WO2012000457A1 - Three-dimensional-simulation amblyopia therapy instrument - Google Patents

Three-dimensional-simulation amblyopia therapy instrument Download PDF

Info

Publication number
WO2012000457A1
WO2012000457A1 PCT/CN2011/076787 CN2011076787W WO2012000457A1 WO 2012000457 A1 WO2012000457 A1 WO 2012000457A1 CN 2011076787 W CN2011076787 W CN 2011076787W WO 2012000457 A1 WO2012000457 A1 WO 2012000457A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
dimensional
eyepiece
stereoscopic
center line
Prior art date
Application number
PCT/CN2011/076787
Other languages
French (fr)
Chinese (zh)
Inventor
王正
Original Assignee
Wang Zheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Zheng filed Critical Wang Zheng
Publication of WO2012000457A1 publication Critical patent/WO2012000457A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes
    • A61H5/005Exercisers for training the stereoscopic view
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

A three-dimensional-simulation amblyopia therapy instrument comprising: a housing (10); a 3D display screen (20) positioned within the housing; a light valve eyepiece (30) comprising a left eyepiece (31) and a right eyepiece (32), both being embedded in the housing (10) opposite the center of the 3D display screen (20); a synchronous signal controller (100) positioned inside the housing (10) and electrically connected to the left eyepiece (31) and the right eyepiece (32); and a computer device (40) positioned inside the housing (10) and electrically connected to the 3D display screen (20) and the synchronous signal controller (100), for use in controlling via the synchronous signal controller (100) the alternating opening and closing of the left eyepiece (31) and the right eyepiece (32), in controlling the 3D display screen (20) to display a plurality of 3D visual targets having different motion trajectories, and in controlling the 3D visual targets to perform one or more of the following: zooming out, zooming in, enlarging, shrinking, blinking, and shifting. The three-dimensional-simulation amblyopia therapy instrument of the present invention enables a viewer to gain full motion and adjustment of the ocular muscles and lenses, thereby treating the amblyopia.

Description

一种三维仿真弱视治疗仪  Three-dimensional simulation amblyopia treatment instrument
技术领域  Technical field
本发明涉及一种弱视治疗仪, 并且尤其涉及一种三维仿真弱视治疗仪。 背景技术  The present invention relates to amblyopia treatment apparatus, and in particular to a three-dimensional simulation amblyopia treatment apparatus. Background technique
弱视是最常见的儿童眼病之一, 它严重地影响着儿童的视力功能。 根据 我国近年来的普查结果表明, 青少年儿童的弱视发病率较高达到 3-4%, 也 就是说在 3亿青少年儿童中大约有 1000多万儿童具有弱视, 并且有逐年上 升的趋势, 青少年 J L童弱视已成为人们关注的一个社会问题。  Amblyopia is one of the most common childhood eye diseases, which seriously affects children's visual function. According to the results of the census in recent years in China, the incidence of amblyopia among adolescents and children is 3-4% higher, which means that more than 10 million children in 300 million children have amblyopia, and there is a trend of increasing year by year. Child amblyopia has become a social issue of concern.
目前国内外普遍使用的防控弱视的方法主要有配镜矫正法、 遮盖疗法、 后像疗法、 红色滤光片疗法、 光学药物抑制疗法、 视觉生理刺激法、 穴位按 摩法、 二维视觉训练法等, 然而这些疗法治疗周期长, 治疗过程令人乏味, 且效果并不理想。 发明内容  At present, the methods of prevention and control of amblyopia commonly used at home and abroad mainly include optic correction, occlusion therapy, post-therapy, red filter therapy, optical drug suppression therapy, visual physiological stimulation, acupressure, and two-dimensional visual training. Etc. However, these treatments have a long treatment period, the treatment process is tedious, and the effect is not satisfactory. Summary of the invention
为克服现有技术的弱视疗法治疗周期长治疗过程令人乏味且效果并不 理想的缺陷, 本发明提供一种三维仿真弱视治疗仪。  In order to overcome the shortcomings of the prior art amblyopia treatment period, the treatment process is tedious and the effect is not ideal, and the present invention provides a three-dimensional simulation amblyopia treatment apparatus.
本发明提供的三维仿真弱视治疗仪包括: 壳体; 3D 立体显示屏, 位于 所述壳体内部; 光阀目镜, 该光阀目镜包括左目镜和右目镜, 该左目镜和右 目镜嵌于所述壳体上正对所述显示屏中央的位置; 同步信号控制器, 位于所 述壳体内部, 且与所述左目镜和右目镜电连接; 以及计算机装置, 位于所述 壳体内部, 与所述显示屏和同步信号控制器电连接, 用于通过所述同步信号 控制器控制所述左目镜和右目镜交替打开和关闭, 控制所述 3D立体显示屏 显示多种不同运动轨迹的三维立体视标, 并控制该三维立体视标进行出镜、 入镜、 变大、 缩小、 闪烁以及移动中的一者或多者。 The three-dimensional simulated amblyopia treatment apparatus provided by the invention comprises: a housing; a 3D stereoscopic display, located inside the housing; a light valve eyepiece, the light valve eyepiece comprising a left eyepiece and a right eyepiece, the left eyepiece and the right eyepiece being embedded in the a position on the housing facing the center of the display screen; a synchronization signal controller located inside the housing and electrically connected to the left and right eyepieces; and a computer device located inside the housing, The display screen and the synchronization signal controller are electrically connected, and are configured to control the left eyepiece and the right eyepiece to be alternately opened and closed by the synchronization signal controller, and control the 3D stereoscopic display to display a plurality of different motion trajectories of the three-dimensional Optotype, and control the three-dimensional optotype for appearance, One or more of the mirror, zoom in, zoom out, flicker, and move.
在使用本发明提供的三维仿真弱视治疗仪时, 三维立体视标进行出镜、 入镜、变大、缩小、 闪烁以及移动可引导观看者眼球作三联运动、外旋运动、 全向运动、 追视运动、 ∞轨迹运动或者感光对焦运动, 藉此使观看者的眼肌 和晶体得到充分的运动和调节,加之显示图像各色光线的刺激,可使弱视得到 治疗。  When using the three-dimensional simulated amblyopia treatment instrument provided by the present invention, the three-dimensional stereoscopic object is used for mirroring, mirroring, zooming in, zooming out, flickering and moving to guide the viewer's eyeball for triple motion, external rotation motion, omnidirectional motion, and pursuit. Exercise, squat track movement or sensitized focus movement, so that the viewer's eye muscles and crystals can be fully moved and adjusted, and the stimulation of the light of each color of the image can be used to treat the amblyopia.
另外, 弱视青少年儿童一般没有立体视觉功能, 本发明提供的三维仿真 弱视治疗仪一改以往在弱视治疗的后期才对弱视患者进行立体视觉重建的 做法, 将三维立体图像贯穿于整个治疗过程。 在弱视治疗一开始就让弱视青 少年进行立体视觉训练, 有助于帮助弱视者快速地建立立体视觉功能, 立体 视觉功能的建立非常有助于双眼的协调与配合, 进而有助于矫治弱视, 这种 标本兼治的方式自然高效。 附图说明  In addition, amblyopia children generally do not have stereoscopic function. The three-dimensional simulated amblyopia treatment device provided by the present invention changes the stereoscopic vision reconstruction of amblyopia patients in the late stage of amblyopia treatment, and the three-dimensional stereoscopic image is penetrated throughout the treatment process. In the beginning of amblyopia treatment, amblyopia adolescents can perform stereoscopic vision training, which helps the visually impaired to quickly establish stereoscopic vision function. The establishment of stereoscopic vision function is very helpful to coordinate and cooperate with both eyes, which helps to correct amblyopia. The way to treat both the symptoms and the symptoms is natural and efficient. DRAWINGS
图 la是本发明提供的三维仿真弱视治疗仪的正视图;  Figure la is a front view of a three-dimensional simulated amblyopia treatment apparatus provided by the present invention;
图 lb是本发明提供的三维仿真弱视治疗仪的侧视图;  Figure lb is a side view of the three-dimensional simulated amblyopia treatment apparatus provided by the present invention;
图 2是本发明提供的三维仿真弱视治疗仪的电气关系示意图;  2 is a schematic diagram showing the electrical relationship of the three-dimensional simulated amblyopia treatment apparatus provided by the present invention;
图 3是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引导 人眼作三联运动时的大小变化及运动轨迹的示意图;  FIG. 3 is a schematic diagram showing the size change and the motion trajectory of the three-dimensional stereoscopic visual guide in the three-dimensional simulated amblyopia treatment apparatus according to the present invention for guiding the human eye to perform triple motion; FIG.
图 4a至图 4h是示出了本发明提供的三维仿真弱视治疗仪中的三维立体 视标引导人眼作外旋运动时的大小变化及运动轨迹的示意图;  4a to 4h are schematic diagrams showing the size change and the motion trajectory of the three-dimensional stereo optotype in the three-dimensional simulated amblyopia treatment apparatus according to the present invention for guiding the human eye to perform external rotation motion;
图 5是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引导 人眼作全向运动时的大小变化及运动轨迹的示意图;  FIG. 5 is a schematic diagram showing the size change and the motion trajectory of the three-dimensional stereoscopic visual guide in the three-dimensional simulated amblyopia treatment apparatus according to the present invention for guiding the human eye to perform omnidirectional motion; FIG.
图 6a是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引 导人眼作跳跃追视运动时的大小变化及运动轨迹的示意图; 图 6b是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引 导人眼作连续追视运动时的大小变化及运动轨迹的示意图; FIG. 6a is a schematic diagram showing a size change and a motion trajectory of a three-dimensional stereoscopic visual guide in a three-dimensional simulated amblyopia treatment apparatus according to the present invention for guiding a human eye to perform a jumping pursuit motion; FIG. 6b is a schematic diagram showing the size change and the motion trajectory of the three-dimensional stereoscopic visual guide in the three-dimensional simulated amblyopia treatment apparatus according to the present invention for guiding the human eye to perform continuous pursuit motion;
图 7是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引导 人眼作∞轨迹运动时的大小变化及运动轨迹的示意图; 以及  7 is a schematic diagram showing a size change and a motion trajectory when a three-dimensional stereoscopic guide in a three-dimensional simulated amblyopia treatment apparatus according to the present invention guides a human eye as a trajectory motion;
图 8是示出了本发明提供的三维仿真弱视治疗仪中的三维立体视标引导 人眼作感光对焦运动的三维立体视标的布局情况的示意图。 具体实施方式  Fig. 8 is a schematic view showing the layout of a three-dimensional stereoscopic guide for guiding a human eye as a photographic focus motion in a three-dimensional simulated amblyopia treatment apparatus provided by the present invention. detailed description
为了让本发明的上述和其他目的、 特征和优点能更明显, 下文将配合所 附图示, 作详细说明如下。  The above and other objects, features, and advantages of the present invention will become more apparent from the accompanying drawings.
如图 la、 图 lb以及图 2所示, 本发明提供一种三维仿真弱视治疗仪, 该治疗仪包括壳体 10、 3D立体显示屏 20、 光阀目镜 30、 同步信号控制器 100以及计算机装置 40。所述显示屏 20位于所述壳体 10内部; 所述光阀目 镜 30包括左目镜 31和右目镜 32,该左目镜 31和右目镜 32分别嵌于所述壳 体 10上正对所述 3D立体显示屏 20中央的位置; 所述同步信号控制器 100 与所述左目镜 31和右目镜 32电连接, 用于控制所述左目镜 31和右目镜 32 交替打开和关闭; 所述计算机装置 40位于所述壳体 10内部, 与所述 3D立 体显示屏 20和同步信号控制器 100电连接, 用于通过所述同步信号控制器 100控制所述左目镜 31和右目镜 32交替打开和关闭, 并控制所述 3D立体 显示屏 20显示多种三维立体视标并控制该三维立体视标进行出镜、 入镜、 变大、 缩小、 闪烁以及移动中的一者或多者。  As shown in FIG. 1a, FIG. 1b and FIG. 2, the present invention provides a three-dimensional simulated amblyopia treatment apparatus, which comprises a housing 10, a 3D stereoscopic display screen 20, a light valve eyepiece 30, a synchronization signal controller 100, and a computer device. 40. The display screen 20 is located inside the casing 10; the light valve eyepiece 30 includes a left eyepiece 31 and a right eyepiece 32, and the left eyepiece 31 and the right eyepiece 32 are respectively embedded on the casing 10 facing the 3D. a position of a center of the stereoscopic display screen 20; the synchronization signal controller 100 is electrically connected to the left eyepiece 31 and the right eyepiece 32 for controlling the left eyepiece 31 and the right eyepiece 32 to be alternately opened and closed; the computer device 40 Located inside the casing 10, electrically connected to the 3D stereo display screen 20 and the synchronization signal controller 100 for controlling the left eyepiece 31 and the right eyepiece 32 to be alternately opened and closed by the synchronization signal controller 100, And controlling the 3D stereoscopic display screen 20 to display a plurality of three-dimensional stereoscopic visual targets and controlling the three-dimensional stereoscopic visual targets to perform one or more of mirroring, mirroring, zooming in, zooming out, blinking, and moving.
其中, 所述 3D立体显示屏 20可为 3D液晶显示屏或 CRT显示屏, 屏 幕显示区域的比例为 4: 3, 尺寸可为 15~25英寸。 所述计算机装置 40可在 3D立体显示屏 20上分时显示针对观看者左右眼的左眼图像和右眼图像(左 眼图像与右眼图像是一系列具有一定视差的立体图像)。计算机装置 40通过 同步信号控制器 100控制所述左目镜 31和右目镜 32交替打开和关闭, 可使 观看者的左眼仅能够看到左眼图像, 右眼仅能够看到右眼图像, 该两个图像 会在观看者大脑内形成立体图像 (即, 以下提到的 "三维立体视标")。 The 3D stereo display 20 can be a 3D liquid crystal display or a CRT display. The ratio of the screen display area is 4:3, and the size can be 15~25 inches. The computer device 40 can display a left eye image and a right eye image for the left and right eyes of the viewer on the 3D stereoscopic display screen 20 (the left eye image and the right eye image are a series of stereoscopic images having a certain parallax). Computer device 40 passes The sync signal controller 100 controls the left eyepiece 31 and the right eyepiece 32 to be alternately turned on and off, so that the left eye of the viewer can only see the left eye image, and the right eye can only see the right eye image, and the two images will A stereoscopic image (ie, the "three-dimensional stereoscopic object" mentioned below) is formed in the viewer's brain.
所述三维立体视标的出镜、 入镜、 变大、 缩小、 闪烁以及移动可引导人 眼作三联运动、 外旋运动、 全向运动、 追视运动、 ∞轨迹运动或者感光对焦 运动。 下面对三维立体视标的动态情况进行详细描述。  The three-dimensional optotype of the lens, into the mirror, zoom in, zoom out, flicker and move can lead the eye to triple motion, external rotation motion, omnidirectional motion, chasing motion, squat track motion or photographic focus motion. The dynamic situation of the three-dimensional stereoscopic object is described in detail below.
( 1 ) 引起眼球作三联运动的三维立体视标运动轨迹  (1) Three-dimensional stereoscopic motion trajectory that causes the eyeball to make a triple motion
所述三维立体视标可多次线性逐渐变大出镜(例如, 可直至合不上像为 止) 和线性逐渐缩小入镜 (例如, 可直至人眼看不见为止), 可引起眼球作 三联运动。  The three-dimensional stereoscopic object can be linearly enlarged over a plurality of times (for example, until the image is not closed) and linearly narrowed into the lens (for example, until the human eye is invisible), which can cause the eyeball to perform a triple motion.
优选地, 如图 3所示, 设屏幕宽度为 L。  Preferably, as shown in Fig. 3, the screen width is set to L.
先在 3D立体显示屏 20屏幕的正中央建立一宽度为 0.01L的三维立体视 标, 其水平中心线与屏幕水平中心线相同 (并且始终不变), 其右眼图像中 的视标垂直中心线在屏幕垂直中心线的右侧, 距屏幕垂直中心线距离为 0.005L, 同时其左眼图像中的视标垂直中心线在屏幕垂直中心线的左侧, 距 屏幕垂直中心线距离同为 0.005L。以此左右眼图像中的视标融像模拟出远点 三维立体视标。  Firstly, a three-dimensional stereoscopic object with a width of 0.01L is established in the center of the screen of the 3D stereoscopic display screen 20. The horizontal center line is the same (and always unchanged) as the horizontal center line of the screen, and the vertical center of the object in the right eye image is The line is on the right side of the vertical center line of the screen, and the distance from the vertical center line of the screen is 0.005L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and the distance from the vertical center line of the screen is 0.005. L. The visual image fusion in the left and right eye images simulates a distant three-dimensional visual target.
然后该立体视标以线性比例逐渐变大, 最后宽度为 0.333L, 并且右眼图 像中的视标中心点在屏幕中心点的右侧, 距屏幕中心距离为 0.1L。而左眼图 像中的视标中心点在屏幕中心点的左侧, 距屏幕中心距离为 0.1L。 以此左右 眼图像中的视标融像模拟出近点三维立体视标。  Then, the stereoscopic object is gradually enlarged in a linear ratio, and the final width is 0.333L, and the center point of the visual target in the right eye image is on the right side of the center point of the screen, and the distance from the center of the screen is 0.1L. The center point of the optotype in the left eye image is on the left side of the center point of the screen, and the distance from the center of the screen is 0.1L. The near-point three-dimensional visual target is simulated by the target image fusion in the left and right eye images.
接着该三维立体视标以线性比例逐渐缩小, 直到其宽度为 0.01L, 以此 模拟出远点三维立体视标。  Then, the three-dimensional stereoscopic object is gradually reduced in linear proportion until its width is 0.01L, thereby simulating a far-point three-dimensional visual target.
上述三维立体视标以上述运动轨迹不断重复多次,可引导观看者眼球不 断地进行望远看近的运动, 引起视觉三联运动, 从而对屈光不正、 屈光参差 以及斜视型弱视具有治疗作用。 The above-mentioned three-dimensional stereoscopic object is repeatedly repeated a plurality of times according to the above-mentioned motion trajectory, and can guide the viewer's eyeball to continuously perform the movement of looking at the near side, causing the visual triple motion, thereby causing ametropia and anisometropia. And strabismus amblyopia has a therapeutic effect.
(2) 引导眼球作外展运动的三维立体视标运动轨迹 (2) Three-dimensional visual target motion trajectory that guides the eyeball for abduction
所述三维立体视标可不断变大变小, 并且左、 右眼图像中的视标垂直中 心线不断靠近或远离 3D立体显示屏 20的屏幕垂直中心线,从而可以引导眼 球作外展运动。  The three-dimensional stereoscopic object can be continuously enlarged and smaller, and the vertical center line of the visual target in the left and right eye images is continuously approached or away from the vertical center line of the screen of the 3D stereoscopic display screen 20, so that the eyeball can be guided for abduction movement.
优选地, 如图 4a至图 4h所示: 设屏幕宽度为 L。  Preferably, as shown in Figures 4a to 4h: Let the screen width be L.
a-1: 先在 3D立体显示屏 20屏幕的正中央建立一宽度为 0.4L的三维立 体视标, 其水平中心线与屏幕水平中心线相同 (并且始终不变), 其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧,距屏幕垂直中心线距离为 0.04L。 同时, 其左眼图像中的视标垂直中心线在屏幕垂直中心线的左侧, 距屏幕垂直中心线距离同为 0.04L。 (见图 4a)  A-1: Firstly, a three-dimensional visual target with a width of 0.4L is established in the center of the screen of the 3D stereo display screen 20, and its horizontal center line is the same (and always unchanged) as the horizontal center line of the screen, and in the image of the right eye. The vertical centerline of the optotype is on the right side of the vertical centerline of the screen, and the distance from the vertical centerline of the screen is 0.04L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and the distance from the vertical center line of the screen is 0.04L. (See Figure 4a)
a-2: 接着该三维立体视标的宽度逐渐变小为 0.125L, 在此过程中其右 眼图像中的视标垂直中心线在屏幕垂直中心线的右侧,距屏幕垂直中心线距 离仍为 0.04L。 同时, 其左眼图像中的视标垂直中心线在屏幕垂直中心线的 左侧, 距屏幕垂直中心线距离同为 0.04L。 (见图 4a)  A-2: Then the width of the three-dimensional optotype is gradually reduced to 0.125L. In this process, the vertical center line of the target in the right eye image is on the right side of the vertical center line of the screen, and the distance from the vertical center line of the screen is still 0.04L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and the distance from the vertical center line of the screen is 0.04L. (See Figure 4a)
a-3 : 该三维立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图 像中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中 心线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直 中心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样 逐渐与屏幕垂直中心线重合。 (见图 4a)  A-3 : The width of the three-dimensional optotype continues to decrease to 0.038L. During this process, the vertical centerline of the optotype in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen. And gradually coincide with the vertical centerline of the screen. At the same time, the vertical centerline of the target in the left-eye image gradually moves from the left side of the vertical centerline of the screen to the vertical centerline of the screen, and also gradually coincides with the vertical centerline of the screen. (See Figure 4a)
a-4: 然后该三维立体视标的宽度又逐渐变小为 0.025L, 在此过程中其 右眼图像中的视标垂直中心线逐渐向屏幕的右边移动, 直到与屏幕垂直中心 线相距 0.025L为止。 同时, 其左眼图像中的视标垂直中心线逐渐向屏幕的 左边移动, 直到与屏幕垂直中心线相距 0.025L为止。 (见图 4a) a-5 : 该三维立体视标的宽度又逐渐变大为 0.038L, 在此过程中其右眼 图像中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直 中心线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂 直中心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同 样逐渐与屏幕垂直中心线重合。 (见图 4b) A-4: Then the width of the three-dimensional optotype is gradually reduced to 0.025L. During this process, the vertical centerline of the optotype in the right-eye image gradually moves to the right of the screen until it is 0.025L from the vertical centerline of the screen. until. At the same time, the vertical centerline of the target in the left eye image gradually moves to the left of the screen until it is 0.025L from the vertical centerline of the screen. (See Figure 4a) A-5 : The width of the three-dimensional optotype is gradually increased to 0.038L. During this process, the vertical centerline of the optotype in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen. And gradually coincides with the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 4b)
a-6: 该三维立体视标的宽度又逐渐继续变大为 0.4L, 在此过程中其右 眼图像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移 动, 直到与屏幕垂直中心线相距 0.047L为止。 同时, 其左眼图像中的视标 垂直中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕 垂直中心线相距 0.047L为止。 (见图 4b) b-1 : 接着该三维立体视标的宽度逐渐变小为 0.11L, 在此过程中其右眼 图像中的视标垂直中心线在屏幕垂直中心线的右侧,逐渐向屏幕的右边移动 直到距屏幕垂直中心线距离变为 0.056L。 同时, 其左眼图像中的视标垂直中 心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到距屏幕垂直中 心线距离同为 0.056L。 (见图 4b)  A-6: The width of the three-dimensional visual target gradually increases to 0.4L. In this process, the vertical center line of the visual target in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen. Until the vertical centerline of the screen is 0.047L away. At the same time, the vertical centerline of the optotype in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until it is 0.047L away from the vertical centerline of the screen. (See Figure 4b) b-1: The width of the three-dimensional optotype is gradually reduced to 0.11L. In this process, the vertical centerline of the optotype in the right-eye image is on the right side of the vertical centerline of the screen, gradually toward the screen. Move to the right until the distance from the vertical centerline of the screen becomes 0.056L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until the distance from the center line of the screen is 0.056L. (See Figure 4b)
b-2: 该三维立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图 像中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中 心线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直 中心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样 逐渐与屏幕垂直中心线重合。 (见图 4b)  B-2: The width of the three-dimensional optotype continues to be reduced to 0.038L, during which the vertical centerline of the target in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen. And gradually coincide with the vertical centerline of the screen. At the same time, the vertical centerline of the target in the left-eye image gradually moves from the left side of the vertical centerline of the screen to the vertical centerline of the screen, and also gradually coincides with the vertical centerline of the screen. (See Figure 4b)
b-3 : 该三维立体视标的宽度又逐渐变小为 0.025L, 在此过程中其右眼 图像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移 动, 直到与屏幕垂直中心线相距 0.053L为止。 同时, 其左眼图像中的视标 垂直中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕 垂直中心线相距 0.053L为止。 (见图 4c) B-3: The width of the three-dimensional object is gradually reduced to 0.025L. In this process, the vertical center line of the object in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until It is 0.053L away from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until the screen The vertical centerlines are separated by 0.053L. (See Figure 4c)
b-4: 该三维立体视标的宽度又逐渐变大为 0.038L, 在此过程中其右眼 图像中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直 中心线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂 直中心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同 样逐渐与屏幕垂直中心线重合。 (见图 4c)  B-4: The width of the three-dimensional object is gradually increased to 0.038L. During this process, the vertical center line of the target in the right eye image gradually moves from the right side of the vertical center line of the screen to the vertical center line of the screen. And gradually coincides with the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 4c)
b-5: 该三维立体视标的宽度又逐渐继续变大为 0.4L, 在此过程中其右 眼图像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移 动, 直到与屏幕垂直中心线相距 0.047L为止。 同时, 其左眼图像中的视标 垂直中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕 垂直中心线相距 0.047L为止。 (见图 4c) c-1 : 然后该三维立体视标的宽度逐渐变小为 0.11L在此过程中, 其右眼 图像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移 动, 直到距屏幕垂直中心线距离变为 0.08L。 同时, 其左眼图像中的视标垂 直中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到距屏幕垂 直中心线距离同为 0.08L。 (见图 4c)  B-5: The width of the three-dimensional visual target gradually increases to 0.4L. In this process, the vertical center line of the visual object in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen. Until the vertical centerline of the screen is 0.047L away. At the same time, the vertical centerline of the optotype in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until it is 0.047L away from the vertical centerline of the screen. (See Fig. 4c) c-1: Then the width of the three-dimensional optotype is gradually reduced to 0.11L. In this process, the vertical centerline of the optotype in the right-eye image is on the right side of the vertical centerline of the screen, gradually toward the screen. Move to the right until the distance from the vertical centerline of the screen becomes 0.08L. At the same time, the vertical centerline of the target in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until the distance from the vertical centerline of the screen is 0.08L. (See Figure 4c)
c-2: 该三维立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图 像中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中 心线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直 中心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样 逐渐与屏幕垂直中心线重合。 (见图 4d)  C-2: the width of the three-dimensional optotype continues to be reduced to 0.038L, during which the vertical centerline of the optotype in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen. And gradually coincide with the vertical centerline of the screen. At the same time, the vertical centerline of the target in the left-eye image gradually moves from the left side of the vertical centerline of the screen to the vertical centerline of the screen, and also gradually coincides with the vertical centerline of the screen. (See Figure 4d)
c-3 : 该三维立体视标的宽度又逐渐变小为 0.025L, 在此过程中其右眼 图像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移 动, 直到与屏幕垂直中心线相距 0.08L为止。 同时, 其左眼图像中的视标垂 直中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂 直中心线相距 0.08L为止。 (见图 4d) C-3 : The width of the three-dimensional visual target is gradually reduced to 0.025L. In this process, the vertical center line of the visual object in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until It is 0.08L away from the vertical center line of the screen. At the same time, the image in the left eye image The straight centerline is on the left side of the vertical centerline of the screen and gradually moves to the left of the screen until it is 0.08L from the vertical centerline of the screen. (See Figure 4d)
c-4: 该立体视标的宽度又逐渐变大为 0.038L, 在此过程中其右眼图像 中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心 线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直中 心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐 渐与屏幕垂直中心线重合。 (见图 4d)  C-4: The width of the stereoscopic object is gradually increased to 0.038L. During this process, the vertical centerline of the target in the image of the right eye gradually moves from the right side of the vertical center line of the screen to the vertical center line of the screen. And gradually coincide with the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 4d)
c-5 : 该立体视标的宽度又逐渐继续变大为 0.23L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直中心线相距 0.084L为止。 同时, 其左眼图像中的视标垂直 中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直 中心线相距 0.084L为止。 (见图 4d)  C-5 : The width of the stereoscopic object is gradually increased to 0.23L. During this process, the vertical center line of the target in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until It is 0.084L away from the vertical centerline of the screen. At the same time, the vertical centerline of the target in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until it is 0.084L away from the vertical centerline of the screen. (See Figure 4d)
c-6: 该立体视标的宽度又逐渐继续变大为 0.4L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心线相距 0.047L为止。 同时, 其左眼图像中的视标垂直 中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直 中心线相距 0.047L为止。 (见图 4e) d-1 : 然后该立体视标的宽度逐渐变小为 0.23L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到距屏幕垂直中心线距离变为 0.11L。 同时, 其左眼图像中的视标垂直中心 线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到距屏幕垂直中心 线距离同为 0.11L。 (见图 4e)  C-6: The width of the stereoscopic object is gradually increased to 0.4L. During this process, the vertical centerline of the target in the image of the right eye is on the right side of the vertical center line of the screen, and gradually moves to the left of the screen until It is 0.047L away from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the right side of the screen until it is 0.047L away from the vertical center line of the screen. (See Figure 4e) d-1: Then the width of the stereoscopic object is gradually reduced to 0.23L. During this process, the vertical centerline of the target in the image of the right eye is on the right side of the vertical centerline of the screen, gradually toward the screen. Move to the right until the distance from the vertical centerline of the screen becomes 0.11L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until the distance from the vertical center line of the screen is 0.11L. (See Figure 4e)
d-2: 该立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图像中 的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心线 移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直中心 线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐渐 与屏幕垂直中心线重合。 (见图 4e) D-2: The width of the stereoscopic optotype continues to decrease to 0.038L, during which the vertical centerline of the optotype in the right-eye image gradually changes from the right side of the vertical centerline of the screen to the vertical centerline of the screen. Move and gradually coincide with the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 4e)
d-3 : 该立体视标的宽度又逐渐变小为 0.025L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到与屏幕垂直中心线相距 0.11L为止。 同时, 其左眼图像中的视标垂直中心 线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心 线相距 0.11L为止。 (见图 4e)  D-3 : The width of the stereoscopic object is gradually reduced to 0.025L. During this process, the vertical center line of the target in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until The vertical centerline of the screen is 0.11L apart. At the same time, the vertical centerline of the target in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until it is 0.11L away from the vertical centerline of the screen. (See Figure 4e)
d-4: 该立体视标的宽度又逐渐变大为 0.038L, 在此过程中其右眼图像 中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心 线移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直中 心线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐 渐与屏幕垂直中心线重合。 (见图 40  D-4: The width of the stereoscopic object is gradually increased to 0.038L. During this process, the vertical centerline of the target in the image of the right eye gradually moves from the right side of the vertical center line of the screen to the vertical center line of the screen. And gradually coincide with the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 40
d-5: 该立体视标的宽度又逐渐继续变大为 0.16L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直中心线相距 0.11L为止。 同时, 其左眼图像中的视标垂直中 心线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中 心线相距 0.11L为止。 (见图 40  D-5: The width of the stereoscopic optotype gradually increases to 0.16L. In this process, the vertical centerline of the optotype in the right eye image is on the right side of the vertical centerline of the screen, and gradually moves to the right of the screen until It is 0.11L away from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until it is 0.11L away from the center line of the screen. (See Figure 40
d-6: 该立体视标的宽度又逐渐继续变大为 0.4L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心线相距 0.047L为止。 同时, 其左眼图像中的视标垂直 中心线在屏幕垂直中心线的左侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直 中心线相距 0.047L为止。 (见图 40 e-1 : 然后该立体视标的宽度逐渐变小为 0.23L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到距屏幕垂直中心线距离变为 0.14L, 同时其左眼图像中的视标垂直中心线 在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到距屏幕垂直中心线 距离也变为 0.14L。 (见图 40 D-6: The width of the stereoscopic optotype gradually increases to 0.4L. During this process, the vertical centerline of the optotype in the image of the right eye is on the right side of the vertical centerline of the screen, and gradually moves to the left of the screen until It is 0.047L away from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the right side of the screen until it is 0.047L away from the vertical center line of the screen. (See Figure 40 e-1: Then the width of the stereoscopic object is gradually reduced to 0.23L, during which the right eye image The vertical centerline of the optotype in the right side of the vertical centerline of the screen gradually moves to the right of the screen until the distance from the vertical centerline of the screen becomes 0.14L, while the vertical centerline of the optotype in the left eye image is vertical on the screen. On the left side of the center line, gradually move to the left of the screen until the distance from the vertical centerline of the screen becomes 0.14L. (See Figure 40
e-2: 该立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图像中 的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心线 移动, 并逐渐与屏幕垂直中心线重合, 同时其左眼图像中的视标垂直中心线 从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐渐与 屏幕垂直中心线重合。 (见图 4g)  E-2: the width of the stereoscopic optotype continues to decrease to 0.038L, during which the vertical centerline of the optotype in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen, and Gradually coincide with the vertical centerline of the screen, while the vertical centerline of the target in the left-eye image gradually moves from the left side of the vertical centerline of the screen to the vertical centerline of the screen, and also gradually coincides with the vertical centerline of the screen. (See Figure 4g)
e-3 : 该立体视标的宽度又逐渐变小为 0.025L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到与屏幕垂直中心线相距 0.13L为止。 同时其左眼图像中的视标垂直中心线 在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心线 相距 0.13L为止。 (见图 4g)  E-3 : The width of the stereoscopic object is gradually reduced to 0.025L. During this process, the vertical center line of the target in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until The vertical centerline of the screen is 0.13L apart. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until it is 0.13L away from the vertical center line of the screen. (See Figure 4g)
e-4: 该立体视标的宽度又逐渐变大为 0.038L, 在此过程中其右眼图像 中的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心 线移动, 并逐渐与屏幕垂直中心线重合, 同时其左眼图像中的视标垂直中心 线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐渐 与屏幕垂直中心线重合。 (见图 4g)  E-4: The width of the stereoscopic object is gradually increased to 0.038L. During this process, the vertical centerline of the target in the image of the right eye gradually moves from the right side of the vertical center line of the screen to the vertical center line of the screen. And gradually coincides with the vertical center line of the screen, and the vertical center line of the target in the left eye image gradually moves from the left side of the vertical center line of the screen to the vertical center line of the screen, and also gradually coincides with the vertical center line of the screen. (See Figure 4g)
e-5 : 该立体视标的宽度又逐渐继续变大为 0.16L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直中心线相距 0.14L为止。 同时其左眼图像中的视标垂直中心 线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心 线相距 0.14L为止。 (见图 4g)  E-5 : The width of the stereoscopic optotype gradually increases to 0.16L. During this process, the vertical centerline of the optotype in the right eye image is on the right side of the vertical centerline of the screen, and gradually moves to the right of the screen until It is 0.14L away from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until it is 0.14L away from the vertical center line of the screen. (See Figure 4g)
e-6: 该立体视标的宽度又逐渐继续变大为 0.4L, 在此过程中其右眼图 像中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心线相距 0.047L为止。 同时其左眼图像中的视标垂直中 心线在屏幕垂直中心线的左侧, 逐渐向屏幕的右边移动, 直到与屏幕垂直中 心线相距 0.047L为止。 (见图 4h) f-1 : 最后该立体视标的宽度逐渐变小为 0.16L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到距屏幕垂直中心线距离变为 0.18L。 同时, 其左眼图像中的视标垂直中心 线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到距屏幕垂直中心 线距离同为 0.18L。 (见图 4h) E-6: The width of the stereoscopic optotype gradually increases to 0.4L, and its right eye diagram in the process The vertical centerline of the optotype in the image is on the right side of the vertical centerline of the screen and gradually moves to the left of the screen until it is 0.047L from the vertical centerline of the screen. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the right side of the screen until it is 0.047L away from the vertical center line of the screen. (See Figure 4h) f-1: Finally, the width of the stereoscopic optic is gradually reduced to 0.16L. During this process, the vertical centerline of the optotype in the right-eye image is on the right side of the vertical centerline of the screen, gradually toward the screen. Move to the right until the distance from the vertical centerline of the screen becomes 0.18L. At the same time, the vertical center line of the target in the left eye image is on the left side of the vertical center line of the screen, and gradually moves to the left of the screen until the distance from the vertical center line of the screen is 0.18L. (See Figure 4h)
f-2: 该立体视标的宽度继续变小为 0.038L, 在此过程中其右眼图像中 的视标垂直中心线从屏幕垂直中心线的右侧逐渐向屏幕的屏幕垂直中心线 移动, 并逐渐与屏幕垂直中心线重合。 同时, 其左眼图像中的视标垂直中心 线从屏幕垂直中心线的左侧逐渐向屏幕的屏幕垂直中心线移动, 也同样逐渐 与屏幕垂直中心线重合。 (见图 4h)  F-2: the width of the stereoscopic optotype continues to decrease to 0.038L, during which the vertical centerline of the optotype in the right-eye image gradually moves from the right side of the vertical centerline of the screen to the vertical centerline of the screen, and Gradually coincide with the vertical centerline of the screen. At the same time, the vertical centerline of the target in the left-eye image gradually moves from the left side of the vertical centerline of the screen to the vertical centerline of the screen, and also gradually coincides with the vertical centerline of the screen. (See Figure 4h)
f-3 : 该立体视标的宽度又逐渐变小为 0.025L, 在此过程中其右眼图像 中的视标垂直中心线在屏幕垂直中心线的右侧, 逐渐向屏幕的右边移动, 直 到与屏幕垂直中心线相距 0.16L为止。 同时, 其左眼图像中的视标垂直中心 线在屏幕垂直中心线的左侧, 逐渐向屏幕的左边移动, 直到与屏幕垂直中心 线相距 0.16L为止。 (见图 4h)  F-3 : The width of the stereoscopic object is gradually reduced to 0.025L. During this process, the vertical center line of the target in the right eye image is on the right side of the vertical center line of the screen, and gradually moves to the right side of the screen until The vertical centerline of the screen is 0.16L apart. At the same time, the vertical centerline of the target in the left eye image is on the left side of the vertical centerline of the screen, and gradually moves to the left of the screen until it is 0.16L away from the vertical centerline of the screen. (See Figure 4h)
上述三维立体视标以上述运动轨迹不断重复多次,可引导观看者眼球做 外展运动, 具有调整眼肌、 扩大视野、 提高视力的作用, 对近视、 斜视、 弱 视的改善效果显著。  The above three-dimensional stereoscopic visual marker is repeatedly repeated in the above-mentioned motion trajectory, and can guide the viewer's eyeball to perform the abduction movement, and has the effects of adjusting the eye muscle, expanding the visual field, and improving the visual acuity, and the improvement effect on myopia, strabismus and amblyopia is remarkable.
(3 ) 引导眼球作全向运动的三维立体视标运动轨迹 所述三维立体视标可依次出现在所述 3D立体显示屏 20的屏幕的"右侧 边缘"、 "左侧边缘"、 "下侧边缘"、 "上侧边缘"、 "右上角"、 "左下角"、 "左 上角" 以及 "右下角"上, 所述三维立体视标在每一位置显示预定时间 (例 如 2秒) 之后, 出现在下一位置, 以引导眼球作全向运动。 (3) Three-dimensional visual target motion trajectory that guides the eyeball for omnidirectional motion The three-dimensional stereoscopic object may sequentially appear on the "right edge", "left edge", "lower edge", "upper edge", "upper right corner", "screen" of the screen of the 3D stereoscopic display screen 20 In the lower left corner, "upper left corner" and "lower right corner", the three-dimensional optotype appears in the next position after each position is displayed for a predetermined time (for example, 2 seconds) to guide the eyeball to omnidirectional motion.
优选地, 如图 5所示, 在 3D立体显示屏 20的屏幕的右侧边缘处, 显示 一大小为屏幕的 1/15的三维立体视标 (如图中三维立体视标球所示)。 在右 眼图像中, 该三维立体视标的中心点在屏幕中心点的右侧, 距屏幕中心点的 距离为屏幕宽度的 1/2~1/35; 在左眼图像中, 该三维立体视标的中心点在屏 幕中心点的右侧, 距屏幕中心点的距离为屏幕宽度的 1/2~1/30。  Preferably, as shown in Fig. 5, at the right edge of the screen of the 3D stereoscopic display screen 20, a three-dimensional stereoscopic object of a size of 1/15 of the screen (shown as a three-dimensional stereoscopic ball in the figure) is displayed. In the image of the right eye, the center point of the three-dimensional object is at the right side of the center point of the screen, and the distance from the center point of the screen is 1/2 to 1/35 of the width of the screen; in the image of the left eye, the object of the three-dimensional object is The center point is on the right side of the center point of the screen, and the distance from the center of the screen is 1/2~1/30 of the screen width.
之后, 该三维立体视标大小保持不变, 沿着屏幕的边缘依次出现在 "右 侧边缘"、 "左侧边缘"、 "下侧边缘"、 "上侧边缘"、 "右上角"、 "左下角"、 "左 上角"、 "右下角"八个位置。  After that, the 3D stereoscopic target size remains unchanged, appearing along the edge of the screen in the "right edge", "left edge", "lower edge", "upper edge", "upper right corner", Eight positions in the lower left corner, "upper left corner" and "lower right corner".
上述三维立体视标以上述运动轨迹不断重复多次,可引导观看者眼球作 全向运动。 眼球在八个方向的运动可以促进眼部的血液循环, 增强眼部肌肉 运动的柔韧度。对于斜视或斜视性弱视而言,具有强化双眼视觉的平衡作用, 可达到使病症减轻甚至根治的效果。  The above three-dimensional stereoscopic object is repeatedly repeated a plurality of times according to the above-mentioned motion trajectory, and can guide the viewer's eyeball to make an omnidirectional motion. The movement of the eyeball in eight directions promotes blood circulation in the eye and enhances the flexibility of eye muscle movement. For strabismus or strabismic amblyopia, it has the effect of enhancing the balance of binocular vision, which can achieve the effect of reducing or even curing the disease.
(4) 引导眼球作追视运动的三维立体视标运动轨迹 (4) Three-dimensional visual target motion trajectory that guides the eyeball for pursuit movement
所述三维立体视标可依次闪现在所述 3D立体显示屏 20的屏幕的各个边 缘, 以引导眼球作跳跃追视运动。 优选地, 如图 6a所示, 在显示屏 20的屏 幕的任一边缘显示一大小为屏幕的 1/15的三维立体视标((如图中球体所示, 在此假设三维立体视标先显示在屏幕的左侧边缘)。 在右眼图像中, 该三维 立体视标的中心点在屏幕中心点的左侧,距屏幕中心点的距离为屏幕宽度的 1/2-1/30; 在左眼图像中, 该三维立体视标的中心点在屏幕中心点的左侧, 距屏幕中心点的距离为屏幕宽度的 1/2~1/35。 所述三维立体视标出现一秒后 立即消失,并出现在屏幕的另一边缘,大小保持不变, 出现一秒后立即消失, 又出现在屏幕的另一边缘, 大小依然保持不变。 以此规则, 所述三维立体视 标分别出现在屏幕的各个边缘。上述三维立体视标以上述运动轨迹不断重复 多次, 可引导观看者眼球作跳跃追视运动。 The three-dimensional visual target may sequentially flash on each edge of the screen of the 3D stereoscopic display screen 20 to guide the eyeball to make a jump pursuit motion. Preferably, as shown in FIG. 6a, a three-dimensional stereoscopic object of a size of 1/15 of the screen is displayed on either edge of the screen of the display screen 20 (as shown in the sphere of the figure, assuming a three-dimensional stereoscopic object first) Displayed on the left edge of the screen. In the right eye image, the center point of the 3D stereoscopic object is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2-1/30 of the screen width; In the eye image, the center point of the three-dimensional visual target is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2 to 1/35 of the width of the screen. The three-dimensional stereoscopic object appears one second later. It disappears immediately and appears on the other edge of the screen, the size remains the same, disappears immediately after one second, and appears on the other edge of the screen, and the size remains the same. With this rule, the three-dimensional stereoscopic objects appear on respective edges of the screen. The three-dimensional stereoscopic object is repeatedly repeated a plurality of times according to the above-mentioned motion trajectory, and can guide the viewer's eyeball to make a jumping pursuit motion.
所述三维立体视标还可沿着所述 3D立体显示屏 20的屏幕的边缘沿着顺 时针或逆时针方向运动, 满一圈转下一圈时, 该三维立体视标的运动轨迹比 上一圈小, 以此直到该立体视标运动到屏幕中心点为止; 之后, 所述三维立 体视标再从屏幕中心点开始, 回追到起点。  The three-dimensional stereoscopic object can also move along the edge of the screen of the 3D stereoscopic display screen 20 in a clockwise or counterclockwise direction. When the circle is rotated one full turn, the motion track of the three-dimensional stereoscopic target is higher than the previous one. The circle is small, until the stereoscopic object moves to the center point of the screen; after that, the three-dimensional object is further traced from the center of the screen to the starting point.
优选地, 如图 6b所示, 在 3D立体显示屏 20的屏幕的任一边缘显示一 大小为屏幕的 1/15的三维立体视标(如图中球体所示,在此假设三维立体视 标先显示在屏幕的左侧边缘)。 在右眼图像中, 该三维立体视标的中心点在 屏幕中心点的左侧, 距屏幕中心点的距离为屏幕宽度的 1/2~1/30; 在左眼图 像中, 该三维立体视标的中心点在屏幕中心点的左侧, 距屏幕中心点的距离 为屏幕宽度的 1/2~1/35。  Preferably, as shown in FIG. 6b, a three-dimensional stereoscopic object of a size of 1/15 of the screen is displayed on either edge of the screen of the 3D stereoscopic display screen 20 (as shown by the sphere in the figure, a three-dimensional stereoscopic object is assumed here) First displayed on the left edge of the screen). In the right eye image, the center point of the three-dimensional object is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2~1/30 of the screen width; in the left eye image, the three-dimensional object is in the left eye image. The center point is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2 to 1/35 of the screen width.
然后, 所述三维立体视标的大小保持不变, 沿着屏幕的边缘沿着顺时针 Then, the size of the three-dimensional stereoscopic object remains unchanged, along the edge of the screen along clockwise
(或沿着逆时针)方向以均速运动, 满一圈转下一圈时其运行轨迹比上一圈 小 (三维立体视标的大小仍保持不变), 以此直到该立体视标运动到屏幕中 心点的终点为止。 然后再从屏幕中心点的终点开始, 回追到起点。 速度由慢 到快, 反复进行。 (or counterclockwise) to move at a constant speed. When the circle is full, the trajectory is smaller than the previous lap (the size of the 3D stereoscopic target remains unchanged), until the stereoscopic target moves to The end of the center point of the screen. Then start at the end of the center of the screen and go back to the starting point. The speed is slow to fast and repeats.
上述三维立体视标以上述运动轨迹不断重复多次,可引导观看者眼球作 连续追视运动。  The above three-dimensional stereoscopic object is repeatedly repeated a plurality of times according to the above-mentioned motion trajectory, and can guide the viewer's eyeball for continuous pursuit movement.
上述跳跃追视和连续追视可以弓 I导观看者眼球进行不同的追视运动,可 增进眼外肌的调节机制, 强化眼球运动的灵活性与感光度, 促进眼部血液循 环, 提升辨物能力, 有助于提升视力。 (5 ) 引导眼球作∞轨迹运动的三维立体视标运动轨迹 The above-mentioned jump pursuit and continuous pursuit can guide the viewer's eyeball to perform different pursuit movements, which can improve the adjustment mechanism of the extraocular muscles, enhance the flexibility and sensitivity of the eye movement, promote eye blood circulation, and enhance the identification. Ability to help improve vision. (5) Three-dimensional stereoscopic motion trajectory guiding the eyeball as a trajectory movement
所述三维立体视标可在所述 3D立体显示屏 20的屏幕上沿着∞形轨迹进 行运动。优选地, 如图 7所示, 在 3D立体显示屏 20的屏屏幕左上方显示一 大小为屏幕的 1/15的三维立体视标 (如图中球体所示)。 在右眼图像中, 该 三维立体视标的中心点在屏幕中心点的左侧,距屏幕中心点的距离为屏幕宽 度的 1/2~1/30; 在左眼图像中, 该三维立体视标的中心点在屏幕中心点的左 侧, 距屏幕中心点的距离为屏幕宽度的 1/2~1/35。  The three-dimensional optotype is movable along a meandering trajectory on the screen of the 3D stereoscopic display 20. Preferably, as shown in FIG. 7, a three-dimensional visual target of size 1/15 of the screen is displayed on the upper left of the screen of the 3D stereoscopic display screen 20 (shown as a sphere in the figure). In the right eye image, the center point of the three-dimensional object is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2~1/30 of the screen width; in the left eye image, the three-dimensional object is in the left eye image. The center point is on the left side of the center point of the screen, and the distance from the center point of the screen is 1/2 to 1/35 of the screen width.
之后, 该三维立体视标大小保持不变, 沿着∞形的轨迹逆时针方向均速 运动, 满一圈时再沿着顺时针方向均速运动, 以此规律交替进行多次。  After that, the size of the three-dimensional stereoscopic target remains unchanged, moving at a constant speed in a counterclockwise direction along the ridge-shaped trajectory, and moving at a uniform speed in a clockwise direction when the lap is full, and alternately performing this rule a plurality of times.
上述三维立体视标以上述运动轨迹不断重复多次,可引导观看者眼球作 00轨迹运动。 藉此, 可锻炼双眼眼球近距离辐辏功能的运动能力, 具有提高 视力的作用。  The above three-dimensional stereoscopic object is repeatedly repeated a plurality of times according to the above-mentioned motion trajectory, and can guide the viewer's eyeball to perform 00 trajectory motion. Thereby, the exercise ability of the close-range convergence function of the eyeball can be exercised, and the vision can be improved.
(6) 引导眼球作感光对焦运动的三维立体视标的大小及闪烁情况 所述三维立体视标可为显示于所述 3D立体显示屏 20的屏幕上 3个三维 立体视标球, 该 3个三维立体视标球的颜色分别为黄色、 绿色、 红色, 且沿 着 3D立体显示屏 20正中至光阀目镜 30的直线方向排列, 且按照顺序依次 进行闪烁。 (6) The size and the flickering condition of the three-dimensional stereoscopic object for guiding the eyeball for the photographic focusing motion, the three-dimensional stereoscopic visual marker may be three three-dimensional stereoscopic visual spheres displayed on the screen of the 3D stereoscopic display screen 20, the three three-dimensional The color of the stereoscopic ball is yellow, green, and red, respectively, and is arranged along the linear direction of the center of the 3D stereo display 20 to the eyepiece 30, and sequentially blinks in order.
优选地,如图 8所示,在所述 3D立体显示屏 20的屏幕上显示三个大小 为屏幕的 1/10的黄色、绿色、红色三个三维立体视标球(如图中球体所示), 这三个三维立体视标球沿着显示屏 20正中至光阀目镜 30的直线方向排列, 且黄色、 绿色以及红色三维立体视标球与光阀目镜 30 的垂直距离分别为 20cm. 60cm以及 100cm;  Preferably, as shown in FIG. 8, three three-dimensional stereoscopic object balls of yellow, green, and red, which are 1/10 of the size of the screen, are displayed on the screen of the 3D stereoscopic display screen 20 (as shown by the sphere in the figure) The three three-dimensional stereoscopic ball are arranged along the line direction of the display screen 20 to the light valve eyepiece 30, and the vertical distances of the yellow, green and red three-dimensional stereoscopic ball and the light valve eyepiece 30 are respectively 20 cm. 60 cm And 100cm;
所述三个三维立体视标球依照黄球、 绿球、 红球、 绿球、 黄球的顺序进 行闪烁(即按照三维立体视标球离观看者眼睛的远近为顺进行闪烁, 离人眼 最近的三维立体视标球先闪烁, 之后是位于中间的三维立体视标球闪烁, 最 后是离人眼最远的三维立体视标球闪烁,接着又是位于中间的三维立体视标 球闪烁, 之后又是离人眼最近的三维立体视标球闪烁, 以此顺序循环往复)。 观看者眼睛分别观看闪动的球。该三维立体视标球可以引导观看者均匀地来 回移动视线, 具有增强双眼眼球感光对焦的功能, 消除双眼视觉渙散不平衡 问题, 有助于提升视力。 The three three-dimensional stereoscopic object balls are flashed in the order of the yellow ball, the green ball, the red ball, the green ball, and the yellow ball (that is, the three-dimensional stereoscopic ball is flickered away from the distance of the viewer's eyes, and is separated from the human eye. The recent three-dimensional stereoscopic ball first flickers, followed by the three-dimensional stereoscopic ball flicker in the middle, and finally the three-dimensional stereoscopic ball flicker that is farthest from the human eye, followed by the three-dimensional stereoscopic ball flicker in the middle. Then, the three-dimensional stereoscopic ball that is closest to the human eye flickers, and the cycle is repeated in this order. The viewer's eyes watch the flashing ball separately. The three-dimensional stereoscopic ball can guide the viewer to move the line of sight evenly back and forth, and has the function of enhancing the focusing of the eye of the eye, eliminating the problem of distraction of the binocular vision and helping to improve vision.
上述三维立体视标的大小、其在屏幕上的位置以及出现在屏幕上的顺序 可稍作调整, 亦可实现本发明的功效。  The size of the above three-dimensional optotype, its position on the screen, and the order of appearance on the screen can be slightly adjusted to achieve the effects of the present invention.
优选地, 如图 lb及图 2所示, 所述三维仿真弱视治疗仪还可包括左眼 摄像机 51a、 右眼摄像机 51b、 左眼监视器 52a以及右眼监视器 52b, 所述左 眼摄像机 51a和右眼摄像机 51b可分别设置于所述光阀目镜 30的两侧, 且 分别置于所述左目镜 31的左侧和右目镜 32的右侧的位置, 能够分别拍摄左 眼和右眼的运动;所述左眼监视器 52a和右眼监视器 52b可嵌于所述壳体 10 上或位于所述壳体 10之外, 分别与所述左眼摄像机 51a和右眼摄像机 51b 电连接, 用于分别显示左右眼的运动状况以供监视。 藉此, 医务人员可透过 左眼监视器 52a和右眼监视器 52b观察观看者人眼的运动情况, 指导与督促 观看者的治疗。  Preferably, as shown in FIG. 1b and FIG. 2, the three-dimensional simulated amblyopia treatment apparatus may further include a left-eye camera 51a, a right-eye camera 51b, a left-eye monitor 52a, and a right-eye monitor 52b, and the left-eye camera 51a. And the right-eye camera 51b can be respectively disposed at two sides of the light valve eyepiece 30, and placed at a position on the left side of the left eyepiece 31 and the right side of the right eyepiece 32, respectively, capable of respectively photographing the left eye and the right eye. The left eye monitor 52a and the right eye monitor 52b may be embedded on the housing 10 or outside the housing 10, and electrically connected to the left eye camera 51a and the right eye camera 51b, respectively. Used to display the motion conditions of the left and right eyes separately for monitoring. Thereby, the medical staff can observe the movement of the viewer's human eye through the left-eye monitor 52a and the right-eye monitor 52b, and guide and supervise the treatment of the viewer.
其中, 如图 lb及图 2所示, 所述三维仿真弱视治疗仪还可包括互动控 制器 60, 该互动控制器 60与所述计算机装置 40电连接。可将上述三维立体 视标融入计算机游戏中, 观看者可通过互动控制器 60对计算机游戏中的对 象进行操作, 藉此在娱乐过程中达到弱视治疗的目的, 增强了治疗过程的趣 味性。 所述互动控制器 60可为手柄、 操纵杆或方向盘。  As shown in FIG. 1b and FIG. 2, the three-dimensional simulated amblyopia treatment apparatus may further include an interactive controller 60 electrically connected to the computer device 40. The above three-dimensional stereoscopic object can be integrated into a computer game, and the viewer can operate the object in the computer game through the interactive controller 60, thereby achieving the purpose of amblyopia treatment in the entertainment process, and enhancing the interest of the treatment process. The interactive controller 60 can be a handle, a joystick or a steering wheel.
其中, 如图 lb及图 2所示, 所述三维仿真弱视治疗仪还可包括辅助显 示屏 70和控制键盘 90, 该辅助显示屏 70和控制键盘 90与所述计算机装置 40电连接, 辅助显示屏 70用于将所述 3D立体显示器 20上所显示的内容同 步显示于该辅助显示屏 70上, 以便医务人员可及时了解观察者所观看的内 容, 并根据治疗情况, 对所述 3D立体显示器 20上所显示的内容进行调整。 所述控制键盘 90用于操作所述计算机装置 40, 以实现开机、 关机、 菜单选 项、 播放、 停止、 快进、 快退、 返回及其它辅助功能。 As shown in FIG. 1b and FIG. 2, the three-dimensional simulated amblyopia treatment apparatus may further include an auxiliary display screen 70 and a control keyboard 90. The auxiliary display screen 70 and the control keyboard 90 are electrically connected to the computer device 40 for auxiliary display. The screen 70 is used to display the content displayed on the 3D stereoscopic display 20 Steps are displayed on the auxiliary display screen 70 so that the medical staff can timely understand the contents viewed by the observer and adjust the content displayed on the 3D stereoscopic display 20 according to the treatment situation. The control keyboard 90 is used to operate the computer device 40 to implement power on, power off, menu options, play, stop, fast forward, rewind, return, and other auxiliary functions.
优选地, 如图 la和图 lb所示, 所述三维仿真弱视治疗仪还可包括电动 升降台 80,所述壳体 10固定于该电动升降台 80上,且能够随该电动升降台 80的升降而升降。藉此,可使得本发明提供的三维仿真弱视治疗仪适用于不 同身高的观看者。  Preferably, as shown in FIG. 1a and FIG. 1b, the three-dimensional simulated amblyopia treatment apparatus may further include an electric lifting platform 80, and the housing 10 is fixed on the electric lifting platform 80, and is capable of following the electric lifting platform 80. Lift and lift. Thereby, the three-dimensional simulated amblyopia treatment apparatus provided by the present invention can be applied to viewers of different heights.
优选地,所述壳体 10上位于所述光阀目镜 30下方位置设置有一突出于 壳体 10的下巴托台。该下巴托台在所述壳体 10上的位置可参考普通观看者 眼部与下巴之间的距离来确定。 藉此, 观看者可在透过光阀目镜 30观看三 维立体视标时, 将其下巴置于所述下巴托台, 以此增加观看者的舒适感。  Preferably, a chin rest protruding from the casing 10 is disposed on the casing 10 at a position below the light valve eyepiece 30. The position of the chin rest on the housing 10 can be determined by reference to the distance between the normal viewer's eye and the chin. Thereby, the viewer can place the chin on the chin rest when viewing the three-dimensional stereoscopic object through the light valve eyepiece 30, thereby increasing the comfort of the viewer.
虽然本发明已被上述实施例所公开,然而上述实施例并非用于限定本发 明,任何本发明所属技术领域中技术人员,在不脱离本发明的精神和范围内, 应当可以作出各种变动与修改。因此本发明的保护范围应当以所附权利要求 书所界定的范围为准。  While the present invention has been disclosed in the above embodiments, the above-described embodiments are not intended to limit the invention, and those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. modify. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Claims

权利要求 Rights request
1、 一种三维仿真弱视治疗仪, 该治疗仪包括: 1. A three-dimensional simulated amblyopia treatment apparatus, the treatment apparatus comprising:
壳体 (10);  Housing (10);
3D立体显示屏 (20), 位于所述壳体 (10) 内部;  a 3D stereo display (20) located inside the housing (10);
光阀目镜 (30), 该光阀目镜 (30 ) 包括左目镜 (31 ) 和右目镜 (32), 该左目镜(31 )和右目镜(32 )嵌于所述壳体(10)上正对所述显示屏(20) 中央的位置;  a light valve eyepiece (30), the light eyepiece eyepiece (30) comprising a left eyepiece (31) and a right eyepiece (32), the left eyepiece (31) and the right eyepiece (32) being embedded in the casing (10) The position of the center of the display screen (20);
同步信号控制器(100),位于所述壳体(10)内部,且与所述左目镜(31 ) 和右目镜 (32 ) 电连接; 以及  a sync signal controller (100) located inside the housing (10) and electrically connected to the left eyepiece (31) and the right eyepiece (32);
计算机装置 (40), 位于所述壳体 (10 ) 内部, 与所述显示屏 (20) 和 同步信号控制器 (100) 电连接, 用于通过所述同步信号控制器 (100)控制 所述左目镜 (31 ) 和右目镜 (32 ) 交替打开和关闭, 控制所述 3D立体显示 屏 (20)显示多种不同运动轨迹的三维立体视标, 并控制该三维立体视标进 行出镜、 入镜、 变大、 缩小、 闪烁以及移动中的一者或多者。  a computer device (40) located inside the housing (10), electrically connected to the display screen (20) and the synchronization signal controller (100) for controlling the synchronization signal controller (100) The left eyepiece (31) and the right eyepiece (32) are alternately opened and closed, and the 3D stereoscopic display (20) is controlled to display a plurality of three-dimensional visual targets of different motion trajectories, and the three-dimensional stereoscopic target is controlled to be mirrored and mirrored. , larger, smaller, blinking, and moving one or more.
2、 根据权利要求 1所述的三维仿真弱视治疗仪, 其中, 该治疗仪还包 括互动控制器 (60), 该互动控制器 (60) 与所述计算机装置 (40) 电连接。 2. A three-dimensional simulated amblyopia treatment device according to claim 1, wherein the therapy device further comprises an interactive controller (60) electrically coupled to the computer device (40).
3、 根据权利要求 1所述的三维仿真弱视治疗仪, 其中, 该治疗仪还包 括: 3. The three-dimensional simulated amblyopia treatment apparatus according to claim 1, wherein the therapeutic apparatus further comprises:
左眼摄像机(51a)和右眼摄像机(51b),分别设置于所述光阀目镜(30) 的两侧, 且分别置于所述左目镜(31 )的左侧和右目镜(32 )的右侧的位置, 用于分别拍摄左眼和右眼的运动; 以及  a left eye camera (51a) and a right eye camera (51b) are respectively disposed on both sides of the light valve eyepiece (30), and are respectively placed on the left and right eyepieces (32) of the left eyepiece (31) The position on the right is used to separately capture the movements of the left and right eyes;
左眼监视器(52a)和右眼监视器(52b), 分别与所述左眼摄像机(51a) 和右眼摄像机 (51b) 电连接, 用于分别显示左右眼的运动状况以供监视。 a left eye monitor (52a) and a right eye monitor (52b), respectively, and the left eye camera (51a) It is electrically connected to the right-eye camera (51b) for displaying the motion conditions of the left and right eyes separately for monitoring.
4、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标多次线性逐渐出镜和线性逐渐入镜。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic visual marker is linearly and multi-linearly progressively mirrored.
5、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中,所述三维立体视标依次出现在所述 3D立体显示屏(20)的屏幕的 "右 侧边缘"、 "左侧边缘"、 "下侧边缘"、 "上侧边缘"、 "右上角"、 "左下角"、 "左 上角" 以及 "右下角", 所述三维立体视标在每一位置显示预定时间之后, 出现在下一位置。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic visual markers sequentially appear on the right side edge of the screen of the 3D stereoscopic display screen (20). ", "left edge", "lower edge", "upper edge", "upper right corner", "lower left corner", "upper left corner" and "lower right corner", the three-dimensional optotype in each position After the scheduled time is displayed, it appears in the next position.
6、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标依次闪现在所述 3D立体显示屏 (20 ) 的屏幕的各 个边缘。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic visual markers sequentially flash the respective edges of the screen of the 3D stereoscopic display screen (20).
7、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标沿着所述 3D立体显示屏 (20 ) 的屏幕的边缘沿着 顺时针或逆时针方向运动, 满一圈转下一圈时, 该三维立体视标的运动轨迹 比上一圈小, 以此直到该三维立体视标运动到屏幕中心点为止; 之后, 所述 三维立体视标再从屏幕中心点开始, 回追到起点。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic object along the edge of the screen of the 3D stereoscopic display screen (20) is clockwise Or moving counterclockwise, when the circle is turned to the next circle, the movement track of the three-dimensional object is smaller than the previous circle, until the three-dimensional object moves to the center point of the screen; then, the three-dimensional view The mark starts from the center of the screen and goes back to the starting point.
8、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标在所述 3D立体显示屏 (20) 的屏幕上沿着∞形轨 迹进行运动。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic object is performed along a meandering trajectory on a screen of the 3D stereoscopic display screen (20) motion.
9、 根据权利要求 1-3 中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标为所述 3D立体显示屏 (20) 的屏幕上三个颜色分 别为黄色、 绿色、 红色的三维立体视标球, 该三个三维立体视标球沿着所述 3D 立体显示屏 (20) 正中至光阀目镜 (30) 的直线方向排列, 且按照黄、 绿、 红、 绿、 黄的顺序依次进行闪烁。 9. A three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1-3, The three-dimensional stereoscopic object is a three-dimensional stereoscopic object ball with yellow, green, and red colors on the screen of the 3D stereoscopic display screen (20), and the three three-dimensional stereoscopic visual ball along the The 3D stereo display (20) is lined up in the direction of the center of the light valve eyepiece (30) and flashes in the order of yellow, green, red, green, and yellow.
10、 根据权利要求 1-3中任一项权利要求所述的三维仿真弱视治疗仪, 其中, 所述三维立体视标不断变大变小, 并且左、 右眼图像中的视标垂直中 心线不断靠近或远离所述 3D立体显示屏 (20) 的屏幕垂直中心线。 The three-dimensional simulated amblyopia treatment apparatus according to any one of claims 1 to 3, wherein the three-dimensional stereoscopic visual target is continuously larger and smaller, and the vertical center line of the visual target in the left and right eye images is Keeping close to or away from the vertical centerline of the screen of the 3D stereoscopic display (20).
PCT/CN2011/076787 2010-07-02 2011-07-01 Three-dimensional-simulation amblyopia therapy instrument WO2012000457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010223216 CN102309396B (en) 2010-07-02 2010-07-02 Three-dimensional (3D) simulation amblyopia therapeutic apparatus
CN201010223216.6 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012000457A1 true WO2012000457A1 (en) 2012-01-05

Family

ID=45401407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076787 WO2012000457A1 (en) 2010-07-02 2011-07-01 Three-dimensional-simulation amblyopia therapy instrument

Country Status (2)

Country Link
CN (1) CN102309396B (en)
WO (1) WO2012000457A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103479472A (en) * 2013-09-22 2014-01-01 西安华亚电子有限责任公司 Multifunctional comprehensive amblyopia therapeutic apparatus and control method thereof
WO2014041545A1 (en) * 2012-09-14 2014-03-20 Visior Technologies Ltd Systems and methods for treating amblyopia by visual stimulation of the brain
US9823474B2 (en) 2015-04-02 2017-11-21 Avegant Corp. System, apparatus, and method for displaying an image with a wider field of view
US9995857B2 (en) 2015-04-03 2018-06-12 Avegant Corp. System, apparatus, and method for displaying an image using focal modulation
US10303242B2 (en) 2014-01-06 2019-05-28 Avegant Corp. Media chair apparatus, system, and method
US10409079B2 (en) 2014-01-06 2019-09-10 Avegant Corp. Apparatus, system, and method for displaying an image using a plate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102813499B (en) * 2012-08-07 2014-07-16 北京嘉铖视欣数字医疗技术有限公司 Perception correcting and training system on basis of binocular simultaneous perception
CN102813500A (en) * 2012-08-07 2012-12-12 北京嘉铖视欣数字医疗技术有限公司 Perception correcting and training system on basis of binocular integration
CN102940564B (en) * 2012-11-08 2014-08-13 宗义 Image processing method, image processing device and eye-training instrument
CN103040598A (en) * 2013-01-25 2013-04-17 北京市眼科研究所 Myopia treatment instrument through stereoscopic video stimulation and regulation
CN103479471B (en) * 2013-09-22 2015-12-23 西安华亚电子有限责任公司 Intelligent amblyopic treatment instrument and control method thereof
CN104546280B (en) * 2015-01-08 2015-12-30 陈美琴 Dual-channel type amblyopia therapeutic equipment and control method thereof
CN106491323B (en) * 2016-10-17 2019-05-07 杭州睩客科技有限公司 For treating the video system and device of amblyopia
CN107088145A (en) * 2017-04-25 2017-08-25 深圳职业技术学院 Visual function training method and system
CN107648019A (en) * 2017-10-24 2018-02-02 北京明普慧视科技有限公司 A kind of eyesight dynamic training instrument
CN110123594A (en) * 2019-05-04 2019-08-16 吴登智 A kind of VR for amblyopia training and intelligent terminal synchronous display system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308246A (en) * 1993-01-05 1994-05-03 Balocco Mark E Visualization training device with adjustable electro-optical shutter
CN2453878Y (en) * 2000-10-13 2001-10-17 余鹏 Visual physiological recovering instrument
CN101156815A (en) * 2007-10-29 2008-04-09 浙江工业大学 A comprehensive therapeutical instrument for amblyopia with three-level vision function
CN201211268Y (en) * 2008-07-04 2009-03-25 王正 Three-dimensional myopia prevention and control device
CN201211269Y (en) * 2008-07-04 2009-03-25 王正 Obscure type three-dimensional sight restoration apparatus
CN201664404U (en) * 2010-02-01 2010-12-08 葛文超 One-to-many monitoring and feedback type three-dimensional vision rehabilitation instrument
CN201775712U (en) * 2010-07-02 2011-03-30 王正 Three-dimensional simulating amblyopia therapeutic instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308246A (en) * 1993-01-05 1994-05-03 Balocco Mark E Visualization training device with adjustable electro-optical shutter
CN2453878Y (en) * 2000-10-13 2001-10-17 余鹏 Visual physiological recovering instrument
CN101156815A (en) * 2007-10-29 2008-04-09 浙江工业大学 A comprehensive therapeutical instrument for amblyopia with three-level vision function
CN201211268Y (en) * 2008-07-04 2009-03-25 王正 Three-dimensional myopia prevention and control device
CN201211269Y (en) * 2008-07-04 2009-03-25 王正 Obscure type three-dimensional sight restoration apparatus
CN201664404U (en) * 2010-02-01 2010-12-08 葛文超 One-to-many monitoring and feedback type three-dimensional vision rehabilitation instrument
CN201775712U (en) * 2010-07-02 2011-03-30 王正 Three-dimensional simulating amblyopia therapeutic instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041545A1 (en) * 2012-09-14 2014-03-20 Visior Technologies Ltd Systems and methods for treating amblyopia by visual stimulation of the brain
US9370460B2 (en) 2012-09-14 2016-06-21 Visior Technologies, Ltd Systems and methods for treating amblyopia by visual stimulation of the brain
US10010475B2 (en) 2012-09-14 2018-07-03 Visior Technologies, Ltd Systems and methods for treating amblyopia by visual stimulation of the brain
CN103479472A (en) * 2013-09-22 2014-01-01 西安华亚电子有限责任公司 Multifunctional comprehensive amblyopia therapeutic apparatus and control method thereof
US10303242B2 (en) 2014-01-06 2019-05-28 Avegant Corp. Media chair apparatus, system, and method
US10409079B2 (en) 2014-01-06 2019-09-10 Avegant Corp. Apparatus, system, and method for displaying an image using a plate
US9823474B2 (en) 2015-04-02 2017-11-21 Avegant Corp. System, apparatus, and method for displaying an image with a wider field of view
US9995857B2 (en) 2015-04-03 2018-06-12 Avegant Corp. System, apparatus, and method for displaying an image using focal modulation

Also Published As

Publication number Publication date
CN102309396B (en) 2013-01-09
CN102309396A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012000457A1 (en) Three-dimensional-simulation amblyopia therapy instrument
US11678795B2 (en) Screening apparatus and method
KR101471761B1 (en) Apparatus for strengthening oculomotor capacity using 3d contents
JP2017520384A (en) System for measuring fixation disparity
CN106491323B (en) For treating the video system and device of amblyopia
CN114610161B (en) Visual target control method and system of visual rehabilitation device
CN103356367A (en) Comprehensive bionic training system for eye diseases such as myopia
US11774759B2 (en) Systems and methods for improving binocular vision
CN201211269Y (en) Obscure type three-dimensional sight restoration apparatus
CN105943327A (en) Vision-exercising health caring system with anti-dizziness device
CN112807200A (en) Strabismus training equipment
CN201211268Y (en) Three-dimensional myopia prevention and control device
WO2022166989A1 (en) Eyesight training device and method therefor
CN201775712U (en) Three-dimensional simulating amblyopia therapeutic instrument
CN102048611A (en) Virtual eyeshade system based on binocular light path separation
CN201987843U (en) Virtual eye guard
CN202505706U (en) Multi-functional amblyopia therapeutic apparatus
CN209933427U (en) Binocular stereo vision myopia therapeutic instrument
JP2018191964A (en) Neuropathy-related pain treatment support system and pain treatment support method
CN102319167A (en) Medical appliance for treating various diseases of ametropia, amblyopia, disturbance of eye movement, eye muscle spasm and the like
CN201664404U (en) One-to-many monitoring and feedback type three-dimensional vision rehabilitation instrument
CN208287208U (en) The automatic sight training instrument of retina scanning intelligent recognition
WO2021152352A1 (en) Intelligent electromechanical device for the treatment of ocular double vision and eye deflection using the pencil push up method
CN209933426U (en) Myopia prevention and control instrument for adjusting function training
US20220257109A1 (en) Method for inducing a controlled variation of accommodation in an eye of a subject

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800202

Country of ref document: EP

Kind code of ref document: A1