WO2012000198A1 - 宏分集状态下压缩模式的控制方法及系统 - Google Patents

宏分集状态下压缩模式的控制方法及系统 Download PDF

Info

Publication number
WO2012000198A1
WO2012000198A1 PCT/CN2010/074895 CN2010074895W WO2012000198A1 WO 2012000198 A1 WO2012000198 A1 WO 2012000198A1 CN 2010074895 W CN2010074895 W CN 2010074895W WO 2012000198 A1 WO2012000198 A1 WO 2012000198A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
compressed mode
network controller
control information
terminal
Prior art date
Application number
PCT/CN2010/074895
Other languages
English (en)
French (fr)
Inventor
刘霖
程翔
柯雅珠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2010/074895 priority Critical patent/WO2012000198A1/zh
Publication of WO2012000198A1 publication Critical patent/WO2012000198A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for controlling a compressed mode in a macro diversity state.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the second generation GSM system is mainly used to carry voice
  • the third generation WCDMA system is mainly used for carrying packet services and session and video services
  • the third generation LTE system focuses It is to carry ultra-high speed packet services.
  • inter-system mobility between the second-generation GSM system and the third-generation WCDMA system is very important; and, in the near future, mobile management of the third-generation LTE system, such as handover to LTE
  • the system hotspot area will also become very important.
  • the handover process caused by the above-mentioned inter-system mobility management requires measurement of the target system and the target carrier frequency in the prior handover preparation phase in order to accurately make the handover decision.
  • the compression mode plays an important role in carrier frequency and intersystem measurement.
  • the terminal can measure the non-serving carrier frequency and the carrier frequency of other systems without configuring a dual receiver.
  • the compressed mode can also be used for terminal access to multiple carrier coverage areas of third-generation WCDMA systems.
  • the terminal can measure another non-monthly carrier frequency without losing any data transmitted on the monthly carrier frequency.
  • the compression mode is defined as a transmission mode in which data is compressed during transmission in the time domain to produce a transmission gap, and the receiver of the terminal uses this transmission gap to tune to another carrier frequency for measurement.
  • the transmission gap is determined by the "transmission gap pattern sequence”.
  • Each set of "transmission gap pattern sequences” is uniquely identified by “transmission gap pattern sequence identification” and can only be used for one type of "transmission gap pattern sequence measurement”, which can be "frequency division duplex measurement", “Time division duplex measurement”, “GSM Received Signal Strength Indication (RSSI) measurement”, "GSM base station identification color code initial identification,", “GSM base station identification color code recognition reconfirmation", " One of the various measurement uses, such as multi-carrier measurement and "Enhanced Universal Radio Access (E-UTRA) measurement.”
  • Figure 1 is a transmission gap pattern sequence according to the related art.
  • each set of “transmission gap pattern sequences” contains 2 alternate transmission gap patterns: “Transmission gap pattern 1" and “Transmission gap pattern 2". Each "transmission gap pattern” is in one" One or two transmission gaps are provided within the transmission gap pattern length.
  • each set of transmission gap pattern sequences also includes a transmission indicating the start/stop compression mode time. Gap connection frame number (Connection Frame Number, abbreviated as CFN), transmission gap pattern sequence repetition times and the like. These parameters are determined based on the "transmission gap pattern sequence measurement use”. Accelerating the handover process can improve the reliability of handover, especially in areas where the quality of the wireless signal deteriorates rapidly, and the risk of dropped calls can be reduced by speeding up the handover process.
  • the compressed mode starts as late as possible, and the compressed mode lasts as short as possible to increase system capacity and user throughput. Therefore, the start/stop of the compressed mode can be controlled by the executor of the compressed mode, that is, the terminal and the base station (Node B).
  • the terminal controls the start/stop of the compressed mode if the terminal determines that the wireless signal quality of the current serving cell is not good, and may need to switch to the adjacent area of the different carrier frequency/different system, the compressed mode is started; if the terminal determines the current monthly service If the radio signal quality of the cell is good or the measurement result has been obtained, the compression mode is stopped.
  • the terminal When the terminal decides to start/stop, the terminal will start/stop the "transmission gap pattern sequence, and inform the node that when the base station (Node B) controls the start/stop of the compressed mode, the base station (Node B) will directly start/stop the command. Notifying the terminal.
  • the terminal or base station (Node B) controls the start/stop of the compressed mode to have the advantages of fast and short time, but if the terminal is in the macro diversity state, there is a problem.
  • Fig. 2 and Fig. 3 respectively show the two terminals.
  • the terminal and the radio network control (Radio Network Control, RNC for short) 1 have a wireless link established at the same time as the node B1 and the node B2; in the scenario shown in FIG.
  • a main object of the present invention is to provide a control scheme for a compressed mode in a macro-diversity state, in order to solve the problem in the related art that a part of a plurality of base stations connected to a terminal in a macro-diversity state cannot perform a compression mode with a terminal. The problem.
  • a control method for a compressed mode in a macro diversity state comprising: the terminal and the first node B negotiate to determine a compressed mode state, where the first node B and the terminal Connected; the terminal reports the compressed mode state to the serving radio network controller; the serving radio network controller sends the compressed mode control information to the node B connected to the terminal except the first node B, where the compressed mode control information includes the compressed mode state
  • the Node B performs the compression mode operation in synchronization with the terminal using the compressed mode control information.
  • the serving radio network controller sends the compressed mode control information to the node B, including: the monthly radio network controller determines that the node B is not directly connected to the monthly radio network controller; the monthly radio network controller will compress The mode control information is sent to the drift radio network controller; the drift radio network controller sends the compressed mode control information to its subordinate Node B. Further, the serving radio network controller sends the compressed mode control information to the node B, including: the monthly radio network controller determines that the node B is directly connected to the monthly radio network controller; the monthly radio network controller directly compresses Mode control information is sent to Node B. Further, the serving radio network controller directly sends the compressed mode control information to the Node B. The service radio network controller determines that the Node B is more than one.
  • the serving radio network controller directly sends the compressed mode control information to all the Node Bs.
  • the compressed mode control information includes at least one of: indicating an identification of the compressed mode, a start/stop time of the compressed mode, and a repetition number of the transmission gap pattern sequence TGPS.
  • a control system for a compressed mode in a macro diversity state comprising: a serving radio network controller and a Node B, the serving radio controller comprising: a receiving module, After the terminal and the first node B negotiate to determine the compressed mode state, the compressed mode state reported by the terminal is received, where the first node B is connected to the terminal, and the sending module is configured to send the compressed mode control information to the first node B.
  • a node B connected to the terminal wherein the compressed mode control information includes a compressed mode state; and the node B is used to use a compressed mode
  • the control information is synchronized with the terminal to perform a compression mode operation.
  • the sending module includes: a first determining submodule, configured to determine that the Node B is not directly connected to the serving radio network controller; and a first sending submodule, configured to send compressed mode control information; the system further includes: a drift wireless network The controller, where the drift radio network controller includes: an obtaining module, configured to acquire compressed mode control information from the first sending submodule; and a sending module, configured to send the compressed mode control information to the node B of the subordinate. Further, the sending module includes: a second determining submodule, configured to determine that the Node B is directly connected to the serving radio network controller; and a second sending submodule, configured to directly send the compressed mode control information to the Node B.
  • the second sending submodule includes: a determining unit, configured to determine that the node B is more than one; and a sending unit, configured to directly send the compressed mode control information to all the Node Bs.
  • the compressed mode control information includes at least one of: indicating an identification of the compressed mode, a start/stop time of the compressed mode, and a repetition number of the transmission gap pattern sequence TGPS.
  • the terminal uses the state of the compressed mode to the RNC, and the RNC transmits the compressed mode control information to the node B connected to the terminal, and solves the problem that the terminal existing in the related art is in the macro diversity state.
  • FIG. 1 is a schematic diagram of a transmission gap pattern sequence according to the related art
  • FIG. 2 is a schematic diagram of an application scenario in a macro diversity state according to the related art
  • FIG. 3 is another diagram in a macro diversity state according to the related art.
  • Schematic diagram of an application scenario
  • FIG. 4 is a flowchart of a control method of a compression mode in a macro diversity state according to an embodiment of the present invention
  • 5 is a flowchart of a control method of a compressed mode in the scenario shown in FIG. 2 according to an embodiment of the present invention
  • FIG. 6 is a compressed mode in the scenario shown in FIG. 3 according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a control system for a compressed mode in a macrodiversity state according to an embodiment of the present invention
  • FIG. 8 is a specific structure of a control system for a compressed mode in a macrodiversity state according to an embodiment of the present invention
  • Figure 9 is a block diagram showing the structure of a transmitting module according to an embodiment of the present invention
  • Figure 10 is a block diagram showing the structure of a second transmitting sub-module according to an embodiment of the present invention.
  • Step S402 The terminal negotiates with the first NodeB to determine a compressed mode state, where The node B is connected to the terminal; for example, the terminal negotiates with the node B connected thereto to determine whether the compressed mode state is started or stopped; in step S404, the terminal reports the compressed mode state to the serving radio network controller; and in step S406, the serving radio network controller compresses The mode control information is sent to the node B connected to the terminal other than the first node B, wherein the compressed mode control information includes a compressed mode state; and in step S408, the node B performs the compression mode operation in synchronization with the terminal using the compressed mode control information.
  • the terminal indicates the current compressed mode status to the serving radio network controller, and then the serving radio network controller indicates the compressed mode status to the other node B, so that the other node B can learn the compression mode information of the terminal.
  • the serving radio network controller obtains the compressed mode state of the terminal, it determines according to the connection establishment status of the terminal and the Node B, and then notifies the corresponding Node B of the status of the compressed mode.
  • the serving radio network controller sends the compressed mode control information to the Node B, including: the serving radio network controller determines whether the Node B is directly connected to the serving radio network controller, if the serving radio network controller determines that the Node B is not Directly connected to the service radio network controller (for example, the Node B is not directly connected to the radio network controller through the Iub interface), the serving radio network controller sends the above compressed mode control information to the drift radio network controller, where the service wireless The network controller may send the compressed mode control information to the drift radio network controller through the Iur interface; then, the drift radio network controller sends the compressed mode control information to the subordinate Node B.
  • each Node B when different Node Bs belong to different RNCs, each Node B can perform a compressed mode in synchronization with the terminal.
  • the serving radio network controller sends the compressed mode control information to the Node B, including: if the serving radio network controller determines that the Node B is directly connected to the serving radio network controller (eg, the Node B controls through the Iub interface and the radio network) The device is directly connected to the node, and the wireless network controller directly sends the compressed mode control information to the node B.
  • the serving radio network controller determines that the Node B is directly connected to the serving radio network controller (eg, the Node B controls through the Iub interface and the radio network) The device is directly connected to the node, and the wireless network controller directly sends the compressed mode control information to the node B.
  • each Node B when different Node Bs belong to the same RNC, each Node B can perform a compressed mode in synchronization with the terminal.
  • the serving radio network controller directly sends the compressed mode control information to the node B, including: determining whether all connections are under the same node B, if not, indicating that there are multiple nodes, that is, serving wireless network control
  • the device determines that the number of Node Bs is more than one.
  • the serving radio network controller directly sends the compressed mode control information to all Node Bs.
  • the serving radio network controller can compress the mode control information through the Iub interface.
  • the notification and the terminal have all the connected Node Bs.
  • the Node B can perform the operation of the compressed mode in synchronization with the terminal. This embodiment ensures that a plurality of Node Bs can perform the compressed mode in synchronization with the terminal.
  • the compressed mode control information includes at least one of: indicating an identifier of the compressed mode, a start/stop time of the compressed mode, and a number of repetitions of the transmission gap pattern sequence TGPS.
  • This embodiment enhances the utility.
  • Embodiment 2 This embodiment is applied to the scenario shown in FIG. 2, and node B1 and node B2 are subordinate to one
  • the end user establishes a wireless link with node B1 and node B2 at the same time, and the terminal is in the macro diversity state.
  • the terminal and the node B1, the RNC1 pre-agreed the "transmission gap pattern sequence” information for starting the compression mode, and the information specifically includes: a set of "transmission gap pattern sequence” for the measurement use of the frequency division duplex measurement, the " The transmission gap pattern sequence, identified by the identifier 1.
  • This set of "transmission gap pattern sequence” 1 contains 2 alternate "transport gap pattern 1" and "transmission gap pattern 2". Each transmission gap pattern is in a transmission gap pattern A transmission gap is provided within the length.
  • the information may also include: The set of transmission gap pattern sequence 1 is repeated 20 times.
  • FIG. 5 is a flowchart of a control method of a compressed mode in the scenario shown in FIG. 2 according to an embodiment of the present invention. As shown in FIG. 5, the process includes: Step S502: Starting compression between a terminal and a node B1 mode.
  • Node B1 decides to start the compressed mode, and Node B 1 sends a High Speed Shared Control Channel (HS-SCCH order) through the High Speed Shared Control Channel (HS-SCCH) to activate and start the compressed mode.
  • the transmission gap pattern sequence is notified to the designated terminal.
  • the action of starting the compressed mode is represented by using a type of a new high-speed shared control channel command with a value of 2; the initiated transmission gap pattern sequence is identified by the transmission gap pattern sequence identifier 1, and the transmission gap pattern sequence identifier 1
  • the three bits of the specific high-speed shared control channel command of "having 3 bits of specific high-speed shared control channel commands of this type" are represented by one.
  • Step S504 The terminal indicates the current compressed mode status to the serving radio network controller RNC 1; wherein the Node B 1 sends the NB AP protocol layer control signaling to the radio network controller 1.
  • the signaling carries at least the current compressed mode state to an "active" state.
  • the signaling optionally carries the current "Transmission gap pattern sequence identification" in dynamic compression mode 1.
  • the signaling optionally carries the number of repetitions of the transmission gap pattern of the "transmission gap pattern sequence” of the current startup compression mode.
  • Step S506 after the serving radio network controller RNC1 obtains the compression mode state of the terminal, according to the terminal and the node B.
  • the connection establishment situation is judged, so that all the Node Bs connected to the terminal are determined under the control of the RNC, and then all the Node Bs other than the Node B1 connected to the terminal are notified through the Iub interface (in this embodiment Node B2) compression mode information of the terminal.
  • the node B After receiving the compressed mode information notified by the terminal, the node B leaves a transmission gap on a channel of a dedicated physical channel (F-DPCH).
  • the control information includes: a compressed mode state of "active" state, capable of indicating an identification of the compressed mode (eg, "transmission gap pattern sequence identification” 1), the signaling optionally carrying a "transmission gap pattern sequence” of the current startup compression mode , , the number of repetitions of the transmission gap pattern
  • each Node B can perform a compressed mode in synchronization with the terminal.
  • Embodiment 3 This embodiment is used in the scenario shown in FIG. 3.
  • Node B1 is under RNC1
  • Node B2 is under RNC2
  • the terminal user establishes a wireless link with Node B1 and Node B2 at the same time, and the terminal is in a macro diversity state.
  • the terminal and the nodes B1 and RNC1 pre-agreed the "transmission gap pattern sequence” information for starting the compression mode, and the information includes: a set of "transmission gap pattern sequence" for "frequency division duplex measurement," , "Transmission gap pattern sequence, identified by the identifier 1.
  • This set of “Transmission Gap Pattern Sequence” 1 contains 2 alternate “Transport Gap Patterns 1" and “Transmission Gap Pattern 2". Each "transport gap pattern” provides a transmission gap within a "transport gap pattern length”. It may also include: This set of "transmission gap pattern sequence” 1 is repeated 20 times.
  • the RNC1 notifies the terminal of the "transmission gap pattern sequence” information of the startup compressed mode through the RRC protocol layer control signaling; and notifies the node B1 of the "transmission gap pattern sequence” of the compressed mode by the NBAP protocol layer control signaling.
  • 6 is a flowchart of a control method of a compressed mode in the scenario shown in FIG. 3 according to an embodiment of the present invention. As shown in FIG.
  • Step S602 The terminal indicates the current compressed mode status to the serving radio network controller RNC1.
  • the node B1 sends the NBAP protocol layer control signaling to the RNC1, where the signaling carries at least the current compressed mode state as "active, state.”
  • the signaling optionally carries the "transmission gap pattern sequence identifier” 1 of the current startup compression mode.
  • the signaling also optionally carries the "transmission gap pattern sequence” of the current startup compression mode, the repetition number of the transmission gap pattern 20.
  • Step S604 The terminal indicates the current compressed mode status to the serving radio network controller RNC 1; wherein the Node B 1 sends the NBAP protocol layer control signaling to the radio network controller 1.
  • the signaling carries at least the current compressed mode state to "active, state.
  • This signaling optionally carries the "transmission gap pattern sequence identifier" that carries the current boot compression mode. 1.
  • This signaling optionally carries the current boot compression mode"
  • the number of repetitions of the transmission gap pattern of the transmission gap pattern sequence is 20.
  • Step S606 after the serving radio network controller RNC1 obtains the compressed mode state of the terminal, it judges according to the connection establishment situation of the terminal and the node B, if it is connected with the terminal The Node B notifies the compressed mode information of the RNC2 terminal through the Iur interface under the control of the RNC 1 and the RNC 2 respectively.
  • Step S608 after the drift radio network controller RNC2 obtains the compressed mode state of the terminal, notifies the node B2 terminal through the Iub interface.
  • the control information of the compressed mode includes: the compressed mode state is "active, state, can indicate The identification of the compressed mode ("Transmission Gap Pattern Sequence Identifier” 1), this signaling is optional to carry when The number of repetitions of the transmission gap pattern of the "transmission gap pattern sequence" of the compressed mode is started. 20.
  • the node B connected to the terminal is in the other radio network controller. Under control, therefore, in order to synchronize the compressed mode, it is necessary to notify other radio network controllers first, and then notify the corresponding node B through other radio network controllers.
  • FIG. 7 is a macro diversity state according to an embodiment of the present invention.
  • a block diagram of a control system of a compressed mode the system comprising: a service radio network controller 72 and a node B 74, wherein
  • the service wireless controller 72 includes: a receiving module 722, configured to: after the terminal and the first node B negotiate to determine the compressed mode state, receive the compressed mode state reported by the terminal, where the first node B is connected to the terminal; the sending module 724, coupled
  • the receiving module 722 is configured to send the compressed mode control information to the node B74 connected to the terminal except the first node B, where the compressed mode control information includes a compressed mode state, and the node B74 is coupled to the serving wireless controller 72. Used to perform compression mode operations in synchronization with the terminal using compressed mode control information.
  • the sending module 724 includes: a first determining sub-module 82, configured to determine that the node B is not directly connected to the wireless device.
  • the network controller is connected to; the first sending sub-module 84 is coupled to the first determining sub-module 82 for transmitting compressed mode control information; the system further includes a drift radio network controller 86 coupled to the serving radio network controller 72, drifting
  • the radio network controller 86 includes: an obtaining module 862, configured to receive compressed mode control information from the first sending submodule 84; a sending module 864, coupled to the obtaining module 862, for transmitting the compressed mode control information to the subordinate Node B74.
  • FIG. 9 is a structural block diagram of a transmitting module according to an embodiment of the present invention.
  • the sending module 724 includes: a second determining submodule 92, configured to determine that the Node B is directly connected to the serving radio network controller; and the second sending submodule 94 And coupled to the second determining sub-module 92, for directly transmitting the compressed mode control information to the Node B.
  • 10 is a structural block diagram of a second transmitting submodule according to an embodiment of the present invention.
  • the second transmitting submodule 94 includes: a determining unit 1002 for determining more than one Node B; and a transmitting unit 1004 coupled to the determining unit 1002, used to directly send compressed mode control information to all Node Bs.
  • the compressed mode control information includes at least one of: indicating an identifier of the compressed mode, a start/stop time of the compressed mode, and a number of repetitions of the transmission gap pattern sequence TGPS.
  • a general-purpose computing device which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be executed by a computing device
  • the program code is implemented so that they can be stored in the storage device by the computing device, or they can be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps can be made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种宏分集状态下压缩模式的控制方法及系统,该方法包括:终端和第一节点B协商确定压缩模式状态,其中,第一节点B与终端相连;终端向服务无线网络控制器上报压缩模式状态;服务无线网络控制器将压缩模式控制信息发送给除第一节点B以外的与终端相连的节点B,其中,压缩模式控制信息包括压缩模式状态;节点B使用压缩模式控制信息与终端同步执行压缩模操作。采用本发明,达到了在宏分集状态下与终端连接的多个基站都能够与终端同步执行压缩模式的效果。

Description

宏分集状态下压缩模式的控制方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种宏分集状态下压缩模式的控 制方法及系统。 背景技术 随着无线通信网络技术的不断演进, 从第二代的全球移动系统 ( Global System for Mobile Communications, 简称为 GSM )到第三代的宽带码分多址 ( Wideband Code Division Multiple Access , 简称为 WCDMA ) 系统, 再到第 三代的长期演进(Long Term Evolution, 简称为 LTE ) 系统, 运营商的网络 部署必然依据用户的需求, 存在多种制式系统并存的情况。 目前, 运营商通 常的无线网络功能定位为: 第二代的 GSM 系统主要用于承载话音, 第三代 的 WCDMA系统主要用于 载分组业务和会话、视频类业务, 第三代的 LTE 系统重点在于承载超高速的分组业务。 针对现有的网络部署, 第二代的 GSM系统和第三代的 WCDMA系统之 间的系统间移动性非常重要; 并且, 在不久的将来, 第三代 LTE系统的移动 管理, 如切换到 LTE系统热点区域, 也将变得非常重要。 上述这些系统间移动管理导致的切换过程均需要在事先的切换准备阶段 对目标系统以及目标载频进行测量, 以便准确进行切换决策。 压缩模式在载频间和系统间测量中起到很重要的作用。釆用压缩模式时, 终端不需要配置双接收机就可以测量非服务载频以及其他系统的载频。 对于 只配置了一个接收机的终端, 从第三代 WCDMA 系统移动到只有第二代 GSM系统覆盖的区域时, 只能够釆用压缩模式来进行系统间测量。 同样, 压 缩模式也可用于终端进出第三代 WCDMA系统的多载频覆盖区域。在压缩模 式下, 终端可以测量另外一个非月艮务载频, 同时又不丢失在月艮务载频上传输 的任何数据。 压缩模式定义为一种传输模式, 通过这种方式, 数据在时域上传输时将 被压缩而产生一个传输间隙, 终端的接收机利用这段传输间隙调谐到另一个 载频上进行测量。 传输间隙由 "传输间隙样式序列" 来描述确定。 每一套 "传输间隙样式 序列" 由 "传输间隙样式序列标识" 来唯一识别, 且仅能够用于一种 "传输 间隙样式序列测量用途", 该测量用途可以是 "频分双工测量"、 "时分双工测 量"、 "GSM载波接收信号强度指示 ( Received Signal Strength Indication, 简 称为 RSSI )测量"、 "GSM基站识别色码初始识别,,、 "GSM基站识别色码识 别再次确认"、 "多载频测量" 和 "增强型全球无线接入网络 ( Enhanced Universal Radio Access, 简称为 E-UTRA ) 测量" 等各个测量中的一种测量 用途。 图 1是根据相关技术的传输间隙样式序列的示意图, 如图 1所示, 每一 套 "传输间隙样式序列 " 包含 2种交替的传输间隙样式: "传输间隙样式 1" 和 "传输间隙样式 2"。 每种 "传输间隙样式" 在一个 "传输间隙样式长度" 内提供一个或者两个传输间隙。 此外, 每一套 "传输间隙样式序列,, 还包括 指示启动 /停止压缩模式时间的传输间隙连接帧号 ( Connection Frame Number, 简称为 CFN ), 传输间隙样式序列的重复次数等等。 这些参数都是 依据"传输间隙样式序列测量用途"来确定的。 加快切换过程能够提高切换的可靠性, 尤其在无线信号质量快速恶化的 区域, 通过加快切换的过程可以降低用户掉话的风险。 压缩模式启动的时间 越晚越好, 压缩模式持续的时间越短越好, 以此来提高系统容量和用户吞吐 量。 因此, 可以由压缩模式的执行者, 即, 终端和基站(节点 B ( Node B ) ), 来控制压缩模式的启动 /停止。 当终端控制压缩模式的启动 /停止时, 如果终 端确定当前服务小区的无线信号质量不好,可能需要切换到异载频 /异系统的 邻区, 则启动压缩模式; 如果终端确定当前月艮务小区的无线信号质量转好或 者已经得到测量结果, 则停止压缩模式。 当终端决定启动 /停止时, 终端将启 动 /停止的 "传输间隙样式序列,, 告知节点 当基站 (节点 B )控制压缩模 式的启动 /停止时, 基站 (节点 B ) 直接将启动 /停止的命令通知终端。 终端或基站(节点 B )控制压缩模式的启动 /停止具有快速、 时间短的优 点, 但如果终端处于宏分集状态, 则会存在问题。 图 2和图 3分别示出了终 端的两种应用场景, 在图 2 所示的场景中, 终端与无线网络控制 (Radio Network Control,简称为 RNC ) 1下节点 B1和节点 B2同时建立有无线链路; 在图 3所示的场景中,终端与 RNC1下节点 B1和 RNC2下节点 B2同时建立 有无线链路。 发明人发现, 在这两种场景下, 压缩模式的启动 /停止是由终端 或者节点 B1 决定的, 节点 B2 无法获知压缩模式的执行状态, 因此, 节点 B2不能和终端同步执行压缩模式。 发明内容 本发明的主要目的在于提供一种宏分集状态下压缩模式的控制方案, 以 解决相关技术中终端在宏分集状态下与终端连接的多个基站中的部分基站不 能和终端同步执行压缩模式的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种宏分集状态下 压缩模式的控制方法, 该方法包括: 终端和第一节点 B协商确定压缩模式状 态, 其中, 第一节点 B与终端相连; 终端向服务无线网络控制器上报压缩模 式状态; 服务无线网络控制器将压缩模式控制信息发送给除第一节点 B以外 的与终端相连的节点 B , 其中, 压缩模式控制信息包括压缩模式状态; 节点 B使用压缩模式控制信息与终端同步执行压缩模操作。 进一步地,服务无线网络控制器将压缩模式控制信息发送给节点 B包括: 月艮务无线网络控制器确定节点 B不直接和月艮务无线网络控制器相连; 月艮务无 线网络控制器将压缩模式控制信息发送给漂移无线网络控制器; 漂移无线网 络控制器将压缩模式控制信息发送给其下属的节点 B。 进一步地,服务无线网络控制器将压缩模式控制信息发送给节点 B包括: 月艮务无线网络控制器确定节点 B直接和月艮务无线网络控制器相连; 月艮务无线 网络控制器直接将压缩模式控制信息发送给节点 B。 进一步地, 服务无线网络控制器直接将压缩模式控制信息发送给节点 B 包括: 服务无线网络控制器确定节点 B多于一个; 服务无线网络控制器直接 将压缩模式控制信息发送给所有节点 B。 进一步地,压缩模式控制信息包括以下至少之一: 指示压缩模式的标识、 压缩模式的启动 /停止时间、 传输间隙样式序列 TGPS的重复次数。 为了实现上述目的, 根据本发明的另一方面, 提供了一种宏分集状态下 压缩模式的控制系统, 该系统包括: 服务无线网络控制器和节点 B, 服务无 线控制器包括: 接收模块, 用于在终端和第一节点 B协商确定压缩模式状态 之后, 接收终端上报的压缩模式状态, 其中, 第一节点 B与终端相连; 发送 模块, 用于将压缩模式控制信息发送给除第一节点 B以外的与终端相连的节 点 B, 其中, 压缩模式控制信息包括压缩模式状态; 节点 B用于使用压缩模 式控制信息与终端同步执行压缩模操作。 进一步地, 发送模块包括: 第一确定子模块, 用于确定节点 B不直接和 服务无线网络控制器相连; 第一发送子模块, 用于发送压缩模式控制信息; 该系统还包括: 漂移无线网络控制器, 其中, 漂移无线网络控制器包括: 获 取模块, 用于获取来自第一发送子模块的压缩模式控制信息; 下发模块, 用 于将压缩模式控制信息发送给其下属的节点 B。 进一步地, 发送模块包括: 第二确定子模块, 用于确定节点 B直接和服 务无线网络控制器相连; 第二发送子模块, 用于直接将压缩模式控制信息发 送给节点 B。 进一步地, 第二发送子模块包括: 确定单元, 用于确定节点 B多于一个; 发送单元, 用于直接将压缩模式控制信息发送给所有节点 B。 进一步地,压缩模式控制信息包括以下至少之一: 指示压缩模式的标识、 压缩模式的启动 /停止时间、 传输间隙样式序列 TGPS的重复次数。 通过本发明, 釆用终端将压缩模式的状态上 4艮给 RNC, RNC在将压缩 模式控制信息发送给与终端相连的节点 B的方式, 解决了相关技术中存在的 终端在宏分集状态下与终端连接的多个基站中的部分基站不能和终端同步执 行压缩模式的问题, 进而达到了在宏分集状态下与终端连接的多个基站都能 够与终端同步执行压缩模式的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的传输间隙样式序列的示意图; 图 2是根据相关技术的宏分集状态下的一种应用场景示意图; 图 3是根据相关技术的宏分集状态下的另一种应用场景示意图; 图 4 是根据本发明实施例的宏分集状态下压缩模式的控制方法的流程 图 5是才艮据本发明实施例的在图 2所示场景下的压缩模式的控制方法的 流程图; 图 6是才艮据本发明实施例的在图 3所示场景下的压缩模式的控制方法的 流程图; 图 7是根据本发明实施例的宏分集状态下压缩模式的控制系统的结构框 图; 图 8是根据本发明实施例的宏分集状态下压缩模式的控制系统的具体的 结构框图; 图 9是才艮据本发明实施例的发送模块的结构框图; 以及 图 10是才艮据本发明实施例的第二发送子模块的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例一 根据本发明实施例, 提供了一种宏分集状态下压缩模式的控制方法。 图
4 是根据本发明实施例的宏分集状态下压缩模式的控制方法的流程图, 如图 4所示, 该方法包括: 步骤 S402, 终端和第一节点 B协商确定压缩模式状态, 其中, 第一节点 B与终端相连; 例如, 终端和与其相连的节点 B协商确定压缩模式状态为启 动或者停止; 步骤 S404, 终端向服务无线网络控制器上报压缩模式状态; 步骤 S406,服务无线网络控制器将压缩模式控制信息发送给除第一节点 B以外的与终端相连的节点 B , 其中, 压缩模式控制信息包括压缩模式状态; 步骤 S408, 该节点 B使用压缩模式控制信息与终端同步执行压缩模操 作。 在本实施例中,终端将当前的压缩模式状态指示给服务无线网络控制器, 再由服务无线网络控制器将压缩模式状态指示给其他的节点 B, 使得其他节 点 B能够获知终端的压缩模式信息, 解决了相关技术中存在的终端在宏分集 状态下与终端连接的多个基站中的部分基站不能和终端同步执行压缩模式的 问题, 进而达到了在宏分集状态下与终端连接的多个基站都能够与终端同步 执行压缩模式的效果。 其中, 服务无线网络控制器在获得终端的压缩模式状态之后, 根据终端 和节点 B的连接建立情况进行判断, 然后, 将压缩模式的状况通知给相应的 节点 B。 优选地,服务无线网络控制器将压缩模式控制信息发送给该节点 B包括: 服务无线网络控制器判断该节点 B是否直接和服务无线网络控制器相连, 如 果服务无线网络控制器确定该节点 B不直接和服务无线网络控制器相连(例 如, 节点 B 不通过 Iub接口与无线网络控制器直接相连), 则服务无线网络 控制器将上述压缩模式控制信息发送给漂移无线网络控制器, 其中, 服务无 线网络控制器可以通过 Iur接口将上述压缩模式控制信息发送给漂移无线网 络控制器; 然后, 漂移无线网络控制器再将该压缩模式控制信息发送给其下 属的节点 B。 该实施例实现了不同的节点 B属于不同的 RNC时, 各节点 B 能够与终端同步执行压缩模式。 优选地,服务无线网络控制器将压缩模式控制信息发送给该节点 B包括: 如果服务无线网络控制器确定该节点 B直接和服务无线网络控制器相连(例 如, 节点 B通过 Iub接口与无线网络控制器直接相连), 则月艮务无线网络控 制器直接将该压缩模式控制信息发送给节点 B。 该实施例实现了不同的节点 B属于同一个 RNC时, 各节点 B能够与终端同步执行压缩模式。 优选地, 服务无线网络控制器直接将该压缩模式控制信息发送给该节点 B包括: 判断所有连接是否都在同一个节点 B下, 如果不是, 则说明有多个 节点, 即, 服务无线网络控制器确定节点 B的数量多于一个, 在这种情况下, 服务无线网络控制器直接将压缩模式控制信息发送给所有的节点 B, 例如, 服务无线网络控制器可以通过 Iub接口将压缩模式控制信息通知和终端有连 接的所有节点 B, 节点 B在接收到压缩模式控制信息后, 即可和终端同步执 行压缩模式的操作。 该实施例保证多个节点 B都能够与终端同步执行压缩模 式。 优选地, 上述压缩模式控制信息包括以下至少之一: 指示压缩模式的标 识、 压缩模式的启动 /停止时间、 传输间隙样式序列 TGPS的重复次数。 该实 施例增强了实用性。 实施例二 本实施例应用于图 2 所示的场景中, 节点 B1 和节点 B2 从属于一个
RNC1 , 终端用户与节点 B1和节点 B2同时建立了无线链路, 此时, 终端处 于宏分集状态。 并且, 终端和节点 Bl , RNC1事先约定启动压缩模式的 "传 输间隙样式序列" 信息, 该信息具体包括: 一套 "传输间隙样式序列", 用于 频分双工测量这一测量用途, 该 "传输间隙样式序列,, 以标识 1来识别。 此 套 "传输间隙样式序列" 1 包含 2种交替的 "传输间隙样式 1" 和 "传输间 隙样式 2"。 每种传输间隙样式在一个传输间隙样式长度内提供一个传输间 隙。 该信息还可以包括: 此套传输间隙样式序列 1的重复次数为 20次。
RNC1通过无线资源控制 (Radio Resource Control, 简称为 RRC ) 协议 层控制信令将启动压缩模式的 "传输间隙样式序列" 信息通知终端; 通过节 点 B应用部分 ( Node B Application Part, 简称为 NBAP ) 协议层控制信令将 启动压缩模式的 "传输间隙样式序列" 信息通知节点 Bl。 图 5是才艮据本发明实施例的在图 2所示场景下的压缩模式的控制方法的 流程图, 如图 5所示, 该流程包括: 步骤 S502, 终端和节点 B 1之间启动压缩模式。 节点 B1决定启动压缩 模式, 节点 B 1通过高速共享控制信道 ( High Speed Shared Control Channel , 简称为 HS-SCCH )发送高速共享控制信道命令 (HS-SCCH order ), 以便将 启动压缩模式的动作和启动的传输间隙样式序列通知给指定终端。 其中, 启 动压缩模式的动作是通过使用取值为 2的新的高速共享控制信道命令的类型 来表示的; 启动的传输间隙样式序列以传输间隙样式序列标识 1来识别, 传 输间隙样式序列标识 1是通过 "有 3个比特来此类型下的具体的高速共享控 制信道命令" 的具体的高速共享控制信道命令的这 3个比特取值为 1来表示 的。 步骤 S504 , 终端将当前的压缩模式状态指示给服务无线网络控制器 RNC 1; 其中, 节点 B 1发送 NB AP协议层控制信令给无线网络控制器 1。 该 信令至少携带当前压缩模式状态为 "激活" 状态。 该信令可选的携带当前启 动压缩模式的 "传输间隙样式序列标识" 1。 该信令可选的携带当前启动压 缩模式的 "传输间隙样式序列,, 的传输间隙样式的重复次数 20。 步骤 S506, 服务无线网络控制器 RNC1获得终端的压缩模式状态后, 根 据终端和节点 B的连接建立情况进行判断, 从而确定和终端有连接的所有节 点 B都在本 RNC的控制下, 然后, 通过 Iub接口通知和终端有连接的除节 点 B1外的所有节点 B (本实施例中是节点 B2 ) 终端的压缩模式信息。 节点 B 在接收到终端通知的压缩模式信息之后, 在部分专用物理信道 ( Fractional Dedicated Physical Channel, 简称为 F-DPCH )信道上留出传输间 隙。 其中, 压缩模式的控制信息包括: 压缩模式状态为 "激活" 状态, 能够 指示压缩模式的标识 (例如, "传输间隙样式序列标识" 1 ), 该信令可选的 携带当前启动压缩模式的 "传输间隙样式序列,, 的传输间隙样式的重复次数
20。 该实施例实现了不同的节点 B属于同一个 RNC时, 各节点 B能够与终 端同步执行压缩模式。 实施例三 本实施例用于图 3所示的场景下,节点 B1在 RNC1下,节点 B2在 RNC2 下, 终端用户与节点 B1和节点 B2同时建立了无线链路, 终端处于宏分集状 态。 并且, 终端和节点 Bl、 RNC1事先约定了启动压缩模式的 "传输间隙样 式序列" 信息, 该信息包括: 一套 "传输间隙样式序列", 用于 "频分双工测 量,, 这一测量用途, "传输间隙样式序列,, 以标识 1 来识别。 此套 "传输间 隙样式序列" 1 包含 2种交替的 "传输间隙样式 1" 和 "传输间隙样式 2"。 每种 "传输间隙样式" 在一个 "传输间隙样式长度" 内提供一个传输间隙。 还可以包括: 此套 "传输间隙样式序列" 1的重复次数为 20次。 RNC1通过 RRC协议层控制信令将启动压缩模式的"传输间隙样式序列 " 信息通知终端; 并通过 NBAP协议层控制信令将启动压缩模式的 "传输间隙 样式序列 ', 信息通知节点 B 1。 图 6是才艮据本发明实施例的在图 3所示场景下的压缩模式的控制方法的 流程图, 如图 6所示, 该方法包括: 步骤 S602 , 终端将当前的压缩模式状态指示给服务无线网络控制器 RNC1; 其中, 节点 B1向 RNC1发送 NBAP协议层控制信令, 该信令至少携 带当前压缩模式状态为 "激活,, 状态。 该信令可选地携带当前启动压缩模式 的 "传输间隙样式序列标识" 1。 该信令还可选地携带当前启动压缩模式的 "传输间隙样式序列,, 的传输间隙样式的重复次数 20。 步骤 S604 , 终端将当前的压缩模式状态指示给服务无线网络控制器 RNC 1; 其中, 节点 B 1发送 NBAP协议层控制信令给无线网络控制器 1。 此 信令至少携带当前压缩模式状态为 "激活,, 状态。 此信令可选的携带当前启 动压缩模式的 "传输间隙样式序列标识" 1。 此信令可选的携带当前启动压 缩模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20。 步骤 S606, 服务无线网络控制器 RNC1获得终端的压缩模式状态之后, 才艮据终端和节点 B的连接建立情况进行判断,如果和终端有连接的节点 B在 分别在 RNC 1和 RNC2的控制下, 则通过 Iur接口通知 RNC2终端的压缩模 式信息。 步骤 S608, 漂移无线网络控制器 RNC2获得终端的压缩模式状态后, 通 过 Iub接口通知节点 B2终端的压缩模式信息。 节点 B在接收到终端通知的压缩模式信息之后,在 F-DPCH信道上留出 传输间隙。 其中, 压缩模式的控制信息包括: 压缩模式状态为 "激活,, 状态, 能够 指示压缩模式的标识 ( "传输间隙样式序列标识" 1 ), 此信令可选的携带当 前启动压缩模式的 "传输间隙样式序列,, 的传输间隙样式的重复次数 20。 与实施例 1的差别相比, 在本实施例中, 和终端有连接的节点 B是在其 他无线网络控制器的控制下的, 因此, 为了同步压缩模式, 需要先通知其他 的无线网络控制器, 再通过其他的无线网络控制器通知相应的节点 B。 该实施例实现了不同的节点 B属于不同的 RNC时, 各节点 B能够与终 端同步执行压缩模式。 对应于上述方法实施例, 本发明实施例还提供了一种宏分集状态下压缩 模式的控制系统, 图 7是根据本发明实施例的宏分集状态下压缩模式的控制 系统的结构框图, 该系统包括: 服务无线网络控制器 72和节点 B74, 其中, 服务无线控制器 72包括: 接收模块 722 , 用于在终端和第一节点 B协商确定压缩模式状态之后 , 接收终端上报的压缩模式状态, 其中, 第一节点 B与终端相连; 发送模块 724, 耦合至接收模块 722 , 用于将压缩模式控制信息发送给 除第一节点 B以外的与终端相连的节点 B74, 其中, 压缩模式控制信息包括 压缩模式状态; 节点 B74, 耦合至服务无线控制器 72 , 用于使用压缩模式控制信息与终 端同步执行压缩模操作。 图 8是根据本发明实施例的宏分集状态下压缩模式的控制系统的具体的 结构框图, 优选地, 发送模块 724包括: 第一确定子模块 82 , 用于确定节点 B不直接和艮务无线网络控制器相连; 第一发送子模块 84, 耦合至第一确定 子模块 82, 用于发送压缩模式控制信息; 该系统还包括漂移无线网络控制器 86 , 耦合至服务无线网络控制器 72 , 漂移无线网络控制器 86包括: 获取模 块 862 , 用于接收来自第一发送子模块 84 的压缩模式控制信息; 下发模块 864 , 耦合至获取模块 862 , 用于将压缩模式控制信息发送给其下属的节点 B74。 图 9是根据本发明实施例的发送模块的结构框图,优选地,发送模块 724 包括:第二确定子模块 92 ,用于确定节点 B直接和服务无线网络控制器相连; 第二发送子模块 94, 耦合至第二确定子模块 92, 用于直接将压缩模式控制 信息发送给节点 B。 图 10 是根据本发明实施例的第二发送子模块的结构框图, 优选地, 第 二发送子模块 94包括: 确定单元 1002 , 用于确定节点 B多于一个; 发送单 元 1004, 耦合至确定单元 1002, 用于直接将压缩模式控制信息发送给所有 节点 B。 优选地, 上述压缩模式控制信息包括以下至少之一: 指示压缩模式的标 识、 压缩模式的启动 /停止时间、 传输间隙样式序列 TGPS的重复次数。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种宏分集状态下压缩模式的控制方法, 其特征在于, 包括:
终端和第一节点 B协商确定压缩模式状态, 其中, 所述第一节点 B 与所述终端相连;
所述终端向服务无线网络控制器上报所述压缩模式状态; 所述服务无线网络控制器将压缩模式控制信息发送给除所述第一节 点 B以外的与所述终端相连的节点 B, 其中, 所述压缩模式控制信息包 括所述压缩模式状态;
所述节点 B使用所述压缩模式控制信息与所述终端同步执行压缩模 操作。
2. 根据权利要求 1所述的方法, 其特征在于, 所述服务无线网络控制器将 所述压缩模式控制信息发送给所述节点 B包括:
所述月艮务无线网络控制器确定所述节点 B不直接和所述月艮务无线网 络控制器相连;
所述服务无线网络控制器将所述压缩模式控制信息发送给漂移无线 网络控制器;
所述漂移无线网络控制器将所述压缩模式控制信息发送给其下属的 所述节点 B。
3. 根据权利要求 1所述的方法, 其特征在于, 所述服务无线网络控制器将 所述压缩模式控制信息发送给所述节点 B包括:
所述月艮务无线网络控制器确定所述节点 B直接和所述月艮务无线网络 控制器相连;
所述服务无线网络控制器直接将所述压缩模式控制信息发送给所述 节点 B。
4. 根据权利要求 3所述的方法, 其特征在于, 所述服务无线网络控制器直 接将所述压缩模式控制信息发送给所述节点 B包括:
所述服务无线网络控制器确定所述节点 B多于一个; 所述服务无线网络控制器直接将所述压缩模式控制信息发送给所有 所述节点 B。 根据权利要求 1至 4任一项所述的方法, 其特征在于, 所述压缩模式控 制信息包括以下至少之一:
指示压缩模式的标识、 压缩模式的启动 /停止时间、 传输间隙样式序 歹' J TGPS的重复次数。 一种宏分集状态下压缩模式的控制系统, 包括: 服务无线网络控制器和 节点 B, 其特征在于,
所述服务无线控制器包括:
接收模块, 用于在终端和第一节点 B协商确定压缩模式状态之后, 接收所述终端上 4艮的所述压缩模式状态, 其中, 所述第一节点 B与所述 终端相连;
发送模块, 用于将压缩模式控制信息发送给除所述第一节点 B以外 的与所述终端相连的所述节点 B , 其中, 所述压缩模式控制信息包括所 述压缩模式状态;
所述节点 B用于使用所述压缩模式控制信息与所述终端同步执行压 缩模操作。 才艮据权利要求 6所述的系统, 其特征在于,
所述发送模块包括:
第一确定子模块, 用于确定所述节点 B不直接和所述月艮务无线网络 控制器相连;
第一发送子模块, 用于发送所述压缩模式控制信息;
所述系统还包括: 漂移无线网络控制器, 其中, 所述漂移无线网络 控制器包括:
获取模块, 用于获取来自所述第一发送子模块的所述压缩模式控制 信息;
下发模块, 用于将所述压缩模式控制信息发送给其下属的所述节点
B。 根据权利要求 6所述的系统, 其特征在于, 所述发送模块包括: 第二确定子模块, 用于确定所述节点 B直接和所述月艮务无线网络控 制器相连;
第二发送子模块, 用于直接将所述压缩模式控制信息发送给所述节 点 B。
9. 根据权利要求 8所述的系统, 其特征在于, 所述第二发送子模块包括: 确定单元, 用于确定所述节点 B多于一个;
发送单元, 用于直接将所述压缩模式控制信息发送给所有所述节点
B。
10. 根据权利要求 6至 9任一项所述的系统, 其特征在于, 所述压缩模式控 制信息包括以下至少之一:
指示压缩模式的标识、 压缩模式的启动 /停止时间、 传输间隙样式序 歹' J TGPS的重复次数。
PCT/CN2010/074895 2010-07-01 2010-07-01 宏分集状态下压缩模式的控制方法及系统 WO2012000198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074895 WO2012000198A1 (zh) 2010-07-01 2010-07-01 宏分集状态下压缩模式的控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074895 WO2012000198A1 (zh) 2010-07-01 2010-07-01 宏分集状态下压缩模式的控制方法及系统

Publications (1)

Publication Number Publication Date
WO2012000198A1 true WO2012000198A1 (zh) 2012-01-05

Family

ID=45401327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074895 WO2012000198A1 (zh) 2010-07-01 2010-07-01 宏分集状态下压缩模式的控制方法及系统

Country Status (1)

Country Link
WO (1) WO2012000198A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119570A (zh) * 2000-05-19 2008-02-06 阿尔卡塔尔公司 将压缩模式参数发送到移动站的方法
EP1944995A2 (en) * 2007-01-11 2008-07-16 Samsung Electronics Co., Ltd. Wireless communication system for monitoring wireless links during transmission gaps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119570A (zh) * 2000-05-19 2008-02-06 阿尔卡塔尔公司 将压缩模式参数发送到移动站的方法
EP1944995A2 (en) * 2007-01-11 2008-07-16 Samsung Electronics Co., Ltd. Wireless communication system for monitoring wireless links during transmission gaps

Similar Documents

Publication Publication Date Title
CN110784899B (zh) 无线通信系统中的电子设备和无线通信方法
US10206148B2 (en) Preserving core network interfaces after selective handovers in a wireless network
CN110062430B (zh) 通信网络中用于将无线终端连接到多个小区的方法
US20210136642A1 (en) Telecommunications system, terminal device, infrastructure equipment and methods
TWI735064B (zh) 用於切換穩健性之方法及其使用者設備
JP5826245B2 (ja) ハンドオーバ時における無線リソース設定方法及び設定装置
CN112260725A (zh) 承载配置信令
CN104956731A (zh) 用于在移动通信系统中针对具有小小区服务区域的小区控制移动性的方法和装置
TW201210386A (en) Method to control configuration change times in a wireless device
WO2013070127A1 (en) Methods and arrangement for handling a data transferral in a cellular network
WO2018202936A1 (en) Measurement configuration
WO2012003730A1 (zh) 启动压缩模式的方法、终端和通信系统
US8606277B2 (en) Activation time for target based high speed serving cell change
US11653280B2 (en) Device-to-device and device to network wireless communication apparatus, wireless communication system, and processing method
WO2012009850A1 (zh) 一种传输间隙样式序列的处理方法和系统
WO2014110811A1 (zh) 多载波通信的方法、装置和设备
CN102264079B (zh) 一种压缩模式的控制方法及系统
WO2013000235A1 (zh) 一种终端切换的方法及装置
WO2012000198A1 (zh) 宏分集状态下压缩模式的控制方法及系统
WO2012010003A1 (zh) 宏分集状态下压缩模式的控制方法和系统
WO2012000207A1 (zh) 一种压缩模式的控制方法、系统和无线网络控制器
TW202404396A (zh) 用於小區切換的方法及裝置
WO2024104733A1 (en) Shortening of service interruption time for llm in ran4
WO2011157069A1 (zh) 传输间隙样式序列的处理方法、装置及系统
WO2024170187A1 (en) Measurement configuration for l1l2 triggered mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853903

Country of ref document: EP

Kind code of ref document: A1