WO2011162373A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2011162373A1
WO2011162373A1 PCT/JP2011/064536 JP2011064536W WO2011162373A1 WO 2011162373 A1 WO2011162373 A1 WO 2011162373A1 JP 2011064536 W JP2011064536 W JP 2011064536W WO 2011162373 A1 WO2011162373 A1 WO 2011162373A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
acceleration
control device
restart
Prior art date
Application number
PCT/JP2011/064536
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 大森
陽介 橋本
政義 武田
雪生 森
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to DE112011102145.3T priority Critical patent/DE112011102145B4/en
Priority to CN201180030124.9A priority patent/CN102959211B/en
Publication of WO2011162373A1 publication Critical patent/WO2011162373A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/0837Environmental conditions thereof, e.g. traffic, weather or road conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle control device that automatically stops and restarts an engine.
  • the engine is automatically stopped while the vehicle is stopped, such as waiting for a signal, and the engine is automatically restarted according to the driver's starting operation, thereby saving fuel consumption and improving exhaust emission. Stop / restart devices are in practical use. In recent years, a device for stopping the engine while the vehicle is decelerating before stopping has been proposed.
  • the engine is automatically stopped on condition that the brake depression amount is equal to or greater than the first threshold value X, and the engine is automatically activated on condition that the brake depression amount is equal to or less than the second threshold value Y.
  • a vehicle control device that restarts and makes the first and second threshold values variable according to the vehicle speed.
  • the creep phenomenon is a phenomenon in an AT vehicle in which the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. This phenomenon is caused by a slight torque converter even when the engine is idle. It is generated in order to transmit the motive power toward the driving wheel.
  • An object of the present invention is to provide a vehicle control device that can suitably prevent a vehicle from sliding down when stopping on an uphill road in a vehicle that automatically stops and restarts an engine.
  • a vehicle control device (11) for automatically stopping and automatically restarting the engine (1) determines whether or not the vehicle will drop after stopping when the vehicle (1) is running on an uphill road (S100, S200), and determines that the vehicle will drop.
  • the restart of the engine (1) is started so that the restart of the engine (1) completes the restart until the sliding distance of the vehicle exceeds the allowable distance (La) (S103, S204). .
  • the determination is based on the detection result of the master cylinder pressure (PMC) that is the hydraulic pressure generated by the master cylinder (7) that generates the brake pressure according to the depression force of the brake pedal (5), and the vehicle body acceleration (G ) Based on the detection result.
  • PMC master cylinder pressure
  • G vehicle body acceleration
  • the above determination can be made on the assumption that the vehicle slips when the rearward component (Fg) of gravity acting on the vehicle exceeds the braking force (Fpmc) of the vehicle.
  • the determination may be performed on the assumption that the vehicle slips down when the vehicle rearward acceleration (Ag) generated by gravity exceeds the vehicle braking acceleration (Apmc).
  • the allowable distance (La) is set to “0”, and the engine (1) is restarted when the estimated time (T1) until the vehicle stops reaches the time required for restarting the engine (1). Start to start.
  • the sum of the predicted time (T1) until the vehicle stops and the time (T2) from the vehicle stop until the sliding distance of the vehicle reaches the allowable distance (La) is the restart of the engine (1).
  • the required time is reached, restart of the engine (1) is started.
  • the allowable distance (La) is set to a larger value as the road surface gradient ( ⁇ ) is steeper.
  • the time chart which shows an example of the control aspect of 1st Embodiment of FIG.
  • the figure which shows the relationship of the force which acts on the vehicle stopped on an uphill road.
  • the flowchart which shows the process sequence of the restart determination routine employ
  • the time chart which shows an example of the control aspect of 2nd Embodiment of this invention.
  • the graph which shows the relationship between the road surface gradient and allowable distance in 3rd Embodiment of this invention.
  • FIG. 1 shows a configuration of a vehicle to which the vehicle control device of the present embodiment is applied.
  • the power generated by the engine 1 is transmitted to the drive wheels 4 via an automatic transmission 3 having a torque converter 2 which is a fluid coupling having a torque amplifying action.
  • the vehicle boosts and transmits the depressing force of the brake pedal 5 using the intake negative pressure of the engine 1, and the brake hydraulic pressure (in accordance with the depressing force of the brake pedal 5 boosted by the brake booster 6)
  • a master cylinder 7 for generating a master cylinder pressure PMC is provided.
  • the vehicle also includes a brake actuator 8 that operates according to the brake fluid pressure generated by the master cylinder 7 and applies a braking force to the disc brake device 10 provided on each of the drive wheels 4 and the non-drive wheels 9. Yes.
  • the vehicle engine 1 and brake actuator 8 are controlled by an electronic control unit 11.
  • the electronic control unit 11 includes a wheel speed sensor 12 that detects the wheel speed VS0, a G sensor 13 that detects acceleration (vehicle acceleration G) acting in the longitudinal direction of the vehicle body, and a master cylinder pressure that is a hydraulic pressure generated by the master cylinder 7. Detection signals from various sensors for detecting the driving situation of the vehicle, including the PMC sensor 14 for detecting PMC, are input.
  • the detection value of the G sensor 13 is a positive value when the vehicle center of gravity moves backward, and a negative value when the vehicle center of gravity moves forward.
  • the electronic control unit 11 executes engine control according to the driving state of the vehicle ascertained from the detection results of these sensors. Further, the electronic control unit 11 performs brake control such as ABS (Antilock Brake System), brake assist, and ESC (Electronic Stability Control) by operating the control solenoid of the brake actuator 8.
  • brake control such as ABS (Antilock Brake System), brake assist, and ESC (Electronic Stability Control) by operating the control solenoid of the brake actuator 8.
  • a creep phenomenon occurs when the engine 1 is idle.
  • the creep phenomenon is a phenomenon in an AT vehicle where the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. This phenomenon is also caused when the torque converter has some power when the engine is idle. Is transmitted to the driving wheel.
  • the engine 1 in order to improve the fuel efficiency performance and the emission performance, the engine 1 is stopped when the predetermined stop condition is satisfied while the vehicle is traveling, and then the engine 1 is restarted according to the predetermined start condition.
  • the so-called eco-run control is started. Therefore, in this vehicle, the engine 1 is automatically stopped while the vehicle is stopped or the vehicle is decelerated due to the accelerator being off.
  • the vehicle slips after stopping when the engine 1 is traveling uphill while the engine 1 is stopped it is determined whether or not the vehicle slips after stopping when the engine 1 is traveling uphill while the engine 1 is stopped. Then, when it is determined that the slippage occurs, the restart of the engine 1 is started so that the restart is completed while the vehicle slippage distance is “0”.
  • the engine 1 when the amount of depression of the brake pedal 5 is small, and the vehicle slips due to the road surface gradient after stopping, the engine 1 is restarted before the slipping occurs.
  • creep torque acts, so that the vehicle can be stopped against the road gradient even with a relatively small amount of brake depression. Therefore, in the vehicle control device of the present embodiment, the vehicle is suitably prevented from sliding down when stopping on an uphill road.
  • FIG. 2 schematically shows an example of the control mode of the first embodiment.
  • This figure shows changes in the brake depression amount before and after stopping of the vehicle on the uphill road, the master cylinder pressure PMC, the vehicle body acceleration G output from the G sensor, the engine rotation speed, the wheel speed VS0, and the wheel acceleration DVS0. .
  • the wheel speed VS0 becomes “0” at time t2, and the vehicle is stopped.
  • the restart of the engine 1 is started at time t1 prior to the stop so that the avoidance of the slippage is in time for the stop.
  • a predetermined stop condition is satisfied while the vehicle is traveling, the engine 1 is stopped, and the driving vehicle is traveling while stepping on the brake. That is, the brake depression amount is a positive value, the engine speed is “0”, and the wheel speed VS0 is decreased at a constant rate ⁇ (negative value), and the rate ⁇ is equal to the wheel acceleration.
  • a predicted time T1 until the vehicle stops is obtained by dividing the wheel speed VS0 by the wheel acceleration DVS0 during deceleration of the vehicle prior to stopping. Then, the restart of the engine 1 is started at the time t1 when the calculated predicted time T1 reaches the time TENG required from the start of the restart of the engine 1 to the end thereof.
  • the predicted time T1 until the vehicle stops decreases as the wheel speed decreases.
  • the time TENG is predetermined for each vehicle, the engine 1 is restarted. In this way, by preventing the engine 1 from being restarted until the wheel speed becomes as low as possible, it is possible to prevent slipping down while maintaining the fuel efficiency reduction effect of economy running control.
  • the driver is driving while stepping on the brake, and the restart of the engine 1 is started.
  • the wheel acceleration starts to gradually increase from the ratio ⁇ , and after time t1, the gradient of the wheel speed decrease decreases. That is, from time t1 to time t2, the amount of brake depression is a positive value, and the engine speed gradually increases.
  • the wheel acceleration gradually increases from the ratio ⁇ toward “0” in response to the start of the engine 1, and the time differential value of the wheel speed is the wheel acceleration.
  • the line of the wheel speed VS0 up to the time t2 is indicated by a simplified straight line having a gradient smaller than the ratio ⁇ .
  • the vehicle body acceleration G shows a curve similar to the wheel acceleration.
  • whether or not the occurrence of sliding down is determined based on detection results such as the master cylinder pressure PMC and the vehicle body acceleration G. More specifically, when the vehicle rearward acceleration Ag generated by gravity, which is grasped from the detection result of the vehicle body acceleration G, exceeds the braking acceleration Apmc of the vehicle as grasped from the detection result of the master cylinder pressure PMC, the vehicle It is determined that the sliding occurs.
  • FIG. 3 shows the relationship between forces acting on a vehicle that is stopped on an uphill road.
  • the vehicle is pulled backward by the force Fg of “g ⁇ sin ⁇ ” by the action of the gravity g.
  • This force Fg is a component in the vehicle rear direction of gravity g acting on the vehicle.
  • the acceleration Ag is obtained by dividing the force Fg by the vehicle weight M (Fg / M).
  • the acceleration Ag can be obtained by subtracting the wheel acceleration obtained from the detection result of the wheel speed sensor 12 from the vehicle body acceleration G detected by the G sensor 13.
  • the braking acceleration Apmc is the braking force Fpmc divided by the vehicle weight M (Fpmc / M).
  • the value of the braking acceleration Apm can be obtained by excluding the acceleration due to running resistance or the like from the master cylinder pressure PMC or the calculated vehicle body acceleration while the vehicle is running.
  • the vehicle If the braking acceleration Apmc is greater than or equal to the acceleration Ag, the vehicle is stationary, and if the braking acceleration Apmc is less than the acceleration AFg, the vehicle slides down the slope. Therefore, it can be determined whether or not the vehicle slips depending on whether or not the braking acceleration Apmc is less than the acceleration Ag.
  • the time point t2 is a point in time when the restart of the engine 1 is completed and the wheel acceleration value increased thereby reaches “0”, and accordingly, the wheel speed also reaches “0”.
  • “Ag” is a positive value
  • “Fg” is a positive direction in the right direction in FIG. 3
  • a G sensor output value is a positive direction when the vehicle body is accelerated forward.
  • FIG. 4 shows a flowchart of a restart determination routine employed in this embodiment.
  • the processing of this routine is repeatedly executed by the electronic control unit 11 for every fixed control period during the uphill running with the engine 1 stopped.
  • step S100 it is determined whether or not the vehicle is lowered after stopping by comparing the braking acceleration Apmc and the acceleration Ag. When it is determined that the braking acceleration Apmc is equal to or higher than the acceleration Ag and no slippage occurs after the vehicle stops (S100: NO), the processing of this routine is immediately terminated.
  • the wheel speed is divided by the wheel acceleration in the subsequent step S101 to The predicted time T1 is calculated.
  • subsequent step S102 it is determined whether or not the calculated predicted time T1 is equal to or shorter than the restart required time of the engine 1.
  • step S103 if the predicted time T1 exceeds the restart required time of the engine 1 (S102: NO), it is not necessary to start the restart of the engine 1 yet, and this process is ended as it is. On the other hand, if the predicted time T1 is equal to or shorter than the restart required time of the engine 1 (S102: YES), restart of the engine 1 is started in step S103.
  • the electronic control unit 11 that automatically stops and restarts the engine 1 causes the vehicle to slide down after stopping when the engine 1 is traveling on an uphill with the engine 1 stopped. Determine whether or not. Then, when it is determined that the vehicle slips, the electronic control unit 11 starts restarting the engine 1 so that the restart is completed by the time of stopping when the vehicle slips. More specifically, when it is predicted that the vehicle will slide down after the vehicle stops, the restart of the engine 1 is started when the predicted time T1 until the vehicle stops reaches the time required to restart the engine 1.
  • the engine 1 when the amount of depression of the brake pedal 5 is small and the vehicle slips down due to the road surface gradient after stopping, the engine 1 is restarted before the slipping occurs.
  • creep torque acts, so that the vehicle can be stopped against the road gradient even with a relatively small amount of brake depression. Therefore, in the present embodiment, it is possible to suitably prevent the vehicle from sliding down when stopping on an uphill road.
  • Master cylinder pressure PMC that is a generated hydraulic pressure of the master cylinder 7 that generates a brake pressure according to the depression force of the brake pedal 5 is determined. And the detection result of the vehicle body acceleration G. More specifically, the vehicle rearward acceleration Ag generated by gravity is obtained from the vehicle body acceleration G, and the vehicle braking acceleration Apmc is obtained from the master cylinder pressure PMC. Such a determination is made on the assumption that the vehicle slips when the acceleration Ag exceeds the braking acceleration Apmc. Therefore, it is possible to accurately determine whether or not it is necessary to restart the engine 1 for preventing the vehicle from sliding down.
  • the engine 1 is restarted so that the restart is completed before the vehicle stops when the vehicle is predicted to slide down, the vehicle will slip down due to the lack of creep torque. It can be avoided. There is also an idea that the vehicle may be allowed to fall slightly when the vehicle stops on such an uphill road. If such an idea is followed, even if the restart of the engine 1 is not in time before the vehicle stops and a vehicle slips after the vehicle stops, the slipping distance is within the allowable distance La. The engine 1 may be restarted.
  • the vehicle sliding distance is calculated as follows.
  • the restart of the engine 1 is started so that the restart is completed before the allowable distance La is exceeded.
  • the restart of the engine 1 when traveling uphill while the engine 1 is stopped, a predicted time T1 until the vehicle stops and a time T2 until the sliding distance of the vehicle from the vehicle stop reaches the allowable distance La are obtained. Then, the restart of the engine 1 is started when the sum of the predicted time T1 and the time T2 reaches the time TENG required from the start of the restart of the engine 1 to the completion of the restart. Therefore, in the present embodiment, as shown in FIG. 5, from the time t5, the restart of the engine 1 is completed at the time t5 after the time T2 has elapsed from the time t4 that is the stop time of the vehicle. Also, the restart of the engine 1 is started at a time t3 before the restart required time of the engine 1.
  • time T2 can be obtained by the following equation (1).
  • FIG. 6 shows a flowchart of a restart determination routine employed in this embodiment.
  • the processing of this routine is repeatedly executed at regular control intervals by the electronic control unit 11 during traveling uphill by stopping the engine.
  • step S200 it is determined whether or not the vehicle will slide down after stopping by comparing the braking acceleration Apmc and the acceleration Ag.
  • the processing of this routine is terminated as it is.
  • the wheel speed is divided by the wheel acceleration so that the vehicle is stopped.
  • the predicted time T1 is calculated.
  • a time T2 until the slippage distance from the stop becomes the allowable distance La is calculated.
  • step S203 it is determined whether or not the sum (T1 + T2) of the calculated predicted time T1 and time T2 is equal to or shorter than the restart required time of the engine 1, and if so (S203: YES), step In S204, the restart of the engine 1 is started.
  • the electronic control unit 11 that automatically stops and restarts the engine 1 causes the vehicle to slide down after stopping when the engine 1 is running on an uphill with the engine 1 stopped. Determine whether or not. Then, when it is determined that the slipping occurs, the electronic control unit 11 starts restarting the engine 1 so that the restarting is completed before the vehicle slipping distance exceeds the allowable distance La. More specifically, the electronic control unit 11 is configured to calculate a predicted time T1 until the vehicle stops after the vehicle stops and a time T2 from when the vehicle stops to the allowable distance La until the vehicle slides down. When the sum reaches the required restart time of the engine 1, the restart of the engine 1 is started.
  • the engine 1 when the amount of depression of the brake pedal 5 is small and the vehicle slips down due to the road gradient after stopping, the engine 1 is restarted while the slipping distance is within the allowable distance La. It is started.
  • the engine 1 When the engine 1 is restarted, thrust due to a creep phenomenon acts, so that the vehicle can be stopped against the road surface gradient even with a relatively small amount of brake depression. Therefore, in the present embodiment, it is possible to suitably prevent the vehicle from sliding down when stopping on an uphill road.
  • Master cylinder pressure PMC that is a generated hydraulic pressure of the master cylinder 7 that generates a brake pressure according to the depression force of the brake pedal 5 is determined. And the detection result of the vehicle body acceleration G. More specifically, the vehicle rearward acceleration Ag generated by gravity is obtained from the vehicle body acceleration G, and the vehicle braking acceleration Apmc is obtained from the master cylinder pressure PMC. Such determination is made assuming that the vehicle slips when the acceleration Ag exceeds the braking acceleration Apmc. Therefore, it is possible to accurately determine whether or not it is necessary to restart the engine 1 for preventing the vehicle from sliding down.
  • FIG. 7 shows an example of setting the allowable distance La.
  • the allowable distance La is set to “0” until the road surface gradient ⁇ reaches a constant value, and after the road surface gradient ⁇ exceeds the predetermined value, the road surface gradient ⁇ increases according to the increase of the road surface gradient ⁇ .
  • the allowable distance La is increased.
  • the greater the road surface gradient ⁇ the larger the allowable distance La is set. Therefore, the behavior of the vehicle can be matched with the driver's feeling that the more the road surface gradient is steeper, the greater the sliding down.
  • each said embodiment can also be changed as follows.
  • whether or not the vehicle slips down is determined when the vehicle rearward acceleration Ag generated by gravity exceeds the vehicle braking acceleration Apmc. Instead, the determination can be made even if it is assumed that the vehicle slips when the force Fg, which is the component of gravity behind the vehicle acting on the vehicle, exceeds the braking force Fpmc of the vehicle.
  • the vehicle slips after stopping based on the detection result of the master cylinder pressure PMC and the detection result of the vehicle body acceleration G. It is also possible to carry out based on For example, it is possible to confirm the braking force and braking acceleration of the vehicle by using the detected value of the depression amount of the brake pedal 5 instead of the detected value of the master cylinder pressure PMC. In this case, a sensor for detecting the depression amount of the brake pedal 5 is provided in the vehicle. Further, the acceleration due to the brake can be confirmed by removing the acceleration generated by the engine due to the vehicle body acceleration G, the acceleration due to the rolling resistance, the acceleration due to the road surface gradient, the air resistance, and the like. It is also possible to provide a sensor for detecting the pitch of the vehicle body so as to grasp the road surface gradient ⁇ from the sensor and make the above determination.
  • the wheel speed and the wheel acceleration are used, but the vehicle body speed and its differential value (vehicle body acceleration) may be used.
  • vehicle body speed a value calculated from a value of a wheel speed sensor, a value acquired by a car navigation system, or the like can be used.
  • control device of the present invention is applied to a vehicle in which a disc brake device is provided on each wheel.
  • a drum brake device is provided on some or all of the wheels. The same applies to other vehicles.
  • control device of the present invention is applied to a two-wheel drive vehicle including two drive wheels 4 and two non-drive wheels 9 has been described.
  • the present invention can be similarly applied to other driving type vehicles.

Abstract

An electronic control unit for automatically stopping or restarting an engine determines whether or not a vehicle will crawl down when the engine stopped while travelling uphill. When it is estimated that the vehicle will crawl down, the electronic control unit begins to restart the engine in a manner such that the engine completely restarts before the point in which the vehicle stops which causes the vehicle to crawl down. As a consequence, it is possible to prevent a vehicle in which the engine is automatically stopped or restarted from crawling down when the vehicle stops on a hill.

Description

車両の制御装置Vehicle control device
 本発明は、エンジンの自動停止、自動再始動を行う車両の制御装置に関する。 The present invention relates to a vehicle control device that automatically stops and restarts an engine.
 周知のように、信号待ちのような停車中にエンジンを自動停止するとともに、運転者の発進操作に応じてエンジンを自動再始動することで、燃料消費の節約や排気エミッションの向上を図るエンジン自動停止再始動装置が実用されている。そして近年には、停車以前の車両の減速中からエンジンを停止させる装置も提案されている。 As is well known, the engine is automatically stopped while the vehicle is stopped, such as waiting for a signal, and the engine is automatically restarted according to the driver's starting operation, thereby saving fuel consumption and improving exhaust emission. Stop / restart devices are in practical use. In recent years, a device for stopping the engine while the vehicle is decelerating before stopping has been proposed.
 従来、特許文献1に記載のように、ブレーキ踏み量が第1閾値X以上であることを条件にエンジンを自動停止し、ブレーキ踏み量が第2閾値Y以下であることを条件にエンジンを自動再始動するとともに、それら第1及び第2閾値を車速に応じて可変とする車両の制御装置が提案されている。 Conventionally, as described in Patent Document 1, the engine is automatically stopped on condition that the brake depression amount is equal to or greater than the first threshold value X, and the engine is automatically activated on condition that the brake depression amount is equal to or less than the second threshold value Y. There has been proposed a vehicle control device that restarts and makes the first and second threshold values variable according to the vehicle speed.
特開2003-35175号公報JP 2003-35175 A
 トルクコンバーター付き自動変速機を搭載するAT車では、エンジンのアイドル時にも、クリープ現象による車両前方向への推力が発生している。なお、クリープ現象とは、AT車において、シフトレバーが走行位置にあるときにアクセルペダルを踏み込まなくても車両がゆっくりと前進する現象であり、この現象は、エンジンのアイドル時にもトルクコンバーターが若干の動力を駆動輪に向かって伝達するために発生する。 In AT cars equipped with an automatic transmission with a torque converter, thrust is generated in the forward direction of the vehicle due to creep even when the engine is idle. The creep phenomenon is a phenomenon in an AT vehicle in which the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. This phenomenon is caused by a slight torque converter even when the engine is idle. It is generated in order to transmit the motive power toward the driving wheel.
 登坂路での停車中も、エンジンが運転されていれば、クリープ現象によるトルク(クリープトルク)が作用しているため、比較的小さいブレーキ踏み量で車両のずり下がりを防止することができる。しかしながら、エンジンが自動停止されていれば、クリープトルクが作用しないため、ブレーキ踏み量が小さいと、重力に抗し切れずに車両が坂路をずり下がることがある。 Even when the vehicle is stopped on an uphill road, if the engine is operated, torque (creep torque) due to a creep phenomenon is applied, so that the vehicle can be prevented from sliding down with a relatively small amount of brake depression. However, if the engine is automatically stopped, creep torque does not act. Therefore, if the amount of brake depression is small, the vehicle may slide down the slope without resisting gravity.
 本発明の目的は、エンジンの自動停止、自動再始動を行う車両において、登坂路での停車時における車両のずり下がりを好適に防止することのできる車両の制御装置を提供することにある。 An object of the present invention is to provide a vehicle control device that can suitably prevent a vehicle from sliding down when stopping on an uphill road in a vehicle that automatically stops and restarts an engine.
 本発明の1態様によれば、エンジン(1)の自動停止、自動再始動を行う車両の制御装置(11)が提供される。制御装置(11)は、エンジン(1)が停止された状態での登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定し(S100,S200)、ずり下がりが発生すると判定されたときには、車両のずり下がり距離が許容距離(La)を超える迄にエンジン(1)の再始動が再始動を完了するように同エンジン(1)の再始動を開始する(S103,S204)。 According to one aspect of the present invention, a vehicle control device (11) for automatically stopping and automatically restarting the engine (1) is provided. The control device (11) determines whether or not the vehicle will drop after stopping when the vehicle (1) is running on an uphill road (S100, S200), and determines that the vehicle will drop. When the vehicle is moved, the restart of the engine (1) is started so that the restart of the engine (1) completes the restart until the sliding distance of the vehicle exceeds the allowable distance (La) (S103, S204). .
 1つの実施形態において、上記判定は、ブレーキペダル(5)の踏力に応じてブレーキ圧を発生するマスターシリンダー(7)の発生液圧であるマスターシリンダー圧(PMC)の検出結果と車体加速度(G)の検出結果とに基づき行うことができる。 In one embodiment, the determination is based on the detection result of the master cylinder pressure (PMC) that is the hydraulic pressure generated by the master cylinder (7) that generates the brake pressure according to the depression force of the brake pedal (5), and the vehicle body acceleration (G ) Based on the detection result.
 別の実施形態において、上記判定は、車両に作用する重力の車両後方向の成分(Fg)が、車両の制動力(Fpmc)を上回るときに車両のずり下がりが発生するとして行うことができる。 In another embodiment, the above determination can be made on the assumption that the vehicle slips when the rearward component (Fg) of gravity acting on the vehicle exceeds the braking force (Fpmc) of the vehicle.
 さらに別の実施形態において、上記判定は、重力により発生する車両後方向の加速度(Ag)が車両の制動加速度(Apmc)を上回るときに車両のずり下がりが発生するとして行うことも可能である。 In still another embodiment, the determination may be performed on the assumption that the vehicle slips down when the vehicle rearward acceleration (Ag) generated by gravity exceeds the vehicle braking acceleration (Apmc).
 別の実施形態において、許容距離(La)を「0」とするとともに、停車迄の予測時間(T1)が、記エンジン(1)の再始動必要時間に達した時点でエンジン(1)の再始動を開始する。 In another embodiment, the allowable distance (La) is set to “0”, and the engine (1) is restarted when the estimated time (T1) until the vehicle stops reaches the time required for restarting the engine (1). Start to start.
 また別の実施形態において、停車迄の予測時間(T1)と、停車から車両のずり下がり距離が許容距離(La)となる迄の時間(T2)との和が、エンジン(1)の再始動必要時間に達した時点でエンジン(1)の再始動を開始する。 In another embodiment, the sum of the predicted time (T1) until the vehicle stops and the time (T2) from the vehicle stop until the sliding distance of the vehicle reaches the allowable distance (La) is the restart of the engine (1). When the required time is reached, restart of the engine (1) is started.
 別の実施形態において、路面勾配(θ)が急な程、上記許容距離(La)は大きい値に設定される。 In another embodiment, the allowable distance (La) is set to a larger value as the road surface gradient (θ) is steeper.
本発明の第1実施形態による制御装置が適用される車両の構成を示す模式図。The schematic diagram which shows the structure of the vehicle to which the control apparatus by 1st Embodiment of this invention is applied. 図1の第1実施形態の制御態様の一例を示すタイムチャート。The time chart which shows an example of the control aspect of 1st Embodiment of FIG. 登坂路に停車中の車両に作用する力の関係を示す図。The figure which shows the relationship of the force which acts on the vehicle stopped on an uphill road. 第1実施形態に採用される再始動判定ルーチンの処理手順を示すフローチャート。The flowchart which shows the process sequence of the restart determination routine employ | adopted as 1st Embodiment. 本発明の第2実施形態の制御態様の一例を示すタイムチャート。The time chart which shows an example of the control aspect of 2nd Embodiment of this invention. 第2実施形態に採用される再始動判定ルーチンの処理手順を示すフローチャート。The flowchart which shows the process sequence of the restart determination routine employ | adopted as 2nd Embodiment. 本発明の第3実施形態における路面勾配と許容距離との関係を示すグラフ。The graph which shows the relationship between the road surface gradient and allowable distance in 3rd Embodiment of this invention.
 (第1の実施形態)
 以下、本発明の車両の制御装置を具体化した第1の実施の形態を、図1~図4を参照して詳細に説明する。なお、本実施の形態では、トルクコンバーター付き自動変速機を搭載するAT車に本発明が適用されている。
(First embodiment)
Hereinafter, a first embodiment of a vehicle control device according to the present invention will be described in detail with reference to FIGS. In the present embodiment, the present invention is applied to an AT vehicle equipped with an automatic transmission with a torque converter.
 図1は、本実施の形態の車両の制御装置が適用される車両の構成を示している。同図に示されるように、車両では、エンジン1の発生する動力は、トルク増幅作用を持つ流体継手であるトルクコンバーター2を有する自動変速機3を介して駆動輪4へと伝達される。 FIG. 1 shows a configuration of a vehicle to which the vehicle control device of the present embodiment is applied. As shown in the figure, in the vehicle, the power generated by the engine 1 is transmitted to the drive wheels 4 via an automatic transmission 3 having a torque converter 2 which is a fluid coupling having a torque amplifying action.
 また、車両は、エンジン1の吸気負圧を利用してブレーキペダル5の踏力を倍力して伝えるブレーキブースター6、ブレーキブースター6により倍力されたブレーキペダル5の踏力に応じてブレーキ液圧(マスターシリンダー圧PMC)を発生させるマスターシリンダー7を備えている。また、車両は、マスターシリンダー7の発生するブレーキ液圧に応じて動作して、駆動輪4及び非駆動輪9にそれぞれ設けられたディスクブレーキ装置10に制動力を付与するブレーキアクチュエーター8も備えている。 In addition, the vehicle boosts and transmits the depressing force of the brake pedal 5 using the intake negative pressure of the engine 1, and the brake hydraulic pressure (in accordance with the depressing force of the brake pedal 5 boosted by the brake booster 6) A master cylinder 7 for generating a master cylinder pressure PMC) is provided. The vehicle also includes a brake actuator 8 that operates according to the brake fluid pressure generated by the master cylinder 7 and applies a braking force to the disc brake device 10 provided on each of the drive wheels 4 and the non-drive wheels 9. Yes.
 こうした車両のエンジン1及びブレーキアクチュエーター8は、電子制御ユニット11により制御されている。電子制御ユニット11には、車輪速VS0を検出する車輪速センサー12、車体の前後方向に作用する加速度(車体加速度G)を検出するGセンサー13、マスターシリンダー7の発生液圧であるマスターシリンダー圧PMCを検出するPMCセンサー14を始め、車両の運転状況を検出する各種センサーの検出信号が入力されている。Gセンサー13の検出値は、車両重心が後方に移動する場合には、正の値となり、車両重心が前方に移動するときには、負の値となる。 The vehicle engine 1 and brake actuator 8 are controlled by an electronic control unit 11. The electronic control unit 11 includes a wheel speed sensor 12 that detects the wheel speed VS0, a G sensor 13 that detects acceleration (vehicle acceleration G) acting in the longitudinal direction of the vehicle body, and a master cylinder pressure that is a hydraulic pressure generated by the master cylinder 7. Detection signals from various sensors for detecting the driving situation of the vehicle, including the PMC sensor 14 for detecting PMC, are input. The detection value of the G sensor 13 is a positive value when the vehicle center of gravity moves backward, and a negative value when the vehicle center of gravity moves forward.
 電子制御ユニット11は、それらセンサーの検出結果から把握される車両の運転状況に応じてエンジン制御を実行する。また電子制御ユニット11は、ブレーキアクチュエーター8の制御ソレノイドを操作することで、ABS(Antilock Brake System )やブレーキアシスト、ESC(Electronic Stability Control)といったブレーキ制御を実行する。 The electronic control unit 11 executes engine control according to the driving state of the vehicle ascertained from the detection results of these sensors. Further, the electronic control unit 11 performs brake control such as ABS (Antilock Brake System), brake assist, and ESC (Electronic Stability Control) by operating the control solenoid of the brake actuator 8.
 以上のように構成されたトルクコンバーター2付きの自動変速機3を搭載する車両では、エンジン1のアイドル時にクリープ現象が発生する。クリープ現象とは、AT車において、シフトレバーが走行位置にあるときにアクセルペダルを踏み込まなくても車両がゆっくりと前進する現象であり、この現象は、エンジンのアイドル時にもトルクコンバーターが若干の動力を駆動輪に向かって伝達するために発生する。 In a vehicle equipped with the automatic transmission 3 with the torque converter 2 configured as described above, a creep phenomenon occurs when the engine 1 is idle. The creep phenomenon is a phenomenon in an AT vehicle where the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. This phenomenon is also caused when the torque converter has some power when the engine is idle. Is transmitted to the driving wheel.
 一方、この車両では、燃費性能やエミッション性能を向上させるべく、車両走行中に所定の停止条件の成立に応じてエンジン1を停止し、その後、所定の始動条件の成立に応じてエンジン1を再始動させる、いわゆるエコラン制御が実施されている。そのため、この車両では、停車中やアクセルオフによる減速中に、エンジン1が自動的に停止される。 On the other hand, in this vehicle, in order to improve the fuel efficiency performance and the emission performance, the engine 1 is stopped when the predetermined stop condition is satisfied while the vehicle is traveling, and then the engine 1 is restarted according to the predetermined start condition. The so-called eco-run control is started. Therefore, in this vehicle, the engine 1 is automatically stopped while the vehicle is stopped or the vehicle is decelerated due to the accelerator being off.
 さて、こうした車両では、登坂路において停車する際に、エンジン1が運転されていれば、クリープ現象によるトルク、すなわちクリープトルクが作用するため、そのクリープトルクを利用して車両のずり下りに抗することができる。一方、登坂路での停車時にエンジン1が停止されていれば、クリープトルクは作用しないため、ブレーキペダル5を強く踏み込まなければ、車両が坂路をずり下ってしまう。 Now, in such a vehicle, when the engine 1 is operated when stopping on an uphill road, a torque due to a creep phenomenon, that is, a creep torque acts, so that the creep torque is used to resist the vehicle from descending. be able to. On the other hand, if the engine 1 is stopped at the time of stopping on the uphill road, the creep torque does not act. Therefore, if the brake pedal 5 is not depressed strongly, the vehicle will slide down the slope.
 これに対応するため、本実施の形態では、エンジン1の停止中の登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定する。そして、ずり下がりが発生すると判定されたときには、車両のずり下がり距離が「0」のうちに再始動が完了するようにエンジン1の再始動を開始する。こうした本実施の形態では、ブレーキペダル5の踏み量が小さく、そのままでは停車後に路面勾配による車両のずり下がりが発生するようなときには、ずり下がりが発生しないうちにエンジン1が再始動される。エンジン1が再始動されれば、クリープトルクが作用するため、比較的小さいブレーキ踏み量でも、路面勾配に抗して車両を停止させることができる。そのため、本実施の形態の車両の制御装置では、登坂路での停車時における車両のずり下がりが好適に防止される。 In order to cope with this, in the present embodiment, it is determined whether or not the vehicle slips after stopping when the engine 1 is traveling uphill while the engine 1 is stopped. Then, when it is determined that the slippage occurs, the restart of the engine 1 is started so that the restart is completed while the vehicle slippage distance is “0”. In this embodiment, when the amount of depression of the brake pedal 5 is small, and the vehicle slips due to the road surface gradient after stopping, the engine 1 is restarted before the slipping occurs. When the engine 1 is restarted, creep torque acts, so that the vehicle can be stopped against the road gradient even with a relatively small amount of brake depression. Therefore, in the vehicle control device of the present embodiment, the vehicle is suitably prevented from sliding down when stopping on an uphill road.
 図2は、こうした第1の実施の形態の制御態様の一模式的に例を示している。同図には、登坂路での車両の停車前後のブレーキ踏み量、マスターシリンダー圧PMC、Gセンサーで出力される車体加速度G、エンジン回転速度、車輪速VS0及び車輪加速度DVS0の推移を示している。同図の例では、時刻t2に車輪速VS0が「0」となり、車両が停車している。 FIG. 2 schematically shows an example of the control mode of the first embodiment. This figure shows changes in the brake depression amount before and after stopping of the vehicle on the uphill road, the master cylinder pressure PMC, the vehicle body acceleration G output from the G sensor, the engine rotation speed, the wheel speed VS0, and the wheel acceleration DVS0. . In the example of the figure, the wheel speed VS0 becomes “0” at time t2, and the vehicle is stopped.
 本実施の形態では、停車に先立つ車両の減速中に、マスターシリンダー圧PMCや車体加速度G等の検出結果から停車後の車両のずり下がりが発生するか否かを判定する。そしてずり下がりが発生すると判定されたときには、ずり下りの回避が停車時に間に合うように、停車に先立つ時刻t1より、エンジン1の再始動を開始する。 In the present embodiment, it is determined whether or not the vehicle slips after stopping from the detection results of the master cylinder pressure PMC, the vehicle body acceleration G, and the like during deceleration of the vehicle prior to stopping. When it is determined that the slippage occurs, the restart of the engine 1 is started at time t1 prior to the stop so that the avoidance of the slippage is in time for the stop.
 エンジン停止での走行状態から、ずり下がり発生が予測されてエンジンが再始動された状態を経て車両が停止に至るまでの詳細を図2で説明する。時刻t0の時点では、車両走行中に所定の停止条件が満たされてエンジン1が停止し、運転車がブレーキを踏みつつ走行している状態である。すなわち、ブレーキ踏み量は正の値でエンジン回転速度が「0」、車輪速VS0が一定の割合α(負の値)で減少し、その割合αは車輪加速度に等しい。 Details of the state from the running state when the engine is stopped to when the vehicle is stopped through the state where the occurrence of sliding down is predicted and the engine is restarted will be described with reference to FIG. At time t0, a predetermined stop condition is satisfied while the vehicle is traveling, the engine 1 is stopped, and the driving vehicle is traveling while stepping on the brake. That is, the brake depression amount is a positive value, the engine speed is “0”, and the wheel speed VS0 is decreased at a constant rate α (negative value), and the rate α is equal to the wheel acceleration.
 ここでは、停車に先立つ車両の減速中に、車輪速VS0を車輪加速度DVS0で除算することで求められる車両の停車迄の予測時間T1を求める。そしてその求められた予測時間T1がエンジン1の再始動の開始からその終了までに必要な時間TENGに達した時点t1で、エンジン1の再始動を開始する。 Here, a predicted time T1 until the vehicle stops is obtained by dividing the wheel speed VS0 by the wheel acceleration DVS0 during deceleration of the vehicle prior to stopping. Then, the restart of the engine 1 is started at the time t1 when the calculated predicted time T1 reaches the time TENG required from the start of the restart of the engine 1 to the end thereof.
 詳細には、車両の停止迄の予測時間T1は、車輪速が減少していくに従い、減少していく。そして予め車両毎に定められた時間TENGまで小さくなると、エンジン1の再始動が開始される。このように、できるだけ車輪速が小さくなるまでエンジン1の再始動をしないようにすることにより、エコノミーランニング制御の燃費削減効果を維持させつつ、ずり下がりの防止ができる。 Specifically, the predicted time T1 until the vehicle stops decreases as the wheel speed decreases. When the time TENG is predetermined for each vehicle, the engine 1 is restarted. In this way, by preventing the engine 1 from being restarted until the wheel speed becomes as low as possible, it is possible to prevent slipping down while maintaining the fuel efficiency reduction effect of economy running control.
 時刻t1の時点で、運転者がブレーキを踏みつつ走行していてエンジン1の再始動が開始される。それに伴い車輪加速度が割合αから次第に増加し始め、時刻t1以降、車輪速減少の勾配が小さくなる。すなわち、時刻t1以降、時刻t2までの間は、ブレーキ踏み量は正の値であり、エンジン回転速度は次第に増加するものである。車輪加速度は、割合αから次第に「0」に向ってエンジン1の始動に応じて曲線的に増加するものであり、車輪速の時間微分値が車輪加速度であるが、図2の時刻t1以降、時刻t2までの車輪速VS0のラインは、割合αより勾配の小さい、簡略化した直線で示してある。車体加速度Gは、車輪加速度と同様のカーブを示す。 At time t1, the driver is driving while stepping on the brake, and the restart of the engine 1 is started. Along with this, the wheel acceleration starts to gradually increase from the ratio α, and after time t1, the gradient of the wheel speed decrease decreases. That is, from time t1 to time t2, the amount of brake depression is a positive value, and the engine speed gradually increases. The wheel acceleration gradually increases from the ratio α toward “0” in response to the start of the engine 1, and the time differential value of the wheel speed is the wheel acceleration. The line of the wheel speed VS0 up to the time t2 is indicated by a simplified straight line having a gradient smaller than the ratio α. The vehicle body acceleration G shows a curve similar to the wheel acceleration.
 また本実施の形態では、ずり下がり発生の可否判定を、マスターシリンダー圧PMCや車体加速度G等の検出結果に基づき行う。より具体的には、車体加速度Gの検出結果より把握される、重力により発生する車両後方向の加速度Agが、マスターシリンダー圧PMCの検出結果より把握される車両の制動加速度Apmcを上回るときに車両のずり下がりが発生すると判定する。 Further, in this embodiment, whether or not the occurrence of sliding down is determined based on detection results such as the master cylinder pressure PMC and the vehicle body acceleration G. More specifically, when the vehicle rearward acceleration Ag generated by gravity, which is grasped from the detection result of the vehicle body acceleration G, exceeds the braking acceleration Apmc of the vehicle as grasped from the detection result of the master cylinder pressure PMC, the vehicle It is determined that the sliding occurs.
 ここでの加速度Agおよび制動加速度Apmcは、次のようなパラメーターである。図3は、登坂路で停車中の車両に作用する力の関係を示している。ここで登坂路の傾斜角を「θ」とし、車両に作用する重力を「g」とすると、車両は重力gの作用により、「g・sinθ」の力Fgで後方に引かれる。この力Fgは、車両に作用する重力gの車両後方向の成分である。そして上記加速度Agは、この力Fgを車重Mで除算した(Fg/M)ものとなる。ちなみに、加速度Agは、Gセンサー13の検出する車体加速度Gから、車輪速センサー12の検出結果から求められる車輪加速度を減算することで求めることができる。 Acceleration Ag and braking acceleration Apmc here are the following parameters. FIG. 3 shows the relationship between forces acting on a vehicle that is stopped on an uphill road. Here, when the inclination angle of the uphill road is “θ” and the gravity acting on the vehicle is “g”, the vehicle is pulled backward by the force Fg of “g · sin θ” by the action of the gravity g. This force Fg is a component in the vehicle rear direction of gravity g acting on the vehicle. The acceleration Ag is obtained by dividing the force Fg by the vehicle weight M (Fg / M). Incidentally, the acceleration Ag can be obtained by subtracting the wheel acceleration obtained from the detection result of the wheel speed sensor 12 from the vehicle body acceleration G detected by the G sensor 13.
 一方、ブレーキペダル5が踏まれていれば、車両には、上記の力Fgに抗するかたちで制動力Fpmcが発生する。制動加速度Apmcは、この制動力Fpmcを車重Mで除算したもの(Fpmc/M)である。制動加速度Apmの値は、マスターシリンダー圧PMCや、車両が走行中には、演算による車体加速度から走行抵抗等による加速度を除く事で求めることができる。 On the other hand, if the brake pedal 5 is depressed, a braking force Fpmc is generated in the vehicle against the force Fg. The braking acceleration Apmc is the braking force Fpmc divided by the vehicle weight M (Fpmc / M). The value of the braking acceleration Apm can be obtained by excluding the acceleration due to running resistance or the like from the master cylinder pressure PMC or the calculated vehicle body acceleration while the vehicle is running.
 制動加速度Apmcが上記加速度Ag以上であれば、車両は静止し、加速度AFg未満であれば、車両は坂路をずり下がる。したがって、制動加速度Apmcが上記加速度Ag未満であるか否かによって、車両のずり下がりが発生するか否かを判定することができる。 If the braking acceleration Apmc is greater than or equal to the acceleration Ag, the vehicle is stationary, and if the braking acceleration Apmc is less than the acceleration AFg, the vehicle slides down the slope. Therefore, it can be determined whether or not the vehicle slips depending on whether or not the braking acceleration Apmc is less than the acceleration Ag.
 時刻t2の時点は、エンジン1の再始動が完了し、それにより増加した車輪加速度の値が「0」に至り、それに伴い車輪速度も「0」に至る時点である。車体加速度Gは、時刻t2以後に、上述の「Ag=-Fg/M」値がGセンサー13より出力される。なお、この「Ag」は正の値であり、「Fg」は図3右方向を正の方向とし、Gセンサー出力値は、車体が前方に加速する際に出力される方向を正としている。 The time point t2 is a point in time when the restart of the engine 1 is completed and the wheel acceleration value increased thereby reaches “0”, and accordingly, the wheel speed also reaches “0”. As the vehicle body acceleration G, the above-mentioned “Ag = −Fg / M” value is output from the G sensor 13 after time t2. “Ag” is a positive value, “Fg” is a positive direction in the right direction in FIG. 3, and a G sensor output value is a positive direction when the vehicle body is accelerated forward.
 図4は、こうした本実施の形態に採用される再始動判定ルーチンのフローチャートを示している。本ルーチンの処理は、エンジン1が停止した状態での登坂走行中に、電子制御ユニット11により、一定の制御周期毎に繰り返し実行される。 FIG. 4 shows a flowchart of a restart determination routine employed in this embodiment. The processing of this routine is repeatedly executed by the electronic control unit 11 for every fixed control period during the uphill running with the engine 1 stopped.
 本ルーチンが開始されると、まずステップS100において、制動加速度Apmcと上記加速度Agとの対比により、停車後の車両のずり下がりが発生するか否かの判定が行われる。制動加速度Apmcが加速度Ag以上であり、停車後のずり下がりが発生しないと判定されたときには(S100:NO)、そのまま今回の本ルーチンの処理が終了される。 When this routine is started, first, in step S100, it is determined whether or not the vehicle is lowered after stopping by comparing the braking acceleration Apmc and the acceleration Ag. When it is determined that the braking acceleration Apmc is equal to or higher than the acceleration Ag and no slippage occurs after the vehicle stops (S100: NO), the processing of this routine is immediately terminated.
 一方、制動加速度Apmcが加速度Ag未満であり、停車後のずり下がりが発生すると判定されたときには(S100:YES)、続くステップS101において、車輪速度を車輪加速度で除算することで、車両停車迄の予測時間T1が演算される。そして続くステップS102で、演算された予測時間T1がエンジン1の再始動必要時間以下であるか否かが判定される。 On the other hand, when it is determined that the braking acceleration Apmc is less than the acceleration Ag and a slip occurs after the vehicle stops (S100: YES), the wheel speed is divided by the wheel acceleration in the subsequent step S101 to The predicted time T1 is calculated. In subsequent step S102, it is determined whether or not the calculated predicted time T1 is equal to or shorter than the restart required time of the engine 1.
 ここで予測時間T1がエンジン1の再始動必要時間を超えていれば(S102:NO)、未だエンジン1の再始動を開始する必要はないとして、そのまま今回の処理が終了される。一方、予測時間T1がエンジン1の再始動必要時間以下であれば(S102:YES)、ステップS103においてエンジン1の再始動が開始される。 Here, if the predicted time T1 exceeds the restart required time of the engine 1 (S102: NO), it is not necessary to start the restart of the engine 1 yet, and this process is ended as it is. On the other hand, if the predicted time T1 is equal to or shorter than the restart required time of the engine 1 (S102: YES), restart of the engine 1 is started in step S103.
 以上説明した本実施の形態の車両の制御装置によれば、以下の効果を奏することができる。 According to the vehicle control apparatus of the present embodiment described above, the following effects can be obtained.
 (1)本実施の形態では、エンジン1の自動停止、自動再始動を行う電子制御ユニット11は、エンジン1が停止された状態での登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定する。そして電子制御ユニット11は、ずり下がりが発生すると判定されたときには、車両のずり下がりが発生する停車時迄に再始動を完了するようにエンジン1の再始動を開始する。より具体的には、停車後の車両のずり下がりの発生が予測されるときには、停車迄の予測時間T1がエンジン1の再始動必要時間に達した時点でエンジン1の再始動を開始する。 (1) In this embodiment, the electronic control unit 11 that automatically stops and restarts the engine 1 causes the vehicle to slide down after stopping when the engine 1 is traveling on an uphill with the engine 1 stopped. Determine whether or not. Then, when it is determined that the vehicle slips, the electronic control unit 11 starts restarting the engine 1 so that the restart is completed by the time of stopping when the vehicle slips. More specifically, when it is predicted that the vehicle will slide down after the vehicle stops, the restart of the engine 1 is started when the predicted time T1 until the vehicle stops reaches the time required to restart the engine 1.
 こうした本実施の形態では、ブレーキペダル5の踏み量が小さく、そのままでは停車後に路面勾配による車両のずり下がりが発生するようなときには、ずり下がりが発生しないうちにエンジン1が再始動され。エンジン1が再始動されれば、クリープトルクが作用するため、比較的小さいブレーキ踏み量でも、路面勾配に抗して車両を停止させることができる。そのため、本実施の形態では、登坂路での停車時における車両のずり下がりを好適に防止することができる。 In this embodiment, when the amount of depression of the brake pedal 5 is small and the vehicle slips down due to the road surface gradient after stopping, the engine 1 is restarted before the slipping occurs. When the engine 1 is restarted, creep torque acts, so that the vehicle can be stopped against the road gradient even with a relatively small amount of brake depression. Therefore, in the present embodiment, it is possible to suitably prevent the vehicle from sliding down when stopping on an uphill road.
 (2)本実施の形態では、停車後のずり下がりが発生するか否かの判定を、ブレーキペダル5の踏力に応じてブレーキ圧を発生するマスターシリンダー7の発生液圧であるマスターシリンダー圧PMCの検出結果と車体加速度Gの検出結果に基づき行う。より詳しくは、重力により発生する車両後方向の加速度Agを車体加速度Gより求めるとともに、車両の制動加速度Apmcをマスターシリンダー圧PMCより求める。そして加速度Agが制動加速度Apmc上回るときに車両のずり下がりが発生すると想定して、そうした判定を行う。そのため、車両のずり下がりの防止に係るエンジン1の再始動の要否を的確に判定することができる。 (2) In the present embodiment, it is determined whether or not a slip occurs after the vehicle stops. Master cylinder pressure PMC that is a generated hydraulic pressure of the master cylinder 7 that generates a brake pressure according to the depression force of the brake pedal 5 is determined. And the detection result of the vehicle body acceleration G. More specifically, the vehicle rearward acceleration Ag generated by gravity is obtained from the vehicle body acceleration G, and the vehicle braking acceleration Apmc is obtained from the master cylinder pressure PMC. Such a determination is made on the assumption that the vehicle slips when the acceleration Ag exceeds the braking acceleration Apmc. Therefore, it is possible to accurately determine whether or not it is necessary to restart the engine 1 for preventing the vehicle from sliding down.
 (3)本実施の形態では、停車後のずり下がりが予測されるときには、停車迄の予測時間T1が、エンジン1の再始動必要時間に達した時点でエンジン1の再始動を開始する。そのため、停車後の車両のずり下がり距離を「0」に抑えることができる。 (3) In the present embodiment, when the sliding after the vehicle is predicted to stop, the restart of the engine 1 is started when the predicted time T1 until the vehicle stops reaches the time required for restarting the engine 1. For this reason, it is possible to suppress the vehicle's sliding distance after the vehicle stops to “0”.
 (第2の実施の形態)
 次に、本発明の車両の制御装置を具体化した第2の実施の形態を、図5及び図6を併せ参照して詳細に説明する。なお第2実施の形態にあって、上記第1の実施の形態と共通する構成については、同一の符号を付してその詳細な説明は省略する。
(Second Embodiment)
Next, a second embodiment in which the vehicle control device of the present invention is embodied will be described in detail with reference to FIGS. In addition, in 2nd Embodiment, about the structure which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 上述のように、停車の車両のずり下がりの発生が予測されるときに、停車迄に再始動が完了するようにエンジン1の再始動を開始すれば、クリープトルクの欠如による車両のずり下がりを回避することができる。こうした登坂路での停車時の車両のずり下がりは、多少であれば許容しても良いという考えもある。そしてそうした考えに則る場合には、停車時迄にエンジン1の再始動が間に合わず、停車後の車両のずり下がりが発生したとしても、そのずり下がりの距離が許容距離La内にあるうちにエンジン1を再始動すれば良い。 As described above, if the engine 1 is restarted so that the restart is completed before the vehicle stops when the vehicle is predicted to slide down, the vehicle will slip down due to the lack of creep torque. It can be avoided. There is also an idea that the vehicle may be allowed to fall slightly when the vehicle stops on such an uphill road. If such an idea is followed, even if the restart of the engine 1 is not in time before the vehicle stops and a vehicle slips after the vehicle stops, the slipping distance is within the allowable distance La. The engine 1 may be restarted.
 そこで本実施の形態では、エンジン1の停止中の登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定し、ずり下がりが発生すると予測されたときには、車両のずり下がり距離が許容距離Laを超える迄に再始動が完了するようにエンジン1の再始動を開始する。 Therefore, in the present embodiment, it is determined whether or not the vehicle will slide down after the vehicle is stopped while the engine 1 is stopped, and when it is predicted that the vehicle will slide down, the vehicle sliding distance is calculated as follows. The restart of the engine 1 is started so that the restart is completed before the allowable distance La is exceeded.
 より具体的には、本実施の形態では、エンジン1停止中の登坂走行時に、停車迄の予測時間T1と、停車から車両のずり下がり距離が許容距離Laとなる迄の時間T2とを求める。そして予測時間T1と上記時間T2との和が、エンジン1の再始動の開始から再始動完了までに必要な時間TENGに達した時点でエンジン1の再始動を開始する。そのため、本実施の形態では、図5に示すように、車両の停車時刻である時刻t4から上記時間T2が経過した後の時刻t5にエンジン1の再始動が完了するように、その時刻t5よりもエンジン1の再始動必要時間前の時刻t3にエンジン1の再始動が開始される。これにより、時刻t4から時刻t5までの間に、車輪速VS0が「0」未満になる。すなわち、ずり下がりが発生するが、適切に設定したずり下がり時間T2期間中のずり下がり距離を許容距離Laに抑えることができる。なお、上記時間T2は、下式(1)により求めることができる。 More specifically, in the present embodiment, when traveling uphill while the engine 1 is stopped, a predicted time T1 until the vehicle stops and a time T2 until the sliding distance of the vehicle from the vehicle stop reaches the allowable distance La are obtained. Then, the restart of the engine 1 is started when the sum of the predicted time T1 and the time T2 reaches the time TENG required from the start of the restart of the engine 1 to the completion of the restart. Therefore, in the present embodiment, as shown in FIG. 5, from the time t5, the restart of the engine 1 is completed at the time t5 after the time T2 has elapsed from the time t4 that is the stop time of the vehicle. Also, the restart of the engine 1 is started at a time t3 before the restart required time of the engine 1. Thereby, between time t4 and time t5, wheel speed VS0 becomes less than "0". That is, although the sliding occurs, the sliding distance during the appropriately set sliding time period T2 can be suppressed to the allowable distance La. The time T2 can be obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図6は、こうした本実施の形態に採用される再始動判定ルーチンのフローチャートを示している。本ルーチンの処理は、エンジン停止による登坂路走行中に、電子制御ユニット11により、一定の制御周期毎に繰り返し実行されるものとなっている。 FIG. 6 shows a flowchart of a restart determination routine employed in this embodiment. The processing of this routine is repeatedly executed at regular control intervals by the electronic control unit 11 during traveling uphill by stopping the engine.
 さて本ルーチンが開始されると、まずステップS200において、制動加速度Apmcと上記加速度Agとの対比により、停車後の車両のずり下がりが発生するか否かの判定が行われる。ここで制動加速度Apmcが加速度Ag以上であり、停車後のずり下がりが発生しないと判定されたときには(S200:NO)、そのまま今回の本ルーチンの処理を終了する。 When this routine is started, first, in step S200, it is determined whether or not the vehicle will slide down after stopping by comparing the braking acceleration Apmc and the acceleration Ag. Here, when it is determined that the braking acceleration Apmc is equal to or higher than the acceleration Ag and no slipping occurs after the vehicle stops (S200: NO), the processing of this routine is terminated as it is.
 一方、制動加速度Apmcが加速度Ag未満であり、停車後のずり下がりが発生すると判定されたときには(S200:YES)、続くステップS201において、車輪速度を車輪加速度で除算することで、車両停車迄の予測時間T1が演算される。また続くステップS202において、停車からずり下がり距離が許容距離Laとなる迄の時間T2が演算される。 On the other hand, when it is determined that the braking acceleration Apmc is less than the acceleration Ag and a slip occurs after the vehicle stops (S200: YES), in the subsequent step S201, the wheel speed is divided by the wheel acceleration so that the vehicle is stopped. The predicted time T1 is calculated. In the subsequent step S202, a time T2 until the slippage distance from the stop becomes the allowable distance La is calculated.
 そして続くステップS203で、演算された予測時間T1と時間T2との和(T1+T2)がエンジン1の再始動必要時間以下であるか否かが判定され、以下であれば(S203:YES)、ステップS204においてエンジン1の再始動が開始される。 In the subsequent step S203, it is determined whether or not the sum (T1 + T2) of the calculated predicted time T1 and time T2 is equal to or shorter than the restart required time of the engine 1, and if so (S203: YES), step In S204, the restart of the engine 1 is started.
 以上説明した本実施の形態の車両の制御装置によれば、以下の効果を奏することができる。 According to the vehicle control apparatus of the present embodiment described above, the following effects can be obtained.
 (4)本実施の形態では、エンジン1の自動停止、自動再始動を行う電子制御ユニット11は、エンジン1が停止された状態での登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定する。そして電子制御ユニット11は、ずり下がりが発生すると判定されたときには、車両のずり下がり距離が許容距離Laを超える迄に再始動を完了するようにエンジン1の再始動を開始する。より詳しくは、電子制御ユニット11は、停車後の車両のずり下がりが予測されるときには、停車迄の予測時間T1と、停車から車両のずり下がり距離が許容距離Laとなる迄の時間T2との和が、エンジン1の再始動必要時間に達した時点でエンジン1の再始動を開始する。 (4) In the present embodiment, the electronic control unit 11 that automatically stops and restarts the engine 1 causes the vehicle to slide down after stopping when the engine 1 is running on an uphill with the engine 1 stopped. Determine whether or not. Then, when it is determined that the slipping occurs, the electronic control unit 11 starts restarting the engine 1 so that the restarting is completed before the vehicle slipping distance exceeds the allowable distance La. More specifically, the electronic control unit 11 is configured to calculate a predicted time T1 until the vehicle stops after the vehicle stops and a time T2 from when the vehicle stops to the allowable distance La until the vehicle slides down. When the sum reaches the required restart time of the engine 1, the restart of the engine 1 is started.
 こうした本実施の形態では、ブレーキペダル5の踏み量が小さく、そのままでは停車後に路面勾配による車両のずり下がりが発生するようなときには、ずり下がり距離が許容距離La内にあるうちにエンジン1が再始動される。エンジン1が再始動されれば、クリープ現象による推力が作用するため、比較的小さいブレーキ踏み量でも、路面勾配に抗して車両を停止させることができる。そのため、本実施の形態では、登坂路での停車時における車両のずり下がりを好適に防止することができる。 In this embodiment, when the amount of depression of the brake pedal 5 is small and the vehicle slips down due to the road gradient after stopping, the engine 1 is restarted while the slipping distance is within the allowable distance La. It is started. When the engine 1 is restarted, thrust due to a creep phenomenon acts, so that the vehicle can be stopped against the road surface gradient even with a relatively small amount of brake depression. Therefore, in the present embodiment, it is possible to suitably prevent the vehicle from sliding down when stopping on an uphill road.
 (5)本実施の形態では、停車後のずり下がりが発生するか否かの判定を、ブレーキペダル5の踏力に応じてブレーキ圧を発生するマスターシリンダー7の発生液圧であるマスターシリンダー圧PMCの検出結果と車体加速度Gの検出結果に基づき行う。より詳しくは、重力により発生する車両後方向の加速度Agを車体加速度Gより求めるとともに、車両の制動加速度Apmcをマスターシリンダー圧PMCより求める。そして加速度Agが制動加速度Apmcを上回るときに車両のずり下がりが発生するとして、そうした判定を行う。そのため、車両のずり下がりの防止に係るエンジン1の再始動の要否を的確に判定することができる。 (5) In the present embodiment, it is determined whether or not a slip occurs after the vehicle stops. Master cylinder pressure PMC that is a generated hydraulic pressure of the master cylinder 7 that generates a brake pressure according to the depression force of the brake pedal 5 is determined. And the detection result of the vehicle body acceleration G. More specifically, the vehicle rearward acceleration Ag generated by gravity is obtained from the vehicle body acceleration G, and the vehicle braking acceleration Apmc is obtained from the master cylinder pressure PMC. Such determination is made assuming that the vehicle slips when the acceleration Ag exceeds the braking acceleration Apmc. Therefore, it is possible to accurately determine whether or not it is necessary to restart the engine 1 for preventing the vehicle from sliding down.
 (6)本実施の形態では、停車迄の予測時間T1と、停車から車両のずり下がり距離が許容距離Laとなる迄の時間T2との和が、エンジン1の再始動必要時間に達した時点でエンジン1の再始動を開始する。そのため、停車後の車両のずり下がりを許容できる範囲内に留めることができる。 (6) In the present embodiment, when the sum of the estimated time T1 until the vehicle stops and the time T2 until the sliding distance of the vehicle reaches the allowable distance La from the vehicle stop reaches the time required for restarting the engine 1. Then, restart of the engine 1 is started. Therefore, it is possible to keep the vehicle slipping down after it stops.
 (第3の実施の形態)
 次に、本発明の車両の制御装置を具体化した第3の実施の形態を、図7を併せ参照して詳細に説明する。なお本実施の形態にあって、上記実施の形態と共通する構成については、同一の符号を付してその詳細な説明は省略する。
(Third embodiment)
Next, a third embodiment of the vehicle control device of the present invention will be described in detail with reference to FIG. In the present embodiment, the same components as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 エンジン1が運転されていてクリープトルクが作用しているときにも、路面勾配θが大きければ、一定のずり下がりが発生する。このときのずり下がりは、路面勾配θが急な程、大きくなる。したがって、運転者の感覚を考慮して設定すると、路面勾配θが急な程、許容される車両のずり下がり距離は大きくなる。 When the engine 1 is operating and creep torque is applied, if the road surface gradient θ is large, a certain amount of sliding occurs. The sliding down at this time becomes larger as the road surface gradient θ becomes steeper. Therefore, when the setting is made in consideration of the driver's feeling, the permitted vehicle sliding distance increases as the road surface gradient θ becomes steeper.
 そこで本実施の形態では、路面勾配θが急な程、上記許容距離Laに大きい値を設定する。図7は、こうした許容距離Laの設定の一例を示している。同図の例では、路面勾配θが一定値に達するまでは、許容距離Laを「0」に設定するとともに、路面勾配θがその一定値を超えた後は、路面勾配θの増加に応じて許容距離Laを増大させる。 Therefore, in the present embodiment, the greater the road surface gradient θ, the larger the allowable distance La is set. FIG. 7 shows an example of setting the allowable distance La. In the example of the figure, the allowable distance La is set to “0” until the road surface gradient θ reaches a constant value, and after the road surface gradient θ exceeds the predetermined value, the road surface gradient θ increases according to the increase of the road surface gradient θ. The allowable distance La is increased.
 以上説明した本実施の形態によれば、上記(4)~(6)に記載の効果に加え、更に次の効果を奏することができる。 According to the present embodiment described above, in addition to the effects described in (4) to (6) above, the following effects can be further achieved.
 (7)本実施の形態では、路面勾配θが急な程、許容距離Laに大きい値を設定する。そのため、路面勾配が急な程、ずり下がりが大きくなるという運転者の感覚に、車両の挙動を合致させることができる。 (7) In the present embodiment, the greater the road surface gradient θ, the larger the allowable distance La is set. Therefore, the behavior of the vehicle can be matched with the driver's feeling that the more the road surface gradient is steeper, the greater the sliding down.
 なお、上記各実施の形態は、以下のように変更することもできる。 In addition, each said embodiment can also be changed as follows.
 ・上記実施の形態では、重力により発生する車両後方向の加速度Agが車両の制動加速度Apmcを上回るときに車両のずり下がりが発生すると想定してその可否判定を行うようにしていた。代わりに、判定は、車両に作用する重力の車両後方向の成分である力Fgが、車両の制動力Fpmcを上回るときに車両のずり下がりが発生すると想定しても行うことができる。 In the above-described embodiment, whether or not the vehicle slips down is determined when the vehicle rearward acceleration Ag generated by gravity exceeds the vehicle braking acceleration Apmc. Instead, the determination can be made even if it is assumed that the vehicle slips when the force Fg, which is the component of gravity behind the vehicle acting on the vehicle, exceeds the braking force Fpmc of the vehicle.
 ・上記実施の形態では、マスターシリンダー圧PMCの検出結果と車体加速度Gの検出結果とに基づき停車後の車両のずり下がりが発生するか否かを判定していたが、判定を他の検出値に基づいて行うことも可能である。例えばマスターシリンダー圧PMCの検出値に代えてブレーキペダル5の踏み込み量の検出値を使うことでも、車両の制動力や制動加速度を確認することは可能である。この場合には、ブレーキペダル5の踏み込み量を検出するためのセンサーが車両に設けられる。更に車体加速度Gによりエンジンが発生する加速度、ころがり抵抗による加速度、路面勾配加速度、空気抵抗等による加速度を除くことでも、ブレーキによる加速度を確認することができる。また車体のピッチを検出するセンサーを設け、そのセンサーから路面勾配θを把握して上記判定を行うようにすることも可能である。 In the above-described embodiment, it is determined whether or not the vehicle slips after stopping based on the detection result of the master cylinder pressure PMC and the detection result of the vehicle body acceleration G. It is also possible to carry out based on For example, it is possible to confirm the braking force and braking acceleration of the vehicle by using the detected value of the depression amount of the brake pedal 5 instead of the detected value of the master cylinder pressure PMC. In this case, a sensor for detecting the depression amount of the brake pedal 5 is provided in the vehicle. Further, the acceleration due to the brake can be confirmed by removing the acceleration generated by the engine due to the vehicle body acceleration G, the acceleration due to the rolling resistance, the acceleration due to the road surface gradient, the air resistance, and the like. It is also possible to provide a sensor for detecting the pitch of the vehicle body so as to grasp the road surface gradient θ from the sensor and make the above determination.
 ・上記実施の形態では、車輪速、車輪加速度を用いているが、車体速度及びその微分値(車体加速度)を用いるようにしても良い。車体速度は、車輪速センサーの値から算出したものや、カーナビゲーションシステムで取得された値などを用いることが可能である。 In the above embodiment, the wheel speed and the wheel acceleration are used, but the vehicle body speed and its differential value (vehicle body acceleration) may be used. As the vehicle body speed, a value calculated from a value of a wheel speed sensor, a value acquired by a car navigation system, or the like can be used.
 ・上記実施の形態では、各車輪にディスクブレーキ装置の設けられた車両に本発明の制御装置を適用した場合を説明したが、本発明は、車輪の一部若しくは全部にドラムブレーキ装置が設けられた車両にも同様に適用することができる。 In the above embodiment, the case where the control device of the present invention is applied to a vehicle in which a disc brake device is provided on each wheel has been described. However, in the present invention, a drum brake device is provided on some or all of the wheels. The same applies to other vehicles.
 ・上記実施の形態では、2つの駆動輪4と2つの非駆動輪9とを備える2輪駆動車に本発明の制御装置を適用した場合を説明したが、本発明は、4輪駆動車などの他の駆動方式の車両にも同様に適用することができる。 In the above embodiment, the case where the control device of the present invention is applied to a two-wheel drive vehicle including two drive wheels 4 and two non-drive wheels 9 has been described. The present invention can be similarly applied to other driving type vehicles.

Claims (7)

  1.  エンジン(1)の自動停止、自動再始動を行う車両の制御装置(11)であって、
     エンジン(1)が停止された状態での登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定し(S100,S200)、ずり下がりが発生すると判定されたときには、車両のずり下がり距離が許容距離(La)を超える迄にエンジン(1)の再始動が完了するように同エンジン(1)の再始動を開始する(S103,S204)
     ことを特徴とする車両の制御装置。
    A vehicle control device (11) for automatically stopping and restarting an engine (1),
    It is determined whether or not the vehicle will slide down after the vehicle is stopped when the vehicle (1) is traveling uphill (S100, S200). If it is determined that the vehicle will slide down, Restart of the engine (1) is started so that the restart of the engine (1) is completed before the descending distance exceeds the allowable distance (La) (S103, S204).
    A control apparatus for a vehicle.
  2.  前記判定は、ブレーキペダル(5)の踏力に応じてブレーキ圧を発生するマスターシリンダー(7)の発生液圧であるマスターシリンダー圧(PMC)の検出結果と車体加速度(G)の検出結果とに基づき行われる
     請求項1に記載の車両の制御装置。
    The determination is based on the detection result of the master cylinder pressure (PMC) that is the hydraulic pressure generated by the master cylinder (7) that generates the brake pressure according to the depression force of the brake pedal (5) and the detection result of the vehicle body acceleration (G). The vehicle control device according to claim 1, wherein the vehicle control device is performed based on the control.
  3.  前記判定は、車両に作用する重力の車両後方向の成分(Fg)が、車両の制動力(Fpmc)を上回るときに車両のずり下がりが発生すると想定して行われる
     請求項1又は2に記載の車両の制御装置。
    The determination is performed on the assumption that the vehicle slips down when a vehicle rearward component (Fg) of gravity acting on the vehicle exceeds a braking force (Fpmc) of the vehicle. Vehicle control device.
  4.  前記判定は、重力により発生する車両後方向の加速度(Ag)が車両の制動加速度(Apmc)を上回るときに車両のずり下がりが発生すると想定して行われる
     請求項1又は2に記載の車両の制御装置。
    The determination is performed on the assumption that the vehicle slips when the rearward acceleration (Ag) of the vehicle generated by gravity exceeds the braking acceleration (Apmc) of the vehicle. Control device.
  5.  前記許容距離(La)を「0」とするとともに、停車迄の予測時間(T1)が、前記エンジン(1)の再始動必要時間に達した時点で前記エンジン(1)の再始動を開始する
     請求項1~4のいずれか1項に記載の車両の制御装置。
    The allowable distance (La) is set to “0”, and the restart of the engine (1) is started when the predicted time (T1) until the stop reaches the time required for restarting the engine (1). The vehicle control device according to any one of claims 1 to 4.
  6.  停車迄の予測時間(T1)と、停車から車両のずり下がり距離が前記許容距離(La)となる迄の時間(T2)との和が、前記エンジン(1)の再始動必要時間に達した時点で前記エンジン(1)の再始動を開始する
     請求項1~4のいずれか1項に記載の車両の制御装置。
    The sum of the estimated time (T1) to stop and the time (T2) from the stop until the sliding distance of the vehicle reaches the allowable distance (La) has reached the time required for restarting the engine (1). The vehicle control device according to any one of claims 1 to 4, wherein restart of the engine (1) is started at a time point.
  7.  路面勾配(θ)が急な程、前記許容距離(La)に大きい値を設定する
     ことを特徴とする請求項1~4、及び6のいずれか1項に記載の車両の制御装置。
    The vehicle control device according to any one of claims 1 to 4 and 6, wherein a larger value is set for the allowable distance (La) as the road surface gradient (θ) becomes steeper.
PCT/JP2011/064536 2010-06-25 2011-06-24 Vehicle control device WO2011162373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011102145.3T DE112011102145B4 (en) 2010-06-25 2011-06-24 Vehicle control device
CN201180030124.9A CN102959211B (en) 2010-06-25 2011-06-24 Controller of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-144984 2010-06-25
JP2010144984A JP5516132B2 (en) 2010-06-25 2010-06-25 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2011162373A1 true WO2011162373A1 (en) 2011-12-29

Family

ID=45371539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064536 WO2011162373A1 (en) 2010-06-25 2011-06-24 Vehicle control device

Country Status (4)

Country Link
JP (1) JP5516132B2 (en)
CN (1) CN102959211B (en)
DE (1) DE112011102145B4 (en)
WO (1) WO2011162373A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402901B2 (en) 2010-09-30 2014-01-29 株式会社デンソー Engine control device
JP6205688B2 (en) * 2011-09-16 2017-10-04 三菱自動車工業株式会社 Vehicle control device
JP5922624B2 (en) * 2013-08-08 2016-05-24 本田技研工業株式会社 Vehicle control device
JP5977730B2 (en) * 2013-12-16 2016-08-24 株式会社三共 Game machine
DE102014002817B4 (en) 2014-02-26 2024-05-08 Audi Ag Method and device for actuating a braking device of a drive train of a vehicle having an automatic transmission, in particular of a motor vehicle
DE102014205176A1 (en) * 2014-03-20 2015-03-12 Robert Bosch Gmbh Method for operating a motor vehicle with start / stop function
GB2536937B (en) * 2015-04-01 2018-09-12 Jaguar Land Rover Ltd Controller for a motor vehicle and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020776A (en) * 1999-07-02 2001-01-23 Honda Motor Co Ltd Unit for stopping prime mover
JP2005282453A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Control device for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170529A (en) * 1987-01-08 1988-07-14 Nissan Motor Co Ltd Travel control device for vehicle
JP3775112B2 (en) * 1999-03-04 2006-05-17 トヨタ自動車株式会社 Control device for restarting vehicle engine
DE19928373A1 (en) * 1999-06-21 2001-01-04 Volkswagen Ag Method and device for restarting the engine of a motor vehicle
JP3829567B2 (en) * 2000-02-21 2006-10-04 日産自動車株式会社 Automatic engine stop / restart device for vehicle
JP4374805B2 (en) 2001-07-24 2009-12-02 株式会社デンソー Engine car stop / restart device
JP3700974B2 (en) * 2002-11-18 2005-09-28 本田技研工業株式会社 Engine control device
JP2008128104A (en) * 2006-11-21 2008-06-05 Isuzu Motors Ltd Automatic stopping-starting device of engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020776A (en) * 1999-07-02 2001-01-23 Honda Motor Co Ltd Unit for stopping prime mover
JP2005282453A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Control device for vehicle

Also Published As

Publication number Publication date
DE112011102145T5 (en) 2013-04-25
CN102959211A (en) 2013-03-06
JP5516132B2 (en) 2014-06-11
JP2012007554A (en) 2012-01-12
DE112011102145B4 (en) 2016-02-18
CN102959211B (en) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2011162373A1 (en) Vehicle control device
US9682705B2 (en) Vehicle having ACC stop and go with braking auto-hold to increase engine autostop availability
JP5477316B2 (en) Vehicle sliding-down state determination device and vehicle control device including the same
JP5505229B2 (en) Engine control device
JP5935886B2 (en) Vehicle control device
JP5853690B2 (en) Automatic engine stop control device for vehicle
JP5672917B2 (en) Vehicle control device
JP2006321268A (en) Economic running control method and economic running controlling device
JP6256456B2 (en) Vehicle stop maintenance device
JP4300920B2 (en) Automatic brake device
JP2006213287A (en) Brake controlling device of vehicle
JP6082906B2 (en) Vehicle driving support device
JP2002211377A (en) Braking and driving force controller
JP5843833B2 (en) Vehicle control device
JP2006200526A (en) Output characteristic control device for vehicle
JP2005207327A (en) Vehicular automatic stopping/starting control apparatus
JP2006232094A (en) Brake control device for vehicle
JP4499691B2 (en) Braking control device
WO2012132119A1 (en) Engine automatic stop control device for vehicle
JP3775117B2 (en) Engine automatic stop vehicle
JP2009280083A (en) Braking control device of vehicle
JP2007118781A (en) Vehicle deterred with backward slip in temporary stop on uphill slope
JP5834608B2 (en) Automatic engine stop control device for vehicle
JP2009298277A (en) Braking force control device for vehicle
JP2012097621A (en) Vehicle control apparatus and vehicle control method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180030124.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011102145

Country of ref document: DE

Ref document number: 1120111021453

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798254

Country of ref document: EP

Kind code of ref document: A1