US8606277B2 - Activation time for target based high speed serving cell change - Google Patents
Activation time for target based high speed serving cell change Download PDFInfo
- Publication number
- US8606277B2 US8606277B2 US12/935,941 US93594109A US8606277B2 US 8606277 B2 US8606277 B2 US 8606277B2 US 93594109 A US93594109 A US 93594109A US 8606277 B2 US8606277 B2 US 8606277B2
- Authority
- US
- United States
- Prior art keywords
- user equipment
- activation time
- target cell
- cell
- high speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000004913 activation Effects 0.000 title claims abstract description 88
- 230000008859 change Effects 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 75
- 238000005259 measurement Methods 0.000 claims description 23
- 238000004891 communication Methods 0.000 claims description 18
- 238000012790 confirmation Methods 0.000 claims description 6
- 230000011664 signaling Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000001960 triggered effect Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/00837—Determination of triggering parameters for hand-off
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
- H04W36/36—Reselection control by user or terminal equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/08—Reselecting an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
Definitions
- the present solution relates to a method and arrangement in a telecommunications system, in particular it relates to a method and arrangement for synchronizing a high speed downlink shared channel (HS-DSCH) serving cell change (HSCC) procedure in a telecommunications system.
- HS-DSCH high speed downlink shared channel
- HSCC serving cell change
- a Universal Mobile Telecommunications System (UMTS) or third generation (3G) network can be separated into a number of major components, namely one or more core networks which are responsible for setting up and controlling user sessions, and a UMTS radio access network (UTRAN) which controls access to the air interface.
- UTRAN UMTS radio access network
- the interface between UTRAN and user equipment (UE) is provided by nodes that may be referred to as “Node B” (analogous to base stations in 2G/GSM networks) or base stations.
- NodeBs are responsible for transmitting and receiving data over the air interface and are controlled by radio network controllers.
- User and control data are routed between a base station and a core network via the base station and the radio network controllers.
- the interface between a base station and a radio network controller is referred to as the lub interface.
- the interface between two radio network controllers in the same network is referred to as the lur interface.
- a lu interface carries user traffic (such as voice or data) as well as control information, and is mainly needed for soft handovers.
- Soft handover refers to a feature used by the Code Division Multiple Access (CDMA) and Wideband Code Division Multiple Access (WCDMA) standards, where a user equipment, such as a cell phone, is simultaneously connected to two or more cells (or cell sectors) during a call.
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- all the cell site sectors that are actively supporting a call in soft handover send the bit stream that they receive back to the radio network controller, along with information about the quality of the received bits.
- the radio network controller examines the quality of all these bit streams and dynamically chooses the bit stream with the highest quality. Again, if the signal degrades rapidly, the chance is still good that a strong signal will be available at one of the other cell sectors that are supporting the call in soft handover.
- the high-speed downlink shared channel does not use soft handover as dedicated channels do. Instead, a procedure called HS-DSCH serving cell change (HSCC) is utilized to make a hard handover.
- Soft handover is still used for the uplink, and an active set is managed in the same way as for non-high speed user equipment.
- the active set comprises a list of all active cells the user equipment is connected to in uplink soft handover.
- the user equipment continuously measures a common pilot channel (CPICH) and comprises a hysteresis to be fulfilled during a certain time (time to trigger).
- CPICH common pilot channel
- the update procedure for the list of active set of cells is schematically illustrated in FIG. 1 .
- the active set update procedure is triggered by measurement report 1 a , 1 b or 1 c , 101 informing the network controller, e.g. a serving radio network controller SRNC, that new cells have fulfilled the criterions to be added (measurement report 1 a ), deleted (measurement report 1 b ) or replaced (measurement report 1 c ) in the active set.
- the measurement report 1 a , 1 b , 1 c is sent from the user equipment to a network controller, e.g. a serving radio network controller SRNC.
- a serving radio network controller is a type of radio network controller serving a particular user equipment and manages the connections towards that user equipment. When in HS-DSCH operation, the downlink is not in soft handover.
- the network controller then performs a radio link addition 102 , and sets up the required radio links by sending and receiving setup request and response 103 , 104 to/from the base station.
- the network controller transmits an active set update message 105 to the user equipment.
- the user equipment When the user equipment has received the active set update from the network controller, it prepares 106 a processing, i.e. it reads the message and applies the new configuration, e.g. adds or deletes a radio link.
- the user equipment sends an active set update complete message 107 to the network controller confirming that the active set update was complete.
- the signalling sequence for a (regular) HSCC procedure for hard handover is schematically shown in a combined flow and signalling diagram in FIG. 2 .
- the user equipment performs a handover evaluation 200 to determine whether a handover shall be performed. This is triggered by a neighbour cell, target cell, being stronger than of the current cell, serving cell.
- a measurement report 1 d is sent 201 from the user equipment to the network controller, e.g. the serving radio network controller (SRNC), indicating that another cell in the list of active set of cells has become the strongest one.
- the network controller e.g. the serving radio network controller (SRNC)
- the measurement report 1 d is triggered to be sent from the user equipment when the measured common pilot channel level (CPICH) of the target cell is stronger than the serving cell by a certain hysteresis for a given time, governed by a parameter Ttrig1d (time to trigger measurement report 1 d ).
- CPICH common pilot channel level
- T cc the delay of the cell change procedure, used may, as an example, be calculated as follows: T cc T trig1 d+T Uu +2 *T lub +T ActivationTime
- the network controller When the network controller receives the measurement report 1 d indicating the existence of this stronger cell, the network can take the decision to change the serving cell, i.e. it takes a handover decision 202 .
- the network controller configures the source and target base stations (shown as only one base station in FIG. 2 ) with the new configuration, and the network controller also configures the lub transport bearer.
- the network controller sends a radio link reconfiguration prepare message 203 to the base stations, and receives in return a radio link reconfiguration ready message 204 when the reconfiguration is ready.
- the network controller calculates the activation time 205 for the new configuration in case the switch to the new configuration is a synchronized procedure, meaning that the user equipment and the network controller shall move to the new configuration at the same time.
- the calculated activation time is relative to a connection frame number (CFN).
- An offset is needed to cover for the time it takes to transmit the reconfiguration commit messages 206 to both the user equipment and the base stations.
- the network controller sends a physical channel reconfiguration message 207 to the user equipment.
- the user equipment prepares a processing 208 , i.e. it reads the message from the network controller and executes the handover 209 , i.e. applies the new configuration, e.g. adds or deletes a radio link for the handover.
- the user equipment may send a physical channel reconfiguration complete message 210 to the network controller.
- Enhancements to the HS-DSCH serving cell change procedure are consequently required regarding radio protocol procedures and structures, lub/lur protocols and user equipment, base station and radio resource management (RRM) performance requirements.
- RRM radio resource management
- a method in a user equipment for setting up an activation time of a cell change of the user equipment from a serving cell to a target cell in a wireless communications network After receiving a timing offset from a network controller, the user equipment calculates a cell change activation time based on the timing offset. The user equipment then transmits the calculated activation to the time controller. Then the user equipment receives an approval of the cell change from the network controller. The user equipment will then move from the serving cell to the target cell at the activation time if it has received the approval.
- a method in a network controller for setting up an activation time of a cell change of a user equipment from a serving cell to a target cell in a wireless communications network.
- the network controller transmits a timing offset to the user equipment and receives an activation time from the user equipment. Then the network controller decides to move the user equipment to the target cell.
- the serving cell and the target cell are configured with the activation time.
- the network controller receives a configuration confirmation from the serving cell and the target cell, and the network controller sends an approval of the cell change to the user equipment.
- an arrangement in a user equipment in a wireless communication network comprising a receiver arranged to receive a timing offset from a network controller through an interface, a processor arranged to calculate a cell change activation time based on the timing offset.
- the arrangement further comprises a transmitter arranged to transmit the activation time through the interface to the network controller.
- the receiver is further arranged to receive an approval of the cell change through the interface.
- the processor is further arranged to move from the serving cell to the target cell at the activation time if the approval has been received.
- an arrangement in a network controller is arranged to set up an activation time of a cell change of a user equipment from a serving cell to a target cell in a wireless communications network.
- the network controller arrangement comprises a transmitter arranged to transmit a timing offset to the user equipment, a receiver arranged to receive an activation time from the user equipment.
- the arrangement further comprises a processor arranged to decide to move the user equipment to the target cell, and arranged to configure the serving cell and the target cell with the activation time.
- the receiver is further arranged to receive a configuration confirmation from the serving cell and the target cell, and the transmitter is further arranged to send an approval of the cell change to the user equipment.
- the user equipment can decide an activation time in which it will move from a source cell to a target cell it allows a synchronized operation for HS-DSCH serving cell change (HSCC).
- the synchronized operation may also be possible when the cell change command is signalled over HS-SCCH from the target base station.
- This provides an advantage of simplifying L1 (lower physical layer) termination and user plane handling over the interface between a base station and a network controller (lub).
- a further advantage is that the offset used to calculate the activation time is controlled by the network controller, and can thus be optimised based on the network configuration and delays. Another advantage of this is that it allows the network controller and user equipment to simultaneously change from source to target cell during handover.
- FIG. 1 is a combined flowchart and signalling diagram illustrating a prior art active set update procedure.
- FIG. 2 is a combined flowchart and signalling diagram illustrating a prior art procedure for HS-DSCH serving cell change.
- FIG. 3 is a schematic block diagram illustrating a wireless communication network.
- FIG. 4 is a combined flowchart and signalling diagram illustrating a synchronized cell change procedure.
- FIG. 5 is a flowchart illustrating embodiments of a method in a user equipment.
- FIG. 6 is a flowchart illustrating embodiments of a method in a network controller.
- FIG. 7 is a schematic block diagram illustrating embodiments of a user equipment arrangement.
- FIG. 8 is a schematic block diagram illustrating embodiments of a network controller arrangement.
- the present solution relates to a method and arrangement that allows synchronized operation for HS-DSCH serving cell change (HSCC) by letting the user equipment decide an activation time, i.e. a connection frame number, in which it will move from a serving cell to a target cell.
- the user equipment reports this connection frame number to the network controller in a measurement report that triggers the cell change.
- the user equipment is then allowed to move to the target cell at the connection frame number if it gets scheduled on HS-SCCH in the target cell before the connection frame number. If it does not, it stays in the source cell.
- FIG. 3 shows a wireless communication network 300 , using technologies such as e.g. UTRAN.
- the wireless communication network 300 comprises base stations serving cells, such as a base station 305 serving a cell 306 and a base station 307 serving a cell 308 .
- the base stations 305 and 307 are radio base stations, e.g. in a radio access network, and may be referred to as NodeB.
- the base station 305 is arranged to wirelessly communicate with a user equipment 310 via e.g. radio frequency transmitters and receivers which also may be responsible for transmitting and receiving data over an air interface 312 .
- the user equipment 310 may be referred to as a node device.
- the wireless communication network 300 further comprises a radio network controller 315 adapted to control the base stations 305 , 307 and other base stations connected to it.
- the radio network controller 315 is the point of contact for the user equipment 310 towards the communication network 300 .
- the network controller 315 is connected to a core network 316 providing services to the user equipment 310 .
- the user equipment 310 moves from cell 306 towards the neighbor cell 308 .
- the user equipment 310 uses cell change procedures to move from one cell to another cell when a stronger neighbor cell is detected.
- the user equipment 310 moves from one cell to another cell at an activation time.
- the user equipment 310 uses a list of active set of cells.
- the list of active set of cells comprises a list of cells to which the user equipment 310 can move from the serving cell 306 .
- FIG. 4 is a combined flowchart and signalling diagram illustrating an example of a cell change procedure modified to be synchronized according to embodiments of the present solution.
- the target cell 308 is preloaded with the high speed configuration during an active set update procedure (not shown). The method comprises the following steps:
- a handover evaluation is performed in the user equipment 310 because it has noticed that another cell in the list of active set of cells has become the strongest one.
- the user equipment 310 calculates the activation time based on a timing offset that is previously signalled by the network controller 315 .
- the timing offset may be signalled to the user equipment 310 either by active set update, broadcast or dedicated signalling at call setup.
- the calculation of the activation time may be initiated when sending measurement report 1 d during signalling procedure for HS-DSCH serving cell change is triggered in the user equipment 310 .
- the activation time may e.g. be expressed as a connection frame number (CFN) in which the user equipment 310 will move from the serving cell 306 to the target cell 308 .
- the calculated activation time e.g. comprised in the measurement report 1 d of a handover request message, is transmitted to the network controller 315 forming a basis for a handover decision.
- the network controller 315 When the network controller 315 receives the measurement report 1 d , it makes the handover decision whether to move the user equipment 310 to the target cell 308 or not. If the measurement report 1 d indicates the existence of a “stronger” neighbour cell 308 than the current serving cell 306 , i.e. source cell, and based on other considerations, the network controller 315 may take a decision to move the user equipment 310 to this neighbour cell, target cell 308 .
- the network controller 315 sends a radio link reconfiguration prepare message to the target base station 307 , to reconfigure the target base station 307 informing it also of the connection frame number in which the cell change will occur.
- the user equipment 310 listens to the target cell High-Speed Downlink Shared Channel (HS-DSCH) Shared Control Channel (HS-SCCH) until the calculated activation time is reached.
- HS-DSCH High-Speed Downlink Shared Channel
- HS-SCCH Shared Control Channel
- the target base station 307 sends a radio link reconfiguration ready message to the network controller 315 when it has performed its reconfiguration preparations.
- the network controller 315 sends a radio link reconfiguration prepare message to the serving base station 305 to reconfigure the serving base station 305 informing it also of the connection frame number in which the cell change will occur.
- the serving base station 305 sends a radio link reconfiguration ready message to the network controller 315 when it has performed its reconfiguration preparations.
- the network controller 315 sends a radio link configuration commit message to the target base station 307 .
- the network controller 315 also sends a radio link configuration commit message to the serving base station 305 .
- the target base station 307 When the target base station 307 has received the radio link configuration commit message it will schedule the user equipment 310 on the HS-SCCH if the message has been received before the calculated activation time.
- the user equipment 310 regards the cell change approved upon receipt of an indication of this scheduling.
- the network controller 315 may also transmit the handover confirm message over the target cell 307 . This may be done by the network controller 315 transmitting a physical channel reconfiguration message to the user equipment 310 .
- the user equipment 310 moves to the target cell 307 at the connection frame number. Note that this is only possible when the network controller 315 schedules the user equipment 310 on HS-SCCH in the target cell 308 or transmits the handover command in the serving cell 305 before the connection frame number. However, if the scheduling message in step 410 has been received after the activation time, the user equipment 310 remains in the serving cell 305 , i.e. no cell change is performed.
- the user equipment 310 may also be a need for the user equipment 310 to acknowledge the receipt of the HS-SCCH command. This may be done by the user equipment 310 transmitting a “Reconfiguration Complete” message to the network controller 315 .
- FIG. 5 is a flowchart describing the present method in the user equipment 310 , for setting up an activation time of a cell change of the user equipment 310 from the serving cell 305 to the target cell 308 in a wireless communications network 300 .
- the method comprises the following steps to be performed in the user equipment 310 :
- the user equipment 310 receives a timing offset from a network controller 315 .
- the timing offset may be received from the network controller 315 through an active set update procedure.
- the timing offset may be received from the network controller 315 through broadcast or dedicated signalling at call setup.
- the target cell 307 may be preloaded with a high speed serving cell change procedure.
- the user equipment 310 calculates a cell change activation time based on the timing offset.
- the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308 .
- the user equipment 310 transmits the calculated activation time to the network controller 315 .
- the activation time may be transmitted to the network controller 315 in a measurement report.
- the user equipment 310 receives an approval of the cell change from the network controller 315 .
- the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308 .
- the user equipment 310 may be arranged to monitor a target cell 308 high speed downlink control channel until the activation time expires.
- the user equipment 310 moves from the serving cell 305 to the target cell 308 at the activation time if the approval has been received.
- the user equipment 310 may send an acknowledgement to the network controller 315 .
- FIG. 6 is a flowchart describing the present method in the network controller 315 for setting up an activation time of a cell change of the user equipment 310 from the serving cell 306 to the target cell 308 in a wireless communications network 300 .
- the method comprises the following steps to be performed in the network controller 315 :
- the network controller 315 transmits a timing offset to the user equipment 310 .
- the timing offset may be transmitted to the user equipment 310 through an active set update procedure.
- the timing offset may be transmitted to the user equipment 310 through broadcast or dedicated signalling at call setup.
- the target cell 308 may be preloaded with a modified high speed serving cell change procedure.
- the network controller 315 receives an activation time from the user equipment 310 .
- the activation time may be received from the user equipment 310 in a measurement report.
- the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308 .
- the network controller 315 decides to move the user equipment 310 to the target cell 308 .
- the network controller 315 configures the serving cell 306 and the target cell 308 with the activation time.
- the network controller 315 receives a configuration confirmation from the serving cell 306 and the target cell 308 .
- the network controller 315 sends an approval of the cell change to the user equipment 310 .
- the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308 .
- the network controller 315 may receive an acknowledgement from the user equipment 310 .
- the user equipment 310 comprises a user equipment arrangement 700 as shown in FIG. 7 .
- the user equipment 310 is arranged to be capable of setting up an activation time of a cell change from a serving cell 306 to a target cell 308 .
- the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308 .
- the user equipment arrangement 700 comprises a receiver 710 arranged to receive a timing offset from a network controller 315 through an interface 312 .
- the receiver 710 may be further arranged to receive the timing offset the network controller 315 through an active set update procedure, and it may also be arranged to receive the timing offset from the network controller 315 through broadcast or dedicated signalling at call setup.
- the arrangement 700 further comprises a processor 720 arranged to calculate a cell change activation time based on the timing offset, and a transmitter 730 arranged to transmit the activation time through the interface 312 to the network controller 315 .
- the transmitter 730 may be arranged to transmit the activation time to the network controller 315 in a measurement report.
- the receiver 710 is further arranged to receive an approval of the cell change through the interface 312
- the processor 720 is further arranged to move from the serving cell 306 to the target cell 308 at the activation time if the approval has been received.
- the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308 , and the user equipment 310 may be arranged to monitor a target cell 308 high speed downlink control channel until the activation time expires.
- the transmitter 730 may further be arranged to send an acknowledgement through the interface 312 to the network controller 315 .
- the target cell 307 may be preloaded with a high speed serving cell change procedure.
- the network controller 315 comprises a network controller arrangement 800 as shown in FIG. 8 .
- the network controller 315 is arranged to set up an activation time of a cell change of a user equipment 310 from a serving cell 306 to a target cell 308 in a wireless communications network 300 .
- the network controller arrangement 800 comprises a transmitter 810 arranged to transmit a timing offset to the user equipment 310 .
- the transmitter 810 may further be arranged to transmit the timing offset to the user equipment 310 through an active set update procedure, and the transmitter 810 may further be arranged to transmit the timing offset to the user equipment 310 through broadcast or dedicated signalling at call setup.
- the arrangement 800 further comprises a receiver 820 arranged to receive an activation time from the user equipment 310 .
- the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308 .
- the network controller arrangement 800 further comprises a processor 830 arranged to decide to move the user equipment 310 to the target cell 308 and arranged to configure the serving cell 306 and the target cell 308 with the activation time.
- the receiver 810 is further arranged to receive a configuration confirmation from the serving cell 306 and the target cell 308 .
- the transmitter 810 may be further arranged to send an approval of the cell change to the user equipment 310 .
- the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308 .
- the receiver 820 may be further arranged to receive an acknowledgement from the user equipment 310 .
- the target cell 308 may be preloaded with a modified high speed serving cell change procedure.
- the present mechanism for setting up an activation time of a cell change from a serving cell 306 to a target cell 308 in a wireless communication network 300 may be implemented through one or more processors, such as a processor 720 in the user equipment arrangement 700 depicted in FIG. 7 or a processor 830 in the network controller arrangement 800 depicted in FIG. 8 , together with computer program code for performing the functions of the present solution.
- the program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the present solution when being loaded into the user equipment 310 and/or network controller 315 .
- One such carrier may be in the form of a CD ROM disc. It is however feasible with other data carriers such as a memory stick.
- the computer program code can furthermore be provided as pure program code on a server and downloaded to the user equipment 310 and/or network controller 315 remotely.
- An advantage with embodiments of the present solution is that the HSCC procedure may be synchronized, also when the cell change command is signalled over HS-SCCH from the target base station 307 . This simplifies L1 termination and user plane handling over lub.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A method for setting up an activation time of a cell change of user equipment includes receiving a timing offset from a network controller through an active set update procedure and calculating a high speed downlink shared channel cell change activation time based on the timing offset. The activation time indicates when the user equipment can move to the target cell. The method also includes transmitting the calculated activation time to the network controller and receiving an approval of the downlink shared channel high speed cell change from the network controller. Additionally, the method includes moving from the serving cell to the target cell at the activation time if the approval has been received.
Description
This application claims the benefit of U.S. Provisional Application No. 61/041,283, filed Apr. 1, 2008, the disclosure of which is fully incorporated herein by reference.
The present solution relates to a method and arrangement in a telecommunications system, in particular it relates to a method and arrangement for synchronizing a high speed downlink shared channel (HS-DSCH) serving cell change (HSCC) procedure in a telecommunications system.
A Universal Mobile Telecommunications System (UMTS) or third generation (3G) network can be separated into a number of major components, namely one or more core networks which are responsible for setting up and controlling user sessions, and a UMTS radio access network (UTRAN) which controls access to the air interface. The interface between UTRAN and user equipment (UE) is provided by nodes that may be referred to as “Node B” (analogous to base stations in 2G/GSM networks) or base stations. NodeBs are responsible for transmitting and receiving data over the air interface and are controlled by radio network controllers. User and control data are routed between a base station and a core network via the base station and the radio network controllers. The interface between a base station and a radio network controller is referred to as the lub interface. The interface between two radio network controllers in the same network is referred to as the lur interface. A lu interface carries user traffic (such as voice or data) as well as control information, and is mainly needed for soft handovers. Soft handover refers to a feature used by the Code Division Multiple Access (CDMA) and Wideband Code Division Multiple Access (WCDMA) standards, where a user equipment, such as a cell phone, is simultaneously connected to two or more cells (or cell sectors) during a call. On the uplink (user equipment-to-cell-site), all the cell site sectors that are actively supporting a call in soft handover send the bit stream that they receive back to the radio network controller, along with information about the quality of the received bits. The radio network controller examines the quality of all these bit streams and dynamically chooses the bit stream with the highest quality. Again, if the signal degrades rapidly, the chance is still good that a strong signal will be available at one of the other cell sectors that are supporting the call in soft handover.
In UTRAN, the high-speed downlink shared channel (HS-DSCH) does not use soft handover as dedicated channels do. Instead, a procedure called HS-DSCH serving cell change (HSCC) is utilized to make a hard handover. Soft handover is still used for the uplink, and an active set is managed in the same way as for non-high speed user equipment. The active set comprises a list of all active cells the user equipment is connected to in uplink soft handover. The user equipment continuously measures a common pilot channel (CPICH) and comprises a hysteresis to be fulfilled during a certain time (time to trigger). The update procedure for the list of active set of cells is schematically illustrated in FIG. 1 . The active set update procedure is triggered by measurement report 1 a, 1 b or 1 c, 101 informing the network controller, e.g. a serving radio network controller SRNC, that new cells have fulfilled the criterions to be added (measurement report 1 a), deleted (measurement report 1 b) or replaced (measurement report 1 c) in the active set. The measurement report 1 a, 1 b, 1 c is sent from the user equipment to a network controller, e.g. a serving radio network controller SRNC. A serving radio network controller is a type of radio network controller serving a particular user equipment and manages the connections towards that user equipment. When in HS-DSCH operation, the downlink is not in soft handover. Instead, one of the cells (typically the strongest) in the active set is marked as current HS-DSCH serving cell. The network controller then performs a radio link addition 102, and sets up the required radio links by sending and receiving setup request and response 103, 104 to/from the base station. The network controller transmits an active set update message 105 to the user equipment. When the user equipment has received the active set update from the network controller, it prepares 106 a processing, i.e. it reads the message and applies the new configuration, e.g. adds or deletes a radio link. The user equipment sends an active set update complete message 107 to the network controller confirming that the active set update was complete. The duration of an active set update procedure may, as an example, be calculated as follows:
T asu =Ttrig1a+2*T Uu+2*T lub
where
T asu =Ttrig1a+2*T Uu+2*T lub
where
-
- Ttrig1a=Time to trigger measurement report 1 a=320 ms
- TUu=Uu (Radio Interface) delay=100 ms
- Tlub=lub (Radio Network Controller-NodeB Interface) delay=10 ms
- Tasu=Time for active set update
The signalling sequence for a (regular) HSCC procedure for hard handover is schematically shown in a combined flow and signalling diagram in FIG. 2 . The user equipment performs a handover evaluation 200 to determine whether a handover shall be performed. This is triggered by a neighbour cell, target cell, being stronger than of the current cell, serving cell. A measurement report 1 d is sent 201 from the user equipment to the network controller, e.g. the serving radio network controller (SRNC), indicating that another cell in the list of active set of cells has become the strongest one. As an example, the measurement report 1 d is triggered to be sent from the user equipment when the measured common pilot channel level (CPICH) of the target cell is stronger than the serving cell by a certain hysteresis for a given time, governed by a parameter Ttrig1d (time to trigger measurement report 1 d).
When not considering possible processing delays in the network controller and the user equipment, i.e. in simulation, the delay of the cell change procedure, Tcc, used may, as an example, be calculated as follows:
T cc Ttrig1d+T Uu+2*T lub +T ActivationTime
where
T cc Ttrig1d+T Uu+2*T lub +T ActivationTime
where
-
- Tcc=Delay of cell change procedure
- Ttrig1d=time to trigger
measurement report 1 d - TUu=Uu (Radio Interface) delay=100 ms
- Tlub=lub (Radio Network Controller-NodeB Interface) delay=10 ms
- TActivationTime=Activation time
When the network controller receives the measurement report 1 d indicating the existence of this stronger cell, the network can take the decision to change the serving cell, i.e. it takes a handover decision 202. When a cell change is triggered, the network controller configures the source and target base stations (shown as only one base station in FIG. 2 ) with the new configuration, and the network controller also configures the lub transport bearer. The network controller sends a radio link reconfiguration prepare message 203 to the base stations, and receives in return a radio link reconfiguration ready message 204 when the reconfiguration is ready. When both base stations (serving and target) have acknowledged the configuration, the network controller calculates the activation time 205 for the new configuration in case the switch to the new configuration is a synchronized procedure, meaning that the user equipment and the network controller shall move to the new configuration at the same time. The calculated activation time is relative to a connection frame number (CFN). An offset is needed to cover for the time it takes to transmit the reconfiguration commit messages 206 to both the user equipment and the base stations. The network controller sends a physical channel reconfiguration message 207 to the user equipment. The user equipment prepares a processing 208, i.e. it reads the message from the network controller and executes the handover 209, i.e. applies the new configuration, e.g. adds or deletes a radio link for the handover. When the handover is complete, the user equipment may send a physical channel reconfiguration complete message 210 to the network controller.
There is however a problem for user equipments travelling at very high speed, since the link quality of the serving cell, i.e. source cell, may degrade before the cell change procedure to the target cell is completed. If this happens before the network controller is able to successfully transmit the physical channel reconfiguration message 207, the network controller will no longer be able to reach the user equipment and the call will be dropped.
Enhancements to the HS-DSCH serving cell change procedure are consequently required regarding radio protocol procedures and structures, lub/lur protocols and user equipment, base station and radio resource management (RRM) performance requirements.
It is thus an object of the present solution to provide an improved procedure for synchronizing a High-Speed Downlink Shared Channel (HS-DSCH) Serving Cell Change (HSCC) procedure in a communications system.
Further objects and advantages are evident from the following.
The objectives set forth above are achieved by providing, in a first aspect of the present solution, a method in a user equipment for setting up an activation time of a cell change of the user equipment from a serving cell to a target cell in a wireless communications network. After receiving a timing offset from a network controller, the user equipment calculates a cell change activation time based on the timing offset. The user equipment then transmits the calculated activation to the time controller. Then the user equipment receives an approval of the cell change from the network controller. The user equipment will then move from the serving cell to the target cell at the activation time if it has received the approval.
In a second aspect of the solution there is provided a method in a network controller for setting up an activation time of a cell change of a user equipment from a serving cell to a target cell in a wireless communications network. The network controller transmits a timing offset to the user equipment and receives an activation time from the user equipment. Then the network controller decides to move the user equipment to the target cell. The serving cell and the target cell are configured with the activation time. The network controller receives a configuration confirmation from the serving cell and the target cell, and the network controller sends an approval of the cell change to the user equipment.
In a third aspect of the present solution there is provided an arrangement in a user equipment in a wireless communication network. The user equipment is arranged to be capable of setting up an activation time of a cell change from a serving cell to a target cell. The user equipment arrangement comprises a receiver arranged to receive a timing offset from a network controller through an interface, a processor arranged to calculate a cell change activation time based on the timing offset. The arrangement further comprises a transmitter arranged to transmit the activation time through the interface to the network controller. The receiver is further arranged to receive an approval of the cell change through the interface. The processor is further arranged to move from the serving cell to the target cell at the activation time if the approval has been received.
In a fourth aspect of the present solution there is provided an arrangement in a network controller. The network controller is arranged to set up an activation time of a cell change of a user equipment from a serving cell to a target cell in a wireless communications network. The network controller arrangement comprises a transmitter arranged to transmit a timing offset to the user equipment, a receiver arranged to receive an activation time from the user equipment. The arrangement further comprises a processor arranged to decide to move the user equipment to the target cell, and arranged to configure the serving cell and the target cell with the activation time. The receiver is further arranged to receive a configuration confirmation from the serving cell and the target cell, and the transmitter is further arranged to send an approval of the cell change to the user equipment.
Since the user equipment can decide an activation time in which it will move from a source cell to a target cell it allows a synchronized operation for HS-DSCH serving cell change (HSCC). The synchronized operation may also be possible when the cell change command is signalled over HS-SCCH from the target base station. This provides an advantage of simplifying L1 (lower physical layer) termination and user plane handling over the interface between a base station and a network controller (lub). A further advantage is that the offset used to calculate the activation time is controlled by the network controller, and can thus be optimised based on the network configuration and delays. Another advantage of this is that it allows the network controller and user equipment to simultaneously change from source to target cell during handover.
Further advantages of the present solution and embodiments thereof will appear from the following detailed description of the solution.
It goes without saying that the above aspects of the solution may be combined in the same embodiment. The objects of this solution are obtained as described in the accompanying claims.
The solution will now be further described in more detail in the following detailed description by reference to the appended drawings illustrating embodiments of the solution and in which:
Basically the present solution relates to a method and arrangement that allows synchronized operation for HS-DSCH serving cell change (HSCC) by letting the user equipment decide an activation time, i.e. a connection frame number, in which it will move from a serving cell to a target cell. The user equipment reports this connection frame number to the network controller in a measurement report that triggers the cell change. The user equipment is then allowed to move to the target cell at the connection frame number if it gets scheduled on HS-SCCH in the target cell before the connection frame number. If it does not, it stays in the source cell.
The user equipment 310 moves from cell 306 towards the neighbor cell 308. The user equipment 310 uses cell change procedures to move from one cell to another cell when a stronger neighbor cell is detected. The user equipment 310 moves from one cell to another cell at an activation time.
In the cell change procedure, the user equipment 310 uses a list of active set of cells. The list of active set of cells comprises a list of cells to which the user equipment 310 can move from the serving cell 306.
A handover evaluation is performed in the user equipment 310 because it has noticed that another cell in the list of active set of cells has become the strongest one.
The user equipment 310 calculates the activation time based on a timing offset that is previously signalled by the network controller 315. The timing offset may be signalled to the user equipment 310 either by active set update, broadcast or dedicated signalling at call setup.
The calculation of the activation time may be initiated when sending measurement report 1 d during signalling procedure for HS-DSCH serving cell change is triggered in the user equipment 310.
The activation time may e.g. be expressed as a connection frame number (CFN) in which the user equipment 310 will move from the serving cell 306 to the target cell 308. The calculated activation time, e.g. comprised in the measurement report 1 d of a handover request message, is transmitted to the network controller 315 forming a basis for a handover decision.
When the network controller 315 receives the measurement report 1 d, it makes the handover decision whether to move the user equipment 310 to the target cell 308 or not. If the measurement report 1 d indicates the existence of a “stronger” neighbour cell 308 than the current serving cell 306, i.e. source cell, and based on other considerations, the network controller 315 may take a decision to move the user equipment 310 to this neighbour cell, target cell 308.
Step 404
The network controller 315 sends a radio link reconfiguration prepare message to the target base station 307, to reconfigure the target base station 307 informing it also of the connection frame number in which the cell change will occur. The user equipment 310 listens to the target cell High-Speed Downlink Shared Channel (HS-DSCH) Shared Control Channel (HS-SCCH) until the calculated activation time is reached.
Step 405
The target base station 307 sends a radio link reconfiguration ready message to the network controller 315 when it has performed its reconfiguration preparations.
Step 406
Then the network controller 315 sends a radio link reconfiguration prepare message to the serving base station 305 to reconfigure the serving base station 305 informing it also of the connection frame number in which the cell change will occur.
Step 407
The serving base station 305 sends a radio link reconfiguration ready message to the network controller 315 when it has performed its reconfiguration preparations.
Step 408
The network controller 315 sends a radio link configuration commit message to the target base station 307.
Step 409
The network controller 315 also sends a radio link configuration commit message to the serving base station 305.
When the target base station 307 has received the radio link configuration commit message it will schedule the user equipment 310 on the HS-SCCH if the message has been received before the calculated activation time. The user equipment 310 regards the cell change approved upon receipt of an indication of this scheduling.
Step 411
The network controller 315 may also transmit the handover confirm message over the target cell 307. This may be done by the network controller 315 transmitting a physical channel reconfiguration message to the user equipment 310.
The user equipment 310 moves to the target cell 307 at the connection frame number. Note that this is only possible when the network controller 315 schedules the user equipment 310 on HS-SCCH in the target cell 308 or transmits the handover command in the serving cell 305 before the connection frame number. However, if the scheduling message in step 410 has been received after the activation time, the user equipment 310 remains in the serving cell 305, i.e. no cell change is performed.
Step 413
There may also be a need for the user equipment 310 to acknowledge the receipt of the HS-SCCH command. This may be done by the user equipment 310 transmitting a “Reconfiguration Complete” message to the network controller 315.
The method described above will now be described seen from the perspective of the user equipment 310. FIG. 5 is a flowchart describing the present method in the user equipment 310, for setting up an activation time of a cell change of the user equipment 310 from the serving cell 305 to the target cell 308 in a wireless communications network 300. The method comprises the following steps to be performed in the user equipment 310:
The user equipment 310 receives a timing offset from a network controller 315.
In some embodiments the timing offset may be received from the network controller 315 through an active set update procedure.
According to some embodiments the timing offset may be received from the network controller 315 through broadcast or dedicated signalling at call setup.
In some embodiments the target cell 307 may be preloaded with a high speed serving cell change procedure.
The user equipment 310 calculates a cell change activation time based on the timing offset.
In some embodiments the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308.
The user equipment 310 transmits the calculated activation time to the network controller 315.
In some embodiments the activation time may be transmitted to the network controller 315 in a measurement report.
The user equipment 310 receives an approval of the cell change from the network controller 315.
In some embodiments the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308.
In some embodiments the user equipment 310 may be arranged to monitor a target cell 308 high speed downlink control channel until the activation time expires.
The user equipment 310 moves from the serving cell 305 to the target cell 308 at the activation time if the approval has been received.
This is an optional step. The user equipment 310 may send an acknowledgement to the network controller 315.
The method described above will now be described seen from the perspective of the network controller 315. FIG. 6 is a flowchart describing the present method in the network controller 315 for setting up an activation time of a cell change of the user equipment 310 from the serving cell 306 to the target cell 308 in a wireless communications network 300. The method comprises the following steps to be performed in the network controller 315:
Step 601
The network controller 315 transmits a timing offset to the user equipment 310.
In some embodiments the timing offset may be transmitted to the user equipment 310 through an active set update procedure.
In some embodiments the timing offset may be transmitted to the user equipment 310 through broadcast or dedicated signalling at call setup.
In some embodiments the target cell 308 may be preloaded with a modified high speed serving cell change procedure.
Step 602
The network controller 315 receives an activation time from the user equipment 310.
In some embodiments the activation time may be received from the user equipment 310 in a measurement report.
In some embodiments the activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308.
Step 603
The network controller 315 decides to move the user equipment 310 to the target cell 308.
Step 604
The network controller 315 configures the serving cell 306 and the target cell 308 with the activation time.
Step 605
The network controller 315 receives a configuration confirmation from the serving cell 306 and the target cell 308.
Step 606
The network controller 315 sends an approval of the cell change to the user equipment 310.
In some embodiments the approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308.
Step 607
This is an optional step. The network controller 315 may receive an acknowledgement from the user equipment 310.
To perform the method steps shown in FIG. 5 for setting up an activation time of a cell change from a serving cell 306 to a target cell 308, the user equipment 310 comprises a user equipment arrangement 700 as shown in FIG. 7 . The user equipment 310 is arranged to be capable of setting up an activation time of a cell change from a serving cell 306 to a target cell 308. The activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308.
The user equipment arrangement 700 comprises a receiver 710 arranged to receive a timing offset from a network controller 315 through an interface 312. The receiver 710 may be further arranged to receive the timing offset the network controller 315 through an active set update procedure, and it may also be arranged to receive the timing offset from the network controller 315 through broadcast or dedicated signalling at call setup.
The arrangement 700 further comprises a processor 720 arranged to calculate a cell change activation time based on the timing offset, and a transmitter 730 arranged to transmit the activation time through the interface 312 to the network controller 315. The transmitter 730 may be arranged to transmit the activation time to the network controller 315 in a measurement report.
The receiver 710 is further arranged to receive an approval of the cell change through the interface 312, and the processor 720 is further arranged to move from the serving cell 306 to the target cell 308 at the activation time if the approval has been received. The approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308, and the user equipment 310 may be arranged to monitor a target cell 308 high speed downlink control channel until the activation time expires.
The transmitter 730 may further be arranged to send an acknowledgement through the interface 312 to the network controller 315. The target cell 307 may be preloaded with a high speed serving cell change procedure.
To perform the method steps shown in FIG. 6 for setting up an activation time of a cell change from a serving cell 306 to a target cell 308, the network controller 315 comprises a network controller arrangement 800 as shown in FIG. 8 . The network controller 315 is arranged to set up an activation time of a cell change of a user equipment 310 from a serving cell 306 to a target cell 308 in a wireless communications network 300.
The network controller arrangement 800 comprises a transmitter 810 arranged to transmit a timing offset to the user equipment 310. The transmitter 810 may further be arranged to transmit the timing offset to the user equipment 310 through an active set update procedure, and the transmitter 810 may further be arranged to transmit the timing offset to the user equipment 310 through broadcast or dedicated signalling at call setup. The arrangement 800 further comprises a receiver 820 arranged to receive an activation time from the user equipment 310. The activation time may be a connection frame number in which the user equipment 310 will move to the target cell 308.
The network controller arrangement 800 further comprises a processor 830 arranged to decide to move the user equipment 310 to the target cell 308 and arranged to configure the serving cell 306 and the target cell 308 with the activation time. The receiver 810 is further arranged to receive a configuration confirmation from the serving cell 306 and the target cell 308. The transmitter 810 may be further arranged to send an approval of the cell change to the user equipment 310. The approval of the cell change may comprise scheduling the user equipment 310 on a high speed downlink control channel in the target cell 308. The receiver 820 may be further arranged to receive an acknowledgement from the user equipment 310. The target cell 308 may be preloaded with a modified high speed serving cell change procedure.
The present mechanism for setting up an activation time of a cell change from a serving cell 306 to a target cell 308 in a wireless communication network 300 may be implemented through one or more processors, such as a processor 720 in the user equipment arrangement 700 depicted in FIG. 7 or a processor 830 in the network controller arrangement 800 depicted in FIG. 8 , together with computer program code for performing the functions of the present solution. The program code mentioned above may also be provided as a computer program product, for instance in the form of a data carrier carrying computer program code for performing the present solution when being loaded into the user equipment 310 and/or network controller 315. One such carrier may be in the form of a CD ROM disc. It is however feasible with other data carriers such as a memory stick. The computer program code can furthermore be provided as pure program code on a server and downloaded to the user equipment 310 and/or network controller 315 remotely.
An advantage with embodiments of the present solution is that the HSCC procedure may be synchronized, also when the cell change command is signalled over HS-SCCH from the target base station 307. This simplifies L1 termination and user plane handling over lub.
While various embodiments/variations of the present solution have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present solution should not be limited by any of the above-described exemplary embodiments. Further, unless stated, none of the above embodiments are mutually exclusive. Thus, the present solution may comprise any combinations and/or integrations of the features of the various embodiments.
Additionally, while the processes described above are shown as a sequence of steps, this was done solely for the sake of illustration. Accordingly, it is contemplated that some steps may be added, some steps may be omitted and the order of the steps may be rearranged.
Claims (26)
1. A method in a user equipment for setting up an activation time of a high speed downlink shared channel cell change of the user equipment from a serving cell to a target cell in a wireless communications network, the method comprising:
receiving a timing offset from a network controller through an active set update procedure;
calculating a high speed downlink shared channel cell change activation time based on the received timing offset, the activation time indicating when the user equipment can move to the target cell;
transmitting the calculated activation time from the user equipment to the network controller;
receiving an approval of the downlink shared channel high speed cell change from the network controller; and
moving from the serving cell to the target cell at the activation time if the approval has been received.
2. The method of claim 1 , further comprising sending an acknowledgement to the network controller.
3. The method of claim 1 , wherein the activation time comprises a connection frame number in which the user equipment will move to the target cell.
4. The method of claim 1 , wherein receiving the approval of the cell change comprises receiving an indication that the user equipment has been scheduled on a high speed downlink control channel in the target cell.
5. The method of claim 1 , wherein the user equipment is operable to monitor a target cell high speed downlink control channel until the activation time expires.
6. The method of claim 1 , further comprising transmitting the activation time to the network controller in a measurement report.
7. The method of claim 1 , wherein the target cell is preloaded with a high speed serving cell change procedure.
8. A method in a network controller for setting up an activation time of a high speed downlink shared channel cell change of a user equipment from a serving cell to a target cell in a wireless communications network, the method comprising:
transmitting a timing offset to the user equipment through an active set update procedure;
receiving an activation time from the user equipment, the activation time indicating when the user equipment can move to the target cell;
deciding to move the user equipment to the target cell;
configuring the serving cell and the target cell with the activation time;
receiving a configuration confirmation from the serving cell and the target cell, and
sending an approval of the high speed downlink shared channel cell change to the user equipment.
9. The method of claim 8 , further comprising receiving an acknowledgement from the user equipment.
10. The method of claim 8 , wherein the activation time is a connection frame number in which the user equipment will move to the target cell.
11. The method of claim 8 , wherein sending the approval of the high speed downlink shared channel cell change comprises:
scheduling the user equipment on a high speed downlink control channel in the target cell; and
transmitting to the user equipment an indication that the user equipment has been scheduled.
12. The method of claim 8 , further comprising receiving the activation time from the user equipment in a measurement report.
13. The method of claim 8 , wherein the target cell is preloaded with a modified high speed serving cell change procedure.
14. A user equipment apparatus in a wireless communication network wherein the apparatus is operable to set up an activation time of a high speed downlink shared channel cell change from a serving cell to a target cell, the apparatus comprising:
a receiver operable to receive through an active set update procedure, a timing offset from a network controller through an interface;
a processor operable to calculate a high speed downlink shared channel cell change activation time based on the received timing offset, the activation time indicating when the user equipment can move to the target cell;
a transmitter operable to transmit the calculated activation time through the interface to the network controller;
the receiver is further operable to receive an approval of the high speed downlink shared channel cell change through the interface; and
the processor is further operable to move from the serving cell to the target cell at the activation time if the approval has been received.
15. The apparatus of claim 14 , wherein the transmitter is further operable to send an acknowledgement through the interface to the network controller.
16. The apparatus of claim 14 , wherein the activation time is a connection frame number in which the apparatus will move to the target cell.
17. The apparatus of claim 14 , wherein the receiver is operable to receive the approval of the high speed downlink shared channel cell change by receiving an indication that the user equipment has been scheduled on a high speed downlink control channel in the target cell.
18. The apparatus of claim 14 , wherein the apparatus is operable to monitor a target cell high speed downlink control channel until the activation time expires.
19. The apparatus of claim 14 , wherein the apparatus is operable to transmit the activation time to the network controller in a measurement report.
20. The apparatus of claim 14 , wherein the target cell is preloaded with a high speed serving cell change procedure.
21. A network controller apparatus, wherein the apparatus is operable to set up an activation time of a high speed downlink shared channel cell change of a user equipment from a serving cell to a target cell in a wireless communications network, the network controller comprising:
a transmitter operable to transmit a timing offset to the user equipment through an active set update procedure;
a receiver operable to receive an activation time from the user equipment, the activation time indicating when the user equipment can move to the target cell;
a processor operable to decide to move the user equipment to the target cell and operable to configure the serving cell and the target cell with the activation time;
the receiver is further operable to receive a configuration confirmation from the serving cell and the target cell; and
the transmitter is further operable to send an approval of the high speed downlink shared channel cell change to the user equipment.
22. The apparatus of claim 21 , wherein the receiver is further operable to receive an acknowledgement from the user equipment.
23. The apparatus of claim 21 , wherein the activation time is a connection frame number in which the user equipment will move to the target cell.
24. The apparatus of claim 21 , wherein the transmitter is operable to send the approval of the high speed downlink shared channel cell change by:
scheduling the user equipment on a high speed downlink control channel in the target cell; and
transmitting to the user equipment an indication that the user equipment has been scheduled.
25. The apparatus of claim 21 , wherein the receiver is operable to receive the activation time from the user equipment in a measurement report.
26. The apparatus of claim 21 , wherein the target cell is preloaded with a modified high speed serving cell change procedure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/935,941 US8606277B2 (en) | 2008-04-01 | 2009-03-19 | Activation time for target based high speed serving cell change |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4128308P | 2008-04-01 | 2008-04-01 | |
PCT/SE2009/050285 WO2009123545A1 (en) | 2008-04-01 | 2009-03-19 | Activation time for target based high speed serving cell change |
US12/935,941 US8606277B2 (en) | 2008-04-01 | 2009-03-19 | Activation time for target based high speed serving cell change |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2009/050285 A-371-Of-International WO2009123545A1 (en) | 2008-04-01 | 2009-03-19 | Activation time for target based high speed serving cell change |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/101,249 Continuation US9185624B2 (en) | 2008-04-01 | 2013-12-09 | Activation time for target based high speed serving cell change |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110028151A1 US20110028151A1 (en) | 2011-02-03 |
US8606277B2 true US8606277B2 (en) | 2013-12-10 |
Family
ID=40791115
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/935,941 Active 2029-04-22 US8606277B2 (en) | 2008-04-01 | 2009-03-19 | Activation time for target based high speed serving cell change |
US14/101,249 Active US9185624B2 (en) | 2008-04-01 | 2013-12-09 | Activation time for target based high speed serving cell change |
US14/862,938 Active 2029-08-02 US9961597B2 (en) | 2008-04-01 | 2015-09-23 | Activation time for target based high speed serving cell change |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/101,249 Active US9185624B2 (en) | 2008-04-01 | 2013-12-09 | Activation time for target based high speed serving cell change |
US14/862,938 Active 2029-08-02 US9961597B2 (en) | 2008-04-01 | 2015-09-23 | Activation time for target based high speed serving cell change |
Country Status (11)
Country | Link |
---|---|
US (3) | US8606277B2 (en) |
EP (2) | EP2375823B1 (en) |
JP (1) | JP5367808B2 (en) |
CN (1) | CN101981971B (en) |
AU (1) | AU2009232422B2 (en) |
DK (1) | DK2266349T3 (en) |
ES (2) | ES2663297T3 (en) |
HU (1) | HUE031926T2 (en) |
IL (1) | IL208448A (en) |
RU (1) | RU2488979C2 (en) |
WO (1) | WO2009123545A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140087737A1 (en) * | 2008-04-01 | 2014-03-27 | Telefonaktiebolaget L M Ericsson (Publ) | Activation time for target based high speed serving cell change |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8126463B2 (en) * | 2007-09-12 | 2012-02-28 | Kabushiki Kaisha Toshiba | Mobile communication system, base station control apparatus, mobile terminal and method for controlling handover |
CN105323810A (en) * | 2010-01-08 | 2016-02-10 | 交互数字专利控股公司 | Method for determining signal quality and WTRU |
US8565188B2 (en) * | 2010-12-21 | 2013-10-22 | Qualcomm Incorporated | Minimizing call drops during a serving cell change |
US20150071089A1 (en) * | 2013-09-06 | 2015-03-12 | Qualcomm Incorporated | Devices and methods for decreasing awake state durations in access terminals operating in a slotted idle mode |
EP2854451A1 (en) * | 2013-09-25 | 2015-04-01 | Alcatel Lucent | Base station providing handover among small cells |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999023847A1 (en) | 1997-10-31 | 1999-05-14 | Motorola Inc. | Method and apparatus for handoff within a communication system |
US6430417B1 (en) * | 1991-08-01 | 2002-08-06 | Ericsson Inc. | Mobile station access to a base station on a digital multiple access control channel |
US20030045288A1 (en) * | 2001-08-28 | 2003-03-06 | Carlo Luschi | Method of sending control information in a wireless telecommunications network, and corresponding apparatus |
US20030232622A1 (en) * | 2002-02-17 | 2003-12-18 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving uplink power offset information in a mobile communication system supporting HSDPA |
US20040176094A1 (en) * | 2003-03-08 | 2004-09-09 | Samsung Electronics Co., Ltd. | System and method for determining handover at a base station request in a broadband wireless access communication system |
US20050036619A1 (en) * | 2003-08-15 | 2005-02-17 | M-Stack Limited | Apparatus and method for determining uplink ciphering activation time in universal mobile telecommunications system user equipment |
US20050037759A1 (en) * | 2003-08-14 | 2005-02-17 | Nokia Corporation | Communication system |
US20050086466A1 (en) * | 2003-08-15 | 2005-04-21 | M-Stack Limited | Apparatus and method for determining uplink ciphering activation time in universal mobile telecommunications system user equipment |
US20050176437A1 (en) * | 2004-02-10 | 2005-08-11 | Mir Idreas A. | Delayed data transmission in a wireless communication system after physical layer reconfiguration |
US20050181799A1 (en) * | 2003-04-23 | 2005-08-18 | Rajiv Laroia | Methods and apparatus of enhancing performance in wireless communication systems |
US20060094433A1 (en) * | 2004-10-29 | 2006-05-04 | Lucent Technologies, Inc | Fast handover with reduced service interruption for high speed data channels in a wireless system |
US20060240831A1 (en) * | 2005-04-25 | 2006-10-26 | Nokia Corporation | Method, apparatus and computer program providing high-speed downlink packet access (HSDPA) cell change without RRC acknowledgment |
US20060270406A1 (en) * | 2005-05-11 | 2006-11-30 | Samsung Electronics Co., Ltd. | Hard handover method and radio network controller therefor in a mobile telecommunication system |
US20070155388A1 (en) * | 2003-08-14 | 2007-07-05 | Dragan Petrovic | Serving base station selection during soft handover |
US20080253334A1 (en) * | 2005-10-17 | 2008-10-16 | Torsner Per Johan | Downlink Solution for Seamless and Lossless Cell Change in a Cellular System |
US20080311923A1 (en) * | 2005-10-26 | 2008-12-18 | Dragan Petrovic | Fast Radio Bearer Establishment in a Mobile Communication System |
US7876729B1 (en) * | 1998-07-20 | 2011-01-25 | Qualcomm Incorporated | Intersystem base station handover |
US7917113B2 (en) * | 2003-04-11 | 2011-03-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for synchronization in a mobile radio terminal |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5949769A (en) * | 1995-10-10 | 1999-09-07 | Sicom, Inc. | Multirate local multipoint data distribution system |
US6041088A (en) * | 1996-10-23 | 2000-03-21 | Sicom, Inc. | Rapid synchronization for communication systems |
KR100487245B1 (en) * | 2001-11-28 | 2005-05-03 | 삼성전자주식회사 | Apparatus for minimizing transmission impossibility time due to compressed mode in mobile communication system using high speed downlink packet access scheme and method thereof |
EP1432262A1 (en) * | 2002-12-20 | 2004-06-23 | Matsushita Electric Industrial Co., Ltd. | Protocol context preservation in mobile communication systems |
EP1592275B1 (en) * | 2004-04-29 | 2006-06-21 | Matsushita Electric Industrial Co., Ltd. | Relocation, also of parts, of radio resource management control functionality from one BTS to a second in a distributed radio access network |
US7218936B2 (en) * | 2004-07-07 | 2007-05-15 | Nokia Corporation | Transmitting of cell management information in a cellular communication network |
TWI288572B (en) * | 2004-08-04 | 2007-10-11 | Benq Corp | Mobile unit and method for which to re-select a serving base station |
US7796991B2 (en) * | 2005-06-15 | 2010-09-14 | Juho Pirskanen | RRC signalling for fast HS-DSCH serving cell change |
GB2429877B (en) * | 2005-09-06 | 2008-02-06 | Motorola Inc | Radio link handover in a cellular communication system |
US20070072621A1 (en) * | 2005-09-27 | 2007-03-29 | Mukkavilli Krishna K | Position location using transmitters with timing offset |
US9354297B2 (en) * | 2005-09-27 | 2016-05-31 | Qualcomm Incorporated | Position location using phase-adjusted transmitters |
TWM355515U (en) * | 2007-12-31 | 2009-04-21 | Interdigital Patent Holdings | Apparatus for radio link synchronization and power control in CELL_FACH and idle mode |
CN101981971B (en) * | 2008-04-01 | 2013-11-27 | 爱立信电话股份有限公司 | Activation time for target-based high speed serving cell change |
US7876792B2 (en) | 2008-10-31 | 2011-01-25 | Alcatel Lucent | Network element clocking accuracy and stability monitoring over a packet-switched network |
US8520632B2 (en) * | 2008-12-29 | 2013-08-27 | Qualcomm Incorporated | Method and apparatus for synchronization during a handover failure in a wireless communication system |
-
2009
- 2009-03-19 CN CN2009801123947A patent/CN101981971B/en active Active
- 2009-03-19 AU AU2009232422A patent/AU2009232422B2/en active Active
- 2009-03-19 ES ES10196490.6T patent/ES2663297T3/en active Active
- 2009-03-19 JP JP2011502897A patent/JP5367808B2/en active Active
- 2009-03-19 HU HUE09727806A patent/HUE031926T2/en unknown
- 2009-03-19 RU RU2010144518/07A patent/RU2488979C2/en active
- 2009-03-19 DK DK09727806.3T patent/DK2266349T3/en active
- 2009-03-19 ES ES09727806.3T patent/ES2616514T3/en active Active
- 2009-03-19 US US12/935,941 patent/US8606277B2/en active Active
- 2009-03-19 EP EP10196490.6A patent/EP2375823B1/en active Active
- 2009-03-19 WO PCT/SE2009/050285 patent/WO2009123545A1/en active Application Filing
- 2009-03-19 EP EP09727806.3A patent/EP2266349B1/en active Active
-
2010
- 2010-10-03 IL IL208448A patent/IL208448A/en active IP Right Grant
-
2013
- 2013-12-09 US US14/101,249 patent/US9185624B2/en active Active
-
2015
- 2015-09-23 US US14/862,938 patent/US9961597B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6430417B1 (en) * | 1991-08-01 | 2002-08-06 | Ericsson Inc. | Mobile station access to a base station on a digital multiple access control channel |
WO1999023847A1 (en) | 1997-10-31 | 1999-05-14 | Motorola Inc. | Method and apparatus for handoff within a communication system |
US7876729B1 (en) * | 1998-07-20 | 2011-01-25 | Qualcomm Incorporated | Intersystem base station handover |
US20030045288A1 (en) * | 2001-08-28 | 2003-03-06 | Carlo Luschi | Method of sending control information in a wireless telecommunications network, and corresponding apparatus |
US20030232622A1 (en) * | 2002-02-17 | 2003-12-18 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving uplink power offset information in a mobile communication system supporting HSDPA |
US20040176094A1 (en) * | 2003-03-08 | 2004-09-09 | Samsung Electronics Co., Ltd. | System and method for determining handover at a base station request in a broadband wireless access communication system |
US7917113B2 (en) * | 2003-04-11 | 2011-03-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for synchronization in a mobile radio terminal |
US20050181799A1 (en) * | 2003-04-23 | 2005-08-18 | Rajiv Laroia | Methods and apparatus of enhancing performance in wireless communication systems |
US20070155388A1 (en) * | 2003-08-14 | 2007-07-05 | Dragan Petrovic | Serving base station selection during soft handover |
US20050037759A1 (en) * | 2003-08-14 | 2005-02-17 | Nokia Corporation | Communication system |
US20050036619A1 (en) * | 2003-08-15 | 2005-02-17 | M-Stack Limited | Apparatus and method for determining uplink ciphering activation time in universal mobile telecommunications system user equipment |
US20050086466A1 (en) * | 2003-08-15 | 2005-04-21 | M-Stack Limited | Apparatus and method for determining uplink ciphering activation time in universal mobile telecommunications system user equipment |
US20050176437A1 (en) * | 2004-02-10 | 2005-08-11 | Mir Idreas A. | Delayed data transmission in a wireless communication system after physical layer reconfiguration |
US20060094433A1 (en) * | 2004-10-29 | 2006-05-04 | Lucent Technologies, Inc | Fast handover with reduced service interruption for high speed data channels in a wireless system |
US20060240831A1 (en) * | 2005-04-25 | 2006-10-26 | Nokia Corporation | Method, apparatus and computer program providing high-speed downlink packet access (HSDPA) cell change without RRC acknowledgment |
US20060270406A1 (en) * | 2005-05-11 | 2006-11-30 | Samsung Electronics Co., Ltd. | Hard handover method and radio network controller therefor in a mobile telecommunication system |
US20080253334A1 (en) * | 2005-10-17 | 2008-10-16 | Torsner Per Johan | Downlink Solution for Seamless and Lossless Cell Change in a Cellular System |
US20080311923A1 (en) * | 2005-10-26 | 2008-12-18 | Dragan Petrovic | Fast Radio Bearer Establishment in a Mobile Communication System |
Non-Patent Citations (1)
Title |
---|
Nokia Corporation et al: "HS-DSCH serving cell change procedure" 3GPP Draft; R2-081901 HS-DSCH Serving Cell Change Procedure, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, No. Shenzhen, China; 20080331, Mar. 25, 2008, pp. 1-5, XP050139585 p. 1, paragraph 2-p. 4, paragraph 3 figure 1. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140087737A1 (en) * | 2008-04-01 | 2014-03-27 | Telefonaktiebolaget L M Ericsson (Publ) | Activation time for target based high speed serving cell change |
US9185624B2 (en) * | 2008-04-01 | 2015-11-10 | Telefonaktiebolaget L M Ericsson (Publ) | Activation time for target based high speed serving cell change |
US9961597B2 (en) | 2008-04-01 | 2018-05-01 | Telefonaktiebolaget L M Ericsson (Publ) | Activation time for target based high speed serving cell change |
Also Published As
Publication number | Publication date |
---|---|
IL208448A (en) | 2014-04-30 |
US20140087737A1 (en) | 2014-03-27 |
EP2375823A1 (en) | 2011-10-12 |
US9961597B2 (en) | 2018-05-01 |
HUE031926T2 (en) | 2017-08-28 |
RU2488979C2 (en) | 2013-07-27 |
WO2009123545A1 (en) | 2009-10-08 |
US20160014652A1 (en) | 2016-01-14 |
AU2009232422A1 (en) | 2009-10-08 |
US9185624B2 (en) | 2015-11-10 |
RU2010144518A (en) | 2012-05-10 |
CN101981971B (en) | 2013-11-27 |
EP2266349A1 (en) | 2010-12-29 |
AU2009232422B2 (en) | 2014-05-01 |
ES2663297T3 (en) | 2018-04-11 |
ES2616514T3 (en) | 2017-06-13 |
EP2375823B1 (en) | 2018-01-03 |
US20110028151A1 (en) | 2011-02-03 |
CN101981971A (en) | 2011-02-23 |
IL208448A0 (en) | 2010-12-30 |
EP2266349B1 (en) | 2016-11-23 |
JP5367808B2 (en) | 2013-12-11 |
JP2011517204A (en) | 2011-05-26 |
DK2266349T3 (en) | 2017-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8938241B2 (en) | Configuration of HS-DSCH serving cell change improvements | |
US9961597B2 (en) | Activation time for target based high speed serving cell change | |
US9510259B2 (en) | Methods and arrangement for handling a data transferral in a cellular network | |
US7197307B2 (en) | Hard handover method and controller | |
KR20100021934A (en) | Method and apparatus for the reduction of serving cell change delay in mobile telecommunication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WAGER, STEFAN;REEL/FRAME:025203/0845 Effective date: 20090320 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |