WO2011162165A1 - Method for manufacturing light-diffusing film, light-diffusing film manufactured by the method, and display device provided with the light-diffusing film - Google Patents

Method for manufacturing light-diffusing film, light-diffusing film manufactured by the method, and display device provided with the light-diffusing film Download PDF

Info

Publication number
WO2011162165A1
WO2011162165A1 PCT/JP2011/063843 JP2011063843W WO2011162165A1 WO 2011162165 A1 WO2011162165 A1 WO 2011162165A1 JP 2011063843 W JP2011063843 W JP 2011063843W WO 2011162165 A1 WO2011162165 A1 WO 2011162165A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
diffusion film
forming step
laminated body
Prior art date
Application number
PCT/JP2011/063843
Other languages
French (fr)
Japanese (ja)
Inventor
透 菅野
恵美 山本
強 前田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011162165A1 publication Critical patent/WO2011162165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Definitions

  • the present invention relates to a method for producing a light diffusion film suitably used for a display device such as a liquid crystal display device, a light diffusion film produced by the production method, and a display device provided with the light diffusion film.
  • FPD thin flat panel display
  • Some FPDs use liquid crystal, light emitting diodes (LEDs), organic electroluminescence (ELs), or the like as display elements.
  • These display devices emit light toward the display screen, or irradiate light by a backlight or the like provided on the back surface of the display screen (opposite to the observer). An observer visually recognizes the light emitted from the display screen.
  • the display device is designed so that light emitted obliquely from the display screen looks the same as when light emitted from the front of the display screen is viewed. In other words, the display screen is designed to look the same as when the display screen is viewed from the front.
  • the design is inadequate and the contrast characteristics when the display screen is viewed from the front are excellent.
  • the sense of change may be greater than when viewed from the front. Therefore, the display device has a problem that the appearance of the display differs depending on the viewing direction, that is, the viewing angle characteristic is inferior.
  • a method for improving the viewing angle characteristics of the display device, a method has been developed that enables visual recognition from an oblique direction by providing a film that diffuses light on the viewer side of the display device.
  • the light diffusing film include those obtained by subjecting the film surface to a concavo-convex treatment, and those containing light diffusing fine particles inside the film.
  • the light diffusion film refracts or totally reflects light from the backlight in multiple directions using a difference in refractive index.
  • the light refracted by the light diffusion film is diffused in multiple directions from the surface and emitted to the viewer side.
  • the display device can be visually recognized from all directions by the diffusion of light.
  • a display device has been developed in which an image viewed from the front and an image viewed from an oblique direction are combined, and the viewing angle is less changed.
  • Patent Document 1 discloses a configuration in which a plurality of grooves having a substantially V-shaped cross section are formed in parallel on the observation surface of a light diffusion film.
  • the light diffusion film disclosed in this document has a plurality of substantially V-shaped grooves (that is, a plurality of substantially trapezoidal structures), a light transmitting portion, A light reflecting portion formed by filling the groove with a resin having a refractive index lower than that of the transmitting portion.
  • the surface on which the groove of the light reflecting portion is formed is located on the light incident surface side so as to connect the first inclined surface having an angle for totally reflecting the image light, and the first inclined surface and the light emitting surface. It is characterized by being formed by a slope including a second slope having an angle to refract and transmit the image light.
  • the light incident in the vertical direction with respect to the light diffusion film is totally reflected on the first slope, and is emitted from the emission surface through the light transmission part.
  • the light incident in the vertical direction with respect to the light diffusion film is refracted, and is emitted from the emission surface through the light reflecting portion.
  • the light diffusion film can transmit, totally reflect, or refract the incident image light, so that the image light can be diffused at various angles.
  • Such an improvement in the light diffusion characteristics is attributed to the discontinuity of the diffusion angle on the second inclined surface that refracts and transmits the image light.
  • JP 2007-148185 A (published on June 14, 2007)
  • the light reflection part is formed by filling the groove
  • a method for producing a light diffusion film a method using a roller is generally employed.
  • the grooves of the light transmitting portions are formed at a pitch of about 50 ⁇ m, and the depth of the grooves is also formed at about 50 ⁇ m.
  • the above manufacturing method is applied. It is hard to do. This is because it is difficult to control the groove (that is, the structure) at a micron size by a mechanical forming method using a roll as in the above manufacturing method.
  • Patent Document 1 it is possible to control transmission of image light, total reflection, or refractive transmission by controlling the inclination angle of the inclined surface of the groove (that is, the structure). Therefore, in order to improve the light diffusion characteristics of the image light, it is desirable to be able to control the inclination angle of the inclined surface of the structure.
  • the manufacturing method disclosed in Patent Document 1 it is difficult to control the inclination angle of the slope of the micron-sized structure.
  • the objective was made
  • the objective was manufactured by the manufacturing method of the light-diffusion film which can control shaping
  • the object is to provide a light diffusing film and a display device including the light diffusing film.
  • the method for producing a light diffusing film according to the present invention comprises a structure forming step of diffusing incident light incident from a light incident surface and forming a plurality of structures emitted from the light emitting surface.
  • a method for producing a light diffusing film wherein, in the structure forming step, a plurality of structures are formed by laminating a plurality of taper-shaped layers on a substrate. The structure is formed such that the lower surface of the layer located in the upper layer coincides with the upper surface of the layer located immediately below the layer.
  • a plurality of tapered layers are stacked, and finally a structure having a slope with a graded slope is formed.
  • a manufacturing method it is possible to manufacture a structure having a desired height, pitch, and the like.
  • it is difficult to finely control the inclination angle of the inclined surface such as providing a stepwise inclination to a micron-sized structure.
  • the forming of the structure can be controlled to a micron size.
  • a plurality of tapered layers are stacked to form a structure having a slope with a multi-step slope. Therefore, a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the structure. Moreover, since a structure can be made into a desired shape by changing the height or width of the structure, the structure can be applied as a method for manufacturing a light diffusion film having structures of various shapes.
  • the light diffusing film manufacturing method includes a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light emitting surface.
  • the structure forming step includes a laminate forming step of forming a plurality of laminates in which a plurality of layers are laminated on a substrate, and a melting step of melting the plurality of laminates.
  • the laminate forming step for each of the laminates, the length of the layer in the fixed direction at the cut surface when the laminate is cut in a fixed direction is shortened from the lower layer to the upper layer, and The laminate is formed such that the entire lower surface of the layer located in the upper layer is included in the upper surface of the layer located immediately below the layer.
  • the above method by forming a laminate in which the width of the layer becomes narrower from the lower layer to the upper layer, a structure having a slope with a graded slope is finally obtained.
  • a manufacturing method it is possible to manufacture a structure having a desired height, pitch, and the like.
  • the forming of the structure can be controlled to a micron size.
  • the light diffusing film manufacturing method includes a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light emitting surface.
  • the structure forming step includes a laminate forming step of forming a plurality of laminates in which a plurality of layers are laminated on a substrate, and a transparent resin on the laminate for each of the laminates.
  • a lamination step of further laminating the laminate and a melting step of melting the transparent resin.
  • the length of the layer in the certain direction is shortened from the lower layer to the upper layer, and the entire lower surface of the layer positioned in the upper layer is included in the upper surface of the layer positioned immediately below the layer.
  • a structure having a smooth slope with a stepwise slope is finally obtained.
  • the formation of the structure can be controlled to a micron size, and a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the laminate. be able to.
  • the light diffusion film according to the present invention is characterized by being manufactured by any one of the manufacturing methods described above.
  • a layered body in which the layer width is narrowed from the lower layer to the upper layer or a layered body in which the bottom area of the layer is decreased from the lower layer to the upper layer is formed stepwise.
  • a structure having a slope with a gentle slope is obtained.
  • the light incident on the light diffusion film can be emitted in all directions by using the inclined surfaces having different inclination angles of the structures.
  • the width of the incident light can be widened and the incident light can be diffused without unevenness by using the structure having the inclined surface with the multi-step inclination. As a result, a light diffusion film having good light diffusion characteristics can be obtained.
  • the display device according to the present invention is characterized by including the light diffusion film described above.
  • the light of the backlight of the display device is emitted in all directions by the light diffusion film.
  • the width of diffusing the light of the backlight can be widened, a display device having a wide viewing angle and high contrast and brightness can be obtained.
  • a structure having a slope with multi-step slopes is finally formed. Therefore, a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the stacked body. That is, the formation of the structure can be controlled at a micron size. Moreover, since a structure can be made into a desired shape by changing the height or width of the structure, the structure can be applied as a method for manufacturing a light diffusion film having structures of various shapes.
  • FIG. 1 It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention. It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention.
  • A) in a figure is a figure which shows an example in the case of fuse
  • (b) in a figure is a structure body by coat
  • (C) is a figure which shows an example in the case of forming a structure by coat
  • FIG. 1 It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention.
  • (A) in the figure is a schematic view showing a cross section of the structure, (b) in the figure is a top view when the structure has a circular bottom surface, and (c) in the figure is It is a top view in case a structure has a rectangular bottom, (d) in a figure is a top view in case a structure has a pentagonal bottom.
  • FIG. 1 in the figure is a schematic view showing the optical path of light incident on the structure, and (b) in the figure is a top view showing the optical path of light incident on the structure having a circular bottom surface.
  • FIG. It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention. It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention. It is a top view of the light-diffusion film which concerns on one Embodiment of this invention. It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention.
  • FIG. 1 is a perspective view showing the entire configuration of the light diffusion film 1.
  • FIG. 2 is a view showing a cross section of the light diffusion film 1.
  • the light diffusion film 1 is used by being attached to the front surface of a display screen in a display device such as a liquid crystal display device. Specifically, it is used for diffusing light emitted from a backlight or the like of the display device onto the display screen and emitted to the viewer side, thereby widening the viewing angle.
  • a linear film called a louver may be arranged between the light source and the light diffusing film 1, and the light source is collimated to parallel light. Alternatively, it may emit substantially collimated light.
  • the light diffusion film 1 has a light transmission part 2 and a substrate 6.
  • the light transmission part 2 is formed on the substrate 6, and the light transmission part 2 is constituted by a plurality of columnar structures 4 formed in parallel in a certain direction.
  • Each structure 4 has a substantially triangular (or substantially trapezoidal) cross-sectional shape, and a groove-like gap (hereinafter referred to as a light reflecting portion 3) is formed between adjacent structures 4.
  • the substantially triangular shape indicates a shape in which the width becomes narrower from the lower layer toward the upper layer, and the upper layer has a certain width.
  • each structural body 4 is formed by melting a laminated body 5 in which materials constituting the structural body 4 are laminated, or by covering the surface of the laminated body 5 with a transparent resin.
  • the laminate 5 has a multilayer structure, and the length of the layer in the fixed direction on the cut surface when the laminate 5 is cut in a fixed direction is increased from the lower layer to the upper layer. It is shortened.
  • each stacked body 5 is formed such that the entire lower surface of the layer positioned in the upper layer is included in the upper surface of the layer positioned immediately below the layer.
  • the structure 4 as a whole has a structure having slopes with multiple stages of slopes.
  • Each structure 4 can also be formed by laminating a plurality of tapered layers.
  • each structure 4 is formed such that the lower surface of the layer located in the upper layer and the upper surface of the layer located immediately below the layer coincide with each other.
  • the taper shape referred to here means a shape in which the width of the structure 4 becomes narrower as the distance from the portion in contact with the substrate 6 increases. That is, it means a shape in which the width of the portion in contact with the substrate 6 is the widest.
  • the stacked body 5 as a base of the structure 4 is illustrated, but the stacked structure 5 is formed by melting the stacked body 5. In this case, since the stacked body 5 itself becomes the structure 4, the stacked body 5 cannot be discriminated as shown in the figure. Similarly, when the structure 4 is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated.
  • FIG. 1 in order to make the structural member of a light-diffusion film easy to understand, each member is simplified and shown in figure. Therefore, in this drawing, the surface of the structure 4 is shown in a curved surface shape, but in reality, the structure 4 has a structure having inclined surfaces with multi-step inclinations.
  • the light diffusion film 1 when providing the light diffusion film 1 in a display device, it arrange
  • the light transmission part 2 has a slope with a multi-step inclination, the light incident on the light transmission part 2 is diffused at any angle by these slopes. As a result, the light diffusibility of the light diffusion film 1 is improved. This will be described in detail later.
  • the structural body 4 is formed by melting the laminated body 5, coating the surface of the laminated body 5 with a transparent resin, or laminating a plurality of tapered layers. .
  • the structure 4 can be manufactured using a technique such as photolithography or a nanoimprint method, for example.
  • the nanoimprint method is a method of transferring a pattern by pouring a photocurable resin or a thermosetting resin into a mold (mold) having an arbitrary shape.
  • the laminate 5 or the structure 4 having a desired shape can be produced by engraving the shape of one layer of the laminate 5 or the structure 4 to produce a mold.
  • the photolithography method is a method of generating a pattern including an exposed portion and an unexposed portion by pattern exposure of the surface of the material coated with a photosensitive material.
  • a method for forming the structure 4 by melting the laminate 5 or coating the surface of the laminate 5 with a transparent resin will be described.
  • a photocurable resin that is cured by light irradiation is used as a material constituting the structure 4 (laminated body 5).
  • the photocurable resin include urethane acrylate and epoxy acrylate.
  • the said photocurable resin is apply
  • substrates 6 such as glass, a triacetyl cellulose, or a polyethylene terephthalate (PET)
  • coating process there is a method of applying a photocurable resin on the substrate 6 by using a spin coating method, or applying the photocurable resin on the substrate 6 by laminating a film type photocurable resin.
  • coated the resist is exposed using the photomask of a predetermined shape, and the said resist is patterned (patterning process).
  • a photomask in which line-shaped exposure portions are arranged is used.
  • the resist is patterned into a rectangular parallelepiped type.
  • the light to be irradiated is preferably ultraviolet light having a wavelength of 365 nm (i-line) (irradiation energy of about 150 mJ / cm 2 ).
  • the patterned resist portion is cured by heating the substrate 6 with a hot plate at about 100 ° C. (curing step). In this way, the first layer of the stacked body 5 is formed.
  • a resist is applied again on the substrate 6.
  • coated the resist is patterned and hardened in the same procedure as the 1st layer.
  • a resist is formed by patterning on the first layer of the stacked body 5.
  • the resist is concentric with the first layer and is smaller than the first layer. To do. That is, the width and length of the resist are made smaller than the width and length of the first layer, respectively.
  • the second layer is formed on the first layer of the stacked body 5.
  • the formed laminated body 5 is finally developed with a developer and is completed by washing away excess portions (laminated body forming step).
  • laminated body forming step the laminated body 5 having a four-layer structure is shown, but the number of layers of the laminated body 5 is not particularly limited to this, and a desired number of layers may be formed.
  • the structure 4 is produced by smoothing the corners of the laminated body 5.
  • the structural body 4 can be obtained by melting the laminated body 5 or making the surface of the laminated body 5 transparent resin.
  • the corners of the laminate 5 are smoothed by coating with.
  • FIG. (A) in FIG. 3 is a diagram showing an example of the case where the laminated body 5 is melted to form the structure 4.
  • (B) in FIG. 3 is a diagram illustrating an example of the case where the structure 4 is formed by covering the surface of the laminated body 5 with the transparent resin 7.
  • (C) in FIG. 3 is a diagram illustrating an example in which the structure 4 is formed by covering the surface of the laminated body 5 with the transparent resin 7.
  • the structure 4 is formed by coating the surface of the laminate 5 with the transparent resin 7 as shown in FIGS. Further, a transparent resin 7 is laminated (lamination process).
  • the transparent resin 7 is formed by performing a step of heating the substrate 6 on which the laminated body 5 with the transparent resin 7 laminated is heated on a hot plate, or a step of heating in a heated oven. Melt (melting process). At this time, the heating temperature is set to the softening point or melting point of the transparent resin 7 or higher. As a result, the transparent resin 7 is melted to cover the laminate 5, and the corners of the laminate 5 are smoothed. In this way, the structure 4 is obtained (melting step). As described above, by forming the stacked body 5 in which the layer width becomes narrower from the lower layer to the upper layer, the structure 4 having an inclined surface with a stepwise inclination is finally formed on the substrate 6. (Structure forming step). In the case where it is desired to obtain a smoother slope of the structure 4, it is preferable to employ a method of manufacturing the structure 4 by coating the surface of the laminate 5 with the transparent resin 7.
  • the procedure for forming the structure 4 by laminating a plurality of tapered layers is the same as the step of forming the laminate 5 described above. Specifically, when patterning the resist on the substrate 6, the substrate 6 coated with the resist is patterned at a taper shape by exposing the substrate 6 at an angle (from an oblique direction). Subsequently, the patterned resist portion is cured by heating the substrate 6 with a hot plate at about 100 ° C. In this way, a first tapered layer is formed. By repeating the above-described steps a plurality of times in order, the structure 4 in which the taper-shaped layers overlap several layers is formed. The formed structure 4 is finally developed with a developing solution and completed by washing away excess portions.
  • the structure 4 having a slope with a graded slope is obtained.
  • it is difficult to finely control the inclination angle of the inclined surface such as providing a stepwise inclination to the micron-sized structure 4 (or the light reflecting portion 3).
  • the formation of the structure 4 can be controlled to a micron size.
  • the convex structure 4 when the convex structure 4 is formed by melting resin by heat treatment, the slope of the structure 4 and the substrate 6 are formed. It may be difficult to control the angle (hereinafter referred to as the inclination angle of the structure 4) to a desired inclination angle.
  • the structure 4 can be made into a desired shape by changing the height or width of the structure 4, etc., it can be applied as a method for manufacturing a light diffusion film having the structure 4 of various shapes. Can do.
  • the light reflecting portion 3 (gap) between the adjacent structures 4 can be filled with a low refractive index resin as disclosed in Patent Document 1, for example.
  • a low refractive index resin as disclosed in Patent Document 1, for example.
  • an ultraviolet curable resin such as acrylic, epoxy, or urethane is preferably used as the low refractive index resin.
  • the refractive index of the high refractive index material constituting the light transmitting portion 2 (structure 4) is 1.02 to 1.25 times the refractive index of the low refractive index material constituting the light reflecting portion 3. It is preferable to have.
  • refractive index of the high refractive index material constituting the light transmitting portion 2 (structure 4) is 1.02 to 1.25 times the refractive index of the low refractive index material constituting the light reflecting portion 3. It is preferable to have.
  • refractive index of the high refractive index material constituting the light transmitting portion 2 (structure 4) is 1.02 to 1.25 times the refractive index of the low refractive index material constitu
  • the light reflecting portion 3 can contain a light absorbing material.
  • the light reflecting portion 3 containing the light absorbing material absorbs stray light that has entered the light diffusing film 1 or stray light generated in the light diffusing film 1 and absorbs external light that has entered the light diffusing film 1 to increase the contrast. It acts to improve and can function as a so-called black stripe pattern.
  • the light absorbing material light-absorbing particles such as carbon black, and black or gray achromatic materials such as black pigments or black dyes are preferably used.
  • a material that selectively absorbs a specific wavelength may be used in accordance with the above characteristics.
  • the taper angle of the structure 4 is preferably 60 ° or more and less than 90 °, and more preferably 60 ° or more and 80 ° or less. If the taper angle of the structure 4 is within the above range, incident light can be almost totally reflected at the interface between the structure 4 and the light reflecting portion 3.
  • the pitch of the structures 4 is preferably 1 ⁇ m or more.
  • the pitch of the structures 4 is smaller.
  • the height of the structure 4 is also preferably 1 ⁇ m or more in order to totally reflect light internally, but for the same reason as the pitch, the height of the structure 4 is preferably about 50 ⁇ m or less. More preferably, it is about several ⁇ m.
  • the pitch of the conventional light diffusing film structure (or the groove of the light transmitting portion) is about 50 ⁇ m. Even when the pitch is set to several ⁇ m, the light diffusion is performed by general equipment for performing photolithography. The film 1 can be produced.
  • the light diffusion film 1 is attached to the front surface of a display screen in a display device such as a liquid crystal display device, and diffuses light emitted from a backlight or the like toward the viewer.
  • the optical path of the light incident on the light diffusion film 1 will be briefly described with reference to FIG. In FIG. 4, the optical path of the incident light is schematically shown as arrows (a) to (e).
  • the light incident near the center of the structure 4 of the light transmitting portion 2 passes straight through the light diffusing film 1 as shown by the arrow (b) and reaches the observer.
  • the light incident on the slope portion of the structure 4 is totally reflected at the interface between the structure 4 and the light reflecting portion 3 as indicated by arrows (a) and (c), and is refracted and emitted from the exit surface. To the observer.
  • the structure 4 has an inclined surface with a multi-step inclination. Therefore, the light that has entered the structure 4 on the slope portion different from the arrows (a) and (c) is reflected at the interface between the structure 4 and the light reflecting portion 3 as indicated by arrows (d) and (e). It is totally reflected, refracted at the exit surface, and exits to the observer.
  • the emission direction on the exit surface side is the arrow (a). And (c) is different.
  • the angle at which the light incident on the light diffusion film 1 is emitted from the exit surface side varies depending on the incident portion of the structure 4, that is, the incident inclined surface portion. Therefore, the incident light can be emitted in all directions by using the inclined surfaces having different inclination angles of the structures 4.
  • the structure 4 having a slope with a multi-step slope it is possible to widen the width for diffusing incident light.
  • the light diffusing film 1 according to the present embodiment is constituted by the light transmission part 2 in which the columnar structures 4 are formed in parallel, so that the incident light is diffused widely in the horizontal direction (left-right direction in FIG. 4). be able to. Therefore, the light diffusion film 1 having a wide viewing angle in the horizontal direction and high contrast and brightness can be obtained.
  • the light diffusion film 1 When the light diffusion film 1 is provided in a display device, light from a backlight or the like is not completely parallel light but has a diffusion angle with a certain width. Therefore, it is preferable to use the light diffusion film 1 having the structure 4 having a change in the taper angle as in this embodiment. This is because the light from the backlight or the like is strong in linear light, and therefore, when the structure 4 has a single inclination, a specific viewing angle becomes bright and abrupt on the display screen. This is because the change in the image becomes conspicuous.
  • the taper angle of the structure 4 can be changed stepwise, so that light from the backlight or the like can be diffused without unevenness. As a result, the light diffusion film 1 having good light diffusion characteristics can be obtained.
  • FIG. 5 is a perspective view showing an overall configuration of a light diffusion film 1a having a plurality of conical structures 4a.
  • the light diffusion film 1a has a light transmission part 2a configured by aligning a plurality of cone-shaped structures 4a.
  • each structure 4a has a multi-layer structure, and the bottom area of the layer decreases from the lower layer to the upper layer.
  • the entire lower surface of the layer positioned in the upper layer is formed so as to be included in the upper surface of the layer positioned immediately below the layer.
  • the structure 4a as a whole has a structure having slopes with multi-stage slopes.
  • each member is simplified and illustrated. For this reason, in this drawing, the surface of the structure 4a is shown in a curved shape, but in reality, the structure 4a has a structure having a multi-step inclined surface.
  • the structure 4a has a substantially triangular (or substantially trapezoidal) cross section having a multi-step inclined slope as shown in FIG.
  • the bottom surface shape of the structure 4a can be, for example, the shapes shown in (b) to (d) of FIG. 6B to 6D are views when the structure 4a is viewed from the observer side. Specifically, it can be a circular shape as shown in FIG. 6B, a rectangular shape as shown in FIG. 6C, or a pentagon shape as shown in FIG. 6D. .
  • the shape of the bottom surface is not particularly limited, and may be an ellipse or a polygon.
  • the cone-shaped structure 4a is formed by forming a stacked body 5a in which materials constituting the structural body 4a are stacked using a photomask in which exposed portions such as a circle or a polygon are aligned, and the stacked body 5a is melted. Or by covering the surface of the laminate 5a with a transparent resin.
  • the structural body 4a can be formed by laminating a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here.
  • the material applicable to the structure 4a (laminated body 5a) is also equivalent to the structure 4.
  • the light diffusing film 1a having the cone-shaped structure 4a as described above is provided in the display device, as shown in FIG.
  • the light enters from the bottom side of the body 4a, and is transmitted or refracted and emitted to the viewer side.
  • the structure 4a has a circular bottom surface as shown in FIG. 6B
  • the incident light 15 travels in all directions as shown in FIG. 7B. Diffused in all directions.
  • the structure 4a has a rectangular base as shown in FIG. 6C or a pentagonal bottom as shown in FIG. 6D, and (c) and FIG.
  • the incident light 15 is diffused in all directions.
  • the structure 4a since the structure 4a has a cone shape and has various taper angles, the incident light 15 from the backlight or the like is emitted in multiple directions. Moreover, since the taper angle of the structure 4a can be changed in a stepwise manner as in the above-described embodiment, the incident light 15 can be diffused without unevenness. Therefore, the light diffusion film 1a of one sheet can diffuse light in multiple directions, and can provide a light diffusion film 1a having a wide viewing angle and high contrast and brightness.
  • the laminated body 5a that is the basis of the structural body 4a is illustrated for easy understanding of the configuration of the structural body 4a.
  • the structural body 4a is formed by melting 5a
  • the stacked body 5a itself becomes the structural body 4a, so that the stacked body 5a cannot be discriminated as shown in the figure.
  • the structure 4a is formed by stacking a plurality of tapered layers, the stacked body 5 is not discriminated.
  • Modification 2 In the above-described modified example 1, the structures 4a of the light transmission part 2a are arranged and arranged. However, when such a light diffusion film 1a is used for a display device, a stripe pattern (moire) is formed on the display screen. It may be visually recognized. This is because when a plurality of regular repeating patterns are superimposed, a striped pattern (moire) is visually generated due to a shift in the periodic pattern of the repeating patterns. Therefore, when the light diffusing film 1a having the periodic pattern in which the structures 4a are arranged in a straight line is used for a display device, a strong moire is generated between the periodic pattern of the light diffusing film 1a and the periodic pattern of the display screen. May end up.
  • FIG. 8 is a perspective view showing the overall configuration of a light diffusion film 1b having a plurality of conical structures 4b.
  • the light diffusion film 1b has a light transmission part 2b configured by randomly arranging a plurality of conical structures 4b.
  • a light transmission part 2b configured by randomly arranging a plurality of conical structures 4b.
  • the occurrence of moire can be prevented.
  • FIG. 9 is a view showing a cross section of the light diffusion film 1b.
  • FIG. 10 is a view when the light diffusion film 1b is viewed from the observer side.
  • the stacked body 5 b that is a base of the structure 4 b is illustrated, but the structure 4 b is formed by melting the stacked body 5 b.
  • the stacked body 5b itself becomes the structure 4b, the stacked body 5b cannot be discriminated as shown in the figure. Similarly, when the structure 4b is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated. In FIG. 10, it is assumed that the structure 4a has a circular bottom surface as shown in FIG.
  • a plurality of structures 4b are randomly arranged, and the interval between adjacent structures 4b is not constant. Further, as shown in FIG. 10, a plurality of structures 4b are randomly arranged on the substrate 6, and the light diffusion film 1b does not have a periodic pattern. According to this, even if the light diffusing film 1b is provided in the display device, the light diffusing film 1b does not have a periodic pattern, so that it is possible to prevent the occurrence of moire on the display screen. As a result, the display quality of the display device can be improved.
  • the light transmission part 2b forms the laminated body 5b which laminated
  • the said laminated body 5b is formed. It is formed by melting or coating the surface of the laminate 5b with a transparent resin.
  • the structure 4b can be formed by stacking a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here.
  • FIG. 11 is a view showing a cross section of a light diffusion film 1c having a plurality of asymmetric structures 4c.
  • the light diffusion film 1c has a light transmission part 2c configured by arranging a plurality of asymmetric structures 4c.
  • each structure 4c has a multilayer structure, and the bottom area of the layer becomes smaller from the lower layer to the upper layer.
  • each structure 4 is formed such that the entire lower surface of the layer located in the upper layer is included in the upper surface of the layer located immediately below the layer, but only a part of the structure 4 is inclined in a multistep manner. It has a structure with a slope.
  • the light incident on the slope portion having the multi-step slope is emitted in all directions.
  • most of the light incident on other than the inclined surface part is transmitted as it is or refracted and transmitted, and its light diffusion characteristic is lower than that of the inclined surface part.
  • the structure 4c is a portion with high light diffusion characteristics. And a low part. Therefore, the overall light diffusion characteristic of the light diffusion film 1c having the structure 4c is asymmetric, and as a result, the viewing angle characteristic of the light diffusion film 1c is also asymmetric.
  • the right viewing angle characteristic is low and the left viewing angle characteristic is high, the right viewing angle characteristic is By using the light diffusion film 1c provided with the structure 4c which becomes high, the overall viewing angle characteristic can be made uniform. In this way, partial viewing angle characteristics can be adjusted.
  • the cross-sectional shape of the structure 4c is substantially triangular (or substantially trapezoidal) similar to that of the structure 4a of Modification 1, and the bottom shape is the same as that of the structure 4a.
  • the present invention is not particularly limited thereto, and the shape of the structure 4c can be changed as appropriate. Therefore, the structure 4c may be formed into a shape that can obtain a desired viewing angle characteristic.
  • the structure 4c forms the laminated body 5c which laminated
  • the structure 4c can be formed by stacking a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here.
  • the material applicable to the structure 4c (laminated body 5c) is also the same as that of the structure 4. In FIG.
  • the stacked body 5c that is a base of the structure 4c is illustrated, but the structure 4c is formed by melting the stacked body 5c. Since the stacked body 5c itself becomes the structure 4c, the stacked body 5c cannot be discriminated as shown in the figure. Similarly, when the structure 4c is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated.
  • FIG. 12 is a view showing a cross section of a light diffusion film 1d having a plurality of structures 4a and a plurality of structures 4c.
  • the light diffusion film 1d has a light transmission part 2d configured by arranging a plurality of symmetrical structures 4a and a plurality of asymmetric structures 4c.
  • the inclination angles of the structures 4a and 4c formed on the substrate 6 are random, and the total reflection angle of the light incident on the light diffusion film 1d varies.
  • the light diffusion film 1d is provided in the display device, light from the backlight or the like is emitted in all directions, thereby eliminating unevenness in the viewing angle characteristics of the display device and smoothing the viewing angle characteristics. be able to.
  • a plurality of structures 4a and a plurality of structures 4c are arranged, but the present invention is not limited to this.
  • Three or more types of structures 4a and 4c may be arranged so that desired viewing angle characteristics can be obtained, or structures 4c having a plurality of types of asymmetric shapes may be arranged.
  • FIG. 13 is a schematic view illustrating a cross section of the liquid crystal display device 10 including the light diffusing film 1.
  • the liquid crystal display device 10 basically includes a backlight unit and a liquid crystal display element unit. As shown in FIG. 13, the liquid crystal display device 10 includes a light emitting diode (LED) and a semiconductor laser as the backlight unit. (LD) or a backlight 11 such as a cold cathode fluorescent lamp (CCFL). In addition, the liquid crystal display device 10 includes a liquid crystal panel as a liquid crystal display element portion.
  • the liquid crystal panel includes a thin film transistor (TFT), a glass plate 13 on which wiring or the like is formed, a transparent electrode, a color filter, or the like.
  • TFT thin film transistor
  • the liquid crystal layer 14 is sealed between the formed glass plate 13 and the polarizing plate 12 is disposed on both surfaces thereof.
  • the light diffusion film 1 is provided on the front surface (observer side) of the liquid crystal panel (polarizing plate 12).
  • the light emitted from the backlight 11 passes (irradiates) the liquid crystal panel as shown by the arrows shown in FIG.
  • the light of the backlight 11 is diffused in the light diffusion film 1 and emitted to the viewer side.
  • the light of the backlight 11 is emitted in all directions by the inclined surfaces having different inclination angles of the structures 4.
  • the width for diffusing the light of the backlight 11 can be widened, so that the liquid crystal display device 10 having a wide viewing angle and high contrast and brightness can be obtained. Can do.
  • a display device including the light diffusing films 1a to 1d can also be used.
  • a high viewing angle characteristic and a high display quality can be obtained. can get.
  • the formation of the structure can be controlled to a micron size.
  • the light diffusion film which can diffuse an incident light widely in a horizontal direction or a vertical direction by said method is obtained.
  • the light diffusing film manufacturing method according to the present invention is characterized in that, in the laminate formation step, a plurality of the laminates in which a plurality of the columnar layers are laminated are formed on the substrate.
  • the formation of the structure can be controlled to a micron size.
  • a light diffusion film capable of widely diffusing incident light in all directions can be obtained by the above method.
  • the manufacturing method of the light-diffusion film which concerns on this invention WHEREIN The said laminated body formation process apply
  • the step and the curing step of curing the material after the patterning step are repeated a plurality of times in order.
  • the method for producing a light diffusion film according to the present invention is characterized in that the laminate forming step is performed by photolithography.
  • a layer having a desired shape can be patterned, and finally a laminated body having a desired shape can be formed.
  • the present invention can be used in manufacturing a light diffusion film that is used in a display device such as a liquid crystal display device and expands the viewing angle of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Disclosed is a light-diffusing film (1) wherein a laminated body (5) having a multilayer structure is formed by laminating materials that constitute a structural body (4). The structural body (4) is formed by melting the laminated body (5) or by covering the laminated body (5) with a resin. Alternatively, the structural body (4) may be formed by laminating a plurality of tapered layers. In this case, the layer width of the structural body (4) is reduced toward the upper layer from the lower layer, and as a whole, the structural body has a structure having tilted surfaces that are tilted at multiple levels. The shape of the structural body (4) can be controlled by micron size by adjusting the number of layers, height, width and the like of the structural body (4) as needed.

Description

光拡散フィルムの製造方法、および当該製造方法によって製造された光拡散フィルム、ならびに当該光拡散フィルムを備えた表示装置Manufacturing method of light diffusion film, light diffusion film manufactured by the manufacturing method, and display device including the light diffusion film
 本発明は、液晶表示装置等の表示装置に好適に用いられる光拡散フィルムの製造方法、および当該製造方法によって製造された光拡散フィルム、ならびに当該光拡散フィルムを備えた表示装置に関する。 The present invention relates to a method for producing a light diffusion film suitably used for a display device such as a liquid crystal display device, a light diffusion film produced by the production method, and a display device provided with the light diffusion film.
 近年では、表示装置の開発研究が目覚ましく、従来主流であったブラウン管を使用した表示装置から、薄型のフラットパネルディスプレイ(FPD)の表示装置が広く利用されるようになっている。FPDには、表示素子として液晶、発光ダイオード(LED)または、有機エレクトロルミネッセンス(EL)等を利用したものがある。 In recent years, research and development of display devices has been remarkable, and thin flat panel display (FPD) display devices have been widely used instead of display devices using cathode ray tubes, which have been the mainstream in the past. Some FPDs use liquid crystal, light emitting diodes (LEDs), organic electroluminescence (ELs), or the like as display elements.
 これらの表示装置は、表示画面に向かって発光、または表示画面の背面(観察者とは反対側)に設けられたバックライト等によって光を照射している。表示画面から出射された光を観察者は視認する。なお、表示装置では、表示画面から斜めに出射する光が、表示画面の正面に出射した光を見たときと同じように見えるように設計されている。すなわち、表示画面を斜めから見たときに、表示画面を正面から見たときと同じように見えるように設計されている。しかし、その設計は不十分であり、表示画面を正面から見たときのコントラスト特性は優れているものの、斜めから見ると正面から見たときと比べ変化感が大きい場合がある。したがって、表示装置には、観察する方向によって表示の見え方が異なる、すなわち視野角特性が劣るという問題がある。 These display devices emit light toward the display screen, or irradiate light by a backlight or the like provided on the back surface of the display screen (opposite to the observer). An observer visually recognizes the light emitted from the display screen. The display device is designed so that light emitted obliquely from the display screen looks the same as when light emitted from the front of the display screen is viewed. In other words, the display screen is designed to look the same as when the display screen is viewed from the front. However, the design is inadequate and the contrast characteristics when the display screen is viewed from the front are excellent. However, when viewed from the front, the sense of change may be greater than when viewed from the front. Therefore, the display device has a problem that the appearance of the display differs depending on the viewing direction, that is, the viewing angle characteristic is inferior.
 そこで、表示装置の視野角特性を向上させる方法の1つとして、表示装置の観察者側に光を拡散させるフィルムを設けることにより、斜め方向からの視認を可能にする方法が開発されている。光拡散フィルムには、フィルム表面に凹凸処理をしたもの、またはフィルム内部に光拡散性微粒子を含有させたもの等がある。当該光拡散フィルムは、屈折率の差を利用してバックライトからの光を多方向に屈折または全反射させる。光拡散フィルムによって屈折した光は、その表面から多方向に拡散して観察者側に出射される。このように、光拡散フィルムを用いれば、光の拡散によって表示装置をあらゆる方向から視認することが可能となる。その結果、正面から見たときの映像と、斜めから見たときの映像とが一緒になり、視野角の変化感の少ない表示装置が開発されている。 Therefore, as one of the methods for improving the viewing angle characteristics of the display device, a method has been developed that enables visual recognition from an oblique direction by providing a film that diffuses light on the viewer side of the display device. Examples of the light diffusing film include those obtained by subjecting the film surface to a concavo-convex treatment, and those containing light diffusing fine particles inside the film. The light diffusion film refracts or totally reflects light from the backlight in multiple directions using a difference in refractive index. The light refracted by the light diffusion film is diffused in multiple directions from the surface and emitted to the viewer side. As described above, when the light diffusion film is used, the display device can be visually recognized from all directions by the diffusion of light. As a result, a display device has been developed in which an image viewed from the front and an image viewed from an oblique direction are combined, and the viewing angle is less changed.
 例えば、特許文献1には、光拡散フィルムの観察面に、断面が略V字形状となる複数の溝が並列形成されている構成が開示されている。具体的には、本文献に開示されている光拡散フィルムは、略V字形状の複数の溝を有する(すなわち、複数の略台形形状の構造体で構成されている)光透過部と、光透過部の屈折率よりも低い屈折率の樹脂を当該溝に充填して形成される光反射部とを有している。特に、光反射部の溝を形成する面が、光入射面側に位置して映像光を全反射させる角度からなる第1斜面と、その第1斜面と光出射面とを繋ぐように位置して映像光を屈折透過する角度からなる第2斜面とを含む斜面によって形成されていることを特徴としている。 For example, Patent Document 1 discloses a configuration in which a plurality of grooves having a substantially V-shaped cross section are formed in parallel on the observation surface of a light diffusion film. Specifically, the light diffusion film disclosed in this document has a plurality of substantially V-shaped grooves (that is, a plurality of substantially trapezoidal structures), a light transmitting portion, A light reflecting portion formed by filling the groove with a resin having a refractive index lower than that of the transmitting portion. In particular, the surface on which the groove of the light reflecting portion is formed is located on the light incident surface side so as to connect the first inclined surface having an angle for totally reflecting the image light, and the first inclined surface and the light emitting surface. It is characterized by being formed by a slope including a second slope having an angle to refract and transmit the image light.
 この構成によれば、光拡散フィルムに対して垂直方向に入射した光は、第1斜面において全反射し、光透過部を通って出射面から出射する。一方、第2斜面においては、光拡散フィルムに対して垂直方向に入射した光は屈折し、光反射部内を通って出射面から出射する。このように、上記光拡散フィルムは、入射した映像光を透過、全反射、または屈折透過させることができるので、多様な角度で映像光を拡散させることができる。その結果、上記光拡散フィルムによって拡散される映像光の光拡散特性を向上させることができる。こうした光拡散特性の向上は、映像光を屈折透過する第2斜面での拡散角度の不連続性が寄与している。 According to this configuration, the light incident in the vertical direction with respect to the light diffusion film is totally reflected on the first slope, and is emitted from the emission surface through the light transmission part. On the other hand, on the second inclined surface, the light incident in the vertical direction with respect to the light diffusion film is refracted, and is emitted from the emission surface through the light reflecting portion. As described above, the light diffusion film can transmit, totally reflect, or refract the incident image light, so that the image light can be diffused at various angles. As a result, it is possible to improve the light diffusion characteristics of the image light diffused by the light diffusion film. Such an improvement in the light diffusion characteristics is attributed to the discontinuity of the diffusion angle on the second inclined surface that refracts and transmits the image light.
日本国公開特許公報「特開2007-148185号公報(2007年6月14日公開)」Japanese Patent Publication “JP 2007-148185 A (published on June 14, 2007)”
 ところで、上記した特許文献1では、光拡散フィルムの製造時には、光透過部の溝の賦形形状が周面に形成された型ロールと、この型ロールに当接して、基材を当該型ロールに押圧可能なニップロールとを備えた製造装置を用いる。具体的には、型ロールを回転させながら、型ロールとその型ロールの周面に沿って進む基材との間に光透過部を構成する材料を供給すると、型ロールとニップロールとのニップ部において、光透過部を構成する材料と、基材とが押圧される。その後、当該材料を硬化させることによって光透過部が形成される。そして、形成した光透過部の溝に光反射部を構成する材料を充填し、さらに当該材料を硬化させることによって光反射部が形成される。このように、光拡散フィルムの製造方法としては、ローラを使用した方法が一般的に採用されている。 By the way, in above-mentioned patent document 1, at the time of manufacture of a light-diffusion film, the shaping | molding shape of the groove | channel of the light transmissive part was formed in the surrounding surface, and this mold roll contact | abutted, and a base material is said mold roll A manufacturing apparatus including a nip roll that can be pressed is used. Specifically, when the material constituting the light transmission portion is supplied between the mold roll and the base material that advances along the peripheral surface of the mold roll while rotating the mold roll, the nip portion between the mold roll and the nip roll The material constituting the light transmission portion and the base material are pressed. Thereafter, the light transmissive portion is formed by curing the material. And the light reflection part is formed by filling the groove | channel of the formed light transmissive part with the material which comprises a light reflection part, and also hardening | curing the said material. Thus, as a method for producing a light diffusion film, a method using a roller is generally employed.
 上記した製造方法では、光透過部の溝は、50μm程度のピッチで形成されており、当該溝の深さも50μm程度で形成されている。しかしながら、光透過部の溝のピッチを50μm以下にする場合、あるいは溝の深さを50μm以下にする場合等、溝の成形をミクロンサイズで制御する必要がある場合には、上記製造方法は適用し難い。これは、上記製造方法のように、ロールによる機械的な成形方法では、溝(すなわち、構造体)のミクロンサイズでの制御が困難なためである。 In the manufacturing method described above, the grooves of the light transmitting portions are formed at a pitch of about 50 μm, and the depth of the grooves is also formed at about 50 μm. However, when the groove pitch of the light transmitting part is 50 μm or less, or when the groove depth is 50 μm or less, etc., it is necessary to control the forming of the groove with micron size, the above manufacturing method is applied. It is hard to do. This is because it is difficult to control the groove (that is, the structure) at a micron size by a mechanical forming method using a roll as in the above manufacturing method.
 また、特許文献1に示されるように、溝(すなわち、構造体)の斜面の傾斜角度を制御することによって、映像光の透過、全反射、または屈折透過を制御することができる。したがって、映像光の光拡散特性を向上させるためには、構造体の斜面の傾斜角度を制御できることが望ましい。しかしながら、上述したように、特許文献1に開示されている製造方法では、ミクロンサイズの構造体の斜面の傾斜角度を制御するのは難しい。 Further, as shown in Patent Document 1, it is possible to control transmission of image light, total reflection, or refractive transmission by controlling the inclination angle of the inclined surface of the groove (that is, the structure). Therefore, in order to improve the light diffusion characteristics of the image light, it is desirable to be able to control the inclination angle of the inclined surface of the structure. However, as described above, in the manufacturing method disclosed in Patent Document 1, it is difficult to control the inclination angle of the slope of the micron-sized structure.
 そこで、本発明は上記課題に鑑みてなされたものであり、その目的は、構造体(溝)の成形をミクロンサイズで制御可能な、光拡散フィルムの製造方法、および当該製造方法によって製造された光拡散フィルム、ならびに当該光拡散フィルムを備えた表示装置を提供することにある。 Then, this invention was made | formed in view of the said subject, The objective was manufactured by the manufacturing method of the light-diffusion film which can control shaping | molding of a structure (groove) by micron size, and the said manufacturing method. The object is to provide a light diffusing film and a display device including the light diffusing film.
 本発明に係る光拡散フィルムの製造方法は、上記課題を解決するために、光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、上記構造体形成工程において、複数のテーパ形状の層を基板上に積層することによって複数の上記構造体を形成しており、上記構造体ごとに、上層に位置する上記層の下面と、当該層の直下に位置する上記層の上面とが一致するようにして上記構造体を形成することを特徴としている。 In order to solve the above problems, the method for producing a light diffusing film according to the present invention comprises a structure forming step of diffusing incident light incident from a light incident surface and forming a plurality of structures emitted from the light emitting surface. A method for producing a light diffusing film, wherein, in the structure forming step, a plurality of structures are formed by laminating a plurality of taper-shaped layers on a substrate. The structure is formed such that the lower surface of the layer located in the upper layer coincides with the upper surface of the layer located immediately below the layer.
 上記の方法によれば、複数のテーパ形状の層を積層して、最終的には段階的な傾斜がついた斜面を有する構造体を形成している。このような製造方法では、所望な高さ、およびピッチ等を有する構造体を製造することが可能となる。従来のローラによる機械的な製造方法では、ミクロンサイズの構造体に段階的な傾斜を設ける等、斜面の傾斜角度の微細な制御をすることが困難であった。しかしながら、本発明に係る製造方法によれば、構造体の成形をミクロンサイズで制御することができる。 According to the above method, a plurality of tapered layers are stacked, and finally a structure having a slope with a graded slope is formed. With such a manufacturing method, it is possible to manufacture a structure having a desired height, pitch, and the like. In the conventional mechanical manufacturing method using rollers, it is difficult to finely control the inclination angle of the inclined surface, such as providing a stepwise inclination to a micron-sized structure. However, according to the manufacturing method according to the present invention, the forming of the structure can be controlled to a micron size.
 本発明では、複数のテーパ形状の層を積層することによって、多段階の傾斜がついた斜面を有する構造体を形成している。そのため、構造体の層数、高さ、または幅等を適宜調整すれば、所望な傾斜角度を有する構造体を作製することができる。また、構造体の高さまたは幅等を変化させることによって、構造体を所望の形状にすることができるので、様々な形状の構造体を有する光拡散フィルムの製造方法として応用することができる。 In the present invention, a plurality of tapered layers are stacked to form a structure having a slope with a multi-step slope. Therefore, a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the structure. Moreover, since a structure can be made into a desired shape by changing the height or width of the structure, the structure can be applied as a method for manufacturing a light diffusion film having structures of various shapes.
 また、本発明に係る光拡散フィルムの製造方法は、光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、上記構造体形成工程は、複数の層を積層した複数の積層体を基板上に形成する積層体形成工程と、上記複数の積層体を溶融する溶融工程とを備えており、上記積層体形成工程において、上記積層体ごとに、当該積層体を一定方向に切断した際の切断面における、上記一定方向の上記層の長さを下層から上層になるにつれて短くし、なおかつ上層に位置する上記層の下面全体が、当該層の直下に位置する上記層の上面に含まれるようにして上記積層体を形成することを特徴としている。 In addition, the light diffusing film manufacturing method according to the present invention includes a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light emitting surface. The structure forming step includes a laminate forming step of forming a plurality of laminates in which a plurality of layers are laminated on a substrate, and a melting step of melting the plurality of laminates. In the laminate forming step, for each of the laminates, the length of the layer in the fixed direction at the cut surface when the laminate is cut in a fixed direction is shortened from the lower layer to the upper layer, and The laminate is formed such that the entire lower surface of the layer located in the upper layer is included in the upper surface of the layer located immediately below the layer.
 上記の方法によれば、下層から上層になるにつれて層の幅が狭くなる積層体を形成することによって、最終的には段階的な傾斜がついた斜面を有する構造体が得られる。このような製造方法では、所望な高さ、およびピッチ等を有する構造体を製造することが可能となる。従来のローラによる機械的な製造方法では、ミクロンサイズの構造体に段階的な傾斜を設ける等、斜面の傾斜角度の微細な制御をすることが困難であった。しかしながら、本発明に係る製造方法によれば、構造体の成形をミクロンサイズで制御することができる。 According to the above method, by forming a laminate in which the width of the layer becomes narrower from the lower layer to the upper layer, a structure having a slope with a graded slope is finally obtained. With such a manufacturing method, it is possible to manufacture a structure having a desired height, pitch, and the like. In the conventional mechanical manufacturing method using rollers, it is difficult to finely control the inclination angle of the inclined surface, such as providing a stepwise inclination to a micron-sized structure. However, according to the manufacturing method according to the present invention, the forming of the structure can be controlled to a micron size.
 また、本発明に係る光拡散フィルムの製造方法は、光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、上記構造体形成工程は、複数の層を積層した複数の積層体を基板上に形成する積層体形成工程と、上記積層体ごとに、当該積層体の上に透明樹脂をさらに積層する積層工程と、上記透明樹脂を溶融する溶融工程とを備えており、上記積層体形成工程において、上記積層体ごとに、当該積層体を一定方向に切断した際の切断面における、上記一定方向の上記層の長さを下層から上層になるにつれて短くし、なおかつ上層に位置する上記層の下面全体が、当該層の直下に位置する上記層の上面に含まれるようにして上記積層体を形成することを特徴としている。 In addition, the light diffusing film manufacturing method according to the present invention includes a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light emitting surface. In the manufacturing method, the structure forming step includes a laminate forming step of forming a plurality of laminates in which a plurality of layers are laminated on a substrate, and a transparent resin on the laminate for each of the laminates. In the cut surface when the laminate is cut in a certain direction for each of the laminates in the laminate formation step, and a lamination step of further laminating the laminate and a melting step of melting the transparent resin. The length of the layer in the certain direction is shortened from the lower layer to the upper layer, and the entire lower surface of the layer positioned in the upper layer is included in the upper surface of the layer positioned immediately below the layer. Forming the body It is characterized in.
 上記の方法によれば、積層体の表面を透明樹脂で被覆することによって、最終的には段階的な傾斜がついた滑らかな斜面を有する構造体が得られる。このような製造方法では、構造体の成形をミクロンサイズで制御することができ、積層体の層数、高さ、または幅等を適宜調整すれば、所望な傾斜角度を有する構造体を作製することができる。 According to the above method, by covering the surface of the laminate with a transparent resin, a structure having a smooth slope with a stepwise slope is finally obtained. In such a manufacturing method, the formation of the structure can be controlled to a micron size, and a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the laminate. be able to.
 また、本発明に係る光拡散フィルムは、上述したいずれかの製造方法によって製造したことを特徴としている。 Further, the light diffusion film according to the present invention is characterized by being manufactured by any one of the manufacturing methods described above.
 上記の構成によれば、下層から上層になるにつれて層の幅が狭くなる積層体、または下層から上層になるにつれて層の底面積が小さくなる積層体を形成することによって、最終的には段階的な傾斜がついた斜面を有する構造体が得られる。構造体の傾斜角度が異なる斜面を利用して、光拡散フィルムに入射した光をあらゆる方向に出射させることができる。以上により、多段階の傾斜がついた斜面を有する構造体を用いることによって、入射光を拡散させる幅を広げることができ、入射光をムラなく拡散させることができる。その結果、良好な光拡散特性を有する光拡散フィルムが得られる。 According to the above configuration, a layered body in which the layer width is narrowed from the lower layer to the upper layer or a layered body in which the bottom area of the layer is decreased from the lower layer to the upper layer is formed stepwise. A structure having a slope with a gentle slope is obtained. The light incident on the light diffusion film can be emitted in all directions by using the inclined surfaces having different inclination angles of the structures. As described above, the width of the incident light can be widened and the incident light can be diffused without unevenness by using the structure having the inclined surface with the multi-step inclination. As a result, a light diffusion film having good light diffusion characteristics can be obtained.
 また、本発明に係る表示装置は、上述した光拡散フィルムを備えていることを特徴としている。 Further, the display device according to the present invention is characterized by including the light diffusion film described above.
 上記の構成によれば、表示装置のバックライトの光は、光拡散フィルムによって、あらゆる方向に出射される。以上により、本発明に係る表示装置では、バックライトの光を拡散させる幅を広げることができるので、広い視野角を持ち、コントラストおよび輝度の高い表示装置を得ることができる。 According to the above configuration, the light of the backlight of the display device is emitted in all directions by the light diffusion film. As described above, in the display device according to the present invention, since the width of diffusing the light of the backlight can be widened, a display device having a wide viewing angle and high contrast and brightness can be obtained.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 本発明に係る製造方法では、最終的には多段階の傾斜がついた斜面を有する構造体を形成している。そのため、積層体の層数、高さ、または幅等を適宜調整すれば、所望な傾斜角度を有する構造体を作製することができる。すなわち、構造体の成形をミクロンサイズで制御することができる。また、構造体の高さまたは幅等を変化させることによって、構造体を所望の形状にすることができるので、様々な形状の構造体を有する光拡散フィルムの製造方法として応用することができる。 In the manufacturing method according to the present invention, a structure having a slope with multi-step slopes is finally formed. Therefore, a structure having a desired inclination angle can be manufactured by appropriately adjusting the number of layers, the height, the width, or the like of the stacked body. That is, the formation of the structure can be controlled at a micron size. Moreover, since a structure can be made into a desired shape by changing the height or width of the structure, the structure can be applied as a method for manufacturing a light diffusion film having structures of various shapes.
本発明の一実施形態に係る光拡散フィルムの全体構成を示す斜視図である。It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention. 本発明の一実施形態に係る光拡散フィルムの断面を示す図である。It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention. 図中の(a)は、積層体を溶融して構造体を形成する場合の一例を示す図であり、図中の(b)は、積層体の表面を透明樹脂で被覆することによって構造体を形成する場合の一例を示す図であり、図中の(c)は、積層体の表面を透明樹脂で被覆することによって構造体を形成する場合の一例を示す図である。(A) in a figure is a figure which shows an example in the case of fuse | melting a laminated body and forming a structure, (b) in a figure is a structure body by coat | covering the surface of a laminated body with transparent resin. (C) is a figure which shows an example in the case of forming a structure by coat | covering the surface of a laminated body with a transparent resin. 本発明の一実施形態に係る光拡散フィルムに入射した光の光路を示す図である。It is a figure which shows the optical path of the light which injected into the light-diffusion film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光拡散フィルムの全体構成を示す斜視図である。It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention. 図中の(a)は、構造体の断面を示す概略図であり、図中の(b)は、構造体が円形の底面を有する場合の上面図であり、図中の(c)は、構造体が長方形の底面を有する場合の上面図であり、図中の(d)は、構造体が五角形の底面を有する場合の上面図である。(A) in the figure is a schematic view showing a cross section of the structure, (b) in the figure is a top view when the structure has a circular bottom surface, and (c) in the figure is It is a top view in case a structure has a rectangular bottom, (d) in a figure is a top view in case a structure has a pentagonal bottom. 図中の(a)は、構造体に入射した光の光路を示す概略図であり、図中の(b)は、円形の底面を有する構造体に入射した光の光路を示す上面図であり、図中の(c)は、長方形の底面を有する構造体に入射した光の光路を示す上面図であり、図中の(d)は、五角形の底面を有する構造体に入射した光の光路を示す上面図である。(A) in the figure is a schematic view showing the optical path of light incident on the structure, and (b) in the figure is a top view showing the optical path of light incident on the structure having a circular bottom surface. (C) in the figure is a top view showing an optical path of light incident on a structure having a rectangular bottom surface, and (d) in the figure is an optical path of light incident on a structure having a pentagonal bottom surface. FIG. 本発明の一実施形態に係る光拡散フィルムの全体構成を示す斜視図である。It is a perspective view showing the whole light diffusion film composition concerning one embodiment of the present invention. 本発明の一実施形態に係る光拡散フィルムの断面を示す図である。It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光拡散フィルムの上面図である。It is a top view of the light-diffusion film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光拡散フィルムの断面を示す図である。It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光拡散フィルムの断面を示す図である。It is a figure which shows the cross section of the light-diffusion film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光拡散フィルムを備えた液晶表示装置の断面を示す概略図である。It is the schematic which shows the cross section of the liquid crystal display device provided with the light-diffusion film which concerns on one Embodiment of this invention.
 (光拡散フィルム1の概要)
 本実施形態に係る光拡散フィルム1の概要について、図1および図2を参照して説明する。図1は、光拡散フィルム1の全体構成を示す斜視図である。図2は、光拡散フィルム1の断面を示す図である。
(Outline of light diffusion film 1)
The outline | summary of the light-diffusion film 1 which concerns on this embodiment is demonstrated with reference to FIG. 1 and FIG. FIG. 1 is a perspective view showing the entire configuration of the light diffusion film 1. FIG. 2 is a view showing a cross section of the light diffusion film 1.
 光拡散フィルム1は、液晶表示装置等の表示装置において、表示画面の前面に取り付けて用いられるものである。具体的には、表示装置のバックライト等から表示画面に照射され、観察者側に出射される光を拡散し、視野角を広げるために用いられる。表示装置に光拡散フィルム1を設けたとき、光源と光拡散フィルム1との間に、ルーバーと呼ばれる、ブラインド状に配置された線状のフィルムを配置しても良く、光源を平行光にコリメート、または略コリメートした光を発するものにしても良い。 The light diffusion film 1 is used by being attached to the front surface of a display screen in a display device such as a liquid crystal display device. Specifically, it is used for diffusing light emitted from a backlight or the like of the display device onto the display screen and emitted to the viewer side, thereby widening the viewing angle. When the light diffusing film 1 is provided in the display device, a linear film called a louver may be arranged between the light source and the light diffusing film 1, and the light source is collimated to parallel light. Alternatively, it may emit substantially collimated light.
 図1に示すように、光拡散フィルム1は、光透過部2、および基板6を有している。具体的には、基板6上に光透過部2が形成されており、当該光透過部2は複数の柱状の構造体4を一定方向に並列形成したものから構成されている。各構造体4は、断面形状が略三角形(または略台形)となっており、隣り合う構造体4との間には溝状の空隙(以下、光反射部3という)が生じている。ここで、略三角形とは、図面からも明らかなように、下層から上層に向かうにつれて幅が狭くなっており、上層がある程度の幅を有している形状を指している。 As shown in FIG. 1, the light diffusion film 1 has a light transmission part 2 and a substrate 6. Specifically, the light transmission part 2 is formed on the substrate 6, and the light transmission part 2 is constituted by a plurality of columnar structures 4 formed in parallel in a certain direction. Each structure 4 has a substantially triangular (or substantially trapezoidal) cross-sectional shape, and a groove-like gap (hereinafter referred to as a light reflecting portion 3) is formed between adjacent structures 4. Here, as is apparent from the drawings, the substantially triangular shape indicates a shape in which the width becomes narrower from the lower layer toward the upper layer, and the upper layer has a certain width.
 後ほど詳しく説明するが、各構造体4は、構造体4を構成する材料を積層した積層体5を溶融することによって、あるいは積層体5の表面を透明樹脂で被覆することによって形成されている。図2に示すように、積層体5は、多層構造をしており、当該積層体5を一定方向に切断した際の切断面における、上記一定方向の層の長さを下層から上層になるにつれて短くしている。ここで、各積層体5は、上層に位置する層の下面全体が、当該層の直下に位置する層の上面に含まれるようにして形成されている。それによって、構造体4は全体として多段階の傾斜がついた斜面を有する構造になっている。なお、各構造体4は、複数のテーパ形状の層を積層して形成することも可能である。この場合、各構造体4は、上層に位置する層の下面と、当該層の直下に位置する層の上面とが一致するようにして形成されている。ここで言うテーパ形状とは、構造体4の幅について、基板6に接する部分から遠ざかるにつれて、その幅が狭くなる形状を意味する。すなわち、基板6と接する部分の幅が最も広くなっている形状を意味する。 As will be described in detail later, each structural body 4 is formed by melting a laminated body 5 in which materials constituting the structural body 4 are laminated, or by covering the surface of the laminated body 5 with a transparent resin. As shown in FIG. 2, the laminate 5 has a multilayer structure, and the length of the layer in the fixed direction on the cut surface when the laminate 5 is cut in a fixed direction is increased from the lower layer to the upper layer. It is shortened. Here, each stacked body 5 is formed such that the entire lower surface of the layer positioned in the upper layer is included in the upper surface of the layer positioned immediately below the layer. As a result, the structure 4 as a whole has a structure having slopes with multiple stages of slopes. Each structure 4 can also be formed by laminating a plurality of tapered layers. In this case, each structure 4 is formed such that the lower surface of the layer located in the upper layer and the upper surface of the layer located immediately below the layer coincide with each other. The taper shape referred to here means a shape in which the width of the structure 4 becomes narrower as the distance from the portion in contact with the substrate 6 increases. That is, it means a shape in which the width of the portion in contact with the substrate 6 is the widest.
 図1および図2では、構造体4の構成を分かりやすくするために、構造体4の基となる積層体5を図示しているが、積層体5を溶融することによって構造体4を形成する場合には、積層体5自身が構造体4となるため、図のように積層体5は判別できなくなる。また、複数のテーパ形状の層を積層して構造体4を形成する場合も同様に、積層体5は判別されない。なお、図1では、光拡散フィルムの構成部材を分かりやすくするために各部材を簡略化して図示している。そのため、本図では、構造体4の表面を曲面状に図示しているが、実際には、構造体4は多段階の傾斜がついた斜面を有する構造になっている。 In FIG. 1 and FIG. 2, in order to make the configuration of the structure 4 easy to understand, the stacked body 5 as a base of the structure 4 is illustrated, but the stacked structure 5 is formed by melting the stacked body 5. In this case, since the stacked body 5 itself becomes the structure 4, the stacked body 5 cannot be discriminated as shown in the figure. Similarly, when the structure 4 is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated. In addition, in FIG. 1, in order to make the structural member of a light-diffusion film easy to understand, each member is simplified and shown in figure. Therefore, in this drawing, the surface of the structure 4 is shown in a curved surface shape, but in reality, the structure 4 has a structure having inclined surfaces with multi-step inclinations.
 なお、光拡散フィルム1を表示装置に設ける際には、バックライト等からの光が入射する光入射面側に基板6(光透過部2の下層側)が位置するようにして配置する。すなわち、光拡散フィルム1では、バックライト等からの光が基板6に入射され、当該基板6を介して光透過部2から当該光を出射する。この際、光拡散フィルム1に入射した光は、光透過部2を通過し、光透過部2と光反射部3との界面において、光透過部2の屈折率と光反射部3(空隙)の屈折率との差から、当該光は全反射して光出射面から出射される。ここで、光透過部2は、多段階の傾斜がついた斜面を有しているため、光透過部2に入射した光はこれらの斜面によってあらゆる角度に拡散される。その結果、光拡散フィルム1の光拡散性が向上する。これについては、後ほど詳しく説明する。 In addition, when providing the light diffusion film 1 in a display device, it arrange | positions so that the board | substrate 6 (lower layer side of the light transmissive part 2) may be located in the light-incidence surface side into which the light from a backlight etc. injects. That is, in the light diffusion film 1, light from a backlight or the like is incident on the substrate 6, and the light is emitted from the light transmission unit 2 through the substrate 6. At this time, the light incident on the light diffusing film 1 passes through the light transmission part 2, and the refractive index of the light transmission part 2 and the light reflection part 3 (gap) at the interface between the light transmission part 2 and the light reflection part 3. Therefore, the light is totally reflected and emitted from the light exit surface. Here, since the light transmission part 2 has a slope with a multi-step inclination, the light incident on the light transmission part 2 is diffused at any angle by these slopes. As a result, the light diffusibility of the light diffusion film 1 is improved. This will be described in detail later.
 (構造体4の製造方法)
 以下では、構造体4の製造方法について、詳しく説明していく。上述したように、構造体4は、積層体5を溶融することによって、または積層体5の表面を透明樹脂で被覆することによって、あるいは複数のテーパ形状の層を積層することによって形成されている。当該構造体4は、例えば、フォトリソグラフィー、またはナノインプリント法等の手法を用いて製造することができる。ナノインプリント法は、任意の形状のモールド(型)に光硬化性樹脂もしくは熱硬化性樹脂を流し込むことによって、パターンを転写する手法である。本手法では、積層体5または構造体4の1層の形状を彫ってモールドを作製することによって、所望な形状の積層体5または構造体4を作製することができる。
(Manufacturing method of structure 4)
Below, the manufacturing method of the structure 4 is demonstrated in detail. As described above, the structural body 4 is formed by melting the laminated body 5, coating the surface of the laminated body 5 with a transparent resin, or laminating a plurality of tapered layers. . The structure 4 can be manufactured using a technique such as photolithography or a nanoimprint method, for example. The nanoimprint method is a method of transferring a pattern by pouring a photocurable resin or a thermosetting resin into a mold (mold) having an arbitrary shape. In this method, the laminate 5 or the structure 4 having a desired shape can be produced by engraving the shape of one layer of the laminate 5 or the structure 4 to produce a mold.
 一方、フォトリソグラフィー法は、感光性の物質を塗布した物質の表面を、パターン露光することによって、露光された部分と露光されていない部分とからなるパターンを生成する手法である。以下では、フォトリソグラフィーによって構造体4を形成する一例を示す。まず、積層体5を溶融することによって、または積層体5の表面を透明樹脂で被覆することによって構造体4を形成する方法を示す。 On the other hand, the photolithography method is a method of generating a pattern including an exposed portion and an unexposed portion by pattern exposure of the surface of the material coated with a photosensitive material. Hereinafter, an example in which the structure 4 is formed by photolithography will be described. First, a method for forming the structure 4 by melting the laminate 5 or coating the surface of the laminate 5 with a transparent resin will be described.
 まず、構造体4(積層体5)を構成する材料としては、光照射によって硬化する光硬化性樹脂を用いる。光硬化性樹脂としては、例えば、ウレタンアクリレート系またはエポキシアクリレート系等が挙げられる。特に、約1.45~1.65の屈折率を有し、なおかつ可視光の透過性の高い光硬化性樹脂を用いるのが好ましい。 First, as a material constituting the structure 4 (laminated body 5), a photocurable resin that is cured by light irradiation is used. Examples of the photocurable resin include urethane acrylate and epoxy acrylate. In particular, it is preferable to use a photocurable resin having a refractive index of about 1.45 to 1.65 and having a high visible light transmittance.
 構造体4の製造手順を順に説明していく。まず、ガラス、トリアセチルセルロース、またはポリエチレンテレフタレート(PET)等の基板6上に、レジストとして上記光硬化性樹脂を塗布する(塗布工程)。具体的には、スピンコート法を用いて基板6上に光硬化性樹脂を塗布したり、あるいはフィルムタイプの光硬化性樹脂をラミネートすることによって基板6上に塗布したりする方法がある。 The manufacturing procedure of the structure 4 will be described in order. First, the said photocurable resin is apply | coated as a resist on board | substrates 6, such as glass, a triacetyl cellulose, or a polyethylene terephthalate (PET) (application | coating process). Specifically, there is a method of applying a photocurable resin on the substrate 6 by using a spin coating method, or applying the photocurable resin on the substrate 6 by laminating a film type photocurable resin.
 このようにしてレジストを塗布した基板6を、所定の形状のフォトマスクを用いて露光し、当該レジストをパターニングする(パターニング工程)。この際、複数の柱状の構造体4を並列形成するために、ライン状の露光部が配列されているフォトマスクを用いる。その結果、レジストは、直方体型にパターニングされる。照射する光としては、波長365nm(i線)の紫外線(150mJ/cm程度の照射エネルギー)等が好ましい。 Thus, the board | substrate 6 which apply | coated the resist is exposed using the photomask of a predetermined shape, and the said resist is patterned (patterning process). At this time, in order to form a plurality of columnar structures 4 in parallel, a photomask in which line-shaped exposure portions are arranged is used. As a result, the resist is patterned into a rectangular parallelepiped type. The light to be irradiated is preferably ultraviolet light having a wavelength of 365 nm (i-line) (irradiation energy of about 150 mJ / cm 2 ).
 続いて、基板6を100℃程度のホットプレートにて加熱することによって、パターニングしたレジスト部分を硬化させる(硬化工程)。このようにして、積層体5の第1層目が形成される。 Subsequently, the patterned resist portion is cured by heating the substrate 6 with a hot plate at about 100 ° C. (curing step). In this way, the first layer of the stacked body 5 is formed.
 積層体5の第1層目を形成後に、再び基板6上にレジストを塗布する。そして、レジストを塗布した基板6を、第1層目と同様の手順でパターニングして、硬化させる。具体的には、積層体5の第1層目の上にレジストをパターニング形成するが、この際、レジストが当該第1層目と同心になり、なおかつ当該第1層目よりも小さくなるようにする。すなわち、レジストの幅および長さが、それぞれ第1層目の幅および長さよりも小さくなるようにする。これによって、積層体5の第1層目の上に第2層目が形成される。上記の工程を順番に複数回繰り返し行うことによって、幾層かに重なる積層体5を形成する。形成した積層体5は、最終的に現像液によって現像し、余分な部分を洗い流すことによって完成する(積層体形成工程)。ここで、図1および図2では、4層構造の積層体5を示したが、積層体5の層数は特にこれに限定されるものではなく、所望の数の層を形成すれば良い。 After forming the first layer of the laminate 5, a resist is applied again on the substrate 6. And the board | substrate 6 which apply | coated the resist is patterned and hardened in the same procedure as the 1st layer. Specifically, a resist is formed by patterning on the first layer of the stacked body 5. At this time, the resist is concentric with the first layer and is smaller than the first layer. To do. That is, the width and length of the resist are made smaller than the width and length of the first layer, respectively. As a result, the second layer is formed on the first layer of the stacked body 5. By repeating the above steps a plurality of times in order, the stacked body 5 that overlaps several layers is formed. The formed laminated body 5 is finally developed with a developer and is completed by washing away excess portions (laminated body forming step). Here, in FIG. 1 and FIG. 2, the laminated body 5 having a four-layer structure is shown, but the number of layers of the laminated body 5 is not particularly limited to this, and a desired number of layers may be formed.
 最後に、積層体5の角をなだらかにすることによって構造体4を作製するが、上述したように、構造体4は、積層体5を溶融することによって、あるいは積層体5の表面を透明樹脂で被覆することによって積層体5の角をなだらかにしている。その詳細を、図3に示す。図3中の(a)は、積層体5を溶融して構造体4を形成する場合の一例を示す図である。図3中の(b)は、積層体5の表面を透明樹脂7で被覆することによって構造体4を形成する場合の一例を示す図である。図3中の(c)は、積層体5の表面を透明樹脂7で被覆することによって構造体4を形成する場合の一例を示す図である。 Finally, the structure 4 is produced by smoothing the corners of the laminated body 5. As described above, the structural body 4 can be obtained by melting the laminated body 5 or making the surface of the laminated body 5 transparent resin. The corners of the laminate 5 are smoothed by coating with. The details are shown in FIG. (A) in FIG. 3 is a diagram showing an example of the case where the laminated body 5 is melted to form the structure 4. (B) in FIG. 3 is a diagram illustrating an example of the case where the structure 4 is formed by covering the surface of the laminated body 5 with the transparent resin 7. (C) in FIG. 3 is a diagram illustrating an example in which the structure 4 is formed by covering the surface of the laminated body 5 with the transparent resin 7.
 図3中の(a)に示すように、積層体5を溶融して構造体4を形成する場合には、積層体5を形成した基板6を、熱したホットプレート上で加熱する工程、あるいは昇温したオーブン内に投入して加熱する工程を行うことによって、積層体5を溶融する(溶融工程)。この際、加熱温度は、積層体5の軟化点もしくは融点以上にする。これによって、積層体5を溶融し、当該積層体5の角をなだらかにする。このようにして、構造体4が得られる。一方、図3中の(b)および(c)に示すように、積層体5の表面を透明樹脂7で被覆することによって構造体4を形成する場合には、形成した積層体5の上に、さらに透明樹脂7を積層する(積層工程)。そして、透明樹脂7を積層した積層体5を形成した基板6を、熱したホットプレート上で加熱する工程、あるいは昇温したオーブン内に投入して加熱する工程を行うことによって、透明樹脂7を溶融する(溶融工程)。この際、加熱温度は、透明樹脂7の軟化点もしくは融点以上にする。これによって、透明樹脂7を溶融して積層体5を被覆し、積層体5の角をなだらかにする。このようにして、構造体4が得られる(溶融工程)。以上のように、下層から上層になるにつれて層の幅が狭くなる積層体5を形成することによって、最終的には段階的な傾斜がついた斜面を有する構造体4を基板6上に形成することができる(構造体形成工程)。構造体4の斜面の傾斜がより滑らかなものを得たい場合には、積層体5の表面を透明樹脂7で被覆することによって構造体4を製造する方法を採用することが好ましい。 As shown to (a) in FIG. 3, when forming the structure 4 by melting the laminated body 5, the process which heats the board | substrate 6 in which the laminated body 5 was formed on the heated hotplate, or The laminated body 5 is melted by performing a process of putting it in a heated oven and heating it (melting process). At this time, the heating temperature is set to be equal to or higher than the softening point or melting point of the laminate 5. Thereby, the laminated body 5 is melted and the corners of the laminated body 5 are made smooth. In this way, the structure 4 is obtained. On the other hand, when the structure 4 is formed by coating the surface of the laminate 5 with the transparent resin 7 as shown in FIGS. Further, a transparent resin 7 is laminated (lamination process). Then, the transparent resin 7 is formed by performing a step of heating the substrate 6 on which the laminated body 5 with the transparent resin 7 laminated is heated on a hot plate, or a step of heating in a heated oven. Melt (melting process). At this time, the heating temperature is set to the softening point or melting point of the transparent resin 7 or higher. As a result, the transparent resin 7 is melted to cover the laminate 5, and the corners of the laminate 5 are smoothed. In this way, the structure 4 is obtained (melting step). As described above, by forming the stacked body 5 in which the layer width becomes narrower from the lower layer to the upper layer, the structure 4 having an inclined surface with a stepwise inclination is finally formed on the substrate 6. (Structure forming step). In the case where it is desired to obtain a smoother slope of the structure 4, it is preferable to employ a method of manufacturing the structure 4 by coating the surface of the laminate 5 with the transparent resin 7.
 ここで、複数のテーパ形状の層を積層して構造体4を形成する場合の手順としては、上記した積層体5の形成工程と同様である。具体的には、基板6上のレジストをパターニングする際に、レジストを塗布した基板6に対して、角度をつけて(斜めから)露光することによってテーパ形状にパターニングする。続いて、基板6を100℃程度のホットプレートにて加熱することによって、パターニングしたレジスト部分を硬化させる。このようにして、第1層目のテーパ形状の層が形成される。上記の工程を順番に複数回繰り返し行うことによって、テーパ形状の層が幾層かに重なる構造体4を形成する。形成した構造体4は、最終的に現像液によって現像し、余分な部分を洗い流すことによって完成する。 Here, the procedure for forming the structure 4 by laminating a plurality of tapered layers is the same as the step of forming the laminate 5 described above. Specifically, when patterning the resist on the substrate 6, the substrate 6 coated with the resist is patterned at a taper shape by exposing the substrate 6 at an angle (from an oblique direction). Subsequently, the patterned resist portion is cured by heating the substrate 6 with a hot plate at about 100 ° C. In this way, a first tapered layer is formed. By repeating the above-described steps a plurality of times in order, the structure 4 in which the taper-shaped layers overlap several layers is formed. The formed structure 4 is finally developed with a developing solution and completed by washing away excess portions.
 以上のようにして、段階的な傾斜がついた斜面を有する構造体4が得られる。このような製造方法では、所望な高さ、およびピッチ等を有する構造体4を製造することが可能となる。従来のローラによる機械的な製造方法では、ミクロンサイズの構造体4(または光反射部3)に段階的な傾斜を設ける等、斜面の傾斜角度の微細な制御をすることが困難であった。しかしながら、本実施形態に係る製造方法によれば、構造体4の成形をミクロンサイズで制御することができる。 As described above, the structure 4 having a slope with a graded slope is obtained. With such a manufacturing method, it is possible to manufacture the structure 4 having a desired height, pitch, and the like. In the conventional mechanical manufacturing method using rollers, it is difficult to finely control the inclination angle of the inclined surface, such as providing a stepwise inclination to the micron-sized structure 4 (or the light reflecting portion 3). However, according to the manufacturing method according to the present embodiment, the formation of the structure 4 can be controlled to a micron size.
 例えば、特開平7-270604号公報に示されているように、樹脂を熱処理によって溶融して凸形状の構造体4を形成する場合には、当該構造体4の斜面と、基板6とがなす角度(以下、構造体4の傾斜角度という)を、所望な傾斜角度に制御するのが難しい場合がある。しかしながら、本実施形態では、上層になるにつれて層の幅が狭くなる多層構造の積層体5をパターニングすることによって、多段階の傾斜がついた斜面を有する構造体4を形成している。そのため、図3中の(b)および(c)に示したように、積層体5の層数、高さ、または幅等を適宜調整すれば、所望な傾斜角度を有する構造体4を作製することができる。また、構造体4の高さまたは幅等を変化させることによって、構造体4を所望の形状にすることができるので、様々な形状の構造体4を有する光拡散フィルムの製造方法として応用することができる。 For example, as shown in Japanese Patent Application Laid-Open No. 7-270604, when the convex structure 4 is formed by melting resin by heat treatment, the slope of the structure 4 and the substrate 6 are formed. It may be difficult to control the angle (hereinafter referred to as the inclination angle of the structure 4) to a desired inclination angle. However, in the present embodiment, the multilayer structure 5 in which the width of the layer becomes narrower as the upper layer is patterned to form the structure 4 having slopes with multi-step slopes. Therefore, as shown in (b) and (c) of FIG. 3, if the number of layers, the height, the width, or the like of the laminate 5 is appropriately adjusted, the structure 4 having a desired inclination angle is produced. be able to. Moreover, since the structure 4 can be made into a desired shape by changing the height or width of the structure 4, etc., it can be applied as a method for manufacturing a light diffusion film having the structure 4 of various shapes. Can do.
 なお、隣り合う構造体4との間の光反射部3(空隙)には、例えば、特許文献1に開示されているような低屈折率樹脂を充填することも可能である。具体的には、アクリル系、エポキシ系、またはウレタン系等の紫外線硬化型樹脂が低屈折率樹脂として好適に用いられる。光透過部2(構造体4)を構成する高屈折率材料の屈折率が、光反射部3を構成する低屈折率材料の屈折率よりも、1.02~1.25倍の屈折率を有していることが好ましい。こうして光透過部2と光反射部3との間に屈折率差があることによって、当該光透過部2と光反射部3との界面において光を効率良く全反射、または屈折透過させることができる。 The light reflecting portion 3 (gap) between the adjacent structures 4 can be filled with a low refractive index resin as disclosed in Patent Document 1, for example. Specifically, an ultraviolet curable resin such as acrylic, epoxy, or urethane is preferably used as the low refractive index resin. The refractive index of the high refractive index material constituting the light transmitting portion 2 (structure 4) is 1.02 to 1.25 times the refractive index of the low refractive index material constituting the light reflecting portion 3. It is preferable to have. Thus, since there is a difference in refractive index between the light transmitting portion 2 and the light reflecting portion 3, light can be efficiently totally reflected or refracted and transmitted at the interface between the light transmitting portion 2 and the light reflecting portion 3. .
 また、特許文献1に開示されているように、光反射部3に光吸収材を含有させることも可能である。光吸収材を含有する光反射部3は、光拡散フィルム1に入った迷光または光拡散フィルム1内で生じた迷光を吸収すると共に、光拡散フィルム1に入った外光を吸収してコントラストを向上させるように作用し、いわゆるブラックストライプパターンとして機能させることができる。光吸収材としては、カーボンブラック等の光吸収性粒子、黒色系顔料または黒色系染料等の黒色または灰色等の無彩色材料が好適に用いられるが、これらに限定されるものではなく、入射光の特性に合わせて特定の波長を選択的に吸収する材料を使用しても良い。 Further, as disclosed in Patent Document 1, the light reflecting portion 3 can contain a light absorbing material. The light reflecting portion 3 containing the light absorbing material absorbs stray light that has entered the light diffusing film 1 or stray light generated in the light diffusing film 1 and absorbs external light that has entered the light diffusing film 1 to increase the contrast. It acts to improve and can function as a so-called black stripe pattern. As the light absorbing material, light-absorbing particles such as carbon black, and black or gray achromatic materials such as black pigments or black dyes are preferably used. A material that selectively absorbs a specific wavelength may be used in accordance with the above characteristics.
 (構造体4の構成)
 以下では、構造体4の具体的な構成について説明する。
(Configuration of structure 4)
Below, the specific structure of the structure 4 is demonstrated.
 まず、構造体4のテーパ角は、60°以上90°未満であることが好ましく、さらには60°以上80°以下であることがより好ましい。構造体4のテーパ角が上記範囲内であれば、当該構造体4と光反射部3との界面において、入射光をほぼ全反射させることができる。 First, the taper angle of the structure 4 is preferably 60 ° or more and less than 90 °, and more preferably 60 ° or more and 80 ° or less. If the taper angle of the structure 4 is within the above range, incident light can be almost totally reflected at the interface between the structure 4 and the light reflecting portion 3.
 また、光を内部全反射させるためには、構造体4のピッチは、1μm以上であることが好ましい。しかしながら、光拡散フィルム1を表示装置に設けた場合に、表示装置と光拡散フィルム1との間の距離が長い場合には、斜め二重像等の画像ボヤケが発生し、視認性が低下するといった問題があるので、構造体4のピッチはより小さい方が良い。 Further, in order to totally reflect light internally, the pitch of the structures 4 is preferably 1 μm or more. However, when the light diffusing film 1 is provided in the display device, if the distance between the display device and the light diffusing film 1 is long, image blur such as an oblique double image occurs, and the visibility is lowered. Therefore, it is better that the pitch of the structures 4 is smaller.
 構造体4の高さについても、光を内部全反射させるために1μm以上であることが好ましいが、上記ピッチと同様の理由から、構造体4の高さはおよそ50μm以下であることが好ましい。より好ましくは、数μm程度である。 The height of the structure 4 is also preferably 1 μm or more in order to totally reflect light internally, but for the same reason as the pitch, the height of the structure 4 is preferably about 50 μm or less. More preferably, it is about several μm.
 なお、従来の光拡散フィルムの構造体(または光透過部の溝)のピッチは、50μm程度であるが、当該ピッチを数μmにする場合でも、フォトリソグラフィーを行う一般的な設備にて光拡散フィルム1を作製することが可能である。 The pitch of the conventional light diffusing film structure (or the groove of the light transmitting portion) is about 50 μm. Even when the pitch is set to several μm, the light diffusion is performed by general equipment for performing photolithography. The film 1 can be produced.
 (光拡散フィルム1による拡散)
 上述したように、光拡散フィルム1は、液晶表示装置等の表示装置において、表示画面の前面に取り付けられ、バックライト等から観察者側に出射される光を拡散するものである。光拡散フィルム1に入射した光の光路について、図4を参照して簡単に説明する。なお、図4において、矢印(a)~(e)のように入射した光の光路は模式的に示されたものである。
(Diffusion by light diffusion film 1)
As described above, the light diffusion film 1 is attached to the front surface of a display screen in a display device such as a liquid crystal display device, and diffuses light emitted from a backlight or the like toward the viewer. The optical path of the light incident on the light diffusion film 1 will be briefly described with reference to FIG. In FIG. 4, the optical path of the incident light is schematically shown as arrows (a) to (e).
 光拡散フィルム1において、光透過部2の構造体4の中央付近に入射した光は、矢印(b)のように、そのまま光拡散フィルム1の内部を直進して通過し、観察者に至る。一方、構造体4の斜面部分に入射した光は、矢印(a)および(c)のように、構造体4と光反射部3との界面において全反射し、出射面にて屈折して出射し、観察者に至る。 In the light diffusing film 1, the light incident near the center of the structure 4 of the light transmitting portion 2 passes straight through the light diffusing film 1 as shown by the arrow (b) and reaches the observer. On the other hand, the light incident on the slope portion of the structure 4 is totally reflected at the interface between the structure 4 and the light reflecting portion 3 as indicated by arrows (a) and (c), and is refracted and emitted from the exit surface. To the observer.
 ここで、本実施形態に係る光拡散フィルム1の光透過部2では、構造体4が多段階の傾斜がついた斜面を有している。そのため、構造体4に、矢印(a)および(c)とは異なる斜面部分に入射した光は、矢印(d)および(e)のように、構造体4と光反射部3との界面において全反射し、出射面にて屈折して出射し、観察者に至る。矢印(d)および(e)では、矢印(a)および(c)が入射した斜面部分とは傾斜角度が異なる斜面部分に入射しているため、出射面側において出射する方向が矢印(a)および(c)とは異なる。 Here, in the light transmission part 2 of the light diffusion film 1 according to the present embodiment, the structure 4 has an inclined surface with a multi-step inclination. Therefore, the light that has entered the structure 4 on the slope portion different from the arrows (a) and (c) is reflected at the interface between the structure 4 and the light reflecting portion 3 as indicated by arrows (d) and (e). It is totally reflected, refracted at the exit surface, and exits to the observer. In the arrows (d) and (e), since the light is incident on a slope portion having an inclination angle different from that of the slope portion on which the arrows (a) and (c) are incident, the emission direction on the exit surface side is the arrow (a). And (c) is different.
 このように、光拡散フィルム1に入射した光は、構造体4において入射した部分、すなわち入射した斜面部分によって出射面側から出射される角度が異なる。したがって、構造体4の傾斜角度が異なる斜面を利用して、入射光をあらゆる方向に出射させることができる。以上により、本実施形態では、多段階の傾斜がついた斜面を有する構造体4を用いることによって、入射光を拡散させる幅を広げることができる。特に、本実施形態に係る光拡散フィルム1は、柱状の構造体4を並列形成した光透過部2によって構成されているので、入射光を水平方向(図4中の左右方向)に広く拡散させることができる。したがって、水平方向に広い視野角を持ち、コントラストおよび輝度の高い光拡散フィルム1を得ることができる。 As described above, the angle at which the light incident on the light diffusion film 1 is emitted from the exit surface side varies depending on the incident portion of the structure 4, that is, the incident inclined surface portion. Therefore, the incident light can be emitted in all directions by using the inclined surfaces having different inclination angles of the structures 4. As described above, in the present embodiment, by using the structure 4 having a slope with a multi-step slope, it is possible to widen the width for diffusing incident light. In particular, the light diffusing film 1 according to the present embodiment is constituted by the light transmission part 2 in which the columnar structures 4 are formed in parallel, so that the incident light is diffused widely in the horizontal direction (left-right direction in FIG. 4). be able to. Therefore, the light diffusion film 1 having a wide viewing angle in the horizontal direction and high contrast and brightness can be obtained.
 光拡散フィルム1を表示装置に設けた場合には、バックライト等からの光は完全な平行光ではなく、ある程度の幅の拡散角を有している。そのため、本実施形態のように、テーパ角に変化がある構造体4を有する光拡散フィルム1を用いるのが好ましい。
これは、バックライト等からの光は、直線光が強いため、構造体4が単一の傾斜を有している場合には、特定の視野角が明るくなってしまい、表示画面上で急激な映像の変化が目立ってしまうためである。本実施形態では、構造体4のテーパ角に段階的に変化をつけることが可能であるため、バックライト等からの光をムラなく拡散させることができる。その結果、良好な光拡散特性を有する光拡散フィルム1が得られる。
When the light diffusion film 1 is provided in a display device, light from a backlight or the like is not completely parallel light but has a diffusion angle with a certain width. Therefore, it is preferable to use the light diffusion film 1 having the structure 4 having a change in the taper angle as in this embodiment.
This is because the light from the backlight or the like is strong in linear light, and therefore, when the structure 4 has a single inclination, a specific viewing angle becomes bright and abrupt on the display screen. This is because the change in the image becomes conspicuous. In the present embodiment, the taper angle of the structure 4 can be changed stepwise, so that light from the backlight or the like can be diffused without unevenness. As a result, the light diffusion film 1 having good light diffusion characteristics can be obtained.
 (変形例1)
 以上の実施形態では、複数の柱状の構造体4を並列形成する構成を示したが、必ずしもこれに限定されるわけではない。例えば、図5に示す光拡散フィルム1aのように、複数の錐体状の構造体4aによって光透過部2aを構成しても良い。図5は、複数の錐体状の構造体4aを有する光拡散フィルム1aの全体構成を示す斜視図である。
(Modification 1)
In the above embodiment, the configuration in which the plurality of columnar structures 4 are formed in parallel is shown, but the present invention is not necessarily limited thereto. For example, like the light diffusing film 1a shown in FIG. 5, you may comprise the light transmissive part 2a with the several cone-shaped structure 4a. FIG. 5 is a perspective view showing an overall configuration of a light diffusion film 1a having a plurality of conical structures 4a.
 図5に示すように、光拡散フィルム1aは、複数の錐体状の構造体4aを整列させて構成された光透過部2aを有している。この場合、各構造体4aは、多層構造をしており、下層から上層になるにつれて層の底面積が小さくなっている。ここで、上層に位置する層の下面全体が、当該層の直下に位置する層の上面に含まれるようにして形成されている。それによって、構造体4aは全体として多段階の傾斜がついた斜面を有する構造になっている。なお、図5では、光拡散フィルム1aの全体構成を分かりやすくするために各部材を簡略化して図示している。そのため、本図では、構造体4aの表面を曲面状に図示しているが、実際には、構造体4aは多段階の傾斜がついた斜面を有する構造になっている。 As shown in FIG. 5, the light diffusion film 1a has a light transmission part 2a configured by aligning a plurality of cone-shaped structures 4a. In this case, each structure 4a has a multi-layer structure, and the bottom area of the layer decreases from the lower layer to the upper layer. Here, the entire lower surface of the layer positioned in the upper layer is formed so as to be included in the upper surface of the layer positioned immediately below the layer. Accordingly, the structure 4a as a whole has a structure having slopes with multi-stage slopes. In addition, in FIG. 5, in order to make the whole structure of the light-diffusion film 1a easy to understand, each member is simplified and illustrated. For this reason, in this drawing, the surface of the structure 4a is shown in a curved shape, but in reality, the structure 4a has a structure having a multi-step inclined surface.
 具体的には、構造体4aは、図6中の(a)に示すような、多段階の傾斜がついた斜面を有する略三角形状(または略台形状)の断面を有している。当該構造体4aの底面形状は、例えば、図6中の(b)~(d)に示すような形状にすることができる。図6中の(b)~(d)は、構造体4aを観察者側から見た場合の図である。具体的には、図6中の(b)に示すような円形、図6中の(c)に示すような長方形、あるいは図6中の(d)に示すような五角形等にすることができる。しかし、構造体4aが略錐体であれば、その底面形状に特に限定はなく、楕円形であっても、多角形であっても良い。 Specifically, the structure 4a has a substantially triangular (or substantially trapezoidal) cross section having a multi-step inclined slope as shown in FIG. The bottom surface shape of the structure 4a can be, for example, the shapes shown in (b) to (d) of FIG. 6B to 6D are views when the structure 4a is viewed from the observer side. Specifically, it can be a circular shape as shown in FIG. 6B, a rectangular shape as shown in FIG. 6C, or a pentagon shape as shown in FIG. 6D. . However, if the structure 4a is a substantially pyramid, the shape of the bottom surface is not particularly limited, and may be an ellipse or a polygon.
 錐体状の構造体4aは、円形または多角形等の露光部が整列されたフォトマスクを用いて、構造体4aを構成する材料を積層した積層体5aを形成し、当該積層体5aを溶融することによって、または積層体5aの表面を透明樹脂で被覆することによって形成されている。あるいは、複数のテーパ形状の層を積層することによっても、構造体4aを形成することは可能である。その具体的な製造方法は、上記した実施形態の構造体4を製造する手順と同じであるため、ここではその詳しい製造方法については言及しない。また、構造体4a(積層体5a)に適用可能な材料も、構造体4と同等である。 The cone-shaped structure 4a is formed by forming a stacked body 5a in which materials constituting the structural body 4a are stacked using a photomask in which exposed portions such as a circle or a polygon are aligned, and the stacked body 5a is melted. Or by covering the surface of the laminate 5a with a transparent resin. Alternatively, the structural body 4a can be formed by laminating a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here. The material applicable to the structure 4a (laminated body 5a) is also equivalent to the structure 4.
 以上のような錐体状の構造体4aを有する光拡散フィルム1aを表示装置に設けた場合には、図7中の(a)に示すように、バックライト等からの入射光15は、構造体4aの底面側から入射し、透過または屈折透過して観察者側に出射される。ここで、例えば、構造体4aが、図6中の(b)に示したような円形の底面を有する場合は、図7中の(b)に示すように、入射光15は四方八方へとあらゆる方向に拡散される。構造体4aが図6中の(c)に示したような長方形、または図6中の(d)に示したような五角形の底面を有する場合も同様であり、図7中の(c)および図7中の(d)に示すように、入射光15はあらゆる方向に拡散される。 When the light diffusing film 1a having the cone-shaped structure 4a as described above is provided in the display device, as shown in FIG. The light enters from the bottom side of the body 4a, and is transmitted or refracted and emitted to the viewer side. Here, for example, when the structure 4a has a circular bottom surface as shown in FIG. 6B, the incident light 15 travels in all directions as shown in FIG. 7B. Diffused in all directions. The same applies to the case where the structure 4a has a rectangular base as shown in FIG. 6C or a pentagonal bottom as shown in FIG. 6D, and (c) and FIG. As shown in FIG. 7D, the incident light 15 is diffused in all directions.
 このように、構造体4aは錐体状であり、テーパ角が様々な方位についているので、バックライト等からの入射光15は多方位に出射される。また、上記した実施形態と同様に、構造体4aのテーパ角に段階的に変化をつけることが可能であるため、入射光15をムラなく拡散させることができる。したがって、1枚の光拡散フィルム1aによって、多方位への光拡散が可能となり、広い視野角を持ち、コントラストおよび輝度の高い光拡散フィルム1aを得ることができる。 Thus, since the structure 4a has a cone shape and has various taper angles, the incident light 15 from the backlight or the like is emitted in multiple directions. Moreover, since the taper angle of the structure 4a can be changed in a stepwise manner as in the above-described embodiment, the incident light 15 can be diffused without unevenness. Therefore, the light diffusion film 1a of one sheet can diffuse light in multiple directions, and can provide a light diffusion film 1a having a wide viewing angle and high contrast and brightness.
 なお、図6中の(a)および図7中の(a)では、構造体4aの構成を分かりやすくするために、構造体4aの基となる積層体5aを図示しているが、積層体5aを溶融することによって構造体4aを形成する場合には、積層体5a自身が構造体4aとなるため、図のように積層体5aは判別できなくなる。また、複数のテーパ形状の層を積層して構造体4aを形成する場合も同様に、積層体5は判別されない。 In FIG. 6A and FIG. 7A, the laminated body 5a that is the basis of the structural body 4a is illustrated for easy understanding of the configuration of the structural body 4a. When the structural body 4a is formed by melting 5a, the stacked body 5a itself becomes the structural body 4a, so that the stacked body 5a cannot be discriminated as shown in the figure. Similarly, when the structure 4a is formed by stacking a plurality of tapered layers, the stacked body 5 is not discriminated.
 (変形例2)
 上記した変形例1では、光透過部2aの構造体4aを整列させて配置しているが、このような光拡散フィルム1aを表示装置に用いた場合に、表示画面において縞模様(モアレ)が視認されてしまう場合がある。これは、規則正しい繰り返し模様を複数重ね合わせたときに、それらの繰り返し模様の周期パターンのずれにより、視覚的に縞模様(モアレ)が発生するためである。したがって、構造体4aが直線状に並んだ周期パターンを有する光拡散フィルム1aを表示装置に用いると、光拡散フィルム1aの周期パターンと、表示画面の周期パターンとの間で強いモアレが発生してしまう場合がある。
(Modification 2)
In the above-described modified example 1, the structures 4a of the light transmission part 2a are arranged and arranged. However, when such a light diffusion film 1a is used for a display device, a stripe pattern (moire) is formed on the display screen. It may be visually recognized. This is because when a plurality of regular repeating patterns are superimposed, a striped pattern (moire) is visually generated due to a shift in the periodic pattern of the repeating patterns. Therefore, when the light diffusing film 1a having the periodic pattern in which the structures 4a are arranged in a straight line is used for a display device, a strong moire is generated between the periodic pattern of the light diffusing film 1a and the periodic pattern of the display screen. May end up.
 そこで、例えば、図8に示す光拡散フィルム1bのように、複数の錐体状の構造体4bをランダムに配置して光透過部2bを構成しても良い。図8は、複数の錐体状の構造体4bを有する光拡散フィルム1bの全体構成を示す斜視図である。 Therefore, for example, as in the light diffusion film 1b shown in FIG. 8, a plurality of cone-shaped structures 4b may be randomly arranged to constitute the light transmission portion 2b. FIG. 8 is a perspective view showing the overall configuration of a light diffusion film 1b having a plurality of conical structures 4b.
 図8に示すように、光拡散フィルム1bは、複数の錐体状の構造体4bをランダムに配置させて構成された光透過部2bを有している。このような光透過部2bにした場合、当該光透過部2bに規則正しい周期パターンを持たせていないため、モアレの発生を防ぐことができる。これについて、図9および図10を参照して説明する。図9は、光拡散フィルム1bの断面を示す図である。図10は、光拡散フィルム1bを観察者側から見た場合の図である。なお、図9では、構造体4bの構成を分かりやすくするために、構造体4bの基となる積層体5bを図示しているが、積層体5bを溶融することによって構造体4bを形成する場合には、積層体5b自身が構造体4bとなるため、図のように積層体5bは判別できなくなる。また、複数のテーパ形状の層を積層して構造体4bを形成する場合も同様に、積層体5は判別されない。なお、図10では、構造体4aが、図6中の(b)に示したような円形の底面を有する場合を想定している。 As shown in FIG. 8, the light diffusion film 1b has a light transmission part 2b configured by randomly arranging a plurality of conical structures 4b. When such a light transmission part 2b is used, since the light transmission part 2b is not provided with a regular periodic pattern, the occurrence of moire can be prevented. This will be described with reference to FIG. 9 and FIG. FIG. 9 is a view showing a cross section of the light diffusion film 1b. FIG. 10 is a view when the light diffusion film 1b is viewed from the observer side. In FIG. 9, in order to make the configuration of the structure 4 b easier to understand, the stacked body 5 b that is a base of the structure 4 b is illustrated, but the structure 4 b is formed by melting the stacked body 5 b. Since the stacked body 5b itself becomes the structure 4b, the stacked body 5b cannot be discriminated as shown in the figure. Similarly, when the structure 4b is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated. In FIG. 10, it is assumed that the structure 4a has a circular bottom surface as shown in FIG.
 図9に示すように、光拡散フィルム1bでは、複数の構造体4bがランダムに配置されており、隣り合う構造体4bの間隔は一定ではない。また、図10に示すように、基板6上に、複数の構造体4bをランダムに配置されており、光拡散フィルム1bには周期パターンを持たせていない。これによれば、光拡散フィルム1bを表示装置に設けても、光拡散フィルム1bは周期パターンを有していないため、表示画面においてモアレが発生するのを防ぐことができる。その結果、表示装置の表示品位を向上させることができる。 As shown in FIG. 9, in the light diffusion film 1b, a plurality of structures 4b are randomly arranged, and the interval between adjacent structures 4b is not constant. Further, as shown in FIG. 10, a plurality of structures 4b are randomly arranged on the substrate 6, and the light diffusion film 1b does not have a periodic pattern. According to this, even if the light diffusing film 1b is provided in the display device, the light diffusing film 1b does not have a periodic pattern, so that it is possible to prevent the occurrence of moire on the display screen. As a result, the display quality of the display device can be improved.
 ところで、光透過部2bは、円形または多角形等の露光部がランダムに配置されたフォトマスクを用いて、構造体4bを構成する材料を積層した積層体5bを形成し、当該積層体5bを溶融することによって、または積層体5bの表面を透明樹脂で被覆することによって形成されている。あるいは、複数のテーパ形状の層を積層することによっても、構造体4bを形成することは可能である。その具体的な製造方法は、上記した実施形態の構造体4を製造する手順と同じであるため、ここではその詳しい製造方法については言及しない。 By the way, the light transmission part 2b forms the laminated body 5b which laminated | stacked the material which comprises the structure 4b using the photomask by which exposure parts, such as circular or a polygon, are arrange | positioned at random, The said laminated body 5b is formed. It is formed by melting or coating the surface of the laminate 5b with a transparent resin. Alternatively, the structure 4b can be formed by stacking a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here.
 (変形例3)
 以上で説明した構造体4,4aは対称な立体であるが、必ずしも対称な立体でなくても良い。例えば、図11に示す光拡散フィルム1cのように、複数の非対称な構造体4cを配置して光透過部2cを構成しても良い。図11は、複数の非対称な構造体4cを有する光拡散フィルム1cの断面を示す図である。
(Modification 3)
The structures 4 and 4a described above are symmetric solids, but are not necessarily symmetric solids. For example, like the light diffusing film 1c shown in FIG. 11, you may comprise the light transmissive part 2c by arrange | positioning several asymmetrical structures 4c. FIG. 11 is a view showing a cross section of a light diffusion film 1c having a plurality of asymmetric structures 4c.
 図11に示すように、光拡散フィルム1cは、複数の非対称な構造体4cを配置して構成された光透過部2cを有している。本図では、各構造体4cは、多層構造をしており、下層から上層になるにつれて層の底面積が小さくなっている。ここで、各構造体4は、上層に位置する層の下面全体が、当該層の直下に位置する層の上面に含まれるようにして形成されているが、一部分だけ多段階の傾斜がついた斜面を有する構造になっている。 As shown in FIG. 11, the light diffusion film 1c has a light transmission part 2c configured by arranging a plurality of asymmetric structures 4c. In this figure, each structure 4c has a multilayer structure, and the bottom area of the layer becomes smaller from the lower layer to the upper layer. Here, each structure 4 is formed such that the entire lower surface of the layer located in the upper layer is included in the upper surface of the layer located immediately below the layer, but only a part of the structure 4 is inclined in a multistep manner. It has a structure with a slope.
 このような非対称な構造体4cにした場合、多段階の傾斜がついた斜面部分に入射した光はあらゆる方向に出射される。一方、当該斜面部分以外に入射した光は、そのまま透過したり、屈折透過したりして出射されるものが多く、斜面部分と比較して、その光拡散特性が低い。このように、構造体4cの側面において、傾斜角度が異なる部分が複数箇所存在し、なおかつ当該傾斜角度が異なる部分が非対称的に存在しているため、構造体4cは、光拡散特性が高い部分と、低い部分とを有していることになる。したがって、構造体4cを有する光拡散フィルム1cの全体的な光拡散特性は非対称になり、その結果、光拡散フィルム1cの視野角特性も非対称になる。 In the case of such an asymmetric structure 4c, the light incident on the slope portion having the multi-step slope is emitted in all directions. On the other hand, most of the light incident on other than the inclined surface part is transmitted as it is or refracted and transmitted, and its light diffusion characteristic is lower than that of the inclined surface part. Thus, on the side surface of the structure 4c, there are a plurality of portions with different inclination angles, and there are asymmetrical portions with different inclination angles. Therefore, the structure 4c is a portion with high light diffusion characteristics. And a low part. Therefore, the overall light diffusion characteristic of the light diffusion film 1c having the structure 4c is asymmetric, and as a result, the viewing angle characteristic of the light diffusion film 1c is also asymmetric.
 以上の構成を利用すれば、例えば、表示装置の表示画面を観察者側から見たときに、右側の視野角特性が低く、左側の視野角特性が高い場合には、右側の視野角特性が高くなるような構造体4cを備えた光拡散フィルム1cを用いることによって、全体的な視野角特性を均一化することができる。このように、部分的な視野角特性の調整を行うことが可能となる。 If the above configuration is used, for example, when the display screen of the display device is viewed from the viewer side, if the right viewing angle characteristic is low and the left viewing angle characteristic is high, the right viewing angle characteristic is By using the light diffusion film 1c provided with the structure 4c which becomes high, the overall viewing angle characteristic can be made uniform. In this way, partial viewing angle characteristics can be adjusted.
 ところで、構造体4cの断面形状は、図11に示すように、上記変形例1の構造体4aと同様の略三角形状(または略台形状)であり、底面形状についても、構造体4aと同様に、円形、または多角形等にすることができるが、特に限定はない。また、本例では、構造体4cの一部分だけに多段階の傾斜がついている構成を示したが、特にこれに限定されるわけではなく、構造体4cの形状は適宜変更可能である。したがって、所望の視野角特性が得られるような形状に、構造体4cをすれば良い。 By the way, as shown in FIG. 11, the cross-sectional shape of the structure 4c is substantially triangular (or substantially trapezoidal) similar to that of the structure 4a of Modification 1, and the bottom shape is the same as that of the structure 4a. However, there is no particular limitation. Further, in this example, a configuration in which only a part of the structure 4c has a multi-stage inclination is shown, but the present invention is not particularly limited thereto, and the shape of the structure 4c can be changed as appropriate. Therefore, the structure 4c may be formed into a shape that can obtain a desired viewing angle characteristic.
 なお、構造体4cは、円形または多角形等の露光部を有するフォトマスクを用いて、構造体4cを構成する材料を積層した積層体5cを形成し、当該積層体5cを溶融することによって、または積層体5cの表面を透明樹脂で被覆することによって形成されている。あるいは、複数のテーパ形状の層を積層することによっても、構造体4cを形成することは可能である。その具体的な製造方法は、上記した実施形態の構造体4を製造する手順と同じであるため、ここではその詳しい製造方法については言及しない。また、構造体4c(積層体5c)に適用可能な材料も、構造体4と同等である。なお、図11では、構造体4cの構成を分かりやすくするために、構造体4cの基となる積層体5cを図示しているが、積層体5cを溶融することによって構造体4cを形成する場合には、積層体5c自身が構造体4cとなるため、図のように積層体5cは判別できなくなる。また、複数のテーパ形状の層を積層して構造体4cを形成する場合も同様に、積層体5は判別されない。 In addition, the structure 4c forms the laminated body 5c which laminated | stacked the material which comprises the structure 4c using the photomask which has exposure parts, such as circular or a polygon, and fuse | melts the said laminated body 5c, Or it forms by coat | covering the surface of the laminated body 5c with transparent resin. Alternatively, the structure 4c can be formed by stacking a plurality of tapered layers. Since the specific manufacturing method is the same as the procedure for manufacturing the structure 4 of the above-described embodiment, the detailed manufacturing method is not mentioned here. The material applicable to the structure 4c (laminated body 5c) is also the same as that of the structure 4. In FIG. 11, in order to make the configuration of the structure 4c easier to understand, the stacked body 5c that is a base of the structure 4c is illustrated, but the structure 4c is formed by melting the stacked body 5c. Since the stacked body 5c itself becomes the structure 4c, the stacked body 5c cannot be discriminated as shown in the figure. Similarly, when the structure 4c is formed by laminating a plurality of tapered layers, the laminate 5 is not discriminated.
 (変形例4)
 図12に示す光拡散フィルム1dのように、複数の対称な構造体4aと、複数の非対称な構造体4cとをそれぞれ配置して光透過部2dを構成しても良い。図12は、複数の構造体4aと、複数の構造体4cとを有する光拡散フィルム1dの断面を示す図である。
(Modification 4)
As in the light diffusing film 1d shown in FIG. 12, a plurality of symmetric structures 4a and a plurality of asymmetric structures 4c may be arranged to constitute the light transmission portion 2d. FIG. 12 is a view showing a cross section of a light diffusion film 1d having a plurality of structures 4a and a plurality of structures 4c.
 図12に示すように、光拡散フィルム1dは、複数の対称な構造体4aと、複数の非対称な構造体4cとを配置して構成された光透過部2dを有している。このような光透過部2dにした場合、基板6上に形成された構造体4a,4cの傾斜角度がランダムになり、光拡散フィルム1dに入射した光の全反射角度が様々になる。これによって、光拡散フィルム1dを表示装置に設けた場合には、バックライト等からの光はあらゆる方向に出射されるので、表示装置の視野角特性のムラをなくし、視野角特性を滑らかにすることができる。 As shown in FIG. 12, the light diffusion film 1d has a light transmission part 2d configured by arranging a plurality of symmetrical structures 4a and a plurality of asymmetric structures 4c. In the case of such a light transmission part 2d, the inclination angles of the structures 4a and 4c formed on the substrate 6 are random, and the total reflection angle of the light incident on the light diffusion film 1d varies. As a result, when the light diffusion film 1d is provided in the display device, light from the backlight or the like is emitted in all directions, thereby eliminating unevenness in the viewing angle characteristics of the display device and smoothing the viewing angle characteristics. be able to.
 ところで、光透過部2dでは、複数の構造体4aと、複数の構造体4cとを配置しているが、特にこれに限定されるわけではない。所望の視野角特性が得られるように、3種類以上の構造体4a,4cを配置しても良いし、複数種類の非対称な形状を有する構造体4cを配置しても良い。 Incidentally, in the light transmission part 2d, a plurality of structures 4a and a plurality of structures 4c are arranged, but the present invention is not limited to this. Three or more types of structures 4a and 4c may be arranged so that desired viewing angle characteristics can be obtained, or structures 4c having a plurality of types of asymmetric shapes may be arranged.
 (光拡散フィルム1,1a~1dの使用例)
 上述したように、光拡散フィルム1,1a~1dは、液晶表示装置等の表示装置において、表示画面の前面に取り付けて用いられるものである。光拡散フィルム1,1a~1dを表示装置に取り付けた場合の一例として、光拡散フィルム1を備えた液晶表示装置を、図13に示す。図13は、光拡散フィルム1を備えた液晶表示装置10の断面を示す概略図である。
(Usage example of light diffusion film 1, 1a to 1d)
As described above, the light diffusion films 1, 1a to 1d are used by being attached to the front surface of the display screen in a display device such as a liquid crystal display device. As an example when the light diffusion films 1 and 1a to 1d are attached to the display device, a liquid crystal display device including the light diffusion film 1 is shown in FIG. FIG. 13 is a schematic view illustrating a cross section of the liquid crystal display device 10 including the light diffusing film 1.
 液晶表示装置10は、基本的にバックライト部と液晶表示素子部とから構成されており、図13に示すように、液晶表示装置10は、バックライト部として、発光ダイオード(LED)、半導体レーザ(LD)または冷陰極蛍光ランプ(CCFL)等のバックライト11を有している。また、液晶表示装置10は、液晶表示素子部として液晶パネルを有しており、当該液晶パネルは、薄膜トランジスタ(TFT)、または配線等が形成されたガラス板13と、透明電極またはカラーフィルタ等が形成されたガラス板13との間に液晶層14を封止し、その両面に偏光板12を配置したものである。光拡散フィルム1は、液晶パネル(偏光板12)の前面(観察者側)に設けられる。 The liquid crystal display device 10 basically includes a backlight unit and a liquid crystal display element unit. As shown in FIG. 13, the liquid crystal display device 10 includes a light emitting diode (LED) and a semiconductor laser as the backlight unit. (LD) or a backlight 11 such as a cold cathode fluorescent lamp (CCFL). In addition, the liquid crystal display device 10 includes a liquid crystal panel as a liquid crystal display element portion. The liquid crystal panel includes a thin film transistor (TFT), a glass plate 13 on which wiring or the like is formed, a transparent electrode, a color filter, or the like. The liquid crystal layer 14 is sealed between the formed glass plate 13 and the polarizing plate 12 is disposed on both surfaces thereof. The light diffusion film 1 is provided on the front surface (observer side) of the liquid crystal panel (polarizing plate 12).
 バックライト11から発せられた光は、図13に示す矢印のように、液晶パネルを通過(照射)して、光拡散フィルム1にまで至る。バックライト11の光は、光拡散フィルム1において拡散され、観察者側に出射される。この際、バックライト11の光は、構造体4の傾斜角度が異なる斜面によって、あらゆる方向に出射される。以上により、光拡散フィルム1を備えた液晶表示装置10では、バックライト11の光を拡散させる幅を広げることができるので、広い視野角を持ち、コントラストおよび輝度の高い液晶表示装置10を得ることができる。 The light emitted from the backlight 11 passes (irradiates) the liquid crystal panel as shown by the arrows shown in FIG. The light of the backlight 11 is diffused in the light diffusion film 1 and emitted to the viewer side. At this time, the light of the backlight 11 is emitted in all directions by the inclined surfaces having different inclination angles of the structures 4. As described above, in the liquid crystal display device 10 provided with the light diffusion film 1, the width for diffusing the light of the backlight 11 can be widened, so that the liquid crystal display device 10 having a wide viewing angle and high contrast and brightness can be obtained. Can do.
 また、光拡散フィルム1a~1dを備えた表示装置にすることも可能であるのは言うまでもなく、各光拡散フィルム1a~1dを備えた表示装置においても、高い視野角特性、および高い表示品位が得られる。 Needless to say, a display device including the light diffusing films 1a to 1d can also be used. In the display device including the light diffusing films 1a to 1d, a high viewing angle characteristic and a high display quality can be obtained. can get.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 〔実施形態の総括〕
 以上のように、本発明に係る光拡散フィルムの製造方法は、上記積層体形成工程において、複数の直方体型の上記層を積層した複数の上記積層体を上記基板上の上記一定方向に並列形成することを特徴としている。
[Summary of Embodiment]
As described above, in the method of manufacturing a light diffusion film according to the present invention, in the laminate forming step, a plurality of the laminates in which a plurality of the rectangular parallelepiped layers are laminated are formed in parallel in the certain direction on the substrate. It is characterized by doing.
 上記の方法によれば、構造体をライン状にする場合でも、当該構造体の成形をミクロンサイズで制御することができる。また、上記の方法によって、入射光を水平方向または鉛直方向に広く拡散させることができる光拡散フィルムが得られる。 According to the above method, even when the structure is formed in a line shape, the formation of the structure can be controlled to a micron size. Moreover, the light diffusion film which can diffuse an incident light widely in a horizontal direction or a vertical direction by said method is obtained.
 また、本発明に係る光拡散フィルムの製造方法は、上記積層体形成工程において、複数の柱状の上記層を積層した複数の上記積層体を上記基板上に形成することを特徴としている。 The light diffusing film manufacturing method according to the present invention is characterized in that, in the laminate formation step, a plurality of the laminates in which a plurality of the columnar layers are laminated are formed on the substrate.
 上記の方法によれば、構造体を錐体状にする場合でも、当該構造体の成形をミクロンサイズで制御することができる。また、上記の方法によって、入射光をあらゆる方向に広く拡散させることができる光拡散フィルムが得られる。 According to the above method, even when the structure is formed into a cone shape, the formation of the structure can be controlled to a micron size. In addition, a light diffusion film capable of widely diffusing incident light in all directions can be obtained by the above method.
 また、本発明に係る光拡散フィルムの製造方法は、上記積層体形成工程は、上記積層体を構成する材料を上記基板上に塗布する塗布工程と、上記塗布工程後に、上記材料をパターニングするパターニング工程と、上記パターニング工程後に、上記材料を硬化する硬化工程とを順番に複数回繰り返し行うことを特徴としている。 Moreover, the manufacturing method of the light-diffusion film which concerns on this invention WHEREIN: The said laminated body formation process apply | coats the material which comprises the said laminated body on the said board | substrate, and the patterning which patterns the said material after the said application | coating process The step and the curing step of curing the material after the patterning step are repeated a plurality of times in order.
 また、本発明に係る光拡散フィルムの製造方法は、上記積層体形成工程を、フォトリソグラフィーによって行うことを特徴としている。 Moreover, the method for producing a light diffusion film according to the present invention is characterized in that the laminate forming step is performed by photolithography.
 上記の方法によれば、所望な形状を有する層をパターニングすることができ、最終的には、所望な形状の積層体を形成することができる。 According to the above method, a layer having a desired shape can be patterned, and finally a laminated body having a desired shape can be formed.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 本発明は、液晶表示装置等の表示装置において使用し、前記表示装置の視野角を拡大する光拡散フィルムを製造する際に利用することができる。 The present invention can be used in manufacturing a light diffusion film that is used in a display device such as a liquid crystal display device and expands the viewing angle of the display device.
1,1a~1d 光拡散フィルム
2,2a~2d 光透過部
3 光反射部
4,4a,4c 構造体
5,5a~5c 積層体
6 基板
7 透明樹脂
10 液晶表示装置
11 バックライト
12 偏光板
13 ガラス板
14 液晶層
15 入射光
DESCRIPTION OF SYMBOLS 1,1a-1d Light diffusion film 2, 2a-2d Light transmission part 3 Light reflection part 4,4a, 4c Structure 5,5a-5c Laminated body 6 Substrate 7 Transparent resin 10 Liquid crystal display device 11 Backlight 12 Polarizing plate 13 Glass plate 14 Liquid crystal layer 15 Incident light

Claims (9)

  1.  光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、
     上記構造体形成工程において、
      複数のテーパ形状の層を基板上に積層することによって複数の上記構造体を形成しており、
      上記構造体ごとに、上層に位置する上記層の下面と、当該層の直下に位置する上記層の上面とが一致するようにして上記構造体を形成することを特徴とする光拡散フィルムの製造方法。
    A method for producing a light diffusion film comprising a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light exit surface,
    In the structure forming step,
    A plurality of the above structures are formed by laminating a plurality of tapered layers on a substrate,
    For each structure, the structure is formed such that the lower surface of the layer located in the upper layer and the upper surface of the layer located immediately below the layer coincide with each other. Method.
  2.  光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、
     上記構造体形成工程は、
      複数の層を積層した複数の積層体を基板上に形成する積層体形成工程と、
      上記複数の積層体を溶融する溶融工程とを備えており、
      上記積層体形成工程において、上記積層体ごとに、当該積層体を一定方向に切断した際の切断面における、上記一定方向の上記層の長さを下層から上層になるにつれて短くし、なおかつ上層に位置する上記層の下面全体が、当該層の直下に位置する上記層の上面に含まれるようにして上記積層体を形成することを特徴とする光拡散フィルムの製造方法。
    A method for producing a light diffusion film comprising a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light exit surface,
    The structure forming step includes
    A laminated body forming step of forming a plurality of laminated bodies in which a plurality of layers are laminated on a substrate;
    A melting step of melting the plurality of laminates,
    In the laminated body forming step, for each of the laminated bodies, the length of the layer in the constant direction is shortened from the lower layer to the upper layer in the cut surface when the laminated body is cut in a certain direction, and the upper layer is formed. A method for producing a light diffusing film, wherein the laminate is formed such that the entire lower surface of the layer positioned is included in the upper surface of the layer positioned immediately below the layer.
  3.  光入射面から入射した入射光を拡散させて光出射面から出射する複数の構造体を形成する構造体形成工程を備えた、光拡散フィルムの製造方法であって、
     上記構造体形成工程は、
      複数の層を積層した複数の積層体を基板上に形成する積層体形成工程と、
      上記積層体ごとに、当該積層体の上に透明樹脂をさらに積層する積層工程と、
      上記透明樹脂を溶融する溶融工程とを備えており、
      上記積層体形成工程において、上記積層体ごとに、当該積層体を一定方向に切断した際の切断面における、上記一定方向の上記層の長さを下層から上層になるにつれて短くし、なおかつ上層に位置する上記層の下面全体が、当該層の直下に位置する上記層の上面に含まれるようにして上記積層体を形成することを特徴とする光拡散フィルムの製造方法。
    A method for producing a light diffusion film comprising a structure forming step of diffusing incident light incident from a light incident surface to form a plurality of structures that are emitted from the light exit surface,
    The structure forming step includes
    A laminated body forming step of forming a plurality of laminated bodies in which a plurality of layers are laminated on a substrate;
    For each of the laminates, a lamination step of further laminating a transparent resin on the laminate,
    A melting step of melting the transparent resin,
    In the laminated body forming step, for each of the laminated bodies, the length of the layer in the constant direction is shortened from the lower layer to the upper layer in the cut surface when the laminated body is cut in a certain direction, and the upper layer is formed. A method for producing a light diffusing film, wherein the laminate is formed such that the entire lower surface of the layer positioned is included in the upper surface of the layer positioned immediately below the layer.
  4.  上記積層体形成工程において、複数の直方体型の上記層を積層した複数の上記積層体を上記基板上の上記一定方向に並列形成することを特徴とする請求項2または3に記載の光拡散フィルムの製造方法。 4. The light diffusing film according to claim 2 or 3, wherein, in the laminate forming step, a plurality of the laminates obtained by laminating a plurality of layers of a rectangular parallelepiped type are formed in parallel in the certain direction on the substrate. Manufacturing method.
  5.  上記積層体形成工程において、複数の柱状の上記層を積層した複数の上記積層体を上記基板上に形成することを特徴とする請求項2または3に記載の光拡散フィルムの製造方法。 The method for producing a light diffusing film according to claim 2 or 3, wherein, in the laminate formation step, a plurality of the laminates in which a plurality of the columnar layers are laminated are formed on the substrate.
  6.  上記積層体形成工程は、上記積層体を構成する材料を上記基板上に塗布する塗布工程と、上記塗布工程後に、上記材料をパターニングするパターニング工程と、上記パターニング工程後に、上記材料を硬化する硬化工程とを順番に複数回繰り返し行うことを特徴とする請求項2~5のいずれか1項に記載の光拡散フィルムの製造方法。 The laminated body forming step includes a coating step of applying a material constituting the laminated body on the substrate, a patterning step of patterning the material after the applying step, and a curing for curing the material after the patterning step. The method for producing a light diffusing film according to any one of claims 2 to 5, wherein the steps are repeated a plurality of times in order.
  7.  上記積層体形成工程を、フォトリソグラフィーによって行うことを特徴とする請求項6に記載の光拡散フィルムの製造方法。 The method for producing a light diffusing film according to claim 6, wherein the laminate forming step is performed by photolithography.
  8.  請求項1~7のいずれか1項に記載の光拡散フィルムの製造方法によって製造したことを特徴とする光拡散フィルム。 A light diffusion film produced by the method for producing a light diffusion film according to any one of claims 1 to 7.
  9.  請求項8に記載の光拡散フィルムを備えていることを特徴とする表示装置。 A display device comprising the light diffusing film according to claim 8.
PCT/JP2011/063843 2010-06-23 2011-06-16 Method for manufacturing light-diffusing film, light-diffusing film manufactured by the method, and display device provided with the light-diffusing film WO2011162165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010142976 2010-06-23
JP2010-142976 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011162165A1 true WO2011162165A1 (en) 2011-12-29

Family

ID=45371355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063843 WO2011162165A1 (en) 2010-06-23 2011-06-16 Method for manufacturing light-diffusing film, light-diffusing film manufactured by the method, and display device provided with the light-diffusing film

Country Status (1)

Country Link
WO (1) WO2011162165A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173018A1 (en) * 2015-04-29 2016-11-03 深圳市华星光电技术有限公司 Polarizer and method for preparing same, and liquid crystal panel
CN115016048A (en) * 2022-06-15 2022-09-06 烟台睿创微纳技术股份有限公司 Antireflection microstructure and manufacturing method thereof
WO2024109311A1 (en) * 2022-11-24 2024-05-30 四川龙华光电薄膜股份有限公司 Diffusion film and diffusion film manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180610A (en) * 1998-12-18 2000-06-30 Sony Corp Diffuse reflection plate and its manufacture and reflection type display device
JP2001337322A (en) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp Reflection plate for reflection type liquid crystal display device, and method for manufacturing the same
JP2002202502A (en) * 2000-03-31 2002-07-19 Matsushita Electric Ind Co Ltd Shaped body, reflector plate and reflective display element as well as method of manufacturing reflector plate
JP2003075831A (en) * 2001-06-22 2003-03-12 Nec Corp Anisotropic reflection plate, liquid crystal display device and manufacturing method for anisotropic reflection plate and liquid crystal display device
JP2010040194A (en) * 2008-07-31 2010-02-18 Nippon Zeon Co Ltd Direct backlight apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180610A (en) * 1998-12-18 2000-06-30 Sony Corp Diffuse reflection plate and its manufacture and reflection type display device
JP2002202502A (en) * 2000-03-31 2002-07-19 Matsushita Electric Ind Co Ltd Shaped body, reflector plate and reflective display element as well as method of manufacturing reflector plate
JP2001337322A (en) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp Reflection plate for reflection type liquid crystal display device, and method for manufacturing the same
JP2003075831A (en) * 2001-06-22 2003-03-12 Nec Corp Anisotropic reflection plate, liquid crystal display device and manufacturing method for anisotropic reflection plate and liquid crystal display device
JP2010040194A (en) * 2008-07-31 2010-02-18 Nippon Zeon Co Ltd Direct backlight apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173018A1 (en) * 2015-04-29 2016-11-03 深圳市华星光电技术有限公司 Polarizer and method for preparing same, and liquid crystal panel
CN115016048A (en) * 2022-06-15 2022-09-06 烟台睿创微纳技术股份有限公司 Antireflection microstructure and manufacturing method thereof
CN115016048B (en) * 2022-06-15 2024-02-27 烟台睿创微纳技术股份有限公司 Anti-reflection microstructure and manufacturing method thereof
WO2024109311A1 (en) * 2022-11-24 2024-05-30 四川龙华光电薄膜股份有限公司 Diffusion film and diffusion film manufacturing method

Similar Documents

Publication Publication Date Title
TWI328131B (en) Diffusing sheet, surface light source apparatus, and rear projection display apparatus
JP6200132B2 (en) Optical sheet, manufacturing method thereof, and liquid crystal display device using the optical sheet
JP6664193B2 (en) Backlight unit
US20090213464A1 (en) Light polarizing sheet and manufacturing method for same
JP2007025619A (en) Diffusion plate used in direct type backlight module and method for manufacturing the same
US11971569B2 (en) Optical body and light emitting device
JP2010033057A (en) Optical sheet and method of manufacturing the same
WO2011052255A1 (en) Light diffusion sheet, method for producing light diffusion sheet, and display device
JP2007047757A (en) Method for producing translucent screen, apparatus for producing translucent screen, and translucent screen
WO2005085914A1 (en) Light control film and backlight device using it
JP2009086682A (en) Two-dimensional viewing angle enlarging member and display device
JP2014142366A (en) Light diffusion member and manufacturing method of the same, and display device
JP2010085847A (en) Optical component, backlight unit and display device
WO2011162165A1 (en) Method for manufacturing light-diffusing film, light-diffusing film manufactured by the method, and display device provided with the light-diffusing film
KR101868522B1 (en) Optical sheet and method of manufacturing the same
JP2011022265A (en) Diffusion sheet
JP2008102547A (en) Enlarging member for two-dimensional viewing angle and display device
JP5066957B2 (en) Optical sheet, backlight unit using the same, and display device
JP2008170871A (en) Optical sheet, backlight unit using the same, display device and method for manufacturing the device
JP2012058479A (en) Light diffusion sheet and light source unit
JP2011059529A (en) Optical member and method of manufacturing the same and backlight module
KR101159686B1 (en) One-body light guide panel and fabricating method thereof
KR100997953B1 (en) One-body light guide panel and fabricating method thereof
JP2010145770A (en) Screen and method of manufacturing the same
KR101906906B1 (en) Mold frame for light guide plate, manufacturing method for light guide plate comprising the same and method for pattern forming using mold frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP