WO2012000207A1 - 一种压缩模式的控制方法、系统和无线网络控制器 - Google Patents

一种压缩模式的控制方法、系统和无线网络控制器 Download PDF

Info

Publication number
WO2012000207A1
WO2012000207A1 PCT/CN2010/074948 CN2010074948W WO2012000207A1 WO 2012000207 A1 WO2012000207 A1 WO 2012000207A1 CN 2010074948 W CN2010074948 W CN 2010074948W WO 2012000207 A1 WO2012000207 A1 WO 2012000207A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
terminal
compressed mode
network controller
radio network
Prior art date
Application number
PCT/CN2010/074948
Other languages
English (en)
French (fr)
Inventor
刘霖
程翔
柯雅珠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2010/074948 priority Critical patent/WO2012000207A1/zh
Publication of WO2012000207A1 publication Critical patent/WO2012000207A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and system for controlling a compressed mode in a wireless communication system, and a radio network controller (Radio Network Controller, RNC for short).
  • RNC Radio Network Controller
  • the second generation GSM system is mainly used to carry voice
  • the third generation WCDMA system is mainly used to carry packet services and session and video services, and the focus of the third generation LTE system. It is to carry ultra-high speed packet services.
  • inter-system mobility between the second-generation GSM system and the third-generation WCDMA system is very important; and, in the near future, the mobility management of the third-generation LTE system, It is also very important to switch to the LTE system hotspot area.
  • the handover process needs to measure the target system and the target carrier frequency in the prior handover preparation phase to accurately perform the handover decision.
  • the compression mode plays an important role in carrier frequency and intersystem measurement.
  • the terminal can measure the non-serving carrier frequency and the carrier frequency of other systems without configuring a dual receiver.
  • the compressed mode can be used for inter-system measurement.
  • the compressed mode can also be used for terminal access to multiple carrier coverage areas of third-generation WCDMA systems.
  • the terminal can measure another non-serving carrier frequency without losing any data transmitted on the serving carrier frequency.
  • the compression mode is defined as a transmission mode in which data transmission will be performed in the time domain. Compression produces a transmission gap, and the receiver of the terminal uses this transmission gap to tune to another carrier frequency for measurement.
  • the transmission gap is determined by the "transmission gap pattern sequence".
  • Each set of "transmission gap pattern ⁇ ij" is uniquely identified by “transmission gap pattern sequence identification” and can only be used for one type of “transmission gap pattern sequence measurement”, that is, “frequency division duplex measurement” / "hour division” Duplex measurement "/” GSM carrier received signal strength indication (Received Signal Strength Indication) measurement " / "GSM base station identification color code initial identification” / “GSM base station identification color code recognition reconfirmation "/” multi carrier frequency measurement "/” E-UTRA (Enhanced Universal Radio Access) measures one of the measurement uses of each measurement.
  • Each "transport gap pattern” provides one or two transmission gaps within a “transmission gap pattern length.”
  • each set of “transmission gap pattern sequences” also includes an indication to start/ The transmission gap CFN (Connection Frame Number) of the compression mode time, the number of repetitions of the transmission gap pattern sequence, etc. These parameters are determined according to the "transmission gap pattern sequence measurement purpose”. Improve the reliability of handover, especially in areas where the quality of wireless signal deteriorates rapidly. By speeding up the handover process, the risk of dropped calls can be reduced. The later the compression mode starts, the shorter the compression mode lasts. In this way, the system capacity and the user throughput are improved.
  • the execution of the compressed mode can be controlled by the executor of the compressed mode, that is, the terminal and the base station (NodeB, Node B).
  • the terminal controls the start/stop of the compressed mode
  • the terminal determines that the quality of the wireless signal of the current serving cell is not good and may need to be cut.
  • the compression mode is started; when the terminal determines that the wireless signal quality of the current serving cell is good or has obtained the measurement result, the compression mode is stopped.
  • the terminal decides to start/stop the terminal The "transmission gap pattern sequence" of the start/stop is notified to the node B.
  • the base station node B
  • the terminal controls the start/stop of the compression mode
  • the terminal is directly notified of the start/stop command.
  • the terminal or base station controls the start/stop of the compressed mode to have the advantages of fast and short time.
  • the terminal if the terminal is in the macro diversity state, there will be problems, as shown in the scenarios in Figures 2 and 3.
  • the terminal establishes a radio link with the NodeB1 and the NodeB2 under the RNC1.
  • the terminal establishes a radio link with the NodeB1 under the RNC1 and the NodeB2 under the RNC2.
  • the start/stop of the compressed mode is determined by the terminal or the NodeB1, the NodeB2 cannot know the execution state of the compressed mode, and cannot perform the compressed mode execution in synchronization with the terminal.
  • the technical problem to be solved by the present invention is to provide a control method, system and wireless network controller for a compressed mode, so that the Node B having a wireless link connection with the terminal is aware of the execution state of the compressed mode.
  • the present invention provides a control method for a compressed mode, including: starting or stopping a compressed mode between a terminal and a first Node B, and the first Node B notifying the current compressed mode state information of the terminal a service radio network controller of the terminal; the serving radio network controller notifying the second node B of the current compression mode status information of the terminal; and the second node B according to the received compression mode status information,
  • the terminal performs the operation of the compressed mode in synchronization; wherein, the first node B is the serving node B of the terminal; the second node B is one or more, and is other than the first node B.
  • the step of the first Node B informing the serving radio network controller of the terminal of the current compressed mode status information of the terminal includes: if the first Node B belongs to the serving wireless network control of the terminal The first node B sends the current compressed mode status information of the terminal to the serving radio network controller of the terminal directly through the lub interface; if the first node B belongs to the terminal, the drift wireless a network controller, the first node B sends the current compressed mode state information of the terminal to the drift radio network controller by using a lub interface, where the drift radio network controller uses the Iur interface to perform the compressed mode state. Information is sent to the service radio network controller of the terminal.
  • the step of the serving radio network controller informing the second node B of the current compressed mode status information of the terminal includes: the serving radio network controller sequentially determining whether each second node B is wireless with the service The network controller is directly connected through the Iub interface: if not, the serving radio network controller sends the compressed mode status information to the drift radio network controller of the terminal through the Iur interface, where the drift radio network controller The compressed mode status information is sent to the second node B; if yes, the serving radio network controller directly sends the compressed mode status information to the second node B through an Iub interface.
  • the method before the compression mode is started or stopped between the terminal and the first Node B, the method further includes: the terminal and the first Node B negotiate to determine a compression mode.
  • the compressed mode status information comprises: status information of starting or stopping the compressed mode.
  • the compressed mode state information further includes one or more of the following information: the identification information of the compressed mode, the time when the compressed mode is started or stopped, and the repetition of the transmission gap pattern of the transmission gap pattern sequence of the currently initiated compressed mode. frequency.
  • the step of the second node B performing the compressed mode synchronization with the terminal according to the received compressed mode state information includes: the second node B is dedicated to the split according to the compressed mode state information
  • the data transmission on the physical control channel (F-DPCH) is compressed in the time domain to generate a transmission gap.
  • the present invention provides a compression mode control system, including a terminal, a first node, one or more second node Bs, and a serving radio network controller, where: the first node B is the a service node B of the terminal, configured to: notify the serving wireless network controller of the terminal of the current compressed mode state information of the terminal after starting or stopping the compressed mode with the terminal; Is set to: receive the current compressed mode state of the terminal After the information, the compressed mode status information is notified to the second node B; the second node B is a node B other than the first node B that has a wireless link connection with the terminal, and is configured to: The operation of the compressed mode is performed in synchronization with the terminal based on the received compressed mode state information.
  • the first node B is configured to: when it belongs to the serving radio network controller of the terminal, directly send the current compressed mode status information of the terminal to the serving radio network controller of the terminal.
  • the current compressed mode status information of the terminal is sent by the drift radio network controller to the serving radio network controller of the terminal.
  • the serving radio network controller is configured to: sequentially determine whether each second node B is directly connected to the serving radio network controller through an Iub interface, and if not, pass the compressed mode status information The drift radio network controller of the terminal is sent to the second node B, and if yes, the compressed mode status information is directly sent to the second node B.
  • the first node B is further configured to: negotiate with the terminal to determine a compression mode.
  • the compressed mode status information comprises: status information of starting or stopping the compressed mode.
  • the compressed mode state information further includes one or more of the following information: the identification information of the compressed mode, the time when the compressed mode is started or stopped, and the repetition of the transmission gap pattern of the transmission gap pattern sequence of the currently initiated compressed mode. frequency.
  • the present invention provides a radio network controller, which is a serving radio network controller of a terminal, and includes: a receiving module and a notification module, where: the receiving module is configured to: receive the first The current compressed mode state information of the terminal that is directly sent by the node B or sent by the drift radio network controller of the terminal; the notification module is configured to: receive the compressed mode state information received by the receiving module Notifying the second node B, so that the second node B performs an operation of the compressed mode in synchronization with the terminal according to the received compressed mode state information; wherein the first node B is the serving node B of the terminal The second node B is one or more, and is a node B other than the first node B that has a wireless link connection with the terminal.
  • the receiving module is configured to: receive the first The current compressed mode state information of the terminal that is directly sent by the node B or sent by the drift radio network controller of the terminal
  • the notification module is configured to: receive the compressed mode state information received by the receiving module Notifying the second node B
  • the notification module is configured to: sequentially determine whether each second node B is directly connected to the serving radio network controller through an Iub interface, and if not, pass the compressed mode status information to the terminal
  • the drift radio network controller sends the second node B, and if so, directly sends the compressed mode status information to the second node B.
  • the present invention informs the node B having the wireless link connection with the terminal by the service radio network controller, and the node B having the radio link connection with the terminal knows the execution state of the compressed mode to synchronize with the terminal. Perform compression mode.
  • FIG. 1 is a schematic diagram of a "transmission gap pattern sequence"
  • FIG. 2 is an application scenario 1 of the present invention
  • FIG. 3 is an application scenario 2 of the present invention
  • FIG. 4 is a schematic diagram of a processing procedure according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a processing procedure according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic diagram of a radio network controller according to an embodiment of the present invention.
  • an Iub interface is a logical interface between a radio network controller and a Node B.
  • the Iur interface is an interface used by the radio network controller for signaling and data interaction with other radio network controllers, and is a link between the wireless network subsystems, as shown in FIG.
  • Service Radio Network Controller A radio network controller that maintains the terminal interface with the core network Is the service radio network controller.
  • the service radio network controller is responsible for data transmission between the core network and the terminal and transmission and reception of interface signaling with the core network, is responsible for radio resource control, is responsible for layer 2 processing of the air interface data, and performs basic wireless operation. Resource management operations, such as handover decisions, outer loop power control, and conversion of radio access bearer parameters to air interface transmission channel parameters.
  • Drift wireless network controller The drift wireless network controller is a wireless network controller other than the service wireless network controller. The drift radio network controller controls the cell used by the terminal, and if necessary, the drift radio network controller can perform macro diversity combining. The drift radio network controller simply passes the route through the Iur interface transparent to the air interface data to the serving radio network controller. There can be more than one drift wireless network controller for one terminal.
  • the goal of high-speed uplink packet access technology is to improve capacity and data throughput in the upstream direction and reduce hysteresis in dedicated channels.
  • a new transport channel is introduced by the high-speed uplink packet access technology:
  • the enhanced dedicated channel improves the implementation of the physical layer and the medium access control layer to achieve a maximum theoretical uplink data rate of 5.6 megabits per second.
  • High-speed uplink packet access technology preserves the characteristics of soft handoff.
  • the MAC-i (Mac Access Control-i, Data Access Control i) data frame received by the air interface is demultiplexed into a medium access control flow, in the form of an enhanced dedicated channel uplink data frame, and is controlled by the medium access control flow.
  • the corresponding transport bearers are transmitted from the serving node B to the serving radio network controller. If the serving Node B belongs to the serving radio network controller, it is sent directly from the serving Node B to the serving radio network controller, without the need to drift the relay of the radio network controller. If the serving Node B belongs to the drift radio network controller, it is sent from the serving Node B to the drift radio network controller, and the drift radio network controller forwards the relay to the serving radio network controller.
  • the Node B indicates the current compressed mode status of the terminal to the serving radio network controller
  • the serving radio network controller indicates the compressed mode status to other NodeBs, or indicates to other NodeBs through other RNCs.
  • the method includes the following steps: Step 1: Start or stop a compressed mode between the terminal and the first Node B, where the first Node B informs the service wireless network of the terminal of the current compressed mode state information of the terminal Controller.
  • the first node B is a service node of the terminal, and the terminal and the first node B may determine a compression mode by negotiation.
  • the first Node B belongs to the serving radio network controller of the terminal, and the first Node B directly sends the current compressed mode status information of the terminal to the terminal by using a lub interface.
  • Service wireless network controller In another embodiment, the first Node B belongs to the drift radio network controller of the terminal, and the first Node B sends the current compressed mode status information of the terminal to the drift wireless through a lub interface.
  • a network controller the drift radio network controller transmitting the compressed mode status information to a serving radio network controller of the terminal through an Iur interface.
  • the second node B is one or more, and is a node B that has a wireless link connection with the terminal except the first node B.
  • the serving radio network controller sequentially determines whether each second node B is directly connected to the serving radio network controller through a lub interface: if not, the serving radio network controller compresses the The mode status information is sent to the drift radio network controller of the terminal through the Iur interface, and the drift radio network controller sends the compressed mode status information to the second node B; if yes, the serving radio network controller The compressed mode status information is sent to the second node B directly through the lub interface.
  • Step 3 The second Node B performs an operation of the compressed mode in synchronization with the terminal according to the received compressed mode state information.
  • the compressed mode status information includes: status information for starting or stopping the compressed mode (for indicating a "start/stop” action), and optionally, the identification information of the compressed mode, the time when the compressed mode is started or stopped (may be CFN), one or more of the information such as the number of repetitions of the transmission gap pattern of the transmission gap pattern sequence in which the compression mode is currently activated.
  • the operation of the second node B performing the compressed mode refers to: the second node B follows the compressed mode.
  • the description of the state information, for data transmission on the F-DPCH (Fractal Dedicated Physical Control Channel), is compressed in the time domain to generate a transmission gap.
  • the F-DPCH channel is a downlink dedicated physical channel.
  • the F-DPCH contains 15 time slots in one frame every 10 milliseconds, and each time slot contains 2560 chips, all of which are used to transmit power control information.
  • Embodiment 1 Setting a scenario As shown in FIG. 2, node B1 and node B2 belong to RNC1, and the terminal user establishes a wireless link with node B1 and node B2 at the same time, and the terminal is in a macro diversity state.
  • the service node B of the terminal is the node B1, the terminal and the node B1, and the radio network controller 1 pre-agreed the "transmission gap pattern sequence” information for starting the compression mode, which specifically includes: a set of "transmission gap pattern sequence” for "frequency division”
  • the measurement use of "duplex measurement", "transmission gap pattern sequence” is identified by the identifier 1.
  • This set of "Transport Gap Pattern Sequences” 1 contains 2 alternate “Transport Gap Patterns and" Transmission Gap Patterns 2". Each "Transport Gap Pattern” provides a transmission gap within a "Transmission Gap Pattern Length”. : The set of "transmission gap pattern sequence” 1 is repeated 20 times.
  • the radio network controller 1 controls the signaling through the RRC (Radio Resource Control) protocol layer, which will start the "transmission gap pattern sequence" of the compressed mode.
  • the information is sent to the terminal; the NBAP (Node B Application Part) protocol layer control signaling is used to inform the node Bl of the "transmission gap pattern sequence” information of the compressed mode.
  • RRC Radio Resource Control
  • Embodiment 1 includes the following steps: Step 110: Start a compression mode between the terminal and Node B1. Node B1 decides to start the compressed mode, and Node B1 transmits "HS-SCCH order" via HS-SCCH (High Speed Shared Control Channel) to activate the compressed mode and start the "transfer". The gap pattern sequence is notified to the designated terminal 1.
  • Step 110 Start a compression mode between the terminal and Node B1.
  • Node B1 decides to start the compressed mode, and Node B1 transmits "HS-SCCH order" via HS-SCCH (High Speed Shared Control Channel) to activate the compressed mode and start the "transfer”.
  • HS-SCCH High Speed Shared Control Channel
  • start The action of the compressed mode is represented by using the type of the new high-speed shared control channel command with a value of 2; the initiated "transmission gap pattern sequence” is identified by the “transmission gap pattern sequence identifier” 1 , “transmission gap pattern The sequence identifier "1" is represented by the “3 bits representing the specific high-speed shared control channel command under the high-speed shared control channel command type", and the three bits of the specific high-speed shared control channel command are represented by 1; : Node B1 indicates the currently activated compressed mode status of the terminal to the radio network controller 1. The node B1 sends the NBAP protocol layer control signaling to the radio network controller 1. This signaling carries at least the current compressed mode state to the "active" state.
  • This signaling optionally carries the "Transport Gap Pattern Sequence Identifier" 1 of the current boot compression mode.
  • the signaling optionally carries the repetition number 20 of the transmission gap pattern of the "transmission gap pattern sequence” of the current startup compression mode;
  • Step 130 After the serving radio network controller RNC1 obtains the compression mode state of the terminal, according to the terminal and the Node B The connection establishment is judged, and all the Node Bs connected to the terminal are under the control of the RNC, and all the Node Bs other than the Node B1 (node 2 in this embodiment) are connected to the terminal through the Iub interface. Current compression mode status information. After receiving the compressed mode status information notified by the terminal, the Node B leaves a transmission gap on the F-DPCH.
  • the compressed mode state information includes: the compressed mode state is an "active" state, and can indicate an identifier of the compressed mode ("transmission gap pattern sequence identifier" 1 ), and may also include a CFN, a "transmission gap pattern sequence" of the current boot compression mode. The number of repetitions of the transmission gap pattern is 20.
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is that the Node B connected to the terminal needs to notify other radio network controllers and then notify the corresponding Node B under the control of other radio network controllers.
  • the setting scenario is as shown in FIG. 3.
  • Node B1 belongs to RNC1
  • Node B2 belongs to RNC2.
  • the terminal user establishes a wireless link with Node B1 and Node B2 at the same time, and the terminal is in a macro diversity state.
  • the service node B of the terminal is the node B1, the terminal and the node B1, and the radio network controller 1 pre-agreed the "transmission gap pattern sequence” information for starting the compression mode, which specifically includes: A set of “transmission gap pattern sequences" for the measurement purposes of "frequency division duplex measurement", "transmission gap pattern sequence” is identified by the identifier 1. This set of “Transport Gap Pattern Sequences” 1 contains 2 alternate “Transport Gap Patterns and" Transmission Gap Patterns 2". Each "Transport Gap Pattern" provides a transmission gap within a "Transmission Gap Pattern Length”. : The number of repetitions of this set of "transmission gap pattern sequence" is 20.
  • the radio network controller 1 informs the terminal of the "transmission gap pattern sequence” information of the compression mode through the RRC protocol layer control signaling; Control signaling, initiating the "transmission gap pattern sequence” information of the compressed mode, informing the node Bl.
  • Step 210 Initiating a compressed mode between the terminal and the node B1.
  • the node B1 decides to start the compressed mode, and the node B1 transmits through the HS-SCCH physical channel.
  • "HS-SCCH order" informs the specified terminal 1 of the action of starting the compressed mode and the "transmission gap pattern sequence” initiated.
  • Step 220 Node B1 indicates the currently activated compressed mode status of the terminal to the radio network controller 1. Where: Node B1 sends NBAP protocol layer control signaling to the radio network controller 1. This signaling carries at least The current compressed mode state is "active".
  • This signaling optionally carries the "transmission gap pattern sequence identifier" of the current boot compression mode. 1. This signaling optionally carries the "transmission gap pattern sequence” of the current boot compression mode. The number of repetitions of the transmission gap pattern is 20; Step 230: After the serving radio network controller RNC1 obtains the compressed mode state of the terminal, it determines according to the connection establishment situation of the terminal and the Node B, and the Node B that is connected to the terminal is in the RNC1 and the RNC2.
  • Step 240 The drift radio network controller RNC2 After the state of the terminal to obtain the compressed mode, information Node B receives the compressed mode status information of the terminal notified by the compressed mode state notification Iub interface node terminal B2, the F-DPCH channel pass aside Lose the gap.
  • the compressed mode state information includes: the compressed mode state is an "active" state, and can indicate an identifier of the compressed mode ("transmission gap pattern sequence identifier" 1 ), and may also include a CFN, a "transmission gap pattern sequence" of the current boot compression mode. The number of repetitions of the transmission gap pattern is 20.
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 2 is that the serving Node B is the Node B2, which has an Iub connection with the Drift Wireless Network Controller RNC2.
  • the setting scenario is shown in Figure 3.
  • Node B1 belongs to RNC1, and Node B2 belongs to RNC2.
  • the terminal user establishes a wireless link with Node B1 and Node B2, and the terminal is in macro diversity state.
  • Service Node B is the node B2
  • RNC1 is the service RNC
  • RNC2 is the drift RNC.
  • the terminal and the node B2, the radio network controller 1 pre-agreed the "transmission gap pattern sequence" information for starting the compression mode, which specifically includes:
  • a set of "transmission gap pattern sequences" for the measurement purposes of "frequency division duplex measurement", "transmission gap pattern sequence” is identified by the identifier 1.
  • This set of "Transport Gap Pattern Sequences” 1 contains 2 alternate “Transport Gap Patterns and" Transmission Gap Patterns 2".
  • Each "Transport Gap Pattern” provides a transmission gap within a "Transmission Gap Pattern Length”. : The number of repetitions of this set of "transmission gap pattern sequence” is 20.
  • the radio network controller 1 informs the terminal 1 of the "transmission gap pattern sequence" information of the compression mode by the RRC protocol layer control signaling; Therefore, the "transmission gap pattern sequence” information of the compressed mode is started, the RNC2 is first notified, and the node B2 is notified by the NBAP protocol layer control signaling.
  • the node B2 decides to start the compression. Mode, Node B2 transmits "HS-SCCH order" via the HS-SCCH physical channel.
  • the action of starting the compressed mode and the initiated "transmission gap pattern sequence" are notified to the designated terminal 1.
  • Step 320 Node B2 indicates the currently activated compressed mode status of the terminal to the radio network controller 2. Where: Node B2 sends NBAP protocol layer control signaling to the radio network controller 2. The signaling carries at least the current compressed mode state to the "active" state.
  • This signaling optionally carries the "transmission gap pattern sequence identifier" of the current boot compression mode. 1.
  • This signaling optionally carries the current boot compression mode. The number of repetitions of the transmission gap pattern of the "transmission gap pattern sequence” is 20;
  • the network controller RNC1 After obtaining the compressed mode state of the terminal, the network controller RNC1 notifies the node B1 terminal of the compressed mode state through the Iub interface. After receiving the compressed mode status information notified by the terminal, the Node B leaves a transmission gap on the F-DPCH channel.
  • the compressed mode state information includes: the compressed mode state is an "active" state, and the indication of the compressed mode ("transmission gap pattern sequence identifier" 1) can also be indicated. The number of repetitions of the transmission gap pattern including the CFN, the "transmission gap pattern sequence" of the currently started compression mode.
  • the compressed mode control system of the embodiment of the present invention includes a terminal, a first node: 8, one or more second node Bs, and a serving radio network controller, where: the first node B is the terminal Service node B, configured to: notify a service radio network controller of the terminal of the current compression mode status information of the terminal after starting or stopping the compression mode with the terminal; the service radio network controller Set to: after receiving the current compressed mode state information of the terminal, the compressed mode state information is notified to the second node B;
  • the second node B is a node B having a wireless link connection with the terminal except the first node B, and is configured to: perform compression in synchronization with the terminal according to the received compression mode state information. Mode operation.
  • the first node B may be configured to: when it belongs to the serving radio network controller of the terminal, directly send the current compressed mode status information of the terminal to the serving radio network controller of the terminal.
  • the current compressed mode status information of the terminal is sent by the drift radio network controller to the serving radio network controller of the terminal.
  • the serving radio network controller may be configured to: sequentially determine whether each second node B is directly connected to the serving radio network controller through an Iub interface, and if not, pass the compressed mode status information The drift radio network controller of the terminal is sent to the second node B, and if yes, the compressed mode status information is directly sent to the second node B.
  • the first node B is further configured to: negotiate with the terminal to determine a compression mode.
  • the second node B may be configured to: according to the compressed mode state information, perform compression on the time domain to generate a transmission gap for data transmission on the F-DPCH channel.
  • the radio network controller of the embodiment of the present invention is a serving radio network controller of the terminal, and includes: a receiving module 71 and a notification module 72, where: the receiving module 71 is configured to Receiving, by the first node B, the current compressed mode state information of the terminal that is directly sent by the first node B or sent by the drift radio network controller of the terminal; the notification module 72 is configured to: receive the receiving module 71 The compressed mode state information is sent to the second node B, so that the second node B performs the operation of the compressed mode in synchronization with the terminal according to the received compressed mode state information; wherein the first node B is the a service node B of the terminal; the second node B is one or more, and is a node B having a wireless link connection with the terminal except the first node B.
  • the notification module 72 may be configured to: sequentially determine whether each second node B is directly connected to the serving radio network controller through an Iub interface, and if not, the compression mode status information And transmitting, by the drift radio network controller of the terminal, to the second node B, and if yes, directly sending the compressed mode status information to the second node B.
  • the present invention provides a control method and system for a compressed mode, and a radio network controller, which informs a node B having a wireless link connection with a terminal by a service radio network controller to notify a state of a compressed mode of the terminal, so that the terminal has
  • the Node Bs of the wireless link connection are aware of the execution state of the compressed mode in order to perform the compressed mode in synchronization with the terminal.

Abstract

本发明公开了一种压缩模式的控制方法、系统和无线网络控制器,其中,所述方法包括:终端和第一节点B之间启动或停止压缩模式,所述第一节点B将所述终端当前的压缩模式状态信息告知所述终端的服务无线网络控制器;所述服务无线网络控制器将所述终端当前的压缩模式状态信息告知第二节点B;所述第二节点B根据接收到的压缩模式状态信息,与所述终端同步执行压缩模式的操作;其中,所述第一节点B是所述终端的服务节点B;所述第二节点B为一个或多个,是除所述第一节点B之外的与所述终端有无线链路连接的节点B。本发明使与终端有无线链路连接的节点B均知晓压缩模式的执行状态,以便与终端同步执行压缩模式。

Description

一种压缩模式的控制方法、 系统和无线网络控制器
技术领域 本发明涉及无线通信领域, 尤其涉及一种无线通信系统中压缩模式的控 制方法、 系统和无线网络控制器( Radio Network Controller, 简称 RNC ) 。
背景技术 随着无线通信网络技术的不断演进, 从第二代的 GSM (Global System Mobile, 全球移动系统) 系统到第三代的 WCDMA (Wideband Code Division Multiple Access , 宽带码分多址) 系统, 再到第三代的 LTE (Long Term Evolution, 长期演进) 系统, 运营商的网络部署也必然依据用户的需求, 存 在多种制式系统并存的情况。 目前运营商通常的无线网络功能定位为: 第二 代的 GSM系统主要用于承载话音, 第三代的 WCDMA系统主要用于承载分 组业务和会话、视频类业务, 对于第三代的 LTE系统重点在于承载超高速的 分组业务。 因此, 针对现有的网络部署, 第二代的 GSM系统和第三代的 WCDMA 系统之间的系统间移动性是非常重要的; 并且, 在不久的将来, 第三代 LTE 系统的移动管理, 如切换到 LTE系统热点区域, 也变得非常重要。 上述这些系统间移动管理, 导致的切换过程, 均需要在事先的切换准备 阶段, 对目标系统以及目标载频进行测量, 以准确进行切换决策。 压缩模式在载频间和系统间测量中起到很重要的作用。釆用压缩模式时, 终端不需要配置双接收机就可以测量非服务载频以及其他系统的载频。 对于 只配置了一个接收机的终端,从第三代 WCDMA系统移动到只有第二代 GSM 系统覆盖的区域时, 只能够釆用压缩模式来进行系统间测量。 同样, 压缩模 式也可用于终端进出第三代 WCDMA 系统的多载频覆盖区域。 在压缩模式 下, 终端可以测量另外一个非服务载频而不丟失在服务载频上传输的任何数 据。 压缩模式定义为一种传输模式, 通过这种方式, 数据传输在时域上将被 压缩而产生出一个传输间隙, 终端的接收机利用这段传输间隙调谐到另一个 载频上进行测量。 传输间隙由"传输间隙样式序列"来描述确定。 每一套"传输间隙样式序 歹 ij "由"传输间隙样式序列标识"来唯一识别, 仅能够用于一种"传输间隙样式 序列测量用途", 也就是 "频分双工测量" /"时分双工测量 "/"GSM载波接收信 号强度指示 (Received Signal Strength Indication) 测量" /"GSM基站识别色码 初始识别 "/"GSM 基站识别色码识别再次确认 "/"多载频测量 "/"E-UTRA (Enhanced Universal Radio Access,增强型全球无线接入网络) 测量"等各个测 量的其中一种测量用途。
每一套 "传输间隙样式序列 "如图 1所示,包含 2种交替的"传输间隙样式
1 "和"传输间隙样式 2"。每种"传输间隙样式 "在一个"传输间隙样式长度"内提 供一个或者两个传输间隙。 此外, 每一套"传输间隙样式序列"还包括指示启 动 /停止压缩模式时间的传输间隙 CFN ( Connection Frame Number, 连接帧 号), 传输间隙样式序列的重复次数等等。 这些参数都是依据"传输间隙样式 序列测量用途"来确定的。 考虑到加快切换过程, 提高切换的可靠性, 尤其在无线信号质量快速恶 化的区域, 通过加快切换的过程可以降低用户掉话的风险。 压缩模式启动的 时间越晚越好, 压缩模式持续的时间越短越好, 以此来提高系统容量和用户 吞吐量。 所以, 可以由压缩模式的执行者, 就是终端和基站 (NodeB , 节点 B ) 来控制压缩模式的启动 /停止。 当终端控制压缩模式的启动 /停止时, 终 端判断当前服务小区的无线信号质量不好,可能需要切换到异载频 /异系统的 邻区, 则启动压缩模式; 终端判断当前服务小区的无线信号质量转好或者已 经得到测量结果, 则停止压缩模式。 对应的, 当终端决定启动 /停止时, 终端 将启动 /停止的 "传输间隙样式序列 "告知节点 B。 当基站(节点 B )控制压缩 模式的启动 /停止时, 直接将启动 /停止的命令通知终端。
发明内容
终端或基站(节点 B )控制压缩模式的启动 /停止有快速、时间短的优点, 但终端处于宏分集状态, 就会存在问题, 如图 2和图 3中的场景。 在图 2的 场景中, 终端与 RNC1下 NodeBl和 NodeB2同时建立有无线链路; 在图 3 的场景中, 终端与 RNC1下 NodeBl和 RNC2下 NodeB2同时建立有无线链 路。在上述场景中,如果压缩模式的启动 /停止是由终端或者 NodeBl决定的, 那么 NodeB2无法获知压缩模式的执行状态, 不能和终端同步进行压缩模式 的执行。 本发明所要解决的技术问题是提供一种压缩模式的控制方法、 系统和无 线网络控制器, 使与终端有无线链路连接的节点 B均知晓压缩模式的执行状 态。 为了解决上述技术问题, 本发明提供一种压缩模式的控制方法, 包括: 终端和第一节点 B之间启动或停止压缩模式,所述第一节点 B将所述终 端当前的压缩模式状态信息告知所述终端的服务无线网络控制器; 所述服务无线网络控制器将所述终端当前的压缩模式状态信息告知第二 节点 B; 以及 所述第二节点 B根据接收到的压缩模式状态信息, 与所述终端同步执行 压缩模式的操作; 其中, 所述第一节点 B是所述终端的服务节点 B; 所述第二节点 B为一 个或多个,是除所述第一节点 B之外的与所述终端有无线链路连接的节点 B。 优选地, 所述第一节点 B将所述终端当前的压缩模式状态信息告知所述 终端的服务无线网络控制器的步骤包括: 若所述第一节点 B归属于所述终端的服务无线网络控制器, 则所述第一 节点 B直接通过 lub接口将所述终端当前的压缩模式状态信息发送给所述终 端的服务无线网络控制器; 若所述第一节点 B归属于所述终端的漂移无线网络控制器, 则所述第一 节点 B通过 lub接口将所述终端当前的压缩模式状态信息发送给所述漂移无 线网络控制器, 所述漂移无线网络控制器通过 Iur接口将所述压缩模式状态 信息发送给所述终端的服务无线网络控制器。 优选地, 所述服务无线网络控制器将所述终端当前的压缩模式状态信息 告知第二节点 B的步骤包括: 所述服务无线网络控制器依次判断每个第二节点 B是否与所述服务无线 网络控制器通过 Iub接口直接相连: 若否, 所述服务无线网络控制器将所述压缩模式状态信息通过 Iur接口 发送给所述终端的漂移无线网络控制器, 所述漂移无线网络控制器将所述压 缩模式状态信息发送给所述第二节点 B; 若是, 所述服务无线网络控制器直接通过 Iub接口将所述压缩模式状态 信息发送给所述第二节点 B。 优选地, 终端和第一节点 B之间启动或停止压缩模式之前, 所述方法还 包括: 所述终端和第一节点 B协商确定压缩模式。 优选地,所述压缩模式状态信息包括: 启动或停止压缩模式的状态信息。 优选地, 所述压缩模式状态信息还包括如下信息中的一种或多种: 压缩 模式的标识信息、 压缩模式启动或停止的时间、 当前启动压缩模式的传输间 隙样式序列的传输间隙样式的重复次数。
优选地, 所述第二节点 B根据接收到的压缩模式状态信息, 与所述终端 同步执行压缩模式的操作的步骤包括: 所述第二节点 B根据所述压缩模式状态信息, 针对分裂的专用物理控制 信道(F-DPCH )上的数据传输, 在时域上进行压缩而产生出传输间隙。 为了解决上述技术问题, 本发明提供一种压缩模式的控制系统, 包括终 端、 第一节点^ 一个或多个第二节点 B和服务无线网络控制器, 其中: 所述第一节点 B是所述终端的服务节点 B, 其设置成: 与所述终端之间 启动或停止压缩模式后, 将所述终端当前的压缩模式状态信息告知所述终端 的服务无线网络控制器; 所述服务无线网络控制器设置成: 接收到所述终端当前的压缩模式状态 信息后, 将所述压缩模式状态信息告知第二节点 B; 所述第二节点 B是除所述第一节点 B之外的与所述终端有无线链路连接 的节点 B, 其设置成: 根据接收到的压缩模式状态信息, 与所述终端同步执 行压缩模式的操作。 优选地, 所述第一节点 B是设置成: 当其归属于所述终端的服务无线网 络控制器时, 直接将所述终端当前的压缩模式状态信息发送给所述终端的服 务无线网络控制器; 当其归属于所述终端的漂移无线网络控制器时, 通过所 述漂移无线网络控制器将所述终端当前的压缩模式状态信息发送给所述终端 的服务无线网络控制器。 优选地, 所述服务无线网络控制器是设置成: 依次判断每个第二节点 B 是否与所述服务无线网络控制器通过 Iub接口直接相连, 若否, 则将所述压 缩模式状态信息通过所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则直接将所述压缩模式状态信息发送给所述第二节点 B。 优选地, 第一节点 B还设置成: 与所述终端协商确定压缩模式。 优选地,所述压缩模式状态信息包括: 启动或停止压缩模式的状态信息。 优选地, 所述压缩模式状态信息还包括如下信息中的一种或多种: 压缩 模式的标识信息、 压缩模式启动或停止的时间、 当前启动压缩模式的传输间 隙样式序列的传输间隙样式的重复次数。 为了解决上述技术问题, 本发明提供一种无线网络控制器, 该无线网络 控制器为终端的服务无线网络控制器, 其包括: 接收模块和通知模块, 其中: 所述接收模块设置成: 接收第一节点 B直接发送的或通过所述终端的漂 移无线网络控制器发送的所述终端当前的压缩模式状态信息; 所述通知模块设置成: 将所述接收模块接收到的所述压缩模式状态信息 告知第二节点 B, 以使所述第二节点 B根据接收到的压缩模式状态信息, 与 所述终端同步执行压缩模式的操作; 其中, 所述第一节点 B是所述终端的服务节点 B; 所述第二节点 B为一 个或多个 ,是除所述第一节点 B之外的与所述终端有无线链路连接的节点 B。 优选地, 所述通知模块是设置成: 依次判断每个第二节点 B是否与所述 服务无线网络控制器通过 Iub接口直接相连, 若否, 则将所述压缩模式状态 信息通过所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则 直接将所述压缩模式状态信息发送给所述第二节点 B。
本发明通过服务无线网络控制器将终端的压缩模式的状态告知与终端有 无线链路连接的节点 B, 使与终端有无线链路连接的节点 B均知晓压缩模式 的执行状态, 以便与终端同步执行压缩模式。
附图概述 图 1为"传输间隙样式序列"的示意图; 图 2 为本发明应用场景 1 ; 图 3 为本发明应用场景 2; 图 4 为本发明实施例 1的处理过程示意图; 图 5 为本发明实施例 2的处理过程示意图; 图 6 为本发明实施例 3的处理过程示意图; 图 7为本发明实施例的无线网络控制器示意图。
本发明的较佳实施方式 在无线通信系统中, Iub接口是无线网络控制器和节点 B之间的逻辑接 口。 Iur接口是无线网络控制器用于同其他无线网络控制器进行信令和数据交 互的接口, 是无线网络子系统之间互联的纽带, 如图 3所示。 当一个终端建立了到无线接入网的连接, 并在 Iur接口产生了软切换, 就会用到多于一个无线网络控制器的资源, 不同的无线网络控制器此时充当 着不同的角色: 服务无线网络控制器: 保持该终端与核心网接口连接的无线网络控制器 是服务无线网络控制器。 服务无线网络控制器负责核心网和终端之间的数据 传送和与核心网的接口信令的转送和接收, 负责进行无线资源控制, 负责对 空中接口的数据进行层二的处理, 并执行基本无线资源管理操作, 如切换判 决、 外环功率控制和无线接入承载的参数向空口传输信道参数的转化等。 漂移无线网络控制器: 漂移无线网络控制器是 ^良务无线网络控制器以外 的其他无线网络控制器。 漂移无线网络控制器控制该终端使用的小区, 如果 需要, 漂移无线网络控制器可以进行宏分集合并。 漂移无线网络控制器只是 将空口数据透明的通过 Iur接口的路由传递给服务无线网络控制器。 一个终 端的漂移无线网络控制器可以不止一个。
高速上行分组接入技术的目标是在上行方向改善容量和数据吞吐量, 降 低专用信道中的迟滞。 由高速上行分组接入技术引入了一条新的传输信道: 增强型专用信道, 对物理层和媒体接入控制层的实现进行改进, 可以达到最 大理论上行数据速率为 5.6兆比特每秒。 高速上行分组接入技术保留了软切 换的特性。 空中接口接收的 MAC-i ( Mac Access Control-i, 媒体接入控制 i ) 数据帧, 解复用为媒体接入控制流, 以增强型专用信道上行数据帧的形式, 通过媒体接入控制流对应的传输承载 (每一个媒体接入控制流有一个对应的 Iub接口和或 Iur接口传输承载),从服务节点 B传输到服务无线网络控制器。 如果服务节点 B归属于服务无线网络控制器,则直接从服务节点 B发送 到服务无线网络控制器, 不需要漂移无线网络控制器的中继。 如果此服务节 点 B归属于漂移无线网络控制器,则从服务节点 B发送到漂移无线网络控制 器 , 由漂移无线网络控制器转发中继至服务无线网络控制器。 在本发明中, 节点 B将终端的当前压缩模式状态指示给服务无线网络控 制器, 服务无线网络控制器将压缩模式状态指示给其他的 NodeB, 或者通过 其他 RNC指示给其他的 NodeB。 具体地, 包括可如下步骤: 第一步: 终端和第一节点 B之间启动或停止压缩模式, 所述第一节点 B 将所述终端当前的压缩模式状态信息告知所述终端的服务无线网络控制器。 其中: 第一节点 B是所述终端的服务节点^ 所述终端和第一节点 B可以通过协商确定压缩模式。 在一实施例中,所述第一节点 B归属于所述终端的服务无线网络控制器, 所述第一节点 B直接通过 lub接口将所述终端当前的压缩模式状态信息发送 给所述终端的服务无线网络控制器。 在另一实施例中, 所述第一节点 B归属于所述终端的漂移无线网络控制 器, 所述第一节点 B通过 lub接口将所述终端当前的压缩模式状态信息发送 给所述漂移无线网络控制器, 所述漂移无线网络控制器通过 Iur接口将所述 压缩模式状态信息发送给所述终端的服务无线网络控制器。 第二步: 所述服务无线网络控制器将所述终端当前的压缩模式状态信息 告知第二节点 B。 其中, 第二节点 B为一个或多个, 是除所述第一节点 B之外的与所述终 端有无线链路连接的节点 B。 在一实施例中, 所述服务无线网络控制器依次判断每个第二节点 B是否 与所述服务无线网络控制器通过 lub接口直接相连: 若否, 所述服务无线网络控制器将所述压缩模式状态信息通过 Iur接口 发送给所述终端的漂移无线网络控制器, 所述漂移无线网络控制器将所述压 缩模式状态信息发送给所述第二节点 B; 若是, 所述服务无线网络控制器直接通过 lub接口将所述压缩模式状态 信息发送给所述第二节点 B。 第三步: 所述第二节点 B根据接收到的压缩模式状态信息, 与所述终端 同步执行压缩模式的操作。 上述压缩模式状态信息包括: 启动或停止压缩模式的状态信息 (用于指 示 "启动 /停止" 动作) , 可选地, 还可以包括压缩模式的标识信息、 压缩模 式启动或停止的时间 (可以是 CFN ) 、 当前启动压缩模式的传输间隙样式序 列的传输间隙样式的重复次数等信息中的一种或多种。 上述第二节点 B执行压缩模式的操作是指:第二节点 B依照压缩模式状 态信息的描述, 针对 F-DPCH ( Fractional Dedicated Physical Control Channel, 分裂的专用物理控制信道)上的数据传输, 在时域上进行压缩而产生出传输 间隙。 其中, F-DPCH信道是一种下行专用物理信道。 F-DPCH每 10毫秒的一 帧内含有 15个时隙, 每个时隙含有 2560个码片, 这些码片全部用于传送功 率控制信息。
下面结合附图对本发明所述技术方案的实施作进一步的详细描述。 实施例 1 设定场景如图 2, 节点 B1和节点 B2归属于 RNC1 , 终端用户与节点 B1 和节点 B2 同时建立了无线链路, 终端处于宏分集状态。 终端的服务节点 B 为节点 B1 ,终端和节点 B1 ,无线网络控制器 1事先约定启动压缩模式的 "传 输间隙样式序列" 信息, 具体包括: 一套 "传输间隙样式序列" , 用于 "频分双工测量" 的测量用途, "传 输间隙样式序列" 以标识 1来识别。 此套 "传输间隙样式序列" 1 包含 2种 交替的 "传输间隙样式 和 "传输间隙样式 2" 。 每种 "传输间隙样式" 在 一个 "传输间隙样式长度" 内提供一个传输间隙。 还可以包括: 此套 "传输 间隙样式序列" 1的重复次数为 20次。 无线网络控制器 1通过 RRC ( Radio Resource Control, 无线资源控制 ) 协议层控制信令, 将启动压缩模式的 "传输间隙样式序列"信息, 告知终端; 通过 NBAP ( Node B Application Part, 节点 B应用部分)协议层控制信令, 将启动压缩模式的 "传输间隙样式序列" 信息, 告知节点 Bl。
如图 4所示, 实施例 1包括如下步骤: 步骤 110: 终端和节点 B1之间启动压缩模式。 节点 B1决定启动压缩模 式, 节点 B1通过 HS-SCCH ( High Speed Shared Control Channel, 高速共享 控制信道)发送 "HS-SCCH order (高速共享控制信道命令) " 将启动压缩 模式的动作和启动的 "传输间隙样式序列" 告知给指定终端 1。 其中: 启动 压缩模式的动作是通过使用取值为 2的新的高速共享控制信道命令的类型来 表示的; 启动的 "传输间隙样式序列" 以 "传输间隙样式序列标识" 1 来识 别的, "传输间隙样式序列标识" 1是通过 "3个比特表示高速共享控制信道 命令类型下的具体的高速共享控制信道命令" 的具体的高速共享控制信道命 令的这 3个比特取值为 1来表示的; 步骤 120:节点 B1将终端的当前启动的压缩模式状态指示给无线网络控 制器 1。 其中: 节点 B1发送 NBAP协议层控制信令给无线网络控制器 1。 此 信令至少携带当前压缩模式状态为 "激活" 状态。 此信令可选的携带当前启 动压缩模式的 "传输间隙样式序列标识" 1。 此信令可选的携带当前启动压缩 模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20; 步骤 130: 服务无线网络控制器 RNC1获得终端的压缩模式状态后, 根 据终端和节点 B的连接建立情况进行判断,和终端有连接的所有节点 B都在 本 RNC的控制下, 通过 Iub接口通知和终端有连接的除节点 B1外的所有节 点 B (本实施例中是节点 2 )终端的当前的压缩模式状态信息。 节点 B收到终端通知的压缩模式状态信息后,在 F-DPCH上留出传输间 隙。 其中, 压缩模式状态信息包括, 压缩模式状态为 "激活" 状态, 能够指 示压缩模式的标识 ( "传输间隙样式序列标识" 1 ) , 还可以包括 CFN、 当 前启动压缩模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20。
实施例 2 实施例 2与实施例 1的差别在于, 和终端有连接的节点 B在其他无线网 络控制器的控制下, 需要先通知其他的无线网络控制器, 再通知相应的节点 B。 设定场景如图 3 , 节点 B1归属于 RNC1 , 节点 B2归属于 RNC2, 终端 用户与节点 B1和节点 B2同时建立了无线链路, 终端处于宏分集状态。 终端 的服务节点 B为节点 B1 , 终端和节点 B1 , 无线网络控制器 1事先约定启动 压缩模式的 "传输间隙样式序列" 信息, 具体包括: 一套 "传输间隙样式序列" , 用于 "频分双工测量" 的测量用途, "传 输间隙样式序列" 以标识 1来识别。 此套 "传输间隙样式序列" 1 包含 2种 交替的 "传输间隙样式 和 "传输间隙样式 2" 。 每种 "传输间隙样式" 在 一个 "传输间隙样式长度" 内提供一个传输间隙。 还可以包括: 此套 "传输 间隙样式序列" 1的重复次数为 20次。 无线网络控制器 1通过 RRC协议层控制信令,将启动压缩模式的 "传输 间隙样式序列" 信息, 告知终端; 通过 NBAP协议层控制信令, 将启动压缩 模式的 "传输间隙样式序列" 信息, 告知节点 Bl。 步骤 210: 终端和节点 B1之间启动压缩模式。 节点 B1决定启动压缩模 式, 节点 B1通过 HS-SCCH物理信道发送 "HS-SCCH order (高速共享控制 信道命令) " 将启动压缩模式的动作和启动的 "传输间隙样式序列"告知给 指定终端 1。 其中: 启动压缩模式的动作是通过使用取值为 2的新的高速共 享控制信道命令的类型来表示的; 启动的 "传输间隙样式序列" 以 "传输间 隙样式序列标识" 1来识别的, "传输间隙样式序列标识" 1是通过 "3个比 特表示高速共享控制信道命令类型下的具体的高速共享控制信道命令" 的具 体的高速共享控制信道命令的这 3个比特取值为 1来表示的。 步骤 220:节点 B1将终端的当前启动的压缩模式状态指示给无线网络控 制器 1。 其中: 节点 B1发送 NBAP协议层控制信令给无线网络控制器 1。 此 信令至少携带当前压缩模式状态为 "激活" 状态。 此信令可选的携带当前启 动压缩模式的 "传输间隙样式序列标识" 1。 此信令可选的携带当前启动压缩 模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20; 步骤 230: 服务无线网络控制器 RNC1获得终端的压缩模式状态后, 根 据终端和节点 B 的连接建立情况进行判断, 和终端有连接的节点 B 在本 RNC1和 RNC2的控制下, 通过 lur接口通知 RNC2终端的压缩模式状态信 息; 步骤 240: 漂移无线网络控制器 RNC2获得终端的压缩模式状态后, 通 过 Iub接口通知节点 B2终端的压缩模式状态信息。 节点 B收到终端通知的压缩模式状态信息后,在 F-DPCH信道上留出传 输间隙。
其中, 压缩模式状态信息包括, 压缩模式状态为 "激活" 状态, 能够指 示压缩模式的标识 ( "传输间隙样式序列标识" 1 ) , 还可以包括 CFN、 当 前启动压缩模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20。
实施例 3 与实施例 2的差别在于, 服务节点 B为节点 B2, 其与漂移无线网络控 制器 RNC2有 Iub连接。 设定场景如图 3 , 节点 B1归属于 RNC1 , 节点 B2归属于 RNC2, 终端 用户与节点 B1和节点 B2同时建立了无线链路, 终端处于宏分集状态。服务 节点 B为节点 B2, RNC1为服务 RNC, RNC2为漂移 RNC。 终端和节点 B2,无线网络控制器 1事先约定启动压缩模式的 "传输间隙 样式序列" 信息, 具体包括:
一套 "传输间隙样式序列" , 用于 "频分双工测量" 的测量用途, "传 输间隙样式序列" 以标识 1来识别。 此套 "传输间隙样式序列" 1 包含 2种 交替的 "传输间隙样式 和 "传输间隙样式 2" 。 每种 "传输间隙样式" 在 一个 "传输间隙样式长度" 内提供一个传输间隙。 还可以包括: 此套 "传输 间隙样式序列" 1的重复次数为 20次。 无线网络控制器 1通过 RRC协议层控制信令,将启动压缩模式的 "传输 间隙样式序列"信息,告知终端 1 ;通过 RNSAP信令,将启动压缩模式的 "传 输间隙样式序列" 信息, 先告知 RNC2, 再通过 NBAP协议层控制信令, 告 知节点 B2。 步骤 310: 终端和节点 B2之间启动压缩模式。 节点 B2决定启动压缩模 式, 节点 B2通过 HS-SCCH物理信道发送 "HS-SCCH order (高速共享控制 信道命令) " 将启动压缩模式的动作和启动的 "传输间隙样式序列"告知给 指定终端 1。 其中: 启动压缩模式的动作是通过使用取值为 2的新的高速共 享控制信道命令的类型来表示的; 启动的 "传输间隙样式序列" 以 "传输间 隙样式序列标识" 1来识别的, "传输间隙样式序列标识" 1是通过 "3个比 特表示高速共享控制信道命令类型下的具体的高速共享控制信道命令" 的具 体的高速共享控制信道命令的这 3个比特取值为 1来表示的。 步骤 320:节点 B2将终端的当前启动的压缩模式状态指示给无线网络控 制器 2。 其中: 节点 B2发送 NBAP协议层控制信令给无线网络控制器 2。 此 信令至少携带当前压缩模式状态为 "激活" 状态。 此信令可选的携带当前启 动压缩模式的 "传输间隙样式序列标识" 1。 此信令可选的携带当前启动压缩 模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20; 步骤 330: 漂移无线网络控制器 RNC2获得终端的压缩模式状态后, 通 过 Iur接口通知 RNC 1终端的压缩模式状态信息; 步骤 340: 服务无线网络控制器 RNC1获得终端的压缩模式状态后, 通 过 Iub接口通知节点 B1终端的压缩模式状态信息。 节点 B收到终端通知的压缩模式状态信息后,在 F-DPCH信道上留出传 输间隙。 如果终端存在多个漂移无线网络控制器, 服务无线网络控制器 RNC1通 过 Iur接口通知其他的漂移无线网络控制器, 进而再通知到其他的节点 B。 其中, 压缩模式状态信息包括, 压缩模式状态为 "激活" 状态, 能够指 示压缩模式的标识 ( "传输间隙样式序列标识" 1 ) , 还可以包括 CFN、 当 前启动压缩模式的 "传输间隙样式序列" 的传输间隙样式的重复次数 20。
相应地, 本发明实施例的压缩模式的控制系统, 包括终端、 第一节点:8、 一个或多个第二节点 B和服务无线网络控制器, 其中: 所述第一节点 B是所述终端的服务节点 B, 其设置成: 与所述终端之间 启动或停止压缩模式后, 将所述终端当前的压缩模式状态信息告知所述终端 的服务无线网络控制器; 所述服务无线网络控制器设置成: 接收到所述终端当前的压缩模式状态 信息后, 将所述压缩模式状态信息告知第二节点 B; 所述第二节点 B是除所述第一节点 B之外的与所述终端有无线链路连接 的节点 B, 其设置成: 根据接收到的压缩模式状态信息, 与所述终端同步执 行压缩模式的操作。 优选地, 所述第一节点 B可设置成: 当其归属于所述终端的服务无线网 络控制器时, 直接将所述终端当前的压缩模式状态信息发送给所述终端的服 务无线网络控制器; 当其归属于所述终端的漂移无线网络控制器时, 通过所 述漂移无线网络控制器将所述终端当前的压缩模式状态信息发送给所述终端 的服务无线网络控制器。 优选地, 所述服务无线网络控制器可设置成: 依次判断每个第二节点 B 是否与所述服务无线网络控制器通过 Iub接口直接相连, 若否, 则将所述压 缩模式状态信息通过所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则直接将所述压缩模式状态信息发送给所述第二节点 B。 优选地, 第一节点 B还可设置成: 与所述终端协商确定压缩模式。 优选地, 第二节点 B 可设置成: 根据所述压缩模式状态信息, 针对 F-DPCH信道上的数据传输, 在时域上进行压缩而产生出传输间隙。
如图 7所示, 本发明实施例的无线网络控制器, 该无线网络控制器为终 端的服务无线网络控制器, 其包括: 接收模块 71和通知模块 72, 其中: 所述接收模块 71设置成: 接收第一节点 B直接发送的或通过所述终端 的漂移无线网络控制器发送的所述终端当前的压缩模式状态信息; 所述通知模块 72设置成: 将所述接收模块 71接收到的所述压缩模式状 态信息告知第二节点 B, 以使所述第二节点 B根据接收到的压缩模式状态信 息, 与所述终端同步执行压缩模式的操作; 其中, 所述第一节点 B是所述终端的服务节点 B; 所述第二节点 B为一 个或多个 ,是除所述第一节点 B之外的与所述终端有无线链路连接的节点 B。 所述通知模块 72可设置成: 依次判断每个第二节点 B是否与所述服务 无线网络控制器通过 Iub接口直接相连, 若否, 则将所述压缩模式状态信息 通过所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则直接 将所述压缩模式状态信息发送给所述第二节点 B。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 尽管本发明结合特定实施例进行了描述, 但是对于本领域的技术人员来 说, 可以在不背离本发明的精神或范围的情况下进行修改和变化。 这样的修 改和变化被视作在本发明的范围和附加的权利要求书范围之内。
工业实用性 本发明提供一种压缩模式的控制方法、 系统和无线网络控制器, 通过服 务无线网络控制器将终端的压缩模式的状态告知与终端有无线链路连接的节 点 B, 使与终端有无线链路连接的节点 B均知晓压缩模式的执行状态, 以便 与终端同步执行压缩模式。

Claims

权 利 要 求 书
1、 一种压缩模式的控制方法, 包括: 终端和第一节点 B之间启动或停止压缩模式,所述第一节点 B将所述终 端当前的压缩模式状态信息告知所述终端的服务无线网络控制器; 所述服务无线网络控制器将所述终端当前的压缩模式状态信息告知第二 节点 B; 以及 所述第二节点 B根据接收到的压缩模式状态信息, 与所述终端同步执行 压缩模式的操作; 其中, 所述第一节点 B是所述终端的服务节点 B; 所述第二节点 B为一 个或多个,是除所述第一节点 B之外的与所述终端有无线链路连接的节点 B。
2、 如权利要求 1所述的方法, 其中: 所述第一节点 B将所述终端当前的压缩模式状态信息告知所述终端的服 务无线网络控制器的步骤包括: 若所述第一节点 B归属于所述终端的服务无线网络控制器, 则所述第一 节点 B直接通过 lub接口将所述终端当前的压缩模式状态信息发送给所述终 端的服务无线网络控制器; 若所述第一节点 B归属于所述终端的漂移无线网络控制器, 则所述第一 节点 B通过 lub接口将所述终端当前的压缩模式状态信息发送给所述漂移无 线网络控制器, 所述漂移无线网络控制器通过 Iur接口将所述压缩模式状态 信息发送给所述终端的服务无线网络控制器。
3、 如权利要求 1所述的方法, 其中: 所述服务无线网络控制器将所述终端当前的压缩模式状态信息告知第二 节点 B的步骤包括: 所述服务无线网络控制器依次判断每个第二节点 B是否与所述服务无线 网络控制器通过 Iub接口直接相连: 若否, 所述服务无线网络控制器将所述压缩模式状态信息通过 Iur接口 发送给所述终端的漂移无线网络控制器, 所述漂移无线网络控制器将所述压 缩模式状态信息发送给所述第二节点 B; 若是, 所述服务无线网络控制器直接通过 Iub接口将所述压缩模式状态 信息发送给所述第二节点 B。
4、 如权利要求 1所述的方法, 其中: 终端和第一节点 B之间启动或停止压缩模式之前, 所述方法还包括: 所述终端和第一节点 B协商确定压缩模式。
5、 如权利要求 1 ~ 4中任意一项所述的方法, 其中: 所述压缩模式状态信息包括: 启动或停止压缩模式的状态信息。
6、 如权利要求 5所述的方法, 其中: 所述压缩模式状态信息还包括如下信息中的一种或多种: 压缩模式的标 识信息、 压缩模式启动或停止的时间、 当前启动压缩模式的传输间隙样式序 列的传输间隙样式的重复次数。
7、 如权利要求 1 ~ 4中任意一项所述的方法, 其中: 所述第二节点 B根据接收到的压缩模式状态信息, 与所述终端同步执行 压缩模式的操作的步骤包括: 所述第二节点 B根据所述压缩模式状态信息, 针对分裂的专用物理控制 信道(F-DPCH )上的数据传输, 在时域上进行压缩而产生出传输间隙。
8、 一种压缩模式的控制系统, 包括终端、 第一节点^ 一个或多个第二 节点 B和服务无线网络控制器, 其中: 所述第一节点 B是所述终端的服务节点 B, 其设置成: 与所述终端之间 启动或停止压缩模式后, 将所述终端当前的压缩模式状态信息告知所述终端 的服务无线网络控制器; 所述服务无线网络控制器设置成: 接收到所述终端当前的压缩模式状态 信息后, 将所述压缩模式状态信息告知第二节点 B; 所述第二节点 B是除所述第一节点 B之外的与所述终端有无线链路连接 的节点 B, 其设置成: 根据接收到的压缩模式状态信息, 与所述终端同步执 行压缩模式的操作。
9、 如权利要求 8所述的系统, 其中: 所述第一节点 B是设置成: 当其归属于所述终端的服务无线网络控制器 时, 直接将所述终端当前的压缩模式状态信息发送给所述终端的服务无线网 络控制器; 当其归属于所述终端的漂移无线网络控制器时, 通过所述漂移无 线网络控制器将所述终端当前的压缩模式状态信息发送给所述终端的服务无 线网络控制器。
10、 如权利要求 8所述的系统, 其中: 所述服务无线网络控制器是设置成: 依次判断每个第二节点 B是否与所 述服务无线网络控制器通过 Iub接口直接相连, 若否, 则将所述压缩模式状 态信息通过所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则直接将所述压缩模式状态信息发送给所述第二节点 B。
11、 如权利要求 8所述的系统, 其中: 第一节点 B还设置成: 与所述终端协商确定压缩模式。
12、 如权利要求 8 ~ 11中任意一项所述的系统, 其中: 所述压缩模式状态信息包括: 启动或停止压缩模式的状态信息。
13、 如权利要求 12所述的系统, 其中: 所述压缩模式状态信息还包括如下信息中的一种或多种: 压缩模式的标 识信息、 压缩模式启动或停止的时间、 当前启动压缩模式的传输间隙样式序 列的传输间隙样式的重复次数。
14、 一种无线网络控制器, 该无线网络控制器为终端的服务无线网络控 制器, 其包括: 接收模块和通知模块, 其中: 所述接收模块设置成: 接收第一节点 B直接发送的或通过所述终端的漂 移无线网络控制器发送的所述终端当前的压缩模式状态信息; 所述通知模块设置成: 将所述接收模块接收到的所述压缩模式状态信息 告知第二节点 B, 以使所述第二节点 B根据接收到的压缩模式状态信息, 与 所述终端同步执行压缩模式的操作; 其中, 所述第一节点 B是所述终端的服务节点 B; 所述第二节点 B为一 个或多个,是除所述第一节点 B之外的与所述终端有无线链路连接的节点 B。
15、 如权利要求 14所述的无线网络控制器, 其中: 所述通知模块是设置成: 依次判断每个第二节点 B是否与所述服务无线 网络控制器通过 Iub接口直接相连, 若否, 则将所述压缩模式状态信息通过 所述终端的漂移无线网络控制器发送给所述第二节点 B, 若是, 则直接将所 述压缩模式状态信息发送给所述第二节点 B。
PCT/CN2010/074948 2010-07-02 2010-07-02 一种压缩模式的控制方法、系统和无线网络控制器 WO2012000207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074948 WO2012000207A1 (zh) 2010-07-02 2010-07-02 一种压缩模式的控制方法、系统和无线网络控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074948 WO2012000207A1 (zh) 2010-07-02 2010-07-02 一种压缩模式的控制方法、系统和无线网络控制器

Publications (1)

Publication Number Publication Date
WO2012000207A1 true WO2012000207A1 (zh) 2012-01-05

Family

ID=45401336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074948 WO2012000207A1 (zh) 2010-07-02 2010-07-02 一种压缩模式的控制方法、系统和无线网络控制器

Country Status (1)

Country Link
WO (1) WO2012000207A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874597A (zh) * 2005-05-30 2006-12-06 富士通株式会社 移动通信系统、其压缩模式控制方法以及基站和移动站
CN101141744A (zh) * 2007-10-19 2008-03-12 华为技术有限公司 终端压缩模式启动方法、无线网络控制器及终端
US20090203381A1 (en) * 2005-02-14 2009-08-13 Nec Corporation Radio network controller, a mobile communication system, and a neighbor cell list filtering method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090203381A1 (en) * 2005-02-14 2009-08-13 Nec Corporation Radio network controller, a mobile communication system, and a neighbor cell list filtering method
CN1874597A (zh) * 2005-05-30 2006-12-06 富士通株式会社 移动通信系统、其压缩模式控制方法以及基站和移动站
CN101141744A (zh) * 2007-10-19 2008-03-12 华为技术有限公司 终端压缩模式启动方法、无线网络控制器及终端

Similar Documents

Publication Publication Date Title
RU2769279C1 (ru) Обработка отказов главной группы сот главным узлом
US7184419B2 (en) Method of controlling handover in uplink synchronous transmission scheme
US7167709B2 (en) Handovers of user equipment connections in wireless communications systems
US7392052B2 (en) Hard handover method and controller
US20110223916A1 (en) Smooth Hard Handover Method and Base Station Adapted For The Method
WO2005096641A1 (fr) Procede de transfert de relais dans un systeme de communication mobile
KR20150119327A (ko) Lte 네트워크에서의 이동 단말 핸드오버
WO2018028426A1 (zh) 波束管理方法及装置
CN111386726A (zh) 无线网络中改进移动稳健性的装置和机制
JP2013523030A (ja) ハンドオーバ時における無線リソース設定方法及び設定装置
US9961597B2 (en) Activation time for target based high speed serving cell change
EP1733585A1 (en) Controlling reconfiguration in a cellular communication system
WO2012009850A1 (zh) 一种传输间隙样式序列的处理方法和系统
TW202341775A (zh) 定時提前獲取和維持的方法和設備
WO2011147223A1 (zh) 一种压缩模式的控制方法及系统
WO2012000207A1 (zh) 一种压缩模式的控制方法、系统和无线网络控制器
WO2012010003A1 (zh) 宏分集状态下压缩模式的控制方法和系统
US20230422123A1 (en) Methods and apparatus to improve ue experience with a new type of radio bearer during inter-du inter-cell beam management
WO2012000198A1 (zh) 宏分集状态下压缩模式的控制方法及系统
TW202349983A (zh) 具有行動性的控制平面小區間波束管理的方法和裝置
WO2011157069A1 (zh) 传输间隙样式序列的处理方法、装置及系统
WO2011156954A1 (zh) 一种状态信息的指示方法、系统和节点b
KR20050071772A (ko) 비동기망과 동기망이 혼재된 이동통신망에서의 핸드오버방법
WO2011153709A1 (zh) 一种启动和停止压缩模式的方法和终端
KR20070017176A (ko) 원활한 하드 핸드오버 방법, 이 방법에 적합한 이동국 및기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853912

Country of ref document: EP

Kind code of ref document: A1