to JP2010545315A priority Critical patent/JP5486513B2/en
Priority to PCT/JP2010/061213 priority patent/WO2012001798A1/en
Priority to KR1020127009289A priority patent/KR101693634B1/en
Priority to TW099141595A priority patent/TW201200825A/en
Publication of WO2012001798A1 publication Critical patent/WO2012001798A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • F25D13/06Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
    • F25D13/067Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space with circulation of gaseous cooling fluid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/361Freezing; Subsequent thawing; Cooling the materials being transported through or in the apparatus, with or without shaping, e.g. in form of powder, granules, or flakes

Definitions

  • the present invention relates to a cold air jet mechanism which jets cold air onto food while transporting food, particularly fresh food, etc. by means of a conveyor belt, and continuously cools or freezes the food. More specifically, the height of the conveyor surface of the conveyor belt It is low enough to make the task easy even for short operators.
  • the tunnel 111 has a top wall 112 with perforations across the face. Above the tunnel 111, a high pressure chamber 114 surrounded by a top wall 117 and side walls 115 and 116 is formed, and cold air c is sent from the fan 118 to the high pressure chamber 114. Cold air c passes through the perforations in the top wall 112 to freeze the food on the conveyor belt 108 and then is cooled in the evaporators 119 and 120 through the return channel 113. The cooled cold air is again sent to the high pressure chamber 114 by the fan 118.
  • the space occupied by the space 44 is large, so the conveyor surface of the conveyor belt has to be made higher.
  • the width of the conveying surface of the conveyor belt is widely taken to increase the throughput of food.
  • the operator needs to carry out the operation of arranging a large number of objects to be cooled on the conveying surface of the conveyor belt. Therefore, if the height of the transport surface is 1 m or more from the floor, the operator of a short operator can not reach the central region of the transport surface, resulting in poor working efficiency. Therefore, it is necessary to keep the transport surface at about 70 to 80 cm from the floor.
  • the present invention places a food product on a conveyor belt and cools or freezes it by means of a cold air injection mechanism, without reducing the cooling effect of the object to be cooled. To improve the operator's operability.
  • the slit nozzle having a complicated structure is not used in the lower cold air jet part, the cleaning operation of the sealed space becomes easy at the time of cleaning, and the discharge of the cleaning water can be smoothed, so the sanitation can be improved.
  • the lower cold air injection portion when the lower cold air injection portion is formed of a box-like casing having the flat injection surface as the upper surface, the structure of the lower cold air injection portion can be further simplified.
  • the reach of cold air is theoretically six times the diameter of the injection port. If the bore diameter of the injection port drilled on the flat injection surface is 20 mm or more, the reach of cold air becomes long, and the cooling effect on the metal belt can be enhanced.
  • the flat injection surface is made of a punching metal plate, the processing becomes easier and the processing cost can be reduced.
  • the rotary drum is disposed outside the closed space, the arrangement space of the rotary drum is not restricted. Therefore, the diameter of the rotating drum can be increased, and the bending load applied to the metal belt can be reduced, so that metal fatigue of the metal belt can be alleviated. Therefore, since the metal belt can be thinned, the heat load on the belt body can be reduced, and the cost of the conveyor belt can be reduced. Further, since the return path is provided outside the cooling space, the meandering prevention device provided in the return path does not freeze, and the original function can be maintained.
  • the lower cold air injection part is constituted by a box-like casing having the flat injection surface as the upper surface, the cold air inlet is provided on one side of the box-like casing, and the flat injection surface is provided with the cold air inlet. It is preferable to incline downward toward the other side from the above-mentioned side, and to make the space cross-sectional area on the side of the cold air inlet large.
  • cold air is injected onto the food product placed on the metal belt without cold air holes in the enclosed space, and the cold air injection mechanism for continuous cooling or freezing processing is performed above the metal belt.
  • An upper cold air jet part which is disposed and has a large number of slit nozzles having a funnel-shaped cross section and sprays a collision jet of cold air from above the metal belt onto the food product, and a plurality of jet holes disposed below the metal belt
  • a lower cold air injection part for injecting a cold air flow from the lower side of the metal belt to the lower surface of the metal belt; and Can be arranged below.
  • the configuration of the lower cold air injection unit can be simplified, it becomes easy to discharge the cleaning water from the sealed space when the housing is cleaned, and the sanitary property of the sealed space can be improved.
  • FIG. 1 the metal belt 12 for transporting the food product w is made of a stainless steel thin plate having no cold air vent and good heat conductivity.
  • the metal belt 12 is driven by a rotating drum to be described later and moved in the direction of arrow a while being supported by a support bar 14 installed in the width direction of the metal belt 12.
  • an upper cold air jet part 16 constituted by a large number of nozzle units 18 arranged along the conveying direction a of the metal belt 12.
  • the nozzle unit 18 is mounted on support frames 22 and 24 juxtaposed on both sides of the metal belt 12 via flanges 18 a.
  • the nozzle unit 18 has the same configuration as the nozzle unit 134 shown in FIG. 14, and a slit nozzle 20 having four funnel-shaped cross sections is integrally formed on the lower surface.
  • a large number of the nozzle units 18 are arranged in the transport direction a of the metal belt 12.
  • a lower cold air injection unit 26 is provided below the metal belt 12.
  • the lower cold air injection unit 26 is configured of a box-like casing 28.
  • a cold air flow inlet is provided on one side surface (left side in FIG. 1) of the box-like casing 28, and the upper surface 28 a of the box-like casing 28 is formed into a flat surface and a plurality of circular perforations 29 are punched. It is made of metal plate.
  • the diameter of the perforations 29 has, for example, a large diameter such as 25 mm.
  • the upper surface 28a is inclined downward toward the side (right side in FIG. 1) away from the cold air flow inlet.
  • the lower cold air injection unit 26 since the cold air c injected from the perforations 29 of the lower cold air injection unit 26 cools the metal belt 12 and promotes contact cooling between the metal belt 12 and the food item w, the upper cold air injection is performed.
  • the metal belt 12 can be sufficiently cooled even if there is no reach of cold air c as in the case of the portion 16. Therefore, the cool air injection from the upper cold air injection unit 16 and the lower cold air injection unit 26 can sufficiently achieve the cooling effect of the food product w.
  • the lower cold air injection unit 26 requires less space than the upper cold air injection unit 16
  • the height of the metal belt 12 can be reduced. Therefore, when the operator carries the work of placing the food product w on the metal belt 12, the work efficiency is not reduced even for a short operator.
  • the upper surface 28a of the box-like casing 28 is inclined in the width direction of the metal belt 12, the wash water is not accumulated on the upper surface 28a at the time of washing, and the discharge of the wash water can be promoted.
  • the diameter of the perforations 29 is as large as 25 mm ⁇ , the reaching distance of the cold air c can be secured sufficiently long. Therefore, even if the upper surface 28a is inclined so that the lower end of the inclined surface is somewhat away from the lower surface of the belt, the cooling effect is not reduced. Further, since the upper surface 28a can be inclined to widen the cold air inlet space on the cold air flow inlet side, the velocity of the cold air c injected from the perforations 29 can be made uniform in the width direction of the metal belt 12. Therefore, the cooling effect can be made uniform in the width direction of the metal belt 12.
  • the housing 32 has a sealed structure except for an inlet opening 34 provided in the inlet wall 32 c and an outlet opening 36 provided in the outlet wall 32 d.
  • a plurality of monitoring windows 38 are provided in the front wall 32 a in the longitudinal direction of the housing 32.
  • the rear wall 32 b is provided with a plurality of open / close doors 40 so that the operator can enter the housing 12.
  • the upper wall 32e of the housing 32 is a closed wall, through which a supply pipe 42 for supplying the refrigerant or brine from the refrigerator unit (not shown) to the air cooler and an exhaust pipe 44 for discharging the refrigerant or brine pass There is.
  • the bottom wall 32 f of the housing 32 is supported by legs 46 at a distance from the floor surface F. Further, as shown in FIG. 5, the bottom wall 12f is inclined downward toward the rear wall 32b.
  • a transport device 50 for transporting the food product w into the housing 32 is provided in the lower region of the housing 32.
  • the conveying device 50 is composed of an endless metal belt 12 and rotating drums 54 and 56 for driving the metal belt 12.
  • the metal belt 12 is horizontally disposed, wound around the driven drum 54 outside the inlet wall 32c, and wound around the driving drum 56 outside the outlet wall 32d.
  • the forward path 12a of the metal belt 12 has the transport surface horizontally disposed, penetrates the housing 32 from the inlet opening 34 and the outlet opening 36, and moves in the direction of the arrow a.
  • the return path 12b is disposed outside the housing 12 below the bottom wall 32f.
  • the inside of the housing 32 is divided by the partition walls 58 and 60 into an upper negative pressure chamber 62, a lower regular chamber 64, and a maintenance space 66 located on the side thereof.
  • an air cooler 68 is fixed to the upper surface of the partition wall 58.
  • the air cooler 68 is connected to a refrigerator unit (not shown) disposed at a position different from the housing 32 through the supply and discharge pipes 42 and 44.
  • a circular ventilation passage 58a is formed in the partition wall 58.
  • a cylindrical casing 70 is attached to the air passage 58a, and an axial fan 72 and its drive motor 74 are provided in the casing 70.
  • two units of air coolers 68 are provided in the longitudinal direction of the housing 32, and four axial flow fans 72 are provided in the longitudinal direction of the housing 32 per unit.
  • the internal air cooled by the air cooler 68 is sent by the axial flow fan 72 from the air passage 58 a to the lower positive pressure chamber 64. Therefore, the upper negative pressure chamber 62 has a negative pressure atmosphere.
  • the outward passage 12 a of the metal belt 12 is disposed in the horizontal direction.
  • the outward path 12a is supported at a predetermined height by a plurality of support bars 14 provided in the width direction.
  • Support frames 22 and 24 are disposed in the longitudinal direction of the housing 32 above both sides of the forward path 12 a of the metal belt 12.
  • An upper cold air injection unit 16 is provided along the outward path 12a above the outward path 12a.
  • a lower cold air injection unit 26 is provided along the forward path 12a.
  • the lower cold air injection part 26 is comprised by the box-shaped casing 28 which has the cold air flow inlet 28b in one side.
  • the casing 28 is fixed to the upper surface of the bottom wall 32f, and as mentioned above, the upper surface 28a is formed into a flat surface, and a large number of circular perforations 29 are drilled.
  • the upper surface 28 a is inclined downward toward the maintenance space 66.
  • the bottom wall 32 f of the housing 32 is also inclined downward toward the maintenance space 66.
  • An open / close door 28 c is provided on the side surface of the box-like casing 28 on the maintenance space 46 side.
  • a flange is provided at the upper end of the open / close door 28c, and the operator can slide up and down in the vertical direction at the time of cleaning to open the side surface.
  • the bearing 84 is slidably supported by the frame 82 in the direction of the arrow a or b and attached to the frame 82 via a coil spring 86. Thereby, the driven drum 54 can move in the direction of the arrow a or b, and the tension of the metal belt 12 can be adjusted.
  • a reinforcing bar 89, a support bar 90 for supporting the return path 12b of the metal belt 12, and a guide bar 92 for guiding the return path 12b are provided between the frames 82.
  • FIGS. 8 and 9 the frame 94 is fixed to the outlet wall 32d, and the rotating shaft 56a of the drive drum 56 is rotatably supported by the frame 94 via the bearing 96. Further, a drive motor 98 for driving the rotation shaft 56 a is attached to the frame 94.
  • the metal belt 12 is wound around the drive drum 56, and the rotation of the drive drum 56 causes the metal belt 12 to move in the direction of the arrow a or b. Similar to the driven drum 54, a rubber film is coated on the outer peripheral surface of the drive drum 56.
  • a rubber projection 13 having a tapered trapezoidal cross section is joined by vulcanization.
  • a pulley 87 having a recess 87 a on the outer peripheral surface thereof is joined to one side end surface of the drive drum 56.
  • a recessed groove having the same cross-sectional shape as that of the rubber protrusion 13 is formed by the recessed portion 87 a and the end surface of the drive drum 56.
  • the pulley 87 for forming the recess 87a is also mounted on one end face of the driven drum 54 shown in FIGS.
  • the rubber protrusion 13 and the pulley 87 constitute a meandering prevention device 88.
  • the conveyor belt 32 travels while the rubber projection 13 is loosely fitted in the recess 87 a, thereby preventing the conveyor belt 32 from meandering.
  • the slit-like collision jet r is injected from the slit-like injection port of the slit nozzle 20 in the direction perpendicular to the food product w.
  • the slit nozzle 20 has an accelerating portion having a tapered cross section that accelerates the cold air c, and a rectifying portion that rectifies the accelerated cold air c, and can jet a jet having a long reach distance. Since the collision jet r ejected from the slit nozzle 20 forms a cold air flow closely attached to the surface of the food product w by the co-under effect, the cooling effect can be enhanced.
  • FIG. 15 shows an upper cold air injection unit constituted by an upper cold air injection unit 150 which has a rectangular nozzle unit 152 and is provided with perforations on the flat tip end injection surface 154.
  • the exhaust space e can not be sufficiently secured unless the height h of the rectangular nozzle portions 152 and the pitch p between the rectangular nozzle portions 152 are considerably large.
  • cold air c is injected from the perforations 29 provided on the upper surface of the box-like casing 28 toward the lower surface of the forward path 12a. Since the perforations 29 have a large diameter, the reach distance is long, the upper surface 28a is inclined, and the cold air c can reach the lower surface of the forward path 12a even if the distance to the lower surface of the belt is increased. Therefore, the cooling effect of the metal belt 12 is not reduced.
  • the installation height of the metal belt 12 can be lowered while maintaining a high cooling effect of the food product w. Furthermore, since the driven drum 54, the drive drum 56 and the return path 12b of the metal belt 12 are disposed outside the housing 12, the installation height of the metal belt 12 can be made low enough. Therefore, even the short operator O can easily carry the food conveyance object w.
  • the driven drum 54 and the driving drum 56 are disposed outside the housing 12, the diameter of these drums can be increased. Therefore, since the bending load applied to the metal belt 12 can be reduced, the metal fatigue of the metal belt 12 is alleviated. Therefore, the metal belt 12 can be thinned, and the cost of the belt can be reduced.
  • the thickness of the stainless steel plate constituting the metal belt 12 can be 0.6 mm.
  • FIG. 10 is a diagram showing a relationship between the height from the cold air jet nozzle 70 to the lower surface of the belt and the heat transfer coefficient with respect to the metal belt, showing the results of experiments with the device of this embodiment.
  • the distance from the perforations 29 to the lower surface of the belt varies between 75 and 95 mm.
  • the heat transfer coefficient does not change much even if the distance between the perforations 29 and the lower surface of the belt changes. Therefore, it can be seen that the cooling effect of the metal belt 12 is hardly reduced even if the upper surface 28a is inclined as in the present embodiment.
  • FIG. 11A shows a box-shaped casing 28 of the present embodiment.
  • Upper surface 28a of the box-shaped casing 28 since the inclined in the width direction of the metal belt 12, the interval H 1 from drilling 29 to the metal belt 12 varies between 75 ⁇ 95 mm.
  • the diameter of the circular perforations 29 is 25 mm ⁇ , and the perforations 29 are arranged to form an equilateral triangle.
  • Pitch P 1 between each perforation 29 is 100 mm.
  • FIG. 11B is a configuration shown as a comparative example.
  • a plurality of exhaust spaces e are provided in the box-like casing 28 ′, and the distance H 2 between the flat injection surface 28 a ′ of the box-like casing 28 ′ and the metal belt 12 is 50 mm, and is constant in the width direction of the metal belt 12. is there.
  • the flat injection surface 28 ' is provided with a circular perforation 29' having a diameter of 12.5 mm ⁇ .
  • Each perforation 29 ' are arranged to form an equilateral triangle with one another, each perforation 29' pitch P 2 between is 50 mm.
  • the aperture ratio of the flat injection surface 28a and the flat injection surface 28a ' is set to be the same.
  • the curve X is the case where the box-like casing 28 is used
  • the curve Y is the case where the box-like casing 28 'is used
  • the curve Z is the temperature transition of the cooling space
  • the curve W is the transition of the outside air temperature. The temperature of konnyaku was measured by a temperature sensor pierced at the center of konnyaku.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

Disclosed is a cold air injection mechanism that places food objects to be conveyed on a metal belt and cools or freezes same, and wherein the installation height of the conveyance surface of the metal belt can be reduced and workability for an operator improved, without reducing the cooling effect on the objects to be cooled. Upper cold air injection units (16) comprising slit nozzles (20) with a funnel-shaped cross-section are provided in the upper section of the metal belt (12) and lower cold air injection units (26) comprising box-shaped casings (28) with a plurality of perforations (29) in the flat upper surface (28a) thereof are provided in the lower section of the metal belt (12). The installation position of the metal belt (12) can be lowered and work made easier for an operator of shorter stature, because box-shaped casings (28) with a small installation space are provided and rotation drums (54 and 56) that drive the metal belt (12) are provided outside a sealed space.

Description

冷気噴射機構Cold air injection mechanism
 本発明は、食品、特に生鮮食品等をコンベアベルトで搬送しながら、食品に冷気を噴射し、連続的に冷却又は冷凍処理する冷気噴射機構に関し、詳しくは、コンベアベルトの搬送面の高さを低くして、背が低いオペレータでも作業を容易にしたものである。 The present invention relates to a cold air jet mechanism which jets cold air onto food while transporting food, particularly fresh food, etc. by means of a conveyor belt, and continuously cools or freezes the food. More specifically, the height of the conveyor surface of the conveyor belt It is low enough to make the task easy even for short operators.
 従来、食品を冷却又は冷凍処理する装置として、食品をコンベアベルト上に載せ、コンベアベルトで密閉された冷却空間に搬送し、該冷却空間で食品に冷気を噴き付けて連続的に冷却又は冷凍処理する冷気噴射装置が用いられている。
 この冷気噴射装置の一例が特許文献1に開示されている。以下、特許文献1に開示された冷気噴射装置の概要を図13によって説明する。
Conventionally, as an apparatus for cooling or freezing food, the food is placed on a conveyor belt, conveyed to a cooling space sealed by the conveyor belt, cold air is sprayed to the food in the cooling space, and cooling or freezing is continuously performed. Cold air injection devices are used.
An example of this cold air injection device is disclosed in Patent Document 1. Hereinafter, the outline of the cold air injection device disclosed in Patent Document 1 will be described with reference to FIG.
 図13において、この冷気噴射装置100のハウジングは、項部壁102、底部壁103、両側部壁104,105及び図示省略の両端部壁を備え、密閉空間を形成できる。ハウジング内に水平方向にコンベアベルト108が配設され、このコンベアベルト108は、両端を2個のローラ(図示省略)に巻回され、食品を搬送中に、冷気cにより連続的に食品を冷凍する。ハウジング内でトンネル111がコンベアベルト108を包囲している。このコンベアベルト108は多孔性であり、冷気がベルト面を抜ける構造になっている。 In FIG. 13, the housing of the cold air jet apparatus 100 includes a section wall 102, a bottom wall 103, both side walls 104 and 105, and a not-shown both end wall, and can form a sealed space. A conveyor belt 108 is disposed horizontally in the housing, and the conveyor belt 108 is wound around two rollers (not shown) at both ends, and the food is continuously frozen by cold air c while the food is being transported. Do. A tunnel 111 surrounds the conveyor belt 108 in the housing. The conveyor belt 108 is porous so that cold air passes through the belt surface.
 トンネル111は、面全体に亘って穿孔を有する頂部壁112を有する。トンネル111の上方に、頂部壁117及び側部壁115及び116で囲まれた高圧室114が形成され、高圧室114にフアン118から冷気cが送られる。冷気cは頂部壁112の穿孔を通過してコンベアベルト108上の食品を冷凍した後、復帰チャンネル113を通って、蒸発器119及び120で冷却される。冷却された冷気は再びファン118で高圧室114に送られる。 The tunnel 111 has a top wall 112 with perforations across the face. Above the tunnel 111, a high pressure chamber 114 surrounded by a top wall 117 and side walls 115 and 116 is formed, and cold air c is sent from the fan 118 to the high pressure chamber 114. Cold air c passes through the perforations in the top wall 112 to freeze the food on the conveyor belt 108 and then is cooled in the evaporators 119 and 120 through the return channel 113. The cooled cold air is again sent to the high pressure chamber 114 by the fan 118.
 また、図14に、従来の冷気噴射機構の別な構成例を示す。この冷気噴射機構は、コンベアベルト130を挟んで上方に上部冷気噴射部132が、下方に下部冷気噴射部140が設けられている。上部冷気噴射部132は、コンベアベルト130の搬送方向aに並べられた複数のノズルユニット134からなり、各ノズルユニット14の下面に、複数の漏斗形断面を有するスリットノズル136が設けられている。 Further, FIG. 14 shows another configuration example of the conventional cold air injection mechanism. In the cold air injection mechanism, an upper cold air injection unit 132 is provided above the conveyor belt 130 and a lower cold air injection unit 140 is provided below. The upper cold air jet unit 132 is composed of a plurality of nozzle units 134 arranged in the conveyance direction a of the conveyor belt 130, and on the lower surface of each nozzle unit 14, slit nozzles 136 having a plurality of funnel-shaped cross sections are provided.
 スリットノズル136の下端にスリット状噴射口があり、このスリット状噴射口は、コンベアベルト130の搬送方向aに対して直角方向に向けられている。スリットノズル136は、漏斗形断面をもつ加速部138と、同一断面積で整流作用をもつ整流部139とで構成されている。かかるスリットノズル136から、速度が大きく整流された衝突噴流rが噴射され、この衝突噴流rが食品搬送物wに対して直角方向に衝突する。 At the lower end of the slit nozzle 136, there is a slit-like injection port, which is directed in a direction perpendicular to the conveying direction a of the conveyor belt 130. The slit nozzle 136 includes an accelerating portion 138 having a funnel-shaped cross section, and a rectifying portion 139 having the same cross-sectional area and a rectifying function. From the slit nozzle 136, a collision jet r whose velocity is rectified largely is injected, and the collision jet r collides in a direction perpendicular to the food conveyance w.
 衝突噴流rは、食品搬送物wに衝突した後も、食品搬送物wの表面に密着した薄膜流tを形成するので、食品搬送物wの冷却効果を向上できる。なお、下部冷気噴射部140においても、ノズルユニット142の上面に、スリットノズル136と同様の構成をもつスリットノズル144が設けられている。
 スリットノズル136、144を備えたノズルユニット132,140では、該スリットノズル間に広い排気空間eを確保できるので、食品搬送物wの冷却に供した後の排冷気を排気空間eからスムーズに排気できる。そのため、食品搬送物wに接触する前の衝突噴流rが、排冷気によって乱されないという作用効果もある。
The collision jet r forms a thin film flow t in close contact with the surface of the food product w even after colliding with the food product w, so that the cooling effect of the food product w can be improved. In the lower cold air injection unit 140 as well, a slit nozzle 144 having the same configuration as the slit nozzle 136 is provided on the upper surface of the nozzle unit 142.
In the nozzle units 132 and 140 provided with the slit nozzles 136 and 144, since a wide exhaust space e can be secured between the slit nozzles, the exhaust cold air after being subjected to the cooling of the food conveyance object w is smoothly exhausted from the exhaust space e. it can. Therefore, there is also an effect that the collision jet r before contacting the food product w is not disturbed by the exhaust cold air.
 コンベアベルトが多孔性材料からなり、冷気抜け孔をもつものであれば、下部冷気噴射部140から噴射された冷気rは、該冷気抜け孔を抜け、食品搬送物wに直接接触して食品搬送物wを冷却する。コンベアベルトがステンレス板からなるスチールベルトのように、熱伝達性が良い遮蔽体であれば、下部冷気噴射部140から噴射された冷気rがコンベアベルトを冷却し、コンベアベルト上の食品搬送物wはコンベアベルトによっても冷却される。 If the conveyor belt is made of a porous material and has cold air holes, the cold air r jetted from the lower cold air injection unit 140 passes through the cold air holes and is in direct contact with the food conveyance w to convey the food. Cool the object w. If the conveyor belt is a shield having a good heat transferability like a steel belt made of a stainless steel plate, the cold air r injected from the lower cold air injection unit 140 cools the conveyor belt, and the food product on the conveyor belt w Is also cooled by the conveyor belt.
特表2002-535596号公報Japanese Patent Publication No. 2002-535596
 コンベア搬送方式の冷気噴射機構では、冷却空間を形成するハウジングの外側で、オペレータが食品をコンベアベルトに載置する。特許文献1に開示された冷気噴射装置は、コンベアベルト108を駆動するローラがハウジング内に配設されているため、該ローラのスペース分だけコンベアベルトの搬送面を高くしなければならない。
 特許文献1に開示された冷気噴射装置は、コンベアベルト108の搬送面の下方に冷気噴出部が設けられていないが、コンベアベルト108の下方に冷気噴出部を設けた場合、該冷気噴出部を設けた分だけ、さらにコンベアベルトの搬送面を高くしなければならない。
In the conveyer type cold air jet mechanism, the operator places the food on the conveyor belt outside the housing forming the cooling space. In the cold air jet apparatus disclosed in Patent Document 1, since the roller for driving the conveyor belt 108 is disposed in the housing, the transport surface of the conveyor belt has to be increased by the space of the roller.
In the cold air jet device disclosed in Patent Document 1, the cold air jet portion is not provided below the conveyance surface of the conveyor belt 108, but when the cold air jet portion is provided below the conveyor belt 108, the cold air jet portion is The conveying surface of the conveyor belt must be further raised by the amount provided.
 特に、図14に示すようなスリットノズル144を備えた下部冷気噴射部140を設けたとき、スペース44の占有スペースが大きいので、コンベアベルトの搬送面をさらに高くせざるを得ない。コンベアベルトの搬送面の幅は、食品の処理量を多くするため、広く取られている。オペレータはコンベアベルトの搬送面に多数の被冷却物を配置する作業を行なう必要がある。そのため、該搬送面の高さが床から1m以上になると、背の低いオペレータでは、搬送面の中央域に手が届かず、作業能率が悪くなる。従って、搬送面を床から70~80cm程度に留める必要がある。 In particular, when the lower cold air jet unit 140 having the slit nozzle 144 as shown in FIG. 14 is provided, the space occupied by the space 44 is large, so the conveyor surface of the conveyor belt has to be made higher. The width of the conveying surface of the conveyor belt is widely taken to increase the throughput of food. The operator needs to carry out the operation of arranging a large number of objects to be cooled on the conveying surface of the conveyor belt. Therefore, if the height of the transport surface is 1 m or more from the floor, the operator of a short operator can not reach the central region of the transport surface, resulting in poor working efficiency. Therefore, it is necessary to keep the transport surface at about 70 to 80 cm from the floor.
 本発明は、かかる従来技術の課題に鑑み、コンベアベルトに食品搬送物を載置し、冷却又は冷凍処理する冷気噴射機構において、被冷却物の冷却効果を低下させることなく、コンベアベルトの搬送面を下げることを可能にして、オペレータの作業性を向上させることを目的とする。 SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention places a food product on a conveyor belt and cools or freezes it by means of a cold air injection mechanism, without reducing the cooling effect of the object to be cooled. To improve the operator's operability.
 かかる課題を解決ため、本発明の冷気噴射機構は、密閉空間内で冷気抜け孔のない金属ベルト上に載置した食品搬送物に冷気を噴射し、連続的に冷却又は冷凍処理する冷気噴射機構において、金属ベルトの上方に配置され、漏斗形断面を有する多数のスリットノズルを備え、金属ベルトの上方から冷気の衝突噴流を食品搬送物に噴き付ける上部冷気噴射部と、金属ベルトの下方に配置され、多数の噴射孔が穿設された平坦噴射面からなる冷気噴出部を備え、コンベアベルトの下方から冷気流をコンベアベルトの下面に噴き付ける下部冷気噴射部と、を備えているものである。 In order to solve such problems, the cold air injection mechanism of the present invention injects cold air onto a food product placed on a metal belt without cold air holes in a closed space, and continuously cools or freezes the cold air injection mechanism. An upper cold air jet part having a plurality of slit nozzles disposed above the metal belt and having a funnel-shaped cross section, and jets a collision jet of cold air from above the metal belt onto the food product; And a lower cold air jet portion which comprises a cold air jet portion consisting of a flat jet surface formed with a large number of jet holes and which jets a cold air flow from the lower side of the conveyor belt to the lower surface of the conveyor belt. .
 本発明装置では、下部冷気噴射部を平坦噴射面からなる冷気噴出部で構成したので、下部冷気噴射部の設置スペースを縮小できる。そのため、コンベアベルトの搬送面を低位置に配置できる。なお、本発明装置で使用するコンベアベルトは、冷気抜け孔のない金属ベルトであり、この金属ベルトは下部冷気噴射部から噴射される冷気に冷却され、冷却された金属ベルトが食品搬送物を直接接触冷却することができる。 In the device according to the present invention, since the lower cold air injection part is constituted by the cold air discharge part comprising the flat injection surface, the installation space of the lower cold air injection part can be reduced. Therefore, the conveyance surface of the conveyor belt can be disposed at a low position. The conveyor belt used in the device according to the present invention is a metal belt without a cold air vent, and the metal belt is cooled by the cold air jetted from the lower cold air jet portion, and the cooled metal belt directly transports the food products. It can be contact cooled.
 そのため、下部冷気噴射部は、特にスリットノズルのような冷気到達距離が長い冷気噴射機構を用いる必要がない。従って、本発明のように、下部冷気噴射部に漏斗形スリットノズルを用いなくても冷却効果は低下しない。一方、本発明では、上部冷気噴射部にスリットノズルを用いているので、食品搬送物の冷却効果を高く維持できる。
 このように、本発明装置では、食品搬送物の冷却効果を低下させることなく、コンベアベルトの搬送面を低位置に設定できるので、背が低いオペレータでも、高い作業能率を維持できる。
Therefore, the lower cold air injection unit does not need to use a cold air injection mechanism having a long cold air reach distance such as a slit nozzle. Therefore, as in the present invention, the cooling effect does not decrease even without using a funnel-shaped slit nozzle in the lower cold air injection part. On the other hand, in the present invention, since the slit nozzle is used for the upper cold air injection part, the cooling effect of the food conveyance object can be maintained high.
As described above, according to the apparatus of the present invention, the conveying surface of the conveyor belt can be set at a low position without reducing the cooling effect of the food conveyance, so that high work efficiency can be maintained even with a short operator.
 また、下部冷気噴射部に複雑な構造のスリットノズルを用いないので、洗浄時に密閉空間の洗浄作業が容易になり、洗浄水の排出もスムーズにできるので、サニタリー性を向上できる。 Further, since the slit nozzle having a complicated structure is not used in the lower cold air jet part, the cleaning operation of the sealed space becomes easy at the time of cleaning, and the discharge of the cleaning water can be smoothed, so the sanitation can be improved.
 本発明装置において、下部冷気噴射部を、前記平坦噴射面を上面とする箱状ケーシングで構成すれば、下部冷気噴射部の構成をさらに簡素化できる。また、冷気の到達距離は、理論的に噴射口の口径の6倍になることがわかっている。該平坦噴射面に穿設された噴射口の口径を20mm以上にすれば、冷気の到達距離が長くなり、金属ベルトに対する冷却効果を高めることができる。 In the device of the present invention, when the lower cold air injection portion is formed of a box-like casing having the flat injection surface as the upper surface, the structure of the lower cold air injection portion can be further simplified. In addition, it is known that the reach of cold air is theoretically six times the diameter of the injection port. If the bore diameter of the injection port drilled on the flat injection surface is 20 mm or more, the reach of cold air becomes long, and the cooling effect on the metal belt can be enhanced.
 さらに、平坦噴射面をパンチングメタル板で構成すれば、さらに加工が容易になり、加工コストを低減できる。 Furthermore, if the flat injection surface is made of a punching metal plate, the processing becomes easier and the processing cost can be reduced.
 本発明装置において、金属ベルトがエンドレスベルトであり、該金属ベルトの復路が前記密閉空間外に導出されて、密閉空間の下方に配設され、密閉空間の外部に回転ドラムを設け、金属ベルトを該回転ドラムの外周面に巻回させてコンベアベルトを支持搬送するように構成するとよい。このように、金属ベルトの復路を密閉空間外に配置したので、金属ベルトの往路をさらに低い位置に配置できる。 In the device according to the present invention, the metal belt is an endless belt, and the return path of the metal belt is led out of the sealed space and disposed below the sealed space, and a rotating drum is provided outside the sealed space. The conveyor belt may be supported and conveyed by being wound around the outer peripheral surface of the rotary drum. Thus, since the return path of the metal belt is disposed outside the closed space, the forward path of the metal belt can be disposed at a lower position.
 また、前記回転ドラムを密閉空間外に配置したので、回転ドラムの配置スペースは制約を受けなくなる。そのため、回転ドラムの大径化が可能になり、これによって、金属ベルトに付加される曲げ荷重を低減できるので、金属ベルトの金属疲労を緩和できる。そのため、金属ベルトの薄膜化が可能になるので、ベルト体の熱負荷を低減できると共に、コンベアベルトの原価を低減できる。また、復路を冷却空間外に設けているので、復路に設けられ蛇行防止装置が氷結しなくなり、本来の機能を維持できる。 In addition, since the rotary drum is disposed outside the closed space, the arrangement space of the rotary drum is not restricted. Therefore, the diameter of the rotating drum can be increased, and the bending load applied to the metal belt can be reduced, so that metal fatigue of the metal belt can be alleviated. Therefore, since the metal belt can be thinned, the heat load on the belt body can be reduced, and the cost of the conveyor belt can be reduced. Further, since the return path is provided outside the cooling space, the meandering prevention device provided in the return path does not freeze, and the original function can be maintained.
 本発明装置において、下部冷気噴射部が前記平坦噴射面を上面とする箱状ケーシングで構成され、該箱状ケーシングの一方の側面に冷気導入口を設け、該平坦噴射面を冷気導入口が設けられた側面から他方の側面に向かって下方に傾斜させ、該冷気導入口側の空間断面積を大きく取るようにするとよい。 In the device according to the present invention, the lower cold air injection part is constituted by a box-like casing having the flat injection surface as the upper surface, the cold air inlet is provided on one side of the box-like casing, and the flat injection surface is provided with the cold air inlet. It is preferable to incline downward toward the other side from the above-mentioned side, and to make the space cross-sectional area on the side of the cold air inlet large.
 このように、箱状ケーシング内の空間断面積を冷気導入口側ほど大きくしたことにより、冷気の圧損を考慮すると、平坦噴射面の噴射口から噴射される冷気の速度を均一化でき、金属ベルトの幅方向で冷却効果を均一にできる。また、平坦噴射面を傾斜させることにより、洗浄時に洗浄水が平坦噴射面に溜まらず、平坦噴射面を伝って側面側に流出させることができる。そのため、密閉空間のサニタリー性が向上する。 As described above, the space cross-sectional area in the box-like casing is increased toward the cold air introduction port side, so that the velocity of the cold air injected from the injection port of the flat injection surface can be equalized considering the pressure loss of the cold air. The cooling effect can be made uniform in the width direction of the Further, by inclining the flat injection surface, the washing water can not be collected on the flat injection surface at the time of cleaning, and can be discharged to the side side along the flat injection surface. Therefore, the sanitary property of the enclosed space is improved.
 前記構成に加えて、箱状ケーシングの傾斜下端側側面を開閉可能にする扉を設けるようにすれば、箱状ケーシング内から洗浄水をさらに排出しやすくなり、これによって、密閉空間のサニタリー性がさらに向上する。 In addition to the above-described configuration, if a door is provided to allow opening and closing of the inclined lower side of the box-like casing, washing water can be more easily discharged from the inside of the box-like casing. Further improve.
 本発明装置によれば、密閉空間内で冷気抜け孔のない金属ベルト上に載置した食品搬送物に冷気を噴射し、連続的に冷却又は冷凍処理する冷気噴射機構において、金属ベルトの上方に配置され、漏斗形断面を有する多数のスリットノズルを備え、金属ベルトの上方から冷気の衝突噴流を食品搬送物に噴き付ける上部冷気噴射部と、金属ベルトの下方に配置され、多数の噴射孔が穿設された平坦噴射面からなる冷気噴出部を備え、金属ベルトの下方から冷気流を金属ベルトの下面に噴き付ける下部冷気噴射部と、を備えているので、食品搬送物を搬送する金属ベルトの搬送面を下方配置できる。これによって、食品搬送物の冷却又は冷凍効果を損なうことなく、該搬送面に食品搬送物を載置するオペレータの作業性を向上できる。 According to the device of the present invention, cold air is injected onto the food product placed on the metal belt without cold air holes in the enclosed space, and the cold air injection mechanism for continuous cooling or freezing processing is performed above the metal belt. An upper cold air jet part which is disposed and has a large number of slit nozzles having a funnel-shaped cross section and sprays a collision jet of cold air from above the metal belt onto the food product, and a plurality of jet holes disposed below the metal belt And a lower cold air injection part for injecting a cold air flow from the lower side of the metal belt to the lower surface of the metal belt; and Can be arranged below. This can improve the workability of the operator who places the food conveyance on the conveyance surface without impairing the cooling or freezing effect of the food conveyance.
 また、下部冷気噴射部の構成を簡素化できるので、ハウジング内の洗浄時に、密閉空間から洗浄水を排出するのが容易になり、密閉空間のサニタリー性を向上できる。 In addition, since the configuration of the lower cold air injection unit can be simplified, it becomes easy to discharge the cleaning water from the sealed space when the housing is cleaned, and the sanitary property of the sealed space can be improved.
本発明の冷気噴射機構の一実施形態を示す斜視図である。It is a perspective view showing one embodiment of the cold air injection mechanism of the present invention. 前記実施形態の冷気噴射機構を用いたフリーザー装置の斜視図である。It is a perspective view of a freezer device using a cold air injection mechanism of the embodiment. 前記フリーザー装置の正面図である。It is a front view of the said freezer apparatus. 前記フリーザー装置の平面図である。It is a top view of the said freezer apparatus. 前記フリーザー装置の横断面図である。It is a cross-sectional view of the said freezer apparatus. 前記フリーザー装置の金属ベルト駆動装置の駆動部を示す正面図である。It is a front view which shows the drive part of the metal belt drive of the said freezer apparatus. 図6の駆動部の側面図である。It is a side view of the drive part of FIG. 前記金属ベルト駆動装置の従動部を示す正面図である。It is a front view which shows the driven part of the said metal belt drive device. 前記従動部の側面図である。It is a side view of the said follower part. 前記フリーザー装置の下部冷気噴射部のベルト下面までの高さと金属ベルトの熱伝達率との関係を示す線図である。It is a diagram which shows the relationship between the height to the belt lower surface of the lower cold air injection part of the said freezer apparatus, and the heat transfer coefficient of a metal belt. 前記実施形態の箱状ケーシングの構造を示す斜視図である。It is a perspective view which shows the structure of the box-like casing of the said embodiment. 比較例としての箱状ケーシングの構造を示す斜視図である。It is a perspective view which shows the structure of the box-like casing as a comparative example. 前記実施形態及び比較例の食品搬送物の冷却効果を示す線図である。It is a diagram which shows the cooling effect of the foodstuff conveyance thing of the said embodiment and a comparative example. 従来のフリーザー装置の横断面図である。It is a cross-sectional view of the conventional freezer apparatus. 従来の冷気噴射機構の説明図である。It is explanatory drawing of the conventional cold air injection mechanism. 比較例としての冷気噴射機構の説明図である。It is explanatory drawing of the cold air injection mechanism as a comparative example.
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。 Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto alone, unless otherwise specified.
 本発明の冷気噴射機構の一実施形態を図1~図12に基づいて説明する。図1に示す本実施形態の冷気噴射機構10において、食品搬送物wを搬送する金属ベルト12は、冷気抜け孔がなく熱伝達性が良好なステンレス製の薄板で構成されている。金属ベルト12は、金属ベルト12の幅方向に架設された支持バー14に支持されながら、後述する回転ドラムに駆動されて矢印a方向に移動する。 One embodiment of the cold air injection mechanism of the present invention will be described based on FIGS. 1 to 12. FIG. In the cold air jet mechanism 10 of the present embodiment shown in FIG. 1, the metal belt 12 for transporting the food product w is made of a stainless steel thin plate having no cold air vent and good heat conductivity. The metal belt 12 is driven by a rotating drum to be described later and moved in the direction of arrow a while being supported by a support bar 14 installed in the width direction of the metal belt 12.
 金属ベルト12の上方には、金属ベルト12の搬送方向aに沿って並べられた多数のノズルユニット18で構成された上部冷気噴射部16が設けられている。ノズルユニット18は、金属ベルト12の両側に並設された支持フレーム22及び24に、フランジ18aを介して載置されている。ノズルユニット18は、図14に図示されたノズルユニット134と同一構成を有し、下面に4個の漏斗形断面をもつスリットノズル20が一体形成されている。このノズルユニット18が金属ベルト12の搬送方向aに多数並べられている。 Above the metal belt 12 is provided an upper cold air jet part 16 constituted by a large number of nozzle units 18 arranged along the conveying direction a of the metal belt 12. The nozzle unit 18 is mounted on support frames 22 and 24 juxtaposed on both sides of the metal belt 12 via flanges 18 a. The nozzle unit 18 has the same configuration as the nozzle unit 134 shown in FIG. 14, and a slit nozzle 20 having four funnel-shaped cross sections is integrally formed on the lower surface. A large number of the nozzle units 18 are arranged in the transport direction a of the metal belt 12.
 金属ベルト12の下方には、下部冷気噴射部26が設けられている。下部冷気噴射部26は、箱状ケーシング28で構成されている。箱状ケーシング28の一側面(図1中左側)には、冷気流入口が設けられ、箱状ケーシング28の上面28aは、平坦面に形成され、多数の円形の穿孔29が穿設されたパンチングメタル板で構成されている。穿孔29の直径は、例えば、25mmのような大口径を有する。上面28aは前記冷気流入口と離れた側の側方(図1中右側)に向けて下方に傾斜している。 A lower cold air injection unit 26 is provided below the metal belt 12. The lower cold air injection unit 26 is configured of a box-like casing 28. A cold air flow inlet is provided on one side surface (left side in FIG. 1) of the box-like casing 28, and the upper surface 28 a of the box-like casing 28 is formed into a flat surface and a plurality of circular perforations 29 are punched. It is made of metal plate. The diameter of the perforations 29 has, for example, a large diameter such as 25 mm. The upper surface 28a is inclined downward toward the side (right side in FIG. 1) away from the cold air flow inlet.
 かかる構成において、上部冷気噴射部16のスリットノズル20の噴射口からスリット状の衝突噴流rが食品搬送物wに向けて噴射される。一方、下部冷気噴射部26の穿孔29から冷気cが金属ベルト12の下面に向けて噴射される。前述のように、スリットノズル20から噴射される衝突噴流rは、速度が大きくて到達距離が長い。しかも、スリットノズル間に形成された広い排気空間eにより、食品搬送物wの冷却に供した後の冷気がスムーズに排出されるので、衝突噴流rが乱れない。そのため、冷却効果が大きい。 In this configuration, a slit-like collision jet r is jetted from the jet nozzle of the slit nozzle 20 of the upper cold air jet unit 16 toward the food product w. On the other hand, cold air c is injected toward the lower surface of the metal belt 12 from the perforations 29 of the lower cold air injection unit 26. As described above, the collision jet r ejected from the slit nozzle 20 has a high velocity and a long reach. In addition, since the cool air after being used for cooling the food product w is discharged smoothly by the large exhaust space e formed between the slit nozzles, the collision jet r is not disturbed. Therefore, the cooling effect is large.
 また、下部冷気噴射部26の穿孔29から噴射される冷気cは、金属ベルト12を冷却し、金属ベルト12と食品搬送物wとの接触冷却を促進させることを目的としているので、上部冷気噴射部16ほど冷気cの到達距離がなくても、金属ベルト12を十分冷却できる。そのため、上部冷気噴射部16と下部冷気噴射部26からの冷気噴射によって食品搬送物wの冷却効果を十分達成できる。 In addition, since the cold air c injected from the perforations 29 of the lower cold air injection unit 26 cools the metal belt 12 and promotes contact cooling between the metal belt 12 and the food item w, the upper cold air injection is performed. The metal belt 12 can be sufficiently cooled even if there is no reach of cold air c as in the case of the portion 16. Therefore, the cool air injection from the upper cold air injection unit 16 and the lower cold air injection unit 26 can sufficiently achieve the cooling effect of the food product w.
 また、下部冷気噴射部26は、上部冷気噴射部16ほど設置スペースを必要としないので、金属ベルト12の高さを低くできる。そのため、オペレータによって食品搬送物wを金属ベルト12に載せる作業を行なう際に、背の低いオペレータでも作業能率が低下しない。また、箱状ケーシング28の上面28aが金属ベルト12の幅方向に傾いているので、洗浄時に洗浄水が上面28aに溜まらず、洗浄水の排出を促進できる。 Further, since the lower cold air injection unit 26 requires less space than the upper cold air injection unit 16, the height of the metal belt 12 can be reduced. Therefore, when the operator carries the work of placing the food product w on the metal belt 12, the work efficiency is not reduced even for a short operator. Further, since the upper surface 28a of the box-like casing 28 is inclined in the width direction of the metal belt 12, the wash water is not accumulated on the upper surface 28a at the time of washing, and the discharge of the wash water can be promoted.
 本実施形態では、穿孔29の直径が25mmφと大きいので、冷気cの到達距離を十分長く確保できる。そのため、上面28aを傾斜させて、傾斜下端側が幾分かベルト下面から離れても、冷却効果が低減しない。また、上面28aを傾斜させ、冷気流入口側の冷気流入空間を広く取ることができるので、穿孔29から噴射する冷気cの速度を金属ベルト12の幅方向に均一にできる。そのため、冷却効果を金属ベルト12の幅方向で均等にできる。 In the present embodiment, since the diameter of the perforations 29 is as large as 25 mmφ, the reaching distance of the cold air c can be secured sufficiently long. Therefore, even if the upper surface 28a is inclined so that the lower end of the inclined surface is somewhat away from the lower surface of the belt, the cooling effect is not reduced. Further, since the upper surface 28a can be inclined to widen the cold air inlet space on the cold air flow inlet side, the velocity of the cold air c injected from the perforations 29 can be made uniform in the width direction of the metal belt 12. Therefore, the cooling effect can be made uniform in the width direction of the metal belt 12.
 次に、冷気噴射機構10を適用したフリーザー装置30の構成を図2~図9に基づいて説明する。まず、図2~図4により、フリーザー装置30の全体構成を説明する。フリーザー装置30は、断熱壁で囲まれた横長の冷却空間を形成するハウジング12で構成されている。なお、図2で、ハウジング32の前方側壁及び上部壁は、内部構造が見えるように取り払われている。また、図3でも、同様の目的で、ハウジング32の左半分の前方側壁が取り払われている。 Next, the configuration of the freezer apparatus 30 to which the cold air injection mechanism 10 is applied will be described based on FIGS. 2 to 9. First, the overall configuration of the freezer apparatus 30 will be described with reference to FIGS. 2 to 4. The freezer apparatus 30 is comprised by the housing 12 which forms the laterally long cooling space enclosed by the heat insulation wall. It should be noted that in FIG. 2 the front sidewall and top wall of the housing 32 have been removed so that the internal structure can be seen. Also in FIG. 3 the front half of the left half of the housing 32 is removed for the same purpose.
 ハウジング32は、入口壁32cに設けられた入口開口34、及び出口壁32dに設けられた出口開口36以外は、密閉構造となっている。前方壁32aには、監視用の窓38がハウジング32の長手方向に複数配設されている。後方壁32bには、オペレータがハウジング12内に立ち入り可能なように、複数の開閉扉40が設けられている。 The housing 32 has a sealed structure except for an inlet opening 34 provided in the inlet wall 32 c and an outlet opening 36 provided in the outlet wall 32 d. A plurality of monitoring windows 38 are provided in the front wall 32 a in the longitudinal direction of the housing 32. The rear wall 32 b is provided with a plurality of open / close doors 40 so that the operator can enter the housing 12.
 ハウジング32の上部壁32eは、密閉壁となっており、図示省略の冷凍機ユニットから空気冷却器に冷媒又はブラインを供給する供給管42、及び冷媒又はブラインを排出する排出管44が貫通している。ハウジング32の底部壁32fは、脚46によって床面F上から間隔を置いて支持されている。また、図5に示すように、底部壁12fは、後方壁32b側に向かって下方に傾斜している。ハウジング32内の下部領域には、食品搬送物wをハウジング32内に搬送する搬送装置50が設けられている。搬送装置50は、エンドレス状の金属ベルト12と、この金属ベルト12を駆動する回転ドラム54及び56とから構成されている。 The upper wall 32e of the housing 32 is a closed wall, through which a supply pipe 42 for supplying the refrigerant or brine from the refrigerator unit (not shown) to the air cooler and an exhaust pipe 44 for discharging the refrigerant or brine pass There is. The bottom wall 32 f of the housing 32 is supported by legs 46 at a distance from the floor surface F. Further, as shown in FIG. 5, the bottom wall 12f is inclined downward toward the rear wall 32b. In the lower region of the housing 32, a transport device 50 for transporting the food product w into the housing 32 is provided. The conveying device 50 is composed of an endless metal belt 12 and rotating drums 54 and 56 for driving the metal belt 12.
 金属ベルト12は、水平方向に配置され、入口壁32cの外側で、従動ドラム54に巻回され、出口壁32dの外側で駆動ドラム56に巻回されている。金属ベルト12の往路12aは、搬送面が水平方向に配置され、入口開口34及び出口開口36からハウジング32内に貫通配置され、矢印a方向に移動する。復路12bは、底部壁32fの下方のハウジング12外に配置されている。 The metal belt 12 is horizontally disposed, wound around the driven drum 54 outside the inlet wall 32c, and wound around the driving drum 56 outside the outlet wall 32d. The forward path 12a of the metal belt 12 has the transport surface horizontally disposed, penetrates the housing 32 from the inlet opening 34 and the outlet opening 36, and moves in the direction of the arrow a. The return path 12b is disposed outside the housing 12 below the bottom wall 32f.
 図5に示すように、ハウジング32の内部は、仕切り壁58及び60によって、上部負圧室62、下部正庄室64及びこれらの側方に位置するメンテナンス空間66に仕切られている。上部負庄室62では、仕切り壁58の上面に空気冷却器68が固定されている。空気冷却器68は、前記給排管42及び44を介してハウジング32とは別位置に配設された図示省略の冷凍機ユニットと接続されている。 As shown in FIG. 5, the inside of the housing 32 is divided by the partition walls 58 and 60 into an upper negative pressure chamber 62, a lower regular chamber 64, and a maintenance space 66 located on the side thereof. In the upper suction chamber 62, an air cooler 68 is fixed to the upper surface of the partition wall 58. The air cooler 68 is connected to a refrigerator unit (not shown) disposed at a position different from the housing 32 through the supply and discharge pipes 42 and 44.
 また、仕切り壁58には、円形の通風路58aが形成されている。該通風路58aに円筒形のケーシング70が取り付けられ、ケーシング70内に軸流ファン72及びその駆動モータ74が設けられている。図3及び図4に示すように、空気冷却器68は、ハウジング32の長手方向に2ユニット設けられ、軸流ファン72は、ハウジング32の長手方向に1ユニット当り4台設けられている。そして、空気冷却器68で冷却された庫内空気は、軸流ファン72によって通風路58aから下部正圧室64に送られる。このため、上部負圧室62は負圧雰囲気となる。 Further, in the partition wall 58, a circular ventilation passage 58a is formed. A cylindrical casing 70 is attached to the air passage 58a, and an axial fan 72 and its drive motor 74 are provided in the casing 70. As shown in FIGS. 3 and 4, two units of air coolers 68 are provided in the longitudinal direction of the housing 32, and four axial flow fans 72 are provided in the longitudinal direction of the housing 32 per unit. The internal air cooled by the air cooler 68 is sent by the axial flow fan 72 from the air passage 58 a to the lower positive pressure chamber 64. Therefore, the upper negative pressure chamber 62 has a negative pressure atmosphere.
 図5に示すように、下部正圧室64には、金属ベルト12の往路12aが水平方向に配置されている。往路12aは、幅方向に設けられた複数の支持バー14によって、所定高さに支持されている。金属ベルト12の往路12aの両側上方に、ハウジング32の長手方向に支持フレーム22及び24が配設されている。往路12aの上方には、往路12aに沿って上部冷気噴射部16が設けられている。 As shown in FIG. 5, in the lower positive pressure chamber 64, the outward passage 12 a of the metal belt 12 is disposed in the horizontal direction. The outward path 12a is supported at a predetermined height by a plurality of support bars 14 provided in the width direction. Support frames 22 and 24 are disposed in the longitudinal direction of the housing 32 above both sides of the forward path 12 a of the metal belt 12. An upper cold air injection unit 16 is provided along the outward path 12a above the outward path 12a.
 往路12aの下方には、往路12aに沿って下部冷気噴射部26が設けられている。下部冷気噴射部26は、一側に冷気流入口28bを有する箱状のケーシング28で構成されている。ケーシング28は底部壁32fの上面に固定され、前述のように、その上面28aは、平坦面に形成されていると共に、多数の円形の穿孔29が穿設されている。上面28aは、メンテナンス空間66側に向けて下方に傾斜している。また、ハウジング32の底部壁32fも、メンテナンス空間66側に向けて下方に傾斜している。
 箱状ケーシング28のメンテナンス空間46側の側面には、開閉扉28cが設けられている。開閉扉28cの上端にはフランジが設けられ、洗浄時にオペレータが上下方向にスライドさせて、該側面を開放できるようになっている。
Below the forward path 12a, a lower cold air injection unit 26 is provided along the forward path 12a. The lower cold air injection part 26 is comprised by the box-shaped casing 28 which has the cold air flow inlet 28b in one side. The casing 28 is fixed to the upper surface of the bottom wall 32f, and as mentioned above, the upper surface 28a is formed into a flat surface, and a large number of circular perforations 29 are drilled. The upper surface 28 a is inclined downward toward the maintenance space 66. The bottom wall 32 f of the housing 32 is also inclined downward toward the maintenance space 66.
An open / close door 28 c is provided on the side surface of the box-like casing 28 on the maintenance space 46 side. A flange is provided at the upper end of the open / close door 28c, and the operator can slide up and down in the vertical direction at the time of cleaning to open the side surface.
 次に、図6及び図7によって、搬送装置50の入口壁32c側の構成を説明する。フレーム82がハウジング32の入口壁32cに接続され、かつ脚46によって水平方向に支持されている。円筒形の従動ドラム54が水平方向に配置され、従動ドラム54に金属ベルト12が巻回されている。従動ドラム54の表面には、ゴム材が被覆されている。従動ドラム54の回転軸54aの両端は、軸受84によって回転可能に支持されている。 Next, the configuration of the inlet wall 32 c side of the transfer device 50 will be described with reference to FIGS. 6 and 7. A frame 82 is connected to the inlet wall 32 c of the housing 32 and supported horizontally by the legs 46. A cylindrical driven drum 54 is horizontally disposed, and the metal belt 12 is wound around the driven drum 54. The surface of the driven drum 54 is coated with a rubber material. Both ends of the rotation shaft 54 a of the driven drum 54 are rotatably supported by bearings 84.
 軸受84は、矢印a又はb方向に摺動可能にフレーム82に支持され、かつコイルバネ86を介してフレーム82に取り付けられている。これによって、従動ドラム54は、矢印a又はb方向に移動でき、金属ベルト12の張力を調整可能になっている。フレーム82間には補強バー89、金属ベルト12の復路12bを支持する支持バー90及び復路12bを案内する案内バー92が架設されている。 The bearing 84 is slidably supported by the frame 82 in the direction of the arrow a or b and attached to the frame 82 via a coil spring 86. Thereby, the driven drum 54 can move in the direction of the arrow a or b, and the tension of the metal belt 12 can be adjusted. Between the frames 82, a reinforcing bar 89, a support bar 90 for supporting the return path 12b of the metal belt 12, and a guide bar 92 for guiding the return path 12b are provided.
 次に、図8及び図9により、搬送装置50の出口壁32d側の構成を説明する。図8及び図9において、出口壁32dにフレーム94が固定され、フレーム94に軸受96を介して駆動ドラム56の回転軸56aが回転可能に支持されている。また、フレーム94に回転軸56aを駆動する駆動モータ98が取り付けられている。駆動ドラム56に金属ベルト12が巻回され、駆動ドラム56の回転によって金属ベルト12が矢印a又はb方向に移動する。従動ドラム54と同様に、駆動ドラム56の外周面にゴム膜が被覆されている。 Next, the configuration of the outlet wall 32 d side of the transfer device 50 will be described with reference to FIGS. 8 and 9. In FIGS. 8 and 9, the frame 94 is fixed to the outlet wall 32d, and the rotating shaft 56a of the drive drum 56 is rotatably supported by the frame 94 via the bearing 96. Further, a drive motor 98 for driving the rotation shaft 56 a is attached to the frame 94. The metal belt 12 is wound around the drive drum 56, and the rotation of the drive drum 56 causes the metal belt 12 to move in the direction of the arrow a or b. Similar to the driven drum 54, a rubber film is coated on the outer peripheral surface of the drive drum 56.
 また、金属ベルト12を構成するステンレス板の一側縁の裏面には、先細りの台形断面をもつゴム突起13が加硫接合されている。一方、駆動ドラム56の一側端面には、外周面に凹部87aをもつプーリ87が接合されている。該凹部87aと駆動ドラム56の端面とで、ゴム突起13と同一断面形状の凹溝が形成されている。金属ベルト12の走行中、ゴム突起13が該凹溝に嵌合され、該凹溝内を摺動する。 Further, on the back surface of one side edge of the stainless steel plate constituting the metal belt 12, a rubber projection 13 having a tapered trapezoidal cross section is joined by vulcanization. On the other hand, a pulley 87 having a recess 87 a on the outer peripheral surface thereof is joined to one side end surface of the drive drum 56. A recessed groove having the same cross-sectional shape as that of the rubber protrusion 13 is formed by the recessed portion 87 a and the end surface of the drive drum 56. During the travel of the metal belt 12, the rubber projections 13 are fitted in the grooves and slide in the grooves.
 凹部87aを形成するためのプーリ87は、図6,7に示す従動ドラム54の一側端面にも装着されている。ゴム突起13及びプーリ87で蛇行防止装置88を構成している。ゴム突起13が凹部87aに遊嵌しながらコンベアベルト32が走行することで、コンベアベルト32の蛇行を防止している。 The pulley 87 for forming the recess 87a is also mounted on one end face of the driven drum 54 shown in FIGS. The rubber protrusion 13 and the pulley 87 constitute a meandering prevention device 88. The conveyor belt 32 travels while the rubber projection 13 is loosely fitted in the recess 87 a, thereby preventing the conveyor belt 32 from meandering.
 かかる構成において、入口壁32c側の搬送装置50において、オペレータOが食品搬送物wを金属ベルト12の往路12aのベルト面に載置する。該ベルト面に載置された食品搬送物wは、入口開口34からハウジング32内の下部正圧室64に搬送される。
 一方、ハウジング32内では、空気冷却器68及び軸流ファン72が稼動しており、空気冷却器68で冷却された冷気cは、軸流ファン72により、通風路58aを通って下部正庄室44に送られる。
In this configuration, the operator O places the food conveyance object w on the surface of the forward path 12 a of the metal belt 12 in the conveyance device 50 on the inlet wall 32 c side. The conveyed food material w placed on the belt surface is conveyed from the inlet opening 34 to the lower positive pressure chamber 64 in the housing 32.
On the other hand, in the housing 32, the air cooler 68 and the axial flow fan 72 are operating, and the cold air c cooled by the air cooler 68 passes through the air passage 58a by the axial flow fan 72 and the lower front chamber. Sent to 44
 下部正圧室64で、往路12aの上下両側から食品搬送物wに向けて冷気cが噴射される。上部冷気噴射部16では、スリットノズル20のスリット状噴射口から、食品搬送物wに対して直角方向にスリット状の衝突噴流rが噴射される。前述のように、スリットノズル20は、冷気cを加速する先細りの断面を有する加速部と、加速した冷気cを整流する整流部とを有し、到達距離の長い噴流を噴き出すことができる。スリットノズル20から噴き出された衝突噴流rは、コアンダー効果により、食品搬送物wの表面に密着した冷気流を形成するので、冷却効果を高めることができる。 In the lower positive pressure chamber 64, cold air c is jetted from the upper and lower sides of the outgoing path 12a toward the food product w. In the upper cold air injection unit 16, a slit-like collision jet r is injected from the slit-like injection port of the slit nozzle 20 in the direction perpendicular to the food product w. As described above, the slit nozzle 20 has an accelerating portion having a tapered cross section that accelerates the cold air c, and a rectifying portion that rectifies the accelerated cold air c, and can jet a jet having a long reach distance. Since the collision jet r ejected from the slit nozzle 20 forms a cold air flow closely attached to the surface of the food product w by the co-under effect, the cooling effect can be enhanced.
 また、スリットノズル20間に形成された排気空間eを広く取ることができるので、冷却に供された後の冷気をスムーズに食品搬送物wから排出できるので、この排冷気が衝突噴流rを乱すことがない。
 なお、図15に、比較例として、矩形ノズル部152を有し、先端平坦噴射面154に穿孔を設けてなる上部冷気噴射部150で構成した上部冷気噴射部を示す。この構成では、矩形ノズル部152の高さh及び矩形ノズル部152間のピッチpを相当大きく取らないと、排気空間eを十分確保することができない。
In addition, since the exhaust space e formed between the slit nozzles 20 can be widely taken, cold air after being subjected to cooling can be smoothly discharged from the food-conveying object w, so this exhaust cold air disturbs the collision jet r. I have not.
As a comparative example, FIG. 15 shows an upper cold air injection unit constituted by an upper cold air injection unit 150 which has a rectangular nozzle unit 152 and is provided with perforations on the flat tip end injection surface 154. In this configuration, the exhaust space e can not be sufficiently secured unless the height h of the rectangular nozzle portions 152 and the pitch p between the rectangular nozzle portions 152 are considerably large.
 そのため、排冷気が衝突噴流rの周辺に残留して、衝突噴流rを乱すおそれがある。逆に、ピッチpを相当大きく取ると、衝突噴流rが食品搬送物wに噴き付けられない領域が増加し、冷却効果が低減する。従って、この比較例では、冷却効果があまり得られないことがわかった。 Therefore, exhaust cold air may remain around the collision jet r to disturb the collision jet r. On the other hand, if the pitch p is made considerably large, the area where the collision jet r is not sprayed to the food product w increases, and the cooling effect is reduced. Therefore, it was found that the cooling effect can not be obtained very much in this comparative example.
 下部冷気噴射部26では、箱状ケーシング28の上面に設けられた穿孔29から冷気cが往路12aの下面に向かって噴射される。穿孔29は大径であるので、到達距離が長くなり、上面28aが傾斜していて、ベルト下面までの距離が開いても、往路12aの下面に冷気cを到達できる。そのため、金属ベルト12の冷却効果が低下することはない。 In the lower cold air injection unit 26, cold air c is injected from the perforations 29 provided on the upper surface of the box-like casing 28 toward the lower surface of the forward path 12a. Since the perforations 29 have a large diameter, the reach distance is long, the upper surface 28a is inclined, and the cold air c can reach the lower surface of the forward path 12a even if the distance to the lower surface of the belt is increased. Therefore, the cooling effect of the metal belt 12 is not reduced.
 本実施形態によれば、冷気噴射機構10において、食品搬送物wの冷却効果を高く維持しながら、金属ベルト12の設置高さを低くできる。さらに、従動ドラム54、駆動ドラム56及び金属ベルト12の復路12bをハウジング12外に配置しているので、金属ベルト12の設置高さを余裕をもって低くできる。そのため、背の低いオペレータOでも食品搬送物wも搬送作業を容易に行なうことができる。 According to the present embodiment, in the cold air jet mechanism 10, the installation height of the metal belt 12 can be lowered while maintaining a high cooling effect of the food product w. Furthermore, since the driven drum 54, the drive drum 56 and the return path 12b of the metal belt 12 are disposed outside the housing 12, the installation height of the metal belt 12 can be made low enough. Therefore, even the short operator O can easily carry the food conveyance object w.
 また、従動ドラム54及び駆動ドラム56をハウジング12外に配置したので、これらドラムの大径化が可能になる。そのため、金属ベルト12に付加される曲げ荷重を軽減できるので、金属ベルト12の金属疲労が緩和される。従って、金属ベルト12の薄肉化が可能になり、ベルト原価を低減できる。例えば、本実施形態では、金属ベルト12を構成するステンレス板の厚さを0.6mmとすることができる。 Further, since the driven drum 54 and the driving drum 56 are disposed outside the housing 12, the diameter of these drums can be increased. Therefore, since the bending load applied to the metal belt 12 can be reduced, the metal fatigue of the metal belt 12 is alleviated. Therefore, the metal belt 12 can be thinned, and the cost of the belt can be reduced. For example, in the present embodiment, the thickness of the stainless steel plate constituting the metal belt 12 can be 0.6 mm.
 また、箱状ケーシング28の上面28a及びハウジング32の底部壁32fが後方壁32b側に傾いているので、洗浄時に洗浄水が上面28a及び底部壁12fに溜まらず、かつ箱状ケーシング28の傾斜下降側側壁が上下にスライド可能な扉28cで構成されているので、洗浄時にオペレータが扉28cを開けることによって、箱状ケーシング28からの洗浄水の排出が容易になる。 Further, since the upper surface 28a of the box-like casing 28 and the bottom wall 32f of the housing 32 are inclined toward the rear wall 32b, washing water is not collected on the upper surface 28a and the bottom wall 12f during washing, and the box-like casing 28 inclines and descends Since the side wall is constituted by the door 28c which can slide up and down, draining of the washing water from the box-like casing 28 becomes easy when the operator opens the door 28c at the time of washing.
 また、箱状ケーシング28の上面28aに穿設された穿孔29の直径が25mmφと大きいので、冷気cの到達距離が大きい。そのため、穿孔29とベルト下面との間隔が大きくなっても、金属ベルト12の冷却効果を高く維持できる。従って、上面28aを傾斜させて、ベルト下面と上面28aとの間隔が大きくなっても冷却効果が低下しない。 Further, since the diameter of the perforation 29 drilled on the upper surface 28a of the box-like casing 28 is as large as 25 mmφ, the reach distance of the cold air c is large. Therefore, even if the distance between the perforations 29 and the lower surface of the belt becomes large, the cooling effect of the metal belt 12 can be maintained high. Therefore, even if the distance between the lower surface of the belt and the upper surface 28a is increased by inclining the upper surface 28a, the cooling effect is not reduced.
 図10は、冷気噴出口70からベルト下面までの高さと、金属ベルトに対する熱伝達率との関係について、本実施形態の装置で実験した結果を示す関係を示す線図である。本実施形態では、箱状ケーシング28の上面28aはベルト幅方向に傾斜しているので、穿孔29からベルト下面までの間隔は、75~95mmの間で変化する。図に示すように、穿孔29とベルト下面間の間隔が変わっても熱伝達率はあまり変わらないことがわかる。そのため、本実施形態のように、上面28aを候斜させても、金属ベルト12の冷却効果はほとんど低下しないことがわかる。 FIG. 10 is a diagram showing a relationship between the height from the cold air jet nozzle 70 to the lower surface of the belt and the heat transfer coefficient with respect to the metal belt, showing the results of experiments with the device of this embodiment. In this embodiment, since the upper surface 28a of the box-like casing 28 is inclined in the belt width direction, the distance from the perforations 29 to the lower surface of the belt varies between 75 and 95 mm. As shown in the figure, it can be seen that the heat transfer coefficient does not change much even if the distance between the perforations 29 and the lower surface of the belt changes. Therefore, it can be seen that the cooling effect of the metal belt 12 is hardly reduced even if the upper surface 28a is inclined as in the present embodiment.
 図11Aは、本実施形態の箱状ケーシング28を示す。この箱状ケーシング28の上面28aは、金属ベルト12の幅方向に傾斜しているので、穿孔29から金属ベルト12までの間隔Hは、75~95mmの間で変化する。円形の穿孔29の直径は25mmφであり、各穿孔29は互いに正三角形をなすように配置されている。各穿孔29間のピッチPは100mmである。 FIG. 11A shows a box-shaped casing 28 of the present embodiment. Upper surface 28a of the box-shaped casing 28, since the inclined in the width direction of the metal belt 12, the interval H 1 from drilling 29 to the metal belt 12 varies between 75 ~ 95 mm. The diameter of the circular perforations 29 is 25 mmφ, and the perforations 29 are arranged to form an equilateral triangle. Pitch P 1 between each perforation 29 is 100 mm.
 一方、図11Bは、比較例として示す構成である。箱状ケーシング28’には複数の排気空間eが設けられ、箱状ケーシング28’の平坦噴射面28a’と金属ベルト12との間隔Hは50mmであり、金属ベルト12の幅方向で一定である。平坦噴射面28’には直径が12.5mmφの円形の穿孔29’が設けられている。各穿孔29’は互いに正三角形をなすように配置され、各穿孔29’間のピッチPは50mmである。なお、平坦噴射面28aと平坦噴射面28a’の開口率は同一となるように設定されている。 On the other hand, FIG. 11B is a configuration shown as a comparative example. A plurality of exhaust spaces e are provided in the box-like casing 28 ′, and the distance H 2 between the flat injection surface 28 a ′ of the box-like casing 28 ′ and the metal belt 12 is 50 mm, and is constant in the width direction of the metal belt 12. is there. The flat injection surface 28 'is provided with a circular perforation 29' having a diameter of 12.5 mmφ. Each perforation 29 'are arranged to form an equilateral triangle with one another, each perforation 29' pitch P 2 between is 50 mm. The aperture ratio of the flat injection surface 28a and the flat injection surface 28a 'is set to be the same.
 前記2種の箱状ケーシングを備えた冷気噴射機構を用い、食品搬送物wとしてこんにゃくを用い、こんにゃくの冷却効果を実験した結果を図12に示す。図中、曲線Xが箱状ケーシング28を用いた場合であり、曲線Yが箱状ケーシング28’を用いた場合である。また、曲線Zが冷却空間の温度推移であり、曲線Wが外気温度の推移である。なお、こんにゃくの温度は、こんにゃくの中央部に刺した温度センサで計測した。 The result of experimenting on the cooling effect of konjac using the cold air injection mechanism provided with the two types of box-like casings and using konjac as the food conveyance thing w is shown in FIG. In the figure, the curve X is the case where the box-like casing 28 is used, and the curve Y is the case where the box-like casing 28 'is used. Moreover, the curve Z is the temperature transition of the cooling space, and the curve W is the transition of the outside air temperature. The temperature of konnyaku was measured by a temperature sensor pierced at the center of konnyaku.
 図12から、2種の箱状ケーシングを用いた場合、ほとんどこんにゃくの冷却効果は変わらないことがわかった。また、こんにゃくを包装して行った実験でも、同様の結果が得られた。そのため、排気空間eを形成しない本実施形態の箱状ケーシング28を用いたほうが構造が簡単であり、加工が容易で、かつ加工コストを節減できることがわかった。 It can be seen from FIG. 12 that the cooling effect of konjac hardly changes when two types of box-like casings are used. In addition, similar results were obtained in experiments conducted by packaging konjac. Therefore, it was found that using the box-like casing 28 of the present embodiment, in which the exhaust space e is not formed, is simpler in structure, easier in processing, and can reduce processing cost.
 また、本実施形態によれば、開閉扉40からオペレータOが立ち入り可能なメンテナンス空間66を備えているので、ハウジング12内のメンテナンスが容易になる。さらに、常圧のメンテナンス空間66に開閉扉40を設けているので、装置の運転中に開閉扉40を開けても危険でない。
 さらに、冷気循環流を形成するため軸流ファン72を設けているので、シロッコファン等と比べて、設置台数を削減できると共に、消費電力を約30%節減できる。
Further, according to the present embodiment, since the maintenance space 66 to which the operator O can enter from the open / close door 40 is provided, maintenance in the housing 12 is facilitated. Furthermore, since the open / close door 40 is provided in the maintenance space 66 under normal pressure, it is not dangerous even if the open / close door 40 is opened during operation of the apparatus.
Furthermore, since the axial flow fan 72 is provided to form a cold air circulation flow, the number of installed units can be reduced and power consumption can be reduced by about 30% as compared with a sirocco fan or the like.
 本発明によれば、食品搬送物を搬送するコンベアベルトの高さを低くして、オペレータの作業を容易にした冷気噴射機構を実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the height of the conveyor belt which conveys a foodstuff conveyance thing can be made low, and the cold air | gas injection mechanism which made the operator's operation | work easy is realizable.

Claims (6)

  1.  密閉空間内で冷気抜け孔のない金属ベルト上に載置した食品搬送物に冷気を噴射し、連続的に冷却又は冷凍処理する冷気噴射機構において、
     前記金属ベルトの上方に配置され、漏斗形断面を有する多数のスリットノズルを備え、金属ベルトの上方から冷気の衝突噴流を食品搬送物に噴き付ける上部冷気噴射部と、
     前記金属ベルトの下方に配置され、多数の噴射孔が穿設された平坦噴射面からなる冷気噴出部を備え、金属ベルトの下方から冷気流を金属ベルトの下面に噴き付ける下部冷気噴射部と、を備えていることを特徴とする冷気噴射機構。
    In a cold air injection mechanism for injecting cold air onto a food product placed on a metal belt without cold air vents in a closed space, and continuously performing cooling or freezing processing,
    An upper cold air jet part having a large number of slit nozzles disposed above the metal belt and having a funnel-shaped cross section, and jets a collision jet of cold air from above the metal belt onto a food product;
    A lower air discharge portion disposed under the metal belt and having a cold air discharge portion formed of a flat injection surface having a large number of injection holes formed therein and injecting a cold air flow from below the metal belt to the lower surface of the metal belt; A cold air injection mechanism characterized by comprising:
  2.  前記下部冷気噴射部が、前記平坦噴射面を上面とする箱状ケーシングで構成され、該平坦噴射面に穿設された噴射口の口径が20mm以上であることを特徴とする請求項1に記載の冷気噴射機構。 The lower cold air injection unit is constituted by a box-like casing having the flat injection surface as an upper surface, and the diameter of the injection port drilled in the flat injection surface is 20 mm or more. Cold air injection mechanism.
  3.  前記平坦噴射面がパンチングメタル板で構成されていることを特徴とする請求項2に記載の冷気噴射機構。 The cold air injection mechanism according to claim 2, wherein the flat injection surface is formed of a punching metal plate.
  4.  前記金属ベルトがエンドレスベルトであり、該金属ベルトの復路が前記密閉空間外に導出されて、密閉空間の下方に配役され、
     密閉空間の外部に回転ドラムを設け、金属ベルトを該回転ドラムの外周面に巻回させてコンベアベルトを支持搬送するように構成したことを特徴とする請求項1~3のいずれか1項に記載の冷気噴射機構。
    The metal belt is an endless belt, and the return path of the metal belt is led out of the sealed space and cast under the sealed space,
    The rotary drum is provided outside the enclosed space, and a metal belt is wound around the outer peripheral surface of the rotary drum to support and convey the conveyor belt. Cold air injection mechanism described.
  5.  前記箱状ケーシングの一方の側面に冷気導入口を設け、前記平坦噴射面を該一方の側面から他方の側面に向かって下方に傾斜させ、該冷気導入口側の空間断面積を大きくしたことを特徴とする請求項2又は3に記載の冷気噴射機構。 A cold air inlet is provided on one side surface of the box-like casing, the flat injection surface is inclined downward from the one side surface to the other side, and the space cross-sectional area on the cold air inlet side is enlarged. The cold air injection mechanism according to claim 2 or 3, characterized by the above.
  6.  前記箱状ケーシングの傾斜下端側側面を開閉可能にする扉を設けたことを特徴とする請求項5に記載の冷気噴射機構。 The cold air injection mechanism according to claim 5, further comprising: a door capable of opening and closing an inclined lower end side of the box-like casing.
PCT/JP2010/061213 2010-06-30 2010-06-30 Cold air injection mechanism WO2012001798A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010545315A JP5486513B2 (en) 2010-06-30 2010-06-30 Food cooling equipment
PCT/JP2010/061213 WO2012001798A1 (en) 2010-06-30 2010-06-30 Cold air injection mechanism
KR1020127009289A KR101693634B1 (en) 2010-06-30 2010-06-30 Cold air injection mechanism
TW099141595A TW201200825A (en) 2010-06-30 2010-11-30 Cold air injection mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061213 WO2012001798A1 (en) 2010-06-30 2010-06-30 Cold air injection mechanism

Publications (1)

Publication Number Publication Date
WO2012001798A1 true WO2012001798A1 (en) 2012-01-05

Family

ID=45401553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061213 WO2012001798A1 (en) 2010-06-30 2010-06-30 Cold air injection mechanism

Country Status (4)

Country Link
JP (1) JP5486513B2 (en)
KR (1) KR101693634B1 (en)
TW (1) TW201200825A (en)
WO (1) WO2012001798A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107751707A (en) * 2017-12-01 2018-03-06 上海海洋大学 A kind of oval funnel-form fluidic nozzle configurations
EP3502594A1 (en) * 2017-12-19 2019-06-26 Air Liquide Deutschland GmbH Apparatus and method for cooling products
JP2020504595A (en) * 2017-12-01 2020-02-13 上海海洋大学Shanghai Ocean University Circular jet nozzle structure of shock type quick refrigeration equipment
JP2020511622A (en) * 2017-12-01 2020-04-16 上海海洋大学Shanghai Ocean University Elongated funnel-shaped injection nozzle structure
WO2023085345A1 (en) * 2021-11-15 2023-05-19 株式会社前川製作所 Cooling drum for freezing particulate, and rotary freezer
WO2023233660A1 (en) * 2022-06-03 2023-12-07 Mayekawa Mfg. Co., Ltd. Particles object freezing device
WO2023233659A1 (en) * 2022-06-03 2023-12-07 Mayekawa Mfg. Co., Ltd. Particles object freezing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694254B1 (en) * 2015-05-12 2017-01-23 이익재 Appratus for supplying cold using fan
KR102516033B1 (en) * 2022-04-11 2023-03-29 전억식 Cooling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US551251A (en) * 1895-12-10 Means for locking barrels to frames of breakdown guns
JPS63259366A (en) * 1987-04-14 1988-10-26 株式会社 前川製作所 Method of promoting heat transfer such as refrigeration, heating, drying or the like by jet air current
JPH1163777A (en) * 1997-08-22 1999-03-05 Mayekawa Mfg Co Ltd Continuous processing wash whole freezer
JP2000146401A (en) * 1998-11-12 2000-05-26 Arakawa Seisakusho:Kk Cooler
JP2001527633A (en) * 1997-04-25 2001-12-25 フリゴスカンディア・イクイップメント・アクチェボラーグ Surface refrigeration method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960166A (en) * 1982-09-27 1984-04-06 三菱電機株式会社 Freezer
JP3284999B2 (en) * 1998-05-08 2002-05-27 株式会社東洋製作所 Food freezing equipment
SE515811C2 (en) 1999-01-20 2001-10-15 Frigoscandia Equipment Ab Apparatus for gas treatment of products comprising a high pressure chamber
JP4702895B2 (en) * 2004-10-29 2011-06-15 株式会社前川製作所 Continuous conveyance type freezer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US551251A (en) * 1895-12-10 Means for locking barrels to frames of breakdown guns
JPS63259366A (en) * 1987-04-14 1988-10-26 株式会社 前川製作所 Method of promoting heat transfer such as refrigeration, heating, drying or the like by jet air current
JP2001527633A (en) * 1997-04-25 2001-12-25 フリゴスカンディア・イクイップメント・アクチェボラーグ Surface refrigeration method and apparatus
JPH1163777A (en) * 1997-08-22 1999-03-05 Mayekawa Mfg Co Ltd Continuous processing wash whole freezer
JP2000146401A (en) * 1998-11-12 2000-05-26 Arakawa Seisakusho:Kk Cooler

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107751707A (en) * 2017-12-01 2018-03-06 上海海洋大学 A kind of oval funnel-form fluidic nozzle configurations
WO2019104785A1 (en) * 2017-12-01 2019-06-06 上海海洋大学 Elliptical funnel-shaped jet nozzle structure
JP2020504001A (en) * 2017-12-01 2020-02-06 上海海洋大学Shanghai Ocean University Elliptical funnel-shaped injection nozzle structure
JP2020504595A (en) * 2017-12-01 2020-02-13 上海海洋大学Shanghai Ocean University Circular jet nozzle structure of shock type quick refrigeration equipment
JP2020511622A (en) * 2017-12-01 2020-04-16 上海海洋大学Shanghai Ocean University Elongated funnel-shaped injection nozzle structure
CN107751707B (en) * 2017-12-01 2023-05-23 上海海洋大学 Oval funnel-shaped jet nozzle structure
EP3502594A1 (en) * 2017-12-19 2019-06-26 Air Liquide Deutschland GmbH Apparatus and method for cooling products
WO2023085345A1 (en) * 2021-11-15 2023-05-19 株式会社前川製作所 Cooling drum for freezing particulate, and rotary freezer
WO2023233660A1 (en) * 2022-06-03 2023-12-07 Mayekawa Mfg. Co., Ltd. Particles object freezing device
WO2023233659A1 (en) * 2022-06-03 2023-12-07 Mayekawa Mfg. Co., Ltd. Particles object freezing device

Also Published As

Publication number Publication date
KR101693634B1 (en) 2017-01-06
TW201200825A (en) 2012-01-01
JPWO2012001798A1 (en) 2013-08-22
JP5486513B2 (en) 2014-05-07
KR20130098845A (en) 2013-09-05
TWI563235B (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2012001798A1 (en) Cold air injection mechanism
US7121107B2 (en) Continuous transfer type freezer
EP1118824A2 (en) Apparatus for cooling and freezing of products
JP5600395B2 (en) Food conveying cooling method and apparatus
RU2648780C2 (en) Apparatus and method for chilling or freezing
JP5486511B2 (en) Freezer equipment
JP2001120243A (en) Continuous-type quick freezer for food
WO2009070586A1 (en) Cross flow tunnel freezer system
JP2007024364A (en) Continuous quick freezing device
US20180106525A1 (en) Snow and ice removal for impinger
JP2009276040A (en) Multi-stage type freezing device
JP4786726B2 (en) Conveyor refrigeration system
US20130167562A1 (en) Cryogenic spiral freezer
JP2009019790A (en) Stirring freezing device
JP4524305B2 (en) Continuous rapid cooling freezing equipment
JP4493688B2 (en) Continuous rapid cooling freezing equipment
EP2261583B1 (en) Apparatus for treatment of a product
JP3356940B2 (en) Refrigeration equipment
CN219868695U (en) Quick freezer
JP2004169960A (en) Carrying type cooling device
JP4493687B2 (en) Continuous rapid cooling freezing equipment
JPH0633923B2 (en) Cooling or freezing equipment
JPH09310956A (en) Item processing device provided with endless conveyor
US20130167561A1 (en) Method of chilling or freezing products in a cryogenic spiral freezer
JPH09310958A (en) Item processing device having endless conveyor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010545315

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127009289

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201002333

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854095

Country of ref document: EP

Kind code of ref document: A1