WO2012001318A1 - Mecanisme etanche de transmission de mouvements pour enceinte confinee et systeme pour deposer sous vide du materiau sur un substrat - Google Patents

Mecanisme etanche de transmission de mouvements pour enceinte confinee et systeme pour deposer sous vide du materiau sur un substrat Download PDF

Info

Publication number
WO2012001318A1
WO2012001318A1 PCT/FR2011/051536 FR2011051536W WO2012001318A1 WO 2012001318 A1 WO2012001318 A1 WO 2012001318A1 FR 2011051536 W FR2011051536 W FR 2011051536W WO 2012001318 A1 WO2012001318 A1 WO 2012001318A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
sample holder
rotation
sealed
casing
Prior art date
Application number
PCT/FR2011/051536
Other languages
English (en)
Inventor
Bruno Gallas
Gilbert Rigaud
Stéphane CHENOT
Original Assignee
Universite Pierre Et Marie Curie (Paris 6)
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre Et Marie Curie (Paris 6), Centre National De La Recherche Scientifique - Cnrs - filed Critical Universite Pierre Et Marie Curie (Paris 6)
Publication of WO2012001318A1 publication Critical patent/WO2012001318A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J21/00Chambers provided with manipulation devices
    • B25J21/005Clean rooms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J1/00Manipulators positioned in space by hand
    • B25J1/08Manipulators positioned in space by hand movably mounted in a wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2005Seal mechanisms
    • H01J2237/2006Vacuum seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20207Tilt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation

Definitions

  • the invention relates to the field of sealed containment transmission mechanisms, the field of sample holders and sample manipulator arms for such enclosures, in particular vacuum enclosures and more particularly ultra-high vacuum enclosures.
  • Deposition of a thin layer of material on a substrate is conventionally done under vacuum to prevent the deposited material from being contaminated with impurities disturbing the characteristics of the deposited layer.
  • the vacuum enclosures are small.
  • many equipment is connected to the enclosure to allow all stages of the substrate manufacturing process without having to open the enclosure.
  • actuators take the sample to be treated from an airlock and fix it in a sample holder.
  • the sample holder is itself manoeuvrable by one or more manipulator arms. This or these manipulator arms must be able to position the sample at the desired location and inclination relative to the flow of atoms or particles arriving on the sample for deposit there.
  • the invention proposes a sealed transmission mechanism for transmitting at least two rotational movements through a confined enclosure provided with an opening, this mechanism comprising:
  • a sealed envelope defining an interior volume and having a fitting adapted to sealingly connect said interior volume to the opening of the enclosure, first and second shafts extending from the interior volume of the envelope, passing through said enclosure; connection and able to transmit a torsion torque, the first shaft being flexible,
  • first and second transmission devices adapted to respectively drive the first and second shafts rotating from outside the envelope.
  • the mechanism transmitting the two rotational movements through a single opening it is more compact than two traditional single channel mechanisms that would each traverse the enclosure through a separate opening.
  • the flexible shaft allows the transmitted rotational movement to be driven continuously without being limited by an angular sector.
  • flexible shaft is meant an elongated solid along a curvilinear path having a high stiffness for axial torsion between the two ends of the solid and having great flexibility for bending of said path.
  • the flexible shaft provides the mechanical function of one or more pairs of gimbals while having the bulk a cable.
  • the second shaft is rigid.
  • the object inside the enclosure such as a sample holder, to which we want to transmit the two rotational movements, can be fixed directly on the rigid shaft.
  • the second shaft has a traversing portion through which said second shaft passes through the coupling, the second shaft having, at least in the passage portion, a guide bore receiving the first shaft.
  • the guide bore allows the flexible shaft to remain aligned along a predetermined path, without forcing itself when subjected to torque.
  • the traversing portion of the second shaft and the guide bore are cylindrical in revolution and have parallel axes, preferably coincident. This improves the compactness of the mechanism where it passes through the opening. This allows the mechanism to be passed through a small opening (for example, purely illustrative, through a standardized opening CF63).
  • connection means to the enclosure is designed so that the interior volume communicates through the opening with an interior volume of the enclosure, to form a continuous and closed volume.
  • the envelope extends the interior volume of the enclosure.
  • the envelope closely matches the external shape including the rigid shaft and the flexible shaft so as to reduce the interior volume of the envelope for which the optional ultra-high vacuum must be made at the same time as for the interior volume. of the enclosure.
  • the sealed casing has a substantially cylindrical deformable bellows sealingly connecting the rigid portion of the casing to said coupling, the mechanism being furthermore equipped with means for translational driving of the rigid part of the casing by report to said fitting. This allows to move, in one, two or three translational movements, the entire transmission mechanism.
  • the sample holder is animated by at least five degrees of freedom through a small opening.
  • the bellows may be accordion metal wall type to support an interior vacuum while being flexible laterally and lengthwise.
  • At least one of the first and second transmission mechanisms is taken from a list comprising a magnetic transmission mechanism, a deformable metal sleeve mechanism, and a successive vacuum pumped stage mechanism.
  • the invention relates to a system for vacuum depositing the material on a substrate.
  • the system comprises an above-mentioned sealed transmission mechanism, a sample holder operated by the transmission mechanism, a confined chamber having an opening to which is attached the sealed transmission mechanism and a vacuum pump.
  • the sample holder comprises a main support mounted on the second shaft and rotated about a main axis of rotation and a sample holder rotatably mounted in the main support according to an azimuth axis of rotation. main axis of rotation.
  • the sample holder is rotated via an angular gear mechanism by a drive shaft connected to the flexible shaft.
  • the drive shaft is offset parallel to the main axis of rotation.
  • the invention in another aspect, relates to a confined chamber sample holder for driving by a sealed transmission mechanism of at least first and second rotational movements, comprising a main carrier to be driven by the first rotational movement about a main axis of rotation and a rotationally mounted sample holder in the main support along an azimuth axis of rotation are at the main axis of rotation.
  • the sample holder is rotated via a deflection mechanism by a drive shaft which is offset parallel to the main axis of rotation and intended to be driven by the second rotational movement.
  • sample holder can be introduced inside the enclosure to be connected in a simple manner to the transmission mechanism of the two rotational movements that come from outside the enclosure.
  • the drive shaft of the second rotational movement being parallel to the main axis of rotation of the sample holder, a simple axial snap allows the mechanical connection of both movements. This makes it unnecessary to have the sample holder pass through the opening dedicated to the mechanism for transmitting movements. This allows a small opening. The necessary speaker is smaller and therefore faster to put under ultrahigh.
  • FIG. 1 illustrates a use of the invention for a sample holder in a confined space
  • FIG. 2 is a perspective view of a sample manipulator according to the invention, comprising an embodiment of a sample holder of the invention, and an embodiment of a mechanism for transmitting movements. rotation according to the invention
  • FIG. 3 is a perspective cut longitudinally of the sample manipulator of FIG. 2;
  • FIG. 4 is a longitudinal sectional illustration of the sample manipulator
  • FIG. 5 is a detail section of the rigid shaft along the plane V-V of FIG. 4.
  • a confined enclosure 1 comprises, in an interior volume 2, a sample holder 3 and a particle generator 4 emitting a particle beam 5 directed on a sample 6 comprising a substrate carried by the sample holder 3
  • the particle beam in question is a flow of atoms or other particles that are emitted by the particle generator to be deposited as a thin layer on the substrate of the sample 6.
  • the emission of this flux of atoms or other particles by the particle generator can be obtained by any known means, for example by electron bombardment and / or heating of a mass constituted by the atoms or other particles to be deposited.
  • the sample holder 3 is intended to be maneuvered by an arm 7 (illustrated in FIGS. 2 to 4) passing through an opening 8 of the enclosure 1.
  • the enclosure 1 is sealed and provided with a vacuum pump (not shown) so that it can be evacuated in the interior volume 2.
  • An ultrahigh level may be required, for example to proceed with deposits of thin layers, for example to make meta-materials optical or other.
  • UHV means pressures of the order of 1CT 11 MPa.
  • the ultraviolet speakers are equipped with standardized circular openings called for example CF40, CF63 depending on the diameter of the flanges for tight connection, or airtight to the openings of the enclosure.
  • the sample holder 3 comprises an L-shaped main support 9 having a side 9a provided with a fixing bore 11 defining a main axis of rotation (Oy), and a side 9b receiving a sample holder 10.
  • the sample holder 10 has a plate 10a on which the sample 6 to be treated is immobilized and is rotatably mounted on the side 9b of the main support 9 about an axis of azimuth rotation (Or), perpendicular to a surface of
  • Or azimuth rotation
  • the fixing bore 11 of the main support 9 is arranged in such a way that the main axis of rotation (Oy) is perpendicular to the azimuth axis of rotation (O) and that, in addition, the intersection point ⁇ of the two axes of rotation is located on the deposition surface 6a of the sample 6.
  • This double coincidence makes it possible to vary independently of one another the angle of incidence of the beam 5 and its azimuth angle ⁇ .
  • the handling arm 7 brings the sample holder 3 into a position, inside the chamber 1, such that the beam 5 impacts the sample 6 at said point 0 of the deposition surface 6a.
  • adjusting the position of the sample holder 3 around the axis of rotation makes it possible to adjust the angle of incidence of the beam 5 on the sample 6 without modifying the point 0 of impact on the
  • the rotation of the sample support 10 around the axis makes it possible not to modifying the point 0 of impact on the sample 6, nor the angle of incidence a, but of varying the angle ⁇ of azimuth of the beam 5 with respect to the sample 6.
  • Such independence of adjustment between the angles of incidence and azimuth ⁇ is particularly useful for controlling the growth of germinal layers and / or for generating spiral or helical nanostructures on the surface of the substrate, structures that can serve as resonators for example for some electromagnetic waves (in optical or other wavelengths).
  • the transmission mechanism 13 comprises a connector 14 intended to be sealingly connected to a standardized opening flange of the opening 8 of the enclosure 1.
  • the connector 14 may be a circular ring.
  • the transmission mechanism 13 comprises a device 15 for adjusting an intermediate flange 16 with respect to the connector 14.
  • the adjustment device 15 has three reciprocating drive devices 15a, 15b, 15c which are mechanically mounted in series. one on the other and able to move the intermediate flange 16 relative to the connector 14 in directions respectively Ay, Ax and Az.
  • the transmission mechanism 13 further comprises a rigid casing 17 mounted rigidly to the intermediate flange 16.
  • a deformable bellows 30 sealingly connects the rigid casing 17 to the connector 14.
  • the rigid casing 17 has a main tube 17a and a lateral branch 17b.
  • a first transmission device 18 is disposed at the end of the bypass 17b.
  • a second transmission device 19 is disposed at the end of the main tube 17a.
  • the transmission devices 18, 19 are able to drive in rotation an inner shaft to the rigid casing 17, from outside said rigid casing 17. In other words, they are single-channel rotary transmission devices.
  • the arm 7 on which is mounted the main support is rotatably mounted in the main tube 17a and rotated by the second device 19 single channel rotary tight transmission.
  • a flexible shaft 20 is driven by the first single-channel translation mechanism 18. It is understood that the sample 6 can thus be driven in movement in each of the five degrees of freedom independently of each other by, respectively, the three single-channel drive devices in translation 15a, 15b, 15c and the two single-channel drive devices in translation 18, 19.
  • the sample holder 3 comprises a drive shaft 21 rotatably mounted in the main support 9, and an angle transmission device 22 comprising a first gear wheel mounted on the drive shaft 21 and a second wheel gearbox mounted on the sample holder 10.
  • the axis of rotation of the drive shaft 21 is offset parallel to the main axis of rotation (Oy) in the half-plane containing the axis of rotation.
  • Azimuthal rotation (Or) on the side opposite to the impact of the beam 5.
  • This makes it possible to surround the sample holder 3 with a fairing 23 (illustrated in FIG. 4).
  • the fairing 23 makes it possible to protect the whole of the gearbox 22 and drive shaft 21 against any residues projected by the action of the beam 5 against the sample 6.
  • FIG. 3 and 4 we will describe the interior of the transmission mechanism 13.
  • the rigid casing 17 and the deformable bellows 30 together constitute a casing 32 connected to the enclosure 1 by the connection 14 and the opening 8.
  • An interior volume 31 to the casing 32 communicates with the volume interior 2 of the chamber 1 to form a continuous volume and tightly closed in which one can evacuate, see 1 'ultra-high vacuum.
  • the arm 7 on which is mounted the main support 9 of the sample holder 3 is constituted by a rigid shaft 24 rotatably mounted in the main tube 17a of the rigid casing 17 by rolling bearings 52a, 52b or any other types of rotation guidance compatible with an ultra-fast environment. Thanks to the three-axis translation adjustment device 15 and the bellows 30, the rigid shaft 24 can be translated parallel to itself either by an axial offset or by a radial offset relative to the connection connector 14 of the transmission mechanism 13 at the opening 8 of the enclosure 1.
  • the rigid shaft 24 comprises a bore 25 concentric with the axis (Oy) and serving to guide a substantially rectilinear portion 40 of the flexible shaft 20.
  • the trajectory 20a of the flexible shaft 20 has a first flexion zone 26 at the bore exit 25 located near the bypass 17b of the rigid casing 17.
  • the first transmission device 18 comprises an intermediate shaft 27 rotatably mounted in the bypass 17b of the rigid casing 17 by a bearing 27a, for example of the needle bearing type.
  • the intermediate shaft 27 and the bearing 27a are located in the inner volume 31 of the casing 32 and are therefore in an ultra-high operating environment.
  • the single-channel transmission mechanism 18, which includes a portion 28 outside the casing 32, is adapted to drive the intermediate shaft 27 through the casing 32.
  • a drive motor 29 such as a stepping motor is used to drive the outer portion 28 and the intermediate shaft 27 of the transmission mechanism 18.
  • the flexible shaft 20 is fixed at its end to the intermediate shaft 27.
  • the intermediate shaft 27 is sufficiently close to the bore 25 of the rigid shaft 24 so that the flexible shaft 20 can not be seen on it even in the first bending zone 26.
  • the rotation of the intermediate shaft 27 is transmitted to the substantially rectilinear portion 40 of the flexible shaft 20.
  • the second transmission device 19 also has a portion 50 located outside the casing 32 and which is designed to drive the end 51 of the rigid shaft 24 through the casing 32.
  • the casing 32 closely matches the outer shapes of the rigid shaft 24, guide bearings 52a, 52b of the rigid shaft 24, the intermediate shaft 27 of the mechanism 18, and its needle bearing 27a, so that the inner volume 31 of the envelope 32 which is added to the inner volume 2 of the chamber 1 is as small as possible.
  • the flexible shaft 20 also includes, but is not required to, a second bending zone 41 having the shape of an S and making it possible to connect the flexible shaft 20 to the drive shaft 21.
  • the length of the path 20a of the flexible shaft 20 along this second bending zone 41 is sufficiently reduced so that the flexible shaft 20 can not grow on itself when subjected to a torsion torque.
  • the fact that the drive shaft 21 is substantially parallel to the main axis of rotation (Oy) greatly facilitates the assembly of the manipulator 12.
  • FIG. 5 will now describe how the rigid shaft 24 can rotate while the bypass 17b of the rigid envelope 17 is fixed.
  • the rigid shaft 24 has a lateral recess 60 eliminating more than half of the rigid shaft 24 in the axial zone corresponding to the first flexion zone 26 of the flexible shaft 20.
  • a bulge 61 of the non-recessed portion of the rigid shaft 24 makes it possible to reinforce the mechanical strength of the rigid shaft 24.
  • the bore 25 it is possible that it is constituted by a half-shell 62 fixed for example by screws on a main portion 63 of the rigid shaft 24.
  • the main part 63 the rigid shaft 24 comprises a half-bore 25, the lateral reinforcement 61 and the end 51 of the second single-channel mechanism 19 for transmitting rotation.
  • the rotation of the rigid shaft 24 is thus at least about 90 ° with respect to an average position, which is amply sufficient to adjust the angle of incidence of the beam 5 compared to the sample 6.
  • the manipulator 12 comprises the transmission mechanism 13 as described, on which a sample holder can be fixed, which does not comprise an angle-return mechanism 22.
  • the second flexion zone of the flexible shaft 20 has an overall shape resembling a sickle so as to directly connect the sample holder 10 to the flexible shaft 20.
  • the sample holder connected to the transmission mechanism 13 may not have a drive shaft 21 offset parallel to the main axis of rotation (Oy).
  • a gear system makes it possible to recover the rotation of the flexible shaft 20 located in the main axis of rotation (Oy) to cause the rotation of the sample support 10 along a perpendicular axis (Or).
  • the bore 25 of the rigid shaft 24 may not be concentric with the fixing bore 11 of the sample holder 3, or may not be concentric with the main axis of rotation (Oy ) defined by the bearings 52a, 52b of the rigid shaft 24.
  • the flexible shaft 20 has a flexible outer sheath in the first flexion zone 26 and possibly in the second flexion zone 41 and has a rigid core in the substantially straight portion 40.
  • This variant has the advantage of significantly increasing the stiffness of the flexible shaft 20 when it is subjected to a torsion torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manipulator (AREA)

Abstract

Mécanisme étanche (13) de transmission pour transmettre au moins deux mouvements de rotation à travers une enceinte confinée (1) dotée d'une ouverture (8). Le mécanisme comprend une enveloppe étanche (32) définissant un volume intérieur (31) et comportant un raccord (14) adapté pour raccorder de façon étanche ledit volume intérieur à l'ouverture (8) de l'enceinte; des premier et deuxième arbres (20, 24) s 'étendant depuis le volume intérieur de l'enveloppe, traversant ledit raccord (14) et aptes à transmettre un couple de torsion, le premier arbre étant flexible; des premier et deuxième mécanismes transmission (18, 19) adaptés pour entraîner respectivement les premier et deuxième arbres en rotation depuis l'extérieur de l ' enveloppe.

Description

MECANISME ETANCHE DE TRANSMISSION DE MOUVEMENTS POUR ENCEINTE CONFINEE ET SYSTEME POUR DEPOSER SOUS VIDE DU MATERIAU SUR UN SUBSTRAT
DOMAINE DE L'INVENTION
5 L'invention concerne le domaine des mécanismes étanches de transmission pour enceinte confinée, le domaine des porte-échantillons et des bras manipulateurs d'échantillons pour de telles enceintes, notamment des enceintes sous vide et plus particulièrement des enceintes à ultravide.
1 0 ETAT DE LA TECHNIQUE
Le dépôt d'une couche mince de matériau sur un substrat se fait classiquement sous vide pour éviter que le matériau déposé soit souillé d'impuretés perturbant les caractéristiques de la couche déposée.
15 L'abaissement de la pression de l'enceinte depuis la pression atmosphérique jusqu'à un niveau de vide suffisant est un processus long qui peut mettre jusqu'à plusieurs j ours .
Pour réduire ce temps, les enceintes à vide sont de 2 0 petite dimension. Or, de nombreux équipements sont raccordés à l'enceinte pour permettre toutes les étapes du processus de fabrication des substrats sans avoir à ouvrir l'enceinte confinée. Par exemple, des actionneurs prennent l'échantillon à traiter depuis un sas et viennent le fixer 25 dans un porte-échantillon. Le porte-échantillon est lui- même manœuvrable par un ou plusieurs bras manipulateurs. Ce ou ces bras manipulateurs doivent pouvoir positionner l'échantillon à l'emplacement et suivant l'inclinaison souhaités par rapport au flux d'atomes ou de particules 3 0 arrivant sur l'échantillon pour y être déposés.
OBJETS ET RESUME DE L'INVENTION
Ainsi, un besoin existe d'un mécanisme étanche de transmission de mouvement qui soit apte à transmettre plusieurs mouvements depuis l'extérieur de l'enceinte 35 confinée (enceinte à vide, enceinte sous pression ou autre) vers un objet situé à l'intérieur de l'enceinte, et ce sans nécessiter un encombrement important.
A cet effet, l'invention propose un mécanisme étanche de transmission pour transmettre au moins deux mouvements de rotation à travers une enceinte confinée dotée d'une ouverture, ce mécanisme comprenant :
- une enveloppe étanche définissant un volume intérieur et comportant un raccord adapté pour raccorder de façon étanche ledit volume intérieur à l'ouverture de l'enceinte, - des premier et deuxième arbres s 'étendant depuis le volume intérieur de l'enveloppe, traversant ledit raccord et aptes à transmettre un couple de torsion, le premier arbre étant flexible,
- des premier et deuxième dispositifs de transmission adaptés pour entraîner respectivement les premier et deuxième arbres en rotation depuis l'extérieur de 1 ' enveloppe .
On comprend qu'un tel mécanisme permet de déporter hors de l'enceinte, les premier et deuxième dispositifs de transmission, qui sont des dispositifs de traversée monovoie relativement volumineux.
Le mécanisme transmettant les deux mouvements de rotation à travers une unique ouverture, il est plus compact que deux mécanismes traditionnels monovoie qui traverseraient chacun l'enceinte par une ouverture distincte. De plus, l'arbre flexible permet que le mouvement de rotation transmis puisse être entraîné en continu sans être limité par un secteur angulaire.
On entend par arbre flexible un solide allongé le long d'une trajectoire pouvant être curviligne présentant une raideur élevée pour une torsion axiale entre les deux extrémités du solide et présentant une grande souplesse pour une flexion de ladite trajectoire. Autrement dit, l'arbre flexible assure la fonction mécanique d'une ou plusieurs paires de cardans tout en ayant l'encombrement d'un câble.
Avantageusement, le deuxième arbre est rigide. Ainsi, l'objet à l'intérieur de l'enceinte, tel qu'un porte- échantillon, auquel on veut transmettre les deux mouvements de rotation, peut être fixé directement sur l'arbre rigide.
Selon un mode de réalisation, le deuxième arbre présente une portion de traversée par laquelle ledit deuxième arbre traverse le raccord, le deuxième arbre présentant, au moins dans la portion de traversée, un alésage de guidage recevant le premier arbre. L'alésage de guidage permet à l'arbre flexible de rester aligné le long d'une trajectoire prédéterminée, sans se vrier sur lui-même lorsqu'il est soumis à un couple de torsion.
Avantageusement, la portion de traversée du deuxième arbre et l'alésage de guidage sont cylindriques de révolution et présentent des axes parallèles, de préférence confondus. Cela améliore la compacité du mécanisme à l'endroit où il traverse l'ouverture. Cela permet de faire passer le mécanisme à travers une ouverture de taille réduite (par exemple, à titre purement illustratif, à travers une ouverture standardisée CF63).
Selon un mode de réalisation, le moyen de raccordement à l'enceinte est conçu pour que le volume intérieur communique par l'ouverture avec un volume intérieur de l'enceinte, pour former un volume continu et fermé. Ainsi, l'enveloppe prolonge le volume intérieur de l'enceinte.
Avantageusement, l'enveloppe épouse au plus près la forme extérieure englobant l'arbre rigide et l'arbre flexible de manière à réduire le volume intérieur de l'enveloppe pour lequel l'éventuel ultravide doit être réalisé en même temps que pour le volume intérieur de 1 ' enceinte .
Selon une variante, au moins un des premier et deuxième dispositifs de transmission est fixé sur une partie rigide de l'enveloppe étanche. Avantageusement, l'enveloppe étanche présente un soufflet déformable sensiblement cylindrique raccordant de façon étanche la partie rigide de l'enveloppe audit raccord, le mécanisme étant équipé en outre d'un moyen d'entraînement en translation de la partie rigide de l'enveloppe par rapport audit raccord. Cela permet de déplacer, selon un, deux, ou trois mouvements de translation, l'ensemble du mécanisme de transmission. Ainsi, le porte-échantillon est animé d'au moins cinq degrés de liberté à travers une ouverture de taille réduite .
Le soufflet peut être de type à paroi métallique en accordéon pour supporter un vide intérieur tout en étant flexible latéralement et en longueur.
Selon un mode de réalisation, au moins l'un des premier et deuxième mécanismes de transmission est pris dans une liste comprenant un mécanisme à transmission magnétique, un mécanisme à manchon métallique déformable, et un mécanisme à paliers successifs pompés sous vide.
Selon un autre aspect, l'invention porte sur un système pour déposer sous vide du matériau sur un substrat. Le système comprend un mécanisme étanche de transmission précité, un porte échantillon manœuvré par le mécanisme de transmission, une enceinte confinée présentant une ouverture sur laquelle est fixée le mécanisme étanche de transmission et une pompe à vide.
Avantageusement, le porte-échantillon comprend un support principal monté sur le deuxième arbre et entraîné en rotation autour d'un axe de rotation principal et un support d'échantillons monté à rotation dans le support principal selon un axe de rotation azimutal séquent à l'axe de rotation principal.
Avantageusement, le support d'échantillons est entraîné en rotation via un mécanisme de renvoi d'angle par un arbre d'entraînement raccordé à l'arbre flexible. Avantageusement, l'arbre d'entraînement est déporté parallèlement à l'axe de rotation principal.
Selon un autre aspect, l'invention porte sur un porte- échantillon pour enceinte confinée, destiné à être entraîné par un mécanisme étanche de transmission d'au moins un premier et un deuxième mouvements de rotation, comprenant un support principal destiné à être entraîné par le premier mouvement de rotation autour d'un axe de rotation principal et un support d'échantillons monté à rotation dans le support principal selon un axe de rotation azimutal séquent à l'axe de rotation principal. Le support d'échantillons est entraîné en rotation via un mécanisme de renvoi d'angle par un arbre d'entraînement qui est déporté parallèlement à l'axe de rotation principal et destiné à être entraîné par le deuxième mouvement de rotation.
On comprend qu'un tel porte-échantillon peut être introduit à l'intérieur de l'enceinte pour être raccordé de manière simple au mécanisme de transmission des deux mouvements de rotation qui viennent de l'extérieur de l'enceinte. En effet, l'arbre d'entraînement du deuxième mouvement de rotation étant parallèle à l'axe de rotation principal du porte-échantillon, un simple encliquetage axial permet le raccordement mécanique des deux mouvements. Cela permet de n'avoir pas besoin de faire passer le porte- échantillon par l'ouverture dédiée au mécanisme de transmission de mouvements. Cela permet une ouverture de taille réduite. L'enceinte nécessaire est plus petite et donc plus rapide à mettre sous ultravide.
BREVE DESCRIPTION DES FIGURES
La présente invention sera mieux comprise à l'étude de la description détaillée de quelques modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés sur lesquels :
- la figure 1 illustre une utilisation de l'invention pour un porte-échantillon dans une enceinte confinée, - la figure 2 est une vue en perspective d'un manipulateur d'échantillons selon l'invention, comprenant un mode de réalisation d'un porte-échantillon de l'invention, et un mode de réalisation d'un mécanisme de transmission de mouvements de rotation selon l'invention,
- la figure 3 est une perspective coupée longitudinalement du manipulateur d'échantillons de la figure 2,
- la figure 4 est une illustration en coupe longitudinale du manipulateur d'échantillons, et
- la figure 5 est une coupe de détail de l'arbre rigide selon le plan V-V de la figure 4.
DESCRIPTION DETAILLEE DE L'INVENTION
Comme illustré en figure 1, une enceinte confinée 1 comprend, dans un volume intérieur 2, un porte- échantillon 3 et un générateur de particules 4 émettant un faisceau de particules 5 dirigé sur un échantillon 6 comportant un substrat porté par le porte-échantillon 3. Le faisceau de particules en question est un flux d'atomes ou autres particules qui sont émis par le générateur de particules pour se déposer sous forme de couche mince sur le substrat de l'échantillon 6. L'émission de ce flux d'atomes ou autres particules par le générateur de particules peut être obtenue par tout moyen connu, par exemple par bombardement électronique et / ou chauffage d'une masse constituée par les atomes ou autres particules à déposer.
Le porte-échantillon 3 est destiné à être manœuvré par un bras 7 (illustré aux figures 2 à 4) passant à travers une ouverture 8 de l'enceinte 1.
L'enceinte 1 est étanche et pourvue d'une pompe à vide (non représentée) de manière que l'on puisse faire le vide dans le volume intérieur 2. Un niveau d'ultravide peut être requis par exemple pour procéder à des dépôts de couches minces, par exemple pour fabriquer des méta-matériaux optiques ou autres. On entend par ultravide des pressions de l'ordre de 1CT11 MPa. Les enceintes ultravides sont équipées d'ouvertures circulaires standardisées appelées par exemple CF40, CF63 selon le diamètre des brides permettant le raccordement étanche, ou hermétique aux ouvertures de l'enceinte.
Le porte-échantillon 3 comprend un support principal 9 en forme de L présentant un côté 9a équipé d'un alésage de fixation 11 définissant un axe de rotation principal (Oy) , et un côté 9b recevant un support d'échantillons 10.
Le support d'échantillons 10 présente une platine 10a sur laquelle est immobilisé l'échantillon 6 à traiter et est monté à rotation sur le côté 9b du support principal 9 autour d'un axe de rotation azimutal (Ou), perpendiculaire à une surface de dépôt 6a de l'échantillon 6. Ainsi, au cours de la rotation du support d'échantillons 10, la surface de dépôt 6a de l'échantillon tourne sur elle-même autour d'un point 0.
L'alésage de fixation 11 du support principal 9 est disposé de manière que l'axe de rotation principal (Oy) soit séquent avec l'axe de rotation azimutal (Ou) et qu'en plus, le point d'intersection 0 des deux axes de rotation soit situé sur la surface de dépôt 6a de l'échantillon 6. Cette double coïncidence permet de faire varier de manière indépendante l'un de l'autre l'angle d'incidence du faisceau 5 et son angle d'azimut β . En effet, le bras de manipulation 7 amène le porte-échantillon 3 dans une position, à l'intérieur de l'enceinte 1, telle que le faisceau 5 impacte l'échantillon 6 audit point 0 de la surface de dépôt 6a. Ainsi, le réglage de la position du porte-échantillon 3 autour de l'axe de rotation (Oy) permet de régler l'angle d'incidence du faisceau 5 sur l'échantillon 6 sans modifier le point 0 d'impact sur l'échantillon 6. De plus, la rotation du support d'échantillons 10 autour de l'axe (Ou) permet de ne pas modifier le point 0 d'impact sur l'échantillon 6, ni l'angle d'incidence a, mais de faire varier l'angle β d'azimut du faisceau 5 par rapport à l'échantillon 6. Une telle indépendance de réglage entre les angles d'incidence et d'azimut β est particulièrement utile pour maîtriser la croissance de couches germinatives et/ou pour générer des nanostructures en forme de spirales ou d'hélices à la surface du substrat, structures qui peuvent servir de résonateurs par exemple pour certaines ondes électromagnétiques (dans les longueurs d'ondes optiques ou autres ) .
On va maintenant décrire, à l'aide de la figure 2, un mode de réalisation d'un manipulateur 12 d'échantillons pour l'enceinte confinée 1, qui comprend le porte- échantillon 3 décrit ci-dessus, et un mécanisme 13 de transmission de mouvements selon cinq degrés de liberté.
Le mécanisme 13 de transmission comprend un raccord 14 destiné à être raccordé de manière étanche à une bride d'ouverture standardisée de l'ouverture 8 de l'enceinte 1. Le raccord 14 peut être une bague circulaire.
Le mécanisme de transmission 13 comprend un dispositif de réglage 15 d'une bride 16 intermédiaire par rapport au raccord 14. Le dispositif 15 de réglage présente trois dispositifs 15a, 15b, 15c d'entraînement en translation sans jeu, montés mécaniquement en série l'un sur l'autre et aptes à déplacer la bride intermédiaire 16 par rapport au raccord 14 selon les directions respectivement Ay, Ax et Az .
Le mécanisme de transmission 13 comprend, en outre, une enveloppe rigide 17 montée rigidement à la bride intermédiaire 16. Un soufflet déformable 30 relie de manière étanche l'enveloppe rigide 17 au raccord 14.
L'enveloppe rigide 17 présente un tube principal 17a et une dérivation latérale 17b. Un premier dispositif de transmission 18 est disposé à l'extrémité de la dérivation 17b. Un deuxième dispositif de transmission 19 est disposé à l'extrémité du tube principal 17a. Les dispositifs de transmission 18, 19 sont aptes à entraîner en rotation un arbre intérieur à l'enveloppe rigide 17, depuis l'extérieur de ladite enveloppe rigide 17. Autrement dit, ce sont des dispositifs monovoie de transmission étanche de rotation.
Le bras 7 sur lequel est monté le support principal est monté à rotation dans le tube principal 17a et entraîné en rotation par le deuxième dispositif 19 monovoie de transmission étanche de rotation. Un arbre flexible 20 est entraîné par le premier mécanisme monovoie de translation 18. On comprend que l'échantillon 6 peut ainsi être entraîné en mouvement selon chacun des cinq degrés de liberté de manière indépendante l'un de l'autre par, respectivement, les trois dispositifs d'entraînement monovoie en translation 15a, 15b, 15c et les deux dispositifs monovoie d'entraînement en translation 18, 19.
On va maintenant décrire plus en détails le porte- échantillon 3.
Le porte-échantillon 3 comprend un arbre d'entraînement 21 monté à rotation dans le support principal 9, et un dispositif de renvoi d'angle 22 comprenant une première roue d'engrenage montée sur l'arbre d'entraînement 21 et une deuxième roue d'engrenage montée sur le support d'échantillons 10. L'axe de rotation de l'arbre d'entraînement 21 est déporté parallèlement par rapport à l'axe de rotation principal (Oy) dans le demi- plan contenant l'axe de rotation azimutal (Ou) du côté opposé à l'impact du faisceau 5. Cela permet d'entourer le porte-échantillon 3 d'un carénage 23 (illustré en figure 4) . Le carénage 23 permet de protéger l'ensemble du mécanisme de renvoi d'angle 22 et d'arbre d'entraînement 21 contre d'éventuels résidus projetés par l'action du faisceau 5 contre l'échantillon 6.
On va, à l'aide des figures 3 et 4, décrire l'intérieur du mécanisme de transmission 13. L'enveloppe rigide 17 et le soufflet déformable 30 constituent ensembles une enveloppe 32 raccordée à l'enceinte 1 par le raccord 14 et l'ouverture 8. Un volume intérieur 31 à l'enveloppe 32 communique avec le volume intérieur 2 de l'enceinte 1 pour former un volume continu et fermé de manière étanche dans lequel on peut faire le vide, voir 1 'ultravide.
Le bras 7 sur lequel est monté le support principal 9 du porte-échantillon 3 est constitué par un arbre rigide 24 monté à rotation dans le tube principal 17a de l'enveloppe rigide 17 grâce à des paliers à roulements 52a, 52b ou à tous autres types de guidage en rotation compatibles avec un environnement ultravide. Grâce au dispositif 15 de réglage en translation trois axes et au soufflet 30, l'arbre rigide 24 peut être translaté parallèlement à lui-même soit par un déport axial ou par un déport radial par rapport au raccord 14 de raccordement du mécanisme 13 de transmission à l'ouverture 8 de 1 ' enceinte 1.
L'arbre rigide 24 comprend un alésage 25 concentrique avec l'axe (Oy) et servant de guidage à une portion sensiblement rectiligne 40 de l'arbre flexible 20. La trajectoire 20a de l'arbre flexible 20 présente une première zone de flexion 26 à la sortie d'alésage 25 située à proximité de la dérivation 17b de l'enveloppe rigide 17. Le premier dispositif de transmission 18 comprend un arbre intermédiaire 27 monté à rotation dans la dérivation 17b de l'enveloppe rigide 17 par un palier 27a, par exemple du type roulement à aiguille. L'arbre intermédiaire 27 et le palier 27a sont situés dans le volume intérieur 31 de l'enveloppe 32 et sont donc dans un environnement ultravide en fonctionnement. Le mécanisme monovoie de transmission 18, qui comprend une portion 28 à l'extérieur de l'enveloppe 32, est conçu pour entraîner l'arbre intermédiaire 27 à travers l'enveloppe 32. De manière avantageuse, un moteur d'entraînement 29 tel qu'un moteur pas à pas permet d'entraîner la portion extérieure 28 et l'arbre intermédiaire 27 du mécanisme de transmission 18.
L'arbre flexible 20 est fixé par son extrémité à l'arbre intermédiaire 27. L'arbre intermédiaire 27 est suffisamment proche de l'alésage 25 de l'arbre rigide 24 pour que l'arbre flexible 20 ne puisse pas se vrier sur lui-même dans la première zone de flexion 26. Ainsi, la rotation de l'arbre intermédiaire 27 est transmise à la portion sensiblement rectiligne 40 de l'arbre flexible 20.
Le deuxième dispositif de transmission 19 présente également une portion 50 située à l'extérieur de l'enveloppe 32 et qui est conçue pour entraîner l'extrémité 51 de l'arbre rigide 24 à travers l'enveloppe 32.
L'enveloppe 32 épouse au plus près les formes extérieures de l'arbre rigide 24, des paliers de guidage 52a, 52b de l'arbre rigide 24, de l'arbre intermédiaire 27 du mécanisme 18, et de son palier à aiguille 27a, de manière que le volume intérieur 31 de l'enveloppe 32 qui vient se rajouter au volume intérieur 2 de l'enceinte 1, soit le plus réduit possible.
L'arbre flexible 20 comprend également, mais de manière non obligatoire, une deuxième zone de flexion 41 ayant la forme d'un S et permettant de raccorder l'arbre flexible 20 à l'arbre d'entraînement 21. La longueur de la trajectoire 20a de l'arbre flexible 20 le long de cette deuxième zone de flexion 41 est suffisamment réduite pour que l'arbre flexible 20 ne puisse pas se vrier sur lui-même lorsqu'il est soumis à un couple de torsion. Le fait que l'arbre d'entraînement 21 soit sensiblement parallèle à l'axe de rotation principal (Oy) facilite grandement l'assemblage du manipulateur 12. En effet, il suffit de disposer l'extrémité 42 de l'arbre flexible 20 en face d'un orifice 43 et du support principal 9 du porte- échantillon 3, puis de pousser axialement le porte- échantillon 3 pour que de manière simultanée, l'extrémité 42 de l'arbre flexible 20 s'insère sur l'arbre d'entraînement 21 pendant que l'alésage 11 de fixation s'insère sur l'extrémité correspondante de l'arbre rigide 24.
On va maintenant décrire à l'aide de la figure 5 la manière dont l'arbre rigide 24 peut tourner alors que la dérivation 17b de l'enveloppe rigide 17 est fixe. L'arbre rigide 24 présente un évidemment latéral 60 éliminant plus de la moitié de l'arbre rigide 24 dans la zone axiale correspondant à la première zone de flexion 26 de l'arbre flexible 20. Avantageusement, un renflement 61 de la portion non évidée de l'arbre rigide 24 permet de renforcer la résistance mécanique de l'arbre rigide 24.
Pour des raisons de facilités d'obtention de l'alésage 25, il est possible que celui-ci soit constitué par une demi-coquille 62 fixée par exemple par vis sur une partie principale 63 de l'arbre rigide 24. La partie principale 63 de l'arbre rigide 24 comprend un demi- alésage 25, le renforcement latéral 61 et l'extrémité 51 du deuxième mécanisme monovoie 19 de transmission de rotation.
Comme illustré en figure 5, on comprend que la rotation de l'arbre rigide 24 est ainsi d'au moins plus ou moins 90° par rapport à une position moyenne, ce qui est amplement suffisant pour régler l'angle d'incidence du faisceau 5 par rapport à l'échantillon 6.
Dans une variante, le manipulateur 12 comprend le mécanisme de transmission 13 tel que décrit, sur lequel on peut venir fixer un porte-échantillon ne comprenant pas de mécanisme de renvoi d'angle 22. Dans ce cas, la deuxième zone de flexion de l'arbre flexible 20 présente une forme globale ressemblant à une faucille de manière à raccorder directement le support d'échantillons 10 à l'arbre flexible 20. Dans une autre variante, le porte-échantillon raccordé au mécanisme de transmission 13 peut ne pas présenter d'arbre d'entraînement 21 déporté parallèlement par rapport à l'axe de rotation principal (Oy) . Dans cette variante, un système d'engrenage permet de récupérer la rotation de l'arbre flexible 20 situé dans l'axe de rotation principal (Oy) pour entraîner la rotation du support d'échantillons 10 selon un axe perpendiculaire (Ou) .
Dans une autre variante, l'alésage 25 de l'arbre rigide 24 peut n'être pas concentrique à l'alésage de fixation 11 du porte-échantillon 3, ou bien n'être pas concentrique à l'axe de rotation principal (Oy) défini par les paliers 52a, 52b de l'arbre rigide 24.
Dans une variante, l'arbre flexible 20 présente une gaine extérieure souple dans la première zone de flexion 26 et éventuellement dans la deuxième zone de flexion 41 et présente une âme rigide dans la portion 40 sensiblement rectiligne. Cette variante présente l'avantage d'augmenter très notablement la raideur de l'arbre flexible 20 lorsqu'il est soumis à un couple de torsion.

Claims

REVENDICATIONS
1. Mécanisme étanche (13) de transmission pour transmettre au moins deux mouvements de rotation à travers une enceinte confinée (1) dotée d'une ouverture (8), caractérisé en ce qu' il comprend :
une enveloppe étanche (32) définissant un volume intérieur (31) et comportant un raccord (14) adapté pour raccorder de façon étanche ledit volume intérieur à l'ouverture (8) de l'enceinte,
- des premier et deuxième arbres (20, 24) s 'étendant depuis le volume intérieur de l'enveloppe, traversant ledit raccord (14) et aptes à transmettre un couple de torsion, le premier arbre étant flexible,
- des premier et deuxième dispositifs de transmission
(18, 19) adaptés pour entraîner respectivement les premier et deuxième arbres en rotation depuis l'extérieur de 1 ' enveloppe .
2. Mécanisme selon la revendication 1, dans lequel le deuxième arbre (24) est rigide.
3. Mécanisme selon la revendication 2, dans lequel le deuxième arbre (24) présente une portion de traversée par laquelle ledit deuxième arbre traverse le raccord (14), le deuxième arbre (24) présentant, au moins dans la portion de traversée, un alésage de guidage (25) recevant le premier arbre (20) .
4. Mécanisme selon la revendication 3, dans lequel la portion de traversée du deuxième arbre et l'alésage (25) de guidage sont cylindriques de révolution et présentent des axes parallèles, de préférence confondus.
5. Mécanisme selon l'une des revendications précédentes, dans lequel au moins un des premier et deuxième dispositifs de transmission (18, 19) est fixé sur une partie rigide (17) de l'enveloppe étanche (32) .
6. Mécanisme selon la revendication 5, dans lequel l'enveloppe étanche (32) présente un soufflet déformable (30) sensiblement cylindrique raccordant de façon étanche la partie rigide (17) de l'enveloppe (32) audit raccord (14), le mécanisme étant équipé en outre d'un moyen d'entraînement en translation (15) de la partie rigide (17) de l'enveloppe (32) par rapport audit raccord (14) .
7. Mécanisme (13) selon l'une des revendications précédentes, dans lequel au moins l'un des premier et deuxième mécanismes (18, 19) de transmission est pris dans une liste comprenant un mécanisme à transmission magnétique, un mécanisme à manchon métallique déformable, et un mécanisme à paliers successifs pompés sous vide.
8. Système pour déposer sous vide du matériau sur un substrat, comprenant un mécanisme étanche de transmission (13) selon l'une des revendications précédentes, un porte échantillon (3) manœuvré par le mécanisme de transmission, une enceinte (1) confinée présentant une ouverture (8) sur laquelle est fixée le mécanisme étanche de transmission et une pompe à vide.
9. Système selon la revendication 8, dans lequel le porte-échantillon (3) comprend un support principal (9) monté sur le deuxième arbre et entraîné en rotation autour d'un axe (Oy) de rotation principal et un support d'échantillons (10) monté à rotation dans le support principal (9) selon un axe de rotation azimutal (Ou) séquent à l'axe de rotation principal (Oy) .
10. Système selon la revendication 9, dans lequel le support d'échantillons (10) est entraîné en rotation via un mécanisme (22) de renvoi d'angle par un arbre d'entraînement (21) raccordé à l'arbre flexible.
11. Système selon la revendication 10, dans lequel arbre d'entraînement (21) est déporté parallèlement à l'axe de rotation principal (Oy) .
PCT/FR2011/051536 2010-07-01 2011-06-30 Mecanisme etanche de transmission de mouvements pour enceinte confinee et systeme pour deposer sous vide du materiau sur un substrat WO2012001318A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055334 2010-07-01
FR1055334A FR2962065B1 (fr) 2010-07-01 2010-07-01 Mecanisme etanche de transmission de mouvements pour enceinte confinee et enceinte pourvue d'un tel mecanisme.

Publications (1)

Publication Number Publication Date
WO2012001318A1 true WO2012001318A1 (fr) 2012-01-05

Family

ID=43626998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051536 WO2012001318A1 (fr) 2010-07-01 2011-06-30 Mecanisme etanche de transmission de mouvements pour enceinte confinee et systeme pour deposer sous vide du materiau sur un substrat

Country Status (2)

Country Link
FR (1) FR2962065B1 (fr)
WO (1) WO2012001318A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017102653A1 (de) 2017-02-10 2018-08-16 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Stabkinematik

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173387A1 (fr) * 2016-04-01 2017-10-05 Delaware Capital Formation, Inc. Manipulateur doté d'un moteur ayant un arbre d'entraînement flexible

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065864A (en) * 1961-02-24 1962-11-27 Raphael T Coffman Remote control manipulator
FR2610562A1 (fr) * 1987-02-05 1988-08-12 Euritech Pince d'intervention articulee a cinq degres de liberte
US4850779A (en) * 1985-02-15 1989-07-25 Tekscan Limited Manipulator for handling objects within a sealed chamber
JPH0982780A (ja) * 1995-09-18 1997-03-28 Kokusai Electric Co Ltd 基板搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065864A (en) * 1961-02-24 1962-11-27 Raphael T Coffman Remote control manipulator
US4850779A (en) * 1985-02-15 1989-07-25 Tekscan Limited Manipulator for handling objects within a sealed chamber
FR2610562A1 (fr) * 1987-02-05 1988-08-12 Euritech Pince d'intervention articulee a cinq degres de liberte
JPH0982780A (ja) * 1995-09-18 1997-03-28 Kokusai Electric Co Ltd 基板搬送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017102653A1 (de) 2017-02-10 2018-08-16 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Stabkinematik

Also Published As

Publication number Publication date
FR2962065B1 (fr) 2012-08-10
FR2962065A1 (fr) 2012-01-06

Similar Documents

Publication Publication Date Title
FR2671130A1 (fr) Dispositif comportant deux elements articules dans un plan, applique a un equipement de forage.
WO2012001318A1 (fr) Mecanisme etanche de transmission de mouvements pour enceinte confinee et systeme pour deposer sous vide du materiau sur un substrat
EP2373460B1 (fr) Dispositif motorise d'assemblage modulaire
EP3055212B1 (fr) Radiateur à ensoleillement réduit pour satellite et satellite muni d'un tel radiateur
FR2625920A1 (fr) Appareil de traitement d'un echantillon tournant dans une enceinte a vide
FR3029018A1 (fr) Module compact d'excitation radiofrequence a cinematique integree et antenne compacte biaxe comportantau moins un tel module compact
EP0056550B1 (fr) Dispositif d'orientation selon deux axes orthogonaux, en particulier pour une antenne hyperfréquence
EP0800029A1 (fr) Dispositif de traversée étanche d'une cloison par un organe mobile
CA2935078A1 (fr) Dispositif et ensemble pour le controle non-destructif d'une piece composite, et procede de controle non-destructif d'une piece composite par ultrasons en transmission
EP3788645B1 (fr) Microscope electronique en transmission equipé d'au moins une source de jet de matière balistique
EP3518018B1 (fr) Caméra d'endoscopie industrielle rotative à tête pivotante
FR2706818A1 (fr)
WO2016198800A1 (fr) Chaine de transmission de mouvement entre des actionneurs et un socle d'organe d'entrainement d'un element mobile
FR2623211A1 (fr) Procede et appareil d'evaporation et de depot sous vide
EP2873607A1 (fr) Dispositif de libération de gaz contenu dans un ballon atmosphérique
EP2884327A1 (fr) Système optique d'observation spatiale à balayage
WO2024110540A1 (fr) Système de casse pression entre deux locaux
EP2469649A1 (fr) Antenne radiofréquence à éléments rayonnants multiples pour émission d'une onde à direction de propagation variable
EP3947160B1 (fr) Satellite géostationnaire comprenant un radiateur à ensoleillement réduit et système de guidage amélioré
EP3877799B1 (fr) Dispositif de pointage optique bi-axe
EP2276926B1 (fr) Propulseur électrique pour véhicule spatial.
EP0463950B1 (fr) Dispositif de déplacement d'un organe et application au pointage d'un réflecteur d'antenne
EP4251893A1 (fr) Dispositif de guidage a surete renforcee
FR3083016A1 (fr) Dispositif de compensation d'un jeu mecanique pour un positionneur satcom
WO2023041592A1 (fr) Nouvelle architecture de système robotisé mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11743277

Country of ref document: EP

Kind code of ref document: A1