WO2012000774A1 - Verfahren zur herstellung eines thixotropiermittels und dessen verwendung - Google Patents

Verfahren zur herstellung eines thixotropiermittels und dessen verwendung Download PDF

Info

Publication number
WO2012000774A1
WO2012000774A1 PCT/EP2011/059708 EP2011059708W WO2012000774A1 WO 2012000774 A1 WO2012000774 A1 WO 2012000774A1 EP 2011059708 W EP2011059708 W EP 2011059708W WO 2012000774 A1 WO2012000774 A1 WO 2012000774A1
Authority
WO
WIPO (PCT)
Prior art keywords
diisocyanate
isocyanate
component
amine
spraying
Prior art date
Application number
PCT/EP2011/059708
Other languages
English (en)
French (fr)
Inventor
Burkhard Walther
Helmut Mack
Tobias Austermann
Original Assignee
Construction Research & Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construction Research & Technology Gmbh filed Critical Construction Research & Technology Gmbh
Priority to JP2013517149A priority Critical patent/JP2013534960A/ja
Priority to EP11724430.1A priority patent/EP2588246A1/de
Priority to US13/704,374 priority patent/US9376602B2/en
Publication of WO2012000774A1 publication Critical patent/WO2012000774A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/285Nitrogen containing compounds
    • C08G18/2865Compounds having only one primary or secondary amino group; Ammonia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/715Monoisocyanates or monoisothiocyanates containing sulfur in addition to isothiocyanate sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the invention relates to a process for the preparation of a thixotropic agent and to the incorporation of the thixotropic agent in a flowable system.
  • the process is suitable for the production of adhesives and sealants.
  • Thixotropy is the property of certain multicomponent systems, under mechanical stress, for example, stirring, shaking or under the action of ultrasound, to lose viscosity and to return to their original state after mechanical stress. Such properties are desirable in many applications, especially in coating compositions such as paints and coatings as well as in adhesives and sealants.
  • thixotropic agents A variety of compounds are already known for use as thixotropic agents. Often come due to their low raw material price inorganic fillers such. As carbon black, Aerosil and very fine or chemically modified pigments are used. However, thixotroping with such fillers usually causes an increase in viscosity and is therefore particularly suitable for the production of machined masses. For hand processing, z. B. using cartridges, the masses are preferably adjusted stable by organic thixotropic agents, since they cause virtually no increase in viscosity. As organic thixotropic agents, for example, amide waxes, soaps and hydrolyzed castor oils are known, with urea derivatives in particular having proved to be particularly advantageous.
  • the urea derivatives used as thixotropic agents are generally prepared from isocyanates and amines, the reaction being highly exothermic.
  • the starting components are brought to react in dilute form with each other, wherein the solvent is used in particular for dissipating the heat formed.
  • inert carrier materials are suitable as solvents, for example hydrocarbons, oils or plasticizers.
  • DE 18 05 693 describes the preparation of a thixotropic coating composition, which consists of a larger amount of a base coat of paint or a paint and to a lesser extent of an amount of urea, which is produced by an in situ reaction of an aliphatic amine with the isocyanate ,
  • this has the disadvantage that the inert carriers can migrate into the coating compositions after incorporation of the thixotropic agent.
  • this can have different effects: for example, a loss of liability in the case an adhesive, depending on the exiting substances a health hazard to humans or a visual impairment of absorbent substrates.
  • the object of the present invention is therefore to provide a process-flexible and economical process for the preparation of thixotropic agents based on a urea derivative, which can largely dispense with a carrier material for the urea derivative and moreover provides good product quality.
  • the object is a method for producing a thixotropic agent based on a urea derivative, wherein the components a) containing at least one amine and ß) containing at least one isocyanate separately fed to a mixing device and mixed together, wherein the reaction mixture by spraying or spraying of the Mixing device will carry.
  • the mixing device in which the process according to the invention is carried out enables a process procedure in which component a) containing at least one amine and ⁇ ) containing at least one isocyanate after mixing have only a very short residence time in the mixing apparatus ,
  • the residence time of the components after entry into the mixing device is preferably less than 2 seconds, in particular less than 1 second and particularly preferably less than 0.5 seconds.
  • the mixing device comprises a chamber with at least two openings, through which the components a) and ß) can be introduced into the chamber. Furthermore, the chamber has an outlet from which the generated reaction mixture can leave the mixing device.
  • the mixing device comprises a closure element, which is arranged displaceably in the chamber and, depending on its position, partially or completely shuts off the opening through which components a) and ⁇ ) are introduced into the chamber.
  • the closure device by means of designed to be movable by an electric or pneumatic drive. It is to be regarded as preferred that both the chamber and the closure element have a circular cross-section.
  • the outlet of the chamber is formed as a spray nozzle or it is the outlet downstream of a spray nozzle.
  • Spray heads are particularly suitable as mixing devices in the context of the present invention.
  • the spray head may in particular be a two-component spray gun.
  • Suitable mixing devices are, for example, high-pressure spray systems from Isotherm AG, in particular dosing systems PSM 700 in conjunction with the mixing head RSP 400.
  • the components pass through hollow screws to the purely metallic sealed mixing chamber, where they stand up to 200 bar at the nozzle needle. With mixing head actuation, the nozzle needle is pulled behind the injectors. The components collide at high speed and are mixed intensively. Check valves in the banjo bolts prevent overflow from one side to the other. Upon completion, the nozzle needle separates the two component streams and the remaining mixture is ejected from the mixing chamber purely mechanically.
  • components a) and ⁇ ) are introduced into the mixing device at a pressure of at least 40 to 200 bar.
  • a pressure of 80 to 120 bar is to be regarded as particularly preferred.
  • the mixing ratio can be adjusted to one another in a simple manner.
  • components a) and ⁇ ) according to the invention can be mixed with one another in wide ratio ranges, depending on the raw material used.
  • the molar ratio of the amine groups of the amine-containing component to the isocyanate groups of the isocyanate-containing component is 5: 1 to 1: 5, with a mixing ratio of 1: 1 being particularly preferred.
  • the component a) containing at least one amine and the component ⁇ ) containing at least one isocyanate in the context of the present invention preferably have a content of at least 50% by weight of amine or a mixture of amines or a content of at least 50% by weight. Isocyanate or a mixture of isocyanates. In one embodiment, the reaction of a) amine with ⁇ ) isocyanate is carried out in the absence of solvents.
  • the amine of component a) may in particular be N-n-alkyl and / or Nn-alkenyl and / or secondary N-alkylamine having 1 to 22 carbon atoms and / or polyether amines.
  • amines of component a) are n-butylamine, 3-methoxypropylamines, polyetheramine D 230, tridceylamine, isobutylamine, tert-butylamine, sec-butylamine, n-octylamine, 2-ethylhexylamine, di (2-) ethylhexyl) amine, dibutylamine, dicyclohexylamine, diethylamine, dihexylamine, dimethylethylamine, dipropylamine, ditridecylamine, hexylamine, isopropylamine, monomethylamine, N-ethyl-N-propylamine, propylamine, tridecylamine isomeric mixture, n-pentylamine, n-heptylamine, 1 Phenylethylamine, 2,6-xylidine, 2-phenylethylamine, anilines, benzyl
  • the isocyanate of component ß) may, in particular, hexamethylene diisocyanate-1, 6 (HDI), Desmodur N 3600 ® (a product of Bayer AG, polyisocyanate corresponds holding HDI isocyanurates, NCO content: 23.4 wt %, Viscosity 1200 mPa / s at 23 ° C), 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI), 2,4- and / or 2,6-tolylene diisocyanate (TDI) and / or 4,4'-, 2,4'- and / or 2,2'-diphenylmethane diisocyanate (MDI), m-xylene diisocyanate (MXDI), m- or p-tetramethylxylene diisocyanate (m-TMXDI, p-TMXDI), 4,4 '- Dicyclohexylmethane
  • the mixture according to the invention of a) containing at least one amine and ß) containing at least one isocyanate are used very widely after leaving the mixing device can.
  • the production of the flowable system can be operated continuously or discontinuously.
  • the present invention thus also relates to the use of the mixture of a) containing at least one amine and ß) containing at least one isocyanate, which can be introduced after leaving the mixing device by spraying or spraying in a flowable system. It is possible to freely choose the distance between the outlet opening of the mixing device and the flowable system in many areas. Particular preference is given to a distance of 1 cm to 5 m and in particular 5 cm to 3 m. Depending on the chemical properties of the flowable system, it may be advantageous to choose the distance so that the degree of conversion of a) amine with ß) isocyanate before contact with the flowable system is as high as possible.
  • the degree of conversion of a) amine with ⁇ ) isocyanate during spraying or spraying before contact with the flowable system is preferably at least 75%, in particular at least 90% and particularly preferably at least 99%, if appropriate with respect to the component used in deficit.
  • the outlet of the mixing device is placed in the flowable system, wherein the inventive mixture of a) containing at least one amine and ß) containing at least one isocyanate is injected or sprayed directly into the flowable system after leaving the mixing device.
  • the mixture of a) according to the invention containing at least one amine and ⁇ ) containing at least one isocyanate can be used after leaving the mixing device both in a continuous and in a discontinuous process for the production of a flowable system.
  • extruders are suitable for continuous production in which the mixture of a) and ⁇ ) according to the invention is introduced continuously after spraying, spraying, injection or spraying in the production of a flowable system after leaving the mixing device.
  • Suitable mixing devices are all devices known to the person skilled in the art, in particular they may be a static mixer, press mixer, planetary mixer, horizontal turbulent mixer (Drais GmbH), planetary dissolver or dissolver and intensive mixer.
  • the mixture of a) and ⁇ ) according to the invention is introduced after leaving the mixing device by spraying, spraying, injection or spraying.
  • the thixotropic agent is introduced into the flowable system in an amount of from 0.05 to 40% by weight, based on the total mass of the flowable system, preferably in an amount of from 5 to 30% by weight. and in particular 10 to 20 wt .-%.
  • the flowable system may contain at least one curable binder.
  • the curable binders may in particular be epoxides, polyurethanes, acrylates, silylated polyurethanes, silylated acrylates, silylated polyureas, silyl-terminated polyethers and silylated polysulfides.
  • 1K one-component
  • 2K two-component systems
  • 1 K systems bind to the ambient moisture due to chemical reactions of the binder.
  • 2K systems can also set by chemical reactions of the mixed components with continuous solidification.
  • the flowable system according to the invention is preferably a one-component system. However, it can also be advantageous to carry out the system according to the invention as a two-component system.
  • the one component contains the binder, while the second component contains, for example, a catalyst or micronized water as a booster, which accelerates the curing of the system.
  • the component in which the thixotropic agent is incorporated there are no restrictions.
  • the present invention provides that the thixotropic agent is optionally incorporated in only one of the two components of the two-component system or in both components.
  • the method of preparation of the polyurethane or polyurea prepolymers is not critical to the present invention. It may thus be a one-step process, wherein the polyols and / or polyamines, polyisocyanates and chain extenders are simultaneously reacted with each other, which, for example, in a batch
  • Reaction or it can be a two-step process, in which, for example, first a prepolymer is formed, which is subsequently reacted with chain extenders.
  • polyurethanes or polyureas may also contain further structural units, in particular these may be allophanates, biurets, uretdiones or cyanates.
  • the abovementioned groups are only examples in which the polyurethanes and polyureas according to the invention may also contain further structural units.
  • the degree of branching is not critical for the present invention, so that both linear and highly branched polymers can be used.
  • the molar ratio of the isocyanate component present in the polymer to the sum of the polyol or polyamine component is 0.01 to 50, preferably 0.5 to 3.0.
  • the isocyanate component is preferably an aliphatic, cycloaliphatic, araliphatic and / or aromatic compound, preferably a diisocyanate or triisocyanate, which may also be mixtures of these compounds. It is to be considered as preferred that these are hexamethylene diisocyanate-1, 6 (HDI), HDI uretdione, HDI isocyanurate, HDI biuret, HDI allophanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane ( IPDI), 2,4- and / or 2,6-toluene diisocyanate (TDI) and / or 4,4'-, 2,4'- and / or 2,2'-diphenylmethane diisocyanate (MDI), polymeric MDI, Carbodiimide-modified 4,4'-MDI, m-xylene diisocyanate (MXDI), m- or p-
  • polyisocyanates having two or three isocyanate groups per molecule are suitable.
  • they can also be mixtures of polyisocyanates, the average NCO functionality of the isocyanate component in the mixture in particular being 2.1 to 2.3, 2.2 to 2.4, 2.6 to 2.8 or 2.8 to 3.0 can lie.
  • Derivatized polyisocyanates may also be used, for example, sulfonated isocyanates, blocked isocyanates, isocyanurates and biuret isocyanates.
  • the polyol or polyamine component is preferably polyetherester polyol, fatty acid ester polyols, polyether polyols, polyester polyols, polybutadiene polyols and polycarbonate polyols, which may also be mixtures of these compounds.
  • the polyols and / or polyamines preferably contain between two and 10, more preferably between two and three hydroxyl groups and / or amino groups and have a weight-average molecular weight between 32 and 30,000, more preferably between 90 and 18,000 g / mol.
  • Suitable polyols are preferably the liquid at room temperature, glassy solid / amorphous or crystalline polyhydroxy compounds. Typical examples would be difunctional polypropylene glycols.
  • Suitable polyether polyols are the polyethers known in polyurethane chemistry, such as the polyols prepared using starter molecules by means of KOH or DMC catalysis of styrene oxide, ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran or epichlorohydrin.
  • poly (oxytetramethylene) glycol poly-THF
  • 1, 2-polybutylene glycol or mixtures thereof
  • Particularly suitable are polypropylene oxide, polyethylene oxide and butylene oxide and mixtures thereof.
  • Another type of copolymer which can be used as the polyol component and has terminal hydroxyl groups is of the general formula (preparable, for example, by means of Controlled High-Speed Anionic Polymerization according to Macromolecules 2004, 37, 4038-4043):
  • polyesterdi- or polyols obtained by condensation of di- or tricarboxylic acids such as adipic acid, sebacic acid, glutaric acid, azelaic acid, suberic acid, undecanedioic acid, dodecanedioic acid, 3rd , 3-dimethylglutaric acid, terephthalic acid, isophthalic acid, hexahydrophthalic acid and / or dimer fatty acid, with low molecular weight diols, triols or polyols, such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1, 4-butanediol, 1, 6-hexanediol, 1, 8- octanediol, 1, 10-decanediol, 1, 12-dodecanediol, dimer
  • polyesters for example based on caprolactone, which are also referred to as "polycaprolactones".
  • polycaprolactones Further usable polyols are polycarbonate polyols, dimer fatty alcohols and dimer diols, as well as polyols based on vegetable oils and their derivatives, such as castor oil and its derivatives or epoxidized soybean oil.
  • hydroxyl-containing polycarbonates in question which by reaction of carbonic acid derivatives, for. As diphenyl carbonate, dimethyl carbonate or phosgene, with diols are available.
  • Particularly suitable are, for example, ethylene glycol, 1, 2- and 1, 3-propanediol, 1, 3- and 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, neopentyl glycol, 1, 4-bishydroxymethylcyclohexane, 2- Methyl-1,3-propanediol, 2,2,4-trimethylpentanediol-1,3-dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, tetrabromobisphenol A, glycerol, trimethylolpropane, 1, 2,6-hexanetriol, 1, 2,4-butanetriol, trimethylolpropane, pentaerythritol, quinitol, mannitol, sorbitol, methyl glycoside and 1, 3,4,6-dianhydrohexite.
  • hydroxy-functional polybutadienes which are also commercially available under the trade name "Poly-bd®", can serve as the polyol component as well as their hydrogenated analogs.Other are hydroxy-functional polysulfides which are sold under the trade name “Thiokol® NPS-282 "as well as hydroxy-functional polysiloxanes in question.
  • Hydrazine, hydrazine hydrate and substituted hydrazines such as N-methylhydrazine, ⁇ , ⁇ '-dimethylhydrazine, acid hydrazides of adipic acid, methyladipic acid, sebacic acid, hydracrylic acid, terephthalic acid, isophthalic acid, semicarbazidoalkylene hydrazides, such as 13-semicarbazidopropionic acid hydrazide are particularly suitable as inventively employable polyamine component , Semicarbazidoalkylen-carbazinester such.
  • 2-semicarbazidoethyl carbazine ester and / or aminosemicarbazide compounds such as 13-aminoethyl semicarbazidocarbonate.
  • Polyamines based on polyesters, polyolefins, polyacetals, polythioethers, polyethercarbonates, polyethylene terephthalates, polyesteramides, polycaprolactams, polycarbonates, polycaprolactones and polyacrylates, which have at least two amine groups, are also suitable for the preparation of the polyurethanes and polyureas.
  • Polyamines e.g. those sold under the trade name Jeffamine® (polyether polyamines) are also suitable.
  • Suitable polyol components and / or polyamine components are also the species known as chain extenders, which react with excess isocyanate groups in the preparation of polyurethanes and polyureas, normally having a molecular weight (Mn) of less than 400 and often in the form of polyols , Aminopolyols or aliphatic, cycloaliphatic or araliphatic see polyamines.
  • chain extenders which react with excess isocyanate groups in the preparation of polyurethanes and polyureas, normally having a molecular weight (Mn) of less than 400 and often in the form of polyols , Aminopolyols or aliphatic, cycloaliphatic or araliphatic see polyamines.
  • Suitable chain extenders are, for example: Alkanediols such as ethanediol, 1,2- and 1,3-propanediol, 1,4- and 2,3-butanediol, 1,5-pentanediol, 1,3-dimethylpropanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane andimethanol, 2-methyl-1,3-propanediol, hexylene glycol, 2,5-dimethyl-2,5-hexanediol, ethylene glycol, 1, 2 or 1, 3-propanediol, 1, 2, 1, 3 or 1, 4-butanediol, 1, 2, 1, 3, 1, 4 or 1, 5-pentanediol, 1, 2, 1, 3, 1, 4, 1, 5 or 1, 6-hexanediol,
  • Alkanediols such as ethanediol, 1,2- and 1,3
  • Neopentyl hydroxypivalate neopentyl glycol, dipropylene glycol, diethylene glycol, 1, 2-, 1, 3- or 1, 4-cyclohexanediol, 1, 2-, 1, 3- or 1, 4-cyclohexanedimethanol, trimethylpentanediol, ethylbutylpropanediol, diethyloctanediols, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-methyl-1,3-propanediol, 2-phenyl-2-methyl-1,3-propanediol, 2-propyl 2-ethyl-1,3-propanediol, 2-di-tert-butyl-1,3-propanediol, 2-butyl-2-propyl-1,3-propanediol, 1-dihydroxymethylbicyclo [2.2.1] heptane, 2 ,
  • the polyol component and / or polyamine component may contain double bonds, which may be e.g. may result from long-chain, aliphatic carboxylic acids or fatty alcohols.
  • a functionalization with olefinic double bonds is z.
  • the polyol component and / or polyamine component are polypropylene diol, polypropylene triol, polypropylene polyol, polyethylene diol, polyethylene triol, polyethylene polyol, polypropylenediamine, polypropylenetriamine, polypropylene polyamine, polyTHF-diamine, polybutadiene diol, polyester estiol, polyester triol, polyester polyol, polyesterether diol, polyesterether triol, polyesterether polyol, more preferably polypropylenediol, polypropylenetriol, polyTHF- diol, polyhexanediolcarbamate diol, polycaprolactamdiol and polycaprolactamtriol. Furthermore, it may also be mixtures of the compounds mentioned.
  • the polyurethanes or polyureas contain polyols having a molecular weight between 1000 and 10000, in particular 2000 to 6000 and particularly preferably 3000 to 5000 g / mol.
  • These polyols are more preferably polyTHF-diol, polypropylene glycol and random copolymers and / or block copolymers of ethylene oxide and propylene oxide.
  • they may be polyether polyols, which in a preferred embodiment were prepared by DMC catalysis and in a particularly preferred embodiment by KOH catalysis.
  • the chain extenders used are diols having a molecular weight of from 60 to 500, in particular from 60 to 180, with the dioligomers of glycols being particularly preferred.
  • TDI polyurethanes or polyureas 2,4- and / or 2,6-tolylene diisocyanate
  • MDI 4,4'-, 2,4'- and or 2,2'-diphenylmethane diisocyanate
  • IPDI 1-is
  • the polyurethanes or polyureas of the present invention may also contain crosslinker components, chain stopper components, and other reactive components.
  • Some crosslinkers have already been listed among the chain extenders with at least three NCO-reactive hydrogens.
  • it may be glycerin, tetra (2-hydroxypropyl) ethylene diamine, pentaerythritol, trimethylol propane, sorbitol, sucrose, triethanolamine, and polymers having at least three reactive hydrogens (e.g., polyether amines having at least three amine groups, polymeric triols, etc.).
  • Suitable chain stoppers are in particular compounds with reactive hydrogens, such as monools, monoamines, monothiols and monocarboxylic acids.
  • monools are used, where C to C 12 alcohols (in particular methanol to dodecyl alcohol), higher alcohols,
  • Polymers such as polyethers and polyesters having an OH group and structural units such as glycerol or sucrose, in which all have been reacted to an OH group, wherein in the reaction, no further reactive hydrogens were introduced, can be used.
  • polyols having at least two OH groups and polycarbonates having at least two OH groups are preferably used as the polyol component.
  • Flowable systems containing polyurethanes may further contain stabilizing additives, eg for protection against UV radiation, oxidation, in particular, additives of the neck type are used. By way of example, this is called 4-amino-2,2,6,6-tetramethylpiperidine.
  • oxazolidines especially oxazolidines from diethanolamine and isobutylaldehyde or pivalaldehyde and / or aldimines from isophoronediamine, eg Incozol HP and Aldolester based aliphatic di- or trialdimines and imines such as Vestamin A139, low molecular weight aliphatic diamines such as hexanediamine and / or Polyetherpolyamine such as Jeffamine ® and isobutyraldehyde or pivalaldehyde and / or a polyamine such as hexamethylenediamine or a Jeffamine ® blocked with a Hydroxypivalaldehydester be used.
  • diethanolamine and isobutylaldehyde or pivalaldehyde and / or aldimines from isophoronediamine eg Incozol HP and Aldolester based aliphatic di- or trialdimines and im
  • the flowable system according to the invention contains polyurethanes or polyureas which have free isocyanate groups.
  • these are isocyanate-terminated prepolymers.
  • the isocyanate groups can react with water (including moisture from the atmosphere) to form amine groups which react with the isocyanate groups of the other polyurethane or polyurea molecules to form urea linkages thereby curing the flowable system ,
  • flowable systems comprising polyurea or polyurethane are designed as a two-component system.
  • the first component may contain a polyisocyanate and / or NCO prepolymer and the second component a polyol, polyamine and / or a chain extender. After mixing the two components, these two components react with each other, whereby the flowable system hardens.
  • polyurethane prepolymers and polyurea prepolymers are reacted with at least one suitable functionalized polymerizable compound containing double bond, such as, for example, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, 4-hydroxybutyl vinyl ether and isoprenol.
  • suitable functionalized polymerizable compound containing double bond such as, for example, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, 4-hydroxybutyl vinyl ether and isoprenol.
  • silylated polyurethanes and silylated polyureas these are composed of at least one polyol or polyamine component, of at least one polyisocyanate component and of at least one silylating agent. Component built.
  • polystyrene resin As the preferred polyol or polyamine component, as well as polyisocyanate component, all compounds mentioned for the preparation of the polyurethanes and polyureas already described are suitable. With regard to the silylating agent component contained are suitable
  • OR 2 is independently represented by an alkoxy group, wherein R 2 represents an alkyl group having one to 5 carbon atoms, for example, methyl, ethyl, iso-propyl, n-propyl, n-butyl, iso-butyl, sec-butyl and / or OR 2 is a phenoxy group, a naphthyloxy group, a phenoxy group which is substituted at the ortho, metha and / or para position, with a CT C 20 alkyl, alkylaryl, alkoxy, phenyl, substituted phenyl -, thioalkyl, nitro, halogen, nitrile, carboxyalkyl, carboxyamide, -NH 2 and / or NHR group, wherein R is a linear, branched or cyclic Ci-C 2 o alkyl group such as methyl, ethyl, propyl (n, iso), butyl (n, iso, sec-
  • silylating agent components contained in the silylated polyurethane or the silylated polyurea which are preferred for the purposes of the present invention, are in particular silanes of the general formula: where Y is represented by -NCO, -NHR, -NH 2 or -SH,
  • R is represented by an alkyl group or aryl group having from one to 20 carbon atoms, for example methyl, ethyl, isopropyl, n-propyl, butyl (n-, iso-, sec-), cyclohexyl, phenyl and naphthyl
  • R 1 is represented by a divalent hydrocarbon moiety of from one to 10 carbon atoms, eg ethylene, methylethylene
  • Me is represented by methyl
  • OR 2 is independently represented by an alkoxy group, wherein R 2 represents an alkyl group having one to 5 carbon atoms, for example methyl, ethyl, iso
  • Propyl, n-propyl, n-butyl, iso.Butyl, sec-butyl and / or OR 2 is a phenoxy group, a naphthyloxy group, a phenoxy group which is substituted at the ortho, metha and / or para position, with a C1 C20 alkyl, alkylaryl, alkoxy, phenyl, substituted phenyl, thioalkyl, nitro, halogen, nitrile, carboxyalkyl, carboxyamide, -NH2 and / or NHR group, wherein R is a linear, branched or cyclic C1-C20 alkyl group, for example methyl, ethyl, propyl (n-, iso.), butyl (n-, iso-, sec-) or phenyl, and
  • n is represented by 0, 1, 2 or 3.
  • mixtures of at least two of said compounds in the polymer can also be present as the silylating agent component.
  • the silylating agent component used is, in particular, alkoxysilanes containing amino groups or isocyanate groups.
  • Suitable amino-containing alkoxysilanes are, in particular, compounds selected from the group of 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 Aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-amino-2-methylpropyltrimethoxysilane, 4-aminobutyltrimethoxysilane, 4-aminobutylmethyldimethoxysilane, 4-amino-3-methylbutyltrimethoxysilane, 4-amino-3 , 3-dimethylbutyltrimethoxysilane, 4-amino-3, 3-dimethylbutyltrimethoxysilane, 4-amino-3,3-dimethylbutyldimethoxymethylsilane, aminomethyltrime
  • isocyanate groups as alkoxysilanes are particularly suitable compounds which are selected from the group consisting of ethoxysilane Isocyanatopropyltri-, isocyanatopropyltrimethoxysilane, isocyanatopropylmethyldiethoxysilane, isocyanatopropylmethyldimethoxysilane, isocyanatomethyltrimethoxysilane, methyltriethoxysilane isocyanato, Isocyanatomethylmethyldiethoxysilan, Isocyanatomethyl- dimethoxysilane, Isocyanatomethyldimethylmethoxysilan or thylethoxysilan Isocyanatomethyldime-, and their analogs having isopropoxy - or n-propoxy groups.
  • acrylates which can be used according to the invention in the flowable system are compounds which contain at least one monomer from the series of acrylic acid esters and methacrylic acid esters, preferably at least 70% by weight of the polymer consisting of at least one compound of the series of acrylic esters, methacrylates and the like. thacrylates and styrenes.
  • the monomers of the acrylate component are preferably at least one compound from the series Ethyldiglycolacrylat, 4-tert. Butylcyclohexyl acrylate, dihydrocyclopentadienyl acrylate, lauryl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, cyanoacrylates, citraconate, itaconate and their derivatives, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth ) acrylate, n
  • copolymers of at least two of all the abovementioned monomers are used, the ratio being selected in such a form that the copolymers obtained have the desired performance properties for the particular application.
  • the skilled worker is familiar with suitable copolymers having the desired performance properties.
  • copolymers of n-butyl acrylate and methyl methacrylate are preferred, which are used in a molar ratio in which the copolymer obtained has a glass transition temperature which lies between those of the corresponding homopolymers.
  • the acrylates of the present invention may be both copolymer and homopolymers.
  • the acrylic acid polymers can furthermore also contain other ethylenically unsaturated monomers, for example isoprenol or hydroxybutyl vinyl ether.
  • ethylenically unsaturated monomers for example isoprenol or hydroxybutyl vinyl ether.
  • mono- and polyunsaturated hydrocarbon monomers vinyl esters (for example vinyl esters of Cr to C6-saturated monocarboxylic acids), vinyl ethers, monoethylenically unsaturated monocarboxylic and polycarboxylic acids and alkyl esters of these mono- and polycarboxylic acids (for example acrylic esters and methacrylic esters such as d-bis C 12 -alkyl and in particular C 1 to C 4 -alkyl esters), amino monomers and nitriles, vinyl and alkylvinylidenes and amides of unsaturated carboxylic acids.
  • vinyl esters for example vinyl esters of Cr to C6-saturated monocarbox
  • unsaturated hydrocarbon monomers comprising styrene compounds (for example styrene, carboxylated styrene and ⁇ -methylstyrene), ethylene, propylene, butylene and conjugated dienes (butadiene, isoprene and copolymers of butadiene and isoprene).
  • styrene compounds for example styrene, carboxylated styrene and ⁇ -methylstyrene
  • ethylene propylene
  • butylene and conjugated dienes butadiene, isoprene and copolymers of butadiene and isoprene.
  • vinyl and halovinylidene monomers mention may be made of vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride.
  • vinyl esters examples include aliphatic vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl caproate and allyl esters of the saturated monocarboxylic acids such as allyl acetate, allyl propionate and allyl lactate.
  • vinyl ethers mention may be made of methyl vinyl ether, ethyl vinyl ether and N-butyl vinyl ether.
  • Typical vinyl ketones include methyl vinyl ketones, ethyl vinyl ketones and isobutyl vinyl ketones.
  • dialkyl esters of monoethylenically unsaturated dicarboxylic acids include dimethyl maleate, diethyl maleate, dibutyl maleate, dioctyl maleate, diisooctyl, Dinonylmaleat, Diisodecylmaleat, decylmaleat Ditri-, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, dibutyl fumarate, dioctyl tylfumarat, litaconat Diisooctylfumarat, Didecylfumarat, dimethyl itaconate, diethyl itaconate, and Dibuty- Dioctylitaconat.
  • the monoethylenically unsaturated monocarboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid and crotonic acid.
  • the monoethylenically unsaturated dicarboxylic acids include maleic acid, fumaric acid, itaconic acid and citric acid.
  • monoethylenically unsaturated tricarboxylic acids for example, aconitic acid and its halogen-substituted derivatives can be used in view of the present invention.
  • the anhydrides and esters of the abovementioned acids for example maleic anhydride and citric anhydride
  • nitriles of ethylenically unsaturated mono-, di- and tricarboxylic acids include acrylonitrile, ⁇ -chloroacrylonitrile and methacrylonitrile.
  • the amides of the carboxylic acids may be acrylamides, methacrylamides and other ⁇ -substituted acrylamides and N-substituted amides, for example N-methylolacrylamide, N-methylolmethylacrylamide, alkylated N-methylolacrylamides and N-methylolmethacrylamides (for example N-methoxymethylacrylamide and N-methoxymethylmethacrylamide).
  • amino monomers it is possible to use substituted and unsubstituted aminoalkyl acrylates, hydrochloride salts of the amino monomers and methacrylates such as ⁇ -aminoethyl acrylate, ⁇ -aminoethyl methacrylate, dimethylaminomethyl acrylate, ⁇ -methylaminoethyl acrylate and dimethylaminomethyl methacrylate.
  • o and ⁇ -ethylenically unsaturated compounds which are suitable for the polymerization and contain primary, secondary or tertiary amino groups, for example dimethylaminoethyl methacrylate, dimethylaminoneopentyl acrylate, dimethylamino-propyl methacrylate and tert-butylaminoethyl methacrylate, or organic and organic compounds, may be mentioned with regard to the cationic monomers inorganic salts of these compounds and / or alkylammonium compounds such as trimethylammoniumethyl methacrylate chloride, diallyldimethylammonium chloride, .beta.-acetamidoethyldiethylaminoethylacrylate chloride and methaacrylamidopropyltrimethylammonium chloride.
  • cationic monomers can be used alone or in combination with the aforementioned other monomers.
  • hydroxy-containing monomers are the ⁇ -hydroxyethyl (meth) acrylates, ⁇ -hydroxypropyl (meth) acrylates, Y-hydroxypropyl (meth) acrylates and so on.
  • the silyl-terminated acrylates which can be used according to the invention in the flowable system are composed of at least one acrylate component and at least one silyl component.
  • the silyl-terminated acrylates can be obtained, for example, from the reaction of alkenyl-terminated acrylates by hydrosilylation, where the alkenyl-terminated acrylates can be prepared by atom transfer radical polymerization (ATRP) or from the reaction of alkenyl-terminated acrylates with a silyl group-containing acrylate Monomer, wherein the alkenyl-terminated acrylates prepared via atom transfer Radical Polymerization (ATRP) can be.
  • ATRP atom transfer radical polymerization
  • Suitable monomers for the construction of the acrylate component are all compounds mentioned for the preparation of the polyacrylates already described.
  • the silyl component used is in particular trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, hexamethyldisilazane, trichlorosilane, methyldichlorosilane, dimethylchlorosilane, phenyldichlorosilane and trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane and Phenyldimethoxysilane and also methyldiacetoxysilane, phenyldiacetoxysilane, bis (dimethylketoxymate) methylsilane and bis (cyclohexylketoxymate) methylsilane.
  • the halosilanes and alkoxylsilanes are preferred.
  • the silyl component is bound to the acrylate component by a monomer containing silyl groups, the silyl component used is in particular 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth ) acryloxypropylmethyldiethoxysilane, (meth) acryloxymethyltrimethoxysilane, (meth) acryloxymethyl-methyldimethoxysilane, (meth) acryloxymethyltriethoxysilane, (meth) acryloxymethyl-methyldiethoxysilane.
  • the silyl-terminated acrylates according to the invention have a weight-average molecular weight between 500 and 200,000 g / mol, more preferably between 5,000 and 100,000 g / mol.
  • polysulfides which can be used according to the invention in the flowable system are organic polymers which have sulfide bridges in the polymer.
  • it may be a product of the reaction of an organic dihalogenide with sodium disulfide.
  • organic dihalides mention may be made of aliphatic dihalides (for example bis-chloroethylformal) and vinyl halides.
  • the reaction of bis-chloroethyl formal with a sodium disulfite solution leads to a polymer of the following structure:
  • n represents the number of monomers in the polymer and "x” represents the number of consecutive sulfide bridges in the monomer (x may vary in the monomers of the same molecule).
  • Such high molecular weight polymers can then be converted into shorter-chain polymers having terminal thiol groups (for example by reductive reaction with NaSH and Na 2 SO 2 and subsequent acidification). In this way, liquid bridged polysulfides with terminal thiol end groups are obtained, which in specific embodiments have a molecular weight in the range of 1000 to 8000.
  • the liquid polymers can then be cured to elastomeric solids, for example by the oxidation of the thiol end groups to disulfide bridges using an oxidation reagent such as lead oxide, manganese dioxide, parachinone dioxime and zinc peroxide.
  • an oxidation reagent such as lead oxide, manganese dioxide, parachinone dioxime and zinc peroxide.
  • the flowable systems based on polysulfide all polysulfide polymers, which can be converted by curing in a solid.
  • the fluid systems based on polysulfide comprise 30 to 90% by weight of at least one liquid polysulfide polymer, 2 to 50% by weight of a filler, 2 to 10% by weight of a cyclohexanepolycarboxylic acid derivative, 1 to 3% by weight .-% of a water scavenger and between 6 and 15 wt .-% of other ingredients such as Adhesionspromoto- ren, solvents and hardeners.
  • An example of the preparation of a flowable system based on polysulfide is disclosed in US Pat. No. 3,431,239 (column 3, line 20 to column 8, line 45), this method being incorporated by reference into the present application.
  • Flowable systems based on polysulfide can be used as one- or two-component systems.
  • the preferred silylated polysulfides which can be used according to the invention are composed of at least one polysulfide component and at least one silylating agent component and are preferably represented by the following simplified formula:
  • silylated polysulfides preferably to be used according to the present invention
  • the silylated polyethers which can be used according to the invention in the flowable system are composed of at least one polyether component and at least one silylating agent component.
  • flowable systems in particular building sealants on the market, which contain so-called MS-Polymer ® from. Kaneka and / or Excestar Fa. Asahi Glass Chemical, where "MS” stands for "modified silicone”.
  • MS-Polymer ® from. Kaneka and / or Excestar Fa. Asahi Glass Chemical, where "MS” stands for "modified silicone”.
  • These silyl-terminated polyethers are particularly suitable for the present invention.
  • These are polymers consisting of silane terminated polyether chains made by hydrosilylation of terminal double bonds.
  • the silane end groups consist of a silicon bound to the polyether chain, to which two alkoxy groups and one alkyl group or three alkoxy groups are bonded. Upon reaction with moisture, the alkoxy groups hydrolyze to alcohols and the resulting Si-OH groups
  • Suitable polyether components for the silyl-terminated polyethers include the polyols prepared from starter molecules of styrene oxide, propylene oxide, butylene oxide, tetrahydrofuran or epichlorohydrin. Particularly suitable are polypropylene oxide, polybutylene oxide, polyethylene oxide and tetrahydrofuran or mixtures thereof. In this case, in particular molecular weights between 500 and 100,000 g / mol, especially 3000 and 20,000 g / mol are preferred. To introduce the double bonds, the polyether is reacted with organic compounds containing a halogen atom selected from the group chlorine, bromine or iodine and a terminal double bond.
  • Allyl chlorides, allyl bromides, vinyl (chloromethyl) benzene, allyl (chloromethyl) benzene, allyl (bromomethyl) benzene, allyl (chloromethyl) ether, allyl (chloromethoxy) benzene, butenyl (chloromethyl) ether, 1, are particularly suitable for this purpose.
  • 6-Vinyl (chloromethoxy) benzene, in particular allyl chloride is preferably used.
  • the polyethers having terminal double bonds thus obtained are reacted by hydrosilylation to the silyl-terminated polyethers.
  • Particularly suitable hydrosilylating agents are trichlorosilane, methyldichlorosilane, dimethylchlorosilane, phenyldichlorosilane and trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane and phenyldimethoxysilane, and also methyldiacetoxysilane, phenyldiethoxysilane, bis (dimethylketoxymate) methylsilane and bis (cyclohexylketoxymate) methylsilane.
  • the halosilanes and alkoxylsilanes are preferred.
  • the flowable system may further contain at least one component from the series fillers, plasticizers, adhesion promoters, catalysts, UV stabilizers, dry solids tel and rheology modifiers. Specifically, these may include the following components:
  • Adhesion promoters for example epoxysilanes, anhydridosilanes, adducts of silanes with primary aminosilanes, ureidosilanes, aminosilanes, diamino silanes, and their analogs as monomer or oligomer and urea silanes; e.g. Dynasylan AMEO, Dynasylan AMMO, Dynasylan DAMO-T, Dynasylan 1 146, Dynasylan 1 189, Silquest A-Link 15, Epoxy resins, alkyl titanates, titanium chelates, aromatic polyisocyanates, phenolic resins; for example, the general formula:
  • R 1, R 2 and R 3 independently of one another are halogen, amine, hydrogen, alkoxy, acyloxy, alkyl, aryl, aralkyloxy, alkylaryl, aralkyl groups and
  • Alkylaryl together with olefinic groups, halides, amino, carbonyl, epoxy and glycidoxy, ester, hydroxyimino, mercapto and sulfido, isocyanato, An hydrido, acryloxy, metharyloxy and vinyl groups and
  • R 4 correspond to alkyl and aryl.
  • Desiccant z Vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -functional silanes such as N- (silylmethyl) -0-methyl-carbamates, in particular N- (methyldimethoxysilylmethyl) -0-methyl-carbamate, (methacryloxymethyl) silanes, methoxymethylsilanes, N-phenyl-, N-cyclohexyl and N-alkylsilanes, orthoformic acid esters, calcium oxide or molecular sieve;
  • silanes such as N- (silylmethyl) -0-methyl-carbamates, in particular N- (methyldimethoxysilylmethyl) -0-methyl-carbamate, (methacryloxymethyl) silanes, methoxymethylsilanes, N-phenyl-, N-cyclohexyl and N-alkylsilanes, orthoformic acid esters, calcium oxide or molecular sieve;
  • Catalysts for example, metal catalysts in the form of organotin compounds such as dibutyltin dilaurate and dibutyltin diacetylacetonate, bismuth organic compounds or bismuth complexes; amino-containing compounds, for example 1, 4-diazabicyclo [2.2.2] octane and 2,2'-dimorpholinodiethyl ether, 1, 8 Diazabicyclo [5.4.0] undec-7-ene, 1, 5-diazabicyclo [4.3.0] non-5-ene, ⁇ , ⁇ '-dimethylpiperazines and aminosilanes.
  • suitable metal catalysts are titanium, zirconium, bismuth, zinc and lithium catalysts as well as metal carboxylates, it also being possible to use combinations of different metal catalysts;
  • Light and aging inhibitors which act in particular as stabilizers against heat, light and UV radiation, for example phenolic antioxidants which act as radical scavengers, such as 2,6-di-tert-butyl-p-cresol, 2,6-di-tert-butyl butylphenol, 2,4-dimethyl-6-tert-butylphenol, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidene bis (3-methyl-6-tert -butylphenol), 4,4'-thio-bis (3-methyl-6-tert-butylphenol), 5-tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane and 1, 1, 3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butanes and antioxidants based on amines (for example phenyl- ⁇ -naphthylamine, ⁇ -
  • Flame retardants e.g. Al (OH) 3, huntite, brominated alkyl and aryl compounds, magnesium hydroxide, ammonium polyphosphate
  • Biocides such as, for example, algicides, fungicides or fungal growth-inhibiting substances, eg Ag, Ag + , CH2O-releasing compounds
  • Fillers e.g. Ground or precipitated calcium carbonates, which are optionally coated with fatty acids or fatty acid mixtures, e.g. Stearates, in particular finely divided coated calcium carbonate, carbon blacks, in particular industrially produced carbon blacks, kaolins, aluminum oxides, silicic acids, in particular finely divided silica from pyrolysis processes, PVC powder or hollow spheres.
  • Preferred fillers are carbon black, calcium carbonates, such as, for example, precipitated or natural chalk types such as Omya 5 GU, Omyalite 95 T, Omyacarb 90 T, Omyacarb 2 T-AV® from the company.
  • minerals such as silica, talc, calcium sulfate (gypsum) in the form of anhydrite, hemihydrate or dihydrate, silica flour, silica gel, precipitated or natural barium sulfate, titanium dioxide, zeolites, leucite, potassium feldspar, biotide, the group of soro-, cyclo-, Ino-, phyllo- and hectosilicates, the group of sparingly soluble sulfates such as gypsum, anhydrite or barite (BaSO 4) as well as calcium minerals such as calcite, powdered metals (for example aluminum, zinc or iron) and barium sulfate.
  • gypsum calcium sulfate
  • CaSO 4 calcium sulfate
  • Rheology modifiers such as thickeners, e.g. B. urea compounds and monoamines, for example n-butylamine, methoxybutylamine and polyamide waxes, bentonites, silicones, polysiloxanes, hydrogenated castor oil, metal soaps such as calcium stearate, aluminum stearate, barium stearate, precipitated silica, fumed silica and poly (oxy-1, 2-ethanediyl ) -a-hydro-Q-hydroxy-polymer with oxy-1,2-ethanediyl-a-hydro-Q-hydroxy-nonyl-phenoxyglycidyl ether oligomers and 5-isocyanato-1 - (isocyanatomethyl) -1,3,3 trimethylcyclohexane or hydroxyethylcellulose or polyacrylic acid polymers and copolymers; Surfactants such as wetting agents, leveling agents, deaerators, defoamers and dis
  • Fibers for example of carbon, polyethylene or polypropylene, S1O2, cellulose; Pigments, for example titanium dioxide;
  • Solvents such as water, solvent naphtha, methyl esters, aromatic hydrocarbons such as polyalkylbenzenes, toluene and xylene, solvents based on esters such as ethyl acetate, butyl acetate, allyl acetate and cellulose acetate and solvents based on ketones such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone and acetone and mixtures of at least two of the aforementioned solvents;
  • Plasticizers for example di-2-ethylhexyl terephthalate, diisononylcyclohexane-1,2-dicarboxylate, glycerol triacetate (triacetin), 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, phthalic acid esters such as dioctyl phthalate, di-2-ethylhexyl phthalate (DEHP) , Diisooctyl phthalate (DIOP), diisononyl phthalate (DINP), di-n-nonyl phthalate, n-nonyl-n-undecyl phthalate, di-n-undecyl phthalate, di-undecyl phthalate (DUP), diisodecyl phthalate (DIDP), di-2-propylheptyl phthalate (DPHP ), Phthalates having linear C 6 to C 10 radicals,
  • DHP diheptyl phthalate
  • Plasticizers may also be esters of an aliphatic or aromatic di- or tricarboxylic acid with a do-alcohol component containing 2-propylheptanol or a Cio-alcohol mixture of 2-propylheptanol and at least one of the C10-alcohols 2-propyl-4-methyl-hexanol, 2-propyl 5-methyl-hexanol, 2-isopropyl-heptanol, 2-isopropyl-4-methyl-hexanol, 2-isopropyl-5-methyl-hexanol and / or 2-
  • Propyl-4,4-dimethylpentanol be used, wherein the aliphatic or aromatic di- or tricarboxylic acid is selected from the group consisting of citric acid, phthalic acid, isophthalic acid, terephthalic acid and trimellitic acid; as well as other substances used in flowable systems.
  • Another object of the present invention are flowable systems which result from the use described above.
  • this is an adhesive or sealant, coating material or coating.
  • the mixture of a) containing at least one amine and ß) containing at least one isocyanate is comminuted in an apparatus after leaving the mixing device.
  • mills such as ball mills, extruders, perforated disc mills, tooth colloid mills or a three-roll mill are suitable as apparatus for comminution.
  • the thixotropic agent can in this case be obtained in a form which has very high active substance contents and is characterized by a very good processability in terms of application technology.
  • the method is suitable for obtaining a powdery product having a very high content of thixotropic agent.
  • the comminuted product can subsequently be introduced, for example, into a flowable system. Also in this case it is possible, as already described, to use the product according to the invention both in a discontinuous and continuous process for the preparation of a flowable system.
  • Another object of the present invention are also flowable systems, which result from the use described above. Especially this is an adhesive or sealant, coating material or coating.
  • thixotropic agents based on a urea derivative are made available with the proposed method, it being possible largely to dispense with a carrier material.
  • the process is economical, provides good product quality and can be used flexibly.
  • the product obtained can be used for the production of flowable systems.
  • the present invention will be described in more detail below with reference to exemplary embodiments.
  • 1/3 Desmoseal M 280, plasticizer, Omyacarb 5 GU, and 2/3 additives Ti are introduced and mixed together at a temperature of 25 ° C in a vacuum, then the thixotropic agent is introduced. Afterwards 2/3 Desmoseal M 280 are added. In the last step Dynasylan GLYMO, 1/3 additive Ti and Lupranat N 106 DMDEE are added and mixed. The sealant is filled in aluminum or plastic cartridges.
  • Desmoseal M 280 polyurethane binder from Bayer MaterialScience AG
  • Palatinol 10-P di-2-propylheptylphthalate from BASF SE
  • Omyacarb 5 GU ground chalk of Omya Inc.
  • Dynasylan GLYMO 3-Glycidyloxypropyltrimethoxysilane from Evonik Degussa GmbH Lupranat N 106 DMDEE: 2,2'-dimorpholinyl diethyl ether from BASF SE
  • the thixotropic agent is prepared by means of a high-pressure spray system of Isotherm AG (dosing system PSM 700, mixing head: RSP 400), the following components are introduced gravimetrically in a ratio of 1: 1 in the mixing head and sprayed directly into the sealant-containing mixing container with stirring.
  • Palatinol 10-P di-2-propylheptyl phthalate from BASF SE
  • the distance between the outlet opening of the mixing head and the sealant is approximately 10 cm.
  • the flow rate is 60 g / s.
  • the two components are discharged from the mixing head at a pressure of 120 bar.
  • the amount of thixotropic agent sprayed in is such that the sealant ultimately contains 15% by weight of the thixotropic agent.
  • the sealant is filled into cartridges.
  • urea thixotropic agent To prepare a urea thixotropic agent, the following components are sprayed gravimetrically in a ratio of 1: 1 onto a three-roll mill by means of a high-pressure spray system from Isotherm AG (dosing system PSM 700, mixing head: RSP 400).
  • the flow rate is 40 g / s.
  • the two components are discharged from the mixing head at a pressure of 90 bar. Subsequently, so much of the prepared thixotropic agent is introduced into the above-described sealant that it contains 15% by weight of the thixotropic agent at the end. The sealant is then filled into cartridges.
  • urea thixotropic agent To prepare a urea thixotropic agent, the two components are added in a ratio of 1: 1 by means of a metering pump in a planetary mixer together.
  • the planetary gear rotates the dissolver disk at 500 RPM and the beam mixer at 150 RPM at a constant speed of 50 RPM.
  • n-butylamine mixture of isomers Palatinol 10-P
  • the product can not be produced by this production process.
  • the mixing of the reactants is not guaranteed because as soon as the starting materials meet a solid mass is formed, which can not be stirred further.
  • the yield is ⁇ 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Sealing Material Composition (AREA)
  • Paints Or Removers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Thixotropiermittels auf Basis eines Harnstoffderivates, wobei die Komponenten α) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat, getrennt einer Mischeinrichtung zuführt und miteinander vermischt werden, wobei die Reaktionsmischung durch Sprühen oder Spritzen aus der Mischeinrichtung ausgetragen wird. Weiterhin wird die Verwendung des Thixotropiermittels in einem fliessfähigen System offenbart. Insbesondere eignet sich das Verfahren zur Herstellung von Kleb- und Dichtstoffen.

Description

Verfahren zur Herstellung eines Thixotropiermittels und dessen Verwendung Beschreibung Die Erfindung betrifft ein Verfahren zur Herstellung eines Thixotropiermittels sowie das Einbringen des Thixotropiermittels in ein fließfähiges System. Insbesondere eignet sich das Verfahren zur Herstellung von Kleb- und Dichtstoffen.
Thixotropie ist die Eigenschaft bestimmter Mehrstoffsysteme, unter mechanischer Be- anspruchung, bspw. Rühren, Schütteln oder unter Einwirkung von Ultraschall, an Viskosität zu verlieren und nach der mechanischen Beanspruchung wieder in ihren ursprünglichen Zustand zurückzukehren. Derartige Eigenschaften sind in vielen Anwendungen erwünscht, insbesondere in Überzugsmassen wie Lacken und Farben als auch in Kleb- und Dichtstoffen.
Für den Einsatz als Thixotropiermittel sind bereits eine Vielzahl von Verbindungen bekannt. Häufig kommen aufgrund ihres niedrigen Rohstoffpreises anorganische Füllstoffe, wie z. B. Ruß, Aerosil und sehr feine oder chemisch modifizierte Pigmente zum Einsatz. Die Thixotropierung mit solchen Füllstoffen bewirkt jedoch meistens eine Viskosi- tätserhöhung und kommt deshalb insbesondere für die Herstellung von maschinell verarbeiteten Massen in Betracht. Für die Handverarbeitung, z. B. unter der Verwendung von Kartuschen, werden die Massen bevorzugt durch organische Thixotropiermittel standfest eingestellt, da diese praktisch keine Viskositätserhöhung bewirken. Als organische Thixotropiermittel sind bspw. Amidwachse, Seifen und hydrolysierte Rizinusöle bekannt, wobei sich insbesondere Harnstoffderivate als besonders vorteilhaft erwiesen haben.
Die als Thixotropiermittel verwendeten Harnstoffderivate werden in der Regel aus Iso- cyanaten und Aminen hergestellt, wobei die Reaktion stark exotherm verläuft. Um auf- grund der hohen Wärmeentwicklung eine Zersetzung des gebildeten Produkts zu vermeiden, werden die Ausgangskomponenten in verdünnter Form miteinander zur Reaktion gebracht, wobei das Lösungsmittel insbesondere zur Abführung der gebildeten Wärme dient. Als Lösungsmittel sind insbesondere inerte Trägermaterialien geeignet, bspw. Kohlenwasserstoffe, Öle oder Weichmacher.
So beschreibt die DE 18 05 693 die Herstellung einer thixotropen Überzugsmasse, welche aus einer größeren Menge eines Grundüberzugs aus Lack oder einer Anstrichfarbe besteht und zu einem kleineren Teil aus einer Menge Harnstoff, welche durch eine in situ Reaktion eines aliphatischen Amins mit dem Isocyanat erzeugt wird. Dies hat jedoch den Nachteil, dass die inerten Trägerstoffe nach der Einarbeitung des Thixotropiermittels in die Überzugsmassen migrieren können. Dies kann je nach Gegebenheit verschiedene Auswirkungen haben: beispielsweise einen Haftverlust im Falle eines Klebstoffes, abhängig von den austretenden Substanzen eine gesundheitliche Gefährdung von Menschen oder eine optische Beeinträchtigung von saugfähigen Untergründen. In EP 1 152 019 wird deshalb für den Einsatz von Thixotropiermitteln in Kleb- und Dichtstoffen vorgeschlagen, das Trägermaterial des Thixotropiermittel so zu wählen, dass es bei der Vernetzung mit der Strukturmatrix verwoben wird oder eine ausgeprägte Verträglichkeit zum gesamten System aufweist oder in die Strukturmatrix eingebaut wird und demzufolge nicht mehr aus dem gehärteten Material hinaus diffundieren kann. Dies hat jedoch den Nachteil, dass das Trägermaterial des Thixotropiermittels der jeweiligen Anwendung exakt angepasst werden muss. Hierbei ist es häufig schwierig, ein Trägermaterial zu finden, welches vollständig in die Strukturmatrix des entsprechenden Systems eingebaut wird und zum anderen bei der Herstellung des Harnstoffderivates hinreichend inert ist.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein prozessual flexibles und wirtschaftliches Verfahren zur Herstellung von Thixotropiermitteln auf Basis eines Harnstoffderivates bereitzustellen, welches weitgehend auf ein Trägermaterial für das Harnstoffderivat verzichten kann und darüber hinaus eine gute Produktqualität liefert.
Die Lösung der Aufgabe ist ein Verfahren zur Herstellung eines Thixotropiermittels auf Basis eines Harnstoffderivates, wobei die Komponenten a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat getrennt einer Mischeinrichtung zuführt und miteinander vermischt werden, wobei die Reaktionsmischung durch Sprühen oder Spritzen aus der Mischeinrichtung austragen wird.
In einer bevorzugten Ausführungsform ermöglicht die Mischeinrichtung, in der das erfindungsgemäße Verfahren durchgeführt wird, eine Prozessführung, bei der die Komponente a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocya- nat nach dem Vermischen nur eine sehr kurze Verweilzeit in der Mischapparatur aufweisen. Bevorzugt beträgt die Verweilzeit der Komponenten nach dem Eintritt in die Mischeinrichtung weniger als 2 Sekunden, insbesondere weniger als 1 Sekunde und besonders bevorzugt weniger als 0,5 Sekunden. In einer besonderen Ausführungsform umfasst die Mischeinrichtung eine Kammer mit mindestens zwei Öffnungen, durch welche die Komponenten a) und ß) in die Kammer eingebracht werden können. Des Weiteren besitzt die Kammer einen Auslass, aus welchem die erzeugte Reaktionsmischung die Mischeinrichtung verlassen kann. Die Mischeinrichtung umfasst ein Verschlusselement, welches in der Kammer verschiebbar angeordnet ist und in Abhängigkeit von seiner Stellung die Öffnung, durch welche die Komponenten a) und ß) in die Kammer eingebracht werden, teilweise oder vollständig absperrt. In einer bevorzugten Ausführungsform wird die Verschlusseinrichtung mittels eines elektrischen oder pneumatischen Antriebs bewegbar ausgeführt. Es ist als bevorzugt anzusehen, dass sowohl die Kammer als auch das Verschlusselement einen kreisförmigen Querschnitt aufweisen. In einer besonderen Ausführungsform ist der Auslass der Kammer als Zerstäubungsdüse ausgebildet oder es ist dem Auslass eine Zerstäubungsdüse direkt nachgeschaltet.
Sprühköpfe sind im Rahmen der vorliegenden Erfindung als Mischeinrichtungen besonders geeignet. Bei dem Sprühkopf kann es sich insbesondere um eine Zweikomponenten-Sprühpistole handeln.
Geeignete Mischeinrichtungen sind beispielsweise Hochdrucksprühanlagen der Isotherm AG, insbesondere Dosieranlage PSM 700 in Verbindung mit dem Mischkopf RSP 400. Die Komponenten gelangen hierbei durch Hohlschrauben an die rein metallisch abgedichtete Mischkammer, wo sie mit bis zu 200 bar an der Düsennadel anste- hen. Bei Mischkopfbetätigung wird die Düsennadel hinter die Injektoren gezogen. Die Komponenten prallen mit hoher Geschwindigkeit aufeinander und werden intensiv vermischt. Rückschlagventile in den Hohlschrauben verhindern ein Überströmen von einer Seite zur anderen. Bei Beendigung trennt die Düsennadel die beiden Komponentenströme und das verbleibende Restgemisch wird rein mechanisch aus der Mischkam- mer ausgestoßen.
Als besonders vorteilhaft hat es sich erwiesen, wenn die Komponenten a) und ß) mit einem Druck von mindestens 40 bis 200 bar in die Mischeinrichtung eingebracht werden. Insbesondere ist ein Druck von 80 bis 120 bar als besonders bevorzugt anzuse- hen. Durch eine geeignet Wahl des Drucks der Komponenten a) und ß) lässt sich hierbei auch in einfacher Weise das Mischungsverhältnis zueinander einstellen. Grundsätzlich können die erfindungsgemäßen Komponenten a) und ß) je nach eingesetztem Rohstoff in weiten Verhältnisbereichen miteinander gemischt werden. Es wird jedoch empfohlen, dass das Molverhältnis der Amingruppen der Amin enthaltenden Kompo- nente zu den Isocyanatgruppen der Isocyanat enthaltenden Komponente 5 : 1 bis 1 : 5 beträgt, wobei ein Mischungsverhältnis von 1 : 1 besonders bevorzugt ist. Die Komponente a) enthaltend mindestens ein Amin und die Komponente ß) enthaltend mindestens ein Isocyanat sollen im Rahmen der vorliegenden Erfindung vorzugsweise einen Gehalt von mindestens 50 Gew.-% Amin oder einer Mischung von Aminen bzw. einen Gehalt von mindestens 50 Gew.-% Isocyanat oder einer Mischung von Isocyanaten enthalten. In einer Ausführungsform wird die Umsetzung von a) Amin mit ß) Isocyanat in Abwesenheit von Lösungsmitteln durchführt.
Die Chemie der Herstellung von Harnstoffderivaten ist bekannt (siehe z. B. DE 18 05 693) und basiert bevorzugt auf der Umsetzung eines aliphatischen Amins, wie z. B. Hexylamin, mit einem aromatischen monomeren Diisocyanat wie z. B. 4,4'- Diphenylmethylendiisocyanat (= MDI). Erfindungsgemäß kann es sich bei dem Amin der Komponente a) insbesondere um N- n-Alkyl- und/oder N-n-Alkenyl- und/oder sekundäres N-Alkylamin mit 1 bis 22 Kohlenstoffatomen und/oder Polyetheramine handeln. Als konkrete Beispiele für Amine der Komponente a) seien hier n-Butylamin, 3-Methoxypropylamine, Polyetheramin D 230, Tridceylamin, iso-Butylamin, tert-Butylamin, sec-Butylamin, n-Octylamin, 2- Ethylhexylamin, Di-(2-ethylhexyl)amin, Dibutylamin, Dicyclohexylamin, Diethylamin, Dihexylamin, Dimethylethylamin, Dipropylamin, Ditridecylamin, Hexylamin, Isopropyla- min, Monomethylamin, N-Etyl-N-propylamin, Propylamin, Tridecylamin Isomerenge- misch, n-Pentylamin, n- Heptylamin, 1 -Phenylethylamin, 2,6-Xylidin, 2- Phenylethylamin, Aniline, Benzylamin, 2-Methoxyethylamin, 3-(2- Ethylhexoxy)propylamin, 3-Ethoxypropylamin, Di-(2-methoxyethyl)amin, 2- (Diethylamino)ethylamin), 2-(Diisopropylamino)ethylamin, 3-
(Dimethylamino)propylamin, 3-(Methylamino)propylamin, 1 -Methoxy-2-propylamin, 2- Methoxyethylamin und 2-(Dimethylamino)ethylamin genannt. Insbesondere sind n- Butylamin und 3-Methoxypropylamin bevorzugt.
Bei dem Isocyanat der Komponente ß) kann es sich insbesondere um Hexamethylen- diisocyanat-1 ,6 (HDI), Desmodur N 3600® (Produkt der Bayer AG, Polyisocyanat ent- haltend HDI Isocyanurate, NCO-Gehalt: 23,4 Gew.-%, Viscosität 1200 mPa/s bei 23°C), 1 -lsocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI) und/oder 4,4'-, 2,4'- und/oder 2,2'- Diphenylmethandiisocyanat (MDI), m-Xylendiisocyanat (MXDI), m- oder p- Tetramethylxylendiisocyanat (m-TMXDI, p-TMXDI), 4,4'- Dicyclohexylmethandiisocyanat (H12MDI), Naphthalin-1 ,5-Diisocyanat, Cyclohexan- 1 ,4-diisocyanat, hydriertes Xylylen-diisocyanat (H6XDI), 1 -Methyl-2,4-diisocyanato- cyclohexan, Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4-diisocyanat, 1 ,6- Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, 1 - lsocyanato-1 -methyl-4(3)-isocyanatomethylcyclohexan (IMCI) sowie 1 ,12- Dodecandiisocyanat (C12DI) oder deren Mischungen handeln. Insbesondere sind 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethandiisocyanat (MDI) oder deren Mischungen bevorzugt.
Abgesehen davon, dass die Aufgabenstellung in Bezug auf sämtliche Vorgaben voll- ständig erfüllt werden konnte, hat sich überraschenderweise herausgestellt, dass die erfindungsgemäße Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung sehr vielfältig verwendet werden kann. In einer besonderen Ausführungsform der Erfindung wird die Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung durch Aufsprühen, Aufspritzen, Einspritzen oder Einsprü- hen in ein fließfähiges System eingebracht. Hierbei kann die Herstellung des fließfähigen Systems kontinuierlich oder diskontinuierlich betrieben werden.
Die vorliegende Erfindung betrifft somit auch die Verwendung der Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat, wobei diese nach dem Verlassen der Mischeinrichtung durch Aufsprühen oder Aufspritzen in ein fließfähiges System eingebracht werden kann. Hierbei ist es möglich, den Abstand zwischen der Austrittsöffnung der Mischeinrichtung und dem fließfähigen System in weiten Bereichen frei zu wählen. Besonders bevorzugt ist ein Abstand von 1 cm bis 5 m und insbesondere 5 cm bis 3 m anzusehen. In Abhängigkeit von den chemischen Eigenschaften des fließfähigen Systems kann es vorteilhaft sein, den Abstand so zu wählen, dass der Umsetzungsgrad von a) Amin mit ß) Isocyanat vor dem Kontakt mit dem fließfähigen System möglichst hoch ist. Hierdurch kann eine Reaktion der noch nicht umgesetzten, in der erfindungsgemäßen Mischung enthaltenen Amine oder Iso- cyanate, mit Komponenten des fließfähigen Systems verhindert werden. Bevorzugt beträgt der Umsetzungsgrad von a) Amin mit ß) Isocyanat beim Aufsprühen oder Aufspritzen vor dem Kontakt mit dem fließfähigen System mindestens 75 %, insbesondere mindestens 90% und besonders bevorzugt mindestens 99 %, ggf. bezüglich der im Unterschuss eingesetzten Komponente.
Es hat sich aber überraschend ergeben, dass es bei vielen fließfähigen Systemen auch möglich ist, die erfindungsgemäß erzeugte Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung direkt in das fließfähige System einzubringen. Trotz der in der Regel kurzen Reaktionszeit von a) Amin mit ß) Isocyanat sind die Nebenreaktionen mit dem fließfähigen System zu vernachlässigen und beeinflussen die Eigenschaften des Produktes nicht wesentlich. Bei dieser besonderen Ausführungsform wird der Auslass der Mischeinrichtung in das fließfähigen System platziert, wobei die erfindungsgemäße Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung direkt in das fließfähige System eingespritzt oder eingesprüht wird.
Die erfindungsgemäße Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat kann nach dem Verlassen der Mischeinrichtung so- wohl in einem kontinuierlichen als auch in einen diskontinuierlichem Prozess für die Herstellung eines fließfähigen Systems verwendet werden. Für die kontinuierliche Herstellung eigenen sich insbesondere Extruder, in welchen die erfindungsgemäße Mischung aus a) und ß) nach dem Verlassen der Mischeinrichtung durch Aufsprühen, Aufspritzen, Einspritzen oder Einsprühen kontinuierlich bei der Herstellung eines fließ- fähigen Systems eingebracht wird. Es ist aber auch möglich, die erfindungsgemäß erzeugte Mischung in einem diskontinuierlichen Prozess für die Herstellung eines fließfähigen Systems zu verwenden. Als Mischeinrichtungen eignen sich alle dem Fachmann hierfür bekannten Vorrichtungen, insbesondere kann es sich um einen statischen Mischer, Pressmischer, Planetenmi- scher, horizontalen Turbulentmischer (Drais GmbH), Planetendissolver bzw. Dissolver und Intensivmischer handeln. Die erfindungsgemäße Mischung aus a) und ß) wird nach dem Verlassen der Mischeinrichtung durch Aufsprühen, Aufspritzen, Einspritzen oder Einsprühen eingebracht. Es ist als bevorzugt anzusehen, dass das Thixotropiermittel in das fließfähige System in einer Menge von 0,05 bis 40 Gew.-%, bezogen auf die gesamte Masse des fließfähigen Systems eingebracht wird, bevorzugt in einer Menge von 5 bis 30 Gew.-% und insbesondere 10 bis 20 Gew.-%. In einer besonderen Ausführungsform kann das fließfähige System mindestens ein härtbares Bindemittel enthalten. Bei den härtbaren Bindemitteln kann es sich insbesondere um Epoxide, Polyurethane, Acrylate, silylierte Polyurethane, silylierte Acrylate, silylierte Polyharnstoffe, silyl-terminierte Polyether und silylierte Polysulfide handeln. Zu unterscheiden sind hierbei Einkomponenten- (1 K) und Zweikomponenten-Systeme (2K). 1 K-Systeme binden beispielsweise durch chemische Reaktionen des Bindemittels mit der Umgebungsfeuchtigkeit ab. 2K-Systeme können darüber hinaus durch chemische Reaktionen der vermischten Komponenten unter kontinuierlicher Verfestigung abbinden. Bevorzugt handelt es sich bei dem erfindungsgemäßen fließfähigen System um ein Einkomponenten-System. Es kann aber auch vorteilhaft sein, das erfin- dungsgemäße System als ein Zweikomponenten-System auszuführen. Hierbei enthält die eine Komponente das Bindemittel, während die zweite Komponente beispielsweise einen Katalysator oder mikronisiertes Wasser als Booster enthält, der die Aushärtung des Systems beschleunigt. Hinsichtlich der Komponente in welche das Thixotropiermittel eingearbeitet wird gibt es keine Beschränkungen. Die vorliegende Erfindung sieht hierbei vor, dass das Thixotropiermittel wahlweise in nur eine der beiden Komponenten des Zweikomponenten-Systems eingearbeitet wird oder in beide Komponenten.
Enthält die fließfähige Komponente Polyurethane und/oder Polyharnstoffe sind diese aus mindestens einer Polyol- bzw. Polyamin-Komponente sowie einer Polyisocyanat- komponente aufgebaut und können optional Kettenverlängerer enthalten.
Die Herstellungsweise der Polyurethan- oder Polyharnstoff-Prepolymere ist für die vorliegende Erfindung nicht kritisch. Es kann sich somit um einen einstufigen Prozess handeln, wobei die Polyole und/oder Polyamine, Polyisocyanate und Kettenverlängerer gleichzeitig miteinander zur Reaktion gebracht werden, was bspw. in einer Batch-
Reaktion geschehen kann, öder es kann sich um einen zweistufigen Prozess handeln, in dem bspw. zunächst ein Prepolymer gebildet wird, welches im Anschluss mit Ket- tenverlängerern zur Reaktion gebracht wird.
Die Polyurethane oder Polyharnstoffe können auch noch weitere Struktureinheiten ent- halten, insbesondere kann es sich hierbei um Allophanate, Biuret, Uretdion oder Cya- nurate handeln. Die vorgenannten Gruppen sind allerdings nur Beispiele, wobei die erfindungsgemäßen Polyurethane und Polyharnstoffe auch weitere Struktureinheiten enthalten können. Auch der Grad der Verzweigung ist für die vorliegende Erfindung unkritisch, so dass sowohl lineare als auch hochverzweigte Polymere eingesetzt wer- den können.
In einer bevorzugten Ausführungsform der Erfindung beträgt das molare Verhältnis der im Polymer enthaltenen Isocyanat-Komponente zu der Summe der Polyol- bzw. Poly- amin-Komponente 0,01 bis 50, bevorzugt 0,5 bis 3,0.
Bei der Isocyanat-Komponente handelt es sich bevorzugt um eine aliphatische, cycloa- liphatische, araliphatische und/oder aromatische Verbindung, bevorzugt um ein Diiso- cyanat oder Triisocyanat, wobei es sich auch um Mischungen dieser Verbindungen handeln kann. Hierbei ist es als bevorzugt anzusehen, dass es sich um Hexamethy- lendiisocyanat-1 ,6 (HDI), HDI Uretdion, HDI Isocyanurat, HDI Biuret, HDI Allophanat, 1 -lsocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,4- und/oder 2,6- Toluylendiisocyanat (TDI) und/oder 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethandiiso- cyanat (MDI), Polymeres MDI, Carbodiimid-modifiziertes 4,4'-MDI, m-Xylendiisocyanat (MXDI), m- oder p-Tetramethylxylendiisocyanat (m-TMXDI, p-TMXDI), 4,4'-Dicyclo- hexylmethandiisocyanat (H12MDI), Naphthalin-1 ,5-Diisocyanat, Cyclohexan-1 ,4- diisocyanat, hydriertes Xylylen-diisocyanat (H6XDI), 1 -Methyl-2,4-diisocyanato-cyclo- hexan, Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4-diisocyanat, 1 ,6-Diisocyanato- 2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, 1 -lsocyanato-1 -methyl- 4(3)-isocyanatomethylcyclohexan (IMCI) sowie 1 ,12-Dodecandiisocyanat (C12DI) han- delt. Weiterhin kann es sich um 4-Dichlorophenyl diisocyanat, Dicyclohexylmethan- 4,4'-diisocyanat, m-Phenylendiisocyanat, p-Phenylendiisocyanat, 4-Chloro-1 ,3-phen- ylendiisocyanat, 1 ,6-Hexamethylendiisocyanat, 1 ,10-Decamethylendiisocyanat, Lysi- nalkylesterdiisocyanat, 3,3'-Dimethyl-4,4'-diphenylmethandiisocyanat, Xylylendiisocya- nat, Tetramethylxylylendiisocyanat, 1 ,5-Tetrahydronaphthalendiisocyanat, Triisocyana- totoluol, Methylenbis(cyclohexyl)-2,4'-diisocyanat und 4-Methylcyclohexan-1 ,3-diiso- cyanat handeln. Insbesondere sind Polyisocyanate mit zwei oder drei Isocyanatgrup- pen pro Molekül geeignet. Es kann sich aber auch um Mischungen von Polyisocyana- ten handeln, wobei die durchschnittliche NCO-Funktionalität der Isocyanatkomponente in der Mischung insbesondere bei 2,1 bis 2,3, 2,2 bis 2,4, 2,6 bis 2,8 oder 2,8 bis 3,0 liegen kann. Derivatisierte Polyisocyanate können ebenfalls verwendet werden, beispielsweise sulfonierte Isocyanate, blockierte Isocyanate, Isocyanurate und Biuret- Isocyanate. Bei der Polyol- bzw. Polyamin-Komponente handelt es sich bevorzugt um Polyethe- resterpolyol, Fettsäureesterpolyole, Polyetherpolyole, Polyesterpolyole, Polybutadiene- polyole und Polycarbonatpolyole, wobei es sich auch um Mischungen dieser Verbin- düngen handeln kann. Die Polyole und/oder Polyamine enthalten bevorzugt zwischen zwei und 10, besonders bevorzugt zwischen zwei und drei Hydroxylgruppen und/oder Aminogruppen und besitzen ein gewichtsmittleres Molekulargewicht zwischen 32 und 30000, besonders bevorzugt zwischen 90 und 18000 g/mol. Als Polyole eignen sich vorzugsweise die bei Raumtemperatur flüssigen, glasartig fest/amorphen oder kristalli- nen Polyhydroxyverbindungen. Als typische Beispiele wären difunktionelle Polypropy- lenglykole zu nennen. Es können auch bevorzugt Hydroxylgruppen aufweisende statistische Copolymere und/oder Blockcopolymere des Ethylenoxids und Propylenoxids eingesetzt werden. Geeignete Polyetherpolyole sind die in der Polyurethanchemie an sich bekannten Polyether, wie die unter Verwendung von Startermolekülen hergestell- ten Polyole mittels KOH- oder DMC- Katalyse aus Styroloxid, Ethylenoxid, Propyleno- xid, Butylenoxid, Tetra hydrofu ran oder Epichlorhydrin.
Konkret eignen sich insbesondere auch Poly(oxytetramethylen)glykol (Poly-THF), 1 ,2- Polybutylenglykol, oder deren Mischungen. Insbesondere geeignet sind Polypropyle- noxid, Polyethylenoxid und Butylenoxid und deren Mischungen. Ein weiterer als Poly- olkomponente einsetzbarer Copolymertyp, der endständig Hydroxylgruppen aufweist, ist gemäß der allgemeinen Formel (herstellbar z.B. mittels "Controlled" High-Speed Anionic Polymerization gemäß Macromolecules 2004, 37, 4038-4043):
R
Figure imgf000009_0001
in welcher R gleich oder verschieden ist und bevorzugt durch OMe, OiPr, Cl oder Br repräsentiert wird.
Weiterhin eignen sich als Polyol-Komponente insbesondere die bei 25°C flüssigen, glasartig amorphen oder kristallinen Polyesterdi- bzw. polyole, die durch Kondensation von Di- oder Tricarbonsäuren, wie Adipinsäure, Sebacinsäure, Glutarsäure, Azelainsäure, Korksäure, Undecandisäure, Dodecandisäure, 3,3-Dimethylglutarsäure, Te- rephthalsäure, Isophthalsäure, Hexahydrophthalsäure und/oder Dimerfettsäure, mit niedermolekularen Diolen, Triolen oder Polyolen, wie Ethylenglykol, Propylenglykol, Diethylenglykol, Triethylenglykol, Dipropylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,8- Octandiol, 1 ,10-Decandiol, 1 ,12-Dodecandiol, Dimerfettalkohol, Glycerin, Pentaerythri- tol und/ oder Trimethylolpropan, herstellbar sind. Eine weitere geeignete Gruppe der Polyole sind die Polyester z.B. auf der Basis von Caprolacton, welche auch als "Polycaprolactone" bezeichnet werden. Weitere einsetzbare Polyole sind Polycarbonat-Polyole, Dimerfettalkohole und Dimerdiole sowie Po- lyole auf Basis pflanzlicher Öle und ihrer Derivate, wie Rizinusöl und dessen Derivate oder epoxidiertes Sojabohnenöl. Außerdem kommen Hydroxylgruppen aufweisende Polycarbonate in Frage, welche durch Reaktion von Kohlensäurederivaten, z. B. Di- phenylcarbonat, Dimethylcarbonat oder Phosgen, mit Diolen erhältlich sind. Besonders eignen sich z.B. Ethylenglykol, 1 ,2- und 1 ,3-Propandiol, 1 ,3- und 1 ,4-Butandiol, 1 ,6- Hexandiol, 1 ,8-Octandiol, Neopentylglykol, 1 ,4-Bishydroxymethylcyclohexan, 2-Methyl- 1 ,3-propandiol, 2,2,4-Trimethylpentandiol-1 ,3, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol, Polybutylenglykole, Bisphenol A, Tetrabrombisphenol A, Glyzerin, Tri- methylolpropan, 1 ,2,6-Hexantriol, 1 ,2,4-Butantriol, Trimethylolpropan, Pentaerythrit, Chinit, Mannit, Sorbit, Methylglykosid und 1 ,3,4,6-Dianhydrohexite. Auch die Hydroxy- funktionellen Polybutadiene, welche u.a. unter dem Handelsnamen„Poly-bd®" käuflich sind, können als Polyol-Komponente ebenso wie deren hydrierten Analoga dienen. Weiterhin kommen Hydroxy-funktionelle Polysulfide, welche unter dem Handelsnamen „Thiokol® NPS-282" vertrieben werden, sowie hydroxy-funktionelle Polysiloxane in Frage.
Als erfindungsgemäß einsetzbare Polyamin-Komponente eignen sich insbesondere Hydrazin, Hydrazinhydrat und substituierte Hydrazine, wie N-Methylhydrazin, Ν,Ν'- Dimethylhydrazin, Säurehydrazide der Adipinsäure, Methyladipinsäure, Sebacinsäure, Hydracrylsäure, Terephthalsäure, Isophthalsäure, Semicarbazidoalkylen-hydrazide, wie 13-Semicarbazidopropionsäurehydrazid, Semicarbazidoalkylen-carbazinester, wie z. B. 2-Semicarbazidoethyl-carbazinester und/ oder Aminosemicarbazid-Verbindungen, wie 13-Aminoethylsemicarbazidocarbonat. Weiterhin eignen sich zur Herstellung der Polyurethane und Polyharnstoffe Polyamine basierend auf Polyestern, Polyolefinen, Polyacetalen, Polythioethern, Polyethercarbonaten, Polyethyleneterephthalaten, Poly- esteramiden, Polycaprolactamen, Polycarbonaten, Polycaprolactonen und Polyacryla- ten, welche mindestens zwei Amingruppen aufweisen. Polyamine, z.B. solche, die unter dem Handelsnamen Jeffamine® (es handelt sich um Polyetherpolyamine) vertrieben werden, sind auch geeignet. Als Polyol-Komponente und/oder Polyamin-Komponente kommen auch die als sogenannte Kettenverlänger bekannten Spezies in Frage, welche bei der Herstellung von Polyurethanen und Polyharnstoffen mit überschüssigen Isocyanatgruppen reagieren, normalerweise ein Molekulargewicht (Mn) von unter 400 aufweisen und häufig in Form von Polyolen, Aminopolyolen oder aliphatischen, cycloaliphatischen oder araliphati- sehen Polyaminen vorliegen.
Geeignete Kettenverlängerer sind beispielsweise: • Alkandiole, wie Ethandiol, 1 ,2- und 1 ,3-Propandiol, 1 ,4- und 2,3-Butandiol, 1 ,5- Pentandiol, 1 ,3-Dimethylpropandiol, 1 ,6-Hexandiol, Neopentylglykol, Cyclohex- andimethanol, 2-Methyl-1 ,3-propandiol, Hexylenglykol, 2,5-Dimethyl-2,5-hexan- diol, Ethylenglycol, 1 ,2- oder 1 ,3-Propandiol, 1 ,2-, 1 ,3- oder 1 ,4-Butanediol, 1 ,2-, 1 ,3-, 1 ,4- oder 1 ,5-Pentanediol, 1 ,2-, 1 ,3-, 1 ,4-, 1 ,5- or 1 ,6-Hexandiol,
Neopentylhydroxypivalat, Neopentylglycol, Dipropyleneglycol, Diethylengly- col, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandiol, 1 ,2-, 1 ,3- oder 1 ,4-Cyclohexandime- thanol, Trimethylpentandiol, Ethylbutylpropandiol, Diethyloctandiole, 2-Bu- tyl-2-ethyl-1 ,3-propandiol, 2-Butyl-2-methyl-1 ,3-propandiol, 2-Phenyl-2-me- thyl-1 ,3-propandiol, 2-Propyl-2-ethyl-1 ,3-propanediol, 2-Di-tert-butyl-1 ,3- propandiol, 2-Butyl-2-propyl-1 ,3-propandiol, 1 -Dihydroxymethylbicyclo- [2.2.1 ]heptan, 2, 2-Diethyl-1 ,3-propanediol, 2, 2-Dipropyl-1 ,3-propandiol, 2- Cyclohexyl-2-methyl-1 ,3-propandiol, 2,5-Dimethyl-2,5-hexanediol, 2,5-Di- ethyl-2,5-hexandiol, 2-Ethyl-5-methyl-2,5-hexanediol, 2,4-Dimethyl-2,4- pentandiol, 2,3-Dimethyl-2,3-butandiol, 1 ,4-Bis(2'-hydroxypropyl)benzol, und 1 ,3-Bis(2'-hydroxypropyl)benzol und
• 5-Hydroxybutyl-e-hydroxy-capronsäureester, ω-Hydroxyhexyl-Y-hydroxy-butter- säureester, Adipinsäure-(ß-hydroxyethyl)-ester oder Terephthalsäure-bis-(ß-hy- droxyethyl)-ester und
· Aliphatische Diamine, aromatische Diamine und alicyclische Diamine, insbesondere Methylenediamin, Ethylendiamin, 1 ,2- und 1 ,3-Diaminopropan, 1 ,4-Diaminobu- tan, Cadaverin (1 ,5-Diaminopentan), 1 ,6-Hexamethylendiamin, Isophorondiamin, Piperazin, 1 ,4-Cyclohexyldimethylamin, 4,4'-Diaminodicyclohexylmethan, Amino- ethylethanolamin, 2,2,4-Trimethylhexamethylendiamin, 2,4,4-Trimethylhexame- thylendiamin, Octamethylendiamin, m- or p-Phenylendiamin, 1 ,3- oder 1 ,4-Xylylen- diamin, hydriertes Xylylendiamin, Bis(4-aminocyclohexyl)methan, 4,4'-Methylen-bis- (ortho-chloroanilin), Di-(methylthio)-toluoldiamin, Diethyltoluoldiamin, N,N'-Dibutyl- amindiphenylmethan, Bis-(4-amino-3-methylcyclohexyl)methan, Isomerengemische von 2,2,4- und 2,4,4-Trimethyl-hexamethylendiamin, 2-Methyl- pentamethylendiamin, Diethylentriamin, und 4,4- Diaminodicyclohexylmethan sowie
• Ethanolamin, Hydrazinethanol, 2-[(2-Aminoethyl)amino]ethanol.
Schließlich soll erwähnt sein, dass die Polyol-Komponente und/oder Polyamin-Kompo- nente Doppelbindungen enthalten können, welche z.B. aus langkettigen, aliphatischen Carbonsäuren oder Fettalkoholen resultieren können. Eine Funktionalisierung mit olefi- nischen Doppelbindungen ist z. B. auch durch den Einbau vinylischer und/oder allyli- scher Gruppen möglich, welche ggf. alkyl-, aryl- und /oder aralkyl-substituiert sind, sowie aus ungesättigten Säuren wie Maleinsäureanhydrid, Acrylsäure oder Methacrylsäu- re sowie deren jeweiligen Estern stammen.
Bevorzugt im Sinne der Erfindung ist es, dass es sich bei der Polyol-Komponente und/oder Polyamin-Komponente um Polypropylendiol, Polypropylentriol, Polypropylen- polyol, Polyethylendiol, Polyethylentriol, Polyethylenpolyol, Polypropylendiamin, Po- lypropylentriamin, Polypropylenpolyamin, Poly-THF-diamin, Polybutadiendiol, Poly- esterdiol, Polyestertriol, Polyesterpolyol, Polyesteretherdiol, Polyesterethertriol, Poly- esteretherpolyol, besonders bevorzugt Polypropylendiol, Polypropylentriol, Poly-THF- diol, Polyhexandiolcarbamatdiol, Polycaprolactamdiol und Polycaprolactamtriol handelt. Weiterhin kann es sich auch um Mischungen der genannten Verbindungen handeln.
In einer besonders bevorzugten Ausführungsform enthalten die Polyurethane oder Po- lyharnstoffe Polyole mit einem Molekulargewicht zwischen 1000 und 10000, insbeson- dere 2000 bis 6000 und besonders bevorzugt 3000 bis 5000 g/mol. Bei diesen Polyo- len handelt es sich besonders bevorzugt um Poly-THF-diol, Polypropylenglycol sowie statistische Copolymere und/oder Blockcopolymere des Ethylenoxids und Propyleno- xids. Insbesondere kann es sich um Polyetherpolyole handeln, welche in einer bevorzugten Ausführungsform durch DMC Katalyse und in einer besonders bevorzugt Aus- führungsform durch KOH-Katalyse hergestellt wurden. In einer bevorzugten Ausführungsform werden als Kettenverlängerer Diole mit einem Molekulargewicht von 60 bis 500, insbesondere 60 bis 180 eingesetzt, wobei die Dioligomere von Glycolen besonders bevorzugt sind. Hinsichtlich der erfindungsgemäßen Eigenschaftenen des fließfähige Systems ist es weiterhin besonders vorteilhaft, wenn die Polyurethane oder Poly- harnstoffe 2,4- und/oder 2,6-Toluylendiisocyanat (TDI) und/oder 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethandiisocyanat (MDI) und oder 1-lsocyanato-3,3,5-trimethyl-5-iso- cyanatomethylcyclohexan (IPDI) enthalten, insbesondere Isomerengemische des TDI, wobei ein 2,4-lsomerenanteil von über 40% besonders bevorzugt ist. Die Polyurethane oder Polyharnstoffe der vorliegenden Erfindung können auch Vernetzer-Komponenten, Kettenstopper-Komponenten und weitere reaktive Komponenten enthalten. Einige Vernetzer wurden bereits unter den Kettenverlängerern mit mindestens drei gegenüber NCO reaktiven Wasserstoffen aufgeführt. Insbesondere kann es sich um Glycerin, Tetra(2-hydroxypropyl)ethylenediamine, Pentaerythritol, Trimethy- lolpropen, Sorbitol, Sucrose, Triethanolamin und Polymere mit mindestens drei reaktiven Wasserstoffen handeln (z.B. Polyetheramine mit mindestens drei Amingruppen, polymere Triole usw.). Als Kettenstopper kommen insbesondere Verbindungen mit reaktiven Wasserstoffen in Frage, wie Monoole, Monoamine, Monothiole und Mono- carbonsäuren. In einer speziellen Ausführungsform werden Monoole eingesetzt, wobei C bis Ci2-Alkohole (insbesondere Methanol bis Dodecylalkohol), höhere Alkohole,
Polymere wie etwa Polyether und Polyester mit einer OH-Gruppe und Struktureinheiten wie Glycerin oder Saccharose, in denen alle bis auf eine OH- Gruppe umgesetzt wurden, wobei bei der Umsetzung keine weiteren reaktiven Wasserstoffe eingeführt wurden, eingesetzt werden können.
In einer besonders UV beständigen Variante werden als Polyolkomponente bevorzugt Polyester mit mindestens zwei OH-Gruppen, Polycarbonate mit mindestens zwei OH- Gruppen, Polycarbonatester mit mindestens zwei OH-Gruppen, PolyTHF, Polypropy- lenglykol, statistische Copolymere und/oder Blockcopolymere des Ethylenoxids und Propylenoxids eingesetzt. Fließfähige Systeme enthaltend Polyurethane können weiterhin stabilisierende Additive, z.B. zum Schutz vor UV-Strahlung, Oxidation enthalten, insbesondere werden Additive vom Hals-Typ verwendet. Beispielhaft sei das 4-Amino-2,2,6,6-tetramethyl- piperidin genannt. Für die Polyurethane und Polyharnstoffe können als latente Härter Oxazolidine, insbesondere Oxazolidine aus Diethanolamin und Isobutylaldehyd oder Pivalaldehyd und/ oder Aldimine aus Isophorondiamin, z.B. Incozol HP und Aldolester basierende aliphatische Di- oder Trialdimine und Imine z.B. Vestamin A139, niedermolekularen aliphatischen Diaminen z.B. Hexandiamin und/oder Polyetherpolyamine wie z.B. Jeffamine® und Isobutyraldehyd oder Pivalaldehyd und/oder ein Polyamin wie z.B. Hexamethylen- diamin oder ein Jeffamin® blockiert mit einem Hydroxypivalaldehydester eingesetzt werden.
In einer bevorzugten Ausführungsform enthält der erfindungsgemäße fließfähige Sys- tem Polyurethane oder Polyharnstoffe, welche freie Isocyanat-Gruppen aufweisen. Insbesondere handelt es sich hierbei um isocyanat-terminierte Prepolymere. Die Isocyanat-Gruppen können mit Wasser reagieren (einschließlich Feuchtigkeit aus der Atmosphäre), wobei Amin-Gruppen gebildet werden, welche mit den Isocyanat-Gruppen der anderen Polyurethan- oder Polyharnstoff-Moleküle reagieren und hierbei Harnstoff- Verknüpfungen ausbilden, wodurch das fließfähige System aushärtet.
In einer weiteren Ausführungsform werden fließfähige Systeme enthaltend Polyharn- stoff oder Polyurethan als Zweikomponenten-System ausgeführt. Die erste Komponente kann ein Polyisocyanat und/oder NCO-Prepolymer und die zweite Komponente ein Polyol, Polyamin und/oder einen Kettenverlängerer enthalten. Nach dem Vermischen der beiden Komponenten reagieren diese beiden Bestandteile miteinander, wodurch das fließfähige System aushärtet.
In einer weiteren erfindungsgemäßen Ausführungsform werden Polyurethan-Prepoly- mere und Polyharnstoff-Prepolymere mit mindestens einer geeigneten funktionalisier- ten polymerisierbaren Verbindung enthaltend Doppelbindung umgesetzt, wie z.B. Hy- droxyethylmethacrylat, Hydroxyethylacrylat, Hydroxypropylmethacrylat, Hydroxypropy- lacrylat, 4-Hydroxybutylvinylether und Isoprenol. Enthalten die fließfähigen Systeme silylierte Polyurethane und silylierte Polyharnstoffe sind diese aus mindestens einer Polyol- bzw. Polyamin-Komponente, aus mindestens einer Polyisocyanat-Komponente und aus mindestens einer Silylierungsmittel- Komponente aufgebaut.
Als bevorzugte Polyol- bzw. Polyamin-Komponente, sowie Polyisocyanat-Komponente sind alle für die bereits beschriebene Herstellung der Polyurethane und Polyharnstoffe genannten Verbindungen geeignet. Bezüglich der enthaltenen Silylierungsmittel- Komponente eignen sich
1 . primäre und/oder sekundäre Aminosilane; α oder γ Stellung
z. B. H2N-CH2-Si(OR2)3
Figure imgf000014_0001
R'NH-CH2-CHMe-CH2-Si(OR2)3
wobei OR2 unabhängig voneinander repräsentiert wird durch eine Alkoxy- gruppe, wobei R2 eine Alkylgruppe mit ein bis 5 Kohlenstoffatomen darstellt, z.B. Methyl, Ethyl, iso-Propyl, n-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und/oder OR2 eine Phenoxygruppe, eine Naphthyloxygruppe, eine Phenoxygruppe, welche an der ortho-, metha- und/oder para-Position substituiert ist, mit einer CT C20 Alkyl-, Alkylaryl-, Alkoxy-, Phenyl-, substituierten Phenyl-, Thioalkyl-, Nitro-, Halogen-, Nitril-, Carboxyalkyl-, Carboxyamid-, -NH2 und/oder NHR-Gruppe, worin R eine lineare, verzweigte oder zyklische Ci-C2o Alkylgruppe z.B. Methyl, Ethyl, Propyl (n, iso), Butyl (n, iso, sec) oder Cyclohexyl oder Phenyl darstellt wobei R' eine lineare, verzweigte oder zyklische Ci-C2o Alkylgruppe z.B. Methyl, Ethyl, Propyl (n, iso), Butyl (n, iso, sec) oder Cyclohexyl oder Phenyl darstellt,
2. Isocyanatosilane; α oder γ Stellung
3. Produkte erhalten durch Michael Addition primärer Aminosilane in o und γ- Stellung und Ringschluss zum Hydantoin, z.B. US 5364955.
Bezüglich der enthaltenen Silylierungsmittel-Komponente wird auf die Patentanmeldungen WO2006/088839 A2 und WO 2008/061651 A1 sowie die Patentschrift EP 1 685171 B1 Bezug genommen, deren Inhalt hiermit in die Anmeldung aufgenommen wird.
Die im silylierten Polyurethan bzw. dem silylierten Polyharnstoff enthaltenen Silylie- rungsmittel-Komponenten, welche im Sinne der vorliegenden Erfindung bevorzugt sind, sind insbesondere Silane der allgemeinen Formel:
Figure imgf000014_0002
wobei Y repräsentiert wird durch -NCO, -NHR, -NH2 oder -SH,
R repräsentiert wird durch eine Alkylgruppe oder Arylgruppe mit ein bis 20 Kohlenstoff- atomen, z.B. Methyl-, Ethyl-, iso-Propyl-, n-Propyl, Butylgruppe (n-, iso-, sec-), Cyclohexyl, Phenyl und Naphthyl, R1 repräsentiert wird durch eine divalente Kohlenwasserstoffeinheit mit ein bis 10 Kohlenstoffatomen, z.B. Ethylen, Methylethylen,
Me repräsentiert wird durch Methyl,
OR2 unabhängig voneinander repräsentiert wird durch eine Alkoxygruppe, wobei R2 eine Alkylgruppe mit ein bis 5 Kohlenstoffatomen darstellt, z.B. Methyl, Ethyl, iso-
Propyl, n-Propyl, n-Butyl, iso.Butyl, sec.-Butyl und/oder OR2 eine Phenoxygruppe, eine Naphtyloxygruppe, eine Phenoxygruppe, welche an der ortho-, metha- und/oder paraPosition substituiert ist, mit einer C1-C20 Alkyl-, Alkylaryl-, Alkoxy-, Phenyl-, substituierten Phenyl-, Thioalkyl-, Nitro-, Halogen-, Nitril-, Carboxyalkyl-, Carboxyamid-, -NH2 und/oder NHR-Gruppe, worin R eine lineare, verzweigte oder zyklische C1-C20 Alkylgruppe, z.B. Methyl, Ethyl, Propyl (n-, iso.), Butyl (n-, iso-, sec.-) oder Phenyl darstellt und
n repräsentiert wird durch 0, 1 , 2 oder 3. Als Silylierungsmittel-Komponente können aber auch Mischungen aus mindestens zwei der genannten Verbindungen im Polymer vorhanden sein.
In einer bevorzugten Ausführungsform sind als Silylierungsmittel-Komponente insbesondere Aminogruppen oder Isocyanatgruppen enthaltende Alkoxysilane von Interes- se. Als Aminogruppen enthaltende Alkoxysilane sind insbesondere Verbindungen geeignet, welche ausgewählt sind aus der Gruppe 3-Aminopropyl-trimethoxysilan, 3-Ami- nopropyl-triethoxysilan, 3-Aminopropyl-methyldimethoxysilan, 3-Aminopropyl-methyl- diethoxysilan, 3-Amino-2-methylpropyl-trimethoxysilan, 4-Aminobutyl-trimethoxysilan, 4-Aminobutyl-methyldimethoxysilan, 4-Amino-3-methylbutyl-trimethoxysilan, 4-Amino- 3,3-dimethylbutyl-trimethoxysilan, 4- Amino-3,3-dimethylbutyl-dimethoxymethylsilan, Aminomethyl-trimethoxysilan, Aminomethyl-dimethoxymethylsilan, Aminomethylmetho- xydimethylsilan, Aminomethyl-triethoxysilan, Aminomethyl-diethoxymethylsilan, Ami- nomethyl-ethoxydimethylsilan, N-Methyl-3-aminopropyl-trimethoxysilan, N-Methyl-3- aminopropyl-dimethoxymethylsilan, N-Ethyl-3-aminopropyl-trimethoxysilan, N-Ethyl-3- aminopropyl-dimethoxymethylsilan, N-Butyl-3- aminopropyl-trimethoxysilan, N-Butyl-3- aminopropyl-dimethoxymethylsilan, N-Cyclohexyl-3-aminopropyl-trimethoxysilan, N- Cyclohexylaminomethyltriethoxysilan, Cyclohexylaminomethyltrimethoxysilan, N- Phe- nyl-3-aminopropyl-trimethoxysilan, N-Methyl-3-amino-2-methylpropyl-tri- methoxysilan, N-Methyl-3-amino-2-methylpropyl-di-methoxymethylsilan, N-Ethyl-3-amino-2-methyl- propyl-trimethoxysilan, N-Ethyl-3-amino-2-methylpropyl-dimethoxymethylsilan, N-Ethyl- 3-aminopropyl-dimethoxy-methylsilan, N-Ethyl-3-aminopropyl-trimethoxysilan, N-Phe- nyl-4-aminobutyl-trimethoxysilan, N- Phenyl-aminomethyl-dimethoxymethylsilan, N- Phenyl-aminomethyl-trimethoxysilan, N-Cyclohexyl-aminomethyl-di-methoxymethyl- silan, N-Cyclohexyl-aminomethyl-tri-methoxysilan, N-Methyl-aminomethyl-dimethoxy- methylsilan, N-Methyl-aminomethyl-trimethoxysilan, N-Ethyl-aminomethyl-dimethoxy- methylsilan, N-Ethyl-aminomethyl-trimethoxysilan, N-Propyl-aminomethyl-dimethoxy- methylsilan, N-Propyl-aminomethyl-trimethoxysilan, N-Butyl-aminomethyl-dimethoxy- methylsilan, N-Butyl-aminomethyl-trimethoxysilan, N-(2-Aminoethyl)-3-amino-propyl- trimethoxysilan, N-(2-Aminoethyl)-3-amino-propyl-methyldimethoxysilan, 3-[2-(2-Ami- noethylamino)-ethylamino]-propyl-trimethoxysilan, Bis(trimethoxysilylpropyl)amin, Bis- (dimethoxy(methyl)silylpropyl)amin, Bis(trimethoxysilylmethyl)amin, Bis(dimethoxy(me- thyl)silylmethyl)amin, 3-Ureidopropyltrimethoxysilan, N-Methyl[3-(Trimethoxysilyl)-pro- pyl]carbamate, N-Trimethoxysilylmethyl-O-methylcarbamat, N-Dimethoxy(methyl)silyl- methyl-carbamat sowie deren Analoga mit Ethoxy- oder Isopropoxygruppen oder n- Propoxygruppen oder n-Butoxygruppen oder iso Butoxygruppen oder sec. -Butoxygruppen anstelle der Methoxygruppen am Silicium.
Als Isocyanatgruppen enthaltende Alkoxysilane sind insbesondere Verbindungen geeignet, welche ausgewählt sind aus der Gruppe bestehend aus Isocyanatopropyltri- ethoxysilan, Isocyanatopropyltrimethoxysilan, Isocyanatopropylmethyldiethoxysilan, Isocyanatopropylmethyldimethoxysilan, Isocyanatomethyltrimethoxysilan, Isocyanato- methyltriethoxysilan, Isocyanatomethylmethyldiethoxysilan, Isocyanatomethylmethyl- dimethoxysilan, Isocyanatomethyldimethylmethoxysilan oder Isocyanatomethyldime- thylethoxysilan, sowie deren Analoga mit Isopropoxy- oder n-Propoxygruppen.
Bezüglich der gemäß vorliegender Erfindung bevorzugt zu verwendenden silylierten Polyurethane und deren Herstellung wird weiterhin auf die Patentanmeldungen US 3,632,557, US 5,364,955, WO 01/16201 , EP 931800, EP 1093482 B1 , US 2004 260037, US 2007167598, US 20051 19421 , US 4857623, EP 1245601 , WO 2004/ 060953, DE 2307794 Bezug genommen, deren Inhalt hiermit in die Anmeldung aufgenommen wird.
Unter denen in dem fließfähigen System erfindungsgemäß einsetzbaren Acrylaten sind Verbindungen zu verstehen, welche mindestens ein Monomer aus der Reihe der Acryl- säureester und Methacrylsäureester enthalten, wobei bevorzugt mindestens 70 Gew.- % des Polymers aus mindestens einer Verbindung der Reihe der Acrylsäureester, Me- thacrylsäureester und Styrole besteht.
Bei den Monomeren der Acrylat-Komponente handelt es sich bevorzugt um mindestens eine Verbindung aus der Reihe Ethyldiglycolacrylat, 4-tert. Butylcyclohexylacrylat, Dihydrocyclopentadienylacrylat, Lauryl(meth)acrylat, Phenoxyethyl(meth)acrylat, Iso- bornyl(meth)acrylat, Dimethylaminoethyl(meth)acrylat, Cyanoacrylate, Citraconat, Ita- conat und deren Derivate, (Meth)acrylsäure, Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, lsopropyl(meth)acrylat, n-Butyl(meth)acrylat, Isobutyl(meth)- acrylat, tert-Butyl(meth)acrylat, n-Pentyl(meth)acrylat, n-Hexyl(meth)acrylat, Cyclohe- xyl(meth)acrylat, n-Heptyl(meth)acrylat, n-Octyl(meth)acrylat, 2-Propylheptyl(meth)- acrylat, 2-Ethylhexyl(meth)acrylat, Nonyl(meth)acrylat, Decyl(meth)acrylat, iso De- cyl(meth)acrylat, Dodecyl(meth)acrylat, Phenyl(meth)acrylat, Toluyl(meth)acrylat, Ben- zyl(meth)acrylat, 2-Methoxyethyl(meth)acrylat, 3-Methoxybutyl(meth)acrylat, 2-Hy- droxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat, Stearyl(meth)acrylat, Glyci- dyl(meth)acrylat, 2-Aminoethyl(meth)acrylate, Y-(Methacryloyloxypropyl)trimethoxysi- lan, Ethyleneoxid Addukte von (Meth)acrylsäure, Trifluoromethylmethyl(meth)acrylat, 2- Trifluoromethylethyl(meth)acrylat, 2-Perfluoroethylethyl(meth)acrylat, 2-Perfluoroethyl- 2-perfluorobutylethyl(meth)acrylat, 2-Perfluoroethyl(meth)acrylat, Perfluoromethyl- (meth)acrylat, Diperfluoromethylmethyl(meth)acrylat, 2-Perfluoromethyl-2-perfluoro- ethylmethyl(meth)acrylat, 2-Perfluorohexylethyl(meth)acrylat, 2-Perfluorodecylethyl- (meth)acrylat und 2-Perfluorohexadecylethyl(meth)acrylat. In einer besonderen Ausführungsform handelt es sich um zwei oder mehrere Monomere aus der Reihe n-Butyl(meth)acrylat, 2-Hydroxyethyl(meth)acrylat, Acrylsäure, Meth- acrylsäure und Methylmethacrylat.
In einer weiteren Ausführungsform werden Copolymere aus mindestens zwei aller vor- genannten Monomere eingesetzt, wobei das Verhältnis in der Form gewählt wird, dass die erhaltenen Copolymere die gewünschten anwendungstechnischen Eigenschaften für den jeweiligen Einsatzzweck aufweisen. Dem Fachmann sind geeignete Copolymere mit den gewünschten anwendungstechnischen Eigenschaften bekannt. Insbesondere sind Copolymere aus n-Butylacrylat und Methylmethacrylat bevorzugt, welche in einem molaren Verhältnis eingesetzt werden in denen das erhaltene Copolymer eine Glasübergangstemperatur besitzt, welche zwischen denen der entsprechenden Homo- polymere liegt. Insgesamt kann es sich bei den Acrylaten der vorliegenden Erfindung sowohl um Copolymer als auch um Homopolymere handeln. Die Acrylsäure-Polymere können weiterhin auch andere ethylenisch ungesättigte Monomere enthalten, z.B. Isoprenol oder Hydroxybutylvinylether. Als Beispiele seien hier mono- und polyungesättigte Kohlenwasserstoffmonomere, Vinylester (bspw. Vinylester von Cr bis C6-gesättigten Monocarbonsäuren), Vinylether, monoethylenisch ungesättigte Mono- und Polycarbonsäuren und Alkylester dieser Mono- und Polycarbonsäuren (bspw. Acrylsäureester und Methacrylsäureester wie etwa d- bis Ci2-Alkyl und insbesondere Cr bis C4-Alkylester), Aminomonomere und Nitrile, Vinyl- und Alkylvinylidene und Amide von ungesättigten Carbonsäuren genannt. Weiterhin kommen ungesättigte Kohlenwasserstoff-Monomere umfassend Styrol-Verbindungen (bspw. Styrol, carboxy- liertes Styrol und alpha-Methylstyrol), Ethylen, Propylen, Butylen und konjugierte Diene (Butadien, Isopren und Copolymere von Butadien und Isopren) in Frage. Bezüglich der Vinyl- und Halogenvinylidenmonomere seien Vinylchlorid, Vinylidenchlorid, Vinylfluorid und Vinylidenfluorid genannt. Beispiele für die Vinylester umfassen aliphatische Vinylester, wie etwa Vinylformat, Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylisobutyrat, Vinylvaleriat, Vinylcaproat und Allylester der gesättigten Monocarbonsäuren wie Allyla- cetat, Allylpropionat und Allyllactat. Hinsichtlich der Vinylether seien Methylvinylether, Ethylvinylether und N-Butylvinylether genannt. Typische Vinylketone umfassen Methyl- vinylketone, Ethylvinylketone und Isobutylvinylketone. Beispiele für die Dialkylester der monoethylenisch ungesättigten Dicarbonsäuren sind Dimethylmaleat, Diethylmaleat, Dibutylmaleat, Dioctylmaleat, Diisooctylmaleat, Dinonylmaleat, Diisodecylmaleat, Ditri- decylmaleat, Dimethylfumarat, Diethylfumarat, Dipropylfumarat, Dibutylfumarat, Dioc- tylfumarat, Diisooctylfumarat, Didecylfumarat, Dimethylitaconat, Diethylitaconat, Dibuty- litaconat und Dioctylitaconat. Insbesondere handelt es sich bei den monoethylenisch ungesättigten Monocarbonsäuren um Acrylsäure, Methacrylsäure, Ethacrylsäure und Crotonsäure. Bei den monoethylenisch ungesättigten Dicarbonsäuren seien Maleinsäure, Fumarsäure, Itaconsäure und Citronensäure genannt. Als monoethylenisch ungesättigte Tricarbonsäuren können im Hinblick auf die vorliegende Erfindung bspw. Aconitsäure und deren halogensubstituierte Derivate eingesetzt werden. Des Weiteren können die Anhydride und Ester der vorgenannten Säuren (bspw. Maleinsäureanhydrid und Citronensäureanhydrid) eingesetzt werden. Beispiele für Nitrile von ethylenisch ungesättigten Mono-, Di- und Tricarbonsäuren umfassen Acrylonitril, a-Chloracrylonitril und Methacrylonitril. Bei den Amiden der Carbonsäuren kann es sich um Acrylamide, Methacrylamide und andere α-substituierte Acrylamide und N-substituierte Amide bspw. N-Methylolacrylamid, N-Methylolmethylacrylamid, alkylierte N-Methylolacryl- amide und N-Methylolmethacrylamide (bspw. N-Methoxymethylacrylamid und N-Meth- oxymethylmethacrylamid) handeln. Als Aminomonomere können substituierte und un- substituierte Aminoalkylacrylate, Hydrochloridsalze der Aminomonomere und Methac- rylate wie etwa ß-Aminoethylacrylat, ß-Aminoethylmethacrylat, Dimethylaminomethy- lacrylat, ß-Methylaminoethylacrylat und Dimethylaminomethylmethacrylat eingesetzt werden. Im Rahmen der vorliegenden Erfindung seien hinsichtlich der kationischen Monomere o und ß-ethylenisch ungesättigte Verbindungen genannt, welche sich zur Polymerisation eignen und primäre, sekundäre oder tertiäre Aminogruppen enthalten, bspw. Dimethylaminoethylmethacrylat, Dimethylaminoneopentylacrylat, Dimethylami- nopropylmethacrylat und tert.-Butylaminoethylmethacrylat oder organische und anorganische Salze dieser Verbindungen und/oder Alkylammonium-Verbindungen wie etwa Trimethylammoniumethylmethacrylatchlorid, Diallyldimethylammoniumchlorid, ß-Acet- amidodiethylaminoethylacrylatchlorid und Methaacrylamidopropyltrimethylammonium- chlorid. Diese kationischen Monomere können alleine oder in Kombination mit den vorgenannten weiteren Monomeren eingesetzt werden. Als Beispiele für hydroxy-haltige Monomere seien noch die ß-Hydroxyethl(meth)acrylate, ß-Hydroxypropyl(meth)acry- late, Y-Hydroxypropyl(meth)acrylate und so weiter genannt. Die in dem fließfähigen System erfindungsgemäß einsetzbaren silyl-terminierten Acry- late sind aus mindestens einer Acrylat-Komponente und mindestens einer Silyl- Komponente aufgebaut. Die silyl-terminierten Acrylate können beispielsweise aus der Umsetzung von alkenyl-terminierten Acrylaten durch Hydrosilylierung erhalten werden, wobei die alkenyl-terminierten Acrylate über Atom Transfer Radical Polymerization (ATRP) hergestellt werden können oder aus der Umsetzung von alkenyl-terminierten Acrylaten mit einem Silylgruppen enthaltenden Monomer, wobei die alkenyl- terminierten Acrylate über Atom Transfer Radical Polymerization (ATRP) hergestellt werden können.
Als Monomere für den Aufbau der Acrylat-Komponente sind alle für die bereits beschriebene Herstellung der Polyacrylate genannten Verbindungen geeignet.
Wird die Silyl-Komponente durch Hydrosilylierung an die Acrylat-Komponente gebunden, so eignen sich als Silyl-Komponente insbesondere Trimethylchlorsilan, Dimethyl- dichlorsilan, Methyltrichlorsilan, Hexamethyldisilazan, Trichlorsilan, Methyldichlorsilan, Dimethylchlorosilan, Phenyldichlorosilan sowie Trimethoxysilan, Triethoxysilan, Methyl- diethoxysilan, Methyldimethoxysilan und Phenyldimethoxysilan sowie Methyldiacetoxy- silan, Phenyldiacetoxysilan, Bis(dimethylketoxymat)methylsilan und Bis(cyclohexylket- oxymat)methylsilan. Hierbei sind insbesondere die Halosilane und Alkoxylsilane bevorzugt. Wird die Silyl-Komponente durch ein Silylgruppen enthaltendes Monomer an die Acrylat-Komponente gebunden, so eignen sich als Silyl-Komponente insbesondere 3- (Meth)acryloxypropyltrimethoxysilan, 3-(Meth)acryloxypropylmethyldimethoxysilan, 3- (Meth)acryloxypropyltriethoxysilan, 3-(Meth)acryloxypropylmethyldiethoxysilan, (Meth)acryloxymethyltrimethoxysilan, (Meth)acryloxymethyl-methyldimethoxysilan, (Meth)acryloxymethyltriethoxysilan, (Meth)acryloxymethyl-methyldiethoxysilan.
Die erfindungsgemäßen silyl-terminierten Acrylate besitzen ein gewichtsmittleres Molekulargewicht zwischen 500 und 200000 g/mol, besonders bevorzugt zwischen 5000 und 100000 g/mol.
Bezüglich der gemäß vorliegender Erfindung bevorzugt zu verwendenden silyl-terminierten Acrylate wird auf die Patentanmeldungen EP 1498433 und auf Chem. Rev. (2001 ), 101 , 2921 -2990 Atom Transfer Radical Polymerization, Krzysztof Matyjas- zewski and Jianhui Xia und auf Progress in Polymer Science 32, (2007), 93-146 Controlled/living radical polymerization: Features, developments, and perspectives, Wade A. Braunecker, Krzysztof Matyjaszewski, Elsevier Bezug genommen, deren Inhalt hiermit in die Anmeldung aufgenommen wird.
Unter den in dem fließfähigen System erfindungsgemäß verwendbaren Polysulfiden sind organische Polymere zu verstehen, welche Sulfid-Brücken im Polymer aufweisen. Bspw. kann es sich hierbei um ein Produkt der Reaktion eines organischen Dihaloge- nids mit Natriumdisulfid handeln. Als Beispiele für die organischen Dihalogenide seien aliphatische Dihalogenide (bspw. bis-Chlorethylformal) und Vinylhalogenide genannt. So führt bspw. die Reaktion von bis-Chlorethylformal mit einer Natriumdisulfit-Lösung zu einem Polymer der folgenden Struktur:
-[CH2CH20CH2OCH2CH2Sx]n- worin„n" die Anzahl der Monomere in dem Polymer und„x" die Anzahl der aufeinander folgenden Sulfid-Brücken in dem Monomer darstellt (x kann in den Monomeren des gleichen Moleküls variieren). Derartige hochmolekulare Polymere können dann zu kür- zerkettigen Polymeren mit terminalen Thiolgruppen umgesetzt werden (bspw. durch reduktive Umsetzung mit NaSH und Na2SÜ2 und nachfolgendes Ansäuern). Auf diese Weise erhält man flüssige überbrückte Polysulfide mit terminalen Thiol-Endgruppen, welche in speziellen Ausführungsformen ein Molekulargewicht im Bereich von 1000 bis 8000 aufweisen. Die flüssigen Polymere können anschließend zu elastomeren Fest- Stoffen gehärtet werden, bspw. durch die Oxidation der Thiol-Endgruppen zu Disulfid- Brücken unter Verwendung eines Oxidationsreagenzes wie etwa Bleioxid, Mangandioxid, Parachinondioxim und Zinkperoxid. Im Rahmen der vorliegenden Erfindung umfassen die fließfähigen Systeme auf Basis Polysulfid alle Polysulfid-Polymere, welche durch Härtung in einen Feststoff überführt werden können. In speziellen Ausführungs- formen umfassen die fließfähigen Systeme auf Basis Polysulfid 30 bis 90 Gew.-% mindestens eines flüssigen Polysulfid-Polymers, 2 bis 50 Gew.-% eines Füllstoffs, 2 bis 10 Gew.-% eines Cyclohexanpolycarbonsäurederivats, 1 bis 3 Gew.-% eines Wasserfängers und zwischen 6 und 15 Gew.-% weitere Inhaltsstoffe wie etwa Adhesionspromoto- ren, Lösungsmittel und Härter. Ein Beispiel für die Herstellung eines fließfähigen Sys- tems auf Basis von Polysulfid wird in der US 3,431 ,239 (Spalte 3, Zeile 20 bis Spalte 8, Zeile 45) offenbart, wobei diese Methode durch Verweis in die vorliegende Anmeldung aufgenommen wird. Fließfähige Systeme auf Basis von Polysulfid können als ein- oder zweikomponentige Systeme eingesetzt werden. Die bevorzugt erfindungsgemäß einsetzbaren silylierten Polysulfide sind aus mindestens einer Polysulfid-Komponente und mindestens einer Silylierungsmittel-Komponente aufgebaut und werden bevorzugt durch folgende vereinfachte Formel repräsentiert:
(CH3)3-Si-S-(C2H40CH20C2H4Sx)n-C2H40CH20C2H4S-Si-(CH3)3
Diese bevorzugten silylierten Polysulfide werden nach folgendem Verfahren hergestellt:
(n+1 ) Cl-R-Cl + (n+1 ) Na2Sx HS-(R-Sx)n-R-SH + (n+1 ) 2 NaCI
- HCl
HS-(R-Sx)n-R-SH + MesSiCI ► Me3Si-S-(R-Sx)n-R-S-SiMe3 wobei R repräsentiert wird durch ein Alkylgruppe oder eine Ethergruppe.
Bezüglich der gemäß vorliegender Erfindung bevorzugt zu verwendenden silylierten Polysulfide wird auf die Veröffentlichungen„ALPIS Aliphatische Polysulfide", Hüthing u. Welpf Verlag, Basel, 1992, Heinz Lücke, ISBN 3-85739-1243 Bezug genommen, deren Inhalt hiermit in die Anmeldung aufgenommen wird.
Die in dem fließfähigen System erfindungsgemäß einsetzbaren silylierten Polyether sind aus mindestens einer Polyether-Komponente und mindestens einer Silylierungs- mittel-Komponente aufgebaut. Seit einiger Zeit sind fließfähigen Systeme, insbesondere Baudichtstoffe auf dem Markt, welche sogenanntes MS-Polymer® der Fa. Kaneka und/oder Excestar der Fa. Asahi Glass Chemical enthalten, wobei "MS" für "modified silicone" steht. Diese silyl-terminierten Polyether sind für die vorliegende Erfindung besonders geeignet. Es handelt sich dabei um Polymere, welche aus Polyetherketten mit Silanendgruppen bestehen, hergestellt durch die Hydrosilylierung von endständigen Doppelbindungen. Die Silanendgruppen bestehen aus einem an die Polyetherkette gebundenen Silizium, an welches zwei Alkoxygruppen und eine Alkylgruppe bzw. drei Alkoxgruppen gebunden sind. Durch die Reaktion mit Feuchtigkeit hydrolysieren die Alkoxygruppen zu Alkoholen, und die entstandenen Si-OH Gruppen kondensieren anschließend zu einem Si-O-Si Netzwerk.
Als Polyetherkomponente für die silyl-terminierten Polyether eignen sich unter anderem die unter Verwendung von Startermolekülen hergestellten Polyole aus Styroloxid, Pro- pylenoxid, Butylenoxid, Tetrahydrofuran oder Epichlorhydrin. Insbesondere geeignet sind Polypropylenoxid, Polybutylenoxid, Polyethylenoxid und Tetrahydrofuran oder deren Mischungen. Hierbei sind insbesondere Molekulargewichte zwischen 500 und 100000 g/mol, besonders 3000 und 20000 g/mol bevorzugt. Zur Einführung der Doppelbindungen wird der Polyether mit organischen Verbindungen enthaltend ein Halogenatom ausgewählt aus der Gruppe Chlor, Brom oder Jod sowie einer endständigen Doppelbindung umgesetzt. Insbesondere eignen sich hierfür Al- lylchloride, Allylbromide, Vinyl(chloromethyl)benzol, Allyl(chloromethyl)benzol, Allyl- (bromomethyl)benzol, Allyl(chloromethyl)ether, Allyl(chloromethoxy)benzol, Butenyl- (chloromethyl)ether, 1 ,6-Vinyl(chloromethoxy)benzol, wobei insbesondere Allylchlorid bevorzugt eingesetzt wird.
Die so erhaltenen Polyether mit endständigen Doppelbindungen werden durch Hydrosilylierung zu den silyl-terminierten Polyethern umgesetzt. Als Hydrosilylierungsmittel eignen sich hierbei insbesondere Trichlorsilan, Methyldichlorsilan, Dimethylchlorosilan, Phenyldichlorosilan sowie Trimethoxysilan, Triethoxysilan, Methyldiethoxysilan, Me- thyldimethoxysilan und Phenyldimethoxysilan sowie Methyldiacetoxysilan, Phenyldia- cetoxysilan, Bis(dimethylketoxymat)methylsilan und Bis(cyclohexylketoxymat)methyl- silan. Hierbei sind insbesondere die Halosilane und Alkoxylsilane bevorzugt.
Das fließfähige System kann weiterhin mindestens eine Komponente aus der Reihe Füllstoffe, Weichmacher, Haftvermittler, Katalysatoren, UV-Stabilisatoren, Trockenmit- tel und Rheologiemodifizierer enthalten. Konkret können dies unter anderem die folgenden Komponenten sein:
Haftvermittler bspw. Epoxysilane, Anhydridosilane, Addukte von Silanen mit primären Aminosilanen, Ureidosilane, Aminosilane, Diaminosilane, sowie deren Analoga als Monomer oder Oligomer und Harnstoffsilane; z.B. Dynasylan AMEO, Dy- nasylan AMMO, Dynasylan DAMO-T, Dynasylan 1 146, Dynasylan 1 189, Silquest A-Link 15, Epoxidharze, Alkyltitanate, Titanchelate, aromatische Polyisocyanate, Phenolharze; die beispielsweise der allgemeinen Formel:
Figure imgf000022_0001
worin
Ri, R2 und R3 unabhängig voneinander Halogen, Amin, Wasserstoff, Alkoxy-, Acyloxy-, Alkyl-, Aryl-, Aralkyloxy-, Alkylaryl-, Aralkylgruppen sowie
Alkylgruppe mit olefinischen Gruppen, Halogeniden, Amino-, Carbonyl-, Epoxy- und Glycidoxy-, Ester-, Hydroxyimino-, Mercapto- und Sulfido-, Isocyanato-, An- hydrido-, Acryloxy-, Metharyloxy- und Vinylgruppen sowie
Arylgruppe mit olefinischen Gruppen, Halogeniden, Amino-, Carbonyl-, Epoxy- und Glycidoxy-, Ester-, Hydroxyimino-, Mercapto- und Sulfido-, Isocyanato-, Anhydri- do-, Acryloxy-, Metharyloxy- und Vinylgruppen sowie
Alkylarylgruppe mit olefinischen Gruppen, Halogeniden, Amino-, Carbonyl-, Epoxy- und Glycidoxy-, Ester-, Hydroxyimino-, Mercapto- und Sulfido-, Isocyanato-, An- hydrido-, Acryloxy-, Metharyloxy- und Vinylgruppen sowie
Aralkylgruppe mit olefinischen Gruppen, Halogeniden, Amino-, Carbonyl-, Epoxy- und Glycidoxy-, Ester-, Hydroxyimino-, Mercapto- und Sulfido-, Isocyanato-, An- hydrido-, Acryloxy-, Metharyloxy-, und Vinylgruppen, und
R4 Alkyl und Aryl entsprechen.
Trockenmittel z. B. Vinyltriethoxysilan, Vinyltrimethoxysilan, α-funktionelle Silane wie N-(Silylmethyl)-0-methyl-carbamate, insbesondere N-(Methyldimethoxy- silylmethyl)-0-methyl-carbamat, (Methacryloxymethyl)silane, Methoxymethylsilane, N-Phenyl-, N-Cyclohexyl- und N-Alkylsilane, Orthoameisensäureester, Calciumoxid oder Molekularsieb;
Katalysatoren bspw. Metallkatalysatoren in Form von Organozinnverbindungen wie Dibutylzinndilaurat und Dibutylzinndiacetylacetonat, Bismut-organische Verbindungen oder Bismut-Komplexe; aminogruppenhaltige Verbindungen, bspw. 1 ,4- Diazabicyclo[2.2.2]-octan und 2,2'-Dimorpholinodiethylether, 1 ,8- Diazabicyclo[5.4.0]undec-7-ene, 1 ,5-Diazabicyclo[4.3.0]non-5-ene, Ν,Ν'- Dimethylpiperazine sowie Aminosilane. Als Metallkatalysatoren kommen weiterhin Titan-, Zirkon-, Bismut-, Zink- und Lithiumkatalysatoren sowie Metallcarboxylate in Frage, wobei auch Kombinationen verschiedener Metallkatalysatoren eingesetzt werden können;
Licht- und Alterungsschutzmittel, welche insbesondere als Stabilisatoren gegen Wärme, Licht und UV-Strahlung wirken, beispielsweise phenolische Antioxidanzien welche als Radikalfänger fungieren, wie 2,6-Di-tert-butyl-p-cresol, 2,6-Di-tert- butylphenol, 2,4-Dimethyl-6-tert-butylphenol, 2,2'-Methylene-bis(4-methyl-6-tert- butylphenol), 4,4'-Butyliden-bis(3-methyl-6-tert-butylphenol), 4,4'-Thio-bis(3-methyl- 6-tert-butylphenol), 5-Tetrakis[methylene-3-(3,5-di-tert-butyl-4- hydroxyphenyl)propionat]methane und 1 ,1 ,3-Tris(2-methyl-4-hydroxy-5-tert- butylphenyl)butane und Antioxidanzien auf Basis von Aminen (beispielsweise Phe- nyl-ß-naphthylamin, α-Naphthylamin, N,N'-Di-sec-butyl-p-phenylendiamin, Phe- nothiazin und N,N'-Diphenyl-p-phenylendiamine)
Flammschutzmittel, z.B. AI(OH)3, Huntit, bromierte Alkyl- und Arylverbindungen, Magnesiumhydroxid, Ammoniumpolyphosphat
Biozide, wie bspw. Algizide, Fungizide oder das Pilzwachstum hemmende Substanzen, z.B. Ag, Ag+, CH2O -abspaltende Verbindungen
Füllstoffe, z. B. gemahlene oder gefällte Calciumcarbonate, welche ggf. mit Fett- säuren bzw. Fettsäurengemischen beschichtet sind, z.B. Stearate, insbesondere feinteiliges beschichtetes Calciumcarbonat, Ruße, insbesondere industriell hergestellte Ruße, Kaoline, Aluminiumoxide, Kieselsäuren, insbesondere hochdisperse Kieselsäure aus Pyrolyseprozessen, PVC-Pulver oder Hohlkugeln. Bevorzugte Füllstoffe sind Ruß, Calciumcarbonate, wie bspw. gefällte oder natürliche Kreidety- pen wie Omya 5 GU, Omyalite 95 T, Omyacarb 90 T, Omyacarb 2 T-AV® der Fa.
Omya, Ultra P-Flex® der Fa. Specialty Minerals Inc, Socal® U1 S2, Socal® 312, Winnofil® 312 der Fa. Solvay, Hakuenka® der Fa. Shiraishi, hochdisperse Kieselsäuren aus Pyrolyseprozessen sowie Kombinationen aus diesen Füllstoffen. Ebenfalls geeignet sind Mineralien wie Kieselerde, Talk, Calciumsulfat (Gips) in Form von Anhydrit, Halbhydrat oder Dihydrat, Quarzmehl, Kieselgel, gefälltes oder natürliches Bariumsulfat, Titandioxid, Zeolithe, Leucit, Kalifeldspat, Biotid, die Gruppe der Soro-, Cyclo-, Ino-, Phyllo- und Hectosilicate, die Gruppe der schwerlöslichen Sulfate wie Gips, Anhydrit oder Schwerspat (BaS04) sowie Calciummineralien wie Calcit, pulverförmige Metalle (beispielsweise Aluminium, Zink oder Eisen) und Ba- riumsulfat. Rheologie-Modifizierer, wie Verdickungsmittel, z. B. Harnstoffverbindungen sowie Monoamine , z.B. n-Butylamin, Methoxybutylamin und Polyamidwachse, Bentonite, Silicone, Polysiloxane, hydriertes Rizinusöl, Metallseifen, wie Calciumstearat, Alu- minumstearat, Bariumstearat, gefällte Kieselsäure, pyrogene Kieselsäure sowie Poly(oxy-1 ,2-ethandiyl)-a-hydro-Q-hydroxy-polymer mit Oxy-1 ,2-ethandiyl-a - hydro-Q-hydroxy-nonyl-phenoxyglycidylether Oligomeren und 5-lsocyanato-1 -(iso- cyanatomethyl)-1 ,3,3-trimethylcyclohexan oder Hydroxyethylcellulose oder Polyac- rylsäure-Polymere und Copolymere; - Oberflächenaktive Substanzen wie bspw. Netzmittel, Verlaufsmittel, Entlüftungsmittel, Entschäumer und Dispergiermittel;
Fasern, bspw. aus Kohlenstoff, Polyethylen oder Polypropylen, S1O2, Cellulose; - Pigmente, bspw. Titandioxid;
Lösemittel wie etwa Wasser, Solvent Naphta, Methylester, aromatische Kohlenwasserstoffe wie Polyalkylbenzole,Toluol und Xylol, Lösungsmittel auf Basis von Estern wie Ethylacetat, Butylacetat, Allylacetat und Celluloseacetat und Lösungs- mittel auf Basis von Ketonen wie Methylethylketon, Methylisobutylketon und Diiso- butylketon sowie Aceton und Mischungen aus mindestens zwei der vorgenannten Lösungsmitteln;
Weichmacher, bspw. Di-2-ethylhexylterephthalat, Diisononylcyclohexan-1 ,2- dicarboxylat, Glycerintriacetat (Triacetin), 2,2,4-Trimethyl-1 ,3- pentandioldiisobutyrate, Phthalsäureester wie etwa Dioctylphthalat, Di-2- ethylhexylphthalat (DEHP), Diisooctylphthalat (DIOP), Diisononylphthalat (DINP), Di-n-nonylphthalat, n-Nonyl-n-undecylphthalat, Di-n-undecylphthalat, Di- undecylphthalat (DUP), Diisodecylphtalate (DIDP), Di-2-propylheptylphthalat (DPHP), Phthalate mit linearen C6 bis Cio-Resten, Ditridecyl phthalat (DTDP), Un- decyldodecylphthalat, Di(2-propylheptyl)phthalat, Nonylundecyl phthalat, Texanol- benzylphthalat, Polyesterphthalat, Diallylphthalat, n-Butylphthalyl-n-butylglycosat, Dicaprylphthalat, Butylcyclohexylphthalat (BCP), Di-cyclohexylphthalat oder Buty- loctylphthalat, Dioctyladipat (DOA), Di-2-ethylhexyladipat, Diisononyladipat (DINA), Diisooctyladipat (DIOA), Diisodecyladipat, Ditridecyladipat (DITA), Dibutoxyethyla- dipat, Dibutoxyethoxyadipat, Di(n-octy)adipat, Polyesteradipate, Polyglycoladipate, Trioctyltrimellitate, Tri-2-ethylhexyltrimellitat (TOTM), Triisooctyltrimellitat (TIOTM), Triisononyltrimellitat, Triisodecyltrimellitat, Tri-n-hexyltrimellitat, Dioctylazelat (DOZ), Di-2-ethylhexylglutarat, Di-2-ethylhexylsebecat, Dibutylsebecat, Dibutoxye- thylsebecat, Triethylcitrat, Acetyltriethylcitrat, Tri-n-butylcitrat, Acetytri-n-butylcitrat,
Acetyltri-n-hexylcitrat, n-Butyl-tri-n-hexylcitrat, Isodecylbenzoat, Diethyleneglycoldi- benzoat, Dipropyleneglycoldibenzoat, Triethyleneglycoldibenzoat, 1 ,4-Cyclohexanedimethanoldibenzoat, 2,2,4-Trimethyl-1 ,3-pentanedioldibenzoat, 2,2-Dimethyl-1 ,3-propanedioldibenzoate, C10-C21 Alkansäurephenolester oder Al- kylsulphonsäurephenolester, Reaktionsprodukte von Essigsäure mit gehärtetem Rhizinusöl, Pentaerythritoltetrabenzoat, Glyceroltribenzoat, Polypropyleneglycoldi- benzoat, Triarylphosphate, Polymere der Adipinsäure, Phthalate, Adipate und/oder
Sebacate mit Glycol, Butylbenzylphthalat, Alkylbenzylphthalat, C7-C9 Butylphthala- te, Diethylenglycoldibenzoat, Dipropylenglycoldibenzoat, 2-Ethylhexylbenzoat, C9- Benzoate, Cio-Benzoate, Texanolbenzoat, Ethylenglycoldibenzoat, Propylengly- coldibenzoat, Triethylenglycoldibenzoat, Diheptylphthalat (DHP), Dihexylphthalat, Dimethylphthalat, Diethylphthalat, Dibutylphthalat und Diisobutylphthalat. Als
Weichmacher können auch Ester einer aliphatischen oder aromatischen Di- oder Tricarbonsäure mit einer do-Alkoholkomponente enthaltend 2-Propylheptanol oder ein Cio-Alkoholgemisch aus 2-Propylheptanol und mindestens einem der C10- Alkohole 2-Propyl-4-methyl-hexanol, 2-Propyl-5-methyl-hexanol, 2-lsopropyl- heptanol, 2-lsopropyl-4-methyl-hexanol, 2-lsopropyl-5-methyl-hexanol und/oder 2-
Propyl-4,4-dimethylpentanol eingesetzt werden, wobei die aliphatische oder aromatische Di- oder Tricarbonsäure ausgewählt ist aus der Gruppe bestehend aus Zitronensäure, Phthalsäure, Isophthalsäure, Terephthalsäure und Trimellitsäure; sowie weitere in fließfähigen Systemen eingesetzte Substanzen.
Ein weiterer Gegenstand der vorliegenden Erfindung sind schließlich auch fließfähige Systeme, welche sich aus der vorstehend beschrieben Verwendung ergeben. Insbesondere handelt es sich hierbei um einen Kleb- oder Dichtstoff, Beschichtungsstoff oder Coating.
In einer weiteren bevorzugten Ausführungsform wird die Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung in einer Apparatur zerkleinert. Als Apparatur zur Zerkleinerung eignen sich insbesondere Mühlen wie Kugelmühlen, Extruder, Lochscheibenmühlen, Zahnkolloidmühlen oder ein Dreiwalzenstuhl. Das Thixotropiermittel kann hierbei in einer Form gewonnen werden, welche sehr hohe Wirkstoffgehalte aufweist und sich anwendungstechnisch durch eine sehr gute Verarbeitbarkeit auszeichnet. Insbesondere ist das Verfahren dazu geeignet, ein pulverförmiges Produkt mit einem sehr hohen Gehalt an Thixotropiermittel zu erhalten. Das zerkleinerte Produkt kann im Anschluss bspw. in ein fließfähiges System eingebracht werden. Auch in diesem Fall ist es möglich, wie bereits beschrieben, das erfindungsgemäße Produkt sowohl in einem diskontinuierlichen als auch kontinuierlichen Verfahren zur Herstellung eines fließfähigen Systems zu verwenden.
Ein weiterer Gegenstand der vorliegenden Erfindung sind auch fließfähige Systeme, welche sich aus der vorstehend beschrieben Verwendung ergeben. Insbesondere handelt es sich hierbei um einen Kleb- oder Dichtstoff, Beschichtungsstoff oder Coa- ting.
Insgesamt werden mit dem vorgeschlagenen Verfahren Thixotropiermittel auf Basis eines Harnstoffderivates zur Verfügung gestellt, wobei auf ein Trägermaterial weitgehend verzichtet werden kann. Das Verfahren ist wirtschaftlich, liefert eine gute Produktqualität und kann flexibel eingesetzt werden. Insbesondere kann das erhaltene Produkt zur Herstellung von fließfähigen Systemen verwendet werden. Die vorliegende Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher beschrieben.
Beispiele
Allgemeine Herstellvorschrift des Dichtstoffs
1/3 Desmoseal M 280, Weichmacher, Omyacarb 5 GU, und 2/3 Zusatzmittel Ti (Tolu- olsulfonylisocyanat) werden vorgelegt und bei einer Temperatur von 25 °C im Vakuum miteinander vermischt, danach wird das Thixotropiermittel eingebracht. Im Anschluss werden 2/3 Desmoseal M 280 zugegeben. Im letzten Schritt werden Dynasylan GLY- MO, 1/3 Zusatzmittel Ti und Lupranat N 106 DMDEE zugefügt und gemischt. Der Dichtstoff wird in Aluminium- oder Kunststoffkartuschen abgefüllt.
Figure imgf000027_0001
Desmoseal M 280: Polyurethan Bindemittel der Fa. Bayer MaterialScience AG Palatinol 10-P: Di-2-propylheptylphthalat der BASF SE
Omyacarb 5 GU: gemahlene Kreide der Omya Inc.
Zusatzmittel Ti: monofunktionelles Isocyanat der OMG Borchers GmbH
Dynasylan GLYMO: 3-Glycidyloxypropyltrimethoxysilan der Evonik Degussa GmbH Lupranat N 106 DMDEE: 2,2'-Dimorpholinyldiethylether der BASF SE
Beispiel 1 :
Das Thixotropiermittel wird mittels einer Hochdrucksprühanlage der Isotherm AG (Dosieranlage PSM 700; Mischkopf: RSP 400) hergestellt, wobei folgende Komponenten gravimetrisch im Verhältnis 1 :1 in den Mischkopf eingebracht und direkt in den Dichtstoff enthaltenden Mischbehälter unter Rühren eingesprüht werden. n-Butylamin Isomerengemisch Palatinol 10-P
4,4'- und 2,4'
Diphenylmethan- diisocyanat
Amin- 8,12 Gewichtsteile - 41 ,88 Gewichtsteile
Komponente
Isocayanat- - 13,88 Gewichtsteile 36,12 Gewichtsteile Komponente
Palatinol 10-P: Di-2-propylheptylphthalat der BASF SE
Der Abstand zwischen der Austrittsöffnung des Mischkopfs und dem Dichtstoff beträgt hierbei ca. 10 cm. Die Durchflussrate beträgt 60 g/s. Die beiden Komponenten werden mit einem Druck von 120 bar aus der Mischkopf ausgetragen. Es wird soviel Thixotro- piermittel eingesprüht, dass der Dichtstoff am Ende 15 Gew.-% des Thixotropiermittels enthält. Im Anschluss an den Mischvorgang wird der Dichtstoff in Kartuschen abgefüllt.
Beispiel 2:
Zur Herstellung eines Harnstoff Thixotropiermittels werden mittels einer Hochdruck- sprühanlage der Isotherm AG (Dosieranlage PSM 700; Mischkopf: RSP 400) folgende Komponenten gravimetrisch im Verhältnis 1 :1 auf einen Dreiwalzenstuhl aufgesprüht.
Figure imgf000028_0001
Die Durchflussrate beträgt 40 g/s. Die beiden Komponenten werden mit einem Druck von 90 bar aus der Mischkopf ausgetragen. Anschließend wird soviel des hergestellten Thixotropiermittels in den oben beschrieben Dichtstoff eingebracht, dass dieser am Ende 15 Gew.-% des Thixotropiermittels enthält. Im Anschluss wird der Dichtstoff in Kartuschen abgefüllt.
Vergleichsbeispiel 3:
Zur Herstellung eines Harnstoff Thixotropiermittels werden die beiden Komponenten im Verhältnis 1 :1 mittels einer Dosierpumpe in einen Planetenmischer zusammen gegeben. Das Planetengetriebe dreht mit eine konstanten Geschwindigkeit von 50 UPM die Dissolverscheibe mit 500 UPM und der Balkenmischer mit 150 UPM. n-Butylamin Isomerengemisch Palatinol 10-P
4,4'- und 2,4'
Diphenylmethan- diisocyanat
Amin- 8,12 Gewichtsteile - 41 ,88 Gewichtsteile
Komponente
Isocyanat- - 13,88 Gewichtsteile 36,12 Gewichtsteile Komponente
Das Produkt ist nach diesem Herstellverfahren nicht produzierbar. Die Durchmischung der Reaktanten ist nicht gewährleistet, da sobald die Edukte aufeinander treffen eine feste Masse entsteht, die nicht weiter aufgerührt werden kann. Die Ausbeute liegt bei < 70 %.

Claims

Patentansprüche
Verfahren zur Herstellung eines Thixotropiermittels auf Basis eines Harnstoffderivates, dadurch gekennzeichnet, dass die Komponenten
a) enthaltend mindestens ein Amin und
ß) enthaltend mindestens ein Isocyanat,
getrennt einer Mischeinrichtung zuführt und miteinander vermischt werden, wobei die Reaktionsmischung durch Sprühen oder Spritzen aus der Mischeinrichtung ausgetragen wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei der Mischeinrichtung um einen Sprühkopf handelt.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man die Komponenten a) und ß) mit einem Druck von mindestens 40 bis 200 bar in die Mischeinrichtung einbringt.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Molverhältnis der Amingruppen der Amin enthaltenden Komponente zu den Iso- cyanatgruppen der Isocyanat enthaltenden Komponente 5 : 1 bis 1 : 5 beträgt.
Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem Amin der Komponente a) um N-n-Alkyl- und/oder N-n-Alkenyl- und/oder sekundäres N-Alkylamin mit 1 bis 22 Kohlenstoffatomen und/oder Poly- etheramine handelt.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei dem Isocyanat der Komponente ß) um Hexamethylendiisocyanat-1 ,6 (HDI), 1 -lsocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI) und/oder 4,4'-, 2,4'- und/oder 2,2'- Diphenylmethandiisocyanat (MDI), m-Xylendiisocyanat (MXDI), m- oder p- Tetramethylxylendiisocyanat (m-TMXDI, p-TMXDI), Desmodur 3600® (Produkt der Bayer AG, Polyisocyanat enthaltend Isocyanurate des HDI, NCO-Gehalt: 23,4 Gew.-%, Viscosität 1200 mPa/s bei 23°C), 4,4'-
Dicyclohexylmethandiisocyanat (H12MDI), Naphthalin-1 ,5-Diisocyanat, Cyclohe- xan-1 ,4-diisocyanat, hydriertes Xylylen-diisocyanat (H6XDI), 1 -Methyl-2,4- diisocyanato-cyclohexan, Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4- diisocyanat, 1 ,6-Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4- trimethylhexan, 1 -lsocyanato-1 -methyl-4(3)-isocyanatomethylcyclohexan (IMCI) sowie 1 ,12-Dodecandiisocyanat (C12DI) oder deren Mischungen handelt.
7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man die Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung durch Aufsprühen, Aufspritzen, Einspritzen oder Einsprühen in ein fließfähiges System ein- bringt.
Verwendung nach Anspruch 7, dadurch gekennzeichnet, dass der Umsetzungsgrad von a) Amin mit ß) Isocyanat beim Aufsprühen oder Aufspritzen vor dem Kontakt mit dem fließfähigen System mindestens 75 % beträgt, ggf. bezüglich der im Unterschuss eingesetzten Komponente.
9. Verwendung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Thi- xotropiermittel in das fließfähige System in einer Menge von 0,05 bis 40 Gew.-%, bezogen auf die gesamte Masse des fließfähigen Systems, eingebracht wird.
10. Verwendung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Verfahren kontinuierlich oder diskontinuierlich durchgeführt wird.
1 1 . Fließfähiges System, herstellbar nach einem der Ansprüche 7 bis 10.
12. Verwendung eines fließfähigen Systems nach Anspruch 1 1 als Kleb- oder Dichtstoff.
Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man die Mischung aus a) enthaltend mindestens ein Amin und ß) enthaltend mindestens ein Isocyanat nach dem Verlassen der Mischeinrichtung in einer Apparatur zerkleinert.
Verwendung nach Anspruch 13, dadurch gekennzeichnet, dass man das zerkleinerte Produkt in ein fließfähiges System einbringt.
15. Verwendung eines fließfähigen Systems nach Anspruch 14 als Kleb- oder Dichtstoff, Beschichtungsstoff oder Coating.
PCT/EP2011/059708 2010-06-29 2011-06-10 Verfahren zur herstellung eines thixotropiermittels und dessen verwendung WO2012000774A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013517149A JP2013534960A (ja) 2010-06-29 2011-06-10 チキソトロープ剤の製造法及びその使用
EP11724430.1A EP2588246A1 (de) 2010-06-29 2011-06-10 Verfahren zur herstellung eines thixotropiermittels und dessen verwendung
US13/704,374 US9376602B2 (en) 2010-06-29 2011-06-10 Process for preparing a thixotroping agent and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10167656 2010-06-29
EP10167656.7 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012000774A1 true WO2012000774A1 (de) 2012-01-05

Family

ID=44513440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/059708 WO2012000774A1 (de) 2010-06-29 2011-06-10 Verfahren zur herstellung eines thixotropiermittels und dessen verwendung

Country Status (4)

Country Link
US (1) US9376602B2 (de)
EP (1) EP2588246A1 (de)
JP (1) JP2013534960A (de)
WO (1) WO2012000774A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014318649B2 (en) 2013-09-13 2017-09-07 Dow Global Technologies Llc Thixotropic polyol compositions containing dispersed urethane-modified polyisocyanurates
US9856384B2 (en) * 2014-07-21 2018-01-02 Axalta Coatings Systems Ip Co., Llc Sag control compositions, methods of forming the same, and methods of forming coating systems using the same
EP3067375B1 (de) * 2015-03-11 2017-08-30 Henkel AG & Co. KGaA Silylierte polyurethane, deren herstellung und verwendung
WO2023070009A1 (en) * 2021-10-19 2023-04-27 P2 Science, Inc. Silyl ether derivatives of polyether polymers

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431239A (en) 1965-03-29 1969-03-04 Prod Res & Chem Corp Mercaptan terminated polyethers
DE1805693A1 (de) 1967-11-03 1970-02-26 Armour Ind Chem Co Thixotrope UEberzugsmassen
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
DE2307794A1 (de) 1972-02-17 1973-08-23 Mitsui Toatsu Chemicals Polyurethanzusammensetzung
US4857623A (en) 1986-08-28 1989-08-15 Henkel Kommanditgesellschaft Auf Aktien Alkoxysilane-terminated, moisture-hardening polyurethanes and their use in adhesives and sealing compositions
US5364955A (en) 1992-11-06 1994-11-15 Bayer Aktiengesellschaft Compounds containing alkoxysilane and amino groups
US5405218A (en) * 1992-05-05 1995-04-11 Foamseal Inc Method for the repair of existing manholes using elastomeric materials
US5534295A (en) * 1994-03-21 1996-07-09 August Lotz Co., Inc. Polyurea/polyurethane edge coating and process for making
EP0931800A1 (de) 1998-01-22 1999-07-28 Witco Corporation Verfahren zur Herstellung von Präpolymeren, die zu verbesserten Dichtungsmassen aushärten und daraus hergestellte Produkte
WO2001016201A1 (en) 1999-08-20 2001-03-08 Crompton Corporation Silane endcapped moisture curable compositions
JP2001172513A (ja) * 1999-12-21 2001-06-26 Nippon Shiika Kk 一液型湿気硬化性組成物
EP1152019A1 (de) 2000-05-02 2001-11-07 Sika AG, vorm. Kaspar Winkler &amp; Co. Thixotropiermittel
EP1245601A1 (de) 2001-03-29 2002-10-02 Degussa AG Metallfreie silanterminierte Polyurethane, ein Verfahren zu deren Herstellung und deren Anwendung
WO2004060953A1 (en) 2002-12-20 2004-07-22 Bayer Materialscience Llc Moisture-curable, polyether urethanes with terminal cyclic urea/reactive silane groups and their use as sealants, adhesives and coatin
EP1093482B1 (de) 1998-03-25 2004-08-18 Henkel Kommanditgesellschaft auf Aktien Polyurethan und polyurethanhaltige zubereitung
US20040260037A1 (en) 2001-08-23 2004-12-23 Wolfram Schindler Moisture cross-linking elastic composition
EP1498433A1 (de) 2002-04-25 2005-01-19 Kaneka Corporation Verfahren zur herstellung von (meth)acrylpolymer mit vernetzbarer silylendgruppe
US20050119421A1 (en) 2002-01-17 2005-06-02 Consortium Fur Elektrochemische Industrie Gmbh Cross-linkable polymer blends containing alkoxysilane-terminated polymers
WO2006088839A2 (en) 2005-02-15 2006-08-24 Momentive Performance Materials, Inc. Crosslinkable silane-terminated polymer and sealant composition made with same
US20070167598A1 (en) 2003-07-04 2007-07-19 Consortium Fuer Elektrochemische Gmbh Prepolymers with alkoxysilane end groups
EP1685171B1 (de) 2003-10-22 2008-03-12 Bayer MaterialScience LLC Feuchtigkeitshärtbare polyetherurethane mit reaktiven silangruppen und ihre verwendung als dichtstoffe, klebstoffe und beschichtungen
WO2008061651A1 (de) 2006-11-25 2008-05-29 Bayer Materialscience Ag Abformmassen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133483A (en) * 1977-07-05 1979-01-09 Binks Manufacturing Company Plural component gun
DE2853241A1 (de) * 1978-12-09 1980-06-26 Henkel Kgaa Verfahren zur herstellung von quaternaeren ammoniumhalogeniden in pulver- oder granulatform
DE3724555A1 (de) * 1987-07-24 1989-02-02 Basf Ag Viskositaetsregulierende stoffe fuer einkomponentige polyurethansysteme
FR2692901B1 (fr) * 1992-06-26 1994-08-19 Cray Valley Sa Résines et compositions pour la fabrication de matériaux de haut module résistants à la chaleur et articles moulés obtenus à partir de ces matériaux.
DE19707576C1 (de) * 1997-02-26 1998-04-16 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten mit Biuretstruktur
DE502005006516D1 (de) * 2004-08-11 2009-03-12 Rhein Chemie Rheinau Gmbh Verfahren zur Herstellung pulverförmiger (Poly)harnstoffe mittels Sprühtrocknung

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431239A (en) 1965-03-29 1969-03-04 Prod Res & Chem Corp Mercaptan terminated polyethers
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
DE1805693A1 (de) 1967-11-03 1970-02-26 Armour Ind Chem Co Thixotrope UEberzugsmassen
DE2307794A1 (de) 1972-02-17 1973-08-23 Mitsui Toatsu Chemicals Polyurethanzusammensetzung
US4857623A (en) 1986-08-28 1989-08-15 Henkel Kommanditgesellschaft Auf Aktien Alkoxysilane-terminated, moisture-hardening polyurethanes and their use in adhesives and sealing compositions
US5405218A (en) * 1992-05-05 1995-04-11 Foamseal Inc Method for the repair of existing manholes using elastomeric materials
US5364955A (en) 1992-11-06 1994-11-15 Bayer Aktiengesellschaft Compounds containing alkoxysilane and amino groups
US5534295A (en) * 1994-03-21 1996-07-09 August Lotz Co., Inc. Polyurea/polyurethane edge coating and process for making
EP0931800A1 (de) 1998-01-22 1999-07-28 Witco Corporation Verfahren zur Herstellung von Präpolymeren, die zu verbesserten Dichtungsmassen aushärten und daraus hergestellte Produkte
EP1093482B1 (de) 1998-03-25 2004-08-18 Henkel Kommanditgesellschaft auf Aktien Polyurethan und polyurethanhaltige zubereitung
WO2001016201A1 (en) 1999-08-20 2001-03-08 Crompton Corporation Silane endcapped moisture curable compositions
JP2001172513A (ja) * 1999-12-21 2001-06-26 Nippon Shiika Kk 一液型湿気硬化性組成物
EP1152019A1 (de) 2000-05-02 2001-11-07 Sika AG, vorm. Kaspar Winkler &amp; Co. Thixotropiermittel
EP1245601A1 (de) 2001-03-29 2002-10-02 Degussa AG Metallfreie silanterminierte Polyurethane, ein Verfahren zu deren Herstellung und deren Anwendung
US20040260037A1 (en) 2001-08-23 2004-12-23 Wolfram Schindler Moisture cross-linking elastic composition
US20050119421A1 (en) 2002-01-17 2005-06-02 Consortium Fur Elektrochemische Industrie Gmbh Cross-linkable polymer blends containing alkoxysilane-terminated polymers
EP1498433A1 (de) 2002-04-25 2005-01-19 Kaneka Corporation Verfahren zur herstellung von (meth)acrylpolymer mit vernetzbarer silylendgruppe
WO2004060953A1 (en) 2002-12-20 2004-07-22 Bayer Materialscience Llc Moisture-curable, polyether urethanes with terminal cyclic urea/reactive silane groups and their use as sealants, adhesives and coatin
US20070167598A1 (en) 2003-07-04 2007-07-19 Consortium Fuer Elektrochemische Gmbh Prepolymers with alkoxysilane end groups
EP1685171B1 (de) 2003-10-22 2008-03-12 Bayer MaterialScience LLC Feuchtigkeitshärtbare polyetherurethane mit reaktiven silangruppen und ihre verwendung als dichtstoffe, klebstoffe und beschichtungen
WO2006088839A2 (en) 2005-02-15 2006-08-24 Momentive Performance Materials, Inc. Crosslinkable silane-terminated polymer and sealant composition made with same
WO2008061651A1 (de) 2006-11-25 2008-05-29 Bayer Materialscience Ag Abformmassen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Controlled", HIGH-SPEED ANIONIC POLYMERIZATION GEMÄSS MACROMOLECULES, vol. 37, 2004, pages 4038 - 4043
CHEM. REV., vol. 101, 2001, pages 2921 - 2990
DATABASE WPI Week 200157, Derwent World Patents Index; AN 2001-517663, XP002659000 *
HÜTHING U.: "ALPIS Aliphatische Polysulfide", 1992, WELPF VERLAG
KRZYSZTOF MATYJASZEWSKI, JIANHUI XIA: "Atom Transfer Radical Polymerization", PROGRESS IN POLYMER SCIENCE, vol. 32, 2007, pages 93 - 146
WADE A. BRAUNECKER: "Krzysztof Matyjaszewski", ELSEVIER BEZUG

Also Published As

Publication number Publication date
EP2588246A1 (de) 2013-05-08
US9376602B2 (en) 2016-06-28
US20130303804A1 (en) 2013-11-14
JP2013534960A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
EP2496654B1 (de) Kleb- und dichtstoffe enthaltend ester auf basis von 2-propylheptanol
EP2582765B1 (de) 2-ethylhexyl-methyl-terephthalat als weichmacher in kleb- und dichtstoffen
EP2373716B1 (de) Cyclohexanpolycarbonsäure-derivate als weichmacher für kleb- und dichtstoffe
EP2220034B1 (de) Aromatische aldimine und aldimin enthaltende polyurethanzusammensetzungen
EP2414418B1 (de) Zweistufig aushärtende zusammensetzung enthaltend ein oberflächendesaktiviertes polyisocyanat
EP2212365B1 (de) Feuchtigkeitshärtende zusammensetzung umfassend mindestens zwei silangruppen-aufweisende polymere
US8791185B2 (en) 2-ethylhexyl methyl terephthalate as plasticizer in adhesives and sealants
EP2398836B1 (de) Silanterminierte polyurethanpolymere
EP1760100A1 (de) Isocyanatgruppen enthaltende Addukte und Zusammensetzung mit guter Haftung auf Lacksubstraten
DE10237271A1 (de) Polymermassen auf Basis alkoxysilanterminierter Polymere mit regulierbarer Härtungsgeschwindigkeit
DE102005026085A1 (de) Silan-modifizierte Harnstoff-Derivate, Verfahren zu ihrer Herstellung und deren Verwendung als Rheologiehilfsmittel
WO2011009672A1 (de) Kleb- und dichtstoffe enthaltend cyclohexanpolycarbonsäure-derivate
EP2139936A1 (de) Polyurethanzusammensetzung enthaltend asymmetrisches dialdimin
EP3116927B1 (de) Zweikomponentiger polyurethan-klebstoff mit langer offenzeit
EP2646511A1 (de) Härtbare zusammensetzung
WO2012000774A1 (de) Verfahren zur herstellung eines thixotropiermittels und dessen verwendung
EP2108669B1 (de) Feuchtigkeitshärtende Dichtstoffzusammensetzung mit guter Lagerstabilität und geringer Oberflächenklebrigkeit
EP2861642B1 (de) Silangruppen-haltiges polymer
EP2024457B1 (de) Kleb-/dichtstoffzusammensetzung mit doppeltem härtungsmechanismus
EP4286436A1 (de) Härtbare zusammensetzung aus polycarbonsäure und polycarbodiimid
DE10351926A1 (de) Dampfsperrendes Polyurethan und daraus hergestellter Klebstoffformkörper
EP2578770A1 (de) Bodenaufbau umfassend einen parkettbelag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11724430

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011724430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011724430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013517149

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13704374

Country of ref document: US