WO2012001305A2 - Nouveau procédé de régénération enzymatique continue de nadh et de détection de nad+ et système pour sa mise en oeuvre - Google Patents

Nouveau procédé de régénération enzymatique continue de nadh et de détection de nad+ et système pour sa mise en oeuvre Download PDF

Info

Publication number
WO2012001305A2
WO2012001305A2 PCT/FR2011/051518 FR2011051518W WO2012001305A2 WO 2012001305 A2 WO2012001305 A2 WO 2012001305A2 FR 2011051518 W FR2011051518 W FR 2011051518W WO 2012001305 A2 WO2012001305 A2 WO 2012001305A2
Authority
WO
WIPO (PCT)
Prior art keywords
nad
nadh
enzyme
fdh
formate
Prior art date
Application number
PCT/FR2011/051518
Other languages
English (en)
Other versions
WO2012001305A3 (fr
Inventor
Karine Groenen Serrano
Olivier Reynes
Jérôme ROCHE
Théodore TZEDAKIS
Original Assignee
Universite Paul Sabatier Toulouse Iii
Centre National De La Recherche Scientifique (C.N.R.S)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Paul Sabatier Toulouse Iii, Centre National De La Recherche Scientifique (C.N.R.S) filed Critical Universite Paul Sabatier Toulouse Iii
Publication of WO2012001305A2 publication Critical patent/WO2012001305A2/fr
Publication of WO2012001305A3 publication Critical patent/WO2012001305A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/36Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90203Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)

Definitions

  • a wide range of enzymes requires the use of cofactors for the synthesis of biomolecules with high added value.
  • the enzymes of the dehydrogenase family are used in particular to produce optically pure and active molecules, said molecules constituting synthesis blocks used in specialty fine chemistry and in the food industry.
  • Nicotinamide Adenine Dinucleotide (NAD) and Nicotinamide Adenine Dinucleotide Phosphate (NADP) are cofactors used in many oxidation-reduction reactions catalyzed by enzymes.
  • the regeneration of the NADH cofactor from NAD + has been the subject of numerous publications.
  • the cofactor can be recycled by coupling the enzymatic conversion reaction of the substrate to the desired product with a second chemical, enzymatic or electrochemical reaction.
  • One commonly used for recycling this reaction is the reaction with the formate ( ⁇ HC0 2) catalysed by an enzyme from the family of dehydrogenases formates (FDH) (éq.1).
  • Formate dehydrogenase (FDH) enzymes use formate (HC0 2 ⁇ ) to perform this regeneration of NADH according to the reaction:
  • HDD high sensitivity of HDD to physicochemical conditions such as pH, temperature, concentration of species, etc., and the nature of organic solvents often restricts its use to processes in aqueous solution where the enzyme is of an on the other hand, relatively concentrated and, on the other hand, quickly deactivated.
  • the high cost of HDD thus encourages the search for new ways of implementing the enzyme for the regeneration of NADH.
  • WO 2007/056666 describes the modification of chitosan by the grafting of alkyl chains to create an enzyme immobilization matrix with a view to producing fuel biocells. Nevertheless, the described system has the function of generating electrical energy by oxidizing an organic substrate such as glucose or ethanol, and neither describes nor suggests an enzyme synthesis system based on the continuous and sustainable regeneration of NADH. In addition, the enzyme is dispersed homogeneously throughout the matrix.
  • the present invention relates to a process for the continuous regeneration of NADH from NAD + by means of an enzyme formate dehydrogenase FDH and formate (HC0 2 ⁇ ) (eq.1), characterized in that FDH is immobilized between two layers of a graft polymer.
  • Said graft polymer is preferably porous and is advantageously chosen from hydrophobic modified polysaccharides, said polysaccharides being chosen from chitosan, cellulose, chitin, starch, amylose, alginate and combinations thereof, more preferably chitosan .
  • Chitosan is usually prepared by deacetylation of chitin.
  • Commercial chitosan has a deacetylation rate of about 85% and can advantageously be further deacetylated, typically up to 100%, for example in the presence of sodium hydroxide, to improve the grafting.
  • the grafting is advantageously carried out with one or more alkyl groups of 1 to 24 carbon atoms, optionally comprising alkyl, aryl, carbonyl or fluorinated groups; preferably C1-C4 alkyls, and more particularly methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl; preferably butyl.
  • the porous structure polymer is chemically activated in order to generate a pore size distribution allowing the diffusion of the reagents and products involved, while ensuring the retention of the FDH enzyme.
  • the immobilization of FDH within said polymer is preferably carried out by inclusion of the enzyme between two layers of said polymer.
  • This inclusion can be achieved by means of a stackable or intercalable pattern in a porous support composed of an enzyme layer between two layers of said polymer.
  • This embodiment makes it possible to optimally use the majority of the enzyme used.
  • FDH immobilized between 2 layers of polymer is stabilized for at least 3 weeks and retains its enzymatic activity.
  • these enzymes are well known for their high thermal and chemical sensitivity, particularly vis-à-vis the organic molecules that are the substrates to be transformed, the resulting products, or even the oxygen of the air.
  • the method according to the invention is particularly advantageous in that it allows a continuous production of FDH for periods much longer than those of the usual techniques: for example, WO2004 / 085662 describes a continuous production of HDD of two days before deactivation.
  • an FDH enzyme can be used up to 3 weeks and up to 2 weeks with deactivation rates of less than 50%.
  • Immobilization within two polymer layers is thus distinguished from uniformly distributed immobilization of the enzyme within the graft polymer.
  • this distribution has the particular advantage of ensuring better retention of the enzyme and lead to polymer matrices more resistant to mechanical stresses and hydrodynamic erosion.
  • the regeneration rate of NADH (eq.1) can be increased, either by re-injecting the fluids obtained at the outlet (ie, by continuous recycling) or by assembling several reactors in series, or by increasing the residence time of the solutions in the reactor.
  • the addition of the 2 nd enzymatic system in situ makes it possible to consume as the NADH formed which promotes its regeneration.
  • the recycling rate according to the invention is less than or equal to 10, advantageously less than or equal to 5.
  • the two graft polymer layers generally have a thickness of between 100 and 500 ⁇ each.
  • the elementary pattern thus comprises three layers: graft polymer / FDH / graft polymer. It is also possible to implement several elementary patterns stacked by successive deposits on a solid support and possibly mounted in a press filter reactor. According to a particular embodiment, the continuous regeneration process (éq.1) is carried out in situ, that is to say simultaneously with the consumption reaction of NADH (éq.2) and subsequent formation of a product. chiral from its substrate.
  • the present invention relates to an enzymatic synthesis method comprising:
  • Enzymatic catalysis of the substrate transformation is performed by an enzyme suitable for the desired synthesis; said enzyme is present in solution.
  • the reactions employing the NADH cofactor can thus be carried out in a continuous reactor, while regenerating it in situ, without adding the FDH enzyme in solution.
  • the transformation reaction of said substrate into said desired product is preferably a stereoselective dehydrogenation reaction.
  • the dehydrogenation reaction of pyruvate with L-lactate can be mentioned.
  • the present invention also relates to a system for continuous enzymatic regeneration of NAD + in NADH comprising:
  • the immobilization of FDH within said polymer being carried out by inclusion of the enzyme between two layers of said polymer.
  • the concentration of the solution in formate ions is between 0.01 and 1 mol.L 1 , typically 0.1 mol.L.
  • the concentration of the solution in NAD + is between 0.1 mmol.L “1 and 10 mmol.L “ 1 .
  • the surface concentration of chitosan is between 10 and 20 g. m “2 and per layer and that of the enzyme FDH is between 100 and 1000 um “ 2 .
  • the system is thermostated between 25 and 45 ° C, typically about
  • the immobilization of FDH within said polymer is preferably carried out by inclusion of the enzyme between two layers of said polymer.
  • This system of continuous regeneration of NADH from NAD + can also be applied to the design of detection devices: a polymeric layer including the enzyme, deposited on an electrically conductive surface for electrochemical detection, or on a transparent surface for spectrophotometric detection, is easily achievable and offers the proper enzymatic activity. Indeed, the high selectivity of the enzymes can be used to detect either specific substrates or the cofactor itself. By way of illustration and without limitation, the following substrates could be detected: ⁇ -ketoglutarate, cyclohexanone, acetophenone, benzoyiformate, pyruvate. In the case of NAD-dependent enzymes, the NAD7NADH pair is commonly used to detect the presence of enzymatic reaction and thus substrates.
  • NADH strongly absorbs UV-vis at 340 nm in contrast to its oxidized form, NAD + which does not absorb, which allows easy quantification of enzymatic conversions.
  • consumable strips on which an FDH enzyme would be immobilized according to the invention could be used to demonstrate either the presence of NAD + (with addition of formate) or the presence of formate (with addition of NAD + ).
  • the detection and / or the quantification itself (s) is done either by measuring the absorbance at 340 nm, or by electrochemistry, with or without redox mediator.
  • the present invention therefore makes it possible to detect NAD + and / or the formate ion HCO 2 " by means of an enzyme of the family of FDH dehydrogenase formates such that FDH is immobilized in a graft polymer on a coupled support. to a UV-vis spectroscopy at 340 nm or electrochemistry, with or without redox mediator.
  • the support is preferably disposable.
  • the present invention therefore also relates to a method for detecting NAD + and / or formate ion HCO 2 " by means of an enzyme of the family of FDH dehydrogenase formates comprising: the regeneration of NADH from NAD + by means of an enzyme of the family of FDH dehydrogenase formate and of formate (HC0 2 ), according to the process according to the invention; and
  • the present invention also relates to the reactor comprising the regeneration system according to the invention.
  • the reactor employed has a large functionalized interface surface / volume ratio of the compartment. This ratio is between 10 and 500 cm -1 , generally about 100 cm -1 .
  • the conventional heterogeneous reactors have a surface / volume ratio of the compartment of between 0.1 and 10 cm -1 . This property enables the reactors according to the invention to ensure optimum contact between the NAD + and formate solutions. , and the FDH enzyme immobilized on the surface of the two plates and thus, to carry out the reaction with a satisfactory speed.
  • the reactor can generally be sized to achieve optimal substrate conversion.Such dimensions are within the reach of man of career.
  • reactor sometimes called microreactor, suitable for the invention is described in particular in WO 2006/053962, the content of which is incorporated herein by reference.
  • the microreactor according to the invention may consist of two metal plates capable of acting as a reactive interface, mounted in facing relation in a filter-press structure.
  • the graft polymer is deposited on each plate and the enzyme is confined between the two graft polymer layers.
  • two distributor channels (of substrate and of NADH) and collector (of desired product and NAD + ) make it possible to supply microchannels and to evacuate the reaction mixture.
  • Controlling the flow rate and therefore the residence time of the solutions to be treated makes it possible, thanks to a material balance taking into account the enzymatic kinetics, to optimize the conversion rate of the reagent in question (eq.2). This optimization can be optionally supplemented by easy serialization of several reactors according to the invention.
  • the low reaction volume allows good thermal control, thus avoiding hot spots, and limits diffusion problems. Since the immobilizing supports can be generally conductive plates, this method is also applicable in the case of using cofactors or electro-generated mediators, other than the formate / CO 2 system , such as flavines, rhodium complexes, methyl viologen.
  • the reactor according to the invention makes it possible to overcome the problems related to scale-up. Once the parameters of the desired reaction have been optimized (temperature, concentration, flow) at the scale of the laboratory, the transition to industrial scale is very easy since it is sufficient to multiply the number of reactors according to the invention (stack or parallel arrangement), until the desired production.
  • the reactor according to the invention is such that the said plates which constitute it may be able to act as polarizable and reactive interfaces for the synthesis of electro-generated species.
  • Figure 1 shows the concentration of NADH, generated from NAD + (eq.1), at the outlet of the reactor.
  • the reactor comprises two support plates on which is deposited a graft polymer in which FDH is immobilized, according to the invention.
  • the operating conditions are as follows: the solution at the inlet of the reactor is a phosphate buffer solution containing NAD + at 0.05 mmol / L " and the ion formate at 0.1 mol.L " .
  • the reactor is thermostated at 38 ° C. and the flow rate is set at 0.063 ml. min "1.
  • the output solution is analyzed by UV-vis spectroscopy at 340 nm and experience is continue uninterrupted for 21 days.
  • the following examples are given for illustrative and not limitative of the present invention.
  • Example 3 Enzyme synthesis of L-lactate from pyruvate using L-lactate dehydrogenase enzyme and continuous in situ regeneration of NADH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne un procédé de régénération continue de NADH à partir de NAD+ au moyen de formate (HC02-) et d'une enzyme formate déshydrogénase FDH immobilisée au sein d'un polymère greffé. Elle concerne également un système de détection d'un des constituants du système NAD7NADH/HC02-/substrat employant la même enzyme immobilisée.

Description

Nouveau procédé de régénération enzymatique continue de NADH et de détection de NAD+ et système pour sa mise en oeuvre
Une large gamme d'enzymes nécessite l'emploi de cofacteurs pour la synthèse de biomolécules à haute valeur ajoutée. Les enzymes de la famille des déshydrogénases sont notamment employées pour produire des molécules optiquement pures et actives, lesdites molécules constituant des blocs de synthèse utilisés en chimie fine de spécialité et en agro-alimentaire. Le Nicotinamide Adénine Dinucléotide (NAD) et le Nicotinamide Adénine Dinucléotide Phosphate (NADP) (respectivement nommés NAD7NADP+ pour les formes oxydées et NADH/NADPH pour les formes réduites) sont des cofacteurs utilisés dans de nombreuses réactions d'oxydo-réductions catalysées par des enzymes.
Ainsi, une large gamme d'enzymes nécessite le couple NAD7NADH. Néanmoins, le coût élevé du cofacteur NADH limite son emploi en quantité stœchiométrique et nécessite sa régénération in situ en continu au cours de la synthèse.
La régénération du cofacteur NADH à partir de NAD+ a fait l'objet de nombreuses publications. En général, le cofacteur peut être recyclé en couplant la réaction enzymatique de transformation du substrat en le produit désiré avec une deuxième réaction chimique, enzymatique ou électrochimique. Une réaction couramment utilisée pour ce recyclage est la réaction avec le formate (HC02 ~) catalysée par une enzyme de la famille des formates déshydrogénases (FDH), (éq.1 ).
Les enzymes formates déshydrogénases (FDH) utilisent le formate (HC02 ~) pour effectuer cette régénération de NADH selon la réaction :
NAD+ + HCOO~ FDH ) NADH + C02 éq.1
Tandis que la réaction de consommation de NADH s'écrit schématiquement:
Substrat(S) + /VADH enzyme ) Produit(P) + NAD+ éq.2
Cependant, la grande sensibilité des FDH aux conditions physico-chimiques telles que pH, température, concentration des espèces, etc., et à la nature des solvants organiques restreint souvent son emploi à des procédés en solution aqueuse où l'enzyme est d'une part, relativement concentrée et, d'autre part, rapidement désactivée. Le coût élevé des FDH incite donc à rechercher de nouvelles voies de mise en œuvre de l'enzyme pour la régénération de NADH.
Par ailleurs, WO 2007/056666 décrit la modification du chitosan par le greffage de chaînes alkyle pour créer une matrice d'immobilisation d'enzymes en vue de réaliser des biopiles à combustible. Néanmoins, le système décrit a pour fonction de générer de l'énergie électrique en oxydant un substrat organique tel que le glucose ou l'éthanol, et ne décrit ni ne suggère un système de synthèse enzymatique basé sur la régénération continue et pérenne du NADH. De plus, l'enzyme est dispersée de manière homogène dans l'ensemble de la matrice.
Il est donc économiquement intéressant de concevoir un nouveau procédé permettant des synthèses enzymatiques au moyen de NADH (éq.2), d'une part, et sa régénération continue in situ (éq.1 ), d'autre part.
Selon un premier objet, la présente invention concerne un procédé de régénération continue de NADH à partir de NAD+ au moyen d'une enzyme formate déshydrogénase FDH et de formate (HC02 ~) (éq.1 ), caractérisé en ce que FDH est immobilisée entre deux couches d'un polymère greffé.
Le procédé de régénération continue de NADH à partir de NAD+ au moyen d'une enzyme formate déshydrogénase FDH et de formate (HC02 ~) est représenté par l'équation 1 ci-dessus.
On entend ici par « régénération » la réaction permettant de former NADH à partir de NAD+ (éq.1 ).
Ledit polymère greffé est de préférence poreux et est avantageusement choisi parmi les polysaccharides modifiés hydrophobes, lesdits polysaccharides étant choisis parmi le chitosan, la cellulose, la chitine, l'amidon, l'amylose, l'alginate et leurs combinaisons, plus préférentiellement le chitosan.
Le chitosan est généralement préparé par déacétylation de la chitine. Le chitosan commercial a un taux de déacétylation d'environ 85% et peut être avantageusement déacétylé de façon supplémentaire, typiquement jusqu'à 100%, par exemple en présence de soude, pour améliorer le greffage.
Le greffage est avantageusement réalisé par un ou plusieurs groupes alkyle de 1 à 24 atomes de carbone, comprenant éventuellement des fonction alkyles, aryles, carbonyles ou fluorées ; de préférence des alkyles en C1 -C4, et plus particulièrement méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, tert-butyle ; de préférence butyle.
Par ce greffage, le polymère de structure poreuse est activé chimiquement afin de générer une distribution de taille de pores permettant la diffusion des réactifs et produits impliqués, tout en assurant la rétention de l'enzyme FDH.
L'immobilisation de FDH au sein dudit polymère est de préférence réalisée par inclusion de l'enzyme entre deux couches dudit polymère. Cette inclusion peut être réalisée au moyen d'un motif empilable ou intercalable dans un support poreux composé d'une couche d'enzyme entre deux couches dudit polymère. Ce mode de réalisation permet d'utiliser de façon optimale la majorité de l'enzyme mise en œuvre. De plus, FDH ainsi immobilisée entre 2 couches de polymère s'en trouve stabilisée pendant au moins 3 semaines et conserve son activité enzymatique. En effet, ces enzymes sont bien connues pour leur grande sensibilité thermique et chimique, notamment vis-à-vis des molécules organiques que constituent les substrats à transformer, les produits résultant, voire l'oxygène de l'air. Le procédé selon l'invention est particulièrement avantageux en ce qu'il permet une mise en production continue de FDH pendant des durées bien supérieures à celles des techniques habituellement utilisées : ainsi par exemple, WO2004/085662 décrit une mise en production continue de FDH de deux jours avant désactivation.
L'immobilisation au sein du polymère permet l'utilisation de FDH en continu pendant une longue durée avec un faible taux de désactivation. Ainsi, typiquement, une enzyme FDH peut être utilisée jusqu'à 3 semaines et jusqu'à 2 semaines avec des taux de désactivation inférieurs à 50%.
Cette faible désactivation au cours du temps permet d'effectuer un nombre de cycles catalytiques élevé, ce qui confère au procédé selon l'invention un intérêt économique remarquable.
L'immobilisation au sein de deux couches de polymère se distingue donc d'une immobilisation par répartition uniforme de l'enzyme au sein du polymère greffé. Ainsi, cette répartition présente notamment l'avantage d'assurer une meilleure rétention de l'enzyme et de conduire à des matrices de polymère plus résistantes aux contraintes mécaniques et à l'érosion hydrodynamique.
Le taux de régénération de NADH (éq.1 ) peut être augmenté, soit en réinjectant en entrée les fluides obtenus en sortie (c'est-à-dire, par recyclage continu) soit en assemblant plusieurs réacteurs en série, soit en augmentant le temps de séjour des solutions dans le réacteur. De plus, l'ajout du 2nd système enzymatique in situ permet de consommer au fur et à mesure le NADH formé ce qui favorise sa régénération.
Le taux de recyclage selon l'invention est inférieur ou égal à 10, avantageusement inférieur ou égal à 5.
Les deux couches de polymère greffé ont généralement chacune une épaisseur comprise entre 100 et 500 μηι.
Le motif élémentaire comporte donc trois couches : Polymère greffé/FDH/polymère greffé. Il est en outre possible de mettre en œuvre plusieurs motifs élémentaires empilés par dépôts successifs sur un support solide et éventuellement montés dans un réacteur filtre presse. Selon un mode de réalisation particulier, le procédé de régénération continue (éq.1 ) est réalisé in situ, c'est-à-dire simultanément à la réaction de consommation de NADH (éq.2) et de formation consécutive d'un produit chiral à partir de son substrat.
Selon un autre objet, la présente invention concerne un procédé de synthèse enzymatique comprenant :
- la transformation d'un substrat en un produit chiral désiré, par catalyse enzymatique et consommation de NADH (éq.2); et
- la régénération continue in situ de NADH à partir de NAD+ (éq.1 ) selon l'invention.
La transformation d'un substrat en un produit chiral désiré, par catalyse enzymatique et consommation de NADH sont représentées par l'équation 2 ci-dessus.
La régénération (réduction du NAD+ ainsi formé) continue in situ de NADH à partir de NAD+ est représentée par l'équation 1 ci-dessus.
La catalyse enzymatique de la transformation du substrat (éq.2) est réalisée par une enzyme appropriée à la synthèse désirée ; ladite enzyme est présente en solution.
Les réactions employant le cofacteur NADH peuvent ainsi être réalisées dans un réacteur continu, tout en le régénérant in situ, sans ajout d'enzyme FDH en solution.
La réaction de transformation dudit substrat en ledit produit désiré (éq.2) est préférentiellement une réaction de déshydrogénation stéréosélective. On peut ainsi citer à titre illustratif la réaction de déshydrogénation du pyruvate en L-lactate.
La présente invention concerne également un système de régénération continue enzymatique de NAD+ en NADH comprenant :
- un polymère greffé au sein duquel est immobilisée une enzyme FDH ;
- une solution d'ions formates
- une solution de NAD+,
l'immobilisation de FDH au sein dudit polymère étant réalisée par inclusion de l'enzyme entre deux couches dudit polymère.
Généralement, la concentration de la solution en ions formates est comprise entre 0.01 et 1 mol.L 1 , typiquement 0.1 mol.L .
Généralement, la concentration de la solution en NAD+ est comprise entre 0.1 mmol.L"1 et 10 mmol.L"1. Généralement, la concentration surfacique du chitosan est comprise entre 10 et 20 g. m"2 et par couche et celle de l'enzyme FDH est comprise entre 100 et 1000 U.m"2.
Généralement, le système est thermostaté entre 25 et 45 °C, typiquement environ
38°C.
L'immobilisation de FDH au sein dudit polymère est de préférence réalisée par inclusion de l'enzyme entre deux couches dudit polymère.
Ce système de régénération continue de NADH à partir de NAD+ (éq.1 ) peut également être appliqué à la conception de dispositifs de détection : une couche polymérique incluant l'enzyme, déposée sur une surface électriquement conductrice pour une détection électrochimique, ou sur une surface transparente pour une détection spectrophotométrique, est facilement réalisable et offre l'activité enzymatique adéquate. En effet, la grande sélectivité des enzymes peut être mise à profit afin de détecter soit des substrats spécifiques soit le cofacteur lui même. A titre illustratif et non limitatif, les substrats suivants pourraient être détectés : α-ketoglutarate, cyclohexanone, acétophénone, benzoyiformate, pyruvate. Dans le cas des enzymes NAD-dépendantes, le couple NAD7NADH est communément employé afin de détecter la présence de réaction enzymatique et donc, de substrats. En effet, NADH absorbe fortement en UV-vis à 340 nm contrairement à sa forme oxydée, NAD+ qui n'absorbe pas, ce qui permet une quantification aisée des conversions enzymatiques. Ainsi, des bandelettes consommables sur lesquelles seraient immobilisé une enzyme FDH selon l'invention, pourraient être employées pour mettre en évidence soit la présence de NAD+ (avec ajout de formate), soit la présence de formate (avec ajout de NAD+). La détection, et/ou la quantification elle(s)-même(s) se faisant soit par la mesure de l'absorbance à 340 nm, soit par électrochimie, avec ou sans médiateur rédox.
La présente invention permet donc la détection de NAD+ et/ou de l'ion formate HC02 " au moyen d'une enzyme de la famille des formates déshydrogénases FDH tel que FDH est immobilisée au sein d'un polymère greffé sur un support couplé à un dosage par spectroscopie UV-vis à 340 nm ou par électrochimie, avec ou sans médiateur rédox.
Le support est de préférence, jetable.
Selon un autre objet, la présente invention concerne donc également un Procédé de détection de NAD+ et/ou de l'ion formate HC02 " au moyen d'une enzyme de la famille des formates déshydrogénases FDH comprenant : - la régénération de NADH à partir de NAD+ au moyen d'une enzyme de la famille des formates déshydrogénases FDH et de formate (HC02 ), selon le procédé selon l'invention; et
- un dosage par spectroscopie UV-vis ou par électrochimie du NADH ainsi formé.
Selon un autre objet, la présente invention concerne également le réacteur comprenant le système de régénération selon l'invention.
Le réacteur employé présente un grand rapport surface d'interface fonctionnalisée/volume du compartiment. Ce rapport est compris entre 10 et 500 cm"1, généralement environ 100 cm"1. Pour mémoire, les réacteurs hétérogènes classiques présentent un rapport surface/volume du compartiment compris entre 0,1 et 10 cm"1. Cette propriété permet aux réacteurs selon l'invention d'assurer un contact optimum entre les solutions de NAD+ et de formate, et l'enzyme FDH immobilisée à la surface des deux plaques et ainsi, de mener la réaction avec une vitesse satisfaisante. Le réacteur peut généralement être dimensionné pour atteindre une conversion de substrat optimale. De tels dimensionnements sont à la portée de l'homme du métier.
Un tel réacteur, parfois appelé microréacteur, convenant à l'invention est notamment décrit dans WO 2006/053962, dont le contenu est incorporé ici par référence.
Généralement, le microréacteur selon l'invention peut être constitué de deux plaques métalliques aptes à jouer le rôle d'interface réactive, montées en vis-à-vis dans une structure filtre-presse. Le polymère greffé est déposé sur chaque plaque et l'enzyme est confinée entre les deux couches de polymère greffé. Sur chaque plaque, deux canaux distributeur (de substrat et de NADH) et collecteur (de produit désiré et de NAD+) permettent d'alimenter des microcanaux et d'évacuer le mélange réactionnel.
Le contrôle du débit et donc du temps de séjour des solutions à traiter permet, grâce à un bilan de matière tenant compte de la cinétique enzymatique, l'optimisation du taux de conversion du réactif considéré (éq.2). Cette optimisation peut être éventuellement complétée par une mise en série aisée de plusieurs réacteurs selon l'invention.
Le faible volume réactionnel permet un bon contrôle thermique, évitant ainsi les points chauds, et limite les problèmes de diffusion. Les supports d'immobilisation pouvant être des plaques généralement conductrices, ce procédé est également applicable dans le cas d'utilisation de cofacteurs ou de médiateurs électro-générés, autres que le système formate/C02, tels que les flavines, complexes de rhodium, méthyle-viologène.
Le réacteur selon l'invention permet de s'affranchir des problèmes liés au scale- up. Une fois les paramètres de la réaction souhaitée optimisés (température, concentration, débit) à l'échelle du laboratoire, le passage à l'échelle industrielle est très aisé puisqu'il suffit de multiplier le nombre de réacteurs selon l'invention (empilement ou disposition parallèle), jusqu'à la production désirée.
Le réacteur selon l'invention est tel que les dites plaques qui le constituent peuvent être aptes à jouer le rôle d'interfaces polarisables et réactives pour la synthèse d'espèces électro générées.
Figure :
La figure 1 présente la concentration de NADH, généré à partir de NAD+ (éq.1 ), en sortie du réacteur. Le réacteur comprend deux plaques supports sur lesquelles est déposé un polymère greffé au sein duquel est immobilisée FDH, selon l'invention. Les conditions opératoires sont les suivantes : la solution en entrée du réacteur est une solution de tampon phosphate contenant NAD+ à 0.05 mmol/L" et l'ion formate à 0.1 mol.L" . Le réacteur est thermostaté à 38^ et le débit est fixé à 0.063 ml. min"1. La solution en sortie est analysée par spectroscopie UV-vis à 340 nm et l'expérience est poursuive sans interruption pendant 21 jours. Les exemples suivants sont donnés à titre illustratif et non limitatif de la présente invention.
Exemple 1 : Synthèse de la matrice de polymère (chitosan) :
1 ) Désacétylation du chitosan : Le chitosan commercial est désacétylé à environ 85%. Les groupements acétyle restant doivent être remplacés par un proton pour augmenter l'efficacité de la greffe de chaîne alkyle.
- Préparer 100 ml de solution de NaOH à 45% massique.
- Dans un flacon autoclavable de 250 ml, ajouter la solution de NaOH et 6.7 g de chitosan.
- Agiter fortement pendant 10 min.
- Passer le flacon à l'autoclave à 121 °C pendant 20 min.
- Filtrer la suspension sur Buchner et rincer à l'eau ultra pure jusqu'à pH 7.
- Sécher 24 heures au dessiccateur à vide. 2) Greffage de chaîne alkyle, modification hydrophobe du chitosan :
- Dans un erlenmeyer de 250 ml, ajouter 0.5 g de chitosan désacétylé, 15 ml de méthanol et 15 ml de solution d'acide acétique à 1 % volumique.
- Agiter fortement pendant 10 min.
- Ajouter 15 ml d'aldéhyde (de taille variable, selon la taille de pore souhaitée).
- Ajouter 0,7 g de cyanoborohydrure de sodium.
- Agiter fortement pendant 10 min.
- Filtrer la suspension sur Buchner et rincer avec 5 fois 25 ml de méthanol.
- Sécher 24h au dessiccateur à vide.
Exemple 2 : Immobilisation de l'enzyme
- Préparer une suspension de chitosan modifié à 1 % massique dans le chloroforme.
- Agiter très fortement la suspension à l'aide d'un ultraturax (7000 rpm) pendant 30 secondes.
- Immédiatement après, déposer 0,12 ml.cm"2 de suspension sur le support d'immobilisation et laisser sécher.
- Déposer 0,06 ml.cm"2 de solution d'enzyme formate déshydrogénase à 660 U.L" sur la première couche de chitosan. Laisser sécher.
- Déposer une autre couche de chitosan comme précédemment. Laisser sécher.
Exemple 3 : Synthèse enzymatique de L-lactate à partir de pyruvate au moyen de l'enzyme L-lactate déshydrogénase et régénération continue in situ de NADH
La conversion du pyruvate en L-lactate a été effectuée dans les conditions suivantes :
Solution initiale : tampon phosphate pH=7, [NAD+]=0,5 mM, [HCO2 "]=0,1 M, [LDH]= 5 U.ml" , T=38qC, débit de 0,063 ml. min"1.
3 passages dans le microréacteur.
Les taux de conversion sont résumés dans le tableau suivant :
Conversion du pyruvate (%)
Figure imgf000009_0001
1 16 26 33
0.5 27 44 59

Claims

REVENDICATIONS
1 . Procédé de régénération en continu de NADH à partir de NAD+ au moyen d'une enzyme de la famille des formates déshydrogénases FDH et de formate (HC02 ~), caractérisé en ce que FDH est immobilisée entre deux couches d'un polymère greffé.
2. Procédé selon la revendication 1 tel que ledit polymère greffé est choisi parmi les polysaccharides modifiés hydrophobes.
3. Procédé selon la revendication 1 ou 2 tel que ledit polymère greffé est le chitosan greffé par un ou plusieurs groupes alkyle de 1 à 24 atomes de carbone comprenant éventuellement des fonction alkyles, aryles, carbonyles ou fluorées .
4. Procédé selon l'une quelconque des revendications précédentes tel que l'immobilisation d'une FDH au sein dudit polymère est réalisée par inclusion de l'enzyme entre deux couches dudit polymère.
5. Procédé de synthèse enzymatique comprenant :
- la transformation d'un substrat en un produit chiral désiré, par catalyse enzymatique et consommation de NADH; et
- la régénération in situ de NADH à partir de NAD+ selon l'une quelconque des revendications précédentes.
6. Procédé selon la revendication 5 tel que ladite réaction de transformation dudit substrat en ledit produit désiré est une réaction de déshydrogénation stéréosélective.
7. Système de régénération continue de NADH à partir de NAD+ comprenant :
- un polymère greffé au sein duquel est immobilisée une enzyme FDH ;
- une solution d'ions formates; et
- une solution de NAD+,
l'immobilisation de FDH au sein dudit polymère étant réalisée par inclusion de l'enzyme entre deux couches dudit polymère.
8. Système selon la revendication 7, tel que HC02 " a une concentration comprise entre 0.01 et 1 mol.L" , NAD+ a une concentration comprise entre 0.1 mmol.L"1 et 10 mmol.L"1.
9. Réacteur comprenant le système de régénération selon l'une quelconque des revendications 7 à 8.
10. Réacteur selon la revendication 9 comprenant deux plaques tel que le système de régénération est confiné entre les dites plaques montées en vis-à-vis dans une structure filtre presse.
1 1 . Réacteur selon l'une quelconque des revendications 9 ou 10 tel que le rapport surface de l'enzyme/volume du compartiment du réacteur est compris entre 1 et 500 cm"1.
12. Réacteur selon l'une quelconque des revendications 9 à 1 1 tel que les dites plaques sont aptes à jouer le rôle d'interfaces polarisables et réactives pour la synthèse d'espèces électro générées.
13. Procédé de détection de NAD+ et/ou de l'ion formate HC02 " au moyen d'une enzyme de la famille des formates déshydrogénases FDH comprenant :
- la régénération de NADH à partir de NAD+ au moyen d'une enzyme de la famille des formates déshydrogénases FDH et de formate (HC02 ~), selon l'une quelconque des revendications 1 à 4 ; et
- un dosage par spectroscopie UV-vis ou par électrochimie du NADH ainsi formé.
PCT/FR2011/051518 2010-06-29 2011-06-29 Nouveau procédé de régénération enzymatique continue de nadh et de détection de nad+ et système pour sa mise en oeuvre WO2012001305A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055209 2010-06-29
FR1055209A FR2961825A1 (fr) 2010-06-29 2010-06-29 Nouveau procede de regeneration enzymatique continue de nadh et de detection de nad+ et systeme pour sa mise en oeuvre

Publications (2)

Publication Number Publication Date
WO2012001305A2 true WO2012001305A2 (fr) 2012-01-05
WO2012001305A3 WO2012001305A3 (fr) 2012-04-05

Family

ID=43530735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051518 WO2012001305A2 (fr) 2010-06-29 2011-06-29 Nouveau procédé de régénération enzymatique continue de nadh et de détection de nad+ et système pour sa mise en oeuvre

Country Status (2)

Country Link
FR (1) FR2961825A1 (fr)
WO (1) WO2012001305A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896601B (zh) * 2020-02-07 2022-09-02 山东省科学院生物研究所 一种乳酸脱氢酶电极及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085662A1 (fr) 2003-03-27 2004-10-07 Degussa Ag Systemes reactionnels enzymatiques couples dependants d'un cofacteur dans des milieux aqueux
WO2006053962A2 (fr) 2004-11-19 2006-05-26 Universite Paul Sabatier Toulouse Iii Procédé de réaction électrochimique et réacteur électrochimique à microcanaux et son procédé de fabrication
WO2007056666A2 (fr) 2005-11-02 2007-05-18 St. Louis University Enzymes immobilisees dans des polysaccharides modifies de maniere hydrophobe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1271873A1 (ru) * 1984-10-31 1986-11-23 МГУ им.М.В.Ломоносова Способ определени формиат-иона в водных растворах
JP2002233395A (ja) * 2001-02-06 2002-08-20 Mitsubishi Rayon Co Ltd 補酵素nadhの再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085662A1 (fr) 2003-03-27 2004-10-07 Degussa Ag Systemes reactionnels enzymatiques couples dependants d'un cofacteur dans des milieux aqueux
WO2006053962A2 (fr) 2004-11-19 2006-05-26 Universite Paul Sabatier Toulouse Iii Procédé de réaction électrochimique et réacteur électrochimique à microcanaux et son procédé de fabrication
WO2007056666A2 (fr) 2005-11-02 2007-05-18 St. Louis University Enzymes immobilisees dans des polysaccharides modifies de maniere hydrophobe

Also Published As

Publication number Publication date
FR2961825A1 (fr) 2011-12-30
WO2012001305A3 (fr) 2012-04-05

Similar Documents

Publication Publication Date Title
Yuan et al. Efficient NADH regeneration by a redox polymer-immobilized enzymatic system
Wang et al. Cofactor NAD (P) H regeneration inspired by heterogeneous pathways
Kochius et al. Immobilized redox mediators for electrochemical NAD (P)+ regeneration
Uppada et al. Cofactor regeneration–an important aspect of biocatalysis
Dumeignil et al. From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future
Persson et al. Ruthenium-and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols
JP4878756B2 (ja) バイオ燃料電池およびセンサーに使用される酵素固定化
Zhang et al. Unraveling and manipulating of NADH oxidation by photogenerated holes
Walcarius et al. Factors affecting the electrochemical regeneration of NADH by (2, 2′-bipyridyl)(pentamethylcyclopentadienyl)-rhodium complexes: Impact on their immobilization onto electrode surfaces
Xia et al. HKUST-1 catalyzed efficient in situ regeneration of NAD+ for dehydrogenase mediated oxidation
Yarman et al. Coupling biocatalysis with molecular imprinting in a biomimetic sensor.
Sharma et al. Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods
Van Nguyen et al. Improved bioelectrocatalytic oxidation of sucrose in a biofuel cell with an enzyme cascade assembled on a DNA scaffold
WO2004012293A1 (fr) Batterie de piles a combustible
Nishigaki et al. Oxidation of β-nicotinamide adenine dinucleotide (NADH) by Au cluster and nanoparticle catalysts aiming for coenzyme regeneration in enzymatic glucose oxidation
Lee et al. Cascaded biocatalysis and bioelectrocatalysis: overview and recent advances
Schmitz et al. Enzyme-based electrobiotechnological synthesis
Wan et al. Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores
Ottone et al. ZnO materials as effective anodes for the photoelectrochemical regeneration of enzymatically active NAD+
Zhao et al. Hierarchical ZnIn2S4 microspheres as photocatalyst for boosting the selective biohydrogenation of furfural into furfuryl alcohol under visible light irradiation
Katagiri et al. Visible-light-induced enzymatic reactions using an NADH regeneration system of water-soluble zinc porphyrin and homogeneous colloidal rhodium nanoparticles
WO2012001305A2 (fr) Nouveau procédé de régénération enzymatique continue de nadh et de détection de nad+ et système pour sa mise en oeuvre
WO2007022504A2 (fr) Conversion de dioxyde de carbone en methanol dans une matrice sol-gel en silice
Délécouls-Servat et al. Membrane electrochemical reactors (MER) for NADH regeneration in HLADH-catalysed synthesis: comparison of effectiveness
Le et al. Local removal of oxygen for NAD (P)+ detection in aerated solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11740964

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11740964

Country of ref document: EP

Kind code of ref document: A2