WO2011162427A1 - Furnace having even distribution of gas - Google Patents

Furnace having even distribution of gas Download PDF

Info

Publication number
WO2011162427A1
WO2011162427A1 PCT/KR2010/004083 KR2010004083W WO2011162427A1 WO 2011162427 A1 WO2011162427 A1 WO 2011162427A1 KR 2010004083 W KR2010004083 W KR 2010004083W WO 2011162427 A1 WO2011162427 A1 WO 2011162427A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
reduction furnace
furnace
reducing gas
down pipe
Prior art date
Application number
PCT/KR2010/004083
Other languages
French (fr)
Korean (ko)
Inventor
강신명
이상호
Original Assignee
주식회사 포스코
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 주식회사 포스코건설 filed Critical 주식회사 포스코
Priority to PCT/KR2010/004083 priority Critical patent/WO2011162427A1/en
Priority to EP10853710.1A priority patent/EP2586877B1/en
Priority to CN2010800675952A priority patent/CN102947470A/en
Publication of WO2011162427A1 publication Critical patent/WO2011162427A1/en
Priority to ZA2013/00525A priority patent/ZA201300525B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/005Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature

Definitions

  • the present invention relates to a reduction furnace for reducing ore containing iron oxide components and an apparatus for melting molten reduced ore to produce molten iron.
  • FIG. 1 shows a reduction furnace for reducing ore containing iron oxide components and an apparatus 1 for melting molten reduced ore to produce molten iron.
  • the apparatus 1 includes a reducing furnace 10 for blowing or reducing a precipitated ore such as pellets or lumps.
  • the charge is introduced into the reduction furnace 10 through the charge inlet 11.
  • the charges reduced in the reduction furnace 10 are quantitatively discharged by the discharge screw 13, and the discharged charges are supplied to the melting furnace 20 through the vertical down pipe 14 and the inclined down pipe 16.
  • a drop box 15 is provided in the vertical down pipe 14, and a nitrogen supply pipe (not shown) is connected to the drop box 15 to blow cooling nitrogen into the vertical down pipe 14. By this cooling nitrogen, the heat shock applied to the discharge screw 13 by the gas flowing back from the melting furnace 20 to the reducing furnace 10 can be reduced.
  • coal is gasified to produce a reducing gas necessary for reducing the charges, and the charged charges reduced and supplied in the reduction furnace 10 are melted using the heat generated at this time.
  • the reducing gas generated in the melting furnace 20 is collected in the cyclone 22 and then blown into the reducing furnace 10 through the reducing gas inlet 17.
  • the reduced reducing gas passes through the charge filling layer 30 in the form of an oxide to reduce the charge.
  • the reduced reducing gas is not supplied to the center of the reduction furnace 10 due to the resistance by the charged charges, and mainly flows through the wall.
  • Non-uniform distribution of the reducing gas causes a severe imbalance in the reduction rate for each position of the charges in the reduction furnace 10, and breaks the thermal balance of the melting furnace 20 by supplying the unreduced charges in the center to the melting furnace 20, It causes problems such as reduced production, higher fuel costs and lower utilization.
  • the size of the conventional reduction furnace 10 is enlarged for the purpose of increasing the capacity, the non-uniform distribution of the reducing gas becomes more serious, and if it is desired to increase the radial size of the reduction furnace 10, It becomes more difficult.
  • the present invention is designed to solve the problems of the prior art, the reduction gas supplied into the reduction furnace in the reduction process is not supplied to the center of the reduction furnace mainly to remove the non-uniform distribution of the reducing gas flowing through the wall, reducing furnace
  • the reduction gas supplied into the reduction furnace in the reduction process is not supplied to the center of the reduction furnace mainly to remove the non-uniform distribution of the reducing gas flowing through the wall, reducing furnace
  • the present invention is to uniformly distribute the reducing gas in the radial direction of the reduction furnace, so that the capacity of the facility can be increased by simply increasing the radial direction of the reduction furnace and dead-man at the time of increasing the capacity of the reduction furnace. It aims to do it.
  • a charge inlet for charging the charge and a reducing gas inlet for blowing the reducing gas, the charge inlet is formed at the top,
  • the reducing gas inlet is provided in the reduction furnace, characterized in that installed in the bottom.
  • the reducing gas inlet is installed at the bottom of the existing Deadman located in the lower part of the reduction furnace.
  • a passage communicating with the reducing gas inlet is formed in the deadman.
  • a plurality of passages are formed symmetrically in the radial direction.
  • the vertical down pipe from which the charge reduced by the reducing gas is discharged is filled with the charge in the normal operating state.
  • a drop box is installed at an end of the vertical down pipe, and the drop box is provided with a discharge screw for quantitatively discharging the charge.
  • the vertical down pipe has a predetermined vertical length to produce a pressure loss of gas flowing back through the vertical down pipe to the reduction furnace.
  • the reducing gas is blown through the deadman disposed at the bottom center of the reduction furnace, the reduction rate of the charges in the reduction furnace is increased, the reduction rate between the charge particles is uniform, and when the charges are supplied to the melting furnace, This reduces the thermal burden on the plant, resulting in increased production, lower fuel costs, increased utilization and operational stability.
  • the present invention by uniformly distributing the reducing gas in the radial direction of the reduction furnace, it is possible to increase the capacity of the equipment simply by increasing the radial direction of the reduction furnace and deadman at the time of increasing the capacity of the reduction furnace.
  • FIG. 1 is a longitudinal cross-sectional view of a conventional apparatus for producing molten iron by melting a reduced ore and reduced ore containing iron oxide components.
  • FIG. 2 is a longitudinal sectional view of a reduction furnace according to an embodiment of the present invention.
  • FIG. 2 shows a longitudinal sectional view of a reduction furnace 100 according to an embodiment of the invention.
  • a charge inlet 110 and a plurality of exhaust gas outlets 120 are provided at an upper portion of the reduction furnace 100.
  • a dead-man 180 (or a dead- woman, or the same below) is installed at an inner lower end of the reduction furnace 100. Deadman 180 is installed to prevent the differentiation of the charge or the formation of a stagnation layer by the charge load.
  • a reducing gas inlet 170 is installed at the bottom of the dead man 180, and a passage is formed in the dead man 180 so that the reducing gas blown through the reducing gas inlet 170 may pass therethrough.
  • the reducing gas inlet 170 is formed at the radial center of the reduction furnace 100, and a plurality of passages in the dead man 180 communicating with the reducing gas inlet 170 are radially symmetrically formed. desirable.
  • a vertical down pipe 140 connected to the reduction furnace 100 is installed at the lower part of the reduction furnace 100, and a drop box 150 is installed at an end of the vertical down pipe 140.
  • the drop box 150 is equipped with a discharge screw 130 that is a removable charge quantity supply device.
  • the inclined down pipe 160 connected to the dome portion of the melting furnace is installed below the drop box 150.
  • the charge is introduced into the reduction furnace 100 through the charge inlet 110.
  • the charge reduced in the reduction furnace 100 is moved to the vertical down pipe 140, is discharged quantitatively by the discharge screw 130 formed at the end of the vertical down pipe 140.
  • the discharged charge is supplied to the melting furnace through the inclined down pipe 160.
  • the reducing gas is discharged through the exhaust gas outlet 120 after reducing the charge.
  • the interior of the reduction furnace 100 and the vertical down pipe 140 is filled with a charge.
  • reducing gas can pass through the bottom of the deadman 180 is already installed in the lower end of the reducing furnace.
  • a reducing gas inlet 170 to blow the reducing gas of the melting furnace, a uniform distribution in the radial direction is induced from a nonuniform distribution phenomenon of the conventional reducing gas, thereby increasing the reducing gas utilization rate and the reduction rate of the charged material and making the reducing rate uniform.
  • the thermal burden on the furnace is reduced to increase production, reduce fuel costs, increase operation rate, and increase operation stability.
  • the uniform distribution of the reducing gas in the radial direction is possible, the capacity of the facility can be increased simply by increasing the radial direction of the reduction furnace 100 and the deadman 180 at the time of increasing the capacity of the reduction furnace 100.
  • a discharge screw 130 which is a charge quantity supply device at the lower end of the reduction furnace, is installed in the drop box 150, a pressure loss is generated in the vertical down pipe 140, thereby reducing the high-pressure reducing gas in the melting furnace. Can be prevented from flowing back into the reduction furnace 100 through the discharge screw 130. That is, the high-pressure reducing gas in the melting furnace located below the inclined down pipe 160 is prevented from flowing back into the reduction furnace 100 due to the differential pressure of the vertical down pipe 140.
  • the vertical down pipe 140 is installed in order to prevent backflow of the reducing gas through the discharge screw 130. Since the pressure loss occurs, the height of the reduction furnace 100 may be reduced by the charge unreduced height h of FIG. 1.
  • the reduction furnace 100 in the prior art, although nitrogen was blown into the vertical down pipe 140 for the purpose of reducing the thermal shock applied to the discharge screw 130 by the gas flowing back from the melting furnace to the reduction furnace 100, the reduction furnace 100 according to the present invention. In the vertical down pipe 140 does not require nitrogen to be blown because the nitrogen consumption can be reduced and operating costs can be reduced.

Abstract

The present invention relates to a furnace for reducing ore containing an iron oxide component, comprising a charge inlet port (110) into which a charge is inserted, and a reduced gas intake port (170) into which reduced gas is blown, wherein the charge inlet port (110) is formed on the upper portion, and the reduced gas intake port (170) is provided at the center of the lower portion. According to the present invention, the reduced gas can be distributed evenly by blowing the reduced gas into the center of the lower portion of the furnace, thereby increasing the reduction rate of the charge inside the furnace and rendering a uniform reduction rate between the particles of the charge.

Description

가스류 분포가 균일한 환원로Reduction furnace with uniform gas flow distribution
본 발명은 산화철 성분을 함유하는 광석을 환원시키는 환원로와 환원된 광석을 용융시켜 용선을 제조하는 장치에 관한 것이다.The present invention relates to a reduction furnace for reducing ore containing iron oxide components and an apparatus for melting molten reduced ore to produce molten iron.
도 1은 종래에 산화철 성분을 함유하는 광석을 환원시키는 환원로와 환원된 광석을 용융시켜 용선을 제조하는 장치(1)를 도시하고 있다. 도 1에 도시된 바와 같이, 이 장치(1)는 환원 가스를 취입하여 펠렛(pellet) 또는 괴광 등 괴상화된 광석류를 환원시키거나 예열하기 위한 환원로(10)를 구비한다. 장입물은 장입물 투입구(11)를 통해 환원로(10)에 투입된다. 환원로(10)에서 환원된 장입물은 배출 스크류(13)에 의해 정량 배출되며, 이 배출된 장입물은 수직 다운 파이프(14)와 경사 다운 파이프(16)를 통해 용융로(20)에 공급된다. 수직 다운 파이프(14)에는 드롭 박스(15)가 구비되어 있으며, 이 드롭 박스(15)에는 질소 공급관(미도시)이 연결되어 수직 다운 파이프(14)에 냉각용 질소를 취입한다. 이 냉각용 질소에 의해 용융로(20)에서 환원로(10)로 역류하는 가스가 배출 스크류(13)에 가하는 열충격을 감소할 수 있다.FIG. 1 shows a reduction furnace for reducing ore containing iron oxide components and an apparatus 1 for melting molten reduced ore to produce molten iron. As shown in FIG. 1, the apparatus 1 includes a reducing furnace 10 for blowing or reducing a precipitated ore such as pellets or lumps. The charge is introduced into the reduction furnace 10 through the charge inlet 11. The charges reduced in the reduction furnace 10 are quantitatively discharged by the discharge screw 13, and the discharged charges are supplied to the melting furnace 20 through the vertical down pipe 14 and the inclined down pipe 16. . A drop box 15 is provided in the vertical down pipe 14, and a nitrogen supply pipe (not shown) is connected to the drop box 15 to blow cooling nitrogen into the vertical down pipe 14. By this cooling nitrogen, the heat shock applied to the discharge screw 13 by the gas flowing back from the melting furnace 20 to the reducing furnace 10 can be reduced.
용융로(20)에서는 석탄을 가스화하여 장입물의 환원에 필요한 환원 가스를 제조하며, 또한 이때 발생한 열을 이용하여 환원로(10)에서 환원되어 공급된 장입물을 용융시킨다.In the smelting furnace 20, coal is gasified to produce a reducing gas necessary for reducing the charges, and the charged charges reduced and supplied in the reduction furnace 10 are melted using the heat generated at this time.
용융로(20)에서 발생된 환원 가스는 사이클론(22)에서 집진된 후 환원 가스 취입구(17)를 통해 환원로(10) 내에 취입된다. 취입된 환원 가스는 산화물 형태의 장입물 충진층(30)을 통과하면서 장입물을 환원시킨다. 그런데, 취입된 환원 가스는 충진된 장입물에 의한 저항으로 인하여 환원로(10) 중심까지 공급되지 못하고 주로 벽부를 타고 흐른다. 환원 가스의 불균일 분포는, 환원로(10) 내의 장입물의 위치별로 환원율의 심각한 불균형을 초래하고, 중심부의 미환원된 장입물이 용융로(20)에 공급됨으로써 용융로(20)의 열적 균형을 깨뜨려, 생산량 감소, 연료비 상승, 가동률 저하 등의 문제점을 야기시킨다. 특히, 종래의 환원로(10)를 용량 증대의 목적으로 규모를 크게 한 경우 환원 가스의 불균일 분포는 더 심각해지며, 환원로(10)의 반경 방향의 크기를 늘리고자 한다면 환원 가스의 중심부 도달은 더욱 어렵게 된다.The reducing gas generated in the melting furnace 20 is collected in the cyclone 22 and then blown into the reducing furnace 10 through the reducing gas inlet 17. The reduced reducing gas passes through the charge filling layer 30 in the form of an oxide to reduce the charge. However, the reduced reducing gas is not supplied to the center of the reduction furnace 10 due to the resistance by the charged charges, and mainly flows through the wall. Non-uniform distribution of the reducing gas causes a severe imbalance in the reduction rate for each position of the charges in the reduction furnace 10, and breaks the thermal balance of the melting furnace 20 by supplying the unreduced charges in the center to the melting furnace 20, It causes problems such as reduced production, higher fuel costs and lower utilization. In particular, when the size of the conventional reduction furnace 10 is enlarged for the purpose of increasing the capacity, the non-uniform distribution of the reducing gas becomes more serious, and if it is desired to increase the radial size of the reduction furnace 10, It becomes more difficult.
또한, 용융로(20)에서 발생된 환원 가스가 사이클론(22)을 거쳐 환원로(10) 내에 취입될 때에는 사이클론(22)에서 압력 손실이 발생하기 때문에, 상대적으로 압력 손실이 적은 수직 다운 파이프(14) 및 배출 스크류(13)를 통해 환원로(10) 내로 역류할 염려가 있다. 따라서, 이를 방지하기 위해 배출 스크류(13)를 통해 환원로(10) 내로 역류하는 환원 가스의 압력 손실을 발생할 목적으로 장입물 미환원 높이(h)의 설치가 필수적이고, 이로 인해 불필요하게 설비의 높이를 높일 수 밖에 없다.In addition, since the pressure loss occurs in the cyclone 22 when the reducing gas generated in the melting furnace 20 is blown into the reduction furnace 10 via the cyclone 22, the vertical down pipe 14 having relatively low pressure loss is produced. And back through the discharge screw 13 into the reduction furnace 10. Therefore, in order to prevent this, it is necessary to install the charge unreduced height h for the purpose of generating a pressure loss of the reducing gas flowing back into the reduction furnace 10 through the discharge screw 13, thereby unnecessarily You can only increase the height.
본 발명은 이러한 종래 기술의 문제점을 해결하고자 고안된 것으로, 환원 공정에서 환원로 내부로 공급되는 환원 가스가 환원로 중심까지 공급되지 못하고 주로 벽부를 타고 흐르는 환원 가스의 불균일 분포 현상을 제거하여, 환원로 내의 장입물의 환원율을 높이고 장입물 입자간 환원율을 균일하게 함으로써, 장입물이 용융로에 공급될 때 용융로의 열적 부담을 감소시켜 생산량 증대, 연료비 감소, 가동률 상승 및 조업 안정성을 달성하는 것을 목적으로 한다.The present invention is designed to solve the problems of the prior art, the reduction gas supplied into the reduction furnace in the reduction process is not supplied to the center of the reduction furnace mainly to remove the non-uniform distribution of the reducing gas flowing through the wall, reducing furnace By increasing the reduction rate of the charges in the contents and making the reduction rate between the charged particles uniform, it is aimed to reduce the thermal burden of the melting furnace when the charges are supplied to the melting furnace, thereby increasing production, reducing fuel costs, increasing the operating rate and operating stability.
또한, 본 발명은 환원로의 반경 방향으로 환원 가스가 균일하게 분포하도록 함으로써, 환원로의 용량 증대시 간단하게 환원로 및 데드맨(dead-man)의 반경 방향 증대만으로 설비의 용량 증대가 가능하도록 하는 것을 목적으로 한다.In addition, the present invention is to uniformly distribute the reducing gas in the radial direction of the reduction furnace, so that the capacity of the facility can be increased by simply increasing the radial direction of the reduction furnace and dead-man at the time of increasing the capacity of the reduction furnace. It aims to do it.
상기와 같은 목적을 달성하기 위한 본 발명의 제1 특징에 따르면, 장입물이 투입되는 장입물 투입구, 및 환원 가스가 취입되는 환원 가스 취입구를 구비하고, 상기 장입물 투입구는 상부에 형성되며, 상기 환원 가스 취입구는 저부에 설치되는 것을 특징으로 하는 환원로를 제공한다. According to a first aspect of the present invention for achieving the above object, it is provided with a charge inlet for charging the charge, and a reducing gas inlet for blowing the reducing gas, the charge inlet is formed at the top, The reducing gas inlet is provided in the reduction furnace, characterized in that installed in the bottom.
본 발명의 제2 특징에 따르면, 환원로 하부에 위치하는 기존의 데드맨 저부로 상기 환원 가스 취입구가 설치된다.According to the second aspect of the present invention, the reducing gas inlet is installed at the bottom of the existing Deadman located in the lower part of the reduction furnace.
본 발명의 제3 특징에 따르면, 상기 데드맨의 내부에는 상기 환원 가스 취입구와 연통하는 통로가 형성된다.According to a third aspect of the present invention, a passage communicating with the reducing gas inlet is formed in the deadman.
본 발명의 제4 특징에 따르면, 상기 통로는 반경 방향으로 대칭되게 복수 개 형성된다.According to a fourth aspect of the invention, a plurality of passages are formed symmetrically in the radial direction.
본 발명의 제5 특징에 따르면, 환원 가스에 의해 환원된 장입물이 배출되는 수직 다운 파이프는 정상 조업 상태에서 장입물로 충진된다. According to a fifth aspect of the invention, the vertical down pipe from which the charge reduced by the reducing gas is discharged is filled with the charge in the normal operating state.
본 발명의 제6 특징에 따르면, 상기 수직 다운 파이프의 단부에 드롭 박스가 설치되고, 상기 드롭 박스에는 장입물을 정량 배출하는 배출 스크류가 설치된다. According to a sixth aspect of the present invention, a drop box is installed at an end of the vertical down pipe, and the drop box is provided with a discharge screw for quantitatively discharging the charge.
본 발명의 제7 특징에 따르면, 상기 수직 다운 파이프는 상기 수직 다운 파이프를 통해 환원로로 역류하는 가스의 압력 손실을 발생시키도록 소정의 수직 길이를 갖는다.According to a seventh aspect of the invention, the vertical down pipe has a predetermined vertical length to produce a pressure loss of gas flowing back through the vertical down pipe to the reduction furnace.
본 발명에 따르면, 환원로의 저부 중심에 배치되는 데드맨을 통해 환원 가스를 취입하므로, 환원로 내의 장입물의 환원율을 높이고 장입물 입자간 환원율을 균일하게 하고, 장입물이 용융로에 공급될 때 용융로의 열적 부담을 감소시켜 생산량 증대, 연료비 감소, 가동률 상승 및 조업 안정성을 달성할 수 있다.According to the present invention, since the reducing gas is blown through the deadman disposed at the bottom center of the reduction furnace, the reduction rate of the charges in the reduction furnace is increased, the reduction rate between the charge particles is uniform, and when the charges are supplied to the melting furnace, This reduces the thermal burden on the plant, resulting in increased production, lower fuel costs, increased utilization and operational stability.
또한, 본 발명은 환원로의 반경 방향으로 환원 가스가 균일하게 분포하도록 함으로써, 환원로의 용량 증대시 간단하게 환원로 및 데드맨의 반경 방향 증대만으로 설비의 용량 증대가 가능하다.In addition, the present invention by uniformly distributing the reducing gas in the radial direction of the reduction furnace, it is possible to increase the capacity of the equipment simply by increasing the radial direction of the reduction furnace and deadman at the time of increasing the capacity of the reduction furnace.
또한, 장입물 공급 장치인 배출 스크류의 위치를 환원로 하단에서 드롭 박스 부분으로 옮김으로써 수직 다운 파이프 내에 차압을 발생시켜 고압의 용융로 가스가 환원로 내부로 역류하는 것을 방지할 수 있다.In addition, by moving the position of the discharge screw, which is the charge supply device from the lower end of the reduction furnace to the drop box portion, it is possible to prevent the high-pressure molten gas from flowing back into the reduction furnace by generating a differential pressure in the vertical down pipe.
도 1은 종래에 산화철 성분을 함유하는 광석을 환원시키는 환원로와 환원된 광석을 용융시켜 용선을 제조하는 장치의 종단면도이다.1 is a longitudinal cross-sectional view of a conventional apparatus for producing molten iron by melting a reduced ore and reduced ore containing iron oxide components.
도 2는 본 발명의 실시예에 따른 환원로의 종단면도이다.2 is a longitudinal sectional view of a reduction furnace according to an embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
100 환원로 110 장입물 투입구 100 Reduction Furnace 110 Filling Slot
120 장입물 투입구 130 배출 스크류120 Charging inlet 130 Ejection screw
140 수직 다운 파이프 150 드롭 박스140 vertical down pipe 150 drop box
160 경사 다운 파이프 170 환원 가스 취입구160 inclined down pipe 170 reducing gas inlet
180 데드맨 180 deadman
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 환원로(100)의 종단면도를 도시한다. 도 2를 참조하면, 환원로(100)의 상부에 장입물 투입구(110) 및 복수의 배가스 배출구(120)가 구비된다. 환원로(100)의 내부 하단에는 데드맨(180, dead-man)(또는 데드우먼(dead-woman), 이하에서 같다)이 설치되어 있다. 데드맨(180)은 장입물 하중에 의한 장입물의 분화 또는 정체층 형성을 막기 위해 설치된다. 데드맨(180)의 저부에는 환원 가스 취입구(170)가 설치되고 데드맨(180)의 내부에는 환원 가스 취입구(170)를 통해 취입되는 환원 가스가 통과할 수 있도록 통로가 형성된다. 환원 가스 취입구(170)는 환원로(100)의 반경 방향 중심에 형성되고, 환원 가스 취입구(170)와 연통되는 데드맨(180) 내부의 통로는 반경 방향으로 대칭되게 복수 개 형성되는 것이 바람직하다.2 shows a longitudinal sectional view of a reduction furnace 100 according to an embodiment of the invention. Referring to FIG. 2, a charge inlet 110 and a plurality of exhaust gas outlets 120 are provided at an upper portion of the reduction furnace 100. A dead-man 180 (or a dead-woman, or the same below) is installed at an inner lower end of the reduction furnace 100. Deadman 180 is installed to prevent the differentiation of the charge or the formation of a stagnation layer by the charge load. A reducing gas inlet 170 is installed at the bottom of the dead man 180, and a passage is formed in the dead man 180 so that the reducing gas blown through the reducing gas inlet 170 may pass therethrough. The reducing gas inlet 170 is formed at the radial center of the reduction furnace 100, and a plurality of passages in the dead man 180 communicating with the reducing gas inlet 170 are radially symmetrically formed. desirable.
환원로(100)의 하부에는 환원로(100)와 연결된 수직 다운 파이프(140)가 설치되며, 수직 다운 파이프(140)의 단부에는 드롭 박스(150)가 설치된다. 드롭 박스(150)에는 탈부착이 가능한 장입물 정량 공급 장치인 배출 스크류(130)가 장착된다. 드롭 박스(150)의 하부에는 용융로의 돔(dome)부와 연결되는 경사 다운 파이프(160)가 설치된다.A vertical down pipe 140 connected to the reduction furnace 100 is installed at the lower part of the reduction furnace 100, and a drop box 150 is installed at an end of the vertical down pipe 140. The drop box 150 is equipped with a discharge screw 130 that is a removable charge quantity supply device. The inclined down pipe 160 connected to the dome portion of the melting furnace is installed below the drop box 150.
장입물은 장입물 투입구(110)를 통해 환원로(100)에 투입된다. 환원로(100)에서 환원된 장입물은 수직 다운 파이프(140)로 이동하여, 수직 다운 파이프(140)의 단부에 형성된 배출 스크류(130)에 의해 정량 배출된다. 배출된 장입물은 경사 다운 파이프(160)를 통해 용융로에 공급된다. 한편, 환원 가스는 장입물을 환원시킨 후 배가스 배출구(120)를 통해 배출된다.The charge is introduced into the reduction furnace 100 through the charge inlet 110. The charge reduced in the reduction furnace 100 is moved to the vertical down pipe 140, is discharged quantitatively by the discharge screw 130 formed at the end of the vertical down pipe 140. The discharged charge is supplied to the melting furnace through the inclined down pipe 160. On the other hand, the reducing gas is discharged through the exhaust gas outlet 120 after reducing the charge.
정상 조업 상태에서 환원로(100) 및 수직 다운 파이프(140)의 내부는 장입물로 충진되어 있다.In the normal operating state, the interior of the reduction furnace 100 and the vertical down pipe 140 is filled with a charge.
이와 같은 환원로(100)의 구성에 따르면, 환원로 중간 벽부에 위치한 종래의 환원 가스 취입구 대신에 환원로 내부 하단에 기 설치되어 있는 데드맨(180)의 저부에 환원 가스가 통과할 수 있는 환원 가스 취입구(170)를 설치하여 용융로의 환원 가스를 취입되게 함으로써, 종래 환원 가스의 불균일 분포 현상으로부터 반경 방향의 균일 분포를 유도하고, 환원 가스 이용율과 장입물의 환원율을 높이고 환원율을 균일하게 한다. 또한, 장입물이 용융로에 공급될 때 용융로의 열적 부담을 감소시켜 생산량 증대, 연료비 감소, 가동율 상승 및 조업 안정성을 높인다. 또한, 반경 방향으로 환원 가스의 균일 분포가 가능하기 때문에, 환원로(100)의 용량 증대시 간단하게 환원로(100) 및 데드맨(180)의 반경 방향 증대만으로 설비의 용량 증대가 가능하다.According to the configuration of such a reducing furnace 100, instead of the conventional reducing gas inlet located in the middle wall of the reducing furnace, reducing gas can pass through the bottom of the deadman 180 is already installed in the lower end of the reducing furnace. By providing a reducing gas inlet 170 to blow the reducing gas of the melting furnace, a uniform distribution in the radial direction is induced from a nonuniform distribution phenomenon of the conventional reducing gas, thereby increasing the reducing gas utilization rate and the reduction rate of the charged material and making the reducing rate uniform. . In addition, when the charge is supplied to the furnace, the thermal burden on the furnace is reduced to increase production, reduce fuel costs, increase operation rate, and increase operation stability. In addition, since the uniform distribution of the reducing gas in the radial direction is possible, the capacity of the facility can be increased simply by increasing the radial direction of the reduction furnace 100 and the deadman 180 at the time of increasing the capacity of the reduction furnace 100.
또한, 장입물 정량 공급 장치인 배출 스크류(130)를 환원로 하단에 설치하던 것을 드롭 박스(150) 부분에 설치함으로써, 수직 다운 파이프(140) 내에서 압력 손실을 발생시켜 용융로 내의 고압의 환원 가스가 배출 스크류(130)를 통해 환원로(100) 내로 역류하는 것을 방지할 수 있다. 즉, 경사 다운 파이프(160)의 하부에 위치한 용융로 내의 고압의 환원 가스가 수직 다운 파이프(140)의 차압 발생으로 인하여 환원로(100) 내부로 역류하는 것이 방지된다. 종래에는 배출 스크류(130)를 통한 환원 가스의 역류 방지를 위해 환원 가스의 압력 손실을 발생할 목적으로 장입물 미환원 높이(h)의 설치가 필수적이었으나, 본 발명에서는 수직 다운 파이프(140)를 통해 압력 손실이 발생하므로 도 1의 장입물 미환원 높이(h)만큼 환원로(100)의 높이를 줄일 수 있다. In addition, by installing a discharge screw 130, which is a charge quantity supply device at the lower end of the reduction furnace, is installed in the drop box 150, a pressure loss is generated in the vertical down pipe 140, thereby reducing the high-pressure reducing gas in the melting furnace. Can be prevented from flowing back into the reduction furnace 100 through the discharge screw 130. That is, the high-pressure reducing gas in the melting furnace located below the inclined down pipe 160 is prevented from flowing back into the reduction furnace 100 due to the differential pressure of the vertical down pipe 140. Conventionally, in order to prevent backflow of the reducing gas through the discharge screw 130, it was necessary to install the charge unreduced height h for the purpose of generating a pressure loss of the reducing gas, but in the present invention, the vertical down pipe 140 is installed. Since the pressure loss occurs, the height of the reduction furnace 100 may be reduced by the charge unreduced height h of FIG. 1.
또한, 종래에는 용융로에서 환원로(100)로 역류하는 가스가 배출 스크류(130)에 가하는 열충격을 감소할 목적으로 수직 다운 파이프(140)에 질소를 취입하였으나, 본 발명에 따른 환원로(100)에서는 수직 다운 파이프(140)에 취입하는 질소가 필요치 않기 때문에 질소 사용량을 줄일 수 있고 운전 비용을 절감할 수 있다.In addition, in the prior art, although nitrogen was blown into the vertical down pipe 140 for the purpose of reducing the thermal shock applied to the discharge screw 130 by the gas flowing back from the melting furnace to the reduction furnace 100, the reduction furnace 100 according to the present invention. In the vertical down pipe 140 does not require nitrogen to be blown because the nitrogen consumption can be reduced and operating costs can be reduced.

Claims (7)

  1. 장입물이 투입되는 장입물 투입구(110), 및The charge input port 110, the charge is charged, and
    환원 가스가 취입되는 환원 가스 취입구(170)를 구비하고,And a reducing gas inlet 170 through which the reducing gas is blown,
    상기 장입물 투입구(110)는 상부에 형성되며, 상기 환원 가스 취입구(170)는 저부에 설치되는 것을 특징으로 하는 환원로. The charge inlet 110 is formed in the upper, the reducing gas inlet 170 is a reduction furnace, characterized in that installed in the bottom.
  2. 청구항 1에 있어서,The method according to claim 1,
    하부에 배치되는 데드맨(180)을 더 구비하고,Further provided with a deadman 180 disposed below,
    상기 환원 가스 취입구(170)는 상기 데드맨(180)의 저부에 설치되는 것을 특징으로 하는 환원로.The reducing gas inlet 170 is a reduction furnace, characterized in that installed in the bottom of the deadman (180).
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 데드맨(180)의 내부에는 상기 환원 가스 취입구(170)와 연통하는 통로가 형성되는 것을 특징으로 하는 환원로.Reduction furnace, characterized in that the passage in communication with the reducing gas inlet 170 is formed in the deadman (180).
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 통로는 반경 방향으로 대칭되게 복수 개 형성되는 것을 특징으로 하는 환원로.Reduction furnace characterized in that the plurality of passages are formed symmetrically in the radial direction.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    환원 가스에 의해 환원된 장입물이 배출되는 수직 다운 파이프(140)를 더 구비하고, Further provided with a vertical down pipe 140 through which the charge reduced by the reducing gas is discharged,
    정상 조업 상태에서 상기 수직 다운 파이프(140)의 내부는 장입물로 충진되어 있는 것을 특징으로 하는 환원로. Reduction furnace, characterized in that the inside of the vertical down pipe 140 is filled with a charge in the normal operating state.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 수직 다운 파이프(140)의 단부에 드롭 박스(150)가 설치되고, 상기 드롭 박스(150)에는 장입물을 정량 배출하는 배출 스크류(130)가 설치되는 것을 특징으로 하는 환원로. Drop box 150 is installed at the end of the vertical down pipe 140, the drop box 150 is characterized in that the discharge screw 130 for quantitatively discharging the charge is installed.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 수직 다운 파이프(140)는 상기 수직 다운 파이프(140)를 통해 환원로로 역류하는 가스의 압력 손실을 발생시키도록 소정의 수직 길이를 갖는 것을 특징으로 하는 환원로.The vertical down pipe (140) is a reduction furnace characterized in that it has a predetermined vertical length to generate a pressure loss of the gas flowing back to the reduction furnace through the vertical down pipe (140).
PCT/KR2010/004083 2010-06-23 2010-06-23 Furnace having even distribution of gas WO2011162427A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2010/004083 WO2011162427A1 (en) 2010-06-23 2010-06-23 Furnace having even distribution of gas
EP10853710.1A EP2586877B1 (en) 2010-06-23 2010-06-23 Furnace having even distribution of gas
CN2010800675952A CN102947470A (en) 2010-06-23 2010-06-23 Furnace having even distribution of gas
ZA2013/00525A ZA201300525B (en) 2010-06-23 2013-01-21 Furnace having even distribution of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/004083 WO2011162427A1 (en) 2010-06-23 2010-06-23 Furnace having even distribution of gas

Publications (1)

Publication Number Publication Date
WO2011162427A1 true WO2011162427A1 (en) 2011-12-29

Family

ID=45371587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004083 WO2011162427A1 (en) 2010-06-23 2010-06-23 Furnace having even distribution of gas

Country Status (4)

Country Link
EP (1) EP2586877B1 (en)
CN (1) CN102947470A (en)
WO (1) WO2011162427A1 (en)
ZA (1) ZA201300525B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893233B (en) * 2020-07-14 2022-05-13 钢研晟华科技股份有限公司 Hydrogen metallurgy shaft furnace system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032123A (en) * 1976-10-15 1977-06-28 Armco Steel Corporation Shaft furnace for direct reduction of ores
JPS5352206A (en) * 1976-10-05 1978-05-12 Ishikawajima Harima Heavy Ind Co Ltd Cutting off apparatus for reduced iron furnace
KR960001711B1 (en) * 1987-07-13 1996-02-03 뵈스트-알핀 인두스트리 안라겐바우 게젤샤프트 엠.베.하. Apparatus for charging a melting gasifier with gasification media
KR100711777B1 (en) * 2005-12-26 2007-04-25 주식회사 포스코 Method for manufacturing molten irons improving charging method and apparatus for manufacturing molten irons using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458762A1 (en) * 1965-07-29 1969-03-13 Huettenwerk Oberhausen Ag Shaft furnace for the direct reduction of iron ore
DE3422185A1 (en) * 1984-06-12 1985-12-12 Korf Engineering GmbH, 4000 Düsseldorf ARRANGEMENT FROM A CARBURETTOR AND DIRECT REDUCTION STOVE
KR100470730B1 (en) * 2001-02-12 2005-02-21 주식회사 자원리싸이클링 연구소 Smelting Incineration Apparatus and Method of Solid Waste Treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352206A (en) * 1976-10-05 1978-05-12 Ishikawajima Harima Heavy Ind Co Ltd Cutting off apparatus for reduced iron furnace
US4032123A (en) * 1976-10-15 1977-06-28 Armco Steel Corporation Shaft furnace for direct reduction of ores
KR960001711B1 (en) * 1987-07-13 1996-02-03 뵈스트-알핀 인두스트리 안라겐바우 게젤샤프트 엠.베.하. Apparatus for charging a melting gasifier with gasification media
KR100711777B1 (en) * 2005-12-26 2007-04-25 주식회사 포스코 Method for manufacturing molten irons improving charging method and apparatus for manufacturing molten irons using the same

Also Published As

Publication number Publication date
EP2586877A1 (en) 2013-05-01
EP2586877A4 (en) 2016-11-09
EP2586877B1 (en) 2018-08-29
CN102947470A (en) 2013-02-27
ZA201300525B (en) 2013-09-25

Similar Documents

Publication Publication Date Title
CN101935726B (en) Apparatus for manufacturing molten irons
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
CN103993115A (en) Drying and reducing integrated flash ironmaking apparatus and ironmaking method
CN107974525A (en) A kind of reduction shaft furnace
CN103993116A (en) Double tower flash iron making furnace and iron making method
CN206607253U (en) A kind of reduction shaft furnace
CN106086281A (en) The ironmaking of a kind of flash and the integrated apparatus of coal gas and method
CN111511932B (en) Charging system, in particular for shaft smelting reduction furnaces
WO2011162427A1 (en) Furnace having even distribution of gas
KR101424161B1 (en) Process and apparatus for producing iron sponge
KR101060820B1 (en) Reduction furnace with uniform gas flow distribution
CN108917414A (en) A kind of gas-solid heat exchange device and its working method
CN201440036U (en) Equipment for smelting phosphorus with hot method
CN102373307A (en) Novel blast furnace iron making technology with slag iron discharged from center of furnace bottom
US6235080B1 (en) Charging device for directly charging reduced fine iron ore into melter-gasifier
CA2746843C (en) Bustle pipe arrangement
KR101191969B1 (en) Control device and control method for reduction gas of pig iron manufacturing equipment
CN2242248Y (en) Double layer hot air blast furnace
KR101557136B1 (en) Device for transferring powder of apparatus for manufacturing molten iron
JP3572645B2 (en) Raw material charging method for vertical smelting furnace
CN201193233Y (en) Pre-reducing furnace for non blast furnace ironmaking
CN207738781U (en) A kind of reduction shaft furnace
KR20010072469A (en) Shaft furnace
CN106244750B (en) The method of blast furnace process schreyerite under high-coal ratio
CN104704131A (en) Reducing gas blowing apparatus for fluidized reduction furnace

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067595.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11185/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010853710

Country of ref document: EP