WO2012000385A1 - Detecting device for detecting icing - Google Patents

Detecting device for detecting icing Download PDF

Info

Publication number
WO2012000385A1
WO2012000385A1 PCT/CN2011/075789 CN2011075789W WO2012000385A1 WO 2012000385 A1 WO2012000385 A1 WO 2012000385A1 CN 2011075789 W CN2011075789 W CN 2011075789W WO 2012000385 A1 WO2012000385 A1 WO 2012000385A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
icing
fiber bundle
electromagnetic wave
acquisition system
Prior art date
Application number
PCT/CN2011/075789
Other languages
French (fr)
Chinese (zh)
Inventor
陈迎春
叶林
张淼
葛俊锋
冯丽娟
刘铁军
周峰
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院, 华中科技大学 filed Critical 中国商用飞机有限责任公司
Publication of WO2012000385A1 publication Critical patent/WO2012000385A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30156Vehicle coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A detecting device for detecting icing by an image includes an image acquiring system (1-A) and an image processing system (2-A). The image acquiring system (1-A) can acquire an image of an object's surface. The image processing system (2-A) can analyze the image and obtain an icing condition of the object's surface. The image acquiring system (1-A) also includes an image-carrying fiber bundle (104). The detecting device can meet the requirements of application in a special space without miniaturizing the image acquiring system (1-A).

Description

结冰探测器 技术领域  Icing detector
本发明涉及一种结冰探测装置, 用于对物体表面的结水状况进行探测, 以获得是否结冰、 结冰类型、 结冰厚度和面积等信息。 背景技术  The invention relates to an icing detecting device for detecting the water-soil condition of an object surface to obtain information such as icing, icing type, icing thickness and area. Background technique
在很多情况下, 需要对物体的特定表面或部位的结冰状况进行探测和分 析。 例如在寒冷地区, 需要对冬季公路路面的结冰状况进行监测, 需要对风 力发电机的叶片及部分转动部件的结水状况进行探测, 以及在飞机飞行过程 中, 对机体的多部位(如风挡、 机翼尾翼前缘、 发动机进气道等) 的结冰现 象进行监测, 以避免结冰对飞行造成不利影响, 防止结水导致严重的飞行安 全事故。 需要注意的是, 本申请中所涉及的词语 "冰" 应当包括各种冰、 霜 及其混合物。  In many cases, icing conditions on specific surfaces or parts of an object need to be detected and analyzed. For example, in cold regions, it is necessary to monitor the icing condition of the winter road surface, and it is necessary to detect the water condition of the blades of the wind turbine and some rotating parts, and to the various parts of the body (such as the windshield during the flight of the aircraft). The icing phenomenon of the leading edge of the wing tail, the engine intake, etc. is monitored to prevent the icing from adversely affecting the flight and preventing the water from causing serious flight safety accidents. It should be noted that the term "ice" as used in this application shall include all kinds of ice, frost and mixtures thereof.
迄今为止, 人们已经设计和制造了多种用于结冰探测的装置, 从而可以 采取相应的措施来避免结冰危害的发生。 但是, 这些已有的结冰探测装置均 存在各种缺陷和不足, 从而极大地影响了其性能和适用范围。  To date, a variety of devices have been designed and manufactured for icing detection so that appropriate measures can be taken to avoid the occurrence of icing hazards. However, these existing icing detection devices have various defects and deficiencies, which greatly affect their performance and application range.
例如, 较早的结冰探测装置包括放射线式、 电导率式和差压式。 其中, 放射线式结冰探测装置会给人体健康带来很大的危害, 电导率式结冰探测装 置的可靠性较差, 差压式的体积较大, 结构比较复杂, 响应速度较慢。 此外, 这几种结冰探测装置均只能给出结冰与否的定性探测结果, 而不能给出关于 结冰厚度和结冰速率的定量信息。  For example, earlier icing detection devices include radiation, conductivity, and differential pressure. Among them, the radiation icing detection device will bring great harm to human health, the reliability of the conductivity type icing detection device is poor, the differential pressure type is large, the structure is complex, and the response speed is slow. In addition, these types of icing detection devices can only give qualitative detection results of icing or not, and cannot give quantitative information about icing thickness and icing rate.
现在广泛应用的是磁致伸缩振动筒式和压电膜片式结冰探测器, 它们均 能够给出一定冰厚范围内结冰厚度和结冰速率的定量信息。但它们也各有一 定的缺陷: 磁致伸缩振动筒式结冰探测器结构复杂、 生产工艺要求高、 校准 困难, 并且无法齐平保形地安装于曲面部位(如飞行器机翼尾翼前缘); 压 电膜片式结冰探测器虽然体积、 重量较小, 能够一定程度上实现曲面部位的 齐平保形安装, 但其敏感材料的生产要求较严, 工艺较为复杂, 装配比较困 难。 发明内容 Currently widely used are magnetostrictive vibrating cylinders and piezoelectric diaphragm type icing detectors, which are capable of giving quantitative information on the thickness of ice and the rate of icing in a certain range of ice thickness. However, they also have certain defects: The magnetostrictive vibrating cylinder type icing detector has a complicated structure, high production process requirements, difficult calibration, and cannot be flush and conformally mounted on curved surfaces (such as the leading edge of the aircraft wing tail); Although the diaphragm-type icing detector has a small volume and weight, it can achieve a flush conformal installation of the curved surface to a certain extent, but the production of sensitive materials is strict, the process is complicated, and the assembly is difficult. Summary of the invention
本发明一方面的目的在于提出一种新的图像结冰探测器, 其包括: 图像 获取系统和图像处理系统, 所述图像获取系统能够获取物体表面的图像, 所 述图像处理系统能够对所述图像进行分析, 从而得到所述物体表面的结冰状 况, 并且, 所述图像获取系统包括传像光纤束。  It is an object of an aspect of the present invention to provide a new image icing detector comprising: an image acquisition system and an image processing system, the image acquisition system being capable of acquiring an image of an object surface, the image processing system being capable of The image is analyzed to obtain an icing condition on the surface of the object, and the image acquisition system includes an image fiber bundle.
利用传像光纤束的良好传像性能, 可以使得探测器的设置更加灵活, 从 而更好地适应各种特定的探测环境的需要。  The good imaging performance of the imaging fiber bundle makes the detector setup more flexible, thus better adapting to the needs of various specific detection environments.
优选地, 所述图像结冰探测器还包括图像固定装置, 所述传像光纤束的 前端对准待探测的物体表面, 后端与所述图像固定装置相连。  Preferably, the image icing detector further comprises an image fixing device, the front end of the image fiber bundle is aligned with the surface of the object to be detected, and the rear end is connected to the image fixing device.
优选地, 所述图像固定装置远离所述物体表面而设置。 通过这一方案, 使得探测器的前端仅包括传像光纤束的一部分及其辅助部件。 这样, 前端的 尺寸和重量都大大减小, 从而能够被安装在对空间重量有严格要求的应用 中。 此外, 前端的结构非常简单稳定, 可以适用于较为恶劣的应用环境。  Preferably, the image fixing device is disposed away from the surface of the object. With this arrangement, the front end of the detector includes only a portion of the image fiber bundle and its ancillary components. In this way, the size and weight of the front end are greatly reduced, so that it can be installed in applications where space weight is critical. In addition, the front end structure is very simple and stable, and can be applied to harsh environments.
优选地, 所述图像固定装置包括图像传感器。  Preferably, the image fixing device comprises an image sensor.
优选地, 所述图像获取系统还包括设置在所述图像传感器之前的滤光 镜。 从而可以对系统中接收的电磁波范围进行有针对性的选择。  Preferably, the image acquisition system further includes a filter disposed in front of the image sensor. This makes it possible to make a targeted selection of the range of electromagnetic waves received in the system.
优选地, 所述图像获取系统还包括电磁波发射装置, 用于照射所述物体 表面。  Preferably, the image acquisition system further includes an electromagnetic wave emitting device for illuminating the surface of the object.
优选地, 所述电磁波发射装置所发射的电磁波包括可见光、 红外线和 / 或紫外线。 各种电磁波所特别适用的探测环境是各不相同的, 针对结冰的可 能范围对电磁波源进行选择, 或者釆用多种电磁波进行混合探测, 都可以有 效地提高探测的准确性。  Preferably, the electromagnetic waves emitted by the electromagnetic wave emitting device include visible light, infrared light, and/or ultraviolet light. The detection environment in which various electromagnetic waves are particularly suitable is different. The selection of the electromagnetic wave source for the possible range of icing, or the hybrid detection using a plurality of electromagnetic waves can effectively improve the detection accuracy.
优选地, 所述电磁波发射装置间歇地工作; 或者当所述电磁波发射装置 工作时, 所述图像固定装置工作。 这样可以显著提高设备的使用寿命。 电磁 波发射装置的工作频率可为 1- 20Hz。  Preferably, the electromagnetic wave emitting device operates intermittently; or when the electromagnetic wave emitting device operates, the image fixing device operates. This can significantly increase the life of the device. The electromagnetic wave transmitting device can operate at a frequency of 1 to 20 Hz.
优选地, 所述电磁波发射装置包括发光光纤束。  Preferably, the electromagnetic wave emitting device comprises a light emitting fiber bundle.
优选地, 所述图像获取系统包括防冰装置和 /或除冰装置, 用于防止和 / 或消除在所述传像光纤束前端附近的结冰。 并不是所有的应用中都需要进行 防冰和 /或除冰。在抵近待探测的物体表面的微观探测中, 就是需要对传像光 纤束前端附近的结冰进行探测。 优选地, 所述除水装置包括微型电加热器。 Preferably, the image acquisition system includes an anti-icing device and/or a de-icing device for preventing and/or eliminating icing near the front end of the imaging fiber bundle. Anti-icing and/or de-icing is not required in all applications. In the microscopic detection of the surface of the object to be detected, it is necessary to detect the icing near the front end of the image fiber bundle. Preferably, the water removal device comprises a miniature electric heater.
优选地, 所述传像光纤束的前端处设置有聚焦镜头和保护镜头。  Preferably, the front end of the image fiber bundle is provided with a focus lens and a protection lens.
优选地, 图像获取系统还包括温度传感器。 环境温度不仅是控制加热器 工作的主要参数, 也可以在进行结冰状况判定时予以考虑, 以求进一步提高 探测的准确度。  Preferably, the image acquisition system further includes a temperature sensor. Ambient temperature is not only the main parameter for controlling the operation of the heater, but also for the determination of the icing condition, in order to further improve the accuracy of the detection.
本发明另一方面的目的在于提出一种新的飞行器结冰探测器, 其包括根 据本发明第一个方面的图像结冰探测器。  Another object of the present invention is to propose a new aircraft icing detector comprising an image icing detector according to the first aspect of the invention.
优选地, 传像光纤束的前端可以靠近待探测的物体表面而设置, 用于对 所述物体表面进行近距离的微观探测。  Preferably, the front end of the image fiber bundle can be placed close to the surface of the object to be detected for performing close-range microscopic detection of the surface of the object.
优选地, 传像光纤束的前端远离待探测的物体表面而设置, 用于对所述 物体表面进行远距离的宏观探测。  Preferably, the front end of the image fiber bundle is disposed away from the surface of the object to be detected for remote macroscopic detection of the surface of the object.
传像光纤束的应用使得图像结水探测器的探头尺寸更小、 结构更简单, 并且能够耐受更恶劣的环境, 从而能够便于安装到各种对尺寸和环境有严格 要求的应用中。 其广泛应用于运输、 电力设备、 野外作业设备和制冷设备等 多种领域的结水探测, 以及满足各种飞行器的结冰探测应用需求。 附图说明  The application of the image fiber bundle makes the image water detector's probe smaller in size, simpler in structure, and able to withstand harsher environments, making it easy to install in a variety of applications where size and environment are critical. It is widely used for water detection in a variety of areas such as transportation, power equipment, field work equipment and refrigeration equipment, as well as for icing detection applications in a variety of aircraft. DRAWINGS
在对本发明的实施方式进行详细描述的过程中, 将参照下列附图: 图 1是根据本发明第一优选实施方式的图像结冰探测器中的图像获取系 统的示意图;  BRIEF DESCRIPTION OF THE DRAWINGS In the process of describing the embodiments of the present invention in detail, FIG. 1 is a schematic diagram of an image acquisition system in an image icing detector according to a first preferred embodiment of the present invention;
图 2是根据本发明第一优选实施方式的图像结冰探测器中的图像处理系 统的示意图;  2 is a schematic diagram of an image processing system in an image icing detector in accordance with a first preferred embodiment of the present invention;
图 3是根据本发明第二优选实施方式的图像结冰探测器的示意图, 其中 显示了微观探测的布置方式;  Figure 3 is a schematic illustration of an image icing detector in accordance with a second preferred embodiment of the present invention, showing the arrangement of microscopic detection;
图 4是根据本发明第三优选实施方式的图像结冰探测器的示意图, 其中 显示了宏观探测的布置方式;  Figure 4 is a schematic illustration of an image icing detector in accordance with a third preferred embodiment of the present invention, showing the arrangement of macroscopic detection;
图 5是根据本发明第四优选实施方式的图像结冰探测器的示意图, 其中 显示了探测器从冰层侧面进行探测的布置方式。 具体实施方式 下面将参照附图来对本发明的优选实施方式进行详细描述。 Figure 5 is a schematic illustration of an image icing detector in accordance with a fourth preferred embodiment of the present invention showing the arrangement of detectors for detecting from the side of the ice layer. detailed description DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
根据本发明第一优选实施方式的图像结冰探测器主要包括图像获取系 统和图像处理系统, 前者用于从物体表面获取图像, 然后由后者对所获取的 表面图像进行计算和分析 , 从而最终得到物体表面的结冰状况。  An image icing detector according to a first preferred embodiment of the present invention mainly comprises an image acquisition system and an image processing system, the former for acquiring an image from an object surface, and then the latter calculating and analyzing the acquired surface image, thereby finally Obtain the icing condition on the surface of the object.
首先参照图 1, 其显示的是上述第一优选实施方式的图像结冰探测器的 图像获取系统 1-A。  Referring first to Fig. 1, there is shown an image acquisition system 1-A of the image icing detector of the first preferred embodiment described above.
其中, 图像获取系统 1-A的核心部件是传像光纤束 104, 其能够在前端 接收物体的表面图像, 并将该表面图像沿着其中的光纤传输至与其后端相连 的其它部件。 传像光纤束 104本身的结构和原理已被相关领域的技术人员所 熟知, 并不属于本发明的范围。 并且作为一个成熟的技术, 传像光纤束已经 在很多领域(例如胃窥镜) 中得到了广泛的应用, 因此这里不再赘述。  Among them, the core component of the image acquisition system 1-A is a imaging fiber bundle 104, which is capable of receiving a surface image of an object at the front end and transmitting the surface image along the optical fiber therein to other components connected to the rear end thereof. The structure and principle of the imaging fiber bundle 104 itself are well known to those skilled in the relevant art and are not within the scope of the present invention. And as a mature technology, the image fiber bundle has been widely used in many fields (such as gastroscope), so it will not be described here.
而在本实施方式中采用传像光纤束 104 的优势在于, 由于传像光纤束 104能够实现对图像的高质量传播, 因此可以将物体表面的图像完整地传输 至远离物体表面的位置, 并最终由布置在远离物体表面位置的图像固定装置 接收。 这一优势对于某些特殊的应用来说是非常重要的。  The advantage of using the imaging fiber bundle 104 in the present embodiment is that since the imaging fiber bundle 104 can achieve high-quality image propagation, the image of the surface of the object can be completely transmitted to a position away from the surface of the object, and finally Received by an image fixture disposed at a location remote from the surface of the object. This advantage is very important for some special applications.
在一个例子中, 对待探测的物体表面附近的空间尺寸有严格要求(例如 飞行器的机翼) , 此时只有满足尺寸条件的设备才被允许安装。 而现有的成 像设备很难满足这一尺寸要求, 因而无法得到应用。 但是通过传像光纤束, 可以仅将尺寸非常小的传像光纤束的前端设置在物体表面(例如机翼)附近, 而将其后端连接至位于远离机翼位置的成像设备上, 例如位于机枪内部。 这 样, 即使是现有的体积较大的成像(包括照相和摄像)设备也能得到应用。 通过上述方法, 在未对图像获取系统进行小型化设计的情况下, 即可实现与 小型化设计相同的效果。  In one example, there is a strict requirement for the size of the space near the surface of the object to be detected (for example, the wing of an aircraft), and only equipment that meets the dimensional conditions is allowed to be installed. Existing imaging devices are difficult to meet this size requirement and thus cannot be applied. However, by means of the image fiber bundle, only the front end of the very small size image fiber bundle can be placed near the surface of the object (for example, the wing), and the rear end thereof can be connected to the imaging device located away from the wing position, for example, Inside the machine gun. In this way, even larger existing imaging (including camera and video) devices can be used. According to the above method, the same effect as the miniaturization design can be achieved without downsizing the image acquisition system.
而在另一个例子中, 待探测的物体表面的环境比较恶劣。 此时通过传像 光纤束, 可以使得成像设备远离物体表面而设置, 而在物体表面附近仅保留 传像光纤束。 由于传像光纤束本身结构筒单, 不容易发生损坏, 因此可以方 便地适用于各种探测环境, 并且可以保护对相对易损坏的成像设备。  In another example, the environment of the surface of the object to be detected is relatively harsh. At this time, by imaging the fiber bundle, the imaging device can be placed away from the surface of the object, and only the image fiber bundle remains in the vicinity of the surface of the object. Since the image fiber bundle itself is structurally simple and is not susceptible to damage, it can be easily applied to various detection environments and can protect a relatively vulnerable image forming apparatus.
在实际应用中, 所采用的传像光纤的尺寸、 光纤数量以及光纤束的排列 模式, 可以才艮据不同应用场合和具体实施而合理地确定。 本实施例中不再进 行详细的描述。 聚焦镜头 102连接在传像光纤束 104的前端,用于从物体表面接收图像。 其种类可以根据应用形式的不同而合适地选择, 例如下文将描述的, 在近距 离的微观探测中, 传像光纤束 104的头部非常靠近物体表面, 此时聚焦镜头 102需要选用微距镜头; 而在远距离的宏观探测中, 聚焦镜头 102就需要选 用长焦镜头或是鱼眼广角镜头。 In practical applications, the size of the imaging fiber, the number of fibers, and the arrangement pattern of the fiber bundles can be reasonably determined according to different applications and implementations. A detailed description will not be given in this embodiment. A focus lens 102 is coupled to the front end of the imaging fiber bundle 104 for receiving an image from the surface of the object. The type thereof may be appropriately selected depending on the application form, for example, as will be described later, in the close-range microscopic detection, the head of the image fiber bundle 104 is very close to the surface of the object, and the focus lens 102 needs to use a macro lens. In the long-range macroscopic detection, the focus lens 102 needs to use a telephoto lens or a fisheye wide-angle lens.
在聚焦镜头 102的前端还可以设置有保护镜 101 , 以保护聚焦镜头 102 免受外界环境的损害, 例如, 避免位于物体表面的高速气流中携带的砂尘的 磨损。  A protective mirror 101 may also be disposed at the front end of the focus lens 102 to protect the focus lens 102 from the external environment, for example, to avoid abrasion of sand dust carried in a high-speed air stream on the surface of the object.
在传像光纤束 104后端, 依次串联有在本实施方式中用作图像固定装置 的耦合镜头 107和图像传感器 108。 其中, 耦合镜头 107能够将由聚焦镜头 102汇聚并经由传像光纤束 104传输的图像传输给图像传感器 108 , 并最终 由图像传感器 108转换为可供数字系统识别的图像信息, 以供其后连接的图 像处理系统(图 1中未显示)进行分析。 图像传感器 108可以根据实际情况 包括例如 CCD型或是 CMOS型图像传感器,也可以包括红外和 /或紫外图像 传感器, 从而对物体表面图像中的红外线和 /或紫外线进行探测。  At the rear end of the image fiber bundle 104, a coupling lens 107 and an image sensor 108 serving as image fixing means in the present embodiment are connected in series. Wherein, the coupling lens 107 can transmit the image collected by the focusing lens 102 and transmitted via the imaging fiber bundle 104 to the image sensor 108, and finally converted by the image sensor 108 into image information that can be recognized by the digital system for subsequent connection. The image processing system (not shown in Figure 1) performs the analysis. The image sensor 108 may include, for example, a CCD type or CMOS type image sensor, or an infrared and/or ultraviolet image sensor to detect infrared rays and/or ultraviolet rays in the image of the surface of the object.
此外, 还可以在传像光纤束 104的前端附近设置电磁波发射装置 115 , 用于向物体表面发射一定功率和一定波段的电磁波, 包括可见光(400-760 纳米 ) 、 红外线 ( 760纳米至 1000微米)和 /或紫外线 ( 1至 400纳米)等, 以及它们的组合, 以实现主动探测。 其优势不仅在于可以克服环境光不足时 给探测带来的不利影响, 还能根据探测需要选用某些特定波段的电磁波作为 探测源, 从而特别适用于探测特定类型和特定厚度范围的冰。 此外, 也可以 实现复合探测, 使得在某些应用中所针对的图像信息更为丰富。 当然, 本领 域技术人员能够理解的是, 探测并不一定要借助电磁波发射装置 115, 自然 光等环境光在很多应用中就足以满足探测的要求。 并且在有些应用中, 电磁 波发射装置也不需要故意添加, 而是可以利用物体表面附近已有的设备, 例 如在飞行器应用中, 可以利用飞行器表面的信号灯作为电磁波发射装置。  In addition, an electromagnetic wave emitting device 115 may be disposed near the front end of the image fiber bundle 104 for transmitting electromagnetic waves of a certain power and a certain wavelength to the surface of the object, including visible light (400-760 nm) and infrared (760 nm to 1000 μm). And / or ultraviolet (1 to 400 nm), etc., and combinations thereof to achieve active detection. Its advantages are not only to overcome the adverse effects of detection when the ambient light is insufficient, but also to select some specific bands of electromagnetic waves as the detection source according to the detection needs, which is particularly suitable for detecting ice of a specific type and a specific thickness range. In addition, composite probing can also be implemented, making the image information targeted in some applications more abundant. Of course, those skilled in the art will understand that the detection does not necessarily require the use of electromagnetic wave emitting devices 115, and ambient light such as natural light is sufficient for the detection requirements in many applications. Also, in some applications, the electromagnetic wave transmitting device does not need to be deliberately added, but can utilize existing equipment near the surface of the object. For example, in aircraft applications, a signal light on the surface of the aircraft can be utilized as an electromagnetic wave emitting device.
同时, 通过设置在保护镜 101和图像传感器 108之间的滤光片 (图中未 显示) , 可以有选择地获得不同光谱的图像信息。  At the same time, image information of different spectra can be selectively obtained by a filter (not shown) disposed between the protective mirror 101 and the image sensor 108.
进一步地, 为了确保探测的顺利进行, 还可以在保护镜 101和聚焦镜头 102的附近设置防冰和 /或除冰装置, 例如设置在迎风面上的遮挡(图中未显 示)和 /或微型电加热器 112, 以避免和 /或消除在保护镜 101等上形成的冰, 从而排除对探测结果的影响。 还可以设置额外的温度传感器 111, 一方面可 以防止加热温度过高而损坏物体表面或传像光纤, 另一方面温度是对结冰状 况进行分析的重要参考。 Further, in order to ensure the smooth progress of the detection, an anti-icing and/or de-icing device may be disposed in the vicinity of the protective mirror 101 and the focus lens 102, for example, an occlusion provided on the windward surface (not shown in the figure) And/or a miniature electric heater 112, to avoid and/or eliminate ice formed on the protective mirror 101 or the like, thereby eliminating the influence on the detection result. An additional temperature sensor 111 can also be provided to prevent the heating temperature from being too high to damage the surface of the object or to image the optical fiber. On the other hand, temperature is an important reference for analyzing the icing condition.
图像获取系统 1-A还包括一些其它的附属部件, 例如保护传像光纤束 The image acquisition system 1-A also includes some other accessory components, such as a protected image fiber bundle.
104等的柔性保护接头 105、保护套 106, 和连接电磁波发射装置 115的连接 线 116, 以及设备工作所需的电源线和控制信号线等, 均不再进行详述。 The flexible protective connector 105 of 104, the protective cover 106, and the connecting line 116 connecting the electromagnetic wave transmitting device 115, and the power supply line and control signal line required for the operation of the device, etc., will not be described in detail.
下面参照图 2, 其显示的是根据本发明的第一优选实施方式的图像结冰 探测器的控制部分。 如图 2所示, 控制部分主要包括图像处理系统 2-A、 温 度测控系统 2-B、 光源控制系统 2-C以及中央微处理器 2-D。  Referring now to Figure 2, there is shown a control portion of an image icing detector in accordance with a first preferred embodiment of the present invention. As shown in Fig. 2, the control section mainly includes an image processing system 2-A, a temperature measurement and control system 2-B, a light source control system 2-C, and a central microprocessor 2-D.
其中, 图像处理系统 2-A包括二部分: 结冰预警单元 201、 结冰分析单 元 202和结水状况数据库 203。  The image processing system 2-A includes two parts: an icing warning unit 201, an icing analysis unit 202, and a water storage status database 203.
结冰预警单元 201专门针对结冰初始期的图像信息处理, 其可以采用高 速图像处理电子系统技术, 能在结水初始期快速地获得结冰状况信息, 并给 出开始发生结水的报警信号。 如果配合探头一起使用, 其中探头的形状经过 特殊设计使其比待探测的物体表面更容易结冰, 还能达到在物体表面开始结 冰之前即提前进行预警的效果。  The icing warning unit 201 is specifically for image information processing in the initial stage of icing, which can adopt high-speed image processing electronic system technology, can quickly obtain icing condition information in the initial stage of water sluicing, and gives an alarm signal to start watering. . If used with a probe, the shape of the probe is specially designed to freeze more easily than the surface of the object to be detected, and it is possible to advance the warning before the surface of the object begins to freeze.
结冰预警单元 201的工作过程为, 在接收到由图像固定装置传输的图像 信息后, 将其与结冰状况数据库 203中储存的未结冰时的清洁无水图像进行 对比, 以对是否结冰做出判断。 其具体的判断过程可参考下面对于结冰分析 单元 202的描述。  The working process of the icing warning unit 201 is: after receiving the image information transmitted by the image fixing device, comparing it with the clean water image stored in the icing condition database 203 without freezing, to determine whether Ice makes a judgment. The specific judging process can be referred to the following description of the icing analysis unit 202.
结冰分析单元 202在时间上与结冰预警单元 201并行地工作, 能够对物 体表面的具体结冰状况(结冰种类、 结冰厚度和 /或结冰面积)做出定性和定 量分析, 其大致包括参数标记模块、计算模块和判断模块(图中均未显示)。  The icing analysis unit 202 works in time with the icing warning unit 201 to enable qualitative and quantitative analysis of the specific icing conditions (icing type, icing thickness, and/or icing area) of the surface of the object, It generally includes a parameter marking module, a calculation module, and a judgment module (not shown in the figure).
在接收到由图像固定装置传输的图像信息后, 结冰分析单元 202首先通 过参数标记模块对图像进行参数标记。 所用的标记方式可以包括灰度处理和 色谱分析处理, 分別通过灰度分析模块和色谱分析模块实现, 其中, 色谱分 析处理中又可包括采用单色或多种颜色(例如三基色)进行分析。 并且, 标 记既可以针对图像的所有像素点进行, 也可以通过取点模块从中选取若干个 像素点进行, 还可以在图像中选取多个区域并求得每个区域的平均值, 这主 要取决于探测精度和速度的要求。 在完成对表面图像的参数标记后, 标记获 得的参数将被传输至计算模块。 After receiving the image information transmitted by the image fixing device, the icing analysis unit 202 first performs parameter marking on the image through the parameter marking module. The labeling method used may include gray scale processing and chromatographic analysis processing, which are respectively implemented by a gray scale analysis module and a chromatographic analysis module, wherein the chromatographic analysis process may further include analysis using a single color or a plurality of colors (for example, three primary colors). Moreover, the mark can be performed for all the pixels of the image, or by selecting a plurality of pixels from the point module, and multiple regions can be selected in the image and the average value of each region can be obtained. It depends on the accuracy of the detection and the speed requirements. After the parameter marking of the surface image is completed, the parameters obtained by the marking will be transmitted to the calculation module.
计算模块的作用在于, 通过对接收到的标记参数进行计算, 由此得出当 前表面图像所对应的特征因数, 以供后续的判断模块将其与结冰状况数据库 203中的特征数据进行对比。  The function of the calculation module is to calculate the feature factors corresponding to the current surface image by calculating the received marker parameters for subsequent judgment modules to compare with the feature data in the icing condition database 203.
所采用的计算方法例如可以包括统计, 具体来说, 可以根据事先确定的 标准将标记模块进行参数标记的取值范围划分为若干个区间, 然后统计出所 有标记参数落入各个区间的次数, 并进而得出其所占据的百分比。 在这一例 子中, 是标记参数在各个区间中的分布即为该物体表面图像所对应的特征因 数。 当然, 本领域技术人员很容易想到, 区间的划分可以根据试验结果而采 取不均匀的方式。  The calculation method used may include, for example, statistics. Specifically, the value range of the parameter marking of the marking module may be divided into several intervals according to a predetermined criterion, and then the number of times all the marking parameters fall into each interval is counted, and Then get the percentage it occupies. In this case, the distribution of the marker parameters in each interval is the characteristic factor corresponding to the surface image of the object. Of course, it will be readily apparent to those skilled in the art that the division of the intervals can be taken in an uneven manner depending on the test results.
当然, 上述方法只是可行的计算方法中较为简单的一种, 具体实施时可 以采取更加复杂的计算方法, 以求获得更加精确的特征因数。 这在后面的说 明中也会进一步提到。  Of course, the above method is only a relatively simple one of the feasible calculation methods, and a more complicated calculation method can be adopted in the specific implementation to obtain a more accurate feature factor. This will be further mentioned in the following description.
判断模块的作用如前文所述, 用于将计算获得的特征因数与结冰状况数 据库 203中的已有特征数据进行对比, 从而找到与当前特征因数最接近的特 征数据。 该特征数据所对应的结冰状况(包括结冰种类、 结冰厚度和 /或结冰 面积等) 即可认为是物体表面的当前结冰状况。 当然, 在判断的过程中还可 以引入新的参考量, 例如由温度传感器 1 1 1获得的环境温度。  The function of the decision module is as described above for comparing the calculated feature factors with the existing feature data in the icing condition database 203 to find the feature data closest to the current feature factor. The icing condition (including icing type, icing thickness, and/or icing area, etc.) corresponding to the characterization data can be considered as the current icing condition on the surface of the object. Of course, a new reference quantity, such as the ambient temperature obtained by the temperature sensor 1 1 1 , can also be introduced during the determination.
结冰状况数据库 203是通过大量模拟试验以及对实际探测结果进行处理 和分类而获得的。 其中可以包括若干条数据, 每条数据都包括一种特定结冰 状况的信息(结冰种类、 结水厚度和 /或结冰面积等)以及与该结冰状况对应 的特征数据, 以供判断模块将特征数据与计算获得的特征因数进行对比而得 到所对应的结冰状况。  The icing condition database 203 is obtained by a large number of simulation tests and processing and classification of actual detection results. It may include a plurality of pieces of data, each of which includes information on a particular icing condition (icing type, water thickness and/or icing area, etc.) and characteristic data corresponding to the icing condition for judging The module compares the feature data with the calculated feature factors to obtain the corresponding icing condition.
为了更好地理解本发明的内容, 下面将就本发明的工作原理进行简单的 说明。  In order to better understand the contents of the present invention, a brief description will be made below on the working principle of the present invention.
无论是在可见光、 红外波段还是紫外波段内, 冰层的光学特性(水层一 空气界面反射、 冰层内的散射以及吸收等)都随着结冰状况的改变而呈现出 不同, 从而形成差异明显的结冰图像。 结冰与没有结冰的图像, 不同种类不 同厚度结冰之间的图像的差别是非常明显的。 在考察结冰种类时, 可以考察图像的特性例如各个像素亮度值(包括灰 度亮度和三基色亮度)的均匀性。 当结冰为明冰时, 由于冰层内部近似于透 明, 因此冰层和空气界面上反射的电磁波能够以较大的强度被传像光纤束所 接收, 因此图像像素的亮度值较大且均匀。 当结冰为凇水时, 由于冰层内夹 杂空气泡, 反射效应大为降低, 散射效应较强, 因此图像像素亮度值较低且 分布不均。 而混合型冰则介于上述两种情况之间。 Whether in visible light, infrared or ultraviolet, the optical properties of the ice layer (water layer-air interface reflection, scattering within the ice layer, and absorption) are different as the icing condition changes, thus forming a difference. Obvious icing image. The difference between images of icing and different types of thickness is very obvious. When examining the type of icing, it is possible to examine the characteristics of the image such as the uniformity of the luminance values of the respective pixels (including the gradation of the gradation and the luminance of the three primary colors). When the ice is ice, since the interior of the ice layer is approximately transparent, the electromagnetic waves reflected on the ice layer and the air interface can be received by the image fiber bundle with a large intensity, so the brightness value of the image pixels is large and uniform. . When the ice is drowning, the reflection effect is greatly reduced due to the inclusion of air bubbles in the ice layer, and the scattering effect is strong, so the image pixel brightness value is low and unevenly distributed. Mixed ice is between the above two cases.
在考察结冰厚度时, 也同样可以考察冰层的亮度。 因为, 当确定了结冰 类型以后, 在一定结冰厚度范围内, 结冰厚度愈厚, 则图像像素点的亮度也 愈大。  When examining the thickness of the icing, the brightness of the ice layer can also be examined. Because, after the icing type is determined, the thicker the icing thickness is within the thickness of a certain ice thickness, the greater the brightness of the image pixels.
下面将通过两个例子来对结冰分析单元 202的整个工作过程进行描述, 以便更加清楚地了解其工作原理及优点。  The entire working process of the icing analysis unit 202 will be described below by two examples in order to more clearly understand its working principle and advantages.
在第一个例子中, 在接收到图像固定装置传输的图像时, 结冰分析单元 202中的参数标记模块首先根据事先确定的规则从上选取若干个像素点 (例 如 N个)。 所谓的规则是指取点可以只在图像的特定区域中进行, 也可以在 某些区域选取得相对密集而在其它区域选取得相对稀疏等等。 然后, 通过图 像处理领域中的常用软件对每个选取的像素点进行三基色分析, 分别得到每 个像素的三基色值, 从而完成参数标记。 以八位的微处理器系统为例, 各个 基色的取值范围均在 0-255之间。  In the first example, upon receiving the image transmitted by the image fixing device, the parameter marking module in the icing analysis unit 202 first selects a plurality of pixel points (e.g., N) from above according to a predetermined rule. The so-called rule means that the point can be taken only in a specific area of the image, or it can be relatively dense in some areas and relatively sparse in other areas. Then, through the common software in the field of image processing, three primary colors are analyzed for each selected pixel, and the three primary color values of each pixel are respectively obtained, thereby completing the parameter marking. Taking an eight-bit microprocessor system as an example, each primary color has a value range of 0-255.
标记完成的三基色值被传输至计算模块。 首先根据事先划分好的三基色 取值区间将每个点归入其对应的区间中。每种三基色值的划分可以根据需要 进行, 例如将红光、 绿光和蓝光分別均勾或不均勾地划分为 p、 q和 r个段, 从而一共形成了 K=p x q x r个三基色值区间。然后统计出落入各个区间的点 的数目 n2、 n3…… ηκ以及占总点数 N的百分比 m2、 m3…… mK。 该 点的数目 {!^,112, n3 … ηκ}或者百分比 {x x2, x3 … χκ}即用作与当前表面图 像相对应的特征因数。 The three primary color values of the tag completion are transmitted to the calculation module. First, each point is classified into its corresponding interval according to the previously divided three primary color value interval. The division of each of the three primary color values can be performed as needed. For example, red, green, and blue light are respectively divided into p, q, and r segments, thereby forming a total of K=pxqxr three primary color values. Interval. Then, the number of points n 2 , n 3 ... η κ which fall into each section and the percentages m 2 , m 3 ... m K which are the total number of points N are counted. The number of points {!^, 112, n 3 ... η κ } or the percentage {xx 2 , x 3 ... χ κ } is used as the feature factor corresponding to the current surface image.
最后通过判断模块将计算获得的特征因数与结冰状况数据库 203中存有 的特征数据进行对比, 从而选定在数据库中与目前的结冰状况最接近的一条 数据, 并以该条数据中所包含的结冰状况的信息 (结冰种类、 结冰厚度和 / 或结冰面积等)作为物体表面的当前结水状况。  Finally, the judging module compares the calculated feature factor with the feature data stored in the icing condition database 203, thereby selecting a piece of data in the database that is closest to the current icing condition, and using the data in the piece of data. Contains information on the icing condition (ice type, icing thickness, and/or icing area, etc.) as the current water level on the surface of the object.
而在第二个例子中, 参数标记模块和判断模块的工作过程并无太大区 另1 J , 但是在计算模块中却采用了不同的计算方法。 In the second example, the parameter marking module and the judging module do not have much work. Another 1 J, but different calculation methods are used in the calculation module.
在考察结冰种类时, 可釆用像素亮度值的方差来作为判断的特征因数, 这样可以更加明显地看出亮度的分布; 而在考察冰层厚度时, 可将所有像素 点亮度值的总和作为最终的特征因数。 通过将计算获得的所有像素点亮度值 的方差和总和与结冰状况数据库 203中的已有特征数据进行对比, 即可方便 地得到结水厚度大小的定量探测结果。  When investigating the type of icing, the variance of the pixel brightness value can be used as the characteristic factor of the judgment, so that the distribution of the brightness can be more clearly seen; and when the thickness of the ice layer is examined, the sum of the brightness values of all the pixels can be used. As the final feature factor. By comparing the variance and the sum of the luminance values of all the pixel points obtained by the calculation with the existing feature data in the icing condition database 203, the quantitative detection result of the thickness of the water formation can be conveniently obtained.
此外, 虽然没有仔细说明, 但是本领域技术人员可以想到, 上述探测器 和探测方法也可以实现对侧面观察到的水层厚度的直接识别求解。 如图 5所 示, 通过对图像中灰度和颜色等进行识别, 可以清楚地区分出结冰区域和物 体表面区域, 并且通过对结冰图像进行分析, 选取多个测量点求出其冰层厚 度的平均值, 也可以很容易地求出整个冰层的厚度。  Moreover, although not described in detail, those skilled in the art will appreciate that the above-described detector and detection method can also achieve direct identification of the thickness of the water layer observed from the side. As shown in Fig. 5, by identifying the grayscale and color in the image, the icing area and the surface area of the object can be clearly distinguished, and by analyzing the icing image, multiple measurement points are selected to determine the ice layer. The average thickness can also easily determine the thickness of the entire ice layer.
除了上述实施例以外, 本领域技术人员还可以想到其它改进措施, 以进 一步提高性能。 例如, 可以在获得各个点的灰度和 /或色谱值后, 不是直接以 其进行计算, 而是将其与清洁无冰图像中的灰度和 /或色语值进行对比后, 以 其差值作为后续计算判断的标记参数; 还可以将物体表面分为若干个区域, 然后针对每一个区域都分别独立计算判断, 以使各区域的判断结果相互印 证, 从而降低探测的误差。  In addition to the above embodiments, those skilled in the art will also appreciate other improvements to further improve performance. For example, after obtaining the grayscale and/or chromatographic values of the respective points, instead of directly calculating them, the difference is compared with the grayscale and/or color value in the clean ice-free image. The value is used as a marker parameter for subsequent calculation and judgment; the surface of the object can also be divided into several regions, and then each of the regions is independently calculated and judged so that the judgment results of the regions are mutually confirmed, thereby reducing the error of the detection.
下面将对除了图像处理系统 2-A以外的功能单元进行简单描述, 其中, 这些功能单元均可采用现有技术中已有的方案, 不属于本发明的内容。  The functional units other than the image processing system 2-A will be briefly described below, and these functional units can all adopt the existing schemes in the prior art and are not part of the present invention.
温度测控系统 2-B能够获取温度传感器 111的温度信号, 并将温度信号 与设定的温度值相比较, 从而作为加热器 112工作的控制基础。 并且也可以 将温度值传输给判断模块, 作为判断当前结冰状况的参考量。  The temperature measurement and control system 2-B can acquire the temperature signal of the temperature sensor 111 and compare the temperature signal with the set temperature value to serve as a control basis for the operation of the heater 112. It is also possible to transmit the temperature value to the judgment module as a reference for judging the current icing condition.
光源控制单元 2-C控制电磁波发射装置 115的工作, 即对电磁波种类、 发射时间和发射功率等进行控制。 电磁波发射装置 1 15可以连续工作, 也可 以规律或不规律地间断工作。 在规律的间断工作状态下, 电磁波的发射频率 可以选为 1-20 Hz, 这既可和图像获取系统协调工作, 又能保证有足够快的 探测速度。  The light source control unit 2-C controls the operation of the electromagnetic wave transmitting device 115, that is, controls the electromagnetic wave type, the emission time, and the transmission power. The electromagnetic wave transmitting device 1 15 can operate continuously or intermittently or irregularly. In the regular intermittent working state, the emission frequency of the electromagnetic wave can be selected as 1-20 Hz, which can work in coordination with the image acquisition system and ensure a sufficiently fast detection speed.
在非连续的工作状态下, 可以通过中央微处理器 2-D 对光源控制单元 2-C和图像处理系统 2- A的工作进行协调, 使得仅在电磁波发射装置 115工 作时, 图像处理系统 2-A才进行工作。 中央微处理器 2-D可以实现对图像处理系统 2-A、 温度测控系统 2-B以 及光源控制单元 2-C的控制和相互之间的信息交换,从而实现各单元的功能。 In a non-continuous operating state, the operation of the light source control unit 2-C and the image processing system 2-A can be coordinated by the central microprocessor 2-D such that the image processing system 2 is only operated when the electromagnetic wave transmitting device 115 is operating. -A only works. The central microprocessor 2-D can realize control of the image processing system 2-A, the temperature measurement and control system 2-B, and the light source control unit 2-C and exchange information with each other, thereby realizing the functions of the respective units.
下面将参照图 3和 4, 以飞行器的结水探测为例, 说明根据本发明的结 冰探测器的两种应用方式。 其中, 探测器的内部结构与前一实施方式的结构 大致相同, 因此不再重复。  Referring to Figures 3 and 4, two applications of the icing detector according to the present invention will be described by taking the water detection of the aircraft as an example. The internal structure of the detector is substantially the same as that of the previous embodiment, and therefore will not be repeated.
根据本发明的图像结冰探测器可以用于对物体表面较小区域的结冰状 况进行微观探测。 例如图 3所示, 图像获取系统的前端 1 10埋在飞行器表面 中, 并且朝向外侧, 传像光纤束在保护套 106中从前端 1 10引出并延伸至远 离该前端的图像处理系统(图中未显示) 。 在该应用中, 聚焦镜头选用的是 微距镜头, 所能获取的图像仅限于前端所对准的非常有限的面积。 但是由于 距离非常近, 因此可以实现对冰层内部图像的微观探测, 所获取的图像信息 的精确度非常高。 随之求得的单位时间内结冰厚度的增加量即结冰速率也相 应地更加^"确。  The image icing detector according to the present invention can be used for microscopic detection of icing conditions in a small area of the surface of an object. For example, as shown in FIG. 3, the front end 10 of the image acquisition system is buried in the surface of the aircraft, and toward the outside, the image fiber bundle is led out from the front end 110 in the protective cover 106 and extends to an image processing system away from the front end (in the figure). Not shown). In this application, the focus lens is a macro lens, and the image that can be acquired is limited to the very limited area that the front end is aligned with. However, since the distance is very close, microscopic detection of the image inside the ice layer can be achieved, and the accuracy of the acquired image information is very high. The amount of increase in icing thickness per unit time, that is, the rate of icing, is also correspondingly more accurate.
需要补充说明的是, 在此布置方式下, 探测器前端结水不可避免, 否则 将无法实现结冰探测。 但是此时, 仍然可以设置除冰装置, 以用于探测器的 复位。  It should be added that in this arrangement, water condensation at the front end of the detector is unavoidable, otherwise icing detection will not be possible. However, at this time, the de-icing device can still be set up for the reset of the detector.
根据本发明的图像结冰探测器还可以用于对物体表面较大区域的结冰 状况进行宏观探测。 如图 4所示, 探测器安装于飞行器的垂尾上, 并斜对着 尾翼表面。 在该应用中, 聚焦镜头选用长焦镜头或是鱼眼广角镜头, 并且通 过调整镜头的参数, 可以实现对整个需要进行结冰探测的表面区域(例如, 图中所示为 a-b-c-d的矩形区域) 均获取清晰的图像。  The image icing detector according to the present invention can also be used for macroscopic detection of icing conditions in a large area of the surface of an object. As shown in Figure 4, the detector is mounted on the vertical tail of the aircraft and diagonally opposite the surface of the tail. In this application, the focus lens is a telephoto lens or a fisheye wide-angle lens, and by adjusting the parameters of the lens, the entire surface area where icing detection is required (for example, a rectangular area of abcd shown in the figure) can be realized. Get a clear picture.
在此布置方式下, 探测器前端不能存在结冰, 否则将无法获取待探测的 物体表面的结冰图像。 此时, 防冰除冰装置的设置就显得非常重要。 并且由 于传像光纤束是耐高温的玻璃光纤或石英光纤, 故只要加热装置的温度不是 太高, 就不会损坏探测器。  In this arrangement, there is no icing at the front end of the detector, otherwise the icing image on the surface of the object to be detected will not be obtained. At this time, the setting of the anti-icing and de-icing device is very important. And since the image fiber bundle is a high temperature resistant glass fiber or quartz fiber, as long as the temperature of the heating device is not too high, the detector will not be damaged.
这种针对物体表面较大区域的探测形式虽然在对局部点进行探测上精 度较前一种形式低, 但是可以实现对整个区域范围的整体探测。 从这一角度 来说, 又能提高对结冰状况的总体分析精度。 因为冰层分布的不均勾可能造 成点探测的结果并不能代表整体的结冰状况, 使得依据几个特定点得出的结 论偏离实际情况。 除此以外, 这种宏观探测形式在某些特殊的应用中还能产生特殊的技术 效果, 例如实现对由过冷大水滴形成的 "后流冰" 的探测。 这对于飞行器等 领域的结水探测来说, 具有非常重要的意义。 This type of detection for a large area of the surface of the object has a lower accuracy in detecting the local point than the former, but can achieve an overall detection of the entire area. From this perspective, the overall analysis accuracy of the icing condition can be improved. Because the uneven distribution of the ice layer may cause the result of the point detection to not represent the overall icing condition, the conclusion based on several specific points deviates from the actual situation. In addition, this form of macroscopic detection can produce special technical effects in certain special applications, such as the detection of "backflow ice" formed by large droplets of supercooling. This is very important for the detection of water in areas such as aircraft.
所谓的过冷大水滴是指中位容积直径范围超过 50微米的过冷水滴。 由 于过冷大水滴具有较大的质量, 因此在结水之前需要放出大量的潜热。 其在 接触例如飞行器表面后的一段时间内仍然保持液体状态, 不会发生结冰, 只 有当液体的潜热完全释放出来后, 结冰才会发生在沿气流方向向后一定距离 的表面上。 因此, 在 "后流冰" 的情况下, 会出现在例如飞行器机翼和尾翼 的前缘部位没有结冰, 而在前缘之后的非防护部位发生结冰的特殊情况。  So-called supercooled large water droplets refer to supercooled water droplets with a median volume diameter exceeding 50 microns. Since the supercooled large water droplets have a large mass, a large amount of latent heat needs to be released before the water is formed. It remains liquid for a period of time after contact with, for example, the surface of the aircraft, and no icing occurs. Only when the latent heat of the liquid is completely released, the icing occurs on a surface a certain distance backwards in the direction of the airflow. Therefore, in the case of "post-flowing ice", there may be a special case where ice is not formed at the leading edge portion of the aircraft wing and the empennage, and icing occurs at the non-protected portion after the leading edge.
根据传统的探测方法, 如果要探测这种结水, 需要在较大的部位上设置 很多结水探测器单元。 这样, 不仅要求有大的安装空间, 还会对物体表面的 结构造成破坏, 并且设置多个结冰探测器单元也会显著增加成本。 则可以轻易地实现对 "后流冰" 的探测。 所要做的仅仅是修改计算模块中算 法 (例如将待探测的物体表面沿气流方向分区, 并对每一区域分別计算) , 使之能够实现对物体表面上沿着气流方向前一段没有结冰, 而后一段结冰的 情况进行识别, 就可以实现后流冰探测。  According to the conventional detection method, if the water is to be detected, a large number of water detector units are required to be placed on a large portion. In this way, not only is there a large installation space, but also damage to the structure of the surface of the object, and the provision of a plurality of icing detector units can also significantly increase the cost. The detection of "post-flowing ice" can be easily achieved. All that has to be done is to modify the algorithm in the calculation module (for example, to partition the surface of the object to be detected along the direction of the airflow, and calculate each region separately) so that it can achieve no icing on the surface of the object along the direction of the airflow. After the identification of the next icing condition, the post-flow ice detection can be realized.
以上描述的是本发明的优选实施方式。 但是应当理解的是, 本领域技术 人员在阅读了上述说明后, 能够很容易想到其它实现本发明的具体方式, 而 这些具体方式是显而易见的。发明人预期本领域技术人员可以实施合适的改 变, 并且这些变化都应当被包括在由权利要求书所限定的保护范围中。  What has been described above is a preferred embodiment of the invention. However, it will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The inventors expect that a person skilled in the art can implement suitable modifications and that such changes are intended to be included within the scope of the invention as defined by the appended claims.

Claims

权 利 要 求 书 Claim
1. 一种图像结冰探测器, 包括: 图像获取系统( 1-A)和图像处 理系统 (2-A) , 所述图像获取系统 ( 1-A) 能够获取物体表面的图 像, 所述图像处理系统(2-A) 能够对所述图像进行分析, 从而得到 所述物体表面的结冰状况, An image icing detector comprising: an image acquisition system (1-A) and an image processing system (2-A), the image acquisition system (1-A) capable of acquiring an image of an object surface, the image The processing system (2-A) is capable of analyzing the image to obtain an icing condition on the surface of the object,
其特征在于, 所述图像获取系统( 1-A)包括传像光纤束( 104)。 Characterized in that the image acquisition system (1-A) comprises a imaging fiber bundle (104).
2. 如权利要求 1所述的图像结冰探测器, 其特征在于, 还包括 图像固定装置, 所述传像光纤束( 104) 的前端对准待探测的物体表 面, 后端与所述图像固定装置相连。 2. The image icing detector according to claim 1, further comprising image fixing means, the front end of the image fiber bundle (104) being aligned with the surface of the object to be detected, the rear end and the image The fixtures are connected.
3. 如权利要求 1或 2所述的图像结冰探测器, 其特征在于, 所 述图像固定装置远离所述物体表面而设置。  The image icing probe according to claim 1 or 2, wherein the image fixing device is disposed away from the surface of the object.
4. 如上述任一项权利要求所述的图像结冰探测器,其特征在于, 所述图像固定装置包括图像传感器 ( 108) 。  4. An image icing probe according to any of the preceding claims, wherein said image fixing means comprises an image sensor (108).
5. 如权利要求 4所述的图像结冰探测器, 其特征在于, 所述图 像获取系统 ( 1-A) 还包括设置在所述图像传感器 ( 108) 之前的滤 光镜。  5. The image icing probe of claim 4, wherein the image acquisition system (1-A) further comprises a filter disposed before the image sensor (108).
6. 如上述任一项权利要求所述的图像结冰探测器,其特征在于, 所述图像获取系统 ( 1-A) 还包括电磁波发射装置 ( 115) , 用于照 射所述物体表面。  The image icing detector according to any of the preceding claims, wherein the image acquisition system (1-A) further comprises an electromagnetic wave emitting device (115) for illuminating the surface of the object.
7. 如权利要求 6所述的图像结冰探测器, 其特征在于, 所述电 磁波发射装置( 115)所发射的电磁波包括可见光、 红外线和 /或紫外 线。  7. The image icing detector according to claim 6, wherein the electromagnetic wave emitted by the electromagnetic wave emitting device (115) comprises visible light, infrared light, and/or ultraviolet light.
8. 如权利要求 6或 7所述的图像结冰探测器, 其特征在于, 所 述电磁波发射装置 ( 115) 间歇地工作。  The image icing detector according to claim 6 or 7, wherein the electromagnetic wave emitting device (115) operates intermittently.
9. 如权利要求 8所述的图像结冰探测器, 其特征在于, 当所述 电磁波发射装置 ( 115) 工作时, 所述图像固定装置工作。  The image icing detector according to claim 8, wherein the image fixing device operates when the electromagnetic wave emitting device (115) operates.
10. 如权利要求 8或 9所述的图像结冰探测器, 其特征在于, 所 述电磁波发射装置 ( 115) 的工作频率为 l-20Hz。  The image icing detector according to claim 8 or 9, wherein the electromagnetic wave transmitting device (115) operates at a frequency of l-20 Hz.
11. 如权利要求 6-10 中任一项所述的图像结冰探测器, 其特征 在于, 所述电磁波发射装置 ( 115) 包括发光光纤束 ( 104) 。 11. An image icing detector according to any of claims 6-10, characterized in that The electromagnetic wave emitting device (115) includes a light emitting fiber bundle (104).
12. 如上述任一项权利要求所述的图像结冰探测器, 其特征在 于, 所述图像获取系统( 1-A)还包括防冰装置和 /或除冰装置, 用于 防止和 /或消除在所述传像光纤束 ( 104) 前端附近的结冰。  12. The image icing detector according to any of the preceding claims, wherein the image acquisition system (1-A) further comprises an anti-icing device and/or a de-icing device for preventing and/or The icing near the front end of the imaging fiber bundle (104) is eliminated.
13. 如权利要求 12所述的图像结冰探测器, 其特征在于, 所述 除冰装置包括微型电加热器 ( 112) 。  13. The image icing probe of claim 12, wherein the de-icing device comprises a miniature electric heater (112).
14. 如上述任一项权利要求所述的图像结冰探测器, 其特征在 于, 所述传像光纤束 ( 104) 的前端处设置有聚焦镜头 ( 102) 和保 护镜头 ( 101 ) 。  14. An image icing detector according to any of the preceding claims, wherein a focus lens (102) and a protective lens (101) are provided at the front end of the image fiber bundle (104).
15. 如上述任一项权利要求所述的图像结冰探测器, 其特征在 于, 图像获取系统 ( 1-A) 还包括温度传感器 ( 111 ) 。  15. An image icing probe according to any of the preceding claims, characterized in that the image acquisition system (1-A) further comprises a temperature sensor (111).
16. 一种飞行器结冰探测器, 其特征在于, 包括如上述任一项权 利要求所述的图像结冰探测器。  16. An aircraft icing detector, comprising an image icing probe according to any of the preceding claims.
17. 如权利要求 16所述的飞行器结冰探测器, 其特征在于, 所 述传像光纤束( 104) 的前端靠近待探测的物体表面而设置, 用于对 所述物体表面进行近距离的微观探测。  17. The aircraft icing detector of claim 16, wherein a front end of the image fiber bundle (104) is disposed adjacent to a surface of the object to be detected for closely following the surface of the object Microscopic detection.
18. 如权利要求 16所述的飞行器结冰探测器, 其特征在于, 所 述传像光纤束( 104) 的前端远离待探测的物体表面而设置, 用于对 所述物体表面进行远距离的宏观探测。  18. The aircraft icing detector of claim 16, wherein a front end of the image fiber bundle (104) is disposed away from a surface of the object to be detected for remotely displacing the surface of the object Macroscopic detection.
PCT/CN2011/075789 2010-07-02 2011-06-16 Detecting device for detecting icing WO2012000385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010219364.0A CN102313511B (en) 2010-07-02 2010-07-02 Icing detector
CN201010219364.0 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012000385A1 true WO2012000385A1 (en) 2012-01-05

Family

ID=45401385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075789 WO2012000385A1 (en) 2010-07-02 2011-06-16 Detecting device for detecting icing

Country Status (2)

Country Link
CN (1) CN102313511B (en)
WO (1) WO2012000385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876050A4 (en) * 2012-12-04 2016-01-20 Commercial Aircraft Corp Cn Ice detector

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043216B (en) * 2012-12-04 2016-04-20 中国商用飞机有限责任公司 Icing detector
CN103101627B (en) * 2012-12-04 2015-05-13 中国商用飞机有限责任公司 Freezing detector
CN103454220A (en) * 2013-09-11 2013-12-18 中国民航大学 Scanning region positioning device in residual ice detection process of airplane
CN103448913A (en) * 2013-09-11 2013-12-18 中国民航大学 Airplane deicing real-time monitoring device
CN104354867B (en) * 2014-09-26 2016-06-29 空气动力学国家重点实验室 A kind of method for designing of supercool big water droplet icing detector
CN105737745A (en) * 2016-02-05 2016-07-06 国网浙江省电力公司杭州供电公司 Power transmission line icing detection system
CN108128468B (en) * 2018-04-26 2018-07-27 中国商用飞机有限责任公司 Image-type icing detector and icing detection method
CN109696383A (en) * 2019-01-25 2019-04-30 南京航空航天大学 A kind of material surface anti-icing performance evaluation method based on statistics formula measurement result
CN109751988A (en) * 2019-02-14 2019-05-14 重庆融创视讯科技有限公司 A kind of real-time ice and snow of road based on naked eye 3D technology monitors analyte sensors automatically
CN111846275B (en) * 2020-07-10 2021-11-23 杭州天为航空技术服务有限公司 Aircraft cleaning management system
CN114839163A (en) * 2022-04-13 2022-08-02 电子科技大学 Optical fiber icing sensor capable of identifying ice type based on ultraviolet solar blind waveband

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020465A1 (en) * 1994-12-28 1996-07-04 Kenneth Gustavsson System for zone surveillance
US5557261A (en) * 1994-05-06 1996-09-17 Nichols Research Corporation Ice monitoring and detection system
US5921501A (en) * 1993-07-14 1999-07-13 Northrop Grumman Corporation Aircraft ice detecting system
US5963148A (en) * 1995-03-23 1999-10-05 Honda Giken Kogyo Kabushiki Kaisha Road situation perceiving system
CN100370357C (en) * 2004-04-14 2008-02-20 西安交通大学 Digital optical fiber array high speed pick-up device having self-focusing lens
CN101762239A (en) * 2010-01-26 2010-06-30 中国气象局气象探测中心 Device and method for measuring ice accumulation on electrical wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9027943D0 (en) * 1990-12-21 1991-02-13 Gec Ferranti Defence Syst Ice detector
CN100487437C (en) * 2006-12-21 2009-05-13 天津市电视技术研究所 Flue gas discharge continuous monitoring system based on image processing
CN101430195B (en) * 2008-12-19 2010-08-18 华北电力大学 Method for computing electric power line ice-covering thickness by using video image processing technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921501A (en) * 1993-07-14 1999-07-13 Northrop Grumman Corporation Aircraft ice detecting system
US5557261A (en) * 1994-05-06 1996-09-17 Nichols Research Corporation Ice monitoring and detection system
WO1996020465A1 (en) * 1994-12-28 1996-07-04 Kenneth Gustavsson System for zone surveillance
US5963148A (en) * 1995-03-23 1999-10-05 Honda Giken Kogyo Kabushiki Kaisha Road situation perceiving system
CN100370357C (en) * 2004-04-14 2008-02-20 西安交通大学 Digital optical fiber array high speed pick-up device having self-focusing lens
CN101762239A (en) * 2010-01-26 2010-06-30 中国气象局气象探测中心 Device and method for measuring ice accumulation on electrical wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876050A4 (en) * 2012-12-04 2016-01-20 Commercial Aircraft Corp Cn Ice detector

Also Published As

Publication number Publication date
CN102313511B (en) 2015-12-16
CN102313511A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012000385A1 (en) Detecting device for detecting icing
WO2012000384A1 (en) Detecting device for detecting icing by image and detecting method thereof
CN102313510B (en) Image icing detector
CA2086508C (en) Apparatus for deicing
CN102313512B (en) Image icing detection method
CN103101626B (en) Icing detector
CN103043216B (en) Icing detector
CN105793691B (en) Ice and water detection system
CN107728136A (en) A kind of airfield runway monitoring foreign bodies and removing guiding system and method
CN106645196A (en) Dust detector of projection lens and dust remover
PT1692659E (en) Systems and methods for determining defect characteristics of a composite structure
CN105021528A (en) Road weather detection device based on videos
CN111948501B (en) Automatic inspection equipment for power grid operation
KR20170064247A (en) System for detecting road surface condition automatically using auxiliary lighting apparatus, and vehicle having the same
CN103101627B (en) Freezing detector
JP2007316049A (en) Road surface monitoring system
CN103134800A (en) Road weather detection system based on video
WO2015055737A1 (en) Method and system for determining a reflection property of a scene
CN104297176A (en) Device, system and method for monitoring visibility of channel segments of Yangtze River in mountainous area in all-weather manner
CN103948364A (en) Borescope and inspection method
CN207502720U (en) A kind of airfield runway monitoring foreign bodies and removing guiding system
CN105910548A (en) Landslide deformation three-dimensional infrared monitoring device based on RGB color sensors
CN104777103A (en) Sight distance visibility meter and measuring method thereof
CN104103183A (en) Automatic modification method and system of environmental self-adaptive traffic management parameters
CN208736996U (en) A kind of flame visual token device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800130

Country of ref document: EP

Kind code of ref document: A1