WO2012000181A1 - 单相超大容量核电站变压器 - Google Patents

单相超大容量核电站变压器 Download PDF

Info

Publication number
WO2012000181A1
WO2012000181A1 PCT/CN2010/074778 CN2010074778W WO2012000181A1 WO 2012000181 A1 WO2012000181 A1 WO 2012000181A1 CN 2010074778 W CN2010074778 W CN 2010074778W WO 2012000181 A1 WO2012000181 A1 WO 2012000181A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
voltage
bushing
phase
transformer
Prior art date
Application number
PCT/CN2010/074778
Other languages
English (en)
French (fr)
Inventor
钟俊涛
孙树波
谈翀
Original Assignee
特变电工沈阳变压器集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特变电工沈阳变压器集团有限公司 filed Critical 特变电工沈阳变压器集团有限公司
Priority to PCT/CN2010/074778 priority Critical patent/WO2012000181A1/zh
Publication of WO2012000181A1 publication Critical patent/WO2012000181A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers

Definitions

  • the invention relates to the technical field of transformer manufacturing, in particular to a single-phase super large capacity generator transformer for a large nuclear power plant.
  • the technical problem to be solved by the present invention is to provide a safe and reliable transformer for a single-phase ultra-large capacity nuclear power plant.
  • the technical solution adopted by the present invention is:
  • the utility model relates to a single-phase super-large capacity generator transformer, which has a high-voltage bushing, a low-pressure bushing, a high-pressure neutral point bushing, an oil storage cabinet, an upper fuel tank, a lower fuel tank, a cooling device and a no-load switch, and an upper fuel tank.
  • a single-phase four-column core structure is arranged in the fuel tank of the lower section, and the two main column cores of the single-phase four-column core are respectively provided with high and low voltage windings, the cores of the two main columns are high, and the low voltage windings are connected in parallel; the low-voltage windings of the two main columns are at the upper end. , forming a low-voltage double-column parallel structure by connecting copper bars;
  • the high-voltage bushing is directly led out from the middle of the high-voltage winding; the high-pressure neutral point bushing is located on the high-pressure side near the oil conservator, and the high-voltage neutral point bushing is directly led out to be directly connected to the neutral point lead; the low-pressure bushing is located in the upper fuel tank The low-voltage side of the low-voltage bushing is directly connected to the low-voltage bow I line of the low-voltage winding;
  • the oil conservator is located on the other side of the upper fuel tank opposite to the high voltage bushing, perpendicular to the long axis of the transformer and extending axially outward;
  • the cooling device is arranged centrally on the outer side of the upper fuel tank and the lower fuel tank having a high voltage bushing and a high pressure neutral point bushing, parallel to the long axis direction of the transformer;
  • the low voltage bushing After the low voltage bushing is taken out from the low voltage lead, it is connected to the external nuclear power plant generator set;
  • the no-load switch is located on the low-voltage side of the transformer, and the wiring board is connected with the tap-changing lead drawn from the voltage-regulating section of the high-voltage winding on the low-voltage side.
  • the single-phase four-column structure is a single-phase transformer closed magnetic circuit composed of two core main columns, two side columns, two upper yokes and four side yokes.
  • the single-phase four-column core has upper and lower clamping members, upper and lower clamping members webs, and upper and lower clamping members are respectively fixed with magnetic shielding by upper and lower clamping members, and the outer surface of the upper clamping member is covered.
  • the upper and lower two voltage regulating leads are respectively led out from the two core main column coils, and a total of four lead wires are connected to the unloaded switch. On four wiring pads.
  • the two outlets of the low voltage winding are adjacent in parallel, with equal currents and opposite directions.
  • the low-voltage lead adopts a single-phase electric shielding structure, and comprises a low-voltage rising seat.
  • the low-voltage rising seat is provided with an electric shielding net, and the two low-voltage terminals are inserted into two low-voltage rising seats, and are taken out from the upper part of the low-pressure rising seat.
  • the low-pressure rising seat is a cylindrical structure, the upper end of the inner wall is fixedly connected with the upper cover plate, the lower end is connected with the lower flange, and the inner wall of the low-voltage rising seat and the bottom surface of the upper cover plate are provided with a shielding net, and the low-voltage terminal
  • a low-pressure bushing and a closed busbar flange are fixed on the upper surface of the upper cover plate; and a lower cover plate is detachably mounted on the bottom surface of the low-pressure riser through the flange.
  • the lower fuel tank is provided with reinforcing iron, and the reinforcing iron is detachably mounted with a transport shoulder.
  • the invention directly extracts the 500kV high-voltage outlet bushing of the transformer directly from the middle of the coil, and the oil storage cabinet is located on the left side of the fuel tank of the transformer opposite to the 500kV casing; the distance between the high-voltage bushing and the ground is increased; The insulation distance makes the overall structure of the transformer compact, reduces the external limit of the transformer, low loss, low noise, good shielding effect, effectively prevents local overheating, and makes the support structure of the oil conservator more reasonable.
  • the invention fixes the magnetic shield on the web of the core clip by the two-way bolt, so that the magnetic flux leakage can travel along the rolling direction of the silicon steel sheet, and most of the magnetic flux leakage is introduced into the main magnetic flux, and the loss caused by the magnetic flux leakage is greatly reduced.
  • the outer surface of the clip on the high and low sides is covered with a copper shield, which effectively reflects the leakage magnetic flux caused by the low-voltage copper strip back into the oil tank, effectively preventing local overheating of the clips on the high and low sides. Due to the increase of the upper and lower clamping modes, the magnetic shielding noise of the core clamp is reduced; in addition, the lead arrangement space is added, and the structure is simple in the transformer having the same fuel tank distance.
  • the low-voltage windings of the present invention are all at the upper end, and the two-column parallel connection is realized by connecting the copper bars to the upper part of the low voltage.
  • the two outlets are parallel and adjacent, and the currents are in opposite directions, thereby reducing the leakage current of the high-current copper row on the web of the core pulling plate, reducing the occurrence of overheating of the low-voltage upper limb plate; in addition, solving the high-current copper discharge to The problem of insufficient clamping distance on the low pressure and keeping the tank distance constant; the additional loss is reduced, thus protecting the environment.
  • the present invention installs a transport shoulder for transporting the D36 transport vehicle on the reinforcing iron of the transformer main tank.
  • the transport shoulder is directly connected to the transformer tank reinforcement by bolts.
  • the transformer can be removed after being transported to the installation site and can be reused when transporting other transformers.
  • the present invention provides transformers for the third-generation nuclear power technology EPR1000 nuclear power plant 1.75 million kW generator set, which provides powerful technical support for China to vigorously develop nuclear power industry and promote localization of nuclear power plant equipment in the field of transformers.
  • Figure 1 is a front view of the transformer of the present invention
  • Figure 2 is a left side view of Figure 1;
  • Figure 3 is a plan view of Figure 1;
  • Figure 4 is a schematic view of the iron core and the upper and lower clamp members of the present invention.
  • Figure 5 is a left side view of Figure 4.
  • Figure 6 is a partial enlarged view of I in Figure 5;
  • Figure 7 is a partial enlarged view of II in Figure 5;
  • Figure 8 is a partial enlarged view of the portion III in Figure 5;
  • FIG. 9A is a schematic structural view of a magnetic shield of a clip on a core in the present invention.
  • FIG. 9B is a schematic view showing the magnetic shield connection of FIG. 9A;
  • 10A is a schematic structural view of a magnetic shield of a lower core member according to the present invention.
  • Figure 10B is a schematic view showing the magnetic shield connection of Figure 10A;
  • 11A is a schematic view showing a low-voltage outlet electric shielding structure according to the present invention.
  • Figure 11B is a plan view of Figure 11A;
  • FIG. 11C is a schematic structural view of the electric shielding net in FIG. 11A;
  • Figure 12 is a schematic view showing the connection structure of the low-voltage outlet copper busbar according to the present invention.
  • Figure 13 is a left side view of Figure 12;
  • Figure 14 is a schematic view showing the connection structure of the transport shoulder seat and the fuel tank during transportation of the transformer body of the present invention
  • Figure 15 is a left side view of Figure 14.
  • the ultra-large capacity generator transformer of the invention takes a single-phase 700MVA/500kV generator transformer as an example, and has a high-voltage bushing, a low-pressure bushing, a high-pressure neutral point bushing, an oil conservator, an upper fuel tank, a lower fuel tank, and a cooling device.
  • the no-load switch wherein: a single-phase four-column core structure is arranged in the upper fuel tank 7 and the lower fuel tank 6, and the two main column cores of the single-phase four-column core 14 are respectively provided with high and low voltage windings, and the two column high and low voltage windings are connected in parallel.
  • the two columns of low-voltage windings are all at the upper end, and are connected by a copper row 35 to form a low-voltage double-column parallel structure;
  • the high-voltage bushing 2 is directly led out from the middle of the high-voltage winding;
  • the oil conservator 5 is located above the upper fuel tank 7 and opposite to the high-pressure bushing The other side is perpendicular to the long axis of the transformer and extends axially outward;
  • the cooling device 8 is centrally disposed on the outer side of the upper fuel tank 7 and the lower fuel tank 6 having the high pressure bushing 2 and the high pressure neutral point bushing 4 side , parallel to the long axis direction of the transformer 1, under the premise of ensuring the external insulation distance, the overall layout of the transformer 1 is reasonable, and the outer limit size is reduced, and at the same time, the oil storage cabinet 5, Cooling means 8 of the support structure more reliable.
  • the low-voltage lead is connected to the external nuclear power plant generator set through the low-pressure bushing 3.
  • the core structure adopts a single-phase four-column structure, and two closed core main columns and two side columns, two upper yokes and four side yokes constitute a closed magnetic circuit of the single-phase transformer.
  • the core pulling plate, the clamping member and the footing are used to ensure the mechanical strength of the core piece clamping, the body lifting, pressing and short circuit.
  • the upper and lower clamp members 20, 21 of the core are respectively fixed with the upper and lower clamp magnetic shields 21, 23 by two-way bolts, and the outer surface of the upper clamp member 9 is covered with a copper shield 25, and the upper clamp member magnetic shield 21 is bolted. It is fixed to the copper shield 25 covered by the outer surface of the upper clip 9.
  • the two low-voltage windings are adjacent in parallel, the currents are equal, and the directions are opposite, thereby reducing the leakage current of the large current lead on the web of the core pulling plate, and effectively controlling the local overheating of the transformer.
  • the voltage regulating lead wire adopts two iron core main column coils to lead out the upper and lower two paths, and a total of four lead wires are connected to the four wiring pads of the no-load switch.
  • the low voltage lead is a single phase electrical shield structure comprising a low voltage riser 33 having an electrical shield 26 mounted therein, the two low voltage terminals being inserted into the two low pressure risers 33 and led out from the upper portion of the low pressure riser 33.
  • the low-pressure rising seat 33 has a cylindrical structure, the upper end of the inner wall is fixed to the upper cover plate 29, the lower end is connected with the lower flange 27, and the inner wall of the low-pressure rising seat 33 and the bottom surface of the upper cover plate 29 are provided.
  • the electric shielding net 26, the low voltage terminal passes through the upper cover plate 29, and the low pressure bushing 3 and the closed bus bar flange 30 are fixed on the upper surface of the upper cover plate 29; the bottom surface of the low pressure rising seat 33 is detachably mounted through the flange Cover plate 31.
  • the main lower fuel tank 6 is provided with reinforcing iron, and the reinforcing iron is detachably mounted with a transport shoulder.
  • the transformer can be disassembled after being transported to the installation site, and can be reused when other transformers are transported.
  • the high voltage bushing 2 is directly taken out from the upper fuel tank 7; the high pressure neutral point bushing 4 is arranged on the high pressure side and away from the high pressure bushing 2; the oil conservator 5 is located above
  • the left side of the fuel-saving tank 7 is close to the high-pressure neutral point bushing 4, perpendicular to the long-axis direction of the transformer 1; the cooling device 8 is arranged centrally on the high-voltage side of the transformer 1, parallel to the long-axis direction of the transformer 1; Under the premise, the overall layout of the transformer 1 is reasonable, the outer limit size is reduced, and the support structure of the oil conservator 5 and the cooling device 8 is more reliable.
  • a single-phase four-column core 14 is disposed in the upper fuel tank 7 and the lower fuel tank 6, and the contact faces of the upper and lower clamp members 9, 12 of the single-phase four-column core 14 and the single-phase four-column core 14 are provided.
  • the insulating cardboard 15 is provided to completely insulate the upper and lower clamp members 9 and 12 of the single-phase four-column core 14, and the upper and lower clamp members 9 and 12 are connected to the single-phase four-column iron core 14 through a grounding wire to make the upper and lower clamp members. 9, 12 separate grounding.
  • the upper beam 10, the leg 13 of the upper and lower clamp members 9, 12, and the bolts at the junction of the side members 11 and the upper and lower clamp members 9, 12 are completely insulated by the insulating sleeve 18, the insulating mat 17, and the insulating plate 16. 19 Both ends are completely insulated from the upper and lower clamps 9, 12, and then connected by grounding wire, so that the upper and lower clamps 9 and 12 are grounded separately, which solves the problem of large-capacity, high-voltage transformers if the clamps are caused by magnetic flux leakage. It is impossible to form a loop problem, and it is easy to detect when a multi-point grounding check of the core occurs.
  • the upper and lower clamp webs 20, 22 of the single-phase four-column core 14 are fixed with the clamp magnetic shields 21, 23 by two-way bolts, and are sandwiched by the insulating plates 24.
  • Tight magnetic shielding can make the magnetic flux leakage along the direction of rolling of the silicon steel sheet, and introduce most of the magnetic flux leakage into the main magnetic flux of the single-phase four-column core 14, and the loss caused by the magnetic flux leakage is greatly reduced.
  • the magnetic components are clamped on the high and low sides.
  • the outer surface of the web is provided with a copper plate 25 as a copper shield, which effectively reflects the leakage magnetic flux caused by the low-voltage copper wire to the lower fuel tank 6, effectively preventing local overheating of the upper clamp web 20. Since the clamping mode of the upper and lower parts of the transformer is increased, the noise of the magnetic shields 21, 23 of the clips is reduced; in addition, since the outer surface of the upper clips 9 is covered with the copper shield 25, the arrangement space of the low-voltage leads is increased, and the low-voltage leads are made.
  • the structure is simple to arrange.
  • the transformer low-voltage lead is disposed above the low-voltage side of the transformer by two single-phase electric shielding structures, and is connected to the upper fuel tank 7 of the transformer, and includes two independent low-voltage risers 33.
  • An electric shielding net 26 is installed inside.
  • the two low voltage terminals of the single phase transformer are respectively inserted into the two low pressure risers 33 and are led out from the upper portion of the low pressure riser 33.
  • the low pressure riser 33 has a cylindrical structure, and the upper end of the inner wall is welded and fixed to the upper cover 29, and the lower flange 27 is connected to the lower end.
  • the lower cover 31 is detachably mounted on the lower flange 27 on the bottom surface of the low pressure riser 33.
  • An electric shielding net 26 is disposed on the inner wall of the low-voltage rising seat 33 and the bottom surface of the upper cover 29, and the upper cover 29 and the inner wall of the electric shielding net 26 on the inner wall are provided with holes for the low-voltage terminal of the transformer. Pass through.
  • the electric shielding net 26 is a copper plate 32 having a high electrical conductivity.
  • a lifting plate 28 and a closed bus bar flange 30 are fixed to the upper surface of the upper cover 29.
  • the inside of the transformer main body includes:
  • the low-voltage winding heads 34 are all at the upper end, and the low-voltage double-column parallel connection is realized by the copper bus 35 connection.
  • the two outlets 34 of the low-voltage winding are adjacent in parallel, and the currents are in opposite directions, thereby reducing the leakage current of the large current lead on the web 20 of the core pulling plate, and effectively controlling the local overheating of the transformer.
  • the voltage regulating lead wire adopts two core main column coils to lead the upper and lower two paths, and a total of four lead wires are connected to the four wiring ports of the no-load switch 37.
  • the main body tank reinforcing iron 38 of the transformer 1 is provided with a transport shoulder 39 for use in transformer transportation.
  • the transport shoulder 39 is directly connected to the transformer tank reinforcement iron 38 by bolts.
  • the transformer can be removed after being transported to the installation site by the D36 transporter 40, and can be reused when transporting other transformers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

单相超大容量核电站变压器 技术领域
本发明涉及变压器制造技术领域, 具体地说是一种用于大型核电站的单相超大容 量发电机变压器。
背景技术
国际上最先进的第三代核电技术法国 EPR1000技术的日益成熟, 已逐渐应用到核电 站的新建项目上。 目前世界上还没有采用此种技术的核电站运行业绩, 只有采用此种技 术的在建核电站。全世界只有中国、法国、芬兰在建的三个核电站采用了法国的 EPR1000 技术。 由于法国的 EPR1000核电技术在单机发电量达到 175万 kW, 比二代核电技术的单 机发电量 100万 kW有明显的增大, 因此与之配套的单相发电机变压器容量也由原来的 420MVA上升到 700MVA。 因此单相超大容量 (700MVA/500kV及以上) 变压器开发、 应用 在世界上也是首次。
目前中国迎来了大力发展核电事业的新时期, 在未来的 20年里中国核发电全部电 力装机容量, 其比重将从现在的全国发电机容量占不到 2%而提高到 5%。 随着中国民用 核电站建设数量的逐年递增, 安全、 可靠、 超大容量的单相核电站用发电机变压器的需 求量也越来越大, 因此单相超大容量变压器的开发、 研制成功, 将大大推动中国核电事 业国产化的发展。 而国内外单相 700MVA/500kV变压器的成熟制造、 运行技术尚未见报 道。
发明内容
针对现有技术中存在的上述不足之处, 本发明要解决的技术问题是提供一种安全、 可靠的单相超大容量核电站用变压器。
为解决上述技术问题, 本发明采用的技术方案是:
本发明一种单相超大容量发电机变压器, 具有高压套管、 低压套管、 高压中性点套 管、 储油柜、 上节油箱、 下节油箱、 冷却装置以及无载开关, 上节油箱和下节油箱内设 置单相四柱铁心结构, 单相四柱铁心的两主柱铁心上分别套有高、 低压绕组, 铁心两主 柱高、 低压绕组并联连接; 两主柱低压绕组出头均在上端, 通过铜排连接形成低压双柱 并联结构;
高压套管直接从高压绕组中部竖直引出; 高压中性点套管位于高压侧靠近储油柜, 高 压中性点套管竖直引出直接与中性点引线连接; 低压套管位于上节油箱的低压侧, 低压套 管直接与低压绕组出头弓 I出的低压弓 I线连接;
储油柜位于上节油箱上方与高压套管相对的另一侧, 垂直于变压器长轴方向并延长 轴向外延伸;
冷却装置集中布置在上节油箱和下节油箱具有高压套管和高压中性点套管一侧的 外侧, 与变压器长轴方向平行;
低压套管从低压引线引出后, 与外部核电站发电机组相连;
无载开关位于变压器的低压侧,其接线盘接有高压绕组中的调压段在低压侧引出的 分接调压引线。
所述单相四柱结构为由两个铁心主柱、 两个旁柱、 两个上轭和四个旁轭构成的单相 变压器闭合磁路。
所述单相四柱铁心具有上、 下夹件、 上、 下夹件腹板, 上、 下夹件腹板上分别通过 连接件固接有上、 下夹件磁屏蔽, 上夹件外表面覆盖有铜屏蔽, 上夹件磁屏蔽固接在铜 屏蔽上。
两个铁心主柱线圈中各引出上、 下两路调压引线, 共四路引线连接到无载开关的 四个接线盘上。
低压绕组的两个出头平行相邻, 电流相等, 方向相反。
所述低压引线采用单相电屏蔽结构, 包括一低压升高座, 低压升高座内安装有电 屏蔽网, 两个低压端子均插入两个低压升高座中, 并由低压升高座上部引出。
所述低压升高座为圆筒式结构, 其内壁的上端与上盖板相固接, 下端连接有下法 兰, 低压升高座的内壁上及上盖板的底面上设有屏蔽网, 低压端子穿过上盖板, 在上盖 板的上表面固定有低压套管及封闭母线法兰; 在低压升高座底面通过法兰可拆卸地安装 有下盖板。
所述下节油箱上设加强铁, 加强铁上可拆卸地安装有运输肩座。
本发明具有以下有益效果及优点:
1 . 本发明将变压器的 500kV高压出线套管直接从线圈中部竖直引出,储油柜位于 变压器主体油箱的左侧与 500kV套管相对; 增大了高压套管对地距离; 既可保证外绝 缘距离, 又使变压器整体结构布置紧凑, 缩小了变压器外限尺寸, 损耗低、 噪音低、 屏蔽效果好、 有效地防止了局部过热, 同时使储油柜的支撑结构更加合理。
2. 本发明在铁心夹件腹板上通过双向螺栓固接了磁屏蔽, 可以使漏磁沿硅钢片压 延方向行走, 并将大部分漏磁引入主磁通, 漏磁产生的损耗大幅度降低; 同时在高、 低侧上夹件腹板外表面覆盖有铜屏蔽, 有效的将低压铜排引起的漏磁反射回油箱内, 有效的防止了高、 低侧上夹件的局部过热。 由于增加了上下部的夹方式, 从而使铁心 夹件磁屏蔽噪音减少; 此外, 还增加了引线布置空间, 在有相同油箱距离的变压器, 结构布置简单。
3. 本发明的低压绕组出头均在上端, 通过铜排连接在低压上部实现双柱并联。 两 个出头平行相邻, 电流相等方向相反, 从而减少了大电流铜排在铁芯拉板腹板上的漏 磁, 减少低压上肢板过热现象的发生; 此外, 还解决了大电流铜排到低压上夹件距离 不够的问题并且使油箱距离保持不变; 降低了附加损耗, 从而保护了环境。
4.本发明在变压器主体油箱加强铁上安装有采用 D36运输车运输时采用的运输肩 座。 运输肩座是通过螺栓直接连接在变压器油箱加强铁上, 变压器运输到安装现场后 可拆卸下来, 在其它变压器运输时可重复使用。
5. 本发明首次为第三代核电技术 EPR1000核电站 175万 kW发电机组配套提供变 压器, 为中国大力发展核电事业, 推进核电站设备国产化在变压器领域提供了有力的 技术支撑。
6. 本发明的研发成功, 在超大容量的单相发电机变压器绕组温升、 漏磁控制等方 面的研究有了较大的突破, 可以推动国内变压器行业的发展, 满足了中国绿色环保电 网建设的需求。
附图说明
图 1为本发明变压器主视图;
图 2为图 1的左视图;
图 3为图 1的俯视图;
图 4为本发明中铁心及上下夹件的示意图;
图 5为图 4的左视图;
图 6为图 5中 I处的局部放大图;
图 7为图 5中 II处的局部放大图;
图 8为图 5中 III处的局部放大图;
图 9A为本发明中铁心上夹件磁屏蔽的结构示意图;
图 9B为图 9A中磁屏蔽连接示意图; 图 10A为本发明中铁心下夹件磁屏蔽的结构示意图;
图 10B为图 10A中磁屏蔽连接示意图;
图 11A为本发明中低压出线电屏蔽结构的示意图;
图 11B为图 11A的俯视图;
图 11C为图 11A中电屏蔽网结构示意图;
图 12为本发明中低压出线铜排连接结构示意图;
图 13为图 12的左视图;
图 14为本发明变压器主体运输时运输肩座与油箱连接结构示意图;
图 15为图 14的左视图。
其中, 1为变压器主体; 2为高压套管; 3为低压套管; 4为高压中性点套管; 5为储 油柜; 6为下节油箱; 7为上节油箱; 8为冷却装置; 9为上夹件; 10为上梁; 11为侧梁; 12为下夹件; 13为垫脚; 14为铁心; 15为绝缘纸板; 16为绝缘板; 17为绝缘垫; 18为 绝缘套; 19为拉带; 20为上夹件腹板; 21为上夹件磁屏蔽; 22为下夹件腹板; 23为下 夹件磁屏蔽; 24为绝缘板; 25为铜屏蔽; 26为电屏蔽网; 27为下法兰; 28为吊拌; 29 为上盖板; 30为封闭母线法兰; 31为下盖板; 32为铜板; 33为低压升高座; 34为低压 绕组出头; 35为铜排; 36为调压引线; 37为无载开关; 38为油箱加强铁, 39为运输肩 座, 40为 D36运输车。
具体实施方式
下面结合附图对本发明作进一步详述。
本发明超大容量发电机变压器以单相 700MVA/500kV发电机变压器为例, 具有高压 套管、 低压套管、 高压中性点套管、 储油柜、 上节油箱、 下节油箱、 冷却装置以及无载 开关, 其中: 上节油箱 7和下节油箱 6内设置单相四柱铁心结构, 单相四柱铁心 14的 两主柱铁心上分别套有高、 低压绕组, 两柱高、 低压绕组并联连接; 两柱低压绕组出头 均在上端, 通过铜排 35连接形成低压双柱并联结构; 高压套管 2直接从高压绕组中部 竖直引出; 储油柜 5位于上节油箱 7上方与高压套管相对的另一侧, 垂直于变压器长轴 方向并延长轴向外延伸; 冷却装置 8集中布置在上节油箱 7和下节油箱 6具有高压套管 2和高压中性点套管 4一侧的外侧, 与变压器 1长轴方向平行, 在保证外绝缘距离的前 提下, 变压器 1整体布局合理, 外限尺寸减小, 同时使储油柜 5、 冷却装置 8的支撑结 构更加可靠。低压引线通过低压套管 3与外部核电站发电机组相连, 核电站发电机组发 出的电能通过变压器的调整由高压电缆向 500kV电网输送能量。
铁心结构采用单相四柱结构, 由两个铁心主柱及两个旁柱, 两个上轭和四个旁轭 构成该单相变压器的闭合磁路。 同时采用铁芯拉板、 夹件及垫脚来保证铁心片的夹紧、 器身起吊、 压紧及短路状态下的机械强度。 铁心的上下夹件腹板 20、 21上分别通过双 向螺栓固接有上、 下夹件磁屏蔽 21、 23, 同时上夹件 9外表面覆盖有铜屏蔽 25, 上夹 件磁屏蔽 21由螺栓固接在上夹件 9外表面覆盖的铜屏蔽 25上。
低压绕组两个出头平行相邻, 电流相等, 方向相反, 从而减少大电流引线在铁芯 拉板腹板上的漏磁, 有效的控制了变压器局部过热。 调压引线采用两个铁心主柱线圈中 各引出上、 下两路, 共四路引线接到无载开关的四个接线盘上。
低压引线为单相电屏蔽结构, 包括一低压升高座 33, 其内安装有电屏蔽网 26, 两 个低压端子均插入两个低压升高座 33中, 并由低压升高座 33上部引出。
所述低压升高座 33为圆筒式结构, 其内壁的上端与上盖板 29相固接, 下端连接有 下法兰 27, 低压升高座 33的内壁上及上盖板 29的底面上设有电屏蔽网 26, 低压端子 穿过上盖板 29, 在上盖板 29的上表面固定有低压套管 3及封闭母线法兰 30; 在低压升 高座 33底面通过法兰可拆卸地安装有下盖板 31。 所述主体下节油箱 6上设加强铁, 加强铁上可拆卸地安装有运输肩座, 变压器运输 到安装现场后可拆卸下来, 在其它变压器运输时可重复使用。
如图 1〜3所示, 本发明中, 高压套管 2直接从上节油箱 7垂直引出; 高压中性点 套管 4布置在高压侧与远离高压套管 2方向; 储油柜 5位于上节油箱 7的左侧靠近高压 中性点套管 4, 垂直于变压器 1长轴方向; 冷却装置 8集中布置在变压器 1的高压侧, 与与变压器 1长轴方向平行; 在保证外绝缘距离的前提下, 变压器 1整体布局合理, 外 限尺寸减小, 同时使储油柜 5、 冷却装置 8的支撑结构更加可靠。
如图 4〜8所示, 上节油箱 7、 下节油箱 6内设置单相四柱铁心 14, 单相四柱铁心 14的上、 下夹件 9、 12与单相四柱铁心 14的接触面之间设有绝缘纸板 15, 使单相四柱 铁心 14的上、 下夹件 9、 12全绝缘, 上、 下夹件 9、 12通过接地线与单相四柱铁心 14 相连接, 使上、 下夹件 9、 12单独接地。 上、 下夹件 9、 12的上梁 10、 垫脚 13、 侧梁 11与上、 下夹件 9、 12相连接处的螺栓用绝缘套 18、 绝缘垫 17、 绝缘板 16全绝缘, 拉 带 19两端与上、 下夹件 9、 12全绝缘, 然后用接地线连接, 使其上、 下夹件 9、 12单 独接地, 解决了超大容量、 高电压变压器如果夹件由于漏磁产生环流时不能够形成回路 的问题, 同时当出现铁心多点接地检查时容易查出。
如图 9A、 图 9B、 图 10A、 图 10B所示, 单相四柱铁心 14上、 下夹件腹板 20、 22上 通过双向螺栓固接有夹件磁屏蔽 21、 23, 并用绝缘板 24夹紧磁屏蔽, 可以使漏磁沿硅钢 片压延方向行走, 并将大部分漏磁引入单相四柱铁心 14的主磁通, 漏磁产生的损耗大幅 度降低; 同时在高、 低侧上夹件腹板外表面加装铜板 25作为铜屏蔽, 有效的将低压铜排 弓 I线引起的漏磁反射回下节油箱 6内, 有效的防止了上夹件腹板 20的局部过热。 由于增 加了变压器上下部的夹紧方式, 从而使夹件磁屏蔽 21、 23噪音减少; 此外, 由于上夹件 9外表面覆盖有铜屏蔽 25, 因此增加了低压引线的布置空间, 使低压引线结构布置简单。
如图 11A、 图 11B、 图 11C所示, 变压器低压引线采用两个单相电屏蔽结构位于变 压器低压侧的上方, 与变压器的上节油箱 7连接, 包括两个独立的低压升高座 33, 其内 安装有电屏蔽网 26。
单相变压器两个低压端子分别插入两个低压升高座 33内, 并由低压升高座 33上部 引出。 低压升高座 33为圆筒式结构, 其内壁的上端与上盖板 29采用焊接固接, 下端连 接有下法兰 27。为了在搬运低压升高座 33时保持其摆放平稳,在低压升高座 33底面的 下法兰 27上可拆卸地安装有下盖板 31。 低压升高座 33的内壁上及上盖板 29的底面上 设有电屏蔽网 26, 上盖板 29及其内壁上的电屏蔽网 26下方法兰 27上均开有孔, 用于 变压器低压端子穿过。 电屏蔽网 26为导电率高的铜板 32。在上盖板 29的上表面固定有 吊板 28及封闭母线法兰 30。
如图 12〜13所示, 变压器主体内部包含: 低压绕组出头 34均在上端, 通过铜排 35 连接实现低压双柱并联。 低压绕组两个出头 34平行相邻, 电流相等方向相反, 从而减 少大电流引线在铁芯拉板腹板 20上的漏磁, 有效的控制了变压器局部过热。 调压引线 采用两个铁心主柱线圈中各引出上、 下两路,, 共四路引线接到无载开关 37的四个接线 盘上。
如图 14〜15所示,变压器 1主体油箱加强铁 38上安装有变压器运输时采用的运输 肩座 39。 运输肩座 39是通过螺栓直接连接在变压器油箱加强铁 38上, 变压器通过 D36 运输车 40运输到安装现场后可拆卸下来, 在其它变压器运输时可重复使用。

Claims

权 利 要 求 书
1. 一种单相超大容量发电机变压器, 具有高压套管、 低压套管、 高压中性点套管、 储油柜、 上节油箱、 下节油箱、 冷却装置以及无载开关, 其特征在于:
上节油箱 (7) 和下节油箱 (6) 内设置单相四柱铁心结构, 单相四柱铁心的两主柱 铁心上分别套有高、 低压绕组, 铁心两主柱高、 低压绕组并联连接; 两主柱低压绕组出 头均在上端, 通过铜排 (35) 连接形成低压双柱并联结构;
高压套管 (2)直接从高压绕组中部竖直引出; 高压中性点套管 (4)位于高压侧靠 近储油柜 (5), 高压中性点套管 (4) 竖直引出直接与中性点引线连接; 低压套管 (3) 位于上节油箱 (7) 的低压侧, 低压套管 (3)直接与低压绕组出头 (34) 引出的低压引 线连接;
储 柜 (5)位于上节油箱 (7) 上方与高压套管相对的另一侧, 垂直于变压器长轴 方向并延长轴向外延伸;
冷却装置 (8) 集中布置在上节油箱 (7) 和下节油箱 (6) 具有高压套管 (2) 和高 压中性点套管 (4) 一侧的外侧, 与变压器长轴方向平行;
低压套管 (3) 从低压引线引出后, 与外部核电站发电机组相连;
无载开关 (37) 位于变压器 (1) 的低压侧, 其接线盘接有高压绕组中的调压段在 低压侧引出的分接调压引线。
2. 按权利要求 1所述的单相超大容量发电机变压器, 其特征在于: 所述单相四柱 结构为由两个铁心主柱、 两个旁柱、 两个上轭和四个旁轭构成的单相变压器闭合磁路。
3. 按权利要求 1所述的单相超大容量发电机变压器, 其特征在于: 所述单相四柱 铁心具有上、 下夹件 (9、 12)、 上、 下夹件腹板 (20、 22), 上、 下夹件腹板 (20、 22) 上分别通过连接件固接有上、 下夹件磁屏蔽 (21、 23), 上夹件 (9)外表面覆盖有铜屏 蔽 (25), 上夹件磁屏蔽 (21) 固接在铜屏蔽 (25) 上。
4. 按权利要求 1所述的单相超大容量发电机变压器, 其特征在于: 两个铁心主柱 线圈中各引出上、 下两路调压引线, 共四路引线连接到无载开关的四个接线盘上。
5. 按权利要求 1所述的单相超大容量发电机变压器, 其特征在于: 低压绕组的两 个出头平行相邻, 电流相等, 方向相反。
6. 按权利要求 1所述的单相超大容量发电机变压器, 其特征在于: 所述低压引线 采用单相电屏蔽结构, 包括一低压升高座 (33), 低压升高座 (33) 内安装有电屏蔽网
(26), 两个低压端子均插入两个低压升高座 (33) 中, 并由低压升高座 (33) 上部引 出。
7. 按权利要求 6所述的单相超大容量发电机变压器, 其特征在于: 所述低压升高 座(33)为圆筒式结构, 其内壁的上端与上盖板(29)相固接, 下端连接有下法兰(27), 低压升高座 (33) 的内壁上及上盖板 (29) 的底面上设有屏蔽网 (26), 低压端子穿过 上盖板 (29), 在上盖板 (29) 的上表面固定有低压套管 (3) 及封闭母线法兰 (30); 在低压升高座 (33) 底面通过法兰可拆卸地安装有下盖板 (31)。
8. 按权利要求 1所述的超大容量发电机变压器, 其特征在于: 所述下节油箱 (6) 上设加强铁, 加强铁上可拆卸地安装有运输肩座。
PCT/CN2010/074778 2010-06-30 2010-06-30 单相超大容量核电站变压器 WO2012000181A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074778 WO2012000181A1 (zh) 2010-06-30 2010-06-30 单相超大容量核电站变压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074778 WO2012000181A1 (zh) 2010-06-30 2010-06-30 单相超大容量核电站变压器

Publications (1)

Publication Number Publication Date
WO2012000181A1 true WO2012000181A1 (zh) 2012-01-05

Family

ID=45401312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074778 WO2012000181A1 (zh) 2010-06-30 2010-06-30 单相超大容量核电站变压器

Country Status (1)

Country Link
WO (1) WO2012000181A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456474A (zh) * 2013-09-29 2013-12-18 丹阳市金诺电器有限公司 一种组合式变压器低压套管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161456B2 (en) * 2003-03-17 2007-01-09 Baker Hughes Incorporated Systems and methods for driving large capacity AC motors
CN201122502Y (zh) * 2007-12-05 2008-09-24 西安电力机械制造公司 一种组合式变压器的结构
CN101354955A (zh) * 2008-05-28 2009-01-28 保定天威集团有限公司 用于at供电方式高速电气化铁路的单相牵引变压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161456B2 (en) * 2003-03-17 2007-01-09 Baker Hughes Incorporated Systems and methods for driving large capacity AC motors
CN201122502Y (zh) * 2007-12-05 2008-09-24 西安电力机械制造公司 一种组合式变压器的结构
CN101354955A (zh) * 2008-05-28 2009-01-28 保定天威集团有限公司 用于at供电方式高速电气化铁路的单相牵引变压器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456474A (zh) * 2013-09-29 2013-12-18 丹阳市金诺电器有限公司 一种组合式变压器低压套管
CN103456474B (zh) * 2013-09-29 2016-03-30 丹阳市金诺电器有限公司 一种组合式变压器低压套管

Similar Documents

Publication Publication Date Title
CN201804691U (zh) 单相超大容量核电站变压器
CN102856065B (zh) 单相超大容量强电流短路试验变压器
CN101145439B (zh) 一种新型发电机变压器
CN102315007B (zh) 单相超大容量核电站变压器
CN203377066U (zh) 一种scb13-nx1免维护三相树脂绝缘干式变压器
CN101192467B (zh) 非晶合金接地变压器的器身结构
CN105761872B (zh) 一种用于饱和铁心型超导限流器的高温超导绕组
CN202758704U (zh) 干式铁芯平波电抗器
WO2012000181A1 (zh) 单相超大容量核电站变压器
CN203338934U (zh) 一种66千伏带站用配电输出的接地变压器
CN217847642U (zh) 一种超大容量移动式变压器
CN116153634A (zh) 一种组合式110kV三相干式变压器
CN104124036B (zh) 磁耦合电抗器
CN201549330U (zh) 电抗器及其星架
CN206421893U (zh) 变压器新型低压绕组引出线结构
CN103310960A (zh) 一种66千伏带站用配电输出的接地变压器
CN200972825Y (zh) 一种组合式互感器
CN210073579U (zh) 一种一体式消弧线圈无功补偿装置
CN219512942U (zh) 一种组合式110kV三相干式变压器
KR101494599B1 (ko) 전철 급전용 단권 몰드변압기
CN114300245B (zh) 变压器系统
CN204834243U (zh) 采用玻璃钢绝缘子柱的并联电抗器
CN208970324U (zh) 一种铁芯对地绝缘性能加强的干式变压器
CN203456255U (zh) 一种牵引式变压器线圈结构
CN213935837U (zh) 一种变压器铁心接地引线结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853886

Country of ref document: EP

Kind code of ref document: A1