WO2011162051A1 - Communication system, communication apparatus and communication method - Google Patents

Communication system, communication apparatus and communication method Download PDF

Info

Publication number
WO2011162051A1
WO2011162051A1 PCT/JP2011/061416 JP2011061416W WO2011162051A1 WO 2011162051 A1 WO2011162051 A1 WO 2011162051A1 JP 2011061416 W JP2011061416 W JP 2011061416W WO 2011162051 A1 WO2011162051 A1 WO 2011162051A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
unit
data signal
frequency
cyclic shift
Prior art date
Application number
PCT/JP2011/061416
Other languages
French (fr)
Japanese (ja)
Inventor
中村 理
高橋 宏樹
淳悟 後藤
一成 横枕
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/805,556 priority Critical patent/US9277556B2/en
Publication of WO2011162051A1 publication Critical patent/WO2011162051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a communication system, a communication apparatus, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2010-145691 filed in Japan on June 25, 2010, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution, 3.9G radio access technology
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE-Advanced
  • MIMO Multiple-Input-Multiple-Output, Multiple Input / Multiple Output
  • OFDMA Orthogonal Frequency Division Multiple Access, orthogonal frequency division multiple access
  • the terminal receives the PAPR (Peak to Average Power Ratio), peak-to-average power ratio of the transmission signal. ) Is high and requires a power amplifier with a wide linear region, and is not suitable for uplink transmission. That is, single carrier transmission with a low PAPR is desirable in order to maintain wide coverage in the uplink (communication coverage range, for example, distance to the base station).
  • SC-FDMA Single Carrier Frequency Division Multiple Access, single-wave frequency division multiple access, also called DFT-S-OFDM
  • DFT-S-OFDM single carrier transmission
  • transmission diversity (sometimes referred to as “transmission diversity”) as a method for achieving a wide coverage.
  • transmission diversity for example, considering uplink, a signal subjected to different signal processing is transmitted from a plurality of antennas of a transmission device (in this case, a transmission part of a terminal), and a reception device (this In this case, the transmission antenna diversity gain can be obtained by receiving with the receiving antenna of the base station.
  • Transmission diversity is based on open-loop transmission diversity in which the transmission device transmits without using the propagation path information of the propagation path between the reception apparatus and the propagation path information of the propagation path between the transmission apparatus and the reception apparatus. It is roughly classified into closed-loop transmission diversity that performs transmission processing.
  • Open-loop transmission diversity includes space-time block coding STBC (Space Time Block Coding), space frequency block coding SFBC (Space Frequency Block Coding), cyclic delay diversity CDD (Cyclic Delay Diversity), and the like.
  • the closed-loop transmission diversity includes antenna selection transmission diversity, maximum ratio transmission / reception antenna diversity, and the like.
  • Precoding is to be adopted.
  • the transmission device transmits the signal transmitted from each of the transmission antennas by rotating the phase of the transmission signal so that the signals transmitted from the plurality of transmission antennas of the transmission device are received in phase by the reception device. The reception power at can be increased.
  • a plurality of antennas possessed by a transmission apparatus in a wireless communication system are not only used for improving communication quality by transmission diversity, but by transmitting independent signals from each antenna at the same time and the same frequency, It is also used as spatial multiplexing transmission that can improve In spatial multiplexing transmission, the number of signals transmitted simultaneously is called the number of streams, the number of ranks, or the number of layers. Signals transmitted from each antenna are separated by signal separation processing such as spatial filtering and maximum likelihood detection MLD (Maximum Likelihood Detection) in the receiving apparatus.
  • MLD Maximum Likelihood Detection
  • Patent Literature 1 and Patent Literature 2 although different frequency assignments are allowed in each transmission antenna of the transmission device, since the same data could not be transmitted from each transmission antenna, each transmission antenna was received by transmission diversity. It could not be used to improve quality. Each embodiment of the present invention solves this point.
  • the present invention has been made to solve the above-described problems, and the communication apparatus according to the present invention includes a plurality of data signal sequences related to the same data signal sequence, at least a part of which is a spectrum.
  • a plurality of mapping units that are input via a cyclic shift unit, wherein the input data signal sequence is arranged on a frequency axis, and a plurality of mapping units that output the arranged data signal sequence as a transmission frequency spectrum;
  • An allocation information acquisition unit that controls the plurality of mapping units based on allocation information to arrange the data signal sequence on the frequency axis and controls the data signal sequences so as to partially overlap with each other, and the allocation information acquisition
  • a cyclic shift amount determining unit that determines a cyclic shift amount based on the control of a unit, and the spectrum cyclic shift unit, the input data signal sequence of the shift amount determining unit Receiving the control, shifting the cyclic shift amount, outputting the partially overlapped data signals so as to be the same, and transmitting the transmission frequency
  • the communication apparatus of the present invention is the communication apparatus described above, wherein the plurality of sets of data signal sequences are all input to the mapping unit via a spectrum cyclic shift unit.
  • the communication device according to the present invention is the communication device described above, wherein the data signal sequence is directly input to the mapping unit by changing the amplitude and / or phase of the data signal of the data signal sequence. Or a precoding unit that inputs to the mapping unit via the spectral cyclic shift unit.
  • the communication apparatus of this invention is the above-mentioned communication apparatus, Comprising:
  • the said spectrum cyclic shift part performs cyclic shift on the basis of the spectrum arrangement
  • the communication apparatus of this invention is the above-mentioned communication apparatus, Comprising:
  • the said spectrum cyclic shift part performs cyclic shift on the basis of the index of the said transmission frequency spectrum, It is characterized by the above-mentioned.
  • the present invention has been made to solve the above-described problems, and a communication system according to the present invention includes the communication device according to (1) or (2), one or more receiving antennas, An equalization unit that performs equalization using SIMO weights in the case where there is no interference for each transmission frequency spectrum from the receiving antenna, and a second communication device comprising: A data signal is transmitted / received to / from the second communication device.
  • the present invention has been made to solve the above-described problems, and the communication method of the present invention provides a plurality of sets of data signal sequences related to the same data signal sequence, and the plurality of sets of data signal sequences.
  • Each of the data signals is changed in amplitude, phase, or both, and the plurality of changed data signal sequences are subjected to cyclic shift, and the plurality of sets of data signal sequences subjected to the cyclic shift are converted into frequency axes.
  • a plurality of sets of transmission frequency spectrums arranged on the frequency axis in such a manner that a part of the plurality of sets of data signal sequences overlaps and the overlapping data signals are the same. It transmits by the radio frequency from the transmission antenna of this.
  • the present invention has been made to solve the above-described problem.
  • a plurality of data signal sequences are arranged on a plurality of first transmission subcarriers in a specific symbol, A sequence of data signals identical to the plurality of data signals in a plurality of second transmission subcarriers in a symbol, and the plurality of first transmission subcarriers and the plurality of second transmission subcarriers partially overlap The plurality of subcarriers so that the same data signal is arranged in each of a plurality of subcarriers in which the first transmission subcarrier and the second transmission subcarrier partially coincide with each other.
  • a plurality of data signal sequences arranged on the first transmission subcarrier, a plurality of data signal sequences arranged on the plurality of second transmission subcarriers, or both are cyclically shifted, and then Transmitting a plurality of data signal sequences arranged on the first transmission subcarrier from the first transmission antenna, and transmitting a plurality of data signal sequences arranged on the second transmission subcarrier from the second transmission antenna; It is characterized by. (9)
  • the communication method of the present invention is the communication method described above, wherein the first transmission antenna and the second transmission antenna are provided in a single transmission device. .
  • the communication method of the present invention is the communication method described above, wherein the first transmission antenna is provided in one transmission device, and the second transmission antenna is provided in another transmission device.
  • the communication method of the present invention is the communication method described above, wherein the plurality of data signals are subjected to precoding for changing amplitude, phase, or both.
  • the present invention has been made to solve the above-described problem, and the communication apparatus of the present invention has arranged a plurality of data signal sequences related to the same data signal sequence on the frequency axis, and arranged the same.
  • a plurality of mapping units for outputting a data signal sequence as a transmission frequency spectrum, and controlling the plurality of mapping units based on allocation information to arrange the data signal sequences on the frequency axis so that they are the same, separated, or one
  • An allocation information acquisition unit that performs control so as to overlap each other, and a plurality of transmission antennas that transmit transmission frequency spectra output from the plurality of mapping units at a radio frequency are provided.
  • the present invention has been made to solve the above-described problems, and the communication device according to the present invention has a configuration in which there is no interference for one or a plurality of reception antennas and for each transmission frequency spectrum from the reception antennas.
  • an equalization unit that performs equalization using the MIMO weight and the MIMO weight when there is interference.
  • the present invention has been made to solve the above-described problems, and the communication system of the present invention includes the first communication device described in (12) above and the second communication device described in (13) above. And a communication device, wherein data signals are transmitted and received between the first communication device and the second communication device.
  • the present invention has been made to solve the above-described problems.
  • the communication method of the present invention prepares a plurality of data signal sequences related to the same data signal sequence, and the plurality of data signal sequences. Are arranged on the frequency axis, and at that time, the plurality of sets of data signal sequences are made to be the same, separated or partially overlapped, and a plurality of sets of transmission frequency spectra arranged on the frequency axis are transmitted a plurality of times.
  • the present invention has been made to solve the above-described problems, and the communication method of the present invention receives a plurality of transmission frequency spectra from one or a plurality of reception antennas, and performs interference for each transmission frequency spectrum. If there is no interference, the weight in that case is used, and if there is interference, the weight in that case is used for equalization to restore the transmission frequency spectrum.
  • the communication apparatus of the present invention is capable of space-time block coding, space-frequency block coding, cyclic delay diversity for a plurality of sets of data signal sequences.
  • a transmission diversity unit that applies encoding belonging to open loop diversity, a plurality of spectral cyclic shift units that cyclically shift a plurality of data signal sequences output from the transmission diversity unit, and an output of the plurality of spectral cyclic shift units
  • a plurality of transmit antennas that sequentially transmit the frequency spectrum at radio frequencies in two adjacent times; Characterized by including the.
  • the communication apparatus of the present invention is the communication apparatus described above, wherein the plurality of sets of data signal sequences output from the transmission diversity unit are a first data signal sequence and a second data signal sequence.
  • the signal is a second signal sequence that is a conjugate complex number of the signal of the first signal sequence, a third data signal sequence different from the first data signal sequence, and a fourth data signal sequence.
  • the signal is composed of a fourth data signal sequence obtained by multiplying a conjugate complex number of the signal of the third data signal sequence by a negative sign.
  • the present invention has been made to solve the above-described problems, and a communication apparatus according to the present invention includes a plurality of reception antennas and an equalization unit that performs equalization for each transmission frequency spectrum from the reception antennas.
  • An equalization unit comprising: a weight calculation unit that calculates weights used for equalization; a complex conjugate unit that selectively performs conjugate complex operations; and a negative multiplication unit that selectively performs negative multiplication. It is characterized by comprising
  • the present invention it is possible to perform spatial transmission with high reception quality in a communication system, a communication apparatus, and a communication method.
  • FIG. 2 is a schematic block diagram showing a configuration of a base station according to the embodiment It is a schematic block diagram which shows the structure of the equalization part in the embodiment. It is a schematic block diagram which shows the structure of the receiving antenna equalization part in the embodiment.
  • FIG. 1 is a schematic diagram of a communication system that performs transmission diversity.
  • 1 includes a plurality of terminals 101-1,..., 101-n and one base station. In FIG. 1, only two terminals are shown for ease of viewing the drawing.
  • the terminals 101-1,..., 101-n are collectively referred to as the terminal 101.
  • the terminal 101 includes multiple (N t ) transmission antennas # 0 to #N t ⁇ 1, and the base station 102 includes one or multiple (N r ) reception antennas # 0 to #N r ⁇ . 1 is provided.
  • the terminal 101 may be referred to as a “transmitting device” or “first communication device”, and the base station 102 may be referred to as a “receiving device” or “second communication device”.
  • transmission for transmitting the same spectrum from all transmitting antennas (this transmission is referred to as “rank number 1 transmission”) will be described, but the number of ranks lower than the number of transmitting antennas.
  • the number of ranks may be two or more.
  • MU-MIMO Multi-User-MIMO, multi-user mimo
  • single carrier transmission is described as an example.
  • multicarrier transmission such as OFDM or MC-CDMA may be used.
  • FIG. 2 is a schematic block diagram showing the configuration of the terminal 101 of this embodiment.
  • the terminal 101 includes an encoding unit 201, a modulation unit 202, a DFT unit 203, a copy unit 204, mapping units 205-0 to 205-N t -1, reference signal multiplexing units 206-0 to 206-N t -1, OFDM Signal generators 207-0 to 207-N t -1, transmitters 208-0 to 208-N t -1, transmitter antennas 209-0 to 209-N t -1, receiver antenna 210, receiver 211, control information
  • An extraction unit 212 and an allocation information acquisition unit 213 are provided.
  • a bit sequence of data such as voice data, character data, and image data is encoded into an error correction code in the encoding unit 201, and then, in the modulation unit 202, QPSK (Quadrature Phase Shift Keying), 16QAM ( Modulation such as quadrature amplitude modulation (16-value quadrature amplitude modulation) is performed and converted into modulation symbols.
  • the output of the modulation unit 202 is input to the DFT unit 203 every N DFT symbols, and is converted from the time domain signal to the frequency domain signal S (m) (0 ⁇ m) by N DFT point discrete Fourier transform (DFT). ⁇ N DFT ⁇ 1).
  • the data signal sequence of the output signal S (m) of the DFT unit 203 may be referred to as a “first set of transmission frequency spectrums”.
  • the output S (m) of the DFT unit 203 is input to the copy unit 204.
  • the copy unit 204 copies the input signal S (m) by the number of transmission antennas (N t ), and inputs this copy to the mapping units 205-0 to 205-N t -1.
  • N t transmission antennas
  • each mapping unit 205-0 to 205-N t -1 transmission to predetermined N DFT frequency points out of N FFT point frequency points (hereinafter sometimes referred to as “subcarriers”). Frequency spectrum allocation is performed. However, N DFT ⁇ N FFT .
  • the spectrum of N FFT frequency points may be referred to as a “second set of transmission frequency spectra”.
  • a signal transmitted from the base station 102 is received by the reception antenna 210, and the transmission signal is restored after down-conversion from the carrier frequency to the baseband signal, A / D conversion, orthogonal demodulation, and fast Fourier transform. Done.
  • This signal is input to the control information extraction unit 212.
  • the control information extraction unit 212 extracts control information from the received signal and inputs the control information to the allocation information acquisition unit 213.
  • the control information input to the allocation information acquisition unit 213 includes frequency allocation information for each of the transmission antennas 209-0 to 209-N t -1.
  • the allocation information acquisition unit 213 extracts the allocation information for each of the transmission antennas 209-0 to 209-N t ⁇ 1 from the control information, and assigns the allocation information to the corresponding mapping units 205-0 to 205-N t ⁇ 1. Then, the mapping units 205-0 to 205-N t ⁇ 1 are controlled. Therefore, the first set of transmission frequency spectrums is assigned to the same, separated, or partially overlapping frequency points for each of the transmission antennas 209-0 to 209-N t -1.
  • FIGS. 3A to 3C An example of frequency allocation is shown in FIGS. 3A to 3C.
  • the frequency allocation for each of the transmission antennas 209-0 to 209-N t ⁇ 1 in the present embodiment depends on the propagation path state (communication environment) between the terminal 101 and the base station 102, as shown in FIG. 3A to FIG. 3C. There are three main patterns.
  • FIG. 3B shows a case where frequency allocation is performed by using separate transmission antennas # 0 and # 1.
  • the first set of transmission frequency spectrums S (0) to S (5) are continuously assigned to the frequency points of indexes 1 to 6 by transmission antenna # 0, and the transmission frequency spectrum S (0).
  • S (5) is continuously assigned to the frequency indexes 8 to 13 with respect to the transmission antenna # 1.
  • FIG. 3C shows a case where the frequency assignments at the transmission antennas # 0 and # 1 partially overlap. That is, transmission frequency spectrums S (0) to S (5) are continuously assigned to frequency indexes 1 to 6 for transmission antenna # 0, and transmission frequency spectrums S (0) to S (5) However, the frequency index 5 to 10 is continuously allocated to the transmission antenna # 1, and as a result, the frequency allocation is the same for the frequency indexes 5 and 6.
  • the second set of transmission frequency spectrums after allocation is configured by the whole spectrum of frequency indexes 0 to 14.
  • 3A to 3C show an example in which the first set of transmission frequency spectra is continuously assigned to a plurality of frequency points, but may be assigned discretely.
  • the first set of transmission frequency spectra can be freely arranged at a plurality of frequency points in each of the transmission antennas 209-0 to 209-N t ⁇ 1. Allows flexible frequency allocation. Note that the mapping unit assigns zero to the frequency points to which no spectrum is assigned.
  • N FFT point outputs of the mapping units 205-0 to 205-N t ⁇ 1 are respectively input to reference signal multiplexing units 206-0 to 206-N t ⁇ 1.
  • the base station 102 uses a sounding reference signal SRS (Sounding Reference Signal) used for determining a frequency point used by the terminal 101 for communication, Then, the demodulation reference signal DMRS (DeModulation Reference Signal) used for compensating the propagation path of the received signal is multiplexed, and the transmission frame is finally constructed.
  • SRS Sounding Reference Signal
  • DMRS Demod Reference Signal
  • FIG. 4 shows an example of a transmission frame in each path with the transmission antennas 209-0 to 209-N t ⁇ 1.
  • This transmission frame is common to the transmission antennas 209-0 to 209-N t -1.
  • the vertical axis represents the index of the SC-FDMA symbol on the time axis, and the horizontal axis may be referred to as a frequency point on the frequency axis (sometimes referred to as “subcarrier”. This means the same as “resource element”. Is).
  • One frame is composed of a total of 14 SC-FDMA symbols from the 0th to the 13th, and the third and tenth SC-FDMA symbols (shown by solid squares) have the same frequency as the data signal.
  • a demodulation reference signal DMRS is transmitted.
  • a data signal or a sounding reference signal SRS is transmitted. Which is sent is notified from the base station 102.
  • SRS is not always transmitted using the same frequency as a data signal. That is, the DMRS is a reference signal transmitted by the terminal 101 so that the base station 102 can grasp the detailed propagation path state in the band in which the data spectrum is transmitted, whereas the SRS is a rough signal in the system band. This is a reference signal transmitted by the terminal 101 so that the base station 102 can grasp the propagation path quality.
  • Transmission frame generated by the reference signal multiplexing units 206-0 ⁇ 206-N t -1 is input to the OFDM signal generating unit 207-0 ⁇ 207-N t -1.
  • the OFDM signal generators 207-0 to 207-N t ⁇ 1 apply an inverse fast Fourier transform IFFT (Inverse Fast Fourier Transform) of N FFT points and perform conversion from a frequency domain signal to a time domain signal.
  • a cyclic prefix CP Cyclic Prefix
  • the SC-FDMA symbol after CP insertion is then output to transmitting sections 208-0 to 208-N t -1.
  • this symbol is followed by D / A (digital-analog) conversion, quadrature modulation, analog filtering, up-conversion from baseband to carrier frequency, etc.
  • the radio frequency signal carrying the SC-FDMA symbol after CP insertion is transmitted from the transmission antennas 209-0 to 209-N t ⁇ 1 to the base station 102.
  • the signal transmitted from the terminal 101 is received by the N r reception antennas of the base station 102 via the radio propagation path.
  • FIG. 5 is a schematic block diagram showing the configuration of the base station 102 of the present embodiment.
  • Base station 102 may receive antennas 501-0 ⁇ 501-N r -1, OFDM signal receiving unit 502-0 ⁇ 502-N r -1, the reference signal separating unit 503-0 ⁇ 503-N r -1, demapping Sections 504-0 to 504-N r -1, an equalization section 505, an IDFT section 506, a demodulation section 507, a decoding section 508, a propagation path estimation section 509, a scheduling section 510, a transmission section 511, and a transmission antenna 512.
  • Signals received by the N r receiving antennas 501-0 to 501-N r ⁇ 1 of the base station are input to OFDM signal receiving sections 502-0 to 502-N r ⁇ 1, respectively.
  • Each OFDM signal receiving unit 502-0 ⁇ 502-N r -1 down conversion, analog filtering from the carrier frequency to a baseband signal, A / D (analog - digital) conversion, cyclic every SC-FDMA symbol
  • N FFT point fast Fourier transform FFT
  • FFT fast Fourier transform
  • Reference signal demultiplexing sections 503-0 to 503-N r ⁇ 1 demultiplex a reference signal such as a demodulation reference signal DMRS and a sounding reference signal SRS and a data signal, and the reference signal is input to a propagation path estimation section 509, where the data signal Are respectively input to the demapping units 504-0 to 504-N r -1.
  • the propagation path estimation unit 509 uses the input demodulation reference signal DMRS to transmit a wireless propagation path (wireless propagation) between each transmission antenna of the terminal 101 and the reception antenna of the base station 102 in the band in which the data signal is transmitted. Estimate the phase and amplitude of the propagation constant of the road.
  • the obtained propagation path estimation value is input to the equalization unit 505.
  • the propagation path estimation unit 509 uses the received sounding reference signal SRS to transmit the transmission antennas 209-0 to 209-N t ⁇ 1 of the terminal 101 and the base station in the entire system band as well as the band in which the data signal is transmitted.
  • the channel quality of the receiving antennas 501-0 to 501 -N r ⁇ 1 of the station 102 is estimated (channel quality estimation using only the SRS amplitude value or power value).
  • the channel quality estimation value in the entire system band estimated by the channel estimation unit 509 is input to the scheduling unit 510.
  • Scheduling section 510 determines frequency allocation for each of transmission antennas 209-0 to 209-N t ⁇ 1 of terminal 101 based on the input channel quality estimation value.
  • frequency points (subcarriers) having high propagation path quality are independently selected by the transmission antennas 209-0 to 209-N t ⁇ 1 of the terminal 101.
  • frequency allocation may be performed in consideration of not only channel quality but also correlation between antennas, frequency allocation of other mobile stations, and the like.
  • FIG. 3A, FIG. 3B, and FIG. 3C described above are examples in which 6 points are selected from the frequency points with the highest gain in each of the transmission antennas # 0 and # 1. Since the propagation path gain is different for each transmission antenna and frequency points are selected independently, frequencies separated by each antenna may be assigned as shown in FIG. 3B, or only partially overlap as shown in FIG. 3C. And the frequency allocation at each transmitting antenna may be the same as shown in FIG. 3A.
  • the data signals separated by the reference signal separation units 503-0 to 503-N r -1 in FIG. 5 are input to the demapping units 504-0 to 504-N r ⁇ 1, respectively.
  • the data at the frequency point used for transmission is transmitted with respect to the first set of transmission frequency spectrum S (m) from the received reception spectrum of N FFT points.
  • the reception spectrum of the signal is extracted.
  • each demapping unit 504-0 to 504-N r -1 extracts the data signals of the second and ninth frequency points, and These data signals are input to the equalization unit 505.
  • N DFT ⁇ N t values Is input to the equalization unit. Note that the value to be input differs depending on the number of allocation patterns.
  • NDFT ⁇ 1 value is input to the equalization unit 505. It will be.
  • the transmission frequency spectrum S (1) When the transmission frequency spectrum S (1) is extracted, the data signals of the second and sixth frequency points are extracted and input to the equalization unit 505. To do. However, the second frequency point can receive the transmission frequency spectrum S (1) without interference unless another terminal transmits the data signal using the second frequency point. However, at the sixth frequency point, the transmission antenna # 0 The transmission frequency spectrum S (5) transmitted from the terminal becomes interference. For this reason, in the equalization part 505, the process which suppresses the interference with respect to transmission frequency spectrum S (1) by transmission frequency spectrum S (5) is performed. This point will be described in detail below.
  • FIG. 6 is a block diagram showing details of the equalization unit 505.
  • the equalization unit 505 includes a combining unit 601, a weight multiplication unit 602, a channel matrix generation unit 603, a SIMO weight calculation unit 604, and a MIMO weight calculation unit 605.
  • N DFT ⁇ N t values are input to the equalization unit 505 from the demapping unit 504-0.
  • N DFT ⁇ N t values are also input from the last demapping unit 504 -N r ⁇ 1. Accordingly, a total of N DFT ⁇ N t ⁇ N r values are input to the equalization unit 505 from the demapping units 504-0 to 504 -N r ⁇ 1.
  • the equalization unit 505 performs equalization independently for each transmission frequency spectrum S (m).
  • Equation 1 is noise at the receiver.
  • the combining unit 601 in the equalizing unit 505 combines the spectrum for each reception frequency point to generate a vector R S (1) of N r N t ⁇ 1 (N r N t rows and 1 column).
  • the vector R S (1) input by the combining unit 601 to the weight multiplication unit 602 is expressed by the following Equation 2.
  • the propagation path matrix generation unit 603 in FIG. 6 information necessary for the propagation path estimation value input from the propagation path estimation unit 509 to form the matrix of H S (1) in Expression 3 is input from the combining unit 601. Is done.
  • the propagation path matrix generation unit 603 inputs the estimated value of H S (1) to the MIMO weight calculation unit 605 when the obtained estimated propagation path matrix is a matrix, that is, when there is interference.
  • the estimated channel matrix obtained is actually a vector or a scalar, that is, when there is no interference
  • the estimated value of H S (1) is input to the SIMO weight calculation unit 604. Since H S (1) in Equation 3 is a 2N r ⁇ 2 matrix (2N r rows and 2 columns matrix), the estimated value of H S (1) is input to the MIMO weight calculation unit 605.
  • the MIMO weight calculation unit 605 calculates a MIMO weight vector w S (1) by which the received spectrum vector of Equation 3 is multiplied in order to equalize the transmission frequency spectrum S (1).
  • the weight vector w S (1) is expressed by the following Equation 4.
  • Equation 4 This means that the right side of Equation 4 is calculated, and a 1 ⁇ 2N r row vector w S (1) necessary for equalization of S (1) is extracted.
  • ⁇ 2 is an average noise power
  • I is a 2 ⁇ 1 unit matrix in Equation 3 because the signal vector is a 2 ⁇ 1 vector
  • equalization of S (5) is performed using the weight w 1.
  • T represents a matrix (vector) transposition process
  • H represents a Hermite transposition process
  • -1 represents an inverse matrix operation process.
  • MIMO weight calculation section 605 uses the estimated value of propagation path matrix H S (1) input from propagation path matrix generation section 603 and the average noise power estimation value input from a noise estimation section (not shown ) , Calculation of Equation 4 with inverse matrix calculation is performed to calculate a weight vector w S (1) and input to the weight multiplier 602.
  • the noise estimation is obtained by subtracting a signal obtained by multiplying a propagation path estimation value at each frequency obtained by the DMRS and a DMRS in the frequency domain from a reception signal of the demodulation reference signal DMRS in the frequency domain. Therefore, the square of the absolute value of the subtraction result is obtained at each frequency and then averaged.
  • Equation 4 uses MMSE (MinimumMiniMean Square Error) weights as an example, but what kind of weights such as ZF (Zero Forcing) weights and MRC (MaximumRatio Combining) weights that do not consider the average noise power? Reference weights can also be used. Furthermore, other signal separation methods such as iterative equalization processing and MLD (Maximum Likelihood Detection) can be used.
  • the weight multiplication unit 602 multiplies RS (1) input from the combining unit 601 and w S (1) input from the MIMO weight calculation unit 604 or the SIMO weight calculation unit 605, and performs equalization.
  • H n, l (k) is a channel gain at the k-th frequency point between the l-th transmission antenna of terminal 101 and the n-th reception antenna of base station 102.
  • Expression 7 is an expression that ignores noise. Since the transmission frequency spectrum S (3) is received at the fourth frequency point and the eighth frequency point, it can be considered that the transmission frequency spectrum S (3) was received with twice the number of reception antennas. Therefore, the combining unit 601 in the equalizing unit 505 combines the spectrum for each reception frequency point to generate a vector R S (3) of N r N t ⁇ 1. In this example, the vector R S (3) input by the combining unit 601 to the weight multiplication unit 602 is expressed by the following equation.
  • the propagation path matrix generation unit 603 receives, from the combining unit 601, information for configuring a matrix (actually a vector) of the H S (3) of Equation 9 in which the propagation path estimation value input from the propagation path estimation unit 509 is Entered.
  • the propagation path matrix generation unit 603 generates an estimation matrix of H S (3) in Equation 9 using the input propagation path estimation value.
  • H S (3) is a 2N r ⁇ 1 vector in Equation 9
  • the estimated value of H S (3) is input to the SIMO weight calculation unit 604.
  • the SIMO weight calculation unit 604 calculates a SIMO weight vector w S (3) by which the reception spectrum of the nth reception antenna at the kth frequency point is multiplied.
  • the weight vector w S (3) is generally represented by the following Expression 10.
  • ⁇ 2 is the average noise power
  • the weight calculation unit 602 uses the estimated value of the propagation path matrix HS (3) input from the propagation path matrix generation unit 603 and the average noise power estimation value input from the noise estimation unit (not shown ) , and performs inverse processing.
  • a weight vector w S (3) is calculated based on Equation 10 that does not involve matrix operation, and is input to the weight multiplier 602. Note that the weight vector is not limited to the MMSE weight as described above for the case of the transmission frequency spectrum S (1).
  • the weight when there is a transmission signal that causes interference, the weight is calculated using the MIMO weight calculation unit 605 with inverse matrix calculation, and when there is no transmission signal that causes interference.
  • the weight multiplier 602 multiplies the vector R S (3) input from the combiner 601 by the weight vector w S (3), and the transmission frequency spectrum after equalization is as follows:
  • the equalization unit 505 performs equalization processing on all transmission frequency spectra S (m) (0 ⁇ m ⁇ N DFT ⁇ 1), and inputs the equalized spectrum to the IDFT unit 506.
  • FIG. 7 shows an example of frequency allocation when the number of transmission antennas of the terminal 101 is five. That is, transmission frequency spectrums S (0) to S (5) are continuously assigned to frequency index 8 to 13 for transmission antenna # 0, and to frequency index 3 to 8 for transmission antenna # 1. Assigned continuously to frequency index 1-6 for transmit antenna # 2, assigned continuously to frequency index 6-11 for transmit antenna # 3, and transmit antenna # 4. In contrast, the frequency indexes 15 to 20 are continuously assigned.
  • the equalization unit 505 performs equalization processing on all spectra S (m) (0 ⁇ m ⁇ N DFT ⁇ 1).
  • the transmission frequency spectrum S (0) will be described as an example.
  • the received signal at the k-th frequency point of the n-th reception of the base station 102 is R n (k)
  • the received signal at the frequency point is expressed by the following Equation 13, respectively.
  • Equation 13 is an equation that ignores noise. It has become. Since S (0) is received at five frequency points, it can be considered that it has been received with five times the number of receiving antennas. Therefore, the combining unit 601 in the equalizing unit 505 in FIG. 6 combines the spectrum for each reception frequency to generate a vector R S (0) of N r N t ⁇ 1.
  • a vector R S (0) input by the combining unit to the weight multiplication unit is expressed by the following Equation 14.
  • Equation 14 since H S (0) is a 5N r ⁇ 4 matrix, the propagation path matrix generation unit 603 inputs the estimated value of H S (0) to the MIMO weight calculation unit 605, and the above Equation 4 The MMSE weight is generated in the same manner as the above. However, since the signal vector in Equation 14 is a 4 ⁇ 1 (4 rows and 1 column) vector, I in Equation 4 is a 4 ⁇ 4 unit matrix. That is, the MIMO weight calculation unit 605 performs the following processing.
  • equalization processing can be performed even when the terminal 101 has three or more transmission antennas.
  • a configuration may be adopted in which separation is performed after each frequency and then synthesis is performed.
  • equalization can be performed by the SIMO weight calculation 604 without performing an inverse matrix operation, and then attention is paid to the third and eighth frequency points. Then, equalization is performed by performing a 3 ⁇ 3 inverse matrix operation, and finally, focusing on the sixth frequency point, equalization is performed by performing a 3 ⁇ 3 inverse matrix operation, and three outputs are combined into an MMSE By doing so, 4 ⁇ 4 inverse matrix operation can be avoided.
  • the third, sixth, and eighth frequency points may not be used for the equalization processing in order to reduce the amount of calculation. is there.
  • the output of the weight multiplication unit 602 is input as the output of the equalization unit 505 to the IDFT unit 506 in FIG.
  • the IDFT unit 506 performs IDFT (Inverse Discrete Fourier Transform) of N DFT points on the input equalized transmission frequency spectrum S (m) (0 ⁇ m ⁇ N DFT ⁇ 1) to obtain a frequency domain signal. Convert to time domain signal.
  • the output of the IDFT unit 506 is input to the demodulation unit 507, and conversion from the symbol format to the bit format is performed based on the modulation scheme performed by the terminal 101.
  • the signal converted into bits is input to the decoding unit 508, subjected to error correction decoding, and then output to the outside as bit series data.
  • the terminal 101 having a plurality of transmission antennas transmits the same data signal from each transmission antenna, it is limited to performing transmission using the same frequency point (subcarrier).
  • transmission can be performed even if different frequency points are used for each antenna.
  • transmission can be performed using a frequency point with a high propagation path gain at each transmission antenna of the terminal 101, so that received power at the base station 102 can be improved.
  • signals transmitted from the respective transmission antennas of terminal 101 are received at a plurality of frequency points in base station 102, good transmission characteristics are obtained by frequency synthesis in equalization section 505 of base station 102. It is done.
  • the first set of transmission frequency spectrums are continuously assigned to form the second set of transmission frequency spectra.
  • the present invention can also be applied to the case where the first set of transmission frequency spectrums are allocated discretely.
  • weights are generated in consideration of the fact that spectra transmitted at different frequencies are combined in the equalization unit, as in Expression 4 and Expression 11.
  • other transmission schemes such as OFDM may be used instead of single carrier transmission.
  • OFDM frequency division multiple access
  • each frequency (subcarrier) is not connected in a DFT relationship. Weights that do not take propagation path conditions into account can be used.
  • the terminal of the present embodiment is denoted by reference numeral 101a
  • the base station is denoted by reference numeral 102a.
  • the frequency points to be used for transmitting the respective transmit antennas shows a conceptual diagram of an example that partially overlap.
  • FIG. 8A when spectrums are allocated to data signals in order from the low frequency to the high frequency with respect to the allocation of each transmission antenna, a plurality of transmission frequency spectrums I transmitted from the 0th transmission antenna (transmission antenna # 0). And the front of a plurality of transmission frequency spectrums II transmitted from the first transmission antenna (transmission antenna # 1) are transmitted at the same frequency point, resulting in interference. Therefore, as shown in FIG. 8B, the first transmission antenna cyclically shifts the transmission frequency spectrum within the allocated frequency point.
  • the transmission frequency spectrum II ′ is obtained, and the same frequency spectrum is obtained at the frequency point where the allocation is overlapped between the 0th transmission antenna and the first transmission antenna. Then, transmission frequency spectra I and II ′ are transmitted from the 0th transmission antenna and the first transmission antenna, respectively.
  • the transmission frequency spectrum is transmitted with a cyclic shift within the allocated frequency point so that interference does not occur at the receiving antenna.
  • FIG. 9 is a schematic block diagram showing the configuration of the terminal 101a of this embodiment.
  • Terminal 101a includes an encoding unit 901, modulation section 902, DFT section 903, precoding section 904, spectrum cyclic shift section 905-0 ⁇ 905N t -1, the mapping unit 906-0 ⁇ 906-N t -1, the reference signal Multiplexers 907-0 to 907-N t -1, OFDM signal generators 908-0 to 908-N t -1, transmitters 909-0 to 909-N t -1, transmit antennas 910-0 to 910-N t- 1, receiving antenna 911, receiving unit 912, control information extracting unit 913, allocation information acquiring unit 914, PMI acquiring unit 915, and cyclic shift amount determining unit 916.
  • a bit sequence of data such as voice data, character data, and image data is encoded by an encoding unit 901 into an error correction code, and then modulated by a modulation unit 902 such as QPSK or 16QAM to be converted into a modulation symbol. Is converted.
  • the output of the modulation unit 902 is input to the DFT unit 903 every N DFT symbols, and is converted from a time domain signal to a frequency spectrum by N DFT point discrete Fourier transform.
  • the output S (m) (0 ⁇ m ⁇ N DFT ⁇ 1) of the DFT unit 903 is input to the precoding unit 904.
  • the output of the DFT unit 203 (FIG. 2) is input to the copy unit 204 (FIG. 2).
  • the output is input to the precoding unit 904.
  • FIG. 8B when the same transmission frequency spectrum is transmitted at the same frequency point by the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1), This is because the signals from the transmitting antennas of the terminal 101a may be received by canceling each other at the base station 102a.
  • precoding is performed on the first set of frequency spectrum signals, which are output signals of DFT 903, so that signals from each transmission antenna are in-phase combined at the reception antenna, and after precoding is performed.
  • precoding is performed based on the information of the precoding matrix acquired by the PMI acquisition unit 915.
  • the PMI acquisition unit 915 extracts a precoding matrix indicator PMI (Precoding Matrix Indicator) from the control information input from the control information extraction unit 913 and inputs it to the precoding unit 904.
  • the PMI is determined according to the propagation path between the transmission antenna and the reception antenna in the base station 102a, and is usually received SINR (Signal to Interference plus Noise power Ratio), reception SNR. (Signal to Noise power Ratio) or PMI that maximizes the channel capacity is selected, and this PMI is notified to the terminal 101a.
  • the precoding unit 904 multiplies the first set of transmission frequency spectra S (m) input from the DFT unit 903 by the precoding matrix w (m).
  • the precoding matrix w (m) with the rank number R is an N t ⁇ R matrix.
  • the precoding matrix w (m) is an N t ⁇ 1 vector.
  • a vector S (m) (0 ⁇ m ⁇ N DFT ⁇ 1) output from the precoding unit 904 is expressed by the following equation.
  • the precoding matrix w (m) depends on the frequency index m, but the same precoding matrix w may be used for all frequency indexes in order to reduce the amount of notification information from the base station 102a. it can.
  • the PMI is used as an index of a quantized precoding matrix (described in the codebook (code table)) instead of the precoding matrix itself, and the base station 102a sends the index to the terminal 101a. You may make it notify PMI.
  • the precoding matrix (2 ⁇ 1 matrix, that is, precoding vector) w of rank 1 (also referred to as 1 layer number and 1 stream number) in two transmit antennas is composed of the six vectors shown in Table 1 in 3GPP.
  • the base station 102a selects one of the codebook indexes and notifies the terminal 101a as PMI.
  • precoding is performed in the frequency domain in the configuration of the terminal 101a in FIG. 9, but precoding may be performed in the time domain.
  • precoding is performed for all spectrum indexes, and that precoding is performed using the N t ⁇ 1 precoding vector w.
  • a frequency division bidirectional communication FDD (Frequency Division Duplex) system is assumed, and the precoding vector used for transmission in the terminal 101a is reported from the base station 102a.
  • the terminal 101a may determine a precoding vector in the uplink using a downlink reference signal. Therefore, it is possible not to notify the precoding vector (or codebook index). Further, instead of performing precoding according to the propagation path, it is also possible to perform precoding with a pattern determined in advance by transmission and reception.
  • the signal S n (m) at the n-th transmission antenna output from the precoding unit 904 in FIG. 9 is input to the spectrum cyclic shift unit 905-n. That is, the signal S 0 (m) for the 0th transmission antenna 910-0 is input to the spectrum cyclic shift section 905-0, and so on, at the last N t ⁇ 1 transmission antenna 910-N t ⁇ 1.
  • the signal S Nt ⁇ 1 (m) is input to the spectrum cyclic shift unit 905 -N t ⁇ 1.
  • FIG. 10 is a block diagram showing a specific configuration of spectrum cyclic shift section 905. Note that the configurations of the N t spectral cyclic shift units 905-0 to 905-N t -1 are the same, and the common configuration is denoted by reference numeral 905.
  • the spectrum cyclic shift unit 905 includes a shift unit 1001, a modulo operation unit 1002, and an index change unit 1003. Cyclic shift amount delta n inputted from cyclic shift amount determining unit 916 is input to the shift unit 1001. The cyclic shift amount determination unit 916 will be described later.
  • the shift unit 1001 adds the cyclic shift amount ⁇ n input under the control of the cyclic shift amount determination unit 916 to the N DFT number sequences from 0 to N DFT ⁇ 1, and sends the result to the modulo arithmetic unit 1002 input.
  • a sequence 4, 5, 6, 7, 8, 9 obtained by adding 4 to the sequences 0, 1, 2, 3, 4, 5 is used as the modulo arithmetic unit 1002.
  • the output of the modulo arithmetic unit 1002 is the sequence 4, 5, 0, 1, 2, 3.
  • the frequency indexes 0, 1, 2, 3, 4, 5 of the transmission frequency spectrum after precoding input from the precoding unit 904 are converted into the sequence of numbers 4, 5, 0 input from the modulo arithmetic unit 1002. , 1, 2 and 3 are changed.
  • the index changing unit 1003 of the spectrum cyclic shift unit 905-n transmits the pre-coded transmission frequency spectrums S n (0), S n (1), S n (2), S n (3), S n (4), S n (5) and “4, 5, 0, 1, 2, 3” are input as frequency indexes from the modulo operation unit.
  • the transmission frequency spectrums S n (4), S n (5), S n (0), S n (1), S n (2), and S n (3) are rearranged according to the frequency index.
  • FIG. 11 is a flowchart for explaining the operation of the spectrum cyclic shift section 905-n.
  • a temporary sequence 0, 1, 2,. . . , N DFT ⁇ 1.
  • the value of this sequence increases by the amount of cyclic shift delta n input from the cyclic shift amount determining unit 916 (step S1102).
  • a modulo operation is performed with the numerical value N DFT on the increased numerical sequence (step S1103).
  • the frequency index of the first set of transmission frequency spectrums after the precoding input from the above-described precoding unit 904 is changed using the sequence subjected to this modulo operation (step S1104).
  • the obtained transmission frequency spectrum is output to mapping section 906.
  • spectrum cyclic shift section 905 performs cyclic shift on transmission frequency spectrum S n (m) output from precoding section 904 by cyclic shift amount ⁇ n input from cyclic shift amount determination section 914.
  • the transmission frequency spectrum input from the precoding unit 904 to the spectrum cyclic shift unit is S n (m) and the cyclic shift amount is ⁇ n
  • the output S ′ n (m) of the spectrum cyclic shift unit 905 is given by Given in.
  • the spectrum S ′ n (m) output from the spectrum cyclic shift unit 905-n is input to the mapping unit 906-n in FIG. However, 0 ⁇ n ⁇ N t ⁇ 1. Since the signal processing from the mapping units 906-0 to 906-N t ⁇ 1 to the antennas 910-0 to 910-N t ⁇ 1 is the same as that in the first embodiment, the description thereof will be used. However, the demodulation reference signal DMRS is transmitted after being multiplied by the same precoding vector w as the data signal.
  • the number of transmission antennas N t is 2, the number of DFT points N DFT is 6, and the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1) are used for transmission.
  • An example where frequency points partially overlap is shown. That is, in FIG. 12A, the first set of transmission frequency spectrums S 0 (0) to S 0 (5) is assigned to the frequency points of indexes 1 to 6 for the 0th transmission antenna, and One set of transmission frequency spectrums S 1 (0) to S 1 (5) is assigned to frequency points of indexes 5 to 10.
  • a spectrum of frequency spectrum S (m) (0 ⁇ m ⁇ 5) composed of six spectra is assigned in order from a low frequency point to a high frequency point for each antenna assignment as shown in FIG. 12A.
  • the frequency spectrum S 0 (4) is transmitted from the 0th transmission antenna at the fifth frequency point, and the transmission frequency spectrum S 1 (0) is transmitted from the first transmission antenna.
  • the frequency spectrum S 0 (5) is transmitted from the 0th transmission antenna, and the frequency spectrum S 1 (1) is transmitted from the first transmission antenna.
  • the same transmission frequency spectrum is transmitted from the 0th transmission antenna and the first transmission antenna at overlapping frequency points. That is, as shown in FIG. 12B, at the fifth and sixth frequency points of the first transmission antenna, the transmission frequency spectrums S 1 (4) and S 1 (5) are transmitted, respectively, similarly to the transmission frequency spectrum of the zeroth transmission antenna. To do.
  • the sub-indexes (subscripts in the transmission frequency spectrum such as S 0 (4) and S 1 (4)) of the transmission frequency spectrum transmitted from each transmission antenna are different, they are expressed by Equation 15.
  • the transmission frequency spectrums S 0 (4) and S 1 (4) are only different in phase because they are multiplied by the precoding vector w, and are originally the same spectrum S (4).
  • the precoding vector w is determined not to cause interference because the spectrum transmitted from each transmission antenna is determined so as to be in-phase combined by the base station 102a.
  • the base station 102a can receive the signal transmitted from the terminal 101a without interference.
  • FIGS. 13A and 13B show examples of transmission spectrums when the number of transmission antennas N t of the terminal 101a is 5.
  • the transmission frequency spectrums S 0 (0) to S 0 (5) are assigned to the frequency points of indexes 8 to 13, and the first transmission antenna (transmission antenna # 0 ) is assigned.
  • the transmission frequency spectrum S 1 (0) to S 1 (5) is assigned to the frequency points with indices 3 to 8, and for the second transmission antenna (transmission antenna # 2), the transmission frequency spectrum S 2 (0) To S 2 (5) are assigned to the frequency points with indices 1 to 6, and for the third transmitting antenna (transmitting antenna # 3), the transmission frequency spectrums S 3 (0) to S 3 (5) have indices 6 to 11 assigned to frequency point, the fourth transmit antenna (transmission antenna # 4) transmitted frequency spectrum S 4 for (0) S 4 (5) is assigned to the frequency point of the index 15-20.
  • FIG. 13A is an example in the case where cyclic shift in the frequency domain is not performed, and the index of frequency points that can be received without interference is 1, 2, 12, 13, 15 to 20, and is used for 0 and 14 In other frequency indexes, different transmission frequency spectra are transmitted from the transmission antennas # 0 to # 4. Therefore, the base station 102a needs to separate each spectrum.
  • FIG. 13B shows a transmission spectrum when the above-described cyclic shift is applied to the transmission spectrum of FIG. 13A.
  • the spectrum index i is defined using the frequency index k and the number N DFT of transmission spectrum points (6 points in the example in the figure). In other words, the spectrum index i is defined by
  • the spectrum index i is the remainder when the frequency index k is divided by the numerical value NDFT .
  • Each transmission antenna transmits the frequency spectrum indicated by the spectrum index as shown in FIG. 13B, whereby the same transmission frequency spectrum is transmitted from each transmission antenna at each frequency point.
  • the shifted frequency spectrums S 0 (2), S 0 (3), S 0 (4), S 0 (5), S 0 (0), S 0 (1) are indexed 8, 9, 10, 11, Assign to 12 and 13 frequency points.
  • the spectrum index is defined on the basis of the frequency index.
  • a specific transmission antenna is used as a reference, and the cyclic cyclic shift unit of the transmission antenna has a cyclic shift amount of zero, that is, a cyclic shift.
  • the spectral index may be determined so that no.
  • FIG. 14 is a schematic block diagram illustrating a configuration of a terminal 101a1 that is a modification of the present embodiment.
  • Terminal 101a1 includes encoding section 1401, modulating section 1402, DFT section 1403, precoding section 1404, spectrum cyclic shift sections 1405-1 to 1405N t -1, mapping sections 1406-0 and 1406-1 to 1406-N t-.
  • the former lacks a configuration corresponding to the latter spectral cyclic shift unit 905-0, and in the former, the precoding of the precoding unit 904 is performed.
  • the difference is that the subsequent transmission frequency spectrum is directly output to mapping section 1406-0, but there is no difference in other configurations.
  • the cyclic shift unit of the 0th transmission antenna is controlled so that no cyclic shift is performed with the 0th transmission antenna as a reference.
  • the configuration of the terminal 101b is simplified.
  • a reference numeral 916a is assigned to the cyclic shift amount determination unit described here.
  • Allocation information in each transmission antenna is input to head frequency index acquisition units 1501-0 to 1501-N t ⁇ 1 in cyclic shift amount determination unit 916a.
  • Each head frequency index acquisition unit 1501-0 to 1501-N t -1 acquires the head (lowest frequency) frequency index of the input allocation information.
  • the head frequency index acquisition unit 1501-3 outputs 6 as the head frequency index.
  • the outputs of the head frequency index acquisition units 1501-0 to 1501-N t ⁇ 1 are input to modulo arithmetic units 1502-0 to 1502-N t ⁇ 1, respectively.
  • the modulo operation unit 1502-0 ⁇ 1502-N t -1 and outputs the remainder of the top frequency index input divided by N DFT. If the head frequency index input to the modulo arithmetic unit 1502-n is k HEAD, n , the cyclic shift amount ⁇ n output from the modulo arithmetic unit 1502- n is expressed by the following equation. However, 0 ⁇ n ⁇ N t ⁇ 1.
  • the output delta n is the cyclic shift amount in the n spectral cyclic shift section 905-n of the terminal 101a shown in FIG. 9, is output from the cyclic shift amount determining unit 916a.
  • the cyclic shift amount determining unit 916a by calculating the remainder when the first frequency index in the frequency allocation of transmission antennas 910-0 ⁇ 910-N t -1 terminal 101a divided by N DFT, A cyclic shift amount can be determined.
  • the head frequency index acquisition units 1501-0 to 1501-N t ⁇ 1 are based on the 0th frequency point. However, if the terminal 101a and the base station 102a are already known, the head frequency index acquisition units 1501-0 to 1501-N t ⁇ 1 are used as the reference. You may output a head frequency index on the basis of a frequency index. For example, with reference to the 0th transmission antenna in FIG. 13A, the head frequency index output from the head frequency index acquisition unit 1501-0 is 0, and the head frequency index output from the head frequency index acquisition unit 1501-1 is -5. It becomes. In this case, the modulo arithmetic unit 1502-1
  • IDFT output s of the frequency spectrum given cyclic shift amount ⁇ n '(t) is given by the following equation.
  • Formula 22 can be transformed as the following formula.
  • the time domain signal s' (t) when the cyclic shift is given is obtained by applying phase rotation to the time domain signal s (t) when the cyclic shift is not given. Even if phase rotation is applied, the peak-to-average power ratio PAPR of the transmission signal is kept at a low value. That is, even if cyclic shift is given, the statistical property of the transmission signal does not change, so that the load on the power amplifier used in the transmission unit of the terminal 101a does not become excessive.
  • FIG. 16 is a schematic block diagram showing the configuration of the base station 102a in the present embodiment.
  • the base station 102a includes receiving antennas 1601-0 to 1601-N r -1, OFDM signal receiving units 1602-0 to 1602-N r -1, reference signal demultiplexing units 1603-0 to 1603-N r -1, demapping 1604-0 to 1604-N r ⁇ 1, equalization unit 1605, IDFT unit 1606, demodulation unit 1607, decoding unit 1608, propagation path estimation unit 1609, scheduling unit 1610, transmission unit 1611, transmission antenna 1612, PMI determination unit 1613.
  • the scheduling unit 1610 since the terminal 101a precodes the transmission signal in the precoding unit 904 according to the propagation path, the scheduling unit 1610 notifies the terminal 101a to the PMI determination unit 513 of the base station 102a.
  • the frequency allocation information of each of the transmission antennas 1409-0 to 1409-N t ⁇ 1 and the channel estimation value output by the channel estimation unit 1609 are input.
  • the PMI determination unit 1613 multiplies the channel estimation value in the frequency allocation input from the scheduling unit 1610 by a plurality of precoding matrices prepared in advance by the PMI determination unit 1613 (for example, in the case of Table 1).
  • the PMI indicating the precoding matrix having the highest SINR (signal-to-interference noise power ratio), SNR (signal-to-noise ratio) or propagation path capacity is output to the transmitter 1611.
  • the transmission unit 1611 transmits the frequency allocation information input from the scheduling unit 1610 and the precoding matrix indicator (PMI) input from the PMI determination unit 1613 as control information to the terminal 101a via the transmission antenna 1612.
  • each of the demapping units 1604-0 to 1604 -N r ⁇ 1 extracts the received frequency spectrum at the frequency point used for transmission for each spectrum from the received spectrum of the data signal of N FFT points. Done.
  • each of the demapping units 1604-0 to 1604 -N r ⁇ 1 extracts the second and eighth frequency points and inputs them to the equalization unit 1605.
  • the transmission frequency spectrum S (4) is transmitted as S 0 (4) from the 0th transmission antenna using the fifth frequency point, and S 1 using the fifth frequency point from the first transmission antenna. Transmission is performed as (4). Accordingly, each of the demapping units 1604-0 to 1604 -N r ⁇ 1 extracts only the received signal at the fifth frequency point and inputs it to the equalization unit 1605. Such processing is performed for all NDFT transmission frequency spectra.
  • H n, l (k) is a channel gain at the k-th frequency point between the l-th transmitting antenna and the n-th receiving antenna.
  • Formula 24 is a formula that ignores noise. Since the transmission frequency spectrum S (1) is received at the first, seventh, thirteenth, and nineteenth frequency points, it can be considered that the transmission frequency spectrum S (1) is received with four times the number of reception antennas.
  • FIG. 17 is a block diagram showing details of the equalization unit 1605.
  • the equalization unit 1605 includes a combining unit 1701, a weight multiplication unit 1702, a propagation path vector generation unit 1703, and a SIMO weight calculation unit 1704.
  • For equalizer 1605 is input N DFT ⁇ N t pieces of values from the demapping section 1604-0, similarly, from the end of the de-mapping unit 1604-N r -1 N DFT ⁇ N t Values are entered. Accordingly, N DFT ⁇ N t ⁇ N r values are input to the equalization unit 1605 from the demapping units 1604-0 to 1604 -N r ⁇ 1.
  • the combining unit 1701 of the equalizing unit 1605 combines the spectrum for each reception frequency point to generate a 4N r ⁇ 1 vector R S (1) .
  • a vector R S (1) input to the weight multiplication unit 1702 by the combining unit 1701 is expressed by the following Expression 25.
  • the propagation path estimation value input from the propagation path estimation unit 1609 is expressed by Equation 25.
  • the SIMO weight calculation unit 1704 multiplies the reception spectrum of the nth reception antenna at the kth frequency point in order to equalize the transmission frequency spectrum S (1), and the SIMO weight vector w S when there is no interference. (1) is calculated.
  • the weight vector w S (1) of 1 ⁇ 4N r (1 row 4N r column ) is expressed by the following Equation 27.
  • Equation 27 uses MMSE (Minimum Mean Square Error) weights as an example, but ZF (Zero Forcing) weights, MRC (Maximum Ratio Combining) weights, etc. that do not take noise into account. Also good. Furthermore, other signal separation methods such as iterative equalization processing and MLD (Maximum Likelihood Detection) may be used.
  • weight multiplying section 1702 performs multiplication of R S (1) input from combining section 1701 and w S (1), and is S (1) after transmission frequency spectrum equalization.
  • the same data can be transmitted without inter-antenna interference even when the assigned frequencies are different among the transmission antennas.
  • the transmission frequency spectrum S (0) is transmitted from three transmission antennas at the sixth frequency point, a transmission antenna diversity effect by precoding for three lines can be obtained.
  • the transmission frequency spectrum S (0) is also transmitted from the 12th and 18th frequency points, a frequency diversity gain can be obtained in addition to the precoding gain.
  • transmission can be performed without causing inter-antenna interference at each frequency point. Accordingly, since there is no interference from other antennas in the base station 102a, the equalization unit 1605 can perform equalization using a small amount of calculation. Furthermore, transmission diversity by precoding can be used so that transmission signals from the transmission antennas are combined in phase at the reception antenna. In addition, the base station can perform equalization with high accuracy by generating weights in consideration of the fact that spectra received at various frequencies are combined. Furthermore, since the PAPR characteristic of the transmission signal is maintained in each transmission antenna, the coverage can be expanded.
  • the case where the number of streams to be transmitted (which may be referred to as “independent data”, “rank”, and “layer”) is 1 has been described.
  • the number of ranks is small, for example, when three streams are transmitted using four transmission antennas, the present embodiment is applied to two antennas that transmit the same signal, and two streams transmitted from the other two antennas are Good transmission can be performed by using a conventional signal separation method in combination.
  • STBC space-time block coding
  • Table 2 shows the space-time block coding (also referred to as “Alamuti coding”) when the number of transmission antennas is two.
  • * represents a complex conjugate operation
  • STBC space-time block coding
  • two adjacent data A and B are coded as shown in Table 2 using two adjacent transmission timings of time T and time T + 1, and the terminal Are transmitted redundantly, that is, with redundancy.
  • DFT unit When applying STBC to SC-FDMA, DFT unit outputs N DFT point frequency spectrum A (m) (0 ⁇ m ⁇ N DFT -1) and N DFT point frequency spectrum B (m) Space-time block coding is performed using (0 ⁇ m ⁇ N DFT ⁇ 1).
  • FIG. 18 shows an example of the transmission frequency spectrum of the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1) at time T.
  • the terminal 101b transmits different transmission frequency spectra A (m) and B (m) with a frequency allocation that partially overlaps.
  • terminal 101b transmits transmission frequency spectrums A (0) to A (5) from the 0th transmission antenna (transmission antenna # 0) by assigning them to the frequency points with indexes 0 to 5, It is assumed that transmission frequency spectrums B (0) to B (5) are assigned to frequency points of indexes 4 to 9 and transmitted from one transmission antenna (transmission antenna # 1). The transmission frequency spectrum transmitted from both transmission antennas partially overlaps at the frequency points of indexes 4 and 5.
  • FIG. 19A, B, and C show an example of the transmission spectrum of each transmission antenna at the adjacent time T + 1. It is assumed that the frequency allocation of each transmission antenna is the same as that at time T described above.
  • FIG. 19A shows frequency allocation when the space-time block coding of Table 2 is applied without applying the frequency cyclic shift when the frequencies partially overlap. That is, as shown in FIG. 19A, at the adjacent time T + 1, from the 0th transmitting antenna (transmitting antenna # 0), B * (0) ⁇ B * (5) is assigned to the frequency points with indexes 0 to 5 and transmitted, and the first transmission antenna (transmission antenna # 1) sets the conjugate complex number of the transmission frequency spectrum A (0) to A (5) to ⁇ 1. -A * (0) to -A * (5) multiplied by are assigned to the frequency points of indexes 4 to 9 and transmitted.
  • the space-time block coding uses two transmission timings T and T + 1 to separate two different data at the base station. For example, for the fourth frequency point, A ( 4), B (0) is transmitted at time T + 1, B * (4), -A * (0). As a result, four different transmission frequency spectra are transmitted in duplicate at the two transmission timings, so that it is difficult for the base station to separate them without interference.
  • frequency spectrum allocation is not performed at the 0th to 3rd frequency points of the 0th transmission antenna and the 6th to 9th frequency points of the 1st transmission antenna.
  • any spectrum may be transmitted.
  • B (2), B (3), B (4), B (5) are transmitted at the 0th to 3rd frequency points of the 0th transmission antenna (transmission antenna # 0)
  • a (0), A (1), A (2), and A (3) may be transmitted at the sixth to ninth frequency points of the transmission antenna (transmission antenna # 1).
  • the spectrum transmitted from the 0th and 1st transmission antennas at the 4th and 5th frequency points performs a complex conjugate operation on the original spectrum, and in particular for the 1st transmission antenna, it is multiplied by minus. Therefore, the spectrum at other frequency points is independent from the DFT operation, and when converted to the time domain, the peak-to-average power ratio (PAPR) becomes high. Therefore, as shown in FIG. 19C, even at a frequency point where the assigned frequency does not overlap with other antennas, space-time block coding is performed and transmitted in the same manner as the overlapping frequency point. By assigning the spectrum so that the spectrum is cyclic as shown in FIG. 19C, the PAPR can be kept low even when space-time block coding is performed.
  • FIG. 20 shows a specific configuration of the terminal 101b of the present embodiment.
  • the terminal 101b includes an encoding unit 2001, a modulation unit 2002, a DFT unit 2003, a transmission diversity unit 2004, spectral cyclic shift units 2005-0 and 2005-1, mapping units 2006-0 and 2006-1, and a reference signal multiplexing unit 2007-. 0, 2007-1, OFDM signal generation units 2008-0, 2008-1, transmission units 2009-0, 2009-1, transmission antennas 2010-0, 2010-1, reception antenna 2011, reception unit 2012, control information extraction unit 2013, the allocation information acquisition part 2014, and the cyclic shift amount determination part 2015 are comprised.
  • the number N t of transmission antennas of the terminal 101b is assumed to be 2. Comparing the configuration of the terminal 101b and the configuration of the mobile station configuration 101a of the second embodiment (FIG. 9), the latter precoding unit 904 is the transmission diversity unit 2004 in the former, and the latter PMI acquisition unit 913 is The former is lacking. In terms of both functions, since open-loop transmission diversity does not require propagation path information, the terminal 101b can perform transmission diversity without notification information from the base station 102b. In this respect, the second embodiment Is different.
  • the output of the DFT unit 2003 is input to the transmission diversity unit 2004 for each two SC-FDMA signals.
  • the transmission diversity unit 2004 performs space-time block coding on the two SC-FDMA transmission frequency spectra A (m) and B (m) based on the following Table 3, and the spectral cyclic shift unit 2005-0 , 2005-1.
  • FIG. 21 is a block diagram illustrating details of the cyclic shift amount determination unit 2015.
  • Cyclic shift amount determination unit 2015 includes head frequency index acquisition units 2101-0 to 2101-1, subtraction units 2102-0 and 2102-1, modulo arithmetic units 2103-0 to 2103-1, and switching units 2104-0 to 2104. 1 is provided.
  • the frequency allocation information of each of the transmission antennas 2010-0 and 2010-1 is input from the allocation information acquisition unit 2014 to the head frequency index acquisition units 2101-0 to 2101-1.
  • Starting frequency index acquisition sections 2101-0 to 2101-1 acquire the starting (lowest frequency) frequency index of the frequency allocation of each transmitting antenna from the input allocation information.
  • the head frequency index acquisition unit 2101-0 outputs “0” as the head frequency index k HEAD, 0.
  • the head frequency index acquisition unit 2101-1 outputs “4” as the head frequency index k HEAD, 1 .
  • each head frequency index acquisition unit 2101-0 to 2101-1 The outputs k HEAD, 0 and k HEAD, 1 of each head frequency index acquisition unit 2101-0 to 2101-1 are input to two subtraction units 2102-0 and 2102-1.
  • Each subtraction unit 2102-0, 2102-1 subtracts the output of the other head frequency index acquisition unit from the output of the corresponding head frequency index acquisition unit 2101-0 to 2101-1 so that k dif, 0 , kdif , 1 is calculated and output to the modulo arithmetic units 2103-0 and 2103-1.
  • the subtraction unit 2102-0 For example, in the subtraction unit 2102-0,
  • Delta n is input to the switching unit 2104-n.
  • the cyclic shift amount determining unit 2015 calculates the difference between the first frequency index in the frequency assignment of each transmit antenna 2010-0,2010-1, by calculating the remainder when divided by N DFT, a cyclic The amount of shift can be determined.
  • a cyclic shift is applied to a signal transmitted at time T + 1 without applying a cyclic shift at time T.
  • time T A cyclic shift may be applied to the signal transmitted at time T1
  • a cyclic shift may not be applied to the signal transmitted at time T + 1, or a cyclic shift may be applied at both times.
  • the configuration of the terminal 101b in FIG. 20 is the same as the configuration of the terminal in FIG. 9 of the second embodiment except for the above, and performs predetermined signal processing to transmit a signal from each transmission antenna.
  • the signal transmitted from the terminal 101b is received by the receiving antenna of the base station 102b via the wireless propagation path.
  • the first embodiment in the case of frequency allocation that causes interference, signal separation is difficult with one receiving antenna. However, in this embodiment, transmission is performed so that interference does not occur.
  • a single receiving antenna may be used.
  • FIG. 22 is a block diagram showing a specific configuration of the base station 102b.
  • the base station 102b may receive antennas 2201-0 ⁇ 2201-N r -1, OFDM signal receiving unit 2202-0 ⁇ 2202-N r -1, the reference signal separating unit 2203-0 ⁇ 2203-N r -1, demapping Sections 2204-0 to 2204-N r ⁇ 1, an equalization section 2205, an IDFT section 2206, a demodulation section 2207, a decoding section 2208, a propagation path estimation section 2209, a scheduling section 2210, a transmission section 2211, and a transmission antenna 2212.
  • each demapping unit 2204-0 to 2204-N r -1 the received spectrum at the frequency point used for transmission is extracted for each spectrum from the received spectrum of the data signal of N FFT points.
  • the transmission frequency spectrum A (4) is extracted when the transmission is performed with the frequency allocation as shown in FIG. 18 at time T and the transmission is performed with the frequency allocation as shown in FIG. 19C at time T + 1.
  • Transmission frequency spectrum A (4) is transmitted from the 0th transmission antenna at time T and from the first transmission antenna at time T + 1, both using the fourth frequency point.
  • each demapping unit 2204-0 to 2204-N r ⁇ 1 extracts two frequency signals of the fourth frequency point at time T and time T + 1 and inputs them to the equalization unit 2205.
  • Equation 37 If the received signal at the k-th frequency point of the n-th receiving antenna at time t is R n, t (k), and there is no time variation of the propagation path in the two SC-FDMA symbols that perform space-time block coding,
  • the signals R n, T (4) and R n, T + 1 (4) received by A (4) input from the demapping units 2204-0 to 2204-N r ⁇ 1 to the equalization unit 2205 are respectively This is expressed by Equation 37.
  • the above two reception frequency signals are input to the equalization unit 2205.
  • a spectrum transmitted at a non-overlapping frequency for example, B (3), is transmitted at the time T using the seventh frequency point of the first transmitting antenna, and from the 0th transmitting antenna at the time T + 1. Transmission is performed using the first frequency point. Therefore, each demapping unit extracts two frequency signals of the seventh frequency point at time T and the first frequency point at time T + 1, and inputs them to the equalization unit.
  • Such processing is performed for all NDFT transmission frequency spectra.
  • FIG. 23 is a schematic block diagram showing the configuration of the equalization unit 2205.
  • the equalization unit 2205 includes reception antenna equalization units 2301-0 to 2301-N r ⁇ 1, a reception antenna combining unit 2302, and a weighting unit 2303.
  • the output of the demapping unit 2204-n is input to the receiving antenna equalization unit 2301-n of the equalization unit 2205.
  • Receiving antenna equalization section 2301-n performs equalization processing for each of receiving antennas 2201-0 to 2201-N r ⁇ 1 using the propagation path estimation value input from propagation path estimation section 2209 in FIG.
  • the data is input to the receiving antenna combining unit 2302. Processing in the reception antenna equalization unit 2301-n will be described later.
  • the outputs of the reception antenna equalization units 2301-0 to 2301-N r ⁇ 1 input to the reception antenna combining unit 2302 are combined by the reception antenna combining unit 2302 to obtain the reception antenna diversity effect, and Are input to the weighting unit 2303.
  • Weighting unit respectively N DFT pieces of A (m) and N DFT pieces of the resulting 2303 B (m) is, as each synthesized in suitable proportions, performs weighting for each spectrum. For example, when A (m) is weighted according to the MMSE standard, the weight of the following equation is multiplied by the input.
  • ⁇ 2 of the denominator is the average noise power
  • the denominator indicates that the power of the propagation path in which A (m) is transmitted is totaled and the average noise power is added as a whole. A specific example will be described later.
  • a signal weighted for each spectrum is input to the IDFT unit 2206 of FIG. 22 as an output of the equalization unit 2205.
  • FIG. 24 is a schematic diagram showing a configuration of the receiving antenna equalization unit 2301-n.
  • Receiving antenna equalization section 2301-n includes weight multiplication sections 2401-0 to 2401-N r ⁇ 1, weight calculation section 2402, complex conjugate section 2403, negative multiplication section 2404, and combining section 2405.
  • the two signals input from the demapping unit 2104-n are input to the weight multiplication units 2401-0 to 2401-1, respectively.
  • Weight multiplying sections 2401-0 to 2401-1 multiply the signal input from demapping section 2104-n and the signal input from weight calculating section 2402, and perform output.
  • the weight calculation unit 2402 calculates a weight using the input propagation path estimation value.
  • the weight w n, l (k) for the l-th transmitting antenna to be multiplied by the reception spectrum of the n-th receiving antenna at the k-th frequency point is expressed by the following Equation 38.
  • H * n, l (k) represents the complex conjugate of the propagation path gain between the l-th transmitting antenna and the n-th receiving antenna at the k-th frequency point.
  • the weight calculation unit 2402 inputs the weight for the 0th transmission antenna and the weight for the first transmission antenna to the weight multiplication units 2401-0 to 2401-1, respectively.
  • the output of the weight multiplier 2401-0 is input to the synthesizer 2405.
  • the output of the weight multiplication unit 2401-1 is input to the complex conjugate unit 2403.
  • the complex conjugate unit 2403 performs a complex conjugate operation on the input signal and inputs it to the negative multiplication unit 2404.
  • the negative multiplication unit 2404 multiplies the input signal by a negative sign (minus) and outputs the result to the synthesis unit.
  • B (m) it is directly input to the synthesis unit 2304.
  • the synthesizer 2304 synthesizes the signals transmitted from the transmitting antennas by synthesizing the two input signals.
  • the combining unit 2405 performs a combining process on all A (m) and B (m) (0 ⁇ m ⁇ N DFT ⁇ 1), and receives the received antenna combining unit 2302 as an output of the receiving antenna equalizing unit 2301-n. To enter.
  • a (4) and B (3) as an example, signal processing of the reception antenna equalization unit 2301-n will be described.
  • the two signals are combined. Since the spectrum to be extracted now is A (m) instead of B (m), the second signal (output of the complex conjugate unit 2303) is multiplied by minus and combined. That is A (4) after equalization
  • the weight w A (4) multiplied by the weighting unit 2303 in FIG. 23 corresponding to A (4) after equalization in this case is based on Expression 37.
  • the two signals are synthesized. Since the spectrum extracted now is not B (m) but A (m), the second signal is synthesized without being multiplied by minus. That is, B (3) after equalization
  • the weight w B (3) multiplied by the weighting unit 2303 in FIG. 23 corresponding to B (3) in this case is based on Expression 37.
  • the precoding described in the second embodiment is also possible to apply the precoding described in the second embodiment, that is, it is possible to use closed loop transmission diversity such as space-time block coding and closed loop transmission diversity such as precoding together.
  • closed loop transmission diversity such as space-time block coding
  • closed loop transmission diversity such as precoding
  • a computer program for controlling the central processing unit CPU or the like in a built-in microcomputer Information handled by these devices is temporarily stored in the storage device RAM during the processing, stored in various recording device ROMs and magnetic storage devices HDD, read out by the CPU as necessary, and corrected / written. Is done.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • a computer program capable of executing the various functions described in the above-described embodiment relating to the present invention can be stored in a portable recording medium and distributed as an independent product in the market, or the Internet. Or can be distributed to the market by transferring to a server computer connected via a network. In this case, the recording medium and the storage device of the server computer also conflict with the technical scope of the claims of the present invention.
  • the terminals and base stations in the above-described embodiments may be realized as an LSI that is typically a semiconductor integrated circuit.
  • Each functional block of the terminal and the base station may be individually formed as a semiconductor chip, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • the present invention can be used in the fields of mobile radio communication and fixed radio communication using transmission diversity.
  • scheduling unit 511 ... transmission unit 512 ... transmission antenna 9 DESCRIPTION OF SYMBOLS 1 ... Coding part 902 ... Modulation part 903 ... DFT part 904 ... Precoding part 905 ... Spectral cyclic shift part 906 ... Mapping part 907 ... Reference signal multiplexing part 908 ... OFDM signal generation unit 909 ... transmission unit 910 ... transmission antenna 911 ... reception antenna 912 ... reception unit 913 ... control information extraction unit 914 ... allocation information acquisition unit 915 ... -PMI acquisition unit 1601 ... receiving antenna 1602 ... OFDM signal receiving unit 1603 ... reference signal separation unit 1604 ... demapping unit 1605 ... equalization unit 1606 ... IDFT unit 1607 ...

Abstract

There are included a plurality of mapping units to which a plurality of sets of data signal sequences related to the same data signal sequence are input via the respective ones of spectrum cyclic shift units and which place the input data signal sequences on the frequency axis and output the placed data signal sequences as transport frequency spectra; an allocation information acquiring unit that controls, based on allocation information, the plurality of mapping units to arrange the data signal sequences on the frequency axis and to cause the arranged data signal sequences to partially overlap; the spectrum cyclic shift units that shift the input data signal sequences by the cyclic shift amounts under control of a shift amount determining unit, thereby causing the partially overlapping data signals to become the same for output; and a plurality of transmission antennas via which the transport frequency spectra output by the plurality of mapping units are transmitted.

Description

通信システム、通信装置および通信方法COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND COMMUNICATION METHOD
 本発明は、通信システム、通信装置および通信方法に関する。
本願は、2010年6月25日に、日本に出願された特願2010-145691号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a communication system, a communication apparatus, and a communication method.
This application claims priority based on Japanese Patent Application No. 2010-145691 filed in Japan on June 25, 2010, the contents of which are incorporated herein by reference.
 通信システム、特に携帯電話系無線通信システムは、高速・大容量の通信システムとして発展を続けている。3GPP(3rd Generation Partnership Project、第三世代パートナシップ・プロジェクト)の無線通信規格であるLTE(Long Term Evolution、3.9Gの無線アクセス技術)や、LTEの発展形であるLTE-A(LTE-Advanced、LTEの進化版)では、下りリンク(基地局から端末への無線通信回線)の伝送方式として、周波数選択性フェージングに強い耐性を持ち、MIMO(Multiple Input Multiple Output、多入力/多出力)伝送と親和性が高いOFDMA(Orthogonal Frequency Division Multiple Access、直交周波数分割多元接続)が採用されている。一方、上りリンク(端末から基地局への無線通信回線)の伝送方式では、端末のコストや規模が重要である。 Communication systems, especially mobile phone wireless communication systems, continue to develop as high-speed and large-capacity communication systems. LTE (Long Term Evolution, 3.9G radio access technology), a wireless communication standard of 3GPP (3rd Generation Partnership Project), and LTE-A (LTE-Advanced) In the evolution of LTE, as a downlink (wireless communication line from base station to terminal) transmission method, it has strong resistance to frequency selective fading, and MIMO (Multiple-Input-Multiple-Output, Multiple Input / Multiple Output) transmission OFDMA (Orthogonal Frequency Division Multiple Access, orthogonal frequency division multiple access) is used. On the other hand, in the uplink (wireless communication line from the terminal to the base station) transmission method, the cost and scale of the terminal are important.
 しかしながら、OFDMAやMC-CDMA(Multi-Carrier Code Division Multiple Access、マルチキャリア符号分割多元接続)等のマルチキャリア伝送では、端末には、送信信号のPAPR(Peak to Average Power Ratio、ピーク対平均電力比)が高く、線形領域の広い電力増幅器が必要となるため、上りリンクの伝送に向かない。つまり、上りリンクで広いカバレッジ(通信カバー範囲であって、例えば、基地局までの距離)を維持するには、PAPRの低いシングルキャリア伝送が望ましい。LTEにおいても、シングルキャリア伝送であるSC-FDMA(Single Carrier Frequency Division Multiple Access、単一波周波数分割多元接続。DFT-S-OFDMとも称される。)が上りリンクに採用されている。 However, in multi-carrier transmission such as OFDMA and MC-CDMA (Multi-Carrier Code Division Multiple Access), the terminal receives the PAPR (Peak to Average Power Ratio), peak-to-average power ratio of the transmission signal. ) Is high and requires a power amplifier with a wide linear region, and is not suitable for uplink transmission. That is, single carrier transmission with a low PAPR is desirable in order to maintain wide coverage in the uplink (communication coverage range, for example, distance to the base station). Also in LTE, SC-FDMA (Single Carrier Frequency Division Multiple Access, single-wave frequency division multiple access, also called DFT-S-OFDM), which is single carrier transmission, is employed for the uplink.
 また、広いカバレッジを達成する方法に、送信アンテナダイバーシチ(「送信ダイバーシチ」と言うことがある。)がある。送信ダイバーシチでは、例えば、上りリンクを考えて、送信装置(この場合は、端末の送信部分を言う。)が持つ複数のアンテナからそれぞれ異なった信号処理を施した信号を送信し、受信装置(この場合は、基地局の受信部分を言う。)の受信アンテナで受信することで、送信アンテナダイバーシチ利得を得ることができる。送信ダイバーシチは、送信装置が受信装置との間の伝搬路の伝搬路情報を用いずに送信を行う開ループ送信ダイバーシチと、送信装置が受信装置との間の伝搬路の伝搬路情報を基に送信処理を行う閉ループ送信ダイバーシチに大別される。 Further, there is a transmission antenna diversity (sometimes referred to as “transmission diversity”) as a method for achieving a wide coverage. In transmission diversity, for example, considering uplink, a signal subjected to different signal processing is transmitted from a plurality of antennas of a transmission device (in this case, a transmission part of a terminal), and a reception device (this In this case, the transmission antenna diversity gain can be obtained by receiving with the receiving antenna of the base station. Transmission diversity is based on open-loop transmission diversity in which the transmission device transmits without using the propagation path information of the propagation path between the reception apparatus and the propagation path information of the propagation path between the transmission apparatus and the reception apparatus. It is roughly classified into closed-loop transmission diversity that performs transmission processing.
 開ループ送信ダイバーシチには、時空間ブロック符号化STBC(Space Time Block Coding)、空間周波数ブロック符号化SFBC(Space Frequency Block Coding)、巡回遅延ダイバーシチCDD(Cyclic Delay Diversity)、等がある。閉ループ送信ダイバーシチには、アンテナ選択送信ダイバーシチ、最大比送受信アンテナダイバーシチ、等があり、この閉ループ送信ダイバーシチを用いるLTE-Aの上りリンクでは、非特許文献1に記載のコードブック(符号表)に基づくプリコーディングが採用されることになっている。プリコーディングでは、送信装置の複数の送信アンテナから送信された信号が、受信装置で同相合成されて受信されるように、各送信アンテナの送信信号の位相を回転させて送信することで、受信装置における受信電力を上げることができる。 Open-loop transmission diversity includes space-time block coding STBC (Space Time Block Coding), space frequency block coding SFBC (Space Frequency Block Coding), cyclic delay diversity CDD (Cyclic Delay Diversity), and the like. The closed-loop transmission diversity includes antenna selection transmission diversity, maximum ratio transmission / reception antenna diversity, and the like. In the uplink of LTE-A using this closed-loop transmission diversity, it is based on the code book (code table) described in Non-Patent Document 1. Precoding is to be adopted. In precoding, the transmission device transmits the signal transmitted from each of the transmission antennas by rotating the phase of the transmission signal so that the signals transmitted from the plurality of transmission antennas of the transmission device are received in phase by the reception device. The reception power at can be increased.
 また、無線通信システムにおいて送信装置が持つ複数のアンテナは、送信ダイバーシチによる通信品質改善だけに用いられるのではなく、各アンテナからそれぞれ独立な信号を同一時刻・同一周波数によって送信することで、伝送速度を向上させることができる空間多重伝送としても用いられる。空間多重伝送において、同時送信される信号の数は、ストリーム数、ランク数またはレイヤ数と呼ばれる。各アンテナから送信された信号は、受信装置における空間フィルタリングや最尤検出MLD(Maximum Likelihood Detection)等の信号分離処理によって分離される。また、各送信アンテナで伝搬路特性が良好な周波数は異なるため、送信アンテナ毎に異なる周波数配置(「割当」あるいは「マッピング」と言うことがある。)によって、伝送を行う方法が特許文献1および特許文献2に記載されている。送信アンテナ毎に異なる周波数配置を用いることを許容することで、送信アンテナ毎に利得の高い周波数を選択して通信を行うことができるため、受信品質の高い空間多重伝送を行うことが可能となる。 In addition, a plurality of antennas possessed by a transmission apparatus in a wireless communication system are not only used for improving communication quality by transmission diversity, but by transmitting independent signals from each antenna at the same time and the same frequency, It is also used as spatial multiplexing transmission that can improve In spatial multiplexing transmission, the number of signals transmitted simultaneously is called the number of streams, the number of ranks, or the number of layers. Signals transmitted from each antenna are separated by signal separation processing such as spatial filtering and maximum likelihood detection MLD (Maximum Likelihood Detection) in the receiving apparatus. In addition, since the frequency with good propagation path characteristics is different for each transmission antenna, Patent Document 1 and Japanese Patent Laid-Open No. 2003-26083 and the method for performing transmission with different frequency arrangements (sometimes referred to as “assignment” or “mapping”) for each transmission antenna. It is described in Patent Document 2. By allowing the use of different frequency arrangements for each transmission antenna, it is possible to perform communication by selecting a frequency with a high gain for each transmission antenna, thereby enabling spatial multiplexing transmission with high reception quality. .
特開2008-199598号公報JP 2008-199598 A 国際公開第2009/022709号International Publication No. 2009/022709
 特許文献1および特許文献2では、送信装置の各送信アンテナにおける異なる周波数割当を許容しているが、各送信アンテナからは同一データを送信することはできなかったため、各送信アンテナを送信ダイバーシチによる受信品質向上のために用いることができなかった。本発明の各実施形態は、この点を解決するものである。 In Patent Literature 1 and Patent Literature 2, although different frequency assignments are allowed in each transmission antenna of the transmission device, since the same data could not be transmitted from each transmission antenna, each transmission antenna was received by transmission diversity. It could not be used to improve quality. Each embodiment of the present invention solves this point.
(1)本発明は上述した課題を解決するためになされたもので、本発明の通信装置は、同一のデータ信号系列に係る複数組のデータ信号系列のそれぞれが、少なくとも一部のものはスペクトル巡回シフト部を介して入力される複数のマッピング部であって、入力されるデータ信号系列を周波数軸上に配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、割当情報に基づいて前記複数のマッピング部を制御して前記データ信号系列の周波数軸上での配列をして、その内で一部重複するように制御する割当情報取得部と、前記割当情報取得部の制御に基づいて巡回シフト量を決定する巡回シフト量決定部と、前記スペクトル巡回シフト部は、入力される前記データ信号系列を前記シフト量決定部の制御を受けて前記巡回シフト量だけシフトし、前記一部重複するデータ信号をして同一となるようにして出力することと、前記複数のマッピング部の出力する送信周波数スペクトルを無線周波数にて送出する複数の送信アンテナと、を具備することを特徴とする。
(2)また、本発明の通信装置は、上述の通信装置であって、前記複数組のデータ信号系列は、全てスペクトル巡回シフト部を介して前記マッピング部に入力されることを特徴とする。
(3)また、本発明の通信装置は、上述の通信装置であって、前記データ信号系列のデータ信号の振幅、位相またはその両者を変更して、前記データ信号系列を前記マッピング部へ直接入力するかまたは前記スペクトル巡回シフト部を介して前記マッピング部へ入力するプリコーディング部を具備することを特徴とする。
(4)また、本発明の通信装置は、上述の通信装置であって、前記スペクトル巡回シフト部は、前記複数の送信アンテナの内の特定のものでのスペクトル配置を基準として巡回シフトを行うことを特徴とする。
(5)また、本発明の通信装置は、上述の通信装置であって、前記スペクトル巡回シフト部は、前記送信周波数スペクトルのインデックスを基準として巡回シフトを行うことを特徴とする。
(6)本発明は上述した課題を解決するためになされたもので、本発明の通信システムは、上記(1)または(2)に記載の通信装置と、1または複数の受信アンテナと、前記受信アンテナからの送信周波数スペクトル毎に、干渉のない場合のSIMO重みを用いて等化を行う等化部と、を具備する第2の通信装置と、を具備し、前記第1の通信装置と、前記第2の通信装置との間でデータ信号の送受を行うことを特徴とする。
(7)本発明は上述した課題を解決するためになされたもので、本発明の通信方法は、同一のデータ信号系列に係る複数組のデータ信号系列を用意し、前記複数組のデータ信号系列の各々に対してデータ信号の振幅、位相またはその両者を変更し、前記変更した複数組のデータ信号系列に対して巡回シフトを施し、前記巡回シフトを施した複数組のデータ信号系列を周波数軸上に配置し、その際に前記複数組のデータ信号系列の一部が重複し、かつ、重複したデータ信号が同一であるようにし、前記周波数軸上に配置した複数組の送信周波数スペクトルを複数の送信アンテナから無線周波数にて送出する、ことを特徴とする。
(8)本発明は上述した課題を解決するためになされたもので、本発明の通信方法は、特定シンボルでの複数の第1の送信サブキャリアに複数のデータ信号の系列を配置し、前記シンボルでの複数の第2の送信サブキャリアに前記複数のデータ信号と同一のデータ信号の系列を、前記複数の第1の送信サブキャリアと前記複数の第2の送信サブキャリアとが一部重複するように配置し、前記第1の送信サブキャリアと前記第2の送信サブキャリアとが部分的に一致する複数のサブキャリアの各々においては、同一のデータ信号が配置されるように、前記複数の第1の送信サブキャリアに配置した複数のデータ信号系列、前記複数の第2の送信サブキャリアに配置した複数のデータ信号系列、または両者に対して巡回シフトを施し、次いで、前記第1の送信サブキャリアに配置された複数のデータ信号系列を第1送信アンテナから送信し、前記第2の送信サブキャリアに配置された複数のデータ信号系列を第2送信アンテナから送信する、ことを特徴とする。
(9)また、本発明の通信方法は、上述の通信方法であって、前記第1の送信アンテナと第2の送信アンテナとは単一の送信装置が具備するものであることを特徴とする。
(10)また、本発明の通信方法は、上述の通信方法であって、前記第1の送信アンテナは1つの送信装置が具備し、前記第2の送信アンテナは別の送信装置が具備するものであることを特徴とする。
(11)また、本発明の通信方法は、上述の通信方法であって、前記複数のデータ信号には振幅、位相またはその両者を変更するプリコーディングが施されていることを特徴とする。
(12)本発明は上述した課題を解決するためになされたもので、本発明の通信装置は、同一のデータ信号系列に係る複数組のデータ信号系列を周波数軸上に配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、割当情報に基づいて前記複数のマッピング部を制御して前記データ信号系列の周波数軸上での配列をして、同一、離隔または一部重複するように制御する割当情報取得部と、前記複数のマッピング部の出力する送信周波数スペクトルを無線周波数にて送出する複数の送信アンテナと、を具備することを特徴とする。
(13)本発明は上述した課題を解決するためになされたもので、本発明の通信装置は、1または複数の受信アンテナと、前記受信アンテナからの送信周波数スペクトル毎に、干渉のない場合のSIMO重み、および干渉のある場合のMIMO重みを用いて等化を行う等化部と、を具備する。
(14)本発明は上述した課題を解決するためになされたもので、本発明の通信システムは、上記(12)に記載の第1の通信装置と、上記(13)に記載の第2の通信装置とを具備し、前記第1の通信装置と前記第2の通信装置との間でデータ信号の送受を行うことを特徴とする。
(15)本発明は上述した課題を解決するためになされたもので、本発明の通信方法は、同一のデータ信号系列に係る複数組のデータ信号系列を用意し、前記複数組のデータ信号系列を周波数軸上に配置し、その際に前記複数組のデータ信号系列をして、同一、離隔または一部重複するようにし、前記周波数軸上に配置した複数組の送信周波数スペクトルを複数の送信アンテナから無線周波数にて送出する、ことを特徴とする。
(16)本発明は上述した課題を解決するためになされたもので、本発明の通信方法は、1または複数の受信アンテナから複数の送信周波数スペクトルを受信し、前記送信周波数スペクトル毎に、干渉のない場合はその場合の重みを用い、干渉のある場合はその場合の重みを用いて等化を行って前記送信周波数スペクトルの復元を行う、ことを特徴とする。
(17)本発明は上述した課題を解決するためになされたもので、本発明の通信装置は、複数組のデータ信号系列に対して時空間ブロック符号化、空間周波数ブロック符号化、循環遅延ダイバーシチ等の開ループダイバーシチに属する符号化を適用する送信ダイバーシチ部と、前記送信ダイバーシチ部の出力する複数のデータ信号系列を巡回シフトする複数のスペクトル巡回シフト部と、前記複数のスペクトル巡回シフト部の出力である複数のデータ信号系列を周波数軸上に、一部重複するように配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、前記複数のマッピング部の出力する送信周波数スペクトルを隣接する2つの時間において順次に無線周波数にて送出する複数の送信アンテナと、を具備することを特徴とする。
(18)また、本発明の通信装置は、上述の通信装置であって、前記送信ダイバーシチ部の出力する前記複数組のデータ信号系列は、第1のデータ信号系列と、第2のデータ信号系列であって、その信号は前記第1の信号系列の信号の共役複素数である第2の信号系列と、第1のデータ信号系列とは異なる第3のデータ信号系列と、第4のデータ信号系列であって、その信号は前記第3のデータ信号系列の信号の共役複素数に負号を乗算したものである第4のデータ信号系列と、から成ることを特徴とする。
(19)本発明は上述した課題を解決するためになされたもので、本発明の通信装置は、複数の受信アンテナと、前記受信アンテナからの送信周波数スペクトル毎に、等化を行う等化部であって、等化に用いる重みを算出する重み算出部と、選択的に共役複素演算を行う複素共役部と、選択的に負号乗算を行う負号乗算部と、を具備する等化部と、を具備することを特徴とする。
(1) The present invention has been made to solve the above-described problems, and the communication apparatus according to the present invention includes a plurality of data signal sequences related to the same data signal sequence, at least a part of which is a spectrum. A plurality of mapping units that are input via a cyclic shift unit, wherein the input data signal sequence is arranged on a frequency axis, and a plurality of mapping units that output the arranged data signal sequence as a transmission frequency spectrum; An allocation information acquisition unit that controls the plurality of mapping units based on allocation information to arrange the data signal sequence on the frequency axis and controls the data signal sequences so as to partially overlap with each other, and the allocation information acquisition A cyclic shift amount determining unit that determines a cyclic shift amount based on the control of a unit, and the spectrum cyclic shift unit, the input data signal sequence of the shift amount determining unit Receiving the control, shifting the cyclic shift amount, outputting the partially overlapped data signals so as to be the same, and transmitting the transmission frequency spectrum output from the plurality of mapping units at a radio frequency A plurality of transmitting antennas.
(2) Moreover, the communication apparatus of the present invention is the communication apparatus described above, wherein the plurality of sets of data signal sequences are all input to the mapping unit via a spectrum cyclic shift unit.
(3) The communication device according to the present invention is the communication device described above, wherein the data signal sequence is directly input to the mapping unit by changing the amplitude and / or phase of the data signal of the data signal sequence. Or a precoding unit that inputs to the mapping unit via the spectral cyclic shift unit.
(4) Moreover, the communication apparatus of this invention is the above-mentioned communication apparatus, Comprising: The said spectrum cyclic shift part performs cyclic shift on the basis of the spectrum arrangement | positioning in the specific thing of these transmission antennas. It is characterized by.
(5) Moreover, the communication apparatus of this invention is the above-mentioned communication apparatus, Comprising: The said spectrum cyclic shift part performs cyclic shift on the basis of the index of the said transmission frequency spectrum, It is characterized by the above-mentioned.
(6) The present invention has been made to solve the above-described problems, and a communication system according to the present invention includes the communication device according to (1) or (2), one or more receiving antennas, An equalization unit that performs equalization using SIMO weights in the case where there is no interference for each transmission frequency spectrum from the receiving antenna, and a second communication device comprising: A data signal is transmitted / received to / from the second communication device.
(7) The present invention has been made to solve the above-described problems, and the communication method of the present invention provides a plurality of sets of data signal sequences related to the same data signal sequence, and the plurality of sets of data signal sequences. Each of the data signals is changed in amplitude, phase, or both, and the plurality of changed data signal sequences are subjected to cyclic shift, and the plurality of sets of data signal sequences subjected to the cyclic shift are converted into frequency axes. A plurality of sets of transmission frequency spectrums arranged on the frequency axis in such a manner that a part of the plurality of sets of data signal sequences overlaps and the overlapping data signals are the same. It transmits by the radio frequency from the transmission antenna of this.
(8) The present invention has been made to solve the above-described problem. In the communication method of the present invention, a plurality of data signal sequences are arranged on a plurality of first transmission subcarriers in a specific symbol, A sequence of data signals identical to the plurality of data signals in a plurality of second transmission subcarriers in a symbol, and the plurality of first transmission subcarriers and the plurality of second transmission subcarriers partially overlap The plurality of subcarriers so that the same data signal is arranged in each of a plurality of subcarriers in which the first transmission subcarrier and the second transmission subcarrier partially coincide with each other. A plurality of data signal sequences arranged on the first transmission subcarrier, a plurality of data signal sequences arranged on the plurality of second transmission subcarriers, or both are cyclically shifted, and then Transmitting a plurality of data signal sequences arranged on the first transmission subcarrier from the first transmission antenna, and transmitting a plurality of data signal sequences arranged on the second transmission subcarrier from the second transmission antenna; It is characterized by.
(9) The communication method of the present invention is the communication method described above, wherein the first transmission antenna and the second transmission antenna are provided in a single transmission device. .
(10) The communication method of the present invention is the communication method described above, wherein the first transmission antenna is provided in one transmission device, and the second transmission antenna is provided in another transmission device. It is characterized by being.
(11) The communication method of the present invention is the communication method described above, wherein the plurality of data signals are subjected to precoding for changing amplitude, phase, or both.
(12) The present invention has been made to solve the above-described problem, and the communication apparatus of the present invention has arranged a plurality of data signal sequences related to the same data signal sequence on the frequency axis, and arranged the same. A plurality of mapping units for outputting a data signal sequence as a transmission frequency spectrum, and controlling the plurality of mapping units based on allocation information to arrange the data signal sequences on the frequency axis so that they are the same, separated, or one An allocation information acquisition unit that performs control so as to overlap each other, and a plurality of transmission antennas that transmit transmission frequency spectra output from the plurality of mapping units at a radio frequency are provided.
(13) The present invention has been made to solve the above-described problems, and the communication device according to the present invention has a configuration in which there is no interference for one or a plurality of reception antennas and for each transmission frequency spectrum from the reception antennas. And an equalization unit that performs equalization using the MIMO weight and the MIMO weight when there is interference.
(14) The present invention has been made to solve the above-described problems, and the communication system of the present invention includes the first communication device described in (12) above and the second communication device described in (13) above. And a communication device, wherein data signals are transmitted and received between the first communication device and the second communication device.
(15) The present invention has been made to solve the above-described problems. The communication method of the present invention prepares a plurality of data signal sequences related to the same data signal sequence, and the plurality of data signal sequences. Are arranged on the frequency axis, and at that time, the plurality of sets of data signal sequences are made to be the same, separated or partially overlapped, and a plurality of sets of transmission frequency spectra arranged on the frequency axis are transmitted a plurality of times. It transmits by the radio frequency from an antenna.
(16) The present invention has been made to solve the above-described problems, and the communication method of the present invention receives a plurality of transmission frequency spectra from one or a plurality of reception antennas, and performs interference for each transmission frequency spectrum. If there is no interference, the weight in that case is used, and if there is interference, the weight in that case is used for equalization to restore the transmission frequency spectrum.
(17) The present invention has been made to solve the above-described problem, and the communication apparatus of the present invention is capable of space-time block coding, space-frequency block coding, cyclic delay diversity for a plurality of sets of data signal sequences. A transmission diversity unit that applies encoding belonging to open loop diversity, a plurality of spectral cyclic shift units that cyclically shift a plurality of data signal sequences output from the transmission diversity unit, and an output of the plurality of spectral cyclic shift units A plurality of data signal sequences arranged on the frequency axis so as to partially overlap, a plurality of mapping units that output the arranged data signal sequences as a transmission frequency spectrum, and a transmission output from the plurality of mapping units A plurality of transmit antennas that sequentially transmit the frequency spectrum at radio frequencies in two adjacent times; Characterized by including the.
(18) Moreover, the communication apparatus of the present invention is the communication apparatus described above, wherein the plurality of sets of data signal sequences output from the transmission diversity unit are a first data signal sequence and a second data signal sequence. The signal is a second signal sequence that is a conjugate complex number of the signal of the first signal sequence, a third data signal sequence different from the first data signal sequence, and a fourth data signal sequence. The signal is composed of a fourth data signal sequence obtained by multiplying a conjugate complex number of the signal of the third data signal sequence by a negative sign.
(19) The present invention has been made to solve the above-described problems, and a communication apparatus according to the present invention includes a plurality of reception antennas and an equalization unit that performs equalization for each transmission frequency spectrum from the reception antennas. An equalization unit comprising: a weight calculation unit that calculates weights used for equalization; a complex conjugate unit that selectively performs conjugate complex operations; and a negative multiplication unit that selectively performs negative multiplication. It is characterized by comprising.
 本発明によれば、通信システム、通信装置および通信方法において、受信品質の高い空間伝送を行うことができる。 According to the present invention, it is possible to perform spatial transmission with high reception quality in a communication system, a communication apparatus, and a communication method.
本発明の送信ダイバーシチを行う通信システムの概略図である。It is the schematic of the communication system which performs the transmission diversity of this invention. 第1の実施形態における端末の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal in 1st Embodiment. 同実施形態における各送信アンテナでの周波数割当が同一の場合の一例を示す図である。It is a figure which shows an example in case the frequency allocation in each transmission antenna in the same embodiment is the same. 同実施形態における各送信アンテナでの周波数割当が離隔する場合の別の例を示す図である。It is a figure which shows another example in case the frequency allocation in each transmission antenna in the same embodiment leaves | separates. 同実施形態における各送信アンテナでの周波数割当が一部のみ重複する場合のさらに別の例を示す図である。It is a figure which shows another example in case the frequency allocation in each transmission antenna in the embodiment overlaps only partly. 同実施形態における送信フレームの一例を示す図である。It is a figure which shows an example of the transmission frame in the embodiment. 同実施形態における基地局の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station in the same embodiment. 同実施形態における等化部の概略ブロック図である。It is a schematic block diagram of the equalization part in the embodiment. 同実施形態における周波数割当の他の例を示す図である。It is a figure which shows the other example of the frequency allocation in the same embodiment. 第2の実施形態における、2つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト前の例を示す概念図である。It is a conceptual diagram which shows the example before cyclic shift in case frequency allocation with two transmission antennas overlaps partially in 2nd Embodiment. 第2の実施形態における、2つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト後の例を示す概念図である。It is a conceptual diagram which shows the example after cyclic shift in case frequency allocation with two transmission antennas overlaps in 2nd Embodiment partially. 同実施形態における端末の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal in the same embodiment. 同実施形態におけるスペクトル巡回シフト部の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the spectrum cyclic shift part in the embodiment. 同実施形態におけるスペクトル巡回シフト部の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the spectrum cyclic shift part in the embodiment. 同実施形態における、2つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト前の具体例を示す図である。It is a figure which shows the specific example before cyclic shift in case the frequency allocation by two transmission antennas overlaps partially in the same embodiment. 同実施形態における、2つの送信アンテナでの周波数割当が一部重複する場合の重複部分の割当の具体例を示す図である。It is a figure which shows the specific example of allocation of the overlap part in case the frequency allocation by two transmission antennas overlaps in the embodiment partially. 同実施形態における、2つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト後の具体例を示す図である。It is a figure which shows the specific example after a cyclic shift in case the frequency allocation in two transmission antennas overlaps in the same embodiment partially. 同実施形態における、5つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト前の割当の具体例を示す図である。It is a figure which shows the specific example of the allocation before cyclic shift in case the frequency allocation by five transmission antennas overlaps partially in the same embodiment. 同実施形態における、5つの送信アンテナでの周波数割当が一部重複する場合の巡回シフト後の割当の具体例を示す図である。It is a figure which shows the specific example of the allocation after cyclic shift in case the frequency allocation by five transmission antennas overlaps partially in the same embodiment. 同実施形態における端末の変形例の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the modification of the terminal in the embodiment. 同実施形態における巡回シフト量決定部の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the cyclic shift amount determination part in the embodiment. 同実施形態における基地局の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station in the same embodiment. 同実施形態における等化部の概略ブロック図である。It is a schematic block diagram of the equalization part in the embodiment. 第3の実施形態における周波数割当の対をなす一方の一例を示す図である。It is a figure which shows an example of one side which makes the pair of frequency allocation in 3rd Embodiment. 同実施形態における、周波数割当の対をなす他方の一例を示す巡回シフト前の図である。It is a figure before cyclic shift which shows an example of the other which makes the pair of frequency allocation in the same embodiment. 同実施形態における、周波数割当の対をなす他方の一例であって重複部分の割当を説明する図である。It is an example of the other which makes the pair of frequency allocation in the same embodiment, and is a figure explaining allocation of the overlapping part. 同実施形態における、周波数割当の対をなす他方の一例を示す巡回シフト後の図である。It is a figure after cyclic shift which shows an example of the other which makes the pair of frequency allocation in the same embodiment. 同実施形態における端末の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal in the same embodiment. 同実施形態における巡回シフト量決定部の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the cyclic shift amount determination part in the embodiment. 同実施形態に係る基地局の構成を示す概略ブロック図であるFIG. 2 is a schematic block diagram showing a configuration of a base station according to the embodiment 同実施形態における等化部の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the equalization part in the embodiment. 同実施形態における受信アンテナ等化部の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the receiving antenna equalization part in the embodiment.
 図1は、送信ダイバーシチを行う通信システムの概略図である。
 図1の通信システムは、複数の端末101-1、・・・、101-nおよび1つの基地局102を備える。図1では、図面を見易くするために、2つの端末のみを示す。なお、端末101-1、・・・、101-nのことを総称して、端末101と言う。
 端末101は、複数本(N本)の送信アンテナ#0~#N-1を備え、基地局102は、1本または複数本(N本)の受信アンテナ#0~#N-1を備える。
FIG. 1 is a schematic diagram of a communication system that performs transmission diversity.
1 includes a plurality of terminals 101-1,..., 101-n and one base station. In FIG. 1, only two terminals are shown for ease of viewing the drawing. The terminals 101-1,..., 101-n are collectively referred to as the terminal 101.
The terminal 101 includes multiple (N t ) transmission antennas # 0 to #N t −1, and the base station 102 includes one or multiple (N r ) reception antennas # 0 to #N r −. 1 is provided.
 以下の本発明の実施形態の説明では、端末101から基地局102への上りリンクを用いたデータの、送信ダイバーシチによる送信について説明する。その際に、端末101のことを「送信装置」あるいは「第1の通信装置」と言い、基地局102のことを「受信装置」あるいは「第2の通信装置」と言うことがある。 In the following description of the embodiment of the present invention, transmission by transmission diversity of data using the uplink from the terminal 101 to the base station 102 will be described. In this case, the terminal 101 may be referred to as a “transmitting device” or “first communication device”, and the base station 102 may be referred to as a “receiving device” or “second communication device”.
 なお、以下の説明では、すべての送信アンテナから同一のスペクトルを送信する伝送(この伝送のことを「ランク数1」の伝送と言う。)について説明を行うが、送信アンテナ数よりも低いランク数の伝送であれば、ランク数が2またはそれ以上であってもよい。また、複数アンテナを持つ1つの端末101が上り回線を用いて通信を行う場合について説明を行うが、同一周波数で複数の端末が同時接続を行うMU-MIMO(Multi-User MIMO、マルチユーザ・マイモ)の場合であってもよく、その場合は公知の周波数割当および信号分離処理を併用する。また、各実施形態ではシングルキャリア伝送を例に説明を行うが、OFDMやMC-CDMA等のマルチキャリア伝送であってもよい。上りリンク(端末101から基地局102への無線通信回線)での伝送を一例として説明を行うが、下りリンク(基地局102から端末101への無線通信回線)での伝送であってもよい。 In the following description, transmission for transmitting the same spectrum from all transmitting antennas (this transmission is referred to as “rank number 1 transmission”) will be described, but the number of ranks lower than the number of transmitting antennas. The number of ranks may be two or more. Also, a case where one terminal 101 having a plurality of antennas performs communication using an uplink will be described. MU-MIMO (Multi-User-MIMO, multi-user mimo) in which a plurality of terminals simultaneously connect at the same frequency. In this case, known frequency allocation and signal separation processing are used in combination. In each embodiment, single carrier transmission is described as an example. However, multicarrier transmission such as OFDM or MC-CDMA may be used. Although transmission on the uplink (wireless communication line from the terminal 101 to the base station 102) will be described as an example, transmission on the downlink (wireless communication line from the base station 102 to the terminal 101) may be used.
<第1の実施形態>
 図2は、本実施形態の端末101の構成を示す概略ブロック図である。
 端末101は、符号化部201、変調部202、DFT部203、コピー部204、マッピング部205-0~205-N-1、参照信号多重部206-0~206-N-1、OFDM信号生成部207-0~207-N-1、送信部208-0~208-N-1、送信アンテナ209-0~209-N-1、受信アンテナ210、受信部211、制御情報抽出部212、割当情報取得部213を具備する。
<First Embodiment>
FIG. 2 is a schematic block diagram showing the configuration of the terminal 101 of this embodiment.
The terminal 101 includes an encoding unit 201, a modulation unit 202, a DFT unit 203, a copy unit 204, mapping units 205-0 to 205-N t -1, reference signal multiplexing units 206-0 to 206-N t -1, OFDM Signal generators 207-0 to 207-N t -1, transmitters 208-0 to 208-N t -1, transmitter antennas 209-0 to 209-N t -1, receiver antenna 210, receiver 211, control information An extraction unit 212 and an allocation information acquisition unit 213 are provided.
 以下では、端末101の送信アンテナ209-0~209-N-1を用いて、通信環境により同一、離隔または一部重複の周波数割当によって同一のデータをシングルキャリア伝送により送信する場合について説明する。
 なお、端末101が具備する他の公知の構成については、説明を分かり易くするために図2おいて省略する。この点は他の実施形態についても同様である。
In the following, a case will be described in which the same data is transmitted by single carrier transmission with the same, separated, or partially overlapping frequency allocation depending on the communication environment using the transmission antennas 209-0 to 209-N t −1 of the terminal 101. .
Note that other known configurations of the terminal 101 are omitted in FIG. 2 for easy understanding. This also applies to the other embodiments.
 音声データ、文字データ、画像データなどのデータのビット系列は、符号化部201において誤り訂正符号に符号化され、その後に変調部202においてQPSK(Quadrature Phase Shift Keying、4相位相変調)や16QAM(Quadrature Amplitude Modulation、16値直交振幅変調)等の変調が施されて、変調シンボルへと変換される。変調部202の出力は、NDFT個のシンボル毎にDFT部203に入力され、NDFTポイント離散フーリエ変換(Discrete Fourier Transform、DFT)によって時間領域信号から周波数領域信号S(m)(0≦m≦NDFT-1)に変換される。以後、このDFT部203の出力信号S(m)のデータ信号系列のことを「第1の組の送信周波数スペクトル」と言うことがある。 A bit sequence of data such as voice data, character data, and image data is encoded into an error correction code in the encoding unit 201, and then, in the modulation unit 202, QPSK (Quadrature Phase Shift Keying), 16QAM ( Modulation such as quadrature amplitude modulation (16-value quadrature amplitude modulation) is performed and converted into modulation symbols. The output of the modulation unit 202 is input to the DFT unit 203 every N DFT symbols, and is converted from the time domain signal to the frequency domain signal S (m) (0 ≦ m) by N DFT point discrete Fourier transform (DFT). ≦ N DFT −1). Hereinafter, the data signal sequence of the output signal S (m) of the DFT unit 203 may be referred to as a “first set of transmission frequency spectrums”.
 DFT部203の出力S(m)は、コピー部204に入力される。コピー部204では、入力された信号S(m)を送信アンテナ本数分(N個分)コピーし、このコピーをマッピング部205-0~205-N-1に入力する。
 各マッピング部205-0~205-N-1では、NFFTポイントの周波数ポイント(以下で、「サブキャリア」と言うことがある。)のうちの所定のNDFT個の周波数ポイントへの送信周波数スペクトルの割当が行われる。ただし、NDFT<NFFTである。また、NFFT個の周波数ポイントのスペクトルのことを「第2の組の送信周波数スペクトル」と言うことがある。
The output S (m) of the DFT unit 203 is input to the copy unit 204. The copy unit 204 copies the input signal S (m) by the number of transmission antennas (N t ), and inputs this copy to the mapping units 205-0 to 205-N t -1.
In each mapping unit 205-0 to 205-N t -1, transmission to predetermined N DFT frequency points out of N FFT point frequency points (hereinafter sometimes referred to as “subcarriers”). Frequency spectrum allocation is performed. However, N DFT <N FFT . The spectrum of N FFT frequency points may be referred to as a “second set of transmission frequency spectra”.
 次に、このマッピング部での割当について説明を行う。
 受信部211では、受信アンテナ210により基地局102から送信される信号を受信し、搬送波周波数からベースバンド信号へのダウンコンバージョン、A/D変換、直交復調、高速フーリエ変換の後に送信信号の復元が行われる。この信号を制御情報抽出部212に入力する。制御情報抽出部212は、受信した信号の中から制御情報を抽出し、割当情報取得部213に入力する。
Next, allocation in this mapping unit will be described.
In the reception unit 211, a signal transmitted from the base station 102 is received by the reception antenna 210, and the transmission signal is restored after down-conversion from the carrier frequency to the baseband signal, A / D conversion, orthogonal demodulation, and fast Fourier transform. Done. This signal is input to the control information extraction unit 212. The control information extraction unit 212 extracts control information from the received signal and inputs the control information to the allocation information acquisition unit 213.
 割当情報取得部213に入力される制御情報には、送信アンテナ209-0~209-N-1毎の周波数割当情報が含まれている。割当情報取得部213は、制御情報の中から送信アンテナ209-0~209-N-1毎の割当情報を抽出し、対応するマッピング部205-0~205-N-1に割当情報を入力して、マッピング部205-0~205-N-1を制御する。従って、各送信アンテナ209-0~209-N-1に対して、同一、離隔または一部重複する周波数ポイントへと、第1の組の送信周波数スペクトルの割当が行われることになる。 The control information input to the allocation information acquisition unit 213 includes frequency allocation information for each of the transmission antennas 209-0 to 209-N t -1. The allocation information acquisition unit 213 extracts the allocation information for each of the transmission antennas 209-0 to 209-N t −1 from the control information, and assigns the allocation information to the corresponding mapping units 205-0 to 205-N t −1. Then, the mapping units 205-0 to 205-N t −1 are controlled. Therefore, the first set of transmission frequency spectrums is assigned to the same, separated, or partially overlapping frequency points for each of the transmission antennas 209-0 to 209-N t -1.
 図3A~図3Cに周波数割当の一例を示す。本実施形態での各送信アンテナ209-0~209-N-1に対する周波数割当は、端末101と基地局102との間の伝搬路状態(通信環境)に応じて、図3A~図3Cの3つのパターンに大別される。 An example of frequency allocation is shown in FIGS. 3A to 3C. The frequency allocation for each of the transmission antennas 209-0 to 209-N t −1 in the present embodiment depends on the propagation path state (communication environment) between the terminal 101 and the base station 102, as shown in FIG. 3A to FIG. 3C. There are three main patterns.
 図3Aは、説明を分かり易くするために、端末101の送信アンテナが2つの場合について(N=2に相当し、この場合の送信アンテナの符号を#0、#1として示す。
)、各送信アンテナ#0、#1で同一の周波数割当が行われた場合を示す。すなわち、第1の組の送信周波数スペクトルS(0)~S(5)が、各送信アンテナ#0、#1で、インデックス4~9の周波数ポイントへ連続的に割り当てられた場合である。なお、周波数ポイントのインデックスのことを周波数インデックスと言うことがある。図3Bは、各送信アンテナ#0、#1で離隔する周波数割当が行われる場合である。すなわち、第1の組の送信周波数スペクトルS(0)~S(5)が、送信アンテナ#0で、インデックス1~6の周波数ポイントへ連続的に割り当てられ、また、送信周波数スペクトルS(0)~S(5)が、送信アンテナ#1に対して、周波数インデックス8~13へ連続的に割り当てられた場合である。
FIG. 3A shows the case where there are two transmission antennas of the terminal 101 (N t = 2), and the codes of the transmission antennas in this case are shown as # 0 and # 1 for easy understanding.
) Shows a case where the same frequency allocation is performed in each of the transmission antennas # 0 and # 1. That is, the first set of transmission frequency spectrums S (0) to S (5) is continuously assigned to the frequency points of indexes 4 to 9 by the transmission antennas # 0 and # 1. In addition, the index of a frequency point may be called a frequency index. FIG. 3B shows a case where frequency allocation is performed by using separate transmission antennas # 0 and # 1. That is, the first set of transmission frequency spectrums S (0) to S (5) are continuously assigned to the frequency points of indexes 1 to 6 by transmission antenna # 0, and the transmission frequency spectrum S (0). In this case, S (5) is continuously assigned to the frequency indexes 8 to 13 with respect to the transmission antenna # 1.
 図3Cは、送信アンテナ#0、#1での周波数割当が一部重複する場合である。すなわち、送信周波数スペクトルS(0)~S(5)が、送信アンテナ#0に対して、周波数インデックス1~6へ連続的に割り当てられ、また、送信周波数スペクトルS(0)~S(5)が、送信アンテナ#1に対して、周波数インデックス5~10へ連続的に割り当てられて、結果として、周波数インデックス5、6では、周波数割当が同一となる場合である。なお、図3A~図3Cにおいて、周波数インデックス0~14のスペクトル全体で、割り当て後の第2の組の送信周波数スペクトルを構成する。 FIG. 3C shows a case where the frequency assignments at the transmission antennas # 0 and # 1 partially overlap. That is, transmission frequency spectrums S (0) to S (5) are continuously assigned to frequency indexes 1 to 6 for transmission antenna # 0, and transmission frequency spectrums S (0) to S (5) However, the frequency index 5 to 10 is continuously allocated to the transmission antenna # 1, and as a result, the frequency allocation is the same for the frequency indexes 5 and 6. In FIGS. 3A to 3C, the second set of transmission frequency spectrums after allocation is configured by the whole spectrum of frequency indexes 0 to 14.
 なお、図3A~図3Cでは、第1の組の送信周波数スペクトルを複数の周波数ポイントへ連続的に割り当てる例を示しているが、離散的に割り当ててもよい。 3A to 3C show an example in which the first set of transmission frequency spectra is continuously assigned to a plurality of frequency points, but may be assigned discretely.
 このように、本実施形態では、各送信アンテナ209-0~209-N-1において、複数の周波数ポイントへ第1の組の送信周波数スペクトルを自由に配置することができるため、伝搬路状態によって柔軟な周波数割当が可能となる。なお、マッピング部において、スペクトルの割当が行われなかった周波数ポイントには、ゼロが割り当てられる。 As described above, in this embodiment, the first set of transmission frequency spectra can be freely arranged at a plurality of frequency points in each of the transmission antennas 209-0 to 209-N t −1. Allows flexible frequency allocation. Note that the mapping unit assigns zero to the frequency points to which no spectrum is assigned.
 各マッピング部205-0~205-N-1のNFFT個のポイント出力は、それぞれ参照信号多重部206-0~206-N-1に入力される。
 参照信号多重部206-0~206-N-1では、基地局102において、端末101が通信に用いる周波数ポイントを決定するために用いられるサウンディング参照信号SRS(Sounding Reference Signal)や、基地局102で受信信号の伝搬路補償を行うために用いられる復調用参照信号DMRS(DeModulation Reference Signal)の多重化が行われ、送信フレームが最終的に構成される。
N FFT point outputs of the mapping units 205-0 to 205-N t −1 are respectively input to reference signal multiplexing units 206-0 to 206-N t −1.
In the reference signal multiplexing units 206-0 to 206-N t -1, the base station 102 uses a sounding reference signal SRS (Sounding Reference Signal) used for determining a frequency point used by the terminal 101 for communication, Then, the demodulation reference signal DMRS (DeModulation Reference Signal) used for compensating the propagation path of the received signal is multiplexed, and the transmission frame is finally constructed.
 送信アンテナ209-0~209-N-1での各経路における送信フレームの一例を、図4に示す。この送信フレームは、送信アンテナ209-0~209-N-1で共通のものである。
 縦軸は、時間軸でのSC-FDMAシンボルのインデックスを表わし、横軸は周波数軸での周波数ポイント(「サブキャリア」と言うことがある。また、これれは「リソースエレメント」と同じ意味である。)のインデックスを表わす。
 1フレームは第0番目~第13番目の合計14個のSC-FDMAシンボルから構成され、第3および第10番目のSC-FDMAシンボル(黒塗りの四角で示す。)では、データ信号と同じ周波数割当で、復調用参照信号DMRSが送信される。最後の第13番目のSC-FDMAシンボル(網掛けの四角で示す。)では、データ信号あるいはサウンディング参照信号SRSが送信される。どちらを送るかは基地局102から通知される。
 SRSはDMRSとは異なり、データ信号と同じ周波数を用いて送信されるとは限らない。つまり、DMRSは、データスペクトルが送信された帯域における詳細な伝搬路状態を基地局102が把握するために端末101が送信する参照信号であり、これに対して、SRSは、システム帯域における大まかな伝搬路品質を基地局102が把握するために端末101が送信する参照信号である。
FIG. 4 shows an example of a transmission frame in each path with the transmission antennas 209-0 to 209-N t −1. This transmission frame is common to the transmission antennas 209-0 to 209-N t -1.
The vertical axis represents the index of the SC-FDMA symbol on the time axis, and the horizontal axis may be referred to as a frequency point on the frequency axis (sometimes referred to as “subcarrier”. This means the same as “resource element”. Is).
One frame is composed of a total of 14 SC-FDMA symbols from the 0th to the 13th, and the third and tenth SC-FDMA symbols (shown by solid squares) have the same frequency as the data signal. With the allocation, a demodulation reference signal DMRS is transmitted. In the last thirteenth SC-FDMA symbol (indicated by a shaded square), a data signal or a sounding reference signal SRS is transmitted. Which is sent is notified from the base station 102.
Unlike DMRS, SRS is not always transmitted using the same frequency as a data signal. That is, the DMRS is a reference signal transmitted by the terminal 101 so that the base station 102 can grasp the detailed propagation path state in the band in which the data spectrum is transmitted, whereas the SRS is a rough signal in the system band. This is a reference signal transmitted by the terminal 101 so that the base station 102 can grasp the propagation path quality.
 参照信号多重部206-0~206-N-1で生成された送信フレームは、OFDM信号生成部207-0~207-N-1に入力される。 Transmission frame generated by the reference signal multiplexing units 206-0 ~ 206-N t -1 is input to the OFDM signal generating unit 207-0 ~ 207-N t -1.
 OFDM信号生成部207-0~207-N-1では、NFFTポイントの逆高速フーリエ変換IFFT(Inverse Fast Fourier Transform)を適用し、周波数領域信号から時間領域信号への変換を行った後、この変換後のSC-FDMAシンボルに、ガードタイムに相当するサイクリック・プレフィックスCP(Cyclic Prefix)が挿入される。CP挿入後のSC-FDMAシンボルは、次に、送信部208-0~208-N-1へ出力される。
 送信部207-0~207-N-1においては、このシンボルに対して、続いて、D/A(ディジタル-アナログ)変換、直交変調、アナログフィルタリング、ベースバンドから搬送波周波数へのアップコンバージョン等が行われた後、CP挿入後のSC-FDMAシンボルが乗った無線周波数信号は、送信アンテナ209-0~209-N-1から基地局102へ向けて送信される。
The OFDM signal generators 207-0 to 207-N t −1 apply an inverse fast Fourier transform IFFT (Inverse Fast Fourier Transform) of N FFT points and perform conversion from a frequency domain signal to a time domain signal. A cyclic prefix CP (Cyclic Prefix) corresponding to the guard time is inserted into the converted SC-FDMA symbol. The SC-FDMA symbol after CP insertion is then output to transmitting sections 208-0 to 208-N t -1.
In the transmission units 207-0 to 207-N t -1, this symbol is followed by D / A (digital-analog) conversion, quadrature modulation, analog filtering, up-conversion from baseband to carrier frequency, etc. Then, the radio frequency signal carrying the SC-FDMA symbol after CP insertion is transmitted from the transmission antennas 209-0 to 209-N t −1 to the base station 102.
 以上説明したようにして端末101から送信された信号は、無線伝搬路を経由し、基地局102のN本の受信アンテナで受信される。 As described above, the signal transmitted from the terminal 101 is received by the N r reception antennas of the base station 102 via the radio propagation path.
 基地局102での信号処理について、図5を用いて説明を行う。
 図5は、本実施形態の基地局102の構成を示す概略ブロック図である。
 基地局102は、受信アンテナ501-0~501-N-1、OFDM信号受信部502-0~502-N-1、参照信号分離部503-0~503-N-1、デマッピング部504-0~504-N-1、等化部505、IDFT部506、復調部507、復号部508、伝搬路推定部509、スケジューリング部510、送信部511、送信アンテナ512を具備する。
The signal processing in the base station 102 will be described with reference to FIG.
FIG. 5 is a schematic block diagram showing the configuration of the base station 102 of the present embodiment.
Base station 102 may receive antennas 501-0 ~ 501-N r -1, OFDM signal receiving unit 502-0 ~ 502-N r -1, the reference signal separating unit 503-0 ~ 503-N r -1, demapping Sections 504-0 to 504-N r -1, an equalization section 505, an IDFT section 506, a demodulation section 507, a decoding section 508, a propagation path estimation section 509, a scheduling section 510, a transmission section 511, and a transmission antenna 512.
 以下では基地局102の各受信アンテナ501-0~501-N-1を用いて、端末101からシングルキャリア伝送により送信されてきた信号を受信する場合について説明する。
 なお、基地局102が具備する他の公知の構成については、説明を分かり易くするために図5において省略する。この点は他の実施形態についても同様である。
Hereinafter, a case will be described in which a signal transmitted from the terminal 101 by single carrier transmission is received using each of the receiving antennas 501-0 to 501-N r −1 of the base station 102.
Note that other known configurations included in the base station 102 are omitted in FIG. 5 for easy understanding. This also applies to the other embodiments.
 基地局のN本の受信アンテナ501-0~501-N-1で受信された信号は、OFDM信号受信部502-0~502-N-1にそれぞれ入力される。各OFDM信号受信部502-0~502-N-1では、搬送波周波数からベースバンド信号へのダウンコンバージョン、アナログフィルタリング、A/D(アナログ-ディジタル)変換、SC-FDMAシンボル毎にサイクリック・プレフィックスCPの除去を行った後、NFFTポイントの高速フーリエ変換(FFT)を適用し、時間領域信号から周波数領域信号への変換を行い、NFFTポイントのスペクトルを参照信号分離部503-0~503-N-1にそれぞれ入力する。 Signals received by the N r receiving antennas 501-0 to 501-N r −1 of the base station are input to OFDM signal receiving sections 502-0 to 502-N r −1, respectively. Each OFDM signal receiving unit 502-0 ~ 502-N r -1, down conversion, analog filtering from the carrier frequency to a baseband signal, A / D (analog - digital) conversion, cyclic every SC-FDMA symbol After the prefix CP is removed, N FFT point fast Fourier transform (FFT) is applied to convert the time domain signal to the frequency domain signal, and the spectrum of the N FFT point is converted to the reference signal separation unit 503-0˜ 503-N r −1 respectively.
 参照信号分離部503-0~503-N-1では復調用参照信号DMRSやサウンディング参照信号SRSといった参照信号とデータ信号とを分離し、参照信号は伝搬路推定部509に入力し、データ信号はデマッピング部504-0~504-N-1にそれぞれ入力する。
 伝搬路推定部509では入力された復調用参照信号DMRSを用いて、データ信号が送信された帯域における、端末101の各送信アンテナと基地局102の受信アンテナとの間の無線伝搬路(無線伝搬路の伝搬定数の位相および振幅)の推定を行う。得られた伝搬路推定値は、等化部505に入力される。
Reference signal demultiplexing sections 503-0 to 503-N r −1 demultiplex a reference signal such as a demodulation reference signal DMRS and a sounding reference signal SRS and a data signal, and the reference signal is input to a propagation path estimation section 509, where the data signal Are respectively input to the demapping units 504-0 to 504-N r -1.
The propagation path estimation unit 509 uses the input demodulation reference signal DMRS to transmit a wireless propagation path (wireless propagation) between each transmission antenna of the terminal 101 and the reception antenna of the base station 102 in the band in which the data signal is transmitted. Estimate the phase and amplitude of the propagation constant of the road. The obtained propagation path estimation value is input to the equalization unit 505.
 また伝搬路推定部509では、受信したサウンディング参照信号SRSを用いて、データ信号が送信される帯域だけでなくシステム帯域全体における端末101の各送信アンテナ209-0~209-N-1と基地局102の受信アンテナ501-0~501-N-1との伝搬路品質の推定(SRSの振幅値または電力値のみを用いての伝搬路品質の推定)を行う。伝搬路推定部509が推定したシステム帯域全体における伝搬路品質推定値は、スケジューリング部510に入力される。
 スケジューリング部510では、入力された伝搬路品質推定値によって、端末101の送信アンテナ209-0~209-N-1毎の周波数割当を決定する。周波数割当は、端末101の各送信アンテナ209-0~209-N-1で独立に伝搬路品質の高い周波数ポイント(サブキャリア)が選択される。なお、周波数割当は伝搬路品質だけではなく、アンテナ間相関や、他の移動局の周波数割当等を考慮して行ってもよい。
Further, the propagation path estimation unit 509 uses the received sounding reference signal SRS to transmit the transmission antennas 209-0 to 209-N t −1 of the terminal 101 and the base station in the entire system band as well as the band in which the data signal is transmitted. The channel quality of the receiving antennas 501-0 to 501 -N r −1 of the station 102 is estimated (channel quality estimation using only the SRS amplitude value or power value). The channel quality estimation value in the entire system band estimated by the channel estimation unit 509 is input to the scheduling unit 510.
Scheduling section 510 determines frequency allocation for each of transmission antennas 209-0 to 209-N t −1 of terminal 101 based on the input channel quality estimation value. In frequency allocation, frequency points (subcarriers) having high propagation path quality are independently selected by the transmission antennas 209-0 to 209-N t −1 of the terminal 101. Note that frequency allocation may be performed in consideration of not only channel quality but also correlation between antennas, frequency allocation of other mobile stations, and the like.
 例えば前述の図3A、図3B、図3Cでは、それぞれの送信アンテナ#0、#1で最も利得の高い周波数ポイントから6ポイントを選択した例である。送信アンテナ毎に伝搬路利得は異なり、独立に周波数ポイントが選択されるため、図3Bのように各アンテナで離隔した周波数が割り当てられることもあるし、図3Cのように一部のみ重複するように割り当てられることや、図3Aのように各送信アンテナでの周波数割当が同一のこともある。 For example, FIG. 3A, FIG. 3B, and FIG. 3C described above are examples in which 6 points are selected from the frequency points with the highest gain in each of the transmission antennas # 0 and # 1. Since the propagation path gain is different for each transmission antenna and frequency points are selected independently, frequencies separated by each antenna may be assigned as shown in FIG. 3B, or only partially overlap as shown in FIG. 3C. And the frequency allocation at each transmitting antenna may be the same as shown in FIG. 3A.
 図5の参照信号分離部503-0~503-N-1で分離されたデータ信号は、それぞれデマッピング部504-0~504-N-1に入力される。各デマッピング部504-0~504-N-1では、入力されたNFFTポイントの受信スペクトルから、第1の組の送信周波数スペクトルS(m)に関して、送信に用いた周波数ポイントでのデータ信号の受信スペクトルの抽出が行われる。 The data signals separated by the reference signal separation units 503-0 to 503-N r -1 in FIG. 5 are input to the demapping units 504-0 to 504-N r −1, respectively. In each of the demapping units 504-0 to 504-N r -1, the data at the frequency point used for transmission is transmitted with respect to the first set of transmission frequency spectrum S (m) from the received reception spectrum of N FFT points. The reception spectrum of the signal is extracted.
 例えば、図3Bのような周波数割当において、送信周波数スペクトルS(1)を抽出することを考える。端末101の送信アンテナ#0からは第2周波数ポイント(周波数インテックスが2)を、送信アンテナ#1からは第9周波数ポイント(周波数ポイントのインテックスが9)を用いてS(1)の送信が行われる。従って、各デマッピング部504-0~504-N-1(この例では、デマッピング部504-0および504-1)では、第2および第9周波数ポイントのデータ信号を抽出して、次にこれらのデータ信号を等化部505に入力する。
 上記では送信周波数スペクトルS(1)についてのみ説明を行ったが、他の送信周波数スペクトルに関しても同様の処理を行う。つまり、第1の組の送信周波数スペクトルの数がNDFTであり、端末101の送信アンテナ本数がN、さらに、すべてのアンテナで異なる周波数割当が行われる場合、NDFT×N個の値が等化部に入力される。なお、入力される値は割当パターンの数で異なり、すべての送信アンテナで同一の周波数割り当てが行われる場合(図3Aの場合)、NDFT×1個の値が等化部505に入力されることになる。
For example, let us consider extracting the transmission frequency spectrum S (1) in the frequency allocation as shown in FIG. 3B. Transmission of S (1) is performed using the second frequency point (frequency index is 2) from the transmission antenna # 0 of the terminal 101 and the ninth frequency point (frequency index is 9) from the transmission antenna # 1. Is called. Therefore, each demapping unit 504-0 to 504-N r -1 (in this example, demapping units 504-0 and 504-1) extracts the data signals of the second and ninth frequency points, and These data signals are input to the equalization unit 505.
Although only the transmission frequency spectrum S (1) has been described above, the same processing is performed for other transmission frequency spectra. That is, if the number of transmission frequency spectrums of the first set is N DFT , the number of transmission antennas of the terminal 101 is N t , and different frequency allocation is performed for all antennas, N DFT × N t values Is input to the equalization unit. Note that the value to be input differs depending on the number of allocation patterns. When the same frequency allocation is performed for all transmission antennas (in the case of FIG. 3A), NDFT × 1 value is input to the equalization unit 505. It will be.
 また、図3Cのように一部重複した割当の場合も同様で、送信周波数スペクトルS(1)を抽出する場合、第2および第6周波数ポイントのデータ信号を抽出して等化部505に入力する。ただし、第2周波数ポイントは他の端末が第2周波数ポイントを用いてデータ信号の伝送を行わない限り、干渉なく送信周波数スペクトルS(1)を受信できるが、第6周波数ポイントでは送信アンテナ#0から送信される送信周波数スペクトルS(5)が干渉となってしまう。このため、等化部505では、送信周波数スペクトルS(5)による送信周波数スペクトルS(1)への干渉を抑圧する処理が行われる。この点は以下で詳述する。 The same applies to the case of partially overlapping allocation as shown in FIG. 3C. When the transmission frequency spectrum S (1) is extracted, the data signals of the second and sixth frequency points are extracted and input to the equalization unit 505. To do. However, the second frequency point can receive the transmission frequency spectrum S (1) without interference unless another terminal transmits the data signal using the second frequency point. However, at the sixth frequency point, the transmission antenna # 0 The transmission frequency spectrum S (5) transmitted from the terminal becomes interference. For this reason, in the equalization part 505, the process which suppresses the interference with respect to transmission frequency spectrum S (1) by transmission frequency spectrum S (5) is performed. This point will be described in detail below.
 図6は、等化部505の詳細を示すブロック図である。
 等化部505は、結合部601、重み乗算部602、伝搬路行列生成部603、SIMO重み算出部604、MIMO重み算出部605を具備する。
 等化部505に対しては、デマッピング部504-0からNDFT×N個の値が入力される。また同様にして、最後のデマッピング部504-N-1からもNDFT×N個の値が入力される。従って、等化部505に対しては、デマッピング部504-0~504-N-1から合計NDFT×N×N個の値が入力される。
FIG. 6 is a block diagram showing details of the equalization unit 505.
The equalization unit 505 includes a combining unit 601, a weight multiplication unit 602, a channel matrix generation unit 603, a SIMO weight calculation unit 604, and a MIMO weight calculation unit 605.
N DFT × N t values are input to the equalization unit 505 from the demapping unit 504-0. Similarly, N DFT × N t values are also input from the last demapping unit 504 -N r −1. Accordingly, a total of N DFT × N t × N r values are input to the equalization unit 505 from the demapping units 504-0 to 504 -N r −1.
 次に、図3Cの周波数割当の場合(一部重複の場合)において、基地局102の等化部505が行う処理について説明を行う。
 等化部505は、各送信周波数スペクトルS(m)で独立に等化を行う。
Next, processing performed by the equalization unit 505 of the base station 102 in the case of frequency allocation in FIG. 3C (in the case of partial overlap) will be described.
The equalization unit 505 performs equalization independently for each transmission frequency spectrum S (m).
 一例として、送信周波数スペクトルS(1)の等化を行う例について説明を行う。
 基地局102のN本ある受信アンテナの内の第n受信アンテナの第k周波数ポイント(周波数インデックスがk)での受信信号をR(k)とすると、R(2)とR(6)はそれぞれ次の数式1で表わされる。
As an example, an example in which the transmission frequency spectrum S (1) is equalized will be described.
When the k-th frequency point of the n receiving antenna of the N r the base station 102 is the receive antenna (frequency index k) to the received signal at the R n (k), R n and (2) R n ( 6) is expressed by the following formula 1, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Hn,l(k)は、端末101の第l送信アンテナと基地局102の第n受信アンテナの間の第k周波数ポイントにおける伝搬路利得であり、数式1は受信機での雑音や他セルからの干渉等を無視した式となっている。
 送信周波数スペクトルS(1)は、第2周波数ポイントと第6周波数ポイントという2つの周波数ポイントで受信されるため、2倍の受信アンテナ数で受信されると考えることができる。
 そこで等化部505内の結合部601では、受信周波数ポイント毎のスペクトルを結合し、N×1(N行1列)のベクトルRS(1)を生成する。結合部601が重み乗算部602に入力するベクトルRS(1)は、この例の場合、次の数式2で表わされる。
Here, H n, l (k) is a channel gain at the k-th frequency point between the l-th transmitting antenna of the terminal 101 and the n-th receiving antenna of the base station 102, and Equation 1 is noise at the receiver. And the expression that ignores interference from other cells.
Since the transmission frequency spectrum S (1) is received at two frequency points, that is, the second frequency point and the sixth frequency point, it can be considered that the transmission frequency spectrum S (1) is received by twice the number of reception antennas.
Therefore, the combining unit 601 in the equalizing unit 505 combines the spectrum for each reception frequency point to generate a vector R S (1) of N r N t × 1 (N r N t rows and 1 column). In this example, the vector R S (1) input by the combining unit 601 to the weight multiplication unit 602 is expressed by the following Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 さらに上式において端末101の送信アンテナ#0の第2周波数ポイントでは、干渉信号S(5)の伝搬路利得がゼロであったと考えることで、以下のように変形できる。 Further, in the above equation, at the second frequency point of the transmission antenna # 0 of the terminal 101, it can be modified as follows by considering that the propagation path gain of the interference signal S (5) is zero.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図6中の伝搬路行列生成部603では、伝搬路推定部509から入力された伝搬路推定値が数式3のHS(1)の行列を構成するために必要な情報を結合部601から入力される。
 伝搬路行列生成部603では、得られた推定伝搬路行列が行列である場合、すなわち干渉のある場合、HS(1)の推定値をMIMO重み算出部605に入力する。一方、得られた推定伝搬路行列が実際にはベクトル、あるいはスカラである場合、すなわち干渉のない場合、HS(1)の推定値をSIMO重み算出部604に入力する。
 数式3においてHS(1)は2N×2の行列(2N行2列の行列)であるため、HS(1)の推定値はMIMO重み算出部605に入力される。
In the propagation path matrix generation unit 603 in FIG. 6, information necessary for the propagation path estimation value input from the propagation path estimation unit 509 to form the matrix of H S (1) in Expression 3 is input from the combining unit 601. Is done.
The propagation path matrix generation unit 603 inputs the estimated value of H S (1) to the MIMO weight calculation unit 605 when the obtained estimated propagation path matrix is a matrix, that is, when there is interference. On the other hand, when the estimated channel matrix obtained is actually a vector or a scalar, that is, when there is no interference, the estimated value of H S (1) is input to the SIMO weight calculation unit 604.
Since H S (1) in Equation 3 is a 2N r × 2 matrix (2N r rows and 2 columns matrix), the estimated value of H S (1) is input to the MIMO weight calculation unit 605.
 MIMO重み算出部605では、送信周波数スペクトルS(1)の等化を行うために、数式3の受信スペクトルベクトルに乗算するMIMO重みベクトルwS(1)の算出を行う。重みベクトルwS(1)は次の数式4で表わされる。 The MIMO weight calculation unit 605 calculates a MIMO weight vector w S (1) by which the received spectrum vector of Equation 3 is multiplied in order to equalize the transmission frequency spectrum S (1). The weight vector w S (1) is expressed by the following Equation 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これは、数式4の右辺を算出し、S(1)の等化に必要な1×2Nの行ベクトルwS(1)を抽出することを意味する。ここでσは平均雑音電力、Iは数式3において信号ベクトルは2×1のベクトルであるため2×2の単位行列であり、重みwを用いてS(5)の等化を行うことができるが、S(1)の等化の際には使用しない。また、Tは行列(ベクトル)の転置処理、Hはエルミート転置処理、-1は逆行列演算処理を表わす。 This means that the right side of Equation 4 is calculated, and a 1 × 2N r row vector w S (1) necessary for equalization of S (1) is extracted. Here, σ 2 is an average noise power, I is a 2 × 1 unit matrix in Equation 3 because the signal vector is a 2 × 1 vector, and equalization of S (5) is performed using the weight w 1. However, it is not used for equalization of S (1). T represents a matrix (vector) transposition process, H represents a Hermite transposition process, and -1 represents an inverse matrix operation process.
 つまり、MIMO重み算出部605では、伝搬路行列生成部603から入力された伝搬路行列HS(1)の推定値と、図示しない雑音推定部から入力される平均雑音電力推定値を用いて、逆行列演算を伴う数式4の計算を行い、重みベクトルwS(1)を算出し、重み乗算部602に入力する。
 雑音推定は、一例として、周波数領域での復調用参照信号DMRSの受信信号から、DMRSによって得られた各周波数での伝搬路推定値と周波数領域のDMRSとを乗算したものを減算したものが雑音であるため、減算結果の絶対値の2乗を各周波数で求めたのち平均化することにより行う。
That is, MIMO weight calculation section 605 uses the estimated value of propagation path matrix H S (1) input from propagation path matrix generation section 603 and the average noise power estimation value input from a noise estimation section (not shown ) , Calculation of Equation 4 with inverse matrix calculation is performed to calculate a weight vector w S (1) and input to the weight multiplier 602.
As an example, the noise estimation is obtained by subtracting a signal obtained by multiplying a propagation path estimation value at each frequency obtained by the DMRS and a DMRS in the frequency domain from a reception signal of the demodulation reference signal DMRS in the frequency domain. Therefore, the square of the absolute value of the subtraction result is obtained at each frequency and then averaged.
 なお、数式4はMMSE(Minimum Mean Square Error、最小平均2乗誤差)重みを例にしているが、平均雑音電力を考慮しないZF(Zero Forcing)重みやMRC(MaximumRatio Combining)重みなど、どのような基準の重みでも用いることができる。さらに、繰り返し等化処理やMLD(Maximum Likelihood Detection、最尤検出)、等、他の信号分離法も用いることができる。 Note that Equation 4 uses MMSE (MinimumMiniMean Square Error) weights as an example, but what kind of weights such as ZF (Zero Forcing) weights and MRC (MaximumRatio Combining) weights that do not consider the average noise power? Reference weights can also be used. Furthermore, other signal separation methods such as iterative equalization processing and MLD (Maximum Likelihood Detection) can be used.
 このように、同じスペクトルが送信された複数の周波数ポイント(上述の例では第2、第6周波数ポイントにおいてS(1)が送信されている。)で、いずれかの周波数ポイントにおいて干渉がある場合は干渉を考慮したMIMO重みを生成する(上述の例では第6周波数ポイントにおいてS(5)が干渉となる。)ことで、効果的に送信ダイバーシチ利得を得ることができる。 In this way, when there is interference at any frequency point at a plurality of frequency points at which the same spectrum is transmitted (S (1) is transmitted at the second and sixth frequency points in the above example). Can generate a MIMO diversity weight in consideration of interference (S (5) becomes interference at the sixth frequency point in the above example), thereby effectively obtaining transmission diversity gain.
 重み乗算部602では、結合部601から入力されるRS(1)と、MIMO重み算出部604あるいはSIMO重み算出部605から入力されるwS(1)との乗算を行い、等化後の出力である The weight multiplication unit 602 multiplies RS (1) input from the combining unit 601 and w S (1) input from the MIMO weight calculation unit 604 or the SIMO weight calculation unit 605, and performs equalization. Output
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
を算出する。この等化後の出力は、次式で表わされる。 Is calculated. The output after this equalization is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 以上、等化部505内における送信周波数スペクトルS(1)の等化処理について説明を行った。 In the above, the equalization process of the transmission frequency spectrum S (1) in the equalization unit 505 has been described.
 次に、図3Cの送信周波数スペクトルS(3)のように、送信した周波数ポイントで、端末101の他アンテナによる干渉が生じないスペクトルの等化処理について説明を行う。
 端末101から送信周波数スペクトルS(3)が送信された第4および第8周波数ポイントでの、基地局102の第n受信アンテナにおける受信信号R(4)とR(8)は、それぞれ次の数式7で表わされる。
Next, as in the transmission frequency spectrum S (3) of FIG. 3C, a description will be given of a spectrum equalization process in which interference by other antennas of the terminal 101 does not occur at the transmitted frequency point.
Reception signals R n (4) and R n (8) at the n-th receiving antenna of the base station 102 at the fourth and eighth frequency points at which the transmission frequency spectrum S (3) is transmitted from the terminal 101 are respectively This is expressed by Equation 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、Hn,l(k)は、端末101の第l送信アンテナと基地局102の第n受信アンテナとの間の第k周波数ポイントにおける伝搬路利得である。数式7は、雑音を無視した式となっている。
 送信周波数スペクトルS(3)は、第4周波数ポイントと第8周波数ポイントで受信されるため、2倍の受信アンテナ数で受信されたと考えることができる。そこで、等化部505内の結合部601では、受信周波数ポイント毎のスペクトルを結合し、N×1のベクトルRS(3)を生成する。
 結合部601が重み乗算部602に入力するベクトルRS(3)は、この例の場合、次の数式で表わされる。
Here, H n, l (k) is a channel gain at the k-th frequency point between the l-th transmission antenna of terminal 101 and the n-th reception antenna of base station 102. Expression 7 is an expression that ignores noise.
Since the transmission frequency spectrum S (3) is received at the fourth frequency point and the eighth frequency point, it can be considered that the transmission frequency spectrum S (3) was received with twice the number of reception antennas. Therefore, the combining unit 601 in the equalizing unit 505 combines the spectrum for each reception frequency point to generate a vector R S (3) of N r N t × 1.
In this example, the vector R S (3) input by the combining unit 601 to the weight multiplication unit 602 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 さらに上式は、以下のように変形できる。 Furthermore, the above equation can be modified as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 伝搬路行列生成部603は、伝搬路推定部509から入力された伝搬路推定値が数式9のHS(3)の行列(実際にはベクトル)を構成するための情報を、結合部601から入力される。伝搬路行列生成部603では、入力された伝搬路推定値を用いて、数式9におけるHS(3)の推定行列を生成する。ここで、式9においてHS(3)は2N×1のベクトルであるため、HS(3)の推定値はSIMO重み算出部604に入力される。
 SIMO重み算出部604では、送信周波数スペクトルS(3)の等化を行うために、第k周波数ポイントの第n受信アンテナの受信スペクトルに乗算するSIMO重みベクトルwS(3)の算出を行う。重みベクトルwS(3)は、一般的に、次の数式10で表わされる。
The propagation path matrix generation unit 603 receives, from the combining unit 601, information for configuring a matrix (actually a vector) of the H S (3) of Equation 9 in which the propagation path estimation value input from the propagation path estimation unit 509 is Entered. The propagation path matrix generation unit 603 generates an estimation matrix of H S (3) in Equation 9 using the input propagation path estimation value. Here, since H S (3) is a 2N r × 1 vector in Equation 9, the estimated value of H S (3) is input to the SIMO weight calculation unit 604.
In order to equalize the transmission frequency spectrum S (3), the SIMO weight calculation unit 604 calculates a SIMO weight vector w S (3) by which the reception spectrum of the nth reception antenna at the kth frequency point is multiplied. The weight vector w S (3) is generally represented by the following Expression 10.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここでσは平均雑音電力である。 Here, σ 2 is the average noise power.
 つまり、重み算出部602では、伝搬路行列生成部603から入力された伝搬路行列HS(3)の推定値と、図示しない雑音推定部から入力される平均雑音電力推定値を用いて、逆行列演算を伴わない数式10に基づいて、重みベクトルwS(3)を算出し、重み乗算部602に入力する。なお、重みベクトルは、送信周波数スペクトルS(1)の場合について上述したと同様、MMSE重みに限らない。 That is, the weight calculation unit 602 uses the estimated value of the propagation path matrix HS (3) input from the propagation path matrix generation unit 603 and the average noise power estimation value input from the noise estimation unit (not shown ) , and performs inverse processing. A weight vector w S (3) is calculated based on Equation 10 that does not involve matrix operation, and is input to the weight multiplier 602. Note that the weight vector is not limited to the MMSE weight as described above for the case of the transmission frequency spectrum S (1).
 このように、同じスペクトルが送信された複数の周波数ポイント(上述の例では第4、第8周波数ポイントにおいてS(3)が送信されている。)で、どの周波数ポイントにおいても干渉がない場合は、逆行列演算を伴わない重みを生成することで、効率的に送信ダイバーシチ利得を得ることができる。 Thus, when there is no interference at any frequency point at a plurality of frequency points at which the same spectrum is transmitted (in the above example, S (3) is transmitted at the fourth and eighth frequency points). By generating a weight that does not involve an inverse matrix operation, a transmission diversity gain can be obtained efficiently.
 このように本実施形態の等化部505では、干渉となる送信信号がある場合は、逆行列演算を伴うMIMO重み算出部605を用いて重みを算出し、干渉となる送信信号がない場合は、逆行列演算を伴わないSIMO重み算出部604を用いて重みを算出することで、計算量の増加を抑えたうえで、適切な信号分離を行うことが可能となる。
 重み乗算部602では結合部601から入力されたベクトルRS(3)と重みベクトルwS(3)との乗算を行い、等化後の送信周波数スペクトルである以下の、
As described above, in the equalization unit 505 of the present embodiment, when there is a transmission signal that causes interference, the weight is calculated using the MIMO weight calculation unit 605 with inverse matrix calculation, and when there is no transmission signal that causes interference. By calculating the weight using the SIMO weight calculation unit 604 that does not involve an inverse matrix operation, it is possible to perform appropriate signal separation while suppressing an increase in the amount of calculation.
The weight multiplier 602 multiplies the vector R S (3) input from the combiner 601 by the weight vector w S (3), and the transmission frequency spectrum after equalization is as follows:
Figure JPOXMLDOC01-appb-M000011
を算出する。この等化後の送信周波数スペクトルは次式で表わされる。
Figure JPOXMLDOC01-appb-M000011
Is calculated. The equalized transmission frequency spectrum is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000012
 以上、等化部505におけるS(1)およびS(3)の等化処理について説明を行った。
 等化部505では、すべての送信周波数スペクトルS(m)(0≦m≦NDFT-1)に対して等化処理を行い、等化後のスペクトルをIDFT部506に入力する。
Figure JPOXMLDOC01-appb-M000012
Heretofore, the equalization processing of S (1) and S (3) in the equalization unit 505 has been described.
The equalization unit 505 performs equalization processing on all transmission frequency spectra S (m) (0 ≦ m ≦ N DFT −1), and inputs the equalized spectrum to the IDFT unit 506.
 上記では、図3Cにおいて他アンテナからの干渉のないスペクトルであるS(3)の等化処理について説明を行ったが、図3Bのような周波数割当の場合、干渉となる送信信号が存在しないため、すべての周波数スペクトルに対して上記の送信周波数スペクトルS(3)のようにSIMO重み算出部604を用いた等化処理を行う。 In the above description, the equalization process of S (3), which is a spectrum without interference from other antennas in FIG. 3C, has been described. However, in the case of frequency allocation as in FIG. 3B, there is no transmission signal that causes interference. Then, equalization processing using the SIMO weight calculation unit 604 is performed on all frequency spectra as in the transmission frequency spectrum S (3).
 上記では、端末101の2つの送信アンテナから送信を行う場合について説明を行ったが、次にアンテナ本数が3本またはそれ以上の場合の説明を行う。 In the above, the case where transmission is performed from the two transmission antennas of the terminal 101 has been described. Next, the case where the number of antennas is three or more will be described.
 図7は、端末101の送信アンテナ本数が5の場合の周波数割当の一例を示す。すなわち、送信周波数スペクトルS(0)~S(5)が、送信アンテナ#0に対して、周波数インデックス8~13へ連続的に割り当てられ、送信アンテナ#1に対して、周波数インデックス3~8へ連続的に割り当てられ、送信アンテナ#2に対して、周波数インデックス1~6へ連続的に割り当てられ、送信アンテナ#3に対して、周波数インデックス6~11へ連続的に割り当てられ、送信アンテナ#4に対して、周波数インデックス15~20へ連続的に割り当てられている。
 等化部505では、すべてのスペクトルS(m)(0≦m≦NDFT-1)に対して等化処理を行う。以下では、送信周波数スペクトルS(0)を例に説明を行う。
 基地局102の第n受信の第k周波数ポイントでの受信信号をR(k)とすると、送信周波数スペクトルS(0)が送信される第1、第3、第6、第8および第15周波数ポイントの受信信号は、それぞれ次の数式13で表わされる。
FIG. 7 shows an example of frequency allocation when the number of transmission antennas of the terminal 101 is five. That is, transmission frequency spectrums S (0) to S (5) are continuously assigned to frequency index 8 to 13 for transmission antenna # 0, and to frequency index 3 to 8 for transmission antenna # 1. Assigned continuously to frequency index 1-6 for transmit antenna # 2, assigned continuously to frequency index 6-11 for transmit antenna # 3, and transmit antenna # 4. In contrast, the frequency indexes 15 to 20 are continuously assigned.
The equalization unit 505 performs equalization processing on all spectra S (m) (0 ≦ m ≦ N DFT −1). Hereinafter, the transmission frequency spectrum S (0) will be described as an example.
When the received signal at the k-th frequency point of the n-th reception of the base station 102 is R n (k), the first, third, sixth, eighth, and fifteenth when the transmission frequency spectrum S (0) is transmitted. The received signal at the frequency point is expressed by the following Equation 13, respectively.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここでHn,l(k)は第l送信アンテナと第n受信アンテナの間の第k周波数ポイント(周波数ポイント・インテックスがk)における伝搬路利得であり、数式13は雑音を無視した式となっている。S(0)は5つの周波数ポイントで受信されるため、5倍の受信アンテナ数で受信されたものと考えることができる。そこで図6の等化部505内の結合部601では、受信周波数毎のスペクトルを結合し、N×1のベクトルRS(0)を生成する。結合部が重み乗算部に入力するベクトルRS(0)は次の数式14で表わされる。 Here, H n, l (k) is a channel gain at the k-th frequency point (frequency point-intex is k) between the l-th transmitting antenna and the n-th receiving antenna, and Equation 13 is an equation that ignores noise. It has become. Since S (0) is received at five frequency points, it can be considered that it has been received with five times the number of receiving antennas. Therefore, the combining unit 601 in the equalizing unit 505 in FIG. 6 combines the spectrum for each reception frequency to generate a vector R S (0) of N r N t × 1. A vector R S (0) input by the combining unit to the weight multiplication unit is expressed by the following Equation 14.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 数式14において、HS(0)は5N×4の行列であるため、伝搬路行列生成部603は、HS(0)の推定値をMIMO重み算出部605に入力し、上述の数式4と同様にMMSE重みを生成する。
 ただし、数式14において信号ベクトルは4×1(4行1列)のベクトルであるため、上述の数式4のIは4×4の単位行列である。つまり、MIMO重み算出部605は、以下の処理を行う。
 (1)対象とするスペクトルが受信された周波数をすべて抽出し、(2)各周波数の受信信号を結合し、受信信号列ベクトルを生成し、(3)いずれかの周波数に含まれるスペクトルによって構成される送信信号列ベクトルを生成し、(4)「受信信号列ベクトル=伝搬路行列×送信信号列ベクトル」となる伝搬路行列を算出し、(5)伝搬路行列が、行列か否かによって、すなわち他アンテナからの干渉があるか否かによって、MIMO重み算出部605かSIMO重み算出部604を選択する。
In Equation 14, since H S (0) is a 5N r × 4 matrix, the propagation path matrix generation unit 603 inputs the estimated value of H S (0) to the MIMO weight calculation unit 605, and the above Equation 4 The MMSE weight is generated in the same manner as the above.
However, since the signal vector in Equation 14 is a 4 × 1 (4 rows and 1 column) vector, I in Equation 4 is a 4 × 4 unit matrix. That is, the MIMO weight calculation unit 605 performs the following processing.
(1) Extract all the frequencies at which the target spectrum was received, (2) combine the received signals of each frequency, generate a received signal sequence vector, and (3) configure with the spectrum included in any frequency (4) Calculate a propagation path matrix such that “received signal string vector = propagation path matrix × transmission signal string vector”, and (5) depending on whether the propagation path matrix is a matrix or not. That is, the MIMO weight calculation unit 605 or the SIMO weight calculation unit 604 is selected depending on whether there is interference from another antenna.
 このような処理を行うことで、端末101が3本またはそれ以上の送信アンテナを持つ場合も等化処理を行うことができる。 By performing such processing, equalization processing can be performed even when the terminal 101 has three or more transmission antennas.
 なお、すべての送信周波数スペクトルに対して大きな逆行列演算を行うことによる計算量の増大を回避するため、各周波数で分離を行ったのち合成する構成をとってもよい。
 例えば、数式14の場合、第1および第15周波数ポイントのみに着目すれば、SIMO重み算出604によって逆行列演算することなく等化を行うことができ、次に第3および第8周波数ポイントに着目し、3×3の逆行列演算を行うことで等化を行い、最後に第6周波数ポイントに着目し、3×3の逆行列演算を行うことで等化を行い、3つの出力をMMSE合成するようにすることで、4×4の逆行列演算を避けることができる。また数式14の場合、第1および第15周波数ポイントのみで精度よく等化することができる場合、計算量削減のため第3、6、8周波数ポイントに関しては等化処理に使用しないことも可能である。
In addition, in order to avoid an increase in the amount of calculation due to performing a large inverse matrix operation on all transmission frequency spectra, a configuration may be adopted in which separation is performed after each frequency and then synthesis is performed.
For example, in the case of Expression 14, if attention is paid only to the first and fifteenth frequency points, equalization can be performed by the SIMO weight calculation 604 without performing an inverse matrix operation, and then attention is paid to the third and eighth frequency points. Then, equalization is performed by performing a 3 × 3 inverse matrix operation, and finally, focusing on the sixth frequency point, equalization is performed by performing a 3 × 3 inverse matrix operation, and three outputs are combined into an MMSE By doing so, 4 × 4 inverse matrix operation can be avoided. In the case of Equation 14, when equalization can be performed accurately only with the first and fifteenth frequency points, the third, sixth, and eighth frequency points may not be used for the equalization processing in order to reduce the amount of calculation. is there.
 重み乗算部602の出力は、等化部505の出力として、図5のIDFT部506に入力される。IDFT部506では、入力された等化後の送信周波数スペクトルS(m)(0≦m≦NDFT-1)に対してNDFTポイントのIDFT(逆離散フーリエ変換)を行い、周波数領域信号から時間領域信号への変換を行う。IDFT部506の出力は、復調部507に入力され、端末101で行われた変調方式に基づいて、シンボルの形式からビットの形式への変換が行われる。
 ビットに変換された信号は、復号部508に入力され、誤り訂正復号が行われた後、ビット系列のデータとして外部へ出力される。
The output of the weight multiplication unit 602 is input as the output of the equalization unit 505 to the IDFT unit 506 in FIG. The IDFT unit 506 performs IDFT (Inverse Discrete Fourier Transform) of N DFT points on the input equalized transmission frequency spectrum S (m) (0 ≦ m ≦ N DFT −1) to obtain a frequency domain signal. Convert to time domain signal. The output of the IDFT unit 506 is input to the demodulation unit 507, and conversion from the symbol format to the bit format is performed based on the modulation scheme performed by the terminal 101.
The signal converted into bits is input to the decoding unit 508, subjected to error correction decoding, and then output to the outside as bit series data.
 このように、本実施形態では、複数の送信アンテナを持つ端末101が、各送信アンテナから同一データ信号を送信する場合に、同一の周波数ポイント(サブキャリア)を用いて送信を行うことに限定せず、各アンテナで異なる周波数ポイントを用いても送信を行うことを可能とする。この結果、端末101の各送信アンテナで伝搬路利得が高い周波数ポイントを用いて伝送を行うことが可能となるため、基地局102における受信電力を向上させることができる。また、端末101の各送信アンテナから送信された信号は、基地局102において複数の周波数ポイントで受信されるため、基地局102の等化部505において周波数合成されることで良好な伝送特性が得られる。 As described above, in this embodiment, when the terminal 101 having a plurality of transmission antennas transmits the same data signal from each transmission antenna, it is limited to performing transmission using the same frequency point (subcarrier). In addition, transmission can be performed even if different frequency points are used for each antenna. As a result, transmission can be performed using a frequency point with a high propagation path gain at each transmission antenna of the terminal 101, so that received power at the base station 102 can be improved. In addition, since signals transmitted from the respective transmission antennas of terminal 101 are received at a plurality of frequency points in base station 102, good transmission characteristics are obtained by frequency synthesis in equalization section 505 of base station 102. It is done.
 なお、本実施形態では、図3A~Cや図7のように第1の組の送信周波数スペクトルが連続的に割り当てられることで第2の組の送信周波数スペクトルを形成する場合について示したが、第1の組の送信周波数スペクトルが離散的に割り当てられる場合にも適用することができる。また、本実施形態では、シングルキャリア伝送を用いたため、数式4や数式11のように、異なる周波数で送信されたスペクトルが、等化部内で合成されることを考慮した重みを生成した。しかし、シングルキャリア伝送に替えてOFDM等、他の伝送方式を用いてもよく、例えばOFDMの場合は、各周波数(サブキャリア)がDFTの関係で結ばれてはいないので、他の周波数での伝搬路状態を考慮しない重みを用いることができる。 In the present embodiment, as shown in FIGS. 3A to 3C and FIG. 7, the first set of transmission frequency spectrums are continuously assigned to form the second set of transmission frequency spectra. The present invention can also be applied to the case where the first set of transmission frequency spectrums are allocated discretely. Further, in this embodiment, since single carrier transmission is used, weights are generated in consideration of the fact that spectra transmitted at different frequencies are combined in the equalization unit, as in Expression 4 and Expression 11. However, other transmission schemes such as OFDM may be used instead of single carrier transmission. For example, in the case of OFDM, each frequency (subcarrier) is not connected in a DFT relationship. Weights that do not take propagation path conditions into account can be used.
<第2の実施形態>
 第1の実施形態では、異なる送信周波数スペクトルが同一周波数ポイントで送信されるため、MMSE重み等を乗算する空間フィルタリングやMLD(Maximum Likelihood Detection、最尤検出)を用い、信号分離を行う必要があった。
 しかしながら、空間フィルタリングを行うには、(干渉信号の数+1)以上の本数の受信アンテナを基地局(受信機)が持つことが望ましいため、基地局の規模が大きくなってしまうという問題がある。
 また、基地局においてMLDや繰り返し処理を行うことで干渉を大幅に低減できるものの、回路規模や信号処理遅延が大きくなってしまうという問題が生じる。さらに、どのような信号分離法であっても、完全に干渉除去を行うことは極めて難しく、必ず残留干渉により特性が劣化してしまう。
<Second Embodiment>
In the first embodiment, since different transmission frequency spectra are transmitted at the same frequency point, it is necessary to perform signal separation using spatial filtering that multiplies MMSE weights or the like or MLD (Maximum Likelihood Detection). It was.
However, in order to perform spatial filtering, since it is desirable that the base station (receiver) has a number of reception antennas equal to or greater than (number of interference signals + 1), there is a problem that the size of the base station increases.
Further, although interference can be greatly reduced by performing MLD and iterative processing in the base station, there arises a problem that the circuit scale and signal processing delay increase. Furthermore, it is extremely difficult to completely remove interference by any signal separation method, and the characteristics are always degraded by residual interference.
 そこで、第2の実施形態として、基地局で干渉が生じないように送信処理を行う送信ダイバーシチについて説明を行う。
 以下では、本実施形態の端末には101aとの符号を付し、基地局には102aとの符号を付して説明を行う。
Therefore, as a second embodiment, transmission diversity that performs transmission processing so that interference does not occur in the base station will be described.
In the following description, the terminal of the present embodiment is denoted by reference numeral 101a, and the base station is denoted by reference numeral 102a.
 図8A、図8Bは、端末101aの送信アンテナ本数Nを2とし、各送信アンテナで伝送に用いる周波数ポイントが部分的に重複している例の概念図を示す。
 図8Aのように、各送信アンテナの割当に対して低周波数から高周波数へと順にデータ信号にスペクトルを割り当てると、第0送信アンテナ(送信アンテナ#0)から送信される複数の送信周波数スペクトルIの後方と、第1送信アンテナ(送信アンテナ#1)から送信される複数の送信周波数スペクトルIIの前方とが、同一周波数ポイントで送信されるため干渉となる。そこで図8Bのように、第1送信アンテナにおいて、割り当てられた周波数ポイント内で送信周波数スペクトルを巡回シフトする。巡回シフトを与えた結果、送信周波数スペクトルII’となり、第0送信アンテナと第1送信アンテナで割当が重複する周波数ポイントにおいて同一の周波数スペクトルとなる。そして、送信周波数スペクトルIおよびII’が第0送信アンテナおよび第1送信アンテナからそれぞれ送信される。
8A, 8B is the number of transmitting antennas N t of the terminal 101a and 2, the frequency points to be used for transmitting the respective transmit antennas shows a conceptual diagram of an example that partially overlap.
As shown in FIG. 8A, when spectrums are allocated to data signals in order from the low frequency to the high frequency with respect to the allocation of each transmission antenna, a plurality of transmission frequency spectrums I transmitted from the 0th transmission antenna (transmission antenna # 0). And the front of a plurality of transmission frequency spectrums II transmitted from the first transmission antenna (transmission antenna # 1) are transmitted at the same frequency point, resulting in interference. Therefore, as shown in FIG. 8B, the first transmission antenna cyclically shifts the transmission frequency spectrum within the allocated frequency point. As a result of applying the cyclic shift, the transmission frequency spectrum II ′ is obtained, and the same frequency spectrum is obtained at the frequency point where the allocation is overlapped between the 0th transmission antenna and the first transmission antenna. Then, transmission frequency spectra I and II ′ are transmitted from the 0th transmission antenna and the first transmission antenna, respectively.
 このように、本実施形態では、受信アンテナで干渉が生じないように、送信周波数スペクトルに対して、割り当てられた周波数ポイント内で、巡回シフトを与えて送信する。 As described above, in the present embodiment, the transmission frequency spectrum is transmitted with a cyclic shift within the allocated frequency point so that interference does not occur at the receiving antenna.
 図9は、本実施形態の端末101aの構成を示す概略ブロック図である。
 端末101aは、符号化部901、変調部902、DFT部903、プリコーディング部904、スペクトル巡回シフト部905-0~905N-1、マッピング部906-0~906-N-1、参照信号多重部907-0~907-N-1、OFDM信号生成部908-0~908-N-1、送信部909-0~909-N-1、送信アンテナ910-0~910-N-1、受信アンテナ911、受信部912、制御情報抽出部913、割当情報取得部914、PMI取得部915、巡回シフト量決定部916を具備する。
FIG. 9 is a schematic block diagram showing the configuration of the terminal 101a of this embodiment.
Terminal 101a includes an encoding unit 901, modulation section 902, DFT section 903, precoding section 904, spectrum cyclic shift section 905-0 ~ 905N t -1, the mapping unit 906-0 ~ 906-N t -1, the reference signal Multiplexers 907-0 to 907-N t -1, OFDM signal generators 908-0 to 908-N t -1, transmitters 909-0 to 909-N t -1, transmit antennas 910-0 to 910-N t- 1, receiving antenna 911, receiving unit 912, control information extracting unit 913, allocation information acquiring unit 914, PMI acquiring unit 915, and cyclic shift amount determining unit 916.
 以下では、端末101aの各送信アンテナ910-0~910-N-1を用いて、異なる周波数割当によって同じデータをシングルキャリア伝送により送信する場合について説明する。 Hereinafter, a case will be described in which the same data is transmitted by single carrier transmission with different frequency assignments using each of the transmission antennas 910-0 to 910-N t −1 of the terminal 101a.
 音声データ、文字データ、画像データ、等のデータのビット系列は、符号化部901において誤り訂正符号に符号化され、その後に変調部902においてQPSKや16QAM等の変調が施されて、変調シンボルへと変換される。変調部902の出力は、NDFT個のシンボル毎にDFT部903に入力され、NDFTポイント離散フーリエ変換によって時間領域信号から周波数スペクトルに変換される。 A bit sequence of data such as voice data, character data, and image data is encoded by an encoding unit 901 into an error correction code, and then modulated by a modulation unit 902 such as QPSK or 16QAM to be converted into a modulation symbol. Is converted. The output of the modulation unit 902 is input to the DFT unit 903 every N DFT symbols, and is converted from a time domain signal to a frequency spectrum by N DFT point discrete Fourier transform.
 DFT部903の出力S(m)(0≦m≦NDFT-1)は、プリコーディング部904に入力される。
 第1の実施形態においてはDFT部203(図2)の出力はコピー部204(図2)に入力されたが、本実施形ではプリコーディング部904に入力する。これは、図8Bのように第0送信アンテナ(送信アンテナ#0)と第1送信アンテナ(送信アンテナ#1)で同一の送信周波数スペクトルが同一の周波数ポイントにおいて送信された場合、伝搬路状態によっては、端末101aの各送信アンテナからの信号が基地局102aにおいて互いに打ち消し合って受信されてしまう場合があるためである。そこで、本実施形態では、各送信アンテナから信号が、受信アンテナで同相合成されるようなプリコーディングを、DFT903の出力信号である第1の組の周波数スペクトル信号に対して行って、プリコーディング後の信号をスペクトル巡回シフト部905-0~905-N―1へ出力する。
 よって、本実施形態では、端末101aがコピー部ではなくプリコーディング部904を具備する場合の説明を行う。
The output S (m) (0 ≦ m ≦ N DFT −1) of the DFT unit 903 is input to the precoding unit 904.
In the first embodiment, the output of the DFT unit 203 (FIG. 2) is input to the copy unit 204 (FIG. 2). However, in this embodiment, the output is input to the precoding unit 904. As shown in FIG. 8B, when the same transmission frequency spectrum is transmitted at the same frequency point by the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1), This is because the signals from the transmitting antennas of the terminal 101a may be received by canceling each other at the base station 102a. Therefore, in this embodiment, precoding is performed on the first set of frequency spectrum signals, which are output signals of DFT 903, so that signals from each transmission antenna are in-phase combined at the reception antenna, and after precoding is performed. Are output to spectrum cyclic shift sections 905-0 to 905-N t -1.
Therefore, in this embodiment, the case where the terminal 101a includes the precoding unit 904 instead of the copy unit will be described.
 プリコーディング部904では、PMI取得部915が取得するプリコーディング行列の情報によってプリコーディングが行われる。
 ここで、PMI取得部915は、制御情報抽出部913から入力される制御情報の中から、プリコーディング行列インディケータPMI(Precoding Matrix Indicator)を抽出し、プリコーディング部904に入力する。PMIは、基地局102aにおいて送信アンテナと受信アンテナ間の伝搬路に応じて決定されるものであり、通常は、受信SINR(Signal to Interference plus Noise power Ratio、信号対干渉雑音電力比)、受信SNR(Signal to Noise power Ratio、信号対雑音電力比)または通信路容量を最大化するPMIが選択され、このPMIが端末101aに通知される。
In the precoding unit 904, precoding is performed based on the information of the precoding matrix acquired by the PMI acquisition unit 915.
Here, the PMI acquisition unit 915 extracts a precoding matrix indicator PMI (Precoding Matrix Indicator) from the control information input from the control information extraction unit 913 and inputs it to the precoding unit 904. The PMI is determined according to the propagation path between the transmission antenna and the reception antenna in the base station 102a, and is usually received SINR (Signal to Interference plus Noise power Ratio), reception SNR. (Signal to Noise power Ratio) or PMI that maximizes the channel capacity is selected, and this PMI is notified to the terminal 101a.
 プリコーディング部904では、DFT部903から入力された第1の組の送信周波数スペクトルS(m)にプリコーディング行列w(m)を乗算する。ここで、ランク数Rでのプリコーディング行列w(m)は、N×Rの行列である。本実施形態ではランク数Rは1とするため、プリコーディング行列w(m)はN×1のベクトルとなる。
 プリコーディング部904が出力するベクトルS(m)(0≦m≦NDFT-1)は、次式で表わされる。
The precoding unit 904 multiplies the first set of transmission frequency spectra S (m) input from the DFT unit 903 by the precoding matrix w (m). Here, the precoding matrix w (m) with the rank number R is an N t × R matrix. In this embodiment, since the rank number R is 1, the precoding matrix w (m) is an N t × 1 vector.
A vector S (m) (0 ≦ m ≦ N DFT −1) output from the precoding unit 904 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 なお、数式15において、プリコーディング行列w(m)は周波数インデックスmに依存しているが、基地局102aからの通知情報量を抑えるため、全周波数インデックスで同一のプリコーディング行列wを用いることもできる。 In Equation 15, the precoding matrix w (m) depends on the frequency index m, but the same precoding matrix w may be used for all frequency indexes in order to reduce the amount of notification information from the base station 102a. it can.
 また、通知情報量を抑えるため、PMIを、プリコーディング行列そのものではなく、量子化されたプリコーディング行列(コードブック(符号表)に記載のもの)のインデックスとし、基地局102aが端末101aにこのPMIを通知するようにしてもよい。
 2送信アンテナにおけるランク数1(レイヤ数1、ストリーム数1とも言う。)のプリコーディング行列(2×1の行列、つまりプリコーディング・ベクトル)wは、3GPPでは表1の6つのベクトルから構成される。基地局102aは、このコードブックインデックスの中から一つを選択し、PMIとして端末101aに通知する。
In order to suppress the amount of notification information, the PMI is used as an index of a quantized precoding matrix (described in the codebook (code table)) instead of the precoding matrix itself, and the base station 102a sends the index to the terminal 101a. You may make it notify PMI.
The precoding matrix (2 × 1 matrix, that is, precoding vector) w of rank 1 (also referred to as 1 layer number and 1 stream number) in two transmit antennas is composed of the six vectors shown in Table 1 in 3GPP. The The base station 102a selects one of the codebook indexes and notifies the terminal 101a as PMI.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 さらに全スペクトル・インデックスで同一のプリコーディング行列を用いる場合、図9の端末101aの構成では周波数領域でプリコーディングを行っているが、時間領域でプリコーディングを行う構成とすることもできる。
 以下の説明では、全スペクトル・インデックスに対して同一のプリコーディングを行い、N×1のプリコーディング・ベクトルwによってプリコーディングを行うものとして説明を行う。
Further, when the same precoding matrix is used in all spectrum indexes, precoding is performed in the frequency domain in the configuration of the terminal 101a in FIG. 9, but precoding may be performed in the time domain.
In the following description, it is assumed that the same precoding is performed for all spectrum indexes, and that precoding is performed using the N t × 1 precoding vector w.
 なお、本実施形態では周波数分割双方向通信FDD(Frequency Division Duplex)システムを仮定し、端末101aで送信に用いるプリコーディング・ベクトルは、基地局102aから通知されるものとしている。しかし、上りリンクと下りリンクで同一周波数帯を用いる時間分割双方向通信TDD(Time Division Duplex)システムでは、端末101aが下りリンクの参照信号を用いて上りリンクにおけるプリコーディング・ベクトルを決定することができるため、プリコーディング・ベクトル(あるいはコードブックインデックス)の通知を行わないことも可能である。また、伝搬路に応じたプリコーディングを行うのではなく、送受信で予め決められたパターンでプリコーディングを行うことも可能である。 In the present embodiment, a frequency division bidirectional communication FDD (Frequency Division Duplex) system is assumed, and the precoding vector used for transmission in the terminal 101a is reported from the base station 102a. However, in a time division bidirectional communication TDD (Time Division Division Duplex) system using the same frequency band in the uplink and the downlink, the terminal 101a may determine a precoding vector in the uplink using a downlink reference signal. Therefore, it is possible not to notify the precoding vector (or codebook index). Further, instead of performing precoding according to the propagation path, it is also possible to perform precoding with a pattern determined in advance by transmission and reception.
 図9のプリコーディング部904が出力する第n送信アンテナでの信号S(m)は、スペクトル巡回シフト部905-nに入力される。つまり、第0送信アンテナ910-0用の信号S(m)はスペクトル巡回シフト部905-0に入力され、以下同様にして、最後の第N-1送信アンテナ910-N-1での信号SNt-1(m)はスペクトル巡回シフト部905-N-1に入力される。 The signal S n (m) at the n-th transmission antenna output from the precoding unit 904 in FIG. 9 is input to the spectrum cyclic shift unit 905-n. That is, the signal S 0 (m) for the 0th transmission antenna 910-0 is input to the spectrum cyclic shift section 905-0, and so on, at the last N t −1 transmission antenna 910-N t −1. The signal S Nt−1 (m) is input to the spectrum cyclic shift unit 905 -N t −1.
 図10は、スペクトル巡回シフト部905の具体的な構成を示すブロック図である。なお、N個のスペクトル巡回シフト部905-0~905-N-1の構成は同じであり、それらの共通の構成に対して905という符号を付す。
 スペクトル巡回シフト部905は、シフト部1001、モジュロ演算部1002、インデックス変更部1003を具備する。
 巡回シフト量決定部916から入力される巡回シフト量Δは、シフト部1001に入力される。巡回シフト量決定部916については、後述する。
FIG. 10 is a block diagram showing a specific configuration of spectrum cyclic shift section 905. Note that the configurations of the N t spectral cyclic shift units 905-0 to 905-N t -1 are the same, and the common configuration is denoted by reference numeral 905.
The spectrum cyclic shift unit 905 includes a shift unit 1001, a modulo operation unit 1002, and an index change unit 1003.
Cyclic shift amount delta n inputted from cyclic shift amount determining unit 916 is input to the shift unit 1001. The cyclic shift amount determination unit 916 will be described later.
 シフト部1001では、0からNDFT-1までのNDFT個の数列に対して、巡回シフト量決定部916の制御を受けて入力された巡回シフト量Δを加算し、モジュロ演算部1002に入力する。例えばNDFT=6、Δ=4の場合、数列0、1、2、3、4、5に対して4を加算した数列4、5、6、7、8、9がモジュロ演算部1002に入力される。モジュロ演算部1002では、シフト部1001から入力された数列に対してNDFT=6によるモジュロ演算(NDFTで除算した際の余りを算出)を行い、インデックス変更部1003に入力する。例えば、上記の例では、NDFT=6であるため、モジュロ演算部1002の出力は、数列4、5、0、1、2、3となる。
 インデックス変更部1003では、プリコーディング部904から入力されたプリコーディング後の送信周波数スペクトルの周波数インデックス0、1、2、3、4、5をモジュロ演算部1002から入力された数列4、5、0、1、2、3に変更する処理を行う。
The shift unit 1001 adds the cyclic shift amount Δ n input under the control of the cyclic shift amount determination unit 916 to the N DFT number sequences from 0 to N DFT −1, and sends the result to the modulo arithmetic unit 1002 input. For example, when N DFT = 6 and Δ n = 4, a sequence 4, 5, 6, 7, 8, 9 obtained by adding 4 to the sequences 0, 1, 2, 3, 4, 5 is used as the modulo arithmetic unit 1002. Entered. The modulo operation unit 1002 performs N DFT = 6 (calculated remainder when divided by N DFT) modulo operation with respect to the sequence input from the shift unit 1001, and inputs the index change portion 1003. For example, in the above example, since N DFT = 6, the output of the modulo arithmetic unit 1002 is the sequence 4, 5, 0, 1, 2, 3.
In the index changing unit 1003, the frequency indexes 0, 1, 2, 3, 4, 5 of the transmission frequency spectrum after precoding input from the precoding unit 904 are converted into the sequence of numbers 4, 5, 0 input from the modulo arithmetic unit 1002. , 1, 2 and 3 are changed.
 上記の例では、スペクトル巡回シフト部905-nのインデックス変更部1003は、プリコーディング部904からプリコーディング後の送信周波数スペクトルS(0)、S(1)、S(2)、S(3)、S(4)、S(5)と、モジュロ演算部から周波数インデックスは「4、5、0、1、2、3」が入力される。インデックス変更部では、周波数インデックスに従い、送信周波数スペクトルS(4)、S(5)、S(0)、S(1)、S(2)、S(3)と並び変えたものを、S’(0)、S’(1)、S’(2)、S’(3)、S’(4)、S’(5)として出力することになる。 In the above example, the index changing unit 1003 of the spectrum cyclic shift unit 905-n transmits the pre-coded transmission frequency spectrums S n (0), S n (1), S n (2), S n (3), S n (4), S n (5) and “4, 5, 0, 1, 2, 3” are input as frequency indexes from the modulo operation unit. In the index changing unit, the transmission frequency spectrums S n (4), S n (5), S n (0), S n (1), S n (2), and S n (3) are rearranged according to the frequency index. Are output as S ′ n (0), S ′ n (1), S ′ n (2), S ′ n (3), S ′ n (4), and S ′ n (5). Become.
 図11は、スペクトル巡回シフト部905-nの動作を説明するフローチャートである。
 最初に、仮の数列0、1、2、...、NDFT-1を生成する。(ステップS1101)。次に、この数列の数値を、巡回シフト量決定部916から入力された巡回シフト量Δだけ増大する(ステップS1102)。この増大した数値の数列に対して、数値NDFTでモジュロ演算を行う(ステップS1103)。次に、このモジュロ演算を施した数列を用いて、上記したプリコーディング部904から入力されるプリコーディング後の第1の組の送信周波数スペクトルの周波数インデックスを変更する(ステップS1104)。続いて、得られた送信周波数スペクトルをマッピング部906へと出力する。
 このように、スペクトル巡回シフト部905では、巡回シフト量決定部914から入力される巡回シフト量Δによって、プリコーディング部904が出力する送信周波数スペクトルS(m)に対して巡回シフトを行う。
 スペクトル巡回シフト部にプリコーディング部904から入力される送信周波数スペクトルをS(m)とし、巡回シフト量をΔとすると、スペクトル巡回シフト部905の出力S (m)は、次式で与えられる。
FIG. 11 is a flowchart for explaining the operation of the spectrum cyclic shift section 905-n.
First, a temporary sequence 0, 1, 2,. . . , N DFT −1. (Step S1101). Then, the value of this sequence increases by the amount of cyclic shift delta n input from the cyclic shift amount determining unit 916 (step S1102). A modulo operation is performed with the numerical value N DFT on the increased numerical sequence (step S1103). Next, the frequency index of the first set of transmission frequency spectrums after the precoding input from the above-described precoding unit 904 is changed using the sequence subjected to this modulo operation (step S1104). Subsequently, the obtained transmission frequency spectrum is output to mapping section 906.
In this way, spectrum cyclic shift section 905 performs cyclic shift on transmission frequency spectrum S n (m) output from precoding section 904 by cyclic shift amount Δ n input from cyclic shift amount determination section 914. .
When the transmission frequency spectrum input from the precoding unit 904 to the spectrum cyclic shift unit is S n (m) and the cyclic shift amount is Δ n , the output S n (m) of the spectrum cyclic shift unit 905 is given by Given in.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 スペクトル巡回シフト部905-nが出力するスペクトルS’(m)は、図9のマッピング部906-nに入力される。ただし、0≦n≦N-1である。
 マッピング部906-0~906-N-1以降のアンテナ910-0~910-N-1に至るまでの信号処理は、第1の実施形態と同じであるためその説明を援用する。ただし、復調用参照信号DMRSは、データ信号と同様のプリコーディング・ベクトルwが乗算されて送信される。
The spectrum S ′ n (m) output from the spectrum cyclic shift unit 905-n is input to the mapping unit 906-n in FIG. However, 0 ≦ n ≦ N t −1.
Since the signal processing from the mapping units 906-0 to 906-N t −1 to the antennas 910-0 to 910-N t −1 is the same as that in the first embodiment, the description thereof will be used. However, the demodulation reference signal DMRS is transmitted after being multiplied by the same precoding vector w as the data signal.
 ここで、図9のスペクトル巡回シフト部905-0~905-N-1での信号処理について、説明を行う。 Here, the signal processing in the spectrum cyclic shift sections 905-0 to 905-N t −1 in FIG. 9 will be described.
 図12A~図12Cは、送信アンテナ本数Nを2、DFTポイント数NDFTを6とし、第0送信アンテナ(送信アンテナ#0)および第1送信アンテナ(送信アンテナ#1)で、送信に用いる周波数ポイントが部分的に重複している例を示す。
 つまり、図12Aでは、第0送信アンテナについては第1の組の送信周波数スペクトルS(0)~S(5)がインデックス1~6の周波数ポイントに割り当てられ、第1送信アンテナについては第1の組の送信周波数スペクトルS(0)~S(5)がインデックス5~10の周波数ポイントに割り当てられている。
 6個のスペクトルから構成される周波数スペクトルS(m)(0≦m≦5)を、図12Aのように各アンテナの割当に対して低周波数ポイントから高周波数ポイントへと順にスペクトルを割り当てると、例えば、第5周波数ポイントにおいて第0送信アンテナから周波数スペクトルS(4)が送信され、第1送信アンテナから送信周波数スペクトルS(0)が送信される。また第6周波数ポイントにおいては、第0送信アンテナから周波数スペクトルS(5)が送信され、第1送信アンテナから周波数スペクトルS(1)が送信される。
12A to 12C, the number of transmission antennas N t is 2, the number of DFT points N DFT is 6, and the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1) are used for transmission. An example where frequency points partially overlap is shown.
That is, in FIG. 12A, the first set of transmission frequency spectrums S 0 (0) to S 0 (5) is assigned to the frequency points of indexes 1 to 6 for the 0th transmission antenna, and One set of transmission frequency spectrums S 1 (0) to S 1 (5) is assigned to frequency points of indexes 5 to 10.
When a spectrum of frequency spectrum S (m) (0 ≦ m ≦ 5) composed of six spectra is assigned in order from a low frequency point to a high frequency point for each antenna assignment as shown in FIG. 12A, For example, the frequency spectrum S 0 (4) is transmitted from the 0th transmission antenna at the fifth frequency point, and the transmission frequency spectrum S 1 (0) is transmitted from the first transmission antenna. At the sixth frequency point, the frequency spectrum S 0 (5) is transmitted from the 0th transmission antenna, and the frequency spectrum S 1 (1) is transmitted from the first transmission antenna.
 このように、使用周波数ポイントが各アンテナで異なる場合、割当が一部重複する周波数ポイントにおいて、各送信アンテナから異なるスペクトルが送信されるため、基地局でアンテナ間干渉が生じてしまう。
 そこで、本実施形態では、重複した周波数ポイントでは第0送信アンテナおよび第1送信アンテナから同一の送信周波数スペクトルを送信する。つまり、図12Bのように、第1送信アンテナの第5および第6周波数ポイントでは、第0送信アンテナの送信周波数スペクトルと同様、それぞれ送信周波数スペクトルS(4)およびS(5)を送信する。
In this way, when the frequency points to be used are different for each antenna, different spectrums are transmitted from the respective transmission antennas at the frequency points at which the allocation is partially overlapped. Therefore, inter-antenna interference occurs at the base station.
Therefore, in the present embodiment, the same transmission frequency spectrum is transmitted from the 0th transmission antenna and the first transmission antenna at overlapping frequency points. That is, as shown in FIG. 12B, at the fifth and sixth frequency points of the first transmission antenna, the transmission frequency spectrums S 1 (4) and S 1 (5) are transmitted, respectively, similarly to the transmission frequency spectrum of the zeroth transmission antenna. To do.
 ここで、各送信アンテナから送信される送信周波数スペクトルのサブインデックス(S(4)とS(4)のような送信周波数スペクトルでの下付の数字)が異なるが、数式15で示したように、各送信周波数スペクトルS(4)およびS(4)はプリコーディング・ベクトルwが乗算されているため位相が異なるに過ぎないのであって、もともとは同じスペクトルS(4)である。またプリコーディング・ベクトルwは、各送信アンテナから送信されるスペクトルが基地局102aで同相合成されるように決定されるため、干渉にはならない。
 このように、重複した周波数ポイントで各アンテナから同一スペクトルを送信することで、基地局102aは、端末101aから送信された信号を干渉なく受信することができる。
 ここで、図12Bにおいて、第1送信アンテナにおける第7から第10周波数ポイントへの割当が残っている。そこで、図12Cのように、第1送信アンテナで割り当てられていない周波数スペクトルS(0)~S(3)を、第7から第10周波数ポイントへそれぞれ割り当てる。
 このように割り当てることで、第1送信アンテナからは、周波数スペクトルS(4)、S(5)、S(0)、S(1)、S(2)、S(3)と連続的にスペクトルが割り当てられて、基地局102aへと送信されることになる。つまり、図12Cに示すように、第1送信アンテナから送信されるスペクトルは、図12Aの第0送信アンテナから送信されるスペクトルを巡回シフト量Δ=4だけ巡回シフトさせたものである。
Here, although the sub-indexes (subscripts in the transmission frequency spectrum such as S 0 (4) and S 1 (4)) of the transmission frequency spectrum transmitted from each transmission antenna are different, they are expressed by Equation 15. Thus, the transmission frequency spectrums S 0 (4) and S 1 (4) are only different in phase because they are multiplied by the precoding vector w, and are originally the same spectrum S (4). . Further, the precoding vector w is determined not to cause interference because the spectrum transmitted from each transmission antenna is determined so as to be in-phase combined by the base station 102a.
Thus, by transmitting the same spectrum from each antenna at overlapping frequency points, the base station 102a can receive the signal transmitted from the terminal 101a without interference.
Here, in FIG. 12B, the allocation from the seventh to the tenth frequency points in the first transmitting antenna remains. Therefore, as shown in FIG. 12C, the frequency spectrums S 1 (0) to S 1 (3) not assigned by the first transmitting antenna are assigned to the seventh to tenth frequency points, respectively.
By assigning in this way, the frequency spectrums S 1 (4), S 1 (5), S 1 (0), S 1 (1), S 1 (2), S 1 (3) are transmitted from the first transmitting antenna. ) And the spectrum are continuously allocated and transmitted to the base station 102a. That is, as shown in FIG. 12C, the spectrum transmitted from the first transmission antenna is obtained by cyclically shifting the spectrum transmitted from the 0th transmission antenna of FIG. 12A by the cyclic shift amount Δ 1 = 4.
 図12A~図12Cでは、端末101aの送信アンテナ本数Nが2の場合について説明を行ったが、送信アンテナ本数Nが2より多い場合について、図13A、図13Bを用いて説明を行う。
 図13A、図13Bは、端末101aの送信アンテナ本数Nが5の場合の送信スペクトルの例を示す。
12A to 12C, the case where the number of transmission antennas N t of the terminal 101a is 2 has been described, but the case where the number of transmission antennas N t is greater than 2 will be described with reference to FIGS. 13A and 13B.
13A and 13B show examples of transmission spectrums when the number of transmission antennas N t of the terminal 101a is 5. FIG.
 図13Aでは、第0送信アンテナ(送信アンテナ#0)については送信周波数スペクトルS(0)~S(5)がインデックス8~13の周波数ポイントに割り当てられ、第1送信アンテナ(送信アンテナ#1)については送信周波数スペクトルS(0)~S(5)がインデックス3~8の周波数ポイントに割り当てられ、第2送信アンテナ(送信アンテナ#2)については送信周波数スペクトルS(0)~S(5)がインデックス1~6の周波数ポイントに割り当てられ、第3送信アンテナ(送信アンテナ#3)については送信周波数スペクトルS(0)~S(5)がインデックス6~11の周波数ポイントに割り当てられ、第4送信アンテナ(送信アンテナ#4)については送信周波数スペクトルS(0)~S(5)がインデックス15~20の周波数ポイントに割り当てられる。 In FIG. 13A, for the 0th transmission antenna (transmission antenna # 0), the transmission frequency spectrums S 0 (0) to S 0 (5) are assigned to the frequency points of indexes 8 to 13, and the first transmission antenna (transmission antenna # 0 ) is assigned. For 1), the transmission frequency spectrum S 1 (0) to S 1 (5) is assigned to the frequency points with indices 3 to 8, and for the second transmission antenna (transmission antenna # 2), the transmission frequency spectrum S 2 (0) To S 2 (5) are assigned to the frequency points with indices 1 to 6, and for the third transmitting antenna (transmitting antenna # 3), the transmission frequency spectrums S 3 (0) to S 3 (5) have indices 6 to 11 assigned to frequency point, the fourth transmit antenna (transmission antenna # 4) transmitted frequency spectrum S 4 for (0) S 4 (5) is assigned to the frequency point of the index 15-20.
 図13Aは、周波数領域での巡回シフトを行わない場合の例であり、干渉なく受信可能な周波数ポイントのインデックスは、1、2、12、13、15~20であり、0と14に関しては使用されておらず、その他の周波数インデックスでは各送信アンテナ#0~#4から異なる送信周波数スペクトルが送信される。そのために、基地局102aでは、各スペクトルを分離する必要がある。 FIG. 13A is an example in the case where cyclic shift in the frequency domain is not performed, and the index of frequency points that can be received without interference is 1, 2, 12, 13, 15 to 20, and is used for 0 and 14 In other frequency indexes, different transmission frequency spectra are transmitted from the transmission antennas # 0 to # 4. Therefore, the base station 102a needs to separate each spectrum.
 図13Aの送信スペクトルに対して上述の巡回シフトを適用した場合の送信スペクトルを、図13Bに示す。図13Bでは、周波数インデックスkと、送信スペクトルのポイント数NDFT(図の例では6ポイント)を用いて、スペクトル・インデックスiを定義している。つまり、スペクトル・インデックスiを次式で定義する FIG. 13B shows a transmission spectrum when the above-described cyclic shift is applied to the transmission spectrum of FIG. 13A. In FIG. 13B, the spectrum index i is defined using the frequency index k and the number N DFT of transmission spectrum points (6 points in the example in the figure). In other words, the spectrum index i is defined by
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 つまり、スペクトル・インデックスiは、周波数インデックスkを数値NDFTで除算した際の余りである。
 各送信アンテナでは図13Bのように、スペクトル・インデックスが示す周波数スペクトルを送信することで、各周波数ポイントで、各送信アンテナから同一の送信周波数スペクトルが送信されることになる。例えば、第0送信アンテナ(送信アンテナ#0)では、周波数インデックス8、9、10、11、12、13の周波数ポイントが割り当てられている。周波数インデックス8、9、10、11、12、13はスペクトル・インデックス2、3、4、5、0、1に対応しているから、巡回シフト量Δ=2の巡回シフトを施して、巡回シフト後の周波数スペクトルS(2)、S(3)、S(4)、S(5)、S(0)、S(1)をインデックス8、9、10、11、12、13の周波数ポイントへ割り当てる。
That is, the spectrum index i is the remainder when the frequency index k is divided by the numerical value NDFT .
Each transmission antenna transmits the frequency spectrum indicated by the spectrum index as shown in FIG. 13B, whereby the same transmission frequency spectrum is transmitted from each transmission antenna at each frequency point. For example, frequency points of frequency indexes 8, 9, 10, 11, 12, and 13 are assigned to the 0th transmission antenna (transmission antenna # 0). Since the frequency indexes 8, 9, 10, 11, 12, and 13 correspond to the spectrum indexes 2, 3, 4, 5, 0 , and 1, the cyclic shift amount Δ 0 = 2 is applied to perform cyclic shift. The shifted frequency spectrums S 0 (2), S 0 (3), S 0 (4), S 0 (5), S 0 (0), S 0 (1) are indexed 8, 9, 10, 11, Assign to 12 and 13 frequency points.
 なお、図13Bでは、周波数インデックスを基準としてスペクトル・インデックスを定義したが、図12Cのように特定の送信アンテナを基準とし、その送信アンテナのスペクトル巡回シフト部では巡回シフト量がゼロ、つまり巡回シフトが行われないようにスペクトル・インデックスを決定してもよい。例えば図12Cの例では第0送信アンテナを基準とし、第0送信アンテナの巡回シフト部では巡回シフトが行われず(つまり、巡回シフト量Δ=0)、第1送信アンテナの巡回シフト部では巡回シフト量Δ=4の巡回シフトが行われるように制御を行う。 In FIG. 13B, the spectrum index is defined on the basis of the frequency index. However, as shown in FIG. 12C, a specific transmission antenna is used as a reference, and the cyclic cyclic shift unit of the transmission antenna has a cyclic shift amount of zero, that is, a cyclic shift. The spectral index may be determined so that no. For example, in the example of FIG. 12C, with reference to the 0th transmission antenna, no cyclic shift is performed in the cyclic shift unit of the 0th transmission antenna (that is, cyclic shift amount Δ 0 = 0), and the cyclic shift unit of the first transmission antenna does not perform cyclic shift. Control is performed so that a cyclic shift of the shift amount Δ 1 = 4 is performed.
<変形例>
 端末101aの構成は、図14のように、所定の送信アンテナにおいてスペクトル巡回シフト部を有さない構成とすることができる。
 図14は、本実施形態の変形例である端末101a1の構成を示す概略ブロック図である。
 端末101a1は、符号化部1401、変調部1402、DFT部1403、プリコーディング部1404、スペクトル巡回シフト部1405-1~1405N-1、マッピング部1406-0、1406-1~1406-N-1、参照信号多重部1407-0、1407-1~1407-N-1、OFDM信号生成部1408-0、1408-1~1408-N-1、送信部1409-0、1409-1~1409-N-1、送信アンテナ1410-0、1410-1~910-N-1、受信アンテナ1411、受信部1412、制御情報抽出部1413、割当情報取得部1414、PMI取得部1415、巡回シフト量決定部1416を具備する。
<Modification>
As shown in FIG. 14, the terminal 101a can be configured such that a predetermined transmission antenna does not have a spectrum cyclic shift unit.
FIG. 14 is a schematic block diagram illustrating a configuration of a terminal 101a1 that is a modification of the present embodiment.
Terminal 101a1 includes encoding section 1401, modulating section 1402, DFT section 1403, precoding section 1404, spectrum cyclic shift sections 1405-1 to 1405N t -1, mapping sections 1406-0 and 1406-1 to 1406-N t-. 1, reference signal multiplexers 1407-0, 1407-1 to 1407-N t -1, OFDM signal generators 1408-0, 1408-1 to 1408-N t -1, transmitters 1409-0 and 1409-1 1409-N t -1, transmitting antennas 1410-0, 1410-1 to 910-N t -1, receiving antenna 1411, receiving unit 1412, control information extracting unit 1413, allocation information acquiring unit 1414, PMI acquiring unit 1415, cyclic A shift amount determination unit 1416 is provided.
 図14の端末101a1の構成と図9の端末101aの構成とを比較すると、前者は後者のスペクトル巡回シフト部905-0に相当する構成を欠いており、前者では、プリコーディング部904のプリコーディング後の送信周波数スペクトルが直接マッピング部1406-0に出力される点が相異するが、その他の構成において差異はない。このことは、前述のように、第0送信アンテナを基準とし、第0送信アンテナの巡回シフト部では巡回シフトが行われないように制御しているからである。このことにより、本変形例では、端末101bの構成が簡易化される。 Comparing the configuration of the terminal 101a1 in FIG. 14 and the configuration of the terminal 101a in FIG. 9, the former lacks a configuration corresponding to the latter spectral cyclic shift unit 905-0, and in the former, the precoding of the precoding unit 904 is performed. The difference is that the subsequent transmission frequency spectrum is directly output to mapping section 1406-0, but there is no difference in other configurations. This is because, as described above, the cyclic shift unit of the 0th transmission antenna is controlled so that no cyclic shift is performed with the 0th transmission antenna as a reference. Thereby, in this modification, the configuration of the terminal 101b is simplified.
 図13Bに戻って、図13Bの第4送信アンテナ(送信アンテナ#4)は他の送信アンテナの周波数割当が重複しないため、この点が送受信側で既知であれば、スペクトル・インデックスによる巡回シフトを行わなくてもよい。 Returning to FIG. 13B, since the frequency allocation of the other transmission antennas in the fourth transmission antenna (transmission antenna # 4) in FIG. 13B does not overlap, if this point is known on the transmission / reception side, cyclic shift by the spectrum index is performed. It does not have to be done.
 次に、図13Bのようなスペクトル巡回シフトを行うための巡回シフト量を決定する図9の巡回シフト量決定部の構成の一例について、図15を用いて説明を行う。ここで説明をする巡回シフト量決定部に対して916aという符号を付す。
 各送信アンテナにおける割当情報は巡回シフト量決定部916a内の先頭周波数インデックス取得部1501-0~1501-N-1にそれぞれ入力される。各先頭周波数インデックス取得部1501-0~1501-N-1では、入力された割当情報の先頭(最も周波数が低い)周波数インデックスを取得する。
Next, an example of the configuration of the cyclic shift amount determination unit in FIG. 9 that determines the cyclic shift amount for performing the spectral cyclic shift as shown in FIG. 13B will be described with reference to FIG. Here, a reference numeral 916a is assigned to the cyclic shift amount determination unit described here.
Allocation information in each transmission antenna is input to head frequency index acquisition units 1501-0 to 1501-N t −1 in cyclic shift amount determination unit 916a. Each head frequency index acquisition unit 1501-0 to 1501-N t -1 acquires the head (lowest frequency) frequency index of the input allocation information.
 例えば、図13Aの第3送信アンテナの場合、先頭周波数インデックス取得部1501-3は、先頭周波数インデックスとして6を出力する。先頭周波数インデックス取得部1501-0~1501-N-1の出力は、それぞれモジュロ演算部1502-0~1502-N-1に入力される。モジュロ演算部1502-0~1502-N-1では、入力された先頭周波数インデックスをNDFTで除算した余りを出力する。モジュロ演算部1502-nに入力された先頭周波数インデックスをkHEAD,nとすると、モジュロ演算部1502-nの出力する巡回シフト量Δは次式で表わされる。ただし、0≦n≦N-1である。 For example, in the case of the third transmitting antenna in FIG. 13A, the head frequency index acquisition unit 1501-3 outputs 6 as the head frequency index. The outputs of the head frequency index acquisition units 1501-0 to 1501-N t −1 are input to modulo arithmetic units 1502-0 to 1502-N t −1, respectively. The modulo operation unit 1502-0 ~ 1502-N t -1, and outputs the remainder of the top frequency index input divided by N DFT. If the head frequency index input to the modulo arithmetic unit 1502-n is k HEAD, n , the cyclic shift amount Δn output from the modulo arithmetic unit 1502- n is expressed by the following equation. However, 0 ≦ n ≦ N t −1.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 出力Δは、図9に示す端末101aの第nスペクトル巡回シフト部905-nにおける巡回シフト量として、巡回シフト量決定部916aから出力される。 The output delta n is the cyclic shift amount in the n spectral cyclic shift section 905-n of the terminal 101a shown in FIG. 9, is output from the cyclic shift amount determining unit 916a.
 このようにして、巡回シフト量決定部916aでは、端末101aの送信アンテナ910-0~910-N-1の周波数割当における先頭周波数インデックスをNDFTで除算した時の余りを計算することにより、巡回シフト量を決定することができる。
 なお、上記説明では、先頭周波数インデックス取得部1501-0~1501-N-1は第0周波数ポイントを基準としたが、端末101aと基地局102aで既知であれば、特定の送信アンテナの先頭周波数インデックスを基準として先頭周波数インデックスを出力してもよい。
 例えば、図13Aで第0送信アンテナを基準とすると、先頭周波数インデックス取得部1501-0が出力する先頭周波数インデックスは0であり、先頭周波数インデックス取得部1501-1が出力する先頭周波数インデックスは-5となる。この場合、モジュロ演算部1502-1は、
In this way, the cyclic shift amount determining unit 916a, by calculating the remainder when the first frequency index in the frequency allocation of transmission antennas 910-0 ~ 910-N t -1 terminal 101a divided by N DFT, A cyclic shift amount can be determined.
In the above description, the head frequency index acquisition units 1501-0 to 1501-N t −1 are based on the 0th frequency point. However, if the terminal 101a and the base station 102a are already known, the head frequency index acquisition units 1501-0 to 1501-N t −1 are used as the reference. You may output a head frequency index on the basis of a frequency index.
For example, with reference to the 0th transmission antenna in FIG. 13A, the head frequency index output from the head frequency index acquisition unit 1501-0 is 0, and the head frequency index output from the head frequency index acquisition unit 1501-1 is -5. It becomes. In this case, the modulo arithmetic unit 1502-1
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
であるため、巡回シフト量Δとして1を出力する。そして、第1送信アンテナ(送信アンテナ#1)では、巡回シフト量Δ=1を施した結果の送信周波数スペクトルS(1)、S(2)、S(3)、S(4)、S(5)、S(0)をインデックス3~8の周波数ポイントへ割り当てる。
 ここでスペクトルを巡回シフトすることによる時間領域信号波形について説明を行う。
送信周波数スペクトルS(m)(0≦m≦NDFT-1)の逆離散フーリエ変換(IDFT)は次式で与えられる。
Therefore, 1 is output as the cyclic shift amount Δ 1 . Then, in the first transmission antenna (transmission antenna # 1), the transmission frequency spectrums S 1 (1), S 1 (2), S 1 (3), and S 1 (S 1 () as a result of applying the cyclic shift amount Δ 1 = 1. 4), S 1 (5), S 1 (0) are assigned to the frequency points of indexes 3-8.
Here, the time-domain signal waveform by cyclically shifting the spectrum will be described.
The inverse discrete Fourier transform (IDFT) of the transmission frequency spectrum S (m) (0 ≦ m ≦ NDFT-1) is given by the following equation.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 巡回シフト量Δを与えた周波数スペクトルのIDFT出力s’(t)は次式で与えられる。 IDFT output s of the frequency spectrum given cyclic shift amount Δ n '(t) is given by the following equation.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここでNDFTポイントのIDFTでは、任意の整数mについて、 In this case the N DFT point IDFT, for any integer m,
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
が成り立つため、数式22は次式のように変形できる。 Therefore, Formula 22 can be transformed as the following formula.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このように、巡回シフトを与えた場合の時間領域信号s’(t)は、巡回シフトを与えない場合の時間領域信号s(t)に位相回転を与えたものになる。位相回転を与えても送信信号のピーク対平均電力比PAPRは、低い値に保たれる。つまり、巡回シフトを与えても、送信信号の統計的な性質は変わらないため、端末101aの送信部で用いる電力増幅器への負荷が過大になることがない。 As described above, the time domain signal s' (t) when the cyclic shift is given is obtained by applying phase rotation to the time domain signal s (t) when the cyclic shift is not given. Even if phase rotation is applied, the peak-to-average power ratio PAPR of the transmission signal is kept at a low value. That is, even if cyclic shift is given, the statistical property of the transmission signal does not change, so that the load on the power amplifier used in the transmission unit of the terminal 101a does not become excessive.
 図16は、本実施形態における基地局102aの構成を示す概略ブロック図である。
 基地局102aは、受信アンテナ1601-0~1601-N-1、OFDM信号受信部1602-0~1602-N-1、参照信号分離部1603-0~1603-N-1、デマッピング部1604-0~1604-N-1、等化部1605、IDFT部1606、復調部1607、復号部1608、伝搬路推定部1609、スケジューリング部1610、送信部1611、送信アンテナ1612、PMI決定部1613を具備する。
FIG. 16 is a schematic block diagram showing the configuration of the base station 102a in the present embodiment.
The base station 102a includes receiving antennas 1601-0 to 1601-N r -1, OFDM signal receiving units 1602-0 to 1602-N r -1, reference signal demultiplexing units 1603-0 to 1603-N r -1, demapping 1604-0 to 1604-N r −1, equalization unit 1605, IDFT unit 1606, demodulation unit 1607, decoding unit 1608, propagation path estimation unit 1609, scheduling unit 1610, transmission unit 1611, transmission antenna 1612, PMI determination unit 1613.
 以下では基地局102aの各受信アンテナ1601-0~1601-N-1を用いて、端末101aからシングルキャリア伝送により送信されてきた信号を受信する場合について説明する。
 最初に説明を行った第1の実施形態では、干渉が生じるような周波数割当の場合、1本の受信アンテナでは信号分離を行うことが困難であったが、この第2の実施形態では干渉が生じないように送信するため、基地局の受信アンテナは1本にする。ただし、本実施形態の説明として、ランク数が1よりも大きい場合に一般化して説明する便宜上、受信アンテナ1601-0~1601-N-1として複数本の受信アンテナを図示している。
Hereinafter, a case will be described in which a signal transmitted from the terminal 101a by single carrier transmission is received using each of the receiving antennas 1601-0 to 1601-N r −1 of the base station 102a.
In the first embodiment described first, in the case of frequency allocation that causes interference, it is difficult to perform signal separation with one receiving antenna, but in the second embodiment, there is no interference. In order to transmit so as not to occur, the base station has one receiving antenna. However, as an explanation of the present embodiment, for the convenience of generalization when the number of ranks is greater than 1, a plurality of reception antennas are illustrated as reception antennas 1601-0 to 1601-N r −1.
 基地局構成102aの構成を、第1の実施形態における基地局102の構成(図5)と対比すると、前者ではPMI決定部1613が余分に付加されており、両者は、PMI決定部1613とその他の構成要素との接続関係が相異するだけで、その他の構成要素およびその相互接続関係は同じである。従って、以下では専らPMI決定部1613とその他の構成要素との接続関係について説明を行う。 When the configuration of the base station configuration 102a is compared with the configuration of the base station 102 in the first embodiment (FIG. 5), an extra PMI determination unit 1613 is added in the former, and both of them are the same as the PMI determination unit 1613 and others. The other components and their interconnection relationships are the same except for the connection relationship with the other components. Therefore, the connection relationship between the PMI determination unit 1613 and other components will be described below exclusively.
 本実施形態では、端末101aでは、伝搬路に応じてプリコーディング部904で送信信号のプリコーディングを行うため、基地局102aのPMI決定部513には、スケジューリング部1610が通知するところの、端末101aの各送信アンテナ1409-0~1409-N-1の周波数割当情報、および伝搬路推定部1609が出力する伝搬路推定値が入力される。 In this embodiment, since the terminal 101a precodes the transmission signal in the precoding unit 904 according to the propagation path, the scheduling unit 1610 notifies the terminal 101a to the PMI determination unit 513 of the base station 102a. The frequency allocation information of each of the transmission antennas 1409-0 to 1409-N t −1 and the channel estimation value output by the channel estimation unit 1609 are input.
 PMI決定部1613では、スケジューリング部1610から入力される周波数割当における伝搬路推定値と、PMI決定部1613で予め用意されている複数のプリコーディング行列を総当りで乗算し(例えば、表1の場合、それぞれのPMIで乗算を行う)、最もSINR(信号対干渉雑音電力比)、SNR(信号対雑音比)または伝搬路容量が高くなるプリコーディング行列を示すPMIを送信部1611に出力する。
 送信部1611では、スケジューリング部1610から入力される周波数割当情報とPMI決定部1613から入力されるプリコーディング行列インディケータ(PMI)を制御情報として送信アンテナ1612を介して端末101aに送信する。
The PMI determination unit 1613 multiplies the channel estimation value in the frequency allocation input from the scheduling unit 1610 by a plurality of precoding matrices prepared in advance by the PMI determination unit 1613 (for example, in the case of Table 1). The PMI indicating the precoding matrix having the highest SINR (signal-to-interference noise power ratio), SNR (signal-to-noise ratio) or propagation path capacity is output to the transmitter 1611.
The transmission unit 1611 transmits the frequency allocation information input from the scheduling unit 1610 and the precoding matrix indicator (PMI) input from the PMI determination unit 1613 as control information to the terminal 101a via the transmission antenna 1612.
 なお、PMIの決定の際、図1の複数の端末により、時間および周波数を共有するMU-MIMO(マルチユーザ・マイモ)が行われる場合、他の端末の伝搬路を考慮し、受信側の基地局での信号分離を行い易くするプリコーディングが行われるようにしてもよい。
 一方、各デマッピング部1604-0~1604-N-1では、入力されたNFFTポイントのデータ信号の受信スペクトルから、各スペクトルに関して、送信に用いた周波数ポイントでの受信周波数スペクトルの抽出が行われる。
When MU-MIMO (multiuser mimo) that shares time and frequency is performed by a plurality of terminals in FIG. 1 when determining the PMI, the base station on the receiving side takes into account the propagation path of other terminals. Precoding that facilitates signal separation at a station may be performed.
On the other hand, each of the demapping units 1604-0 to 1604 -N r −1 extracts the received frequency spectrum at the frequency point used for transmission for each spectrum from the received spectrum of the data signal of N FFT points. Done.
 例えば、図12Cのような周波数割当において、送信周波数スペクトルS(1)を抽出することを考える。送信周波数スペクトルS(1)は、第0送信アンテナからは第2周波数ポイントを用いて送信が行われ、第1送信アンテナからは第8周波数ポイントを用いて送信が行われる。従って、各デマッピング部1604-0~1604-N-1では、第2および第8周波数ポイントを抽出して、等化部1605に入力する。 For example, consider the extraction of the transmission frequency spectrum S (1) in the frequency allocation as shown in FIG. 12C. The transmission frequency spectrum S (1) is transmitted from the 0th transmission antenna using the second frequency point, and is transmitted from the first transmission antenna using the eighth frequency point. Accordingly, each of the demapping units 1604-0 to 1604 -N r −1 extracts the second and eighth frequency points and inputs them to the equalization unit 1605.
 また、送信周波数スペクトルS(4)は、第0送信アンテナからは第5周波数ポイントを用いてS(4)として送信が行われ、第1送信アンテナからも第5周波数ポイントを用いてS(4)として送信が行われる。従って、各デマッピング部1604-0~1604-N-1では、第5周波数ポイントでの受信信号のみを抽出して等化部1605に入力する。このような処理を、NDFT個の送信周波数スペクトルすべてに対して行う。 The transmission frequency spectrum S (4) is transmitted as S 0 (4) from the 0th transmission antenna using the fifth frequency point, and S 1 using the fifth frequency point from the first transmission antenna. Transmission is performed as (4). Accordingly, each of the demapping units 1604-0 to 1604 -N r −1 extracts only the received signal at the fifth frequency point and inputs it to the equalization unit 1605. Such processing is performed for all NDFT transmission frequency spectra.
 次に、図13Bに示す割当が行われた場合に、等化部1605が行う処理について説明を行う。
 一例として、送信周波数スペクトルS(1)の等化を行う場合の説明を行う。第n受信アンテナの第k周波数ポイントでの受信信号をR(k)とすると、デマッピング部1604-nから入力される送信周波数スペクトルS(1)の受信信号R(1)、R(7)、R(13)およびR(19)は、それぞれ次の数式24で表わされる。
Next, processing performed by the equalization unit 1605 when the assignment illustrated in FIG. 13B is performed will be described.
As an example, a description will be given of the case where the transmission frequency spectrum S (1) is equalized. Assuming that the received signal at the k-th frequency point of the n-th receiving antenna is R n (k), the received signals R n (1), R n of the transmission frequency spectrum S (1) input from the demapping unit 1604- n (7), R n (13) and R n (19) are each expressed by the following formula 24.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 ここで、Hn,l(k)は第l送信アンテナと第n受信アンテナの間の第k周波数ポイントにおける伝搬路利得である。数式24は、雑音を無視した式である。送信周波数スペクトルS(1)は第1、7、13および19周波数ポイントで受信されるため、4倍の受信アンテナ数で受信されると考えることができる。 Here, H n, l (k) is a channel gain at the k-th frequency point between the l-th transmitting antenna and the n-th receiving antenna. Formula 24 is a formula that ignores noise. Since the transmission frequency spectrum S (1) is received at the first, seventh, thirteenth, and nineteenth frequency points, it can be considered that the transmission frequency spectrum S (1) is received with four times the number of reception antennas.
 図17は、等化部1605の詳細を示すブロック図である。
 等化部1605は、結合部1701、重み乗算部1702、伝搬路ベクトル生成部1703、SIMO重み算出部1704を具備する。
 等化部1605に対しては、デマッピング部1604-0からNDFT×N個の値が入力され、同様にして、最後のデマッピング部1604-N-1からもNDFT×N個の値が入力される。従って、等化部1605に対しては、デマッピング部1604-0~1604-N-1からNDFT×N×N個の値が入力される。
FIG. 17 is a block diagram showing details of the equalization unit 1605.
The equalization unit 1605 includes a combining unit 1701, a weight multiplication unit 1702, a propagation path vector generation unit 1703, and a SIMO weight calculation unit 1704.
For equalizer 1605, is input N DFT × N t pieces of values from the demapping section 1604-0, similarly, from the end of the de-mapping unit 1604-N r -1 N DFT × N t Values are entered. Accordingly, N DFT × N t × N r values are input to the equalization unit 1605 from the demapping units 1604-0 to 1604 -N r −1.
 そこで、等化部1605の結合部1701では、受信周波数ポイント毎のスペクトルを結合し、4N×1のベクトルRS(1)を生成する。結合部1701が重み乗算部1702に入力するベクトルRS(1)は次の数式25で表わされる。 Therefore, the combining unit 1701 of the equalizing unit 1605 combines the spectrum for each reception frequency point to generate a 4N r × 1 vector R S (1) . A vector R S (1) input to the weight multiplication unit 1702 by the combining unit 1701 is expressed by the following Expression 25.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 伝搬路ベクトル生成部1703では、伝搬路推定部1609から入力された伝搬路推定値が数式25の In the propagation path vector generation unit 1703, the propagation path estimation value input from the propagation path estimation unit 1609 is expressed by Equation 25.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
を構成するための情報を結合部1701から入力され、数式26の推定値をSIMO重み算出部1704に入力する。
 第1の実施形態と異なり、本実施形態では、干渉となる送信信号が存在しないため、伝搬路行列が生成されることはなく、伝搬路ベクトル(あるいはスカラ)が生成されることになる。
 SIMO重み算出部1704では、送信周波数スペクトルS(1)の等化を行うために、第k周波数ポイントの第n受信アンテナの受信スペクトルに乗算するところの、干渉のない場合のSIMO重みベクトルwS(1)の算出を行う。1×4N(1行4N列)の重みベクトルwS(1)は次の数式27で表わされる。
Is input from the combining unit 1701, and the estimated value of Expression 26 is input to the SIMO weight calculating unit 1704.
Unlike the first embodiment, in this embodiment, since there is no transmission signal that causes interference, a propagation path matrix is not generated, and a propagation path vector (or scalar) is generated.
The SIMO weight calculation unit 1704 multiplies the reception spectrum of the nth reception antenna at the kth frequency point in order to equalize the transmission frequency spectrum S (1), and the SIMO weight vector w S when there is no interference. (1) is calculated. The weight vector w S (1) of 1 × 4N r (1 row 4N r column ) is expressed by the following Equation 27.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 ここで、σは、平均雑音電力である。つまり、SIMO重み算出部1704では、伝搬路ベクトル生成部1703から入力された伝搬路行列HS(1)の推定値と、図示しない雑音推定部から入力される平均雑音電力推定値を用いて数式27の計算を行い、SIMO重みベクトルwS(1)を算出し、重み乗算部1702に入力する。
 なお、数式27は、MMSE(Minimum Mean Square Error、最小平均2乗誤差)重みを例にしているが、雑音を考慮しないZF(Zero Forcing)重み、MRC(Maximum Ratio Combining)重み、等であってもよい。さらに、繰り返し等化処理や、MLD(Maximum Likelihood Detection、最尤検出)等、他の信号分離法を用いてもよい。
Here, σ 2 is the average noise power. That is, the SIMO weight calculation unit 1704 uses the estimated value of the propagation path matrix H S (1) input from the propagation path vector generation unit 1703 and the average noise power estimation value input from the noise estimation unit (not shown ). 27 is calculated, a SIMO weight vector w S (1) is calculated and input to the weight multiplier 1702.
Note that Equation 27 uses MMSE (Minimum Mean Square Error) weights as an example, but ZF (Zero Forcing) weights, MRC (Maximum Ratio Combining) weights, etc. that do not take noise into account. Also good. Furthermore, other signal separation methods such as iterative equalization processing and MLD (Maximum Likelihood Detection) may be used.
 このように、同一のスペクトルが送信された複数の周波数ポイント(上述の例では第1、7、13および19周波数ポイントにおいて送信周波数スペクトルS(1)が送信されている)が合成されることを考慮した重みを生成することで、効果的に送信ダイバーシチ利得を得ることができる。また干渉が存在しないため、第1の実施形態の重みと異なり、どのような周波数割当においても、数式4のようにMIMO重みを算出するための逆行列演算を伴うことがない。従って、計算量を小さくすることができ、処理が迅速に行える。
 重み乗算部1702では、結合部1701から入力されたRS(1)とwS(1)との乗算を行い、送信周波数スペクトル等化後のS(1)である
In this way, a plurality of frequency points at which the same spectrum is transmitted (in the above example, the transmission frequency spectrum S (1) is transmitted at the first, seventh, thirteenth and nineteenth frequency points) are combined. By generating the weights considered, it is possible to effectively obtain a transmission diversity gain. In addition, since there is no interference, unlike the weight of the first embodiment, any frequency allocation does not involve an inverse matrix operation for calculating the MIMO weight as in Equation 4. Accordingly, the amount of calculation can be reduced and the processing can be performed quickly.
Weight multiplying section 1702 performs multiplication of R S (1) input from combining section 1701 and w S (1), and is S (1) after transmission frequency spectrum equalization.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
を算出する。等化後のS(1)は次式で表わされる。 Is calculated. S (1) after equalization is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 このように、端末101aでスペクトル巡回シフトを行うことにより、各送信アンテナで割当周波数が異なる場合においても、アンテナ間干渉なく同一データを送信することができる。
 例えば、図13Bのような周波数割当の場合、第6周波数ポイントでは送信周波数スペクトルS(0)が3送信アンテナから送信されるため、3本分のプリコーディングによる送信アンテナダイバーシチ効果を得ることができる。
 また、さらに、送信周波数スペクトルS(0)は第12および18周波数ポイントからも送信されるため、プリコーディング利得に加えて周波数ダイバーシチ利得も得ることができる。
As described above, by performing the spectrum cyclic shift in the terminal 101a, the same data can be transmitted without inter-antenna interference even when the assigned frequencies are different among the transmission antennas.
For example, in the case of frequency allocation as shown in FIG. 13B, since the transmission frequency spectrum S (0) is transmitted from three transmission antennas at the sixth frequency point, a transmission antenna diversity effect by precoding for three lines can be obtained. .
Furthermore, since the transmission frequency spectrum S (0) is also transmitted from the 12th and 18th frequency points, a frequency diversity gain can be obtained in addition to the precoding gain.
 なお、伝送に用いた周波数ポイントの一部、あるいはすべてにおいて、他の端末の信号が多重された場合、つまり、MU-MIMO(マルチユーザ・マイモ)の場合は、第1の実施形態で説明を行ったように、干渉を考慮した重みを算出する。さらに、端末が2またはそれ以上のレイヤ(ストリーム、ランク)を送信するシングルユーザMIMOの場合であってもよい。 In addition, when signals of other terminals are multiplexed at some or all of the frequency points used for transmission, that is, in the case of MU-MIMO (multiuser mimo), the description will be given in the first embodiment. As was done, the weights taking into account interference are calculated. Further, it may be a case of single user MIMO in which a terminal transmits two or more layers (stream, rank).
 本実施形態によれば、送信アンテナ毎に異なる周波数割当で通信を行うシステムにおいて、各周波数ポイントでアンテナ間干渉を発生することなく送信を行うことができる。従って、基地局102aでは、他のアンテナからの干渉がないので、等化部1605において計算量の小さな重みを用いて等化を行うことができる。さらに受信アンテナで各送信アンテナからの送信信号が同相で合成されるように、プリコーディングによる送信ダイバーシチを用いることができる。
 また、基地局では、様々な周波数で受信されたスペクトルが、合成されることを考慮した重みを生成することで、精度のよい等化を行うことが可能となる。さらに、各送信アンテナにおいて送信信号のPAPR特性を維持しているため、カバレッジを広げることができる。
According to the present embodiment, in a system that performs communication with different frequency assignments for each transmission antenna, transmission can be performed without causing inter-antenna interference at each frequency point. Accordingly, since there is no interference from other antennas in the base station 102a, the equalization unit 1605 can perform equalization using a small amount of calculation. Furthermore, transmission diversity by precoding can be used so that transmission signals from the transmission antennas are combined in phase at the reception antenna.
In addition, the base station can perform equalization with high accuracy by generating weights in consideration of the fact that spectra received at various frequencies are combined. Furthermore, since the PAPR characteristic of the transmission signal is maintained in each transmission antenna, the coverage can be expanded.
 なお、本実施形態では、送信するストリーム(「独立なデータ」、「ランク」、「レイヤ」と言ってもよい。)の数が1である場合で説明を行ったが、送信アンテナ本数よりもランク数が少ない場合、例えば、4送信アンテナで3つのストリームを送信する場合では、同じ信号を送信する2アンテナに関して、本実施形態を適用し、他の2アンテナから送信される2ストリームに関しては、従来から存在する信号分離法を併用することで良好な伝送を行うことが可能となる。 In the present embodiment, the case where the number of streams to be transmitted (which may be referred to as “independent data”, “rank”, and “layer”) is 1 has been described. When the number of ranks is small, for example, when three streams are transmitted using four transmission antennas, the present embodiment is applied to two antennas that transmit the same signal, and two streams transmitted from the other two antennas are Good transmission can be performed by using a conventional signal separation method in combination.
<第3の実施形態>
 第2の実施形態では、基地局から通知される制御情報によってプリコーディングを行う閉ループ型の送信ダイバーシチの場合を示した。しかしながら、端末が高速移動した場合や、基地局から伝搬路状態に関する情報(伝搬路情報そのものや、プリコーディング行列インディケータPMI等)が通知されない場合には、閉ループ型の送信ダイバーシチを行うことができない。
 そこで、本実施形態では、開ループ型の送信ダイバーシチを適用した場合について説明を行う。
<Third Embodiment>
In the second embodiment, a case of closed-loop transmission diversity in which precoding is performed based on control information notified from the base station has been described. However, closed-loop transmission diversity cannot be performed when the terminal moves at high speed or when information on the propagation path state (propagation path information itself, precoding matrix indicator PMI, etc.) is not notified from the base station.
Therefore, in the present embodiment, a case where open-loop transmission diversity is applied will be described.
 初めに、STBC(時空間ブロック符号化)について説明を行う。送信アンテナ数が2の場合の時空間ブロック符号化(「Alamauti(アラムーチ)の符号化」とも称される。)を、表2に示す。 First, STBC (space-time block coding) will be described. Table 2 shows the space-time block coding (also referred to as “Alamuti coding”) when the number of transmission antennas is two.
Figure JPOXMLDOC01-appb-T000031
 ここで、*は複素共役演算を表わす。
Figure JPOXMLDOC01-appb-T000031
Here, * represents a complex conjugate operation.
 STBC(時空間ブロック符号化)では、表2のように、時刻Tおよび時刻T+1という隣接した2つの送信タイミングを用いて、2つの異なるデータAおよびBを表2のように符号化して、端末の各送信アンテナから重複して、すなわち冗長性を持たせて送信する。時空間ブロック符号化をSC-FDMAに適用する場合、DFT部が出力するNDFTポイントの周波数スペクトルA(m)(0≦m≦NDFT-1)およびNDFTポイントの周波数スペクトルB(m)(0≦m≦NDFT-1)を用いて時空間ブロック符号化を行う。 In STBC (space-time block coding), as shown in Table 2, two adjacent data A and B are coded as shown in Table 2 using two adjacent transmission timings of time T and time T + 1, and the terminal Are transmitted redundantly, that is, with redundancy. When applying STBC to SC-FDMA, DFT unit outputs N DFT point frequency spectrum A (m) (0 ≦ m ≦ N DFT -1) and N DFT point frequency spectrum B (m) Space-time block coding is performed using (0 ≦ m ≦ N DFT −1).
  以下では、SC-FDMAにおける時空間ブロック符号化STBCついて説明を行う。また、本実施形態の端末に101bとの符号を付し、基地局には102bとの符号を付して説明を行う。
 図18は、時刻Tにおける第0送信アンテナ(送信アンテナ#0)および第1送信アンテナ(送信アンテナ#1)の送信周波数スペクトルの一例を示す。
 図18に示すように、端末101bは、異なる送信周波数スペクトルA(m)およびB(m)を一部重複する周波数割当で送信する。
Hereinafter, space-time block coding STBC in SC-FDMA will be described. Further, description will be given with reference to the terminal of the present embodiment denoted by reference numeral 101b and the base station denoted by reference numeral 102b.
FIG. 18 shows an example of the transmission frequency spectrum of the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1) at time T.
As illustrated in FIG. 18, the terminal 101b transmits different transmission frequency spectra A (m) and B (m) with a frequency allocation that partially overlaps.
 つまり、端末101bは、時刻Tにおいて、第0送信アンテナ(送信アンテナ#0)からは送信周波数スペクトルA(0)~A(5)を、インデックス0~5の周波数ポイントに割り当てて送信し、第1送信アンテナ(送信アンテナ#1)からは送信周波数スペクトルB(0)~B(5)を、インデックス4~9の周波数ポイントに割り当てて送信するものとする。両送信アンテナから送信される送信周波数スペクトルは、インデックス4、5の周波数ポイントにおいて一部重複している。 That is, at time T, terminal 101b transmits transmission frequency spectrums A (0) to A (5) from the 0th transmission antenna (transmission antenna # 0) by assigning them to the frequency points with indexes 0 to 5, It is assumed that transmission frequency spectrums B (0) to B (5) are assigned to frequency points of indexes 4 to 9 and transmitted from one transmission antenna (transmission antenna # 1). The transmission frequency spectrum transmitted from both transmission antennas partially overlaps at the frequency points of indexes 4 and 5.
 次に、図19A、B、Cは、隣接する時刻T+1における各送信アンテナの送信スペクトルの一例を示す。
 各送信アンテナの周波数割当は、上述の時刻Tの場合と一致しているものとする。
 図19Aは、周波数が一部重複する場合に、周波数巡回シフトを適用せずに表2の時空間ブロック符号化を適用した場合の周波数割当を示す。
 つまり、図19Aに示すように、隣接する時刻T+1において、第0送信アンテナ(送信アンテナ#0)からは送信周波数スペクトルB(0)~B(5)の共役複素数であるB(0)~B(5)を、インデックス0~5の周波数ポイントに割り当てて送信し、第1送信アンテナ(送信アンテナ#1)からは送信周波数スペクトルA(0)~A(5)の共役複素数に-1を乗算した-A(0)~-A(5)を、インデックス4~9の周波数ポイントに割り当てて送信する。
Next, FIG. 19A, B, and C show an example of the transmission spectrum of each transmission antenna at the adjacent time T + 1.
It is assumed that the frequency allocation of each transmission antenna is the same as that at time T described above.
FIG. 19A shows frequency allocation when the space-time block coding of Table 2 is applied without applying the frequency cyclic shift when the frequencies partially overlap.
That is, as shown in FIG. 19A, at the adjacent time T + 1, from the 0th transmitting antenna (transmitting antenna # 0), B * (0) ˜ B * (5) is assigned to the frequency points with indexes 0 to 5 and transmitted, and the first transmission antenna (transmission antenna # 1) sets the conjugate complex number of the transmission frequency spectrum A (0) to A (5) to −1. -A * (0) to -A * (5) multiplied by are assigned to the frequency points of indexes 4 to 9 and transmitted.
 ここで、時空間ブロック符号化は、2つの送信タイミングT、T+1を用いて、2つの異なるデータを基地局で分離するものであるが、例えば、第4周波数ポイントに関しては、時刻TでA(4)、B(0)が、時刻T+1でB(4)、-A(0)が送信される。この結果、2つの送信タイミングで異なる4つ送信周波数スペクトルが重複して送信されることになるため、基地局で干渉なく分離することは難しい。 Here, the space-time block coding uses two transmission timings T and T + 1 to separate two different data at the base station. For example, for the fourth frequency point, A ( 4), B (0) is transmitted at time T + 1, B * (4), -A * (0). As a result, four different transmission frequency spectra are transmitted in duplicate at the two transmission timings, so that it is difficult for the base station to separate them without interference.
 そこで、図19Bに示すように、第4周波数ポイントに関しては、時刻TでA(4)、B(0)を送信しているため、時刻T+1では時空間ブロック符号化によって、B(0)、-A(4)をそれぞれ第0送信アンテナ(送信アンテナ#0)、第1送信アンテナ(送信アンテナ#1)から送信する。また、第5周波数ポイントでも同様に、A(5)、B(1)に対して時空間ブロック符号化を行い、時刻T+1では、B(1)および-A(5)を第0送信アンテナ、第1送信アンテナから送信する。
 つまり、図19Bのように時空間ブロック符号化を行う。この結果、第4および第5周波数ポイントでは、2つの送信タイミングで2つの異なる送信周波数スペクトルを重複して送信することになるため、基地局で分離することが可能となる。
Therefore, as shown in FIG. 19B, since A (4) and B (0) are transmitted at time T for the fourth frequency point, B * (0) is obtained by space-time block coding at time T + 1. , −A * (4) are transmitted from the 0th transmission antenna (transmission antenna # 0) and the first transmission antenna (transmission antenna # 1), respectively. Similarly, at the fifth frequency point, space-time block coding is performed on A (5) and B (1), and at time T + 1, B * (1) and −A * (5) are transmitted as the 0th transmission. Transmit from the antenna and the first transmitting antenna.
That is, space-time block coding is performed as shown in FIG. 19B. As a result, at the fourth and fifth frequency points, two different transmission frequency spectra are transmitted in duplicate at two transmission timings, so that the base station can separate them.
 ここで図19Bにおいて、第0送信アンテナの第0周波数ポイント~第3周波数ポイント、および第1送信アンテナの第6~9周波数ポイントでは周波数スペクトルの割当が行われていない。図19Bにおいて割り当てられていない周波数ポイントでは、他アンテナからの干渉が生じないため、どのようなスペクトルを送信してもよい。例えば、時刻T+1において、第0送信アンテナ(送信アンテナ#0)の第0~3周波数ポイントにおいて、B(2)、B(3)、B(4)、B(5)を送信し、第1送信アンテナ(送信アンテナ#1)の第6~9周波数ポイントにおいて、A(0)、A(1)、A(2)、A(3)を送信してもよい。
 しかしながら、その場合、第4および第5周波数ポイントにおいて第0および第1送信アンテナから送信されるスペクトルは、もともとのスペクトルに対し、複素共役演算を行い、特に第1送信アンテナに関してはマイナスを乗算しているため、それ以外の周波数ポイントのスペクトルとはDFT演算に縛られない独立したものとなり、時間領域に変換した際に、ピーク対平均電力比(PAPR)が高くなってしまう。そこで、図19Cに示すように、他アンテナと割当周波数が重複しない周波数ポイントにおいても重複した周波数ポイントと同様に時空間ブロック符号化を行って送信する。
 図19Cのように、スペクトルが巡回的になるようにスペクトルを割り当てることによって、時空間ブロック符号化を行っても、PAPRを低く維持できる。
Here, in FIG. 19B, frequency spectrum allocation is not performed at the 0th to 3rd frequency points of the 0th transmission antenna and the 6th to 9th frequency points of the 1st transmission antenna. In the frequency point which is not allocated in FIG. 19B, since interference from other antennas does not occur, any spectrum may be transmitted. For example, at time T + 1, B (2), B (3), B (4), B (5) are transmitted at the 0th to 3rd frequency points of the 0th transmission antenna (transmission antenna # 0), A (0), A (1), A (2), and A (3) may be transmitted at the sixth to ninth frequency points of the transmission antenna (transmission antenna # 1).
However, in that case, the spectrum transmitted from the 0th and 1st transmission antennas at the 4th and 5th frequency points performs a complex conjugate operation on the original spectrum, and in particular for the 1st transmission antenna, it is multiplied by minus. Therefore, the spectrum at other frequency points is independent from the DFT operation, and when converted to the time domain, the peak-to-average power ratio (PAPR) becomes high. Therefore, as shown in FIG. 19C, even at a frequency point where the assigned frequency does not overlap with other antennas, space-time block coding is performed and transmitted in the same manner as the overlapping frequency point.
By assigning the spectrum so that the spectrum is cyclic as shown in FIG. 19C, the PAPR can be kept low even when space-time block coding is performed.
 図20は、本実施形態の端末101bの具体的構成を示す。
 端末101bは、符号化部2001、変調部2002、DFT部2003、送信ダイバーシチ部2004、スペクトル巡回シフト部2005-0、2005-1、マッピング部2006-0、2006-1、参照信号多重部2007-0、2007-1、OFDM信号生成部2008-0、2008-1、送信部2009-0、2009-1、送信アンテナ2010-0、2010-1、受信アンテナ2011、受信部2012、制御情報抽出部2013、割当情報取得部2014、巡回シフト量決定部2015を具備する。
FIG. 20 shows a specific configuration of the terminal 101b of the present embodiment.
The terminal 101b includes an encoding unit 2001, a modulation unit 2002, a DFT unit 2003, a transmission diversity unit 2004, spectral cyclic shift units 2005-0 and 2005-1, mapping units 2006-0 and 2006-1, and a reference signal multiplexing unit 2007-. 0, 2007-1, OFDM signal generation units 2008-0, 2008-1, transmission units 2009-0, 2009-1, transmission antennas 2010-0, 2010-1, reception antenna 2011, reception unit 2012, control information extraction unit 2013, the allocation information acquisition part 2014, and the cyclic shift amount determination part 2015 are comprised.
 以下では、端末101bの各送信アンテナ2010-0、2010-1を用いて、異なる周波数割当によって同じデータをシングルキャリア伝送により送信する場合について説明する。
 なお、本実施形態では開ループ送信ダイバーシチとして時空間ブロック符号化を用いて説明を行うが、他の開ループ送信ダイバーシチ、例えば空間周波数ブロック符号化SFBCや巡回遅延ダイバーシチCDDにも適用することができる。
Hereinafter, a case will be described in which the same data is transmitted by single carrier transmission with different frequency allocations using each of the transmission antennas 2010-0 and 2010-1 of the terminal 101b.
In this embodiment, description will be made using space-time block coding as open-loop transmission diversity, but it can also be applied to other open-loop transmission diversity, for example, spatial frequency block coding SFBC and cyclic delay diversity CDD. .
 端末101bの送信アンテナの本数Nを2とする。
 端末101bの構成と第2の実施形態の移動局構成101aの構成(図9)のものとを対比すると、後者のプリコーディング部904が前者では送信ダイバーシチ部2004となり、後者のPMI取得部913が前者では欠如している。両者の機能の面では、開ループ送信ダイバーシチは伝搬路情報を必要としないため、端末101bは、基地局102bからの通知情報なしで送信ダイバーシチを行うことができ、この点で第2の実施形態とは異なる。
The number N t of transmission antennas of the terminal 101b is assumed to be 2.
Comparing the configuration of the terminal 101b and the configuration of the mobile station configuration 101a of the second embodiment (FIG. 9), the latter precoding unit 904 is the transmission diversity unit 2004 in the former, and the latter PMI acquisition unit 913 is The former is lacking. In terms of both functions, since open-loop transmission diversity does not require propagation path information, the terminal 101b can perform transmission diversity without notification information from the base station 102b. In this respect, the second embodiment Is different.
 本実施形態の符号化部2001からDFT部2003までの処理は第1および第2の実施形態と同じであるため、その説明を援用する。DFT部2003の出力は、2つのSC-FDMA信号ずつ送信ダイバーシチ部2004に入力される。
 送信ダイバーシチ部2004では、2つのSC-FDMAの送信周波数スペクトルA(m)およびB(m)に対して、次の表3に基づいて時空間ブロック符号化を行い、スペクトル巡回シフト部2005-0、2005-1に入力する。
Since the processing from the encoding unit 2001 to the DFT unit 2003 of this embodiment is the same as that of the first and second embodiments, the description thereof is incorporated. The output of the DFT unit 2003 is input to the transmission diversity unit 2004 for each two SC-FDMA signals.
The transmission diversity unit 2004 performs space-time block coding on the two SC-FDMA transmission frequency spectra A (m) and B (m) based on the following Table 3, and the spectral cyclic shift unit 2005-0 , 2005-1.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 図21は、巡回シフト量決定部2015の詳細を示すブロック図である。
 巡回シフト量決定部2015は、先頭周波数インデックス取得部2101-0~2101-1、減算部2102-0、2102-1、モジュロ演算部2103-0~2103-1、切替部2104-0~2104-1を具備する。
 先頭周波数インデックス取得部2101-0~2101-1へは、割当情報取得部2014から各送信アンテナ2010-0、2010-1の周波数割当情報が入力される。先頭周波数インデックス取得部2101-0~2101-1では、入力された割当情報から、各送信アンテナの周波数割当の先頭(最も周波数が低い)周波数インデックスを取得する。
FIG. 21 is a block diagram illustrating details of the cyclic shift amount determination unit 2015.
Cyclic shift amount determination unit 2015 includes head frequency index acquisition units 2101-0 to 2101-1, subtraction units 2102-0 and 2102-1, modulo arithmetic units 2103-0 to 2103-1, and switching units 2104-0 to 2104. 1 is provided.
The frequency allocation information of each of the transmission antennas 2010-0 and 2010-1 is input from the allocation information acquisition unit 2014 to the head frequency index acquisition units 2101-0 to 2101-1. Starting frequency index acquisition sections 2101-0 to 2101-1 acquire the starting (lowest frequency) frequency index of the frequency allocation of each transmitting antenna from the input allocation information.
 例えば、図18、図19A~図19Cの周波数割当において、第0送信アンテナ2010-0の場合は、先頭周波数インデックス取得部2101-0は、先頭周波数インデックスkHEAD,0として“0”を出力し、第1送信アンテナ2010-1の場合は、先頭周波数インデックス取得部2101-1は、先頭周波数インデックスkHEAD,1として“4”を出力する。 For example, in the frequency allocation in FIGS. 18 and 19A to 19C, in the case of the 0th transmitting antenna 2010-0, the head frequency index acquisition unit 2101-0 outputs “0” as the head frequency index k HEAD, 0. In the case of the first transmitting antenna 2010-1, the head frequency index acquisition unit 2101-1 outputs “4” as the head frequency index k HEAD, 1 .
 各先頭周波数インデックス取得部2101-0~2101-1の出力kHEAD,0およびkHEAD,1は、2つの減算部2102-0、2102-1に入力される。各減算部2102-0、2102-1では、対応する先頭周波数インデックス取得部2101-0~2101-1の出力から、他方の先頭周波数インデックス取得部の出力を減算することでそれぞれkdif,0、kdif,1を算出し、モジュロ演算部2103-0、2103-1に出力する。例えば減算部2102-0では、 The outputs k HEAD, 0 and k HEAD, 1 of each head frequency index acquisition unit 2101-0 to 2101-1 are input to two subtraction units 2102-0 and 2102-1. Each subtraction unit 2102-0, 2102-1 subtracts the output of the other head frequency index acquisition unit from the output of the corresponding head frequency index acquisition unit 2101-0 to 2101-1 so that k dif, 0 , kdif , 1 is calculated and output to the modulo arithmetic units 2103-0 and 2103-1. For example, in the subtraction unit 2102-0,
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
を算出し、差分値kdif,0として“-4”をモジュロ演算部2103-0に入力することになる。一方減算部2102-1では、 And “−4” is input to the modulo arithmetic unit 2103-0 as the difference value k dif, 0 . On the other hand, in the subtraction unit 2102-1,
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
を算出し、差分値kdif,1として“4”をモジュロ演算部2103-1に入力することになる。
 次にモジュロ演算部2103-0、2103-1では、入力された前記差分値をNDFTで除算した余りを出力する。入力された先頭周波数インデックスをkdif,nとすると、モジュロ演算部2103-nの出力Δは次式で表わされる。ただし、n=0、1である。
And “4” is input to the modulo arithmetic unit 2103-1 as the difference value k dif, 1 .
Then the modulo operation unit 2103-0,2103-1, and outputs the remainder of the input the difference value divided by N DFT. Assuming that the input leading frequency index is k dif, n , the output Δn of the modulo arithmetic unit 2103- n is expressed by the following equation. However, n = 0 and 1.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 Δは、切替部2104-nに入力される。モジュロ演算部2103-nにおいて巡回シフト量Δが算出されるが、図18で示したように、時刻Tにおいては巡回シフトが行われない。そこで図21の切替部では、現在行っている信号処理が、時空間ブロック符号化における時刻Tであるか、時刻T+1であるのかを判断し、時刻TであればΔ=0を出力し、時刻T+1であればモジュロ演算部からの入力を巡回シフト量Δとして、巡回シフト量決定部から出力する。
 例えば、図18の周波数割当の場合、図21の減算部2102-0は、kdif,0=-4、NDFT=6であり、
Delta n is input to the switching unit 2104-n. Although cyclic shift amount delta n is calculated in modulo operation unit 2103-n, as shown in FIG. 18, it not performed cyclic shift at time T. Therefore, the switching unit in FIG. 21 determines whether the current signal processing is time T or time T + 1 in space-time block coding, and if time T, outputs Δ n = 0, if the time T + 1 the input from the modulo operation unit as the amount of cyclic shift delta n, and outputs the cyclic shift amount determining unit.
For example, in the case of frequency allocation in FIG. 18, the subtraction unit 2102-0 in FIG. 21 has k dif, 0 = −4, N DFT = 6,
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
であるため、巡回シフト量Δとして2を出力する。一方、図21の減算部2102-1は、kdif,1=4、NDFT=6であり、 Because it is, and outputs 2 as the cyclic shift amount delta 0. On the other hand, the subtractor 2102-1 in FIG. 21 has k dif, 1 = 4 and N DFT = 6,
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
であるため、巡回シフト量Δとして4を出力する。
 上述のように、巡回シフト量を決定することで、図19Cのような巡回シフトを行うことができる。
 このように、巡回シフト量決定部2015では、各送信アンテナ2010-0、2010-1の周波数割当における先頭周波数インデックスの差を計算し、NDFTで除算した時の余りを計算することで、巡回シフト量を決定することができる。
Therefore, 4 is output as the cyclic shift amount Δ 1 .
As described above, by determining the cyclic shift amount, the cyclic shift as shown in FIG. 19C can be performed.
Thus, the cyclic shift amount determining unit 2015 calculates the difference between the first frequency index in the frequency assignment of each transmit antenna 2010-0,2010-1, by calculating the remainder when divided by N DFT, a cyclic The amount of shift can be determined.
 なお、図18、19A~Cでは、時刻Tでは巡回シフトを与えずに、時刻T+1に送信する信号に巡回シフトを与える構成としているが、巡回シフトは相対的なものであるための、時刻Tで送信する信号に巡回シフトを与え、時刻T+1に送信する信号に巡回シフトを与えない構成としてもよいし、両時刻において巡回シフトを与える構成としてもよい。 In FIGS. 18 and 19A to 19C, a cyclic shift is applied to a signal transmitted at time T + 1 without applying a cyclic shift at time T. However, since the cyclic shift is relative, time T A cyclic shift may be applied to the signal transmitted at time T1, and a cyclic shift may not be applied to the signal transmitted at time T + 1, or a cyclic shift may be applied at both times.
 図20の端末101bの構成に関しては、上記以外の構成は第2の実施形態の図9の端末構成と同様であり、所定の信号処理を施し、各送信アンテナから信号が送信される。
 端末101bから送信された信号は、無線伝搬路を経由し、基地局102bの受信アンテナで受信される。
 第1の実施形態では、干渉が生じるような周波数割当の場合、1本の受信アンテナでは信号分離が困難であったが、本実施形態では干渉が生じないように送信するため、第2の実施形態と同様、1本の受信アンテナでもよい。
The configuration of the terminal 101b in FIG. 20 is the same as the configuration of the terminal in FIG. 9 of the second embodiment except for the above, and performs predetermined signal processing to transmit a signal from each transmission antenna.
The signal transmitted from the terminal 101b is received by the receiving antenna of the base station 102b via the wireless propagation path.
In the first embodiment, in the case of frequency allocation that causes interference, signal separation is difficult with one receiving antenna. However, in this embodiment, transmission is performed so that interference does not occur. As with the configuration, a single receiving antenna may be used.
 図22は、基地局102bの具体的な構成を示すブロック図である。
 基地局102bは、受信アンテナ2201-0~2201-N-1、OFDM信号受信部2202-0~2202-N-1、参照信号分離部2203-0~2203-N-1、デマッピング部2204-0~2204-N-1、等化部2205、IDFT部2206、復調部2207、復号部2208、伝搬路推定部2209、スケジューリング部2210、送信部2211、送信アンテナ2212を具備する。
FIG. 22 is a block diagram showing a specific configuration of the base station 102b.
The base station 102b may receive antennas 2201-0 ~ 2201-N r -1, OFDM signal receiving unit 2202-0 ~ 2202-N r -1, the reference signal separating unit 2203-0 ~ 2203-N r -1, demapping Sections 2204-0 to 2204-N r −1, an equalization section 2205, an IDFT section 2206, a demodulation section 2207, a decoding section 2208, a propagation path estimation section 2209, a scheduling section 2210, a transmission section 2211, and a transmission antenna 2212.
 以下では、基地局102bの各受信アンテナ2201-0~2201-N-1を用いて、端末101bからシングルキャリア伝送により送信されてきた信号を受信する場合について説明する。
 本実施形態の基地局102bの構成と第1の実施形態の基地局102の構成(図5)とを対比すると、前者の等化部2205の構成が後者の等化部505のものと相異するが、その他の構成は同一である。
Hereinafter, a case will be described in which a signal transmitted from the terminal 101b by single carrier transmission is received using each of the receiving antennas 2201-0 to 2201-N r −1 of the base station 102b.
When the configuration of the base station 102b of the present embodiment is compared with the configuration of the base station 102 of the first embodiment (FIG. 5), the configuration of the former equalization unit 2205 is different from that of the latter equalization unit 505. However, the other configuration is the same.
 各デマッピング部2204-0~2204-N-1では、入力されたNFFTポイントのデータ信号の受信スペクトルから、各スペクトルに関して、送信に用いた周波数ポイントでの受信スペクトルの抽出が行われる。
 例えば、時刻Tにおいて図18のような周波数割当で送信され、時刻T+1において図19Cのような周波数割当で送信された場合において、送信周波数スペクトルA(4)を抽出することを考える。送信周波数スペクトルA(4)は、時刻Tにおいては第0送信アンテナから、また、時刻T+1において第1送信アンテナから、ともに第4周波数ポイントを用いて送信が行われる。
 従って、各デマッピング部2204-0~2204-N-1では、時刻Tおよび時刻T+1の第4周波数ポイントという、2つの周波数信号を抽出して等化部2205に入力する。時刻tにおける第n受信アンテナの第k周波数ポイントでの受信信号をRn,t(k)とし、時空間ブロック符号化を行う2つのSC-FDMAシンボルで伝搬路の時間変動がないとすると、デマッピング部2204-0~2204-N-1から等化部2205に入力されるA(4)が受信された信号Rn,T(4)、Rn,T+1(4)は、それぞれ次の数式37で表わされる。
In each of the demapping units 2204-0 to 2204-N r -1, the received spectrum at the frequency point used for transmission is extracted for each spectrum from the received spectrum of the data signal of N FFT points.
For example, it is assumed that the transmission frequency spectrum A (4) is extracted when the transmission is performed with the frequency allocation as shown in FIG. 18 at time T and the transmission is performed with the frequency allocation as shown in FIG. 19C at time T + 1. Transmission frequency spectrum A (4) is transmitted from the 0th transmission antenna at time T and from the first transmission antenna at time T + 1, both using the fourth frequency point.
Accordingly, each demapping unit 2204-0 to 2204-N r −1 extracts two frequency signals of the fourth frequency point at time T and time T + 1 and inputs them to the equalization unit 2205. If the received signal at the k-th frequency point of the n-th receiving antenna at time t is R n, t (k), and there is no time variation of the propagation path in the two SC-FDMA symbols that perform space-time block coding, The signals R n, T (4) and R n, T + 1 (4) received by A (4) input from the demapping units 2204-0 to 2204-N r −1 to the equalization unit 2205 are respectively This is expressed by Equation 37.
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 上記の2つの受信周波数信号が等化部2205に入力される。 The above two reception frequency signals are input to the equalization unit 2205.
 一方、重複しない周波数で送信されるスペクトル、例えばB(3)は、時刻Tにおいて、第1送信アンテナの第7周波数ポイントを用いて送信が行われ、時刻T+1においては、第0送信アンテナからも第1周波数ポイントを用いて送信が行われる。従って、各デマッピング部では、時刻Tの第7周波数ポイント、および時刻T+1の第1周波数ポイントの2つの周波数信号を抽出して等化部に入力する。時刻tにおける第n受信アンテナの第k周波数ポイントでの受信信号をRn,t(k)とし、時空間ブロック符号化を行う2つのSC-FDMAシンボルで伝搬路の時間変動がないとすると、デマッピング部から等化部入力されるB(3)が受信された信号Rn,T(7)、Rn,T+1(1)は、それぞれ次の数式36で表わされる。 On the other hand, a spectrum transmitted at a non-overlapping frequency, for example, B (3), is transmitted at the time T using the seventh frequency point of the first transmitting antenna, and from the 0th transmitting antenna at the time T + 1. Transmission is performed using the first frequency point. Therefore, each demapping unit extracts two frequency signals of the seventh frequency point at time T and the first frequency point at time T + 1, and inputs them to the equalization unit. If the received signal at the k-th frequency point of the n-th receiving antenna at time t is R n, t (k), and there is no time variation of the propagation path in the two SC-FDMA symbols that perform space-time block coding, Signals R n, T (7) and R n, T + 1 (1) received by B (3) input from the demapping unit to the equalization unit are expressed by the following Expression 36, respectively.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 このような処理を、NDFT個の送信周波数スペクトルすべてに対して行う。 Such processing is performed for all NDFT transmission frequency spectra.
 次に、図22の等化部2205での信号処理について、図23を用いて説明を行う。
 図23は、等化部2205の構成を示す概略ブロック図である。
 等化部2205は、受信アンテナ等化部2301-0~2301-N-1、受信アンテナ合成部2302、重み付け部2303を具備する。
Next, signal processing in the equalization unit 2205 in FIG. 22 will be described with reference to FIG.
FIG. 23 is a schematic block diagram showing the configuration of the equalization unit 2205.
The equalization unit 2205 includes reception antenna equalization units 2301-0 to 2301-N r −1, a reception antenna combining unit 2302, and a weighting unit 2303.
 デマッピング部2204-nの出力は、等化部2205の受信アンテナ等化部2301-nに入力される。受信アンテナ等化部2301-nでは、図22の伝搬路推定部2209から入力される伝搬路推定値を用いて、受信アンテナ2201-0~2201-N-1毎に等化処理を行い、受信アンテナ合成部2302に入力する。
 受信アンテナ等化部2301-nでの処理は、後述する。
The output of the demapping unit 2204-n is input to the receiving antenna equalization unit 2301-n of the equalization unit 2205. Receiving antenna equalization section 2301-n performs equalization processing for each of receiving antennas 2201-0 to 2201-N r −1 using the propagation path estimation value input from propagation path estimation section 2209 in FIG. The data is input to the receiving antenna combining unit 2302.
Processing in the reception antenna equalization unit 2301-n will be described later.
 受信アンテナ合成部2302に入力された各受信アンテナ等化部2301-0~2301-N-1の出力は、受信アンテナ合成部2302で合成されることにより、受信アンテナダイバーシチ効果を得て、次に、重み付け部2303に入力される。
 重み付け部2303では得られたそれぞれNDFT個のA(m)およびNDFT個のB(m)が、それぞれ適切な割合で合成されるように、スペクトル毎に重み付けを行う。例えばA(m)をMMSE基準で重み付けする場合、次式の重みを入力に対して乗算する。
The outputs of the reception antenna equalization units 2301-0 to 2301-N r −1 input to the reception antenna combining unit 2302 are combined by the reception antenna combining unit 2302 to obtain the reception antenna diversity effect, and Are input to the weighting unit 2303.
Weighting unit respectively N DFT pieces of A (m) and N DFT pieces of the resulting 2303 B (m) is, as each synthesized in suitable proportions, performs weighting for each spectrum. For example, when A (m) is weighted according to the MMSE standard, the weight of the following equation is multiplied by the input.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 ここで分母のσは平均雑音電力であり、分母は、全体として、A(m)が伝送された伝搬路の電力を全て合計し、平均雑音電力を加算することを示している。具体例については、後述する。
 スペクトル毎に重み付けされた信号は、等化部2205の出力として、図22のIDFT部2206に入力される。
Here, σ 2 of the denominator is the average noise power, and the denominator indicates that the power of the propagation path in which A (m) is transmitted is totaled and the average noise power is added as a whole. A specific example will be described later.
A signal weighted for each spectrum is input to the IDFT unit 2206 of FIG. 22 as an output of the equalization unit 2205.
 ここで、受信アンテナ等化部2301-nにおける信号処理について図24を用いて説明を行う。
 図24は、受信アンテナ等化部2301-nの構成を示す概略図である。
 受信アンテナ等化部2301-nは、重み乗算部2401-0~2401-N-1、重み算出部2402、複素共役部2403、負号乗算部2404、合成部2405を具備する。
Here, the signal processing in the reception antenna equalization unit 2301-n will be described with reference to FIG.
FIG. 24 is a schematic diagram showing a configuration of the receiving antenna equalization unit 2301-n.
Receiving antenna equalization section 2301-n includes weight multiplication sections 2401-0 to 2401-N r −1, weight calculation section 2402, complex conjugate section 2403, negative multiplication section 2404, and combining section 2405.
 デマッピング部2104-nから入力された2つの信号は、それぞれ重み乗算部2401-0~2401-1に入力される。
 重み乗算部2401-0~2401-1では、デマッピング部2104-nから入力された信号と、重み算出部2402から入力された信号とを乗算し、出力を行う。
The two signals input from the demapping unit 2104-n are input to the weight multiplication units 2401-0 to 2401-1, respectively.
Weight multiplying sections 2401-0 to 2401-1 multiply the signal input from demapping section 2104-n and the signal input from weight calculating section 2402, and perform output.
 次に、重み算出部2402について説明を行う。重み算出部2402では、入力された伝搬路推定値を用いて、重みの算出を行う。第k周波数ポイントの第n受信アンテナの受信スペクトルに乗算する第l送信アンテナ用の重みwn,l(k)は、次の数式38で表わされる。 Next, the weight calculation unit 2402 will be described. The weight calculation unit 2402 calculates a weight using the input propagation path estimation value. The weight w n, l (k) for the l-th transmitting antenna to be multiplied by the reception spectrum of the n-th receiving antenna at the k-th frequency point is expressed by the following Equation 38.
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 ここでH n,l(k)は、第k周波数ポイントにおける第l送信アンテナと第n受信アンテナとの間の伝搬路利得の複素共役を表わしている。
 重み算出部2402は、第0送信アンテナ用の重みと第1送信アンテナ用の重みを、重み乗算部2401-0~2401-1にそれぞれ入力する。
Here, H * n, l (k) represents the complex conjugate of the propagation path gain between the l-th transmitting antenna and the n-th receiving antenna at the k-th frequency point.
The weight calculation unit 2402 inputs the weight for the 0th transmission antenna and the weight for the first transmission antenna to the weight multiplication units 2401-0 to 2401-1, respectively.
 重み乗算部2401-0の出力は、合成部2405に入力される。一方、重み乗算部2401-1の出力は、複素共役部2403に入力される。複素共役部2403では、入力された信号に対して、複素共役演算を行い、負号乗算部2404に入力する。
 負号乗算部2404では、A(m)の等化を行う場合には、入力された信号に負号(マイナス)を乗算して合成部に出力する。また、B(m)の等化を行う場合には、そのまま合成部2304に入力する。合成部2304では、入力された2つの信号の合成を行うことで、各送信アンテナから送信された信号を合成する。
The output of the weight multiplier 2401-0 is input to the synthesizer 2405. On the other hand, the output of the weight multiplication unit 2401-1 is input to the complex conjugate unit 2403. The complex conjugate unit 2403 performs a complex conjugate operation on the input signal and inputs it to the negative multiplication unit 2404.
In the case of equalization of A (m), the negative multiplication unit 2404 multiplies the input signal by a negative sign (minus) and outputs the result to the synthesis unit. Further, when equalizing B (m), it is directly input to the synthesis unit 2304. The synthesizer 2304 synthesizes the signals transmitted from the transmitting antennas by synthesizing the two input signals.
 合成部2405は、すべてのA(m)、B(m)(0≦m≦NDFT-1)に関して、合成処理を行い、受信アンテナ等化部2301-nの出力として、受信アンテナ合成部2302に入力する。
 ここで、A(4)およびB(3)を例に、受信アンテナ等化部2301-nの信号処理について説明を行う。
The combining unit 2405 performs a combining process on all A (m) and B (m) (0 ≦ m ≦ N DFT −1), and receives the received antenna combining unit 2302 as an output of the receiving antenna equalizing unit 2301-n. To enter.
Here, with reference to A (4) and B (3) as an example, signal processing of the reception antenna equalization unit 2301-n will be described.
 A(4)の等化の場合、重み乗算部2401-0、2401-1の出力は、それぞれ以下のように表わされる。 In the case of equalization of A (4), the outputs of the weight multipliers 2401-0 and 2401-1 are expressed as follows.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 次に重み乗算部2401-1の出力は複素共役部2403で複素共役演算が行われるため、上式は以下のように表わされる。 Next, since the complex conjugate operation is performed in the complex conjugate unit 2403 for the output of the weight multiplication unit 2401-1, the above equation is expressed as follows.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 上記2つの信号が入力された合成部2405では、2つの信号の合成が行われる。
 今取り出すスペクトルはB(m)ではなくA(m)であるため、2つめの信号(複素共役部2303の出力)にマイナスを乗算して合成する。つまり等化後のA(4)である
In the combining unit 2405 to which the two signals are input, the two signals are combined.
Since the spectrum to be extracted now is A (m) instead of B (m), the second signal (output of the complex conjugate unit 2303) is multiplied by minus and combined. That is A (4) after equalization
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
は次式で表わされる。 Is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 ここで、この場合の等化後のA(4)に対応する図23中の重み付け部2303で乗算される重みwA(4)は、数式37に基づいて Here, the weight w A (4) multiplied by the weighting unit 2303 in FIG. 23 corresponding to A (4) after equalization in this case is based on Expression 37.
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
となる。
 このように、受信信号中に含まれていたB(0)に関する情報は2つの受信信号を合成することでキャンセルされ、所望のスペクトルであるA(4)のみを取り出すことができる。またB(0)についても同様に取り出すことができる。
It becomes.
As described above, the information regarding B (0) included in the received signal is canceled by combining the two received signals, and only A (4) which is a desired spectrum can be extracted. Similarly, B (0) can be taken out.
 次に、B(3)の等化について説明を行う。
 B(3)の等化の場合、重み乗算部2401-0~2401-1の出力は、それぞれ以下のように表わされる。
Next, the equalization of B (3) will be described.
In the case of equalization of B (3), the outputs of the weight multipliers 2401-0 to 2401-1 are expressed as follows, respectively.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 次に重み乗算部2301-1の出力は複素共役部2303で複素共役演算が行われるため、上式は以下のように表わされる。 Next, since the complex conjugate operation is performed by the complex conjugate unit 2303 on the output of the weight multiplication unit 2301-1, the above equation is expressed as follows.
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 上記2つの信号が入力された合成部2405では、2つの信号の合成が行われる。今取り出すスペクトルはA(m)ではなくB(m)であるため、2つめの信号にマイナスを乗算せず、そのまま合成する。つまり等化後のB(3)である In the synthesizing unit 2405 to which the above two signals are input, the two signals are synthesized. Since the spectrum extracted now is not B (m) but A (m), the second signal is synthesized without being multiplied by minus. That is, B (3) after equalization
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
は、次式で表わされる。 Is represented by the following equation.
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 ここで、この場合のB(3)に対応する図23の重み付け部2303で乗算される重みwB(3)は数式37に基づいて Here, the weight w B (3) multiplied by the weighting unit 2303 in FIG. 23 corresponding to B (3) in this case is based on Expression 37.
Figure JPOXMLDOC01-appb-M000051
となる。
Figure JPOXMLDOC01-appb-M000051
It becomes.
 このように、割当が重複しなかった送信周波数スペクトルに関しても、スペクトルが重複した場合と同様の処理を行うことで、異なる周波数ポイントで受信されたスペクトルを合成できるため、良好な伝送特性を得ることができる。 In this way, even for transmission frequency spectra whose assignments do not overlap, it is possible to synthesize spectra received at different frequency points by performing the same processing as when the spectra overlap, thus obtaining good transmission characteristics. Can do.
 本実施形態では、各アンテナで異なる帯域を用いて伝送を行うシステムにおいて、伝搬路情報を用いない送信ダイバーシチを適用した場合について説明を行った。このように開ループ型の送信ダイバーシチを行う際に、各送信アンテナで割当周波数に応じて適切な巡回シフトを与えて送信を行うことで、基地局で干渉が発生しないようにすることができるため、良好な伝送を行うことが可能となる。なお、伝搬路情報を用いない送信ダイバーシチとして時空間ブロック符号化を用いて説明を行ったが、周波数軸上でAlamouti符号化を行うSFBCや、時間信号に巡回シフトを与えるCDD等の他の開ループ送信アンテナダイバーシチに適用することも当然可能である。さらに本実施形態に第2の実施形態で説明を行ったプリコーディングを適用すること、つまり、時空間ブロック符号化等の閉ループ送信ダイバーシチとプリコーディング等の閉ループ送信ダイバーシチを併用することも可能である。また、送信するストリーム(独立なデータ、ランク、レイヤ)数が1である場合で説明を行ったが、送信ダイバーシチを併用したランク数2以上の通信にも、本実施形態は適用可能である。 In the present embodiment, the case where transmission diversity that does not use propagation path information is applied to a system that performs transmission using different bands for each antenna has been described. When performing open-loop transmission diversity in this way, it is possible to prevent interference from occurring at the base station by performing transmission with an appropriate cyclic shift according to the assigned frequency at each transmission antenna. It is possible to perform good transmission. Although the description has been given using space-time block coding as transmission diversity that does not use propagation path information, other developments such as SFBC that performs Alamouti coding on the frequency axis and CDD that cyclically shifts time signals are used. Of course, it can also be applied to loop transmit antenna diversity. Furthermore, it is also possible to apply the precoding described in the second embodiment to this embodiment, that is, it is possible to use closed loop transmission diversity such as space-time block coding and closed loop transmission diversity such as precoding together. . Further, although the case where the number of streams (independent data, rank, layer) to be transmitted is 1 has been described, the present embodiment can also be applied to communication with two or more ranks using transmission diversity.
 本発明に関わる上記実施形態において説明をした数々の機能は、内蔵のマイクロコンピュータでの中央処理装置CPU等を制御するコンピュータ・プログラムの実行によって代替することができる。そして、これら装置で取り扱われる情報は、その処理時に一時的に記憶装置RAMに蓄積され、また、各種の記録装置ROMや磁気記憶装置HDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、格納したプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の上記実施形態の機能を実現することもできる。
 また、本発明に関わる上記実施形態において説明をした数々の機能を代替実行することのできるコンピュータ・プログラムを可搬型の記録媒体に格納して、独立の商品として市場で流通させたり、または、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりして市場に流通させることができる。この場合、上記記録媒体とか、サーバコンピュータの記憶装置とかも、本発明の特許請求の範囲の技術的範囲に抵触する。
 また、上述した実施形態における端末および基地局の一部、または全部を典型的には半導体集積回路であるLSIとして実現してもよい。端末および基地局の各機能ブロックは個別に半導体チップ化してもよいし、一部、または全部を集積してチップ化してもよい。
また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成は本実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
The various functions described in the above-described embodiments relating to the present invention can be replaced by execution of a computer program for controlling the central processing unit CPU or the like in a built-in microcomputer. Information handled by these devices is temporarily stored in the storage device RAM during the processing, stored in various recording device ROMs and magnetic storage devices HDD, read out by the CPU as necessary, and corrected / written. Is done. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the stored program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed jointly with the operating system or other application programs, etc. The functions of the above embodiments of the invention can also be realized.
In addition, a computer program capable of executing the various functions described in the above-described embodiment relating to the present invention can be stored in a portable recording medium and distributed as an independent product in the market, or the Internet. Or can be distributed to the market by transferring to a server computer connected via a network. In this case, the recording medium and the storage device of the server computer also conflict with the technical scope of the claims of the present invention.
Also, some or all of the terminals and base stations in the above-described embodiments may be realized as an LSI that is typically a semiconductor integrated circuit. Each functional block of the terminal and the base station may be individually formed as a semiconductor chip, or a part or all of them may be integrated into a chip.
Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the present embodiment, and the design and the like within the scope not departing from the gist of the present invention are also claimed. Included in the range.
 この発明は、送信ダイバーシチを用いる移動無線通信および固定無線通信の分野において利用することができる。 The present invention can be used in the fields of mobile radio communication and fixed radio communication using transmission diversity.
101・・・端末 102・・・基地局 201・・・符号化部 202・・・変調部 203・・・DFT部  204・・・コピー部 205・・・マッピング部 206・・・参照信号多重化部 207・・・OFDM信号生成部 208・・・送信部 209・・・送信アンテナ 210・・・受信アンテナ 211・・・受信部 212・・・制御情報抽出部 213・・・割当情報取得部 501・・・受信アンテナ 502・・・OFDM信号受信部 503・・・参照信号分離部 504・・・デマッピング部 505・・・等化部 506・・・IDFT部 507・・・復調部 508・・・復号部 509・・・伝搬路推定部 510・・・スケジューリング部 511・・・送信部 512・・・送信アンテナ 901・・・符号化部 902・・・変調部 903・・・DFT部 904・・・プリコーディング部 905・・・スペクトル巡回シフト部 906・・・マッピング部 907・・・参照信号多重化部 908・・・OFDM信号生成部 909・・・送信部 910・・・送信アンテナ 911・・・受信アンテナ 912・・・受信部 913・・・制御情報抽出部 914・・・割当情報取得部 915・・・PMI取得部1601・・・受信アンテナ 1602・・・OFDM信号受信部 1603・・・参照信号分離部 1604・・・デマッピング部 1605・・・等化部 1606・・・IDFT部 1607・・・復調部 1608・・・復号部 1609・・・伝搬路推定部 1610・・・スケジューリング部 1611・・・送信部 1612・・・送信アンテナ 1613・・・PMI決定部 2001・・・符号化部 202・・・変調部 2003・・・DFT部 2004・・・送信ダイバーシチ部 2005・・・スペクトル巡回シフト部 2006・・・マッピング部 2007・・・参照信号多重化部  2008・・・OFDM信号生成部 2009・・・送信部 2010・・・送信アンテナ 2011・・・受信アンテナ 2012・・・受信部 2013・・・制御情報抽出部 2014・・・割当情報取得部 2015・・・巡回シフト量決定部 2201・・・受信アンテナ 2202・・・OFDM信号受信部 2203・・・参照信号分離部 2204・・・デマッピング部 2205・・・等化部 2206・・・IDFT部 2207・・・復調部 2208・・・復号部 2209・・・伝搬路推定部 2210・・・スケジューリング部 2211・・・送信部 2212・・・送信アンテナ DESCRIPTION OF SYMBOLS 101 ... Terminal 102 ... Base station 201 ... Encoding part 202 ... Modulation part 203 ... DFT part 204 ... Copy part 205 ... Mapping part 206 ... Reference signal multiplexing Unit 207 ... OFDM signal generation unit 208 ... transmission unit 209 ... transmission antenna 210 ... reception antenna 211 ... reception unit 212 ... control information extraction unit 213 ... allocation information acquisition unit 501 ... Receiving antenna 502 ... OFDM signal receiving unit 503 ... Reference signal separating unit 504 ... Demapping unit 505 ... Equalizing unit 506 ... IDFT unit 507 ... Demodulating unit 508 ... Decoding unit 509 ... propagation path estimation unit 510 ... scheduling unit 511 ... transmission unit 512 ... transmission antenna 9 DESCRIPTION OF SYMBOLS 1 ... Coding part 902 ... Modulation part 903 ... DFT part 904 ... Precoding part 905 ... Spectral cyclic shift part 906 ... Mapping part 907 ... Reference signal multiplexing part 908 ... OFDM signal generation unit 909 ... transmission unit 910 ... transmission antenna 911 ... reception antenna 912 ... reception unit 913 ... control information extraction unit 914 ... allocation information acquisition unit 915 ... -PMI acquisition unit 1601 ... receiving antenna 1602 ... OFDM signal receiving unit 1603 ... reference signal separation unit 1604 ... demapping unit 1605 ... equalization unit 1606 ... IDFT unit 1607 ... Demodulation unit 1608 ... Decoding unit 1609 ... Propagation path estimation unit 1610 ... Scheduling unit 611 ... Transmission unit 1612 ... Transmission antenna 1613 ... PMI decision unit 2001 ... Encoding unit 202 ... Modulation unit 2003 ... DFT unit 2004 ... Transmission diversity unit 2005 ... Spectrum Cyclic shift unit 2006 ... mapping unit 2007 ... reference signal multiplexing unit 2008 ... OFDM signal generation unit 2009 ... transmission unit 2010 ... transmission antenna 2011 ... reception antenna 2012 ... reception unit 2013 ... Control information extraction unit 2014 ... Allocation information acquisition unit 2015 ... Cyclic shift amount determination unit 2201 ... Receiving antenna 2202 ... OFDM signal receiving unit 2203 ... Reference signal separation unit 2204 ... Demapper 2205 ... Equalizer 2206 ... I DFT unit 2207 ... demodulation unit 2208 ... decoding unit 2209 ... propagation path estimation unit 2210 ... scheduling unit 2211 ... transmission unit 2212 ... transmission antenna

Claims (19)

  1.  同一のデータ信号系列に係る複数組のデータ信号系列のそれぞれが、少なくとも一部のものはスペクトル巡回シフト部を介して入力される複数のマッピング部であって、入力されるデータ信号系列を周波数軸上に配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、
     割当情報に基づいて前記複数のマッピング部を制御して前記データ信号系列の周波数軸上での配列をして、その内で一部重複するように制御する割当情報取得部と、
     前記割当情報取得部の制御に基づいて巡回シフト量を決定する巡回シフト量決定部と、
     前記スペクトル巡回シフト部は、入力される前記データ信号系列を前記シフト量決定部の制御を受けて前記巡回シフト量だけシフトし、前記一部重複するデータ信号をして同一となるようにして出力することと、
     前記複数のマッピング部の出力する送信周波数スペクトルを無線周波数にて送出する複数の送信アンテナと、
     を具備することを特徴とする通信装置。
    Each of a plurality of sets of data signal sequences related to the same data signal sequence is at least partly a plurality of mapping units input via a spectrum cyclic shift unit, and the input data signal sequences are A plurality of mapping units arranged above and outputting the arranged data signal sequence as a transmission frequency spectrum;
    An allocation information acquisition unit that controls the plurality of mapping units based on allocation information to arrange the data signal sequence on the frequency axis, and controls the data signal sequences so that they partially overlap;
    A cyclic shift amount determination unit that determines a cyclic shift amount based on the control of the allocation information acquisition unit;
    The spectrum cyclic shift unit shifts the input data signal sequence by the cyclic shift amount under the control of the shift amount determination unit, and outputs the partially overlapped data signals to be the same. To do
    A plurality of transmission antennas for transmitting a transmission frequency spectrum output from the plurality of mapping units at a radio frequency;
    A communication apparatus comprising:
  2.  前記複数組のデータ信号系列は、全てスペクトル巡回シフト部を介して前記マッピング部に入力されることを特徴とする請求項1に記載の通信装置。 The communication apparatus according to claim 1, wherein all of the plurality of sets of data signal sequences are input to the mapping unit via a spectrum cyclic shift unit.
  3.  前記データ信号系列のデータ信号の振幅、位相またはその両者を変更して、前記データ信号系列を前記マッピング部へ直接入力するかまたは前記スペクトル巡回シフト部を介して前記マッピング部へ入力するプリコーディング部を具備することを特徴とする請求項1または2に記載の通信装置。 A precoding unit that changes the amplitude, phase, or both of the data signal of the data signal sequence and inputs the data signal sequence directly to the mapping unit or to the mapping unit via the spectral cyclic shift unit The communication apparatus according to claim 1, further comprising:
  4.  前記スペクトル巡回シフト部は、前記複数の送信アンテナの内の特定のものでの前記送信周波数スペクトル配置を基準として巡回シフトを行うことを特徴とする請求項1ないし3のいずれか1項に記載の通信装置。 The said spectrum cyclic shift part performs cyclic shift on the basis of the said transmission frequency spectrum arrangement | positioning in the specific thing of these transmission antennas, The Claim 1 characterized by the above-mentioned. Communication device.
  5.  前記スペクトル巡回シフト部は、前記送信周波数スペクトルのインデックスを基準として巡回シフトを行うことを特徴とする請求項1ないし3のいずれか1項に記載の通信装置。 The communication apparatus according to any one of claims 1 to 3, wherein the spectrum cyclic shift unit performs cyclic shift based on an index of the transmission frequency spectrum.
  6.  請求項1または2のいずれかに記載の第1の通信装置と、
     1または複数の受信アンテナと、
     前記受信アンテナからの送信周波数スペクトル毎に、干渉のない場合のSIMO重みを用いて等化を行う等化部と、
     を具備する第2の通信装置と、
     を具備し、
     前記第1の通信装置と、前記第2の通信装置との間でデータ信号の送受を行うことを特徴とする通信システム。
    The first communication device according to claim 1 or 2,
    One or more receive antennas;
    For each transmission frequency spectrum from the receiving antenna, an equalization unit that performs equalization using SIMO weights when there is no interference,
    A second communication device comprising:
    Comprising
    A communication system, wherein data signals are transmitted and received between the first communication device and the second communication device.
  7.  同一のデータ信号系列に係る複数組のデータ信号系列を用意し、
     前記複数組のデータ信号系列の各々に対してデータ信号の振幅、位相またはその両者を変更し、
     前記変更した複数組のデータ信号系列に対して巡回シフトを施し、
     前記巡回シフトを施した複数組のデータ信号系列を周波数軸上に配置し、その際に前記複数組のデータ信号系列の一部が重複し、かつ、重複したデータ信号が同一であるようにし、
     前記周波数軸上に配置した複数組の送信周波数スペクトルを複数の送信アンテナから無線周波数にて送出する、
     ことを特徴とする通信方法。
    Prepare multiple sets of data signal sequences related to the same data signal sequence,
    Changing the amplitude, phase or both of the data signal for each of the plurality of sets of data signal series;
    A cyclic shift is performed on the plurality of changed data signal sequences,
    A plurality of sets of data signal sequences subjected to the cyclic shift are arranged on the frequency axis, and at that time, a part of the plurality of sets of data signal sequences is overlapped, and the overlapping data signals are the same,
    Transmitting a plurality of sets of transmission frequency spectra arranged on the frequency axis at a radio frequency from a plurality of transmission antennas;
    A communication method characterized by the above.
  8.  特定シンボルでの複数の第1の送信サブキャリアに複数のデータ信号の系列を配置し、
     前記シンボルでの複数の第2の送信サブキャリアに前記複数のデータ信号と同一のデータ信号系列を、前記複数の第1の送信サブキャリアと前記複数の第2の送信サブキャリアとが一部重複するように配置し、
     前記第1の送信サブキャリアと前記第2の送信サブキャリアとが一部重複する複数のサブキャリアの各々においては、同一のデータ信号が配置されるように、前記複数の第1の送信サブキャリアに配置した複数のデータ信号系列、前記複数の第2の送信サブキャリアに配置した複数のデータ信号系列、または両者に対して巡回シフトを施し、
     次いで、前記第1の送信サブキャリアに配置された複数のデータ信号系列を第1送信アンテナから送信し、前記第2の送信サブキャリアに配置された複数のデータ信号系列を第2送信アンテナから送信する、
     ことを特徴とする通信方法。
    Arranging a plurality of data signal sequences on a plurality of first transmission subcarriers in a specific symbol;
    The plurality of second transmission subcarriers in the symbol have the same data signal sequence as the plurality of data signals, and the plurality of first transmission subcarriers and the plurality of second transmission subcarriers partially overlap. Arranged to
    The plurality of first transmission subcarriers such that the same data signal is arranged in each of the plurality of subcarriers in which the first transmission subcarrier and the second transmission subcarrier partially overlap. A plurality of data signal sequences arranged in the plurality of data signal sequences arranged in the plurality of second transmission subcarriers, or both are cyclically shifted,
    Next, a plurality of data signal sequences arranged on the first transmission subcarrier are transmitted from a first transmission antenna, and a plurality of data signal sequences arranged on the second transmission subcarrier are transmitted from a second transmission antenna. To
    A communication method characterized by the above.
  9.  前記第1の送信アンテナと第2の送信アンテナとは単一の送信装置が具備するものであることを特徴とする請求項8に記載の通信方法。 The communication method according to claim 8, wherein the first transmission antenna and the second transmission antenna are provided in a single transmission device.
  10.  前記第1の送信アンテナは1つの送信装置が具備し、前記第2の送信アンテナは別の送信装置が具備するものであることを特徴とする請求項8に記載の通信方法。 The communication method according to claim 8, wherein the first transmission antenna is provided in one transmission device, and the second transmission antenna is provided in another transmission device.
  11.  前記複数のデータ信号には振幅、位相またはその両者を変更するプリコーディングが施されていることを特徴とする請求項9または10に記載の無線通信方法。 The wireless communication method according to claim 9 or 10, wherein the plurality of data signals are subjected to precoding for changing amplitude, phase, or both.
  12.  同一のデータ信号系列に係る複数組のデータ信号系列を周波数軸上に配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、
     割当情報に基づいて前記複数のマッピング部を制御して前記データ信号系列の周波数軸上での配列をして、同一、離隔または一部重複するように制御する割当情報取得部と、
     前記複数のマッピング部の出力する送信周波数スペクトルを無線周波数にて送出する複数の送信アンテナと、
     を具備することを特徴とする通信装置。
    A plurality of mapping units for arranging a plurality of sets of data signal sequences related to the same data signal sequence on the frequency axis, and outputting the arranged data signal sequences as a transmission frequency spectrum;
    An allocation information acquisition unit that controls the plurality of mapping units based on allocation information to arrange the data signal sequence on the frequency axis, and controls the same, separated, or partially overlapping;
    A plurality of transmission antennas for transmitting a transmission frequency spectrum output from the plurality of mapping units at a radio frequency;
    A communication apparatus comprising:
  13.  1または複数の受信アンテナと、
     前記受信アンテナからの送信周波数スペクトル毎に、干渉のない場合のSIMO重み、および干渉のある場合のMIMO重みを用いて等化を行う等化部と、
     を具備する通信装置。
    One or more receive antennas;
    For each transmission frequency spectrum from the receiving antenna, an equalization unit that performs equalization using a SIMO weight when there is no interference and a MIMO weight when there is interference;
    A communication apparatus comprising:
  14.  請求項12に記載の第1の通信装置と、請求項13に記載の第2の通信装置とを具備し、前記第1の通信装置と前記第2の通信装置との間でデータ信号の送受を行うことを特徴とする通信システム。 A first communication device according to claim 12 and a second communication device according to claim 13, wherein data signals are transmitted and received between the first communication device and the second communication device. The communication system characterized by performing.
  15.  同一のデータ信号系列に係る複数組のデータ信号系列を用意し、
      前記複数組のデータ信号系列を周波数軸上に配置し、その際に前記複数組のデータ信号系列をして、同一、離隔または一部重複するようにし、
     前記周波数軸上に配置した複数組の送信周波数スペクトルを複数の送信アンテナから無線周波数にて送出する、ことを特徴とする通信方法。
    Prepare multiple sets of data signal sequences related to the same data signal sequence,
    The plurality of sets of data signal sequences are arranged on the frequency axis, and at that time, the plurality of sets of data signal sequences are made the same, separated or partially overlapped,
    A communication method, comprising: transmitting a plurality of sets of transmission frequency spectra arranged on the frequency axis at a radio frequency from a plurality of transmission antennas.
  16.  1または複数の受信アンテナから複数の送信周波数スペクトルを受信し、
     前記送信周波数スペクトル毎に、干渉のない場合はその場合の重みを用い、干渉のある場合はその場合の重みを用いて等化を行って前記送信周波数スペクトルの復元を行う、
     ことを特徴とする通信方法。
    Receiving multiple transmit frequency spectra from one or more receive antennas;
    For each transmission frequency spectrum, when there is no interference, the weight in that case is used, and when there is interference, the weight in that case is used for equalization to restore the transmission frequency spectrum.
    A communication method characterized by the above.
  17.  複数組のデータ信号系列に対して時空間ブロック符号化、空間周波数ブロック符号化、循環遅延ダイバーシチ等の開ループダイバーシチに属する符号化を適用する送信ダイバーシチ部と、
     前記送信ダイバーシチ部の出力する複数のデータ信号系列を巡回シフトする複数のスペクトル巡回シフト部と、
     前記複数のスペクトル巡回シフト部の出力である複数のデータ信号系列を周波数軸上に、一部重複するように配置し、その配置したデータ信号系列を送信周波数スペクトルとして出力する複数のマッピング部と、
     前記複数のマッピング部の出力する送信周波数スペクトルを隣接する2つの時間において順次に無線周波数にて送出する複数の送信アンテナと、
     を具備することを特徴とする通信装置。
    A transmission diversity unit that applies coding belonging to open-loop diversity such as space-time block coding, space-frequency block coding, cyclic delay diversity, etc. to a plurality of sets of data signal sequences;
    A plurality of spectral cyclic shift units that cyclically shift a plurality of data signal sequences output by the transmission diversity unit;
    A plurality of data signal sequences that are outputs of the plurality of spectrum cyclic shift units are arranged on the frequency axis so as to partially overlap, and a plurality of mapping units that output the arranged data signal sequences as transmission frequency spectrums;
    A plurality of transmission antennas that transmit the transmission frequency spectrum output from the plurality of mapping units sequentially at radio frequencies in two adjacent times;
    A communication apparatus comprising:
  18.  前記送信ダイバーシチ部の出力する前記複数組のデータ信号系列は、第1のデータ信号系列と、第2のデータ信号系列であって、その信号は前記第1の信号系列の信号の共役複素数である第2の信号系列と、第1のデータ信号系列とは異なる第3のデータ信号系列と、第4のデータ信号系列であって、その信号は前記第3のデータ信号系列の信号の共役複素数に負号を乗算したものである第4のデータ信号系列と、から成ることを特徴とする請求項17に記載の通信装置。 The plurality of sets of data signal sequences output from the transmission diversity unit are a first data signal sequence and a second data signal sequence, and the signals are conjugate complex numbers of signals of the first signal sequence. A second data sequence, a third data signal sequence different from the first data signal sequence, and a fourth data signal sequence, the signal being a conjugate complex number of the signal of the third data signal sequence The communication apparatus according to claim 17, comprising a fourth data signal sequence obtained by multiplying a negative sign.
  19.  複数の受信アンテナと、
     前記受信アンテナからの送信周波数スペクトル毎に、等化を行う等化部であって、等化に用いる重みを算出する重み算出部と、選択的に共役複素演算を行う複素共役部と、選択的に負号乗算を行う負号乗算部と、を具備する等化部と、
     を具備することを特徴とする通信装置。
    Multiple receive antennas;
    An equalization unit that performs equalization for each transmission frequency spectrum from the receiving antenna, a weight calculation unit that calculates a weight used for equalization, a complex conjugate unit that selectively performs a conjugate complex operation, and a selective An equalization unit comprising a negative multiplication unit for performing negative multiplication on
    A communication apparatus comprising:
PCT/JP2011/061416 2010-06-25 2011-05-18 Communication system, communication apparatus and communication method WO2011162051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/805,556 US9277556B2 (en) 2010-06-25 2011-05-18 Permitting a plurality of transmit antennas to transmit the same data to improve the reception quality through transmit diversity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010145691A JP2012010205A (en) 2010-06-25 2010-06-25 Communication system, communication apparatus, and communication method
JP2010-145691 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162051A1 true WO2011162051A1 (en) 2011-12-29

Family

ID=45371250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061416 WO2011162051A1 (en) 2010-06-25 2011-05-18 Communication system, communication apparatus and communication method

Country Status (3)

Country Link
US (1) US9277556B2 (en)
JP (1) JP2012010205A (en)
WO (1) WO2011162051A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101603338B1 (en) * 2008-08-11 2016-03-15 엘지전자 주식회사 Method and apparatus of transmitting information in wireless communication system
KR102134657B1 (en) * 2010-12-10 2020-07-16 선 페이턴트 트러스트 Communication apparatus and communication method
CN103814539B (en) * 2011-09-08 2017-04-12 太阳专利托管公司 Signal generating method and signal generating apparatus
US8744006B2 (en) * 2011-10-03 2014-06-03 Telefonaktiebolaget L M Ericsson (Publ) Transmit diversity for pre-coded radio control signals
US8923432B2 (en) 2011-12-02 2014-12-30 Qualcomm Incorporated Systems and methods for communication over a plurality of frequencies and streams
KR102258289B1 (en) * 2014-05-22 2021-05-31 삼성전자 주식회사 Method and apparatus for transmitting and generating channel feedback in 2 dimensional antena mobile communication system
CN108352920B (en) * 2016-01-12 2020-02-07 日本电信电话株式会社 Optical transmission system, optical transmitter, and optical receiver
JP6151807B1 (en) * 2016-01-19 2017-06-21 ソフトバンク株式会社 Method for estimating interference power and noise power between mobile stations using demodulation reference signal in MU-MIMO
KR101706629B1 (en) * 2016-01-25 2017-02-16 주식회사 이노와이어리스 power calibration method for MIMO-OFDM transmitter
EP3419190A4 (en) * 2016-03-10 2019-01-02 Huawei Technologies Co., Ltd. Transmission diversity method, device and system
KR101775505B1 (en) * 2016-03-29 2017-09-06 영남대학교 산학협력단 Method and apparatus for alamouti coding in filter bank multicarrier transmission system
CN109155648B (en) 2016-06-03 2021-09-07 松下电器(美国)知识产权公司 Transmission device and transmission method
CN107733592B (en) 2016-08-10 2020-11-27 华为技术有限公司 Transmission scheme indication method, data transmission method, device and system
CN109716668B (en) * 2016-09-21 2022-09-09 松下电器(美国)知识产权公司 Transmission method, transmission device, reception method, and reception device
JP7143721B2 (en) * 2018-10-24 2022-09-29 日本電信電話株式会社 Wireless communication system, wireless communication method, transmitting station device and receiving station device
WO2021064287A1 (en) * 2019-10-03 2021-04-08 Nokia Technologies Oy Packet-dependent logical channel restriction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531219A (en) * 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Diversity communication system for MIMO OFDM communication system
WO2008004835A2 (en) * 2006-07-06 2008-01-10 Lg Electronics Inc. Method and apparatus for correcting errors in a multiple subcarriers communication system using multiple antennas
WO2009100212A2 (en) * 2008-02-08 2009-08-13 Qualcomm Incorporated Open-loop transmit diversity schemes with four transmit antennas
JP2010004102A (en) * 2008-06-18 2010-01-07 Kyocera Corp Radio communication terminal
WO2010070852A1 (en) * 2008-12-16 2010-06-24 シャープ株式会社 Wireless communications system, method of communicating wirelessly, and method of transmission

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106366A2 (en) * 2006-03-10 2007-09-20 Interdigital Technology Corporation Method and apparatus for scaling soft bits for decoding
US8571120B2 (en) * 2006-09-22 2013-10-29 Texas Instruments Incorporated Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
WO2008082262A2 (en) * 2007-01-05 2008-07-10 Lg Electronics Inc. Method for setting cyclic shift considering frequency offset
CN108712237B (en) 2007-01-18 2021-11-05 松下电器(美国)知识产权公司 Base station device, terminal device, transmission method, and communication method
KR101380021B1 (en) * 2007-02-15 2014-04-02 미쯔비시 일렉트릭 알앤디 센터 유럽 비.브이. SC­QOSTFBC codes for MIMO transmitters
WO2008121054A1 (en) * 2007-03-30 2008-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for interference suppression in user terminal
WO2008155908A1 (en) * 2007-06-19 2008-12-24 Panasonic Corporation Radio communication device and symbol arrangement method
CN104660389B (en) 2007-08-13 2018-04-03 夏普株式会社 Base station apparatus, communicator, communication means and communication system
US8494072B2 (en) * 2007-11-06 2013-07-23 Qualcomm Incorporated Frequency diverse control mapping of channel elements to resource elements
US20090262845A1 (en) * 2008-04-16 2009-10-22 Sung Ho Park Method for transmitting and receiving data using pilot structure
JP5320829B2 (en) * 2008-06-09 2013-10-23 富士通株式会社 Control channel transmission method and radio communication apparatus
US8644397B2 (en) * 2008-09-23 2014-02-04 Qualcomm Incorporated Efficient multiplexing of reference signal and data in a wireless communication system
US8730925B2 (en) * 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
US8948196B2 (en) * 2010-05-03 2015-02-03 Qualcomm Incorporated Method and apparatus for sounding antennas in wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531219A (en) * 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Diversity communication system for MIMO OFDM communication system
WO2008004835A2 (en) * 2006-07-06 2008-01-10 Lg Electronics Inc. Method and apparatus for correcting errors in a multiple subcarriers communication system using multiple antennas
WO2009100212A2 (en) * 2008-02-08 2009-08-13 Qualcomm Incorporated Open-loop transmit diversity schemes with four transmit antennas
JP2010004102A (en) * 2008-06-18 2010-01-07 Kyocera Corp Radio communication terminal
WO2010070852A1 (en) * 2008-12-16 2010-06-24 シャープ株式会社 Wireless communications system, method of communicating wirelessly, and method of transmission

Also Published As

Publication number Publication date
JP2012010205A (en) 2012-01-12
US20130100914A1 (en) 2013-04-25
US9277556B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2011162051A1 (en) Communication system, communication apparatus and communication method
JP5180299B2 (en) Transmission method using delay diversity and space-frequency diversity
KR100934670B1 (en) Phase shift based precoding method and transceiver supporting the same
RU2446574C2 (en) Method for data transmission and receive using based on phase shift of precoding and transceiver to support same
EP2119036B9 (en) Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
WO2012026366A1 (en) Transmitter apparatus, receiver apparatus, communication system, transmission method, reception method, communication method, computer program and semiconductor chip
WO2012115232A1 (en) Receiving device, transmitting device, receiving method, transmitting method, program, and wireless communication system
US8731488B2 (en) Wireless communication apparatus and method
WO2014088003A1 (en) Base station apparatus, terminal apparatus, wireless communication system and integrated circuit
JP2009538555A (en) Phase transition based precoding method and transceiver supporting the same
WO2010025203A1 (en) System and method for wireless communications
WO2015186531A1 (en) Terminal device, feedback information generation method, and base station device
JP5111524B2 (en) Data transmission / reception method using phase transition based precoding and transceiver supporting the same
JP5859913B2 (en) Wireless receiver, wireless transmitter, wireless communication system, program, and integrated circuit
US20110255624A1 (en) Multiuser mimo system, receiver, and transmitter
WO2012063739A1 (en) Wireless controller, wireless terminal, wireless communication system, and control program and integrated circuit for wireless controller and wireless terminal
JP2010517463A5 (en)
JP5704555B2 (en) Wireless communication system and receiving apparatus
JP5630898B2 (en) Base station apparatus, terminal apparatus, and radio communication system
JP5802942B2 (en) Wireless communication system, wireless transmission device, and wireless communication method
JP5676221B2 (en) Transmitting apparatus, communication system, communication method, processor
JP2012015963A (en) Terminal device, base station device and radio communication system using them
JP2007110203A (en) Radio communication system, radio communication equipment and wireless communication method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797938

Country of ref document: EP

Kind code of ref document: A1