WO2011161988A1 - Radiological imaging device - Google Patents

Radiological imaging device Download PDF

Info

Publication number
WO2011161988A1
WO2011161988A1 PCT/JP2011/054888 JP2011054888W WO2011161988A1 WO 2011161988 A1 WO2011161988 A1 WO 2011161988A1 JP 2011054888 W JP2011054888 W JP 2011054888W WO 2011161988 A1 WO2011161988 A1 WO 2011161988A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
supply circuit
scanning
ground terminal
Prior art date
Application number
PCT/JP2011/054888
Other languages
French (fr)
Japanese (ja)
Inventor
勝己 押田
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2012521344A priority Critical patent/JPWO2011161988A1/en
Publication of WO2011161988A1 publication Critical patent/WO2011161988A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise

Definitions

  • the present invention relates to a radiographic image capturing apparatus.
  • a so-called direct type radiographic imaging device that generates electric charges by a detection element in accordance with the dose of irradiated radiation such as X-rays and converts it into an electrical signal, or other radiation such as visible light with a scintillator or the like.
  • Various types of so-called indirect radiographic imaging devices have been developed that convert charges into electromagnetic signals after they have been converted into electromagnetic waves of a wavelength, and then generated by photoelectric conversion elements such as photodiodes in accordance with the energy of the converted and irradiated electromagnetic waves. Yes.
  • the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.
  • This type of radiographic imaging device is known as an FPD (Flat Panel Detector) and has been conventionally formed integrally with a support base (or a bucky apparatus) (see, for example, Patent Document 1).
  • FPD Full Panel Detector
  • a portable radiographic imaging device in which an element or the like is housed in a housing has been developed and put into practical use (see, for example, Patent Documents 2 and 3).
  • a plurality of scanning lines 5 and a plurality of signal lines 6 are usually arranged on the detection part P of the substrate so as to cross each other.
  • the radiation detection elements 7 are respectively formed in a two-dimensional array (matrix).
  • Each radiation detection element 7 is connected to a thin film transistor (Thin FilmTransistor, hereinafter referred to as TFT) 8 as a switching means, and a drain electrode of each TFT 8 (denoted as D in FIG. 12).
  • TFT Thin FilmTransistor
  • Each signal line 6 is connected to each readout circuit 17 provided with an amplification circuit 18 and the like formed in the readout IC 16b of the readout means 16, and the output side of each readout circuit 17 is connected via a multiplexer 21 and the like.
  • the A / D converter 20 is connected.
  • the readout IC 16b is configured such that one A / D converter 20 is provided for every predetermined number of readout circuits 17 such as 1024.
  • a bias voltage is applied to each radiation detection element 7 from a bias power source 14 through a bias line 9 and a connection 10 that binds them.
  • the radiographic image capturing apparatus also includes a power source 41 that supplies power to each functional unit such as the bias power source 14, the scanning driving unit 15, and the reading unit 16.
  • each radiation detection element 7 In the image data read process for reading image data from each radiation detection element 7, an on-voltage is sequentially applied to each line L1 to Lx of the scan line 5 from the gate scan line drive unit 15b of the scan drive unit 15.
  • the charge accumulated in each radiation detection element 7 is discharged to the signal line 6 through the TFT 8 in which the ON voltage is applied to the gate electrode (expressed as G in FIG. 12), and is supplied to each readout circuit 17.
  • the A / D converter 20 After being read out and converted into analog image data by charge-voltage conversion in the amplifier circuit 18 or the like, it is converted into digital image data (ie, so-called raw data) by the A / D converter 20, It is stored in the storage means 40.
  • each of the raw data obtained from each radiation detection element 7 is subjected to correction processing such as offset correction and gain correction.
  • correction processing such as offset correction and gain correction.
  • the final image data for diagnosis or the like is created by performing logarithmic conversion processing or the like on the corrected image data.
  • an insulating layer is usually provided at an intersection where the scanning line 5 and the signal line 6 intersect to prevent a short circuit. Therefore, a capacitor-like structure is formed at the intersecting portion by the scanning line 5, the signal line 6, and an insulating layer therebetween.
  • intersections between the scanning lines 5 and the signal lines 6 as described above are formed in a very large number of portions where the multiple scanning lines 5 (lines L1 to Lx) and the multiple signal lines 6 intersect. Yes.
  • An ON voltage is applied to the scanning line 5, and an OFF voltage is applied to many other scanning lines 5. Since noise is usually generated in the voltage (ON voltage or OFF voltage) applied from the gate scanning line driving unit 15b, in the image data reading process, the voltage applied from the gate scanning line driving unit 15b is temporally changed. Affected by random noise (fluctuation).
  • the parasitic capacitance generated at the intersection due to the capacitor-like structure formed at the intersection between the scanning line 5 and the signal line 6 is applied from the gate scanning line driving unit 15b. Noise generated in the applied voltage is converted into charge noise, and the charge noise is superimposed on the true image data to be read from the radiation detection element 7.
  • an on-voltage is applied to any one of the scanning lines 5 from the gate scanning line driving unit 15b of the scanning driving unit 15, and an off-voltage is applied to the other scanning lines 5, so Image data is read from each radiation detection element 7 connected to the scanning line 5 to which the voltage is applied via the TFT 8, but image data from each radiation detection element 7 connected to the same scanning line 5. Are superimposed with the same charge noise.
  • a step of detecting incident radiation by a radiation detection unit (corresponding to the detection unit P in FIG. 12) and the radiation detection unit are arranged in a matrix.
  • a step of reading out a detection signal from a radiation detection unit via a reading unit (corresponding to the scanning driving unit 15 and the reading unit 16 in FIG. 12) having a plurality of pixels arrayed, and correcting the read detection signal A correction step that corrects the detection signal based on the first correction value corresponding to the noise caused by the radiation detection unit, and the noise caused by the reading unit.
  • a second sub-step of correcting the detection signal based on the corresponding second correction value wherein the second sub-step is executed before the first sub-step.
  • the first correction value is a correction value corresponding to the gain noise of the radiation detection unit and the horizontal noise of the radiation detection unit
  • the second correction value is a correction value corresponding to the gain noise of the reading unit.
  • the radiographic imaging apparatus it is difficult to arrange the scanning drive unit 15 and the reading unit 16 closest to each other due to the configuration thereof, and the scanning driving unit 15 and the reading unit 16 are arranged apart from each other. There are many cases.
  • the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are connected to the ground GND of the power supply unit 41.
  • the reading unit 16 since the reading unit 16 has a larger current consumption than the scanning driving unit 15 and there is a difference between the consumption current of the scanning driving unit 15 and the consumption current of the reading unit 16, the scanning driving unit 15 and the reading unit 16 are different. In the meantime, a GND potential difference due to current is also generated.
  • FIG. 13 shows a waveform of fluctuation of the GND potential of the scanning drive means 15 (waveform shown by a broken line in FIG. 13) and a waveform of fluctuation of the GND potential of the reading means 16 (waveform shown by a solid line in FIG. 13).
  • FIG. 13 shows a waveform of fluctuation of the GND potential of the scanning drive means 15 (waveform shown by a broken line in FIG. 13) and a waveform of fluctuation of the GND potential of the reading means 16 (waveform shown by a solid line in FIG. 13).
  • the power supply from the power supply circuit 15a for the gate scanning line drive section 15b and the power supply circuit 16a for the readout IC 16b are accompanied by the fluctuation.
  • the power supply fluctuates, and noise is superimposed on the true image data generated by radiation irradiation.
  • the horizontal pulling noise described above is generated when the amount of charge accumulated in the parasitic capacitance generated at the intersection between the scanning line 5 and the signal line 6 varies with time. More specifically, charges are accumulated in the parasitic capacitance generated at the intersection between the scanning line 5 and the signal line 6 due to the difference between the voltage of the scanning line 5 and the voltage of the signal line 6, but the horizontal noise is caused by scanning. A relative fluctuation with respect to the voltage of the signal line 6 occurs in the voltage applied to the line 5, and the charge amount accumulated in the parasitic capacitance is caused by the time fluctuation due to the relative fluctuation. Therefore, if the amount of charge accumulated in the parasitic capacitance is constant without time variation, that is, if the voltage applied to the scanning line 5 does not have a relative fluctuation with respect to the voltage of the signal line 6, Pulling noise does not occur.
  • a GND potential difference caused by impedance or a GND potential difference caused by current is generated between the scanning drive unit 15 and the reading unit 16.
  • the GND potential difference between the scanning drive unit 15 and the reading unit 16 as shown by the hatched area in FIG. 13 accompanying fluctuations in the GND potential of the scanning driving unit 15 and the GND potential of the reading unit 16. Will cause fluctuations.
  • the voltage applied to the scanning line 5 is relatively fluctuated with respect to the voltage of the signal line 6, and the horizontal pulling is performed. Noise will be generated.
  • the noise component may not be completely removed unless a stable noise reduction effect is always obtained.
  • the image quality of the radiographic image is deteriorated. For example, if a diagnosis is performed using a radiographic image having a deteriorated image quality, a lesion is overlooked, or a normal part is mistaken for a lesion. There is a risk that inconveniences such as the occurrence of the Therefore, it is desired that the radiographic imaging device always obtains a stable noise reduction effect in order to always obtain a radiographic image with appropriate image quality.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a radiographic imaging apparatus capable of always obtaining a stable noise reduction effect.
  • the radiographic imaging device of the present invention includes: In a radiographic imaging device that performs radiographic imaging, A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines A detection unit comprising: When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line.
  • the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit; Scanning drive means comprising: A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charges emitted from the radiation detection element into image data; and a readout power supply circuit that supplies power to the readout unit.
  • the power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit
  • the reading power supply circuit supplies power to the reading unit based on the power supplied from the power supply unit
  • the ground terminal of the power supply circuit for scanning drive and the ground terminal of the power supply circuit for readout are connected to the ground level of the radiation imaging apparatus,
  • the power supply circuit further comprises connection means for directly and electrically connecting the ground terminal of the power supply circuit for scanning and the ground terminal of the power supply circuit for reading.
  • the radiographic imaging device of the present invention is In a radiographic imaging device that performs radiographic imaging, A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines
  • a detection unit comprising: When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line.
  • the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit;
  • Scanning drive means comprising: A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charge emitted from the radiation detection element into image data; and a readout power supply circuit that supplies electric power to the readout unit Means, A control unit for controlling operations of at least the scanning driving unit and the reading unit; A power supply unit that supplies power to at least the scanning drive unit, the readout unit, and the control unit; With The power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit, The reading power
  • the ground terminal of the scanning drive power supply circuit and the ground terminal of the readout power supply circuit are electrically connected to the ground of the power supply unit, and Connection means for directly and electrically connecting the ground terminal and the ground terminal of the read power supply circuit is provided.
  • the scanning drive power supply circuit and the readout power supply circuit are a common power supply circuit, and the ground terminal of the common power supply circuit is electrically connected to the ground of the power supply unit.
  • FIG. 2 is a cross-sectional view taken along line XX in FIG. It is a top view which shows the structure of a board
  • FIG. 5 is a cross-sectional view taken along line YY in FIG. It is a side view explaining the board
  • the radiographic imaging device includes a scintillator or the like, converts the irradiated radiation into electromagnetic waves of other wavelengths such as visible light, and converts them into image data that is an electrical signal by the radiation detection element.
  • a so-called indirect radiographic imaging device will be described, but the present invention is not limited to that case, and the so-called direct radiographic imaging device that directly detects radiation with a radiation detection element without using a scintillator or the like. It is applicable to.
  • the case where the radiographic image capturing apparatus is portable is described.
  • the present invention is not limited to this case.
  • the fixed radiographic image capturing apparatus integrally formed with the support base is used. It is applicable to.
  • FIG. 1 is an external perspective view of the radiographic image capturing apparatus according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along line XX of FIG.
  • the radiographic image capturing apparatus 1 according to the present embodiment is configured as a portable (cassette type) apparatus in which a scintillator 3, a substrate 4, and the like are housed in a housing 2 as shown in FIGS. 1 and 2.
  • the radiographic image capturing apparatus 1 is used for radiographic image capturing, detects radiation, and generates and acquires image data corresponding to the radiation dose.
  • the housing 2 is formed of a material such as a carbon plate or plastic that transmits radiation at least on a surface R (hereinafter referred to as a radiation incident surface R) that receives radiation.
  • a radiation incident surface R a surface that receives radiation.
  • 1 and 2 show a case in which the housing 2 is a so-called lunch box type formed by the frame plate 2A and the back plate 2B.
  • the housing 2 is integrally formed in a rectangular tube shape. It is also possible to use a so-called monocoque type.
  • a battery of a power switch 36, an indicator 37 composed of an LED or the like, and a power source 41 is disposed.
  • an antenna device 39 that is a communication means for communicating with an external device in a wireless manner is embedded in the side surface of the lid member 38.
  • the installation position of the antenna device 39 is not limited to the side surface portion of the lid member 38, and the antenna device 39 can be installed at an arbitrary position of the radiographic image capturing apparatus 1.
  • the number of antenna devices 39 to be installed is not limited to one, and a plurality of antenna devices 39 may be provided.
  • a communication means for example, as a communication means, a connection terminal or the like for connection by inserting a cable or the like is used as the radiation imaging apparatus 1. It is provided on the side surface portion or the like.
  • a base 31 is disposed on the lower side of the substrate 4 via a lead thin plate (not shown), and the electronic component 32 is disposed on the base 31.
  • the PCB substrate 33, the buffer member 34, and the like are attached.
  • a glass substrate 35 for protecting the substrate 4 and the scintillator 3 on the radiation incident surface R side is disposed.
  • the scintillator 3 is arranged in a state of facing a detection unit P described later of the substrate 4.
  • the scintillator 3 is, for example, a phosphor whose main component is converted into an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when it receives radiation, and that is output.
  • the substrate 4 is formed of a glass substrate. As shown in FIG. 3, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. A radiation detection element 7 is provided in each region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4.
  • the region is a detection unit P.
  • each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 functioning as a switch means.
  • the drain electrode 8 d of the TFT 8 is connected to the signal line 6.
  • the TFT 8 is turned on when an on-voltage is applied to the connected scanning line 5 by the scanning driving means 15 described later, and is applied to the gate electrode 8g via the scanning line 5, thereby detecting radiation. Electric charges generated and accumulated in the element 7 are emitted from the radiation detection element 7 to the signal line 6.
  • the TFT 8 is turned off when an off voltage is applied to the connected scanning line 5 and applied to the gate electrode 8 g via the scanning line 5, and the TFT 8 is turned off from the radiation detection element 7 to the signal line 6. The emission of the charge is stopped, and the charge generated in the radiation detection element 7 is held and accumulated in the radiation detection element 7.
  • FIG. 5 is a sectional view taken along line YY in FIG.
  • a gate electrode 8g of a TFT 8 made of Al, Cr, or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a).
  • An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiNx) is connected to the first electrode 74 of the radiation detecting element 7 through a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like.
  • the source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
  • the source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiNx) or the like, and the first passivation layer 83 covers both the electrodes 8s and 8d from above.
  • ohmic contact layers 84a and 84b formed in an n-type by doping hydrogenated amorphous silicon with a group VI element are stacked between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, respectively.
  • the TFT 8 is formed as described above.
  • an auxiliary electrode 72 is formed by laminating Al, Cr or the like on an insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4.
  • a first electrode 74 made of Al, Cr, Mo, or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween.
  • the first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.
  • the auxiliary electrode 72 is not necessarily provided.
  • a p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below.
  • the radiation irradiated with respect to the radiographic imaging apparatus 1 injects from the radiation entrance surface R of the housing
  • the electromagnetic wave reaches the i layer 76 of the radiation detection element 7, and electron-hole pairs are generated in the i layer 76.
  • the radiation detection element 7 converts the electromagnetic waves irradiated from the scintillator 3 into electric charges (electron hole pairs).
  • a second electrode 78 made of a transparent electrode such as ITO is laminated and formed so that the irradiated electromagnetic wave reaches the i layer 76 and the like.
  • the radiation detection element 7 is formed as described above. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed. Further, in the present embodiment, a case where a so-called pin-type radiation detection element formed by sequentially stacking the p layer 77, the i layer 76, and the n layer 75 as described above is used as the radiation detection element 7. However, it is not limited to this.
  • a bias line 9 for applying a bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78.
  • the second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are The upper side is covered with a second passivation layer 79 made of silicon nitride (SiNx) or the like.
  • one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other.
  • each bias line 9 is bound to one connection 10 at a position outside the detection portion P of the substrate 4.
  • each scanning line 5, each signal line 6, and connection 10 of the bias line 9 are input / output terminals (also referred to as pads) provided near the edge of the substrate 4. 11 is connected.
  • each input / output terminal 11 has a flexible substrate COF (Chip On Film) on which a chip such as a gate IC 12a constituting a gate scanning line driving unit 15b of the scanning driving means 15 described later is incorporated on a film.
  • COF Chip On Film
  • an anisotropic conductive adhesive material 13 such as an anisotropic conductive adhesive film (Anisotropic Conductive Film) or an anisotropic conductive paste (Anisotropic Conductive Paste).
  • the flexible substrate COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 on the back surface 4b side.
  • substrate 4 part of the radiographic imaging apparatus 1 is formed.
  • illustration of the electronic component 32 and the like is omitted.
  • FIG. 7 is a block diagram showing an equivalent circuit of the radiation image capturing apparatus 1 according to this embodiment.
  • each radiation detection element 7 of the detection unit P of the substrate 4 has the bias line 9 connected to the second electrode 78, and each bias line 9 is bound to the connection 10 to the bias power supply 14. It is connected.
  • the bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9.
  • the bias line 9 is connected to the p-layer 77 side (see FIG. 5) of the radiation detection element 7 via the second electrode 78, the radiation from the bias power source 14 is detected.
  • a voltage equal to or lower than the voltage applied to the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage) is applied as a bias voltage to the second electrode 78 of the element 7 via the bias line 9.
  • the bias power supply 14 is connected to the power supply unit 41 via a power supply circuit 16 a of the reading unit 16 and the control unit 22 via a wiring (power supply line). 22 and the power supply circuit 16 a of the reading means 16 are configured to be supplied with power from the power supply unit 41.
  • the ground terminal 141 of the bias power supply 14 is connected to the ground terminal 161 of the power supply circuit 16a by wiring (GND line).
  • the bias power supply 14 is connected to the control unit 22 via the power supply circuit 16a of the reading means 16 and is connected to the control unit 22 via the power supply circuit 16a of the reading means 16.
  • the control signal is input from the control unit 22, the present invention is not limited to this, and the bias power supply 14 is directly connected to the control unit 22 by wiring, and the control signal is directly transmitted from the control unit 22. You may comprise so that it may be input.
  • each radiation detection element 7 is connected to the source electrode 8s (denoted as S in FIG. 7) of the TFT 8, and the gate electrode 8g of each TFT 8 (denoted as G in FIG. 7). Is connected to each scanning line 5 extending from a gate scanning line driving unit 15b of the scanning driving means 15 described later. Further, the drain electrode 8 d (denoted as D in FIG. 7) of each TFT 8 is connected to each signal line 6.
  • the scanning drive unit 15 includes a power supply circuit 15a that functions as a scanning drive power supply circuit that supplies an on-voltage and an off-voltage to the gate scanning line driving unit 15b, and each scanning line 5, that is, each scanning line 5.
  • a gate scanning line driving unit 15b that switches a voltage applied to the lines L1 to Lx between an on-voltage and an off-voltage.
  • the power supply circuit 15a of the scanning drive unit 15 gates on and off voltages to be applied to the gate electrode 8g of the TFT 8 via the lines L1 to Lx of the scanning line 5 based on the power supplied from the power supply unit 41.
  • the scanning line driving unit 15b is configured to be supplied.
  • the power supply circuit 15 a of the scan driving unit 15 is connected to the power supply unit 41 through the control unit 22 by wiring, and the power supply unit 41 through the control unit 22. It is comprised so that electric power may be supplied from.
  • the ground terminal 151 of the scanning drive unit 15 (specifically, the ground terminal 151 of the power supply circuit 15a of the scan drive unit 15) is supplied with power via the noise suppression unit 51 (described later), the control unit 22 and the power supply unit 41.
  • the ground GND of the radiographic imaging apparatus 1 is connected to the ground GND of the unit 41 by wiring and is electrically connected to the ground GND of the power source 41 via the noise suppression unit 51, the control unit 22, and the power source 41. Connected to level, ie grounded.
  • the gate scanning line driving unit 15b is formed by arranging a plurality of flexible substrates COF12 in which a gate IC 12a is incorporated on a film, and is applied to the gate electrode 8g of the TFT 8 via each line L1 to Lx of the scanning line 5.
  • the voltage to be switched is switched between an on-voltage and an off-voltage, so that each TFT 8 is switched between an on state and an off state.
  • the gate scanning line driving unit 15 b is connected to the control unit 22 via the power supply circuit 15 a of the scanning driving unit 15, and the power source of the scanning driving unit 15 is connected.
  • the control signal is input from the control unit 22 via the circuit 15a.
  • the present invention is not limited to this, and the gate scanning line driving unit 15b is directly connected to the control unit 22 by wiring. You may comprise so that a control signal may be input directly from the control part 22.
  • the reading unit 16 converts each radiation to a power supply circuit 16a that functions as a reading power supply circuit that supplies power to the reading IC 16b and converts the electric charges emitted from each radiation detection element 7 into image data.
  • a reading IC 16b that functions as a reading unit that reads image data from the detection element 7.
  • the reading unit 16 is housed on a substrate different from the substrate on which the scanning driving unit 15 is housed, and is housed on the same substrate as the bias power source 14.
  • the power supply circuit 16 a of the reading unit 16 is configured to supply power to each unit constituting the read IC 16 b and the bias power supply 14 based on the power supplied from the power supply unit 41.
  • the power supply circuit 16 a of the reading unit 16 is connected to the power supply unit 41 via the control unit 22 and is connected to the power supply unit 41 via the control unit 22. Electric power is supplied.
  • the ground terminal 161 of the reading unit 16 (specifically, the ground terminal 161 of the power supply circuit 16a of the reading unit 16) is connected to the power supply unit 41 via the noise suppression unit 52 (described later), the control unit 22, and the power supply unit 41. Is connected to the ground GND of the radiographic imaging apparatus 1 by being electrically connected to the ground GND of the power supply unit 41 via the noise suppression means 52, the control unit 22, and the power supply unit 41. Connected, ie grounded.
  • the readout IC 16b includes a readout circuit 17, which includes an amplifier circuit 18, a correlated double sampling circuit 19, and the like, an analog multiplexer 21, and an A / D converter 20.
  • the correlated double sampling circuit 19 is denoted as CDS.
  • each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16b.
  • Each read IC 16b is provided with a predetermined number of read circuits 17, and by providing a plurality of read ICs 16b, the read circuits 17 corresponding to the number of signal lines 6 are provided.
  • the radiation image capturing apparatus 1 when radiation image capturing is performed, the radiation image capturing apparatus 1 is irradiated with radiation through the subject, and the scintillator 3 converts the radiation into electromagnetic waves of other wavelengths and is irradiated to the radiation detection element 7 immediately below the radiation. The Then, charges are generated according to the radiation dose (the amount of electromagnetic waves) irradiated by the radiation detection element 7.
  • an on-voltage is applied to the gate electrode 8 g from the gate scanning line driving unit 15 b of the scanning driving unit 15 through the lines L 1 to Lx of the scanning line 5.
  • the TFT 8 is turned on, and charges are emitted from the radiation detection element 7 to the signal line 6.
  • a voltage value is output from the amplifier circuit 18 in accordance with the amount of charge emitted from the radiation detection element 7, and is correlated double-sampled by the correlated double sampling circuit 19, and analog value image data is input to the analog multiplexer 21. Is output.
  • the image data sequentially output from the analog multiplexer 21 is sequentially converted into digital value image data by the A / D converter 20, output to the storage means 40, and sequentially stored.
  • the read IC 16 b is connected to the control unit 22 via the power supply circuit 16 a of the read means 16 and is connected via the power supply circuit 16 a of the read means 16.
  • the control signal is input from the unit 22 or the digital value image data is output to the control unit 22 via the power supply circuit 16a of the reading unit 16.
  • the read IC 16b may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22 or digital value image data is directly output to the control unit 22.
  • the control unit 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), and the like. Has been. Note that the control unit 22 may be configured with a dedicated control circuit.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • FPGA Field Programmable Gate Array
  • the control unit 22 controls the operation of each functional unit of the radiographic image capturing apparatus 1. Specifically, for example, the control unit 22 controls the bias power supply 14 to control the reverse bias voltage applied to each radiation detection element 7 or the scan driving unit 15 to control the voltage applied to the scanning line 5. Image data read out from each radiation detection element 7 by switching between ON voltage and OFF voltage, or by reading out the image data from each radiation detection element 7 by controlling the readout means 16 Process. Each image data read from each radiation detection element 7 is stored in an image storage area of the storage unit 40 by a memory controller (not shown) controlled by the control unit 22.
  • control unit 22 is connected to a storage means 40 and an antenna device 39 configured by a DRAM (Dynamic RAM) or the like. Further, although not shown in FIG. 36, an indicator 37, and the like are connected.
  • the control unit 22 is connected to a power supply unit 41 for supplying power to each functional unit of the radiographic imaging apparatus 1 such as the bias power supply 14, the scanning drive unit 15, the reading unit 16, and the control unit 22. ing.
  • the power supply unit 41 supplies power to the scanning drive unit 15 (specifically, the power supply circuit 15 a of the scan drive unit 15) via the control unit 22, thereby It is configured to supply power to the scanning drive means 15 of each functional unit. Further, as shown in FIG. 7, the power supply unit 41 supplies power to the reading unit 16 (specifically, the power supply circuit 16 a of the reading unit 16) via the control unit 22, so that the radiographic imaging device 1 It is configured to supply power to the reading means 16 and the bias power supply 14 among the functional units.
  • the ground terminals of the functional units such as the scanning drive unit 15, the reading unit 16, and the control unit 22 are electrically connected to the ground GND of the power supply unit 41 in order to make the GND potential of each functional unit the same.
  • the radiation image capturing apparatus 1 is connected to the ground level, that is, is grounded.
  • the ground terminal 151 of the scanning drive unit 15 that is, the ground terminal 151 of the power supply circuit 15 a of the scan driving unit 15
  • the ground terminal 151 of the power supply circuit 15 a of the scan driving unit 15 includes a noise suppression unit 51 (described later) and a control unit. 22 and the power supply unit 41 and are connected to the ground GND of the power supply unit 41 by wiring.
  • the ground terminal 161 of the reading unit 16 (that is, the ground terminal 161 of the power supply circuit 16a of the reading unit 16) is connected to the ground GND of the power supply unit 41 via the noise suppression unit 52 (described later), the control unit 22, and the power supply unit 41. It is connected with wiring.
  • the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are electrically connected directly by the connecting unit 50.
  • the connecting means 50 as long as it can make a low impedance connection between the ground terminal 151 of the scanning driving means 15 and the ground terminal 161 of the reading means 16 as will be described later, the material and shape thereof are arbitrary. Specifically, metal fittings and wire rods are preferably used.
  • noise intrusion from the control unit 22 or the power supply unit 41 to the scanning drive unit 15 is caused between the ground terminal 151 of the scanning drive unit 15 and the control unit 22 and the power supply unit 41.
  • a noise suppression unit 51 that functions as a scanning drive noise suppression unit is inserted.
  • a noise suppression means 52 that functions as a noise suppression means is inserted between the ground terminal 161 of the reading unit 16 and the control unit 22 and the power supply unit 41, for reading, which suppresses intrusion of noise from the control unit 22 and the power supply unit 41 to the bias power supply 14 and the reading unit 16.
  • a noise suppression means 52 that functions as a noise suppression means is inserted.
  • the noise suppression means 51 and 52 can be configured arbitrarily as long as noise from the control unit 22 or the power supply unit 41, specifically digital noise or noise due to current fluctuation, can be suppressed.
  • filters, FPC (Flexible Printed Circuits), ferrite beads, resistors, and the like are preferably used.
  • the control unit 22 acquires the charge generated by the radiation image capturing apparatus 1 by being irradiated with radiation and accumulated in each radiation detecting element 7, that is, image data as accurately as possible.
  • a reset process is performed to reset each radiation detection element 7 by discharging excess charges remaining in each radiation detection element 7 from each radiation detection element 7. This reset process can be realized by applying an on-voltage to the scanning line 5 from the scanning drive unit 15 and releasing extra charge from the radiation detecting element 7 to the signal line 6.
  • control unit 22 applies the off voltage to all the scanning lines 5, that is, all the lines L1 to Lx of the scanning line 5 from the gate scanning line driving unit 15b of the scanning driving unit 15 to turn off each TFT 8.
  • a charge accumulation process for accumulating charges generated in each radiation detection element 7 due to radiation irradiation in each radiation detection element 7 is performed.
  • control unit 22 applies an ON voltage to the scanning line 5 from the scanning driving unit 15 to release the charge accumulated in the radiation detecting element 7 from the radiation detecting element 7 to the signal line 6.
  • the image forming apparatus is configured to perform an image data reading process for reading image data from each radiation detection element 7 by converting the emitted charges into image data.
  • control unit 22 is configured to acquire a correction dark image for correcting the radiographic image following the radiographic image capturing.
  • each radiation detection element 7 so-called dark charges are constantly generated due to thermal excitation or the like due to heat of each radiation detection element 7 itself, and at the time of image data read processing for reading image data from each radiation detection element 7, In addition to the charges that are true image data generated by radiation irradiation, dark charges are also read from each radiation detection element 7, and image data on which offsets due to dark charges are superimposed is read. Therefore, in order to subtract the offset due to dark charge from the read image data to obtain true image data, the control unit 22 acquires a correction dark image subsequent to the radiographic image capture, and performs radiographic image capture. After the radiation image capturing apparatus 1 is left in a state where no radiation is applied to the apparatus 1, the offset detection data (dark image data) due to dark charges is read from each radiation detection element 7 as an offset correction value. .
  • the control unit 22 ends radiographic image capture at that time and starts acquiring a correction dark image. And first, the reset process which resets each radiation detection element 7 is performed similarly to the case of the reset process at the time of radiographic imaging.
  • control unit 22 performs a charge accumulation process for accumulating the charges generated in each radiation detection element 7 in each radiation detection element 7 in the same manner as the charge accumulation process at the time of radiographic image capturing.
  • the radiographic image capturing apparatus 1 is acquiring a correction dark image
  • the radiation image capturing apparatus 1 is not irradiated with radiation, and therefore, only the dark charge is accumulated in each radiation detection element 7.
  • control unit 22 performs an image data read process for reading image data from each radiation detection element 7 in the same manner as the image data read process at the time of radiographic image capturing.
  • the charge accumulated in each radiation detection element 7 in the charge accumulation process at the time of acquisition of the correction dark image is a dark charge
  • each radiation detection element 7 in the image data reading process at the time of acquisition of the correction dark image Dark image data is read out from.
  • correction dark image can be acquired before radiographic image capturing. It is also possible to repeatedly execute reset processing, charge accumulation processing, and image data readout processing at the time of acquisition of a correction dark image, and adopt the average value of the dark image data obtained each time as formal dark image data. It is.
  • the control unit 22 uses the image data of the radiation image obtained by the image data reading process at the time of radiographic image capturing and the dark image data obtained by the image data reading process at the time of obtaining the correction dark image to the antenna.
  • the data is transmitted from the device 39 to the external device.
  • the external device performs offset correction on the image data of the radiation image based on the dark image data, that is, the offset correction value.
  • the external apparatus stores in advance a gain correction value for the radiographic image capturing apparatus 1, and the external apparatus performs gain correction on the image data of the radiographic image based on the gain correction value. It is configured.
  • the external device is configured to perform correction processing such as offset correction and gain correction.
  • correction processing such as offset correction and gain correction.
  • the present invention is not limited to this, and the radiographic imaging device 1 performs the correction processing. You may comprise so that the image data in which the correction process was performed may be transmitted to an external device.
  • the scanning drive unit 15 and the readout unit 16 are separated from each other as in the present embodiment. Often placed. Therefore, there may be a difference between the impedance between the ground terminal 151 of the scanning drive unit 15 and the ground GND of the power supply unit 41 and the impedance between the ground terminal 161 of the reading unit 16 and the ground GND of the power supply unit 41. Many. In such a case, in order to make the GND potential of the scanning drive unit 15 and the GND potential of the reading unit 16 the same, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are connected to the radiation imaging apparatus 1. In spite of being connected to the ground level, a GND potential difference due to impedance occurs between the scanning driving means 15 and the reading means 16.
  • the reading unit 16 since the reading unit 16 has a larger current consumption than the scanning driving unit 15 and there is a difference between the consumption current of the scanning driving unit 15 and the consumption current of the reading unit 16, the scanning driving unit 15 and the reading unit 16 are different. In the meantime, a GND potential difference due to current is also generated.
  • the GND potential of the scanning drive means 15 that is, the GND potential of the power supply circuit 15a of the scanning drive means 15
  • the GND potential of the reading means 16 namely, the GND potential of the power supply circuit 16a of the reading means 16
  • fluctuation occurs.
  • the power supply (electric power) from the power supply circuit 15a for the gate scanning line driving section 15b and the power supply circuit for the readout IC 16b are accompanied with the fluctuation.
  • the power source (electric power) from 16a fluctuates, and noise is superimposed on the true image data generated by radiation irradiation.
  • the above-described lateral noise is generated when the amount of charge accumulated in the parasitic capacitance generated at the intersection of the scanning line 5 and the signal line 6 varies with time. More specifically, electric charges are accumulated in the parasitic capacitance generated at the intersection of the scanning line 5, the signal line 6, and the bias line due to the difference between the voltage of the scanning line 5 and the voltage of the signal line 6, but the lateral noise is The voltage applied to the scanning line 5 is caused by a relative fluctuation with respect to the voltage of the signal line 6, and the amount of charge accumulated in the parasitic capacitance is caused by the time fluctuation due to the relative fluctuation.
  • the amount of charge accumulated in the parasitic capacitance is constant without time variation, that is, if the voltage applied to the scanning line 5 does not have a relative fluctuation with respect to the voltage of the signal line 6, Pulling noise does not occur. That is, even if the GND potential of the scanning driving unit 15 and the GND potential of the reading unit 16 fluctuate, these waveforms match and if the GND potential difference between the scanning driving unit 15 and the reading unit 16 does not fluctuate, Fluctuations are offset, the amount of charge accumulated in the parasitic capacitance is constant, and no lateral noise is generated.
  • the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are electrically directly connected by the connecting unit 50, so that the scanning driving unit 15 and the reading unit 16 are connected.
  • the GND potential fluctuation waveform of the scanning drive means 15 and the fluctuation waveform of the GND potential fluctuation of the reading means 16 are made to coincide with each other.
  • connection means 50 the ground potential 151 between the scanning drive means 15 and the ground terminal 161 of the readout means 16 can be prevented to the extent that a GND potential difference can be prevented between the scan drive means 15 and the readout means 16.
  • the material, shape, etc. are arbitrary.
  • the bias line 9 (or the connection line 10) and the signal line 6 and between them.
  • a capacitor-like structure is formed by the insulating layer. Therefore, noise generated in the bias voltage is converted into charge noise by the parasitic capacitance generated at the intersection of the bias line 9 (or connection 10) and the signal line 6, and the charge noise is converted into the radiation detection element. 7 may be superimposed on the true image data to be read from the image data.
  • the radiation detection element 7 itself also has a capacitor-like structure in which an i layer 76 as a conversion layer is interposed between the first electrode 74 and the second electrode 78, and a bias voltage is applied to the second electrode 78. Applied. Therefore, the parasitic capacitance generated in the radiation detection element 7 itself having a capacitor-like structure, noise generated in the bias voltage is converted into charge noise, and the charge noise is a true image to be read from the radiation detection element 7. There is also the possibility of being superimposed on the data.
  • the ground terminal 151 of the scanning drive unit 15 and the ground terminal 161 of the readout unit 16 are electrically connected directly by the connection unit 50, and the ground terminal 141 of the bias power supply 14 and the readout unit are connected.
  • 16 ground terminals 161 are configured to be electrically connected directly by the GND line, so that a GND potential difference does not occur between the bias power source 14, the scan driving means 15, and the reading means 16, that is, The waveform of the fluctuation of the GND potential of the bias power supply 14, the waveform of the fluctuation of the GND potential of the scanning drive unit 15, and the waveform of the fluctuation of the GND potential of the reading unit 16 are made to coincide.
  • the amount of charge accumulated in the parasitic capacitance generated at the intersection of the bias line 9 (or connection 10) and the signal line 6 and the amount of charge accumulated in the parasitic capacitance generated in the radiation detection element 7 itself are constant.
  • the ground terminal 141 of the bias power supply 14 is connected to the ground GND of the power supply unit 41 without passing through the ground terminal 161 of the reading unit 16 as in the radiographic imaging apparatus shown in FIG.
  • the ground terminal 151 of the scanning driving means 15 and the ground terminal 161 of the reading means 16 are electrically connected directly by the connecting means 50, the bias power supply 14, the scanning driving means 15 and the reading means are provided. Therefore, a GND potential difference is generated. Therefore, in the present embodiment, the ground terminal 151 of the scanning drive unit 15 and the ground terminal 161 of the reading unit 16 are electrically connected directly by the connecting unit 50, and the ground terminal 141 of the bias power supply 14 and the reading unit 16 are connected.
  • the ground terminal 161 is configured to be electrically connected directly by the GND line, so that a GND potential difference is not generated among the bias power source 14, the scan driving unit 15, and the reading unit 16.
  • the scanning drive unit 15 when the ground terminal 151 of the scanning drive unit 15 is connected to the ground GND of the power supply unit 41 via the control unit 22 or the power supply unit 41, the scanning drive unit 15 is controlled. There is a risk that noise may enter from the unit 22 or the power supply unit 41.
  • the control is performed on the reading unit 16.
  • noise from the control unit 22 and the power supply unit 41 may be superimposed on the true image data to be read from the radiation detection element 7.
  • the noise suppression unit 51 is inserted between the ground terminal 151 of the scan driving unit 15 and the control unit 22 and the power supply unit 41, and the ground terminal 161 of the reading unit 16 and the control unit
  • the noise suppression means 52 is inserted between the power supply section 41 and the power supply section 41 so as to suppress the intrusion of noise from the control section 22 and the power supply section 41 to the scanning drive means 15 and the readout means 16. As a result, it is possible to read image data in which noise superposition from the control unit 22 and the power supply unit 41 is suppressed.
  • noise suppression means 51, 52 that can prevent the intrusion of noise from the control unit 22 or the power supply unit 41 is adopted, image data on which noise from the control unit 22 or the power supply unit 41 is not superimposed is obtained. It becomes possible to read out, which is more preferable. Therefore, as the noise suppression means 51 and 52, the structure is arbitrary as long as the noise intrusion from the control unit 22 and the power supply unit 41 can be suppressed, and preferably the noise intrusion can be prevented.
  • the bias power supply 14 is connected to the power supply unit 41 via the power supply circuit 16a of the reading unit 16 by wiring, and power is supplied to the bias power supply 14 from the power supply unit 41 via the power supply circuit 16a of the reading unit 16.
  • the bias power supply 14 is connected to the power supply unit 41 via the power supply circuit 15a of the scanning drive unit 15 by wiring, and the bias power supply 14 is connected.
  • the power from the power supply unit 41 may be supplied via the power supply circuit 15a of the scan driving unit 15, or a power supply circuit for the bias power supply 14 is separately provided, and the bias power supply 14 is provided for the bias power supply 14.
  • the power supply unit 41 is connected to the power supply unit 41 via a wiring, and the bias power supply 14 is supplied with power from the power supply unit 41 via the power supply circuit for the bias power supply 14. It may be sea urchin configuration.
  • a GND potential difference waveform is not generated between the bias power supply 14, the scanning drive means 15, and the reading means 16, that is, the GND potential fluctuation waveform.
  • the ground potential of the bias power supply 14 (specifically, for the bias power supply 14) in order to match the fluctuation waveform of the GND potential of the scanning drive means 15 and the fluctuation waveform of the GND potential of the reading means 16.
  • the ground terminal of the power supply circuit may be electrically connected directly to the ground terminal 151 of the scanning drive unit 15 and / or the ground terminal 161 of the reading unit 16.
  • a noise suppression unit may be inserted between the ground terminal of the power supply circuit and the control unit 22 and the power supply unit 41.
  • the ground terminal 151 of the power supply circuit 15a of the scanning drive unit 15 and the ground terminal 161 of the power supply circuit 16a of the reading unit 16 are the same as those of the radiographic imaging apparatus.
  • the ground terminal 151 of the power supply circuit 15 a of the scanning drive means 15 and the ground terminal 161 of the power supply circuit 16 a of the reading means 16 are electrically connected directly by the connection means 50.
  • the scanning drive unit 15 and the reading unit 16 are connected with low impedance. Therefore, the waveform of the GND potential fluctuation of the scanning drive unit 15 and the waveform of the GND potential fluctuation of the reading unit 16 coincide with each other, and no GND potential difference is generated between the scanning driving unit 15 and the reading unit 16.
  • the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is connected to the power supply unit 41 via the control unit 22 and the power supply unit 41.
  • the ground terminal 161 of the power supply circuit 16 a of the reading unit 16 is connected to the power supply unit 41 via the control unit 22 and the power supply unit 41.
  • the noise suppression means 51 for suppressing the intrusion of noise into the scanning drive means 15 and the power supply circuit 16a of the readout means 16 A terminal 161, is inserted between the control unit 22 and the power supply unit 41, and a suppressing noise suppression means 52 for noise intrusion to the read means 16, a.
  • the impedance between the scanning drive unit 15 and the control unit 22 and the power supply unit 41 is increased, and the impedance between the reading unit 16 and the control unit 22 and the power supply unit 41 is increased. Accordingly, intrusion of noise from the control unit 22 and the power supply unit 41 to the scanning drive unit 15 and the reading unit 16 is suppressed, and therefore noise from the control unit 22 and the power supply unit 41, specifically, digital noise and current fluctuations. Image data in which superimposition of noise such as noise is suppressed can be read. As a result, even if noise such as digital noise or noise due to current fluctuation occurs in the control unit 22 or the power supply unit 41, the influence of such noise is reduced, so that a stable noise reduction effect can be obtained. Become.
  • the bias detector 14 that applies a bias voltage to the radiation detection element 7 via the bias line 9 and the connection 10 is provided.
  • the power supply circuit 16 a is configured to supply power to the bias power supply 14 based on the power supplied from the power supply unit 41.
  • the fluctuation waveform of the GND potential of the bias power supply 14, the fluctuation waveform of the GND potential of the scanning drive means 15, and the fluctuation waveform of the GND potential of the reading means 16 coincide with each other. Since no GND potential difference occurs between the bias power supply 14 and the scanning drive means 15, noise caused by fluctuations in the GND potential difference between the bias power supply 14 and the scanning drive means 15, or the GND potential difference between the bias power supply 14 and the read means 16. It is possible to read out image data on which noise caused by fluctuations, specifically, noises caused by fluctuations in bias voltage and the like are not superimposed. As a result, it is possible to always obtain a more stable noise reduction effect that is not affected by changes in the operating state or the environmental temperature.
  • both the ground terminal 151 of the power supply circuit 15a of the scanning drive means 15 and the ground terminal 161 of the power supply circuit 16a of the readout means 16 are connected to the connection means 50 and the ground of the radiographic imaging apparatus 1 is connected.
  • the present invention is not limited to this, and one of the ground terminal 151 and the ground terminal 161 may not be connected to the ground level of the radiation imaging apparatus 1.
  • the power supply circuit of the scanning drive unit 15 may not be connected to the ground level of the radiation image capturing apparatus 1.
  • the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is electrically connected to the ground GND of the power supply unit 41 through the connection unit 50, the ground terminal 161 of the power supply circuit 16 a of the readout unit 16 and the power supply unit 41. By doing so, the radiation image capturing apparatus 1 is connected to the ground level.
  • the noise suppression means 52 inserted between the ground terminal 161 of the power supply circuit 16a of the reading means 16 and the control section 22 and the power supply section 41 is connected to the bias power supply 14, the scanning drive means 15, It functions as a noise suppression unit that suppresses noise intrusion into the unit 16.
  • the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is connected to the ground level of the radiation image capturing apparatus 1, the ground of the power supply circuit 16 a of the reading unit 16.
  • the terminal 161 may not be connected to the ground level of the radiation image capturing apparatus 1.
  • the ground terminal 161 of the power supply circuit 16 a of the reading unit 16 is electrically connected to the ground GND of the power supply unit 41 through the connection unit 50, the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15, and the power supply unit 41. By doing so, the radiation image capturing apparatus 1 is connected to the ground level.
  • the noise suppression means 51 inserted between the ground terminal 151 of the power supply circuit 15a of the scan driving means 15 and the control section 22 and the power supply section 41 includes the bias power supply 14, the scan drive means 15, It functions as a noise suppression unit that suppresses noise intrusion into the reading unit 16.
  • both the scanning driving unit 15 and the reading unit 16 are configured to be directly connected to the control unit 22.
  • the present invention is not limited to this, and at least one of the scanning driving unit 15 and the reading unit 16 is connected via the power supply unit 41. You may comprise so that it may connect with the control part 22.
  • FIG. 1 is a diagrammatic representation of the present embodiment.
  • the scanning drive unit 15 is directly connected to the power supply unit 41 and is connected to the control unit 22 via the power supply unit 41, and the reading unit 16 is connected to the power supply unit.
  • 41 may be connected directly to the control unit 22 via the power supply unit 41.
  • the input of the control signal from the control unit 22 to the scanning drive unit 15 is performed via the power supply unit 41.
  • the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is electrically connected to the ground GND of the power supply unit 41 via the noise suppression unit 51 and the power supply unit 41, so that the ground of the radiographic image capturing apparatus 1 can be obtained.
  • the noise suppression means 51 is inserted between the ground terminal 151 of the power supply circuit 15 a of the scan driving means 15 and the power supply section 41 to prevent noise from entering the scan drive means 15 from the control section 22 and the power supply section 41. It comes to suppress.
  • the control signal from the control unit 22 to the bias power supply 14 and the reading unit 16 and the image data from the reading unit 16 to the control unit 22 are input via the power supply unit 41.
  • the ground terminal 161 of the power supply circuit 16a of the reading unit 16 is electrically connected to the ground GND of the power supply unit 41 via the noise suppression unit 52 and the power supply unit 41, so that the ground level of the radiographic image capturing apparatus 1 is reached. It is connected to the.
  • the noise suppression unit 52 is inserted between the power supply unit 41 and the ground terminal 161 of the power supply circuit 16 a of the reading unit 16, and noise from the control unit 22 and the power supply unit 41 with respect to the bias power supply 14 and the reading unit 16. Intrusion is suppressed.
  • both the scanning driving unit 15 and the reading unit 16 are configured to be directly connected to the power supply unit 41 and connected to the control unit 22 via the power supply unit 41.
  • the present invention is not limited thereto. Rather, one of the scanning drive means 15 and the reading means 16 is directly connected to the power supply unit 41 and is connected to the control unit 22 via the power supply unit 41, and the other is directly connected to the control unit 22.
  • the power supply unit 41 may be connected via the control unit 22.
  • the radiographic image capturing apparatus 1 of the second embodiment has the same power supply circuit 15a of the scanning drive means 15 and power supply circuit 16a of the reading means 16 in that the radiographic image capturing of the first embodiment. Different from device 1. Therefore, below, only a different part from 1st Embodiment is demonstrated, and another common part attaches
  • the scanning drive unit 15 includes the gate scanning line driving unit 15b but does not include the power supply circuit 15a, and the reading unit 16 includes Although the read IC 16b is provided, the power supply circuit 16a is not provided.
  • the bias power supply 14, the gate scanning line driving unit 15b, the readout IC 16b, and the like are housed in the same substrate, and are supplied with power from the power supply circuit 60, which is a common power supply circuit,
  • the control unit 22 is configured to receive an input of a control signal.
  • the power supply circuit 60 supplies power to each unit constituting the readout IC 16b and the bias power supply 14 based on the power supplied from the power supply unit 41, and via each line L1 to Lx of the scanning line 5.
  • An ON voltage and an OFF voltage applied to the gate electrode 8g of the TFT 8 are configured to be supplied to the gate scanning line driving unit 15b.
  • the ground terminal 601 of the power supply circuit 60 is connected to the ground level of the radiographic imaging apparatus 1 by being electrically connected to the ground GND of the power supply unit 41 via the control unit 22 and the power supply unit 41, that is, grounding. Has been. Further, between the ground terminal 601 of the power supply circuit 60 and the control unit 22 and the power supply unit 41, it functions as a noise suppression unit that suppresses intrusion of noise to the bias power supply 14, the scan driving unit 15, and the reading unit 16. Noise suppression means 61 is inserted.
  • the gate scanning line driving unit 15 b is connected to the control unit 22 via the power supply circuit 60 by wiring, and is controlled from the control unit 22 via the power supply circuit 60.
  • the present invention is not limited to this. If power is supplied from the power supply unit 41 via the power supply circuit 60 to the gate scanning line driving unit 15b, The gate scanning line driving unit 15b may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22.
  • the readout IC 16 b is connected to the control unit 22 through the power supply circuit 60 by wiring, and a control signal is input from the control unit 22 through the power supply circuit 60. Or the image data is output to the control unit 22 via the power supply circuit 60.
  • the present invention is not limited to this, and power is supplied from the power supply unit 41 to the readout IC 16b via the power supply circuit 60. Is connected directly to the control unit 22 by wiring, and the control signal is directly input from the control unit 22 or the image data is directly output to the control unit 22. May be.
  • the bias power supply 14 is connected to the control unit 22 via the power supply circuit 60 by wiring, and a control signal is input from the control unit 22 via the power supply circuit 60.
  • the present invention is not limited to this, and the bias power supply 14 may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22. .
  • the power supply circuit of the scanning drive means 15 and the power supply circuit of the readout means 16 are a common power supply circuit, that is, the power supply circuit 60.
  • the waveform of the GND potential fluctuation of the scanning drive unit 15 and the waveform of the GND potential fluctuation of the reading unit 16 coincide with each other, and no GND potential difference is generated between the scanning driving unit 15 and the reading unit 16.
  • the ground terminal 601 of the common power supply circuit 60 is connected to the ground GND of the power supply unit 41 via the control unit 22 and the power supply unit 41.
  • the radiation imaging apparatus 1 is connected to the ground level, and is inserted between the ground terminal 601 of the common power supply circuit 60, the control unit 22, and the power supply unit 41.
  • noise suppression means 61 that suppresses the intrusion of noise into the reading means 16.
  • the present invention is not limited to the above-described embodiment, and can be changed as appropriate. Moreover, you may apply combining the structure of the above-mentioned embodiment and modification.
  • It may be used in the field of radiographic imaging (especially in the medical field).

Abstract

Provided is a radiological imaging device capable of achieving a noise reduction effect that is stable over time. A radiological imaging device (1) is provided with scan line drive means (15) which is provided with a gate scan line drive unit (15b) for switching a voltage applied to a scan line (5) between an on-voltage and an off-voltage, and a power source circuit (15a) for supplying the on-voltage and the off-voltage to the gate scan line drive unit (15b) on the basis of power supplied from a power source unit (41); and reading means (16) which is provided with a reading IC (16b) for reading image data from a radioactivity detection element (7), and a power circuit (16a) for supplying power to the reading IC (16b) on the basis of the power supplied from the power source unit (41); wherein the ground terminal (151) of the scan line drive unit (15) and the ground terminal (161) of the reading means (16) are connected to a ground level of the radiological imaging device (1) and are directly connected electrically by way of connection means (50).

Description

放射線画像撮影装置Radiation imaging equipment
 本発明は、放射線画像撮影装置に関する。 The present invention relates to a radiographic image capturing apparatus.
 照射されたX線等の放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接型の放射線画像撮影装置や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換され照射された電磁波のエネルギーに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接型の放射線画像撮影装置が種々開発されている。なお、本発明では、直接型の放射線画像撮影装置における検出素子や、間接型の放射線画像撮影装置における光電変換素子を、あわせて放射線検出素子という。 A so-called direct type radiographic imaging device that generates electric charges by a detection element in accordance with the dose of irradiated radiation such as X-rays and converts it into an electrical signal, or other radiation such as visible light with a scintillator or the like. Various types of so-called indirect radiographic imaging devices have been developed that convert charges into electromagnetic signals after they have been converted into electromagnetic waves of a wavelength, and then generated by photoelectric conversion elements such as photodiodes in accordance with the energy of the converted and irradiated electromagnetic waves. Yes. In the present invention, the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.
 このタイプの放射線画像撮影装置はFPD(Flat Panel Detector)として知られており、従来は支持台(或いはブッキー装置)と一体的に形成されていたが(例えば特許文献1参照)、近年、放射線検出素子等をハウジングに収納した可搬型の放射線画像撮影装置が開発され、実用化されている(例えば特許文献2、3参照)。 This type of radiographic imaging device is known as an FPD (Flat Panel Detector) and has been conventionally formed integrally with a support base (or a bucky apparatus) (see, for example, Patent Document 1). A portable radiographic imaging device in which an element or the like is housed in a housing has been developed and put into practical use (see, for example, Patent Documents 2 and 3).
 このような放射線画像撮影装置では、例えば図12に示すように、通常、基板の検出部P上に複数の走査線5と複数の信号線6とが互いに交差するように配設され、走査線5と信号線6とで区画された各領域にそれぞれ放射線検出素子7が二次元状(マトリクス状)に配列されて形成されている。そして、各放射線検出素子7には、スイッチ手段である薄膜トランジスタ(Thin Film Transistor。以下、TFTという。)8が接続されており、各TFT8のドレイン電極(図12ではDと表現されている。)がそれぞれ信号線6に接続されている。 In such a radiographic apparatus, for example, as shown in FIG. 12, for example, a plurality of scanning lines 5 and a plurality of signal lines 6 are usually arranged on the detection part P of the substrate so as to cross each other. In each region partitioned by 5 and the signal line 6, the radiation detection elements 7 are respectively formed in a two-dimensional array (matrix). Each radiation detection element 7 is connected to a thin film transistor (Thin FilmTransistor, hereinafter referred to as TFT) 8 as a switching means, and a drain electrode of each TFT 8 (denoted as D in FIG. 12). Are connected to the signal line 6 respectively.
 また、各信号線6は、読み出し手段16の読み出しIC16b内に形成された増幅回路18等を備える各読み出し回路17に接続されており、各読み出し回路17の出力側は、マルチプレクサ21等を介してA/D変換器20に接続されている。読み出しIC16bでは、例えば1024個等の所定個数の読み出し回路17ごとに1個のA/D変換器20が設けられるように構成されていることが多い。
 また、各放射線検出素子7には、バイアス電源14からバイアス線9やそれらを結束する結線10を介してバイアス電圧が印加される。
 また、放射線画像撮影装置は、バイアス電源14や、走査駆動手段15、読み出し手段16などの各機能部に電力を供給する電源部41を備えている。
Each signal line 6 is connected to each readout circuit 17 provided with an amplification circuit 18 and the like formed in the readout IC 16b of the readout means 16, and the output side of each readout circuit 17 is connected via a multiplexer 21 and the like. The A / D converter 20 is connected. In many cases, the readout IC 16b is configured such that one A / D converter 20 is provided for every predetermined number of readout circuits 17 such as 1024.
In addition, a bias voltage is applied to each radiation detection element 7 from a bias power source 14 through a bias line 9 and a connection 10 that binds them.
The radiographic image capturing apparatus also includes a power source 41 that supplies power to each functional unit such as the bias power source 14, the scanning driving unit 15, and the reading unit 16.
 そして、各放射線検出素子7から画像データを読み出す画像データ読み出し処理の際には、走査駆動手段15のゲート走査線駆動部15bから走査線5の各ラインL1~Lxに順次オン電圧が印加され、ゲート電極(図12ではGと表現されている。)にオン電圧が印加されたTFT8を介して、各放射線検出素子7内に蓄積された電荷が信号線6に放出されて各読み出し回路17に読み出され、増幅回路18で電荷電圧変換される等してアナログ値の画像データに変換された後、A/D変換器20でデジタル値の画像データ(すなわちいわゆるrawデータ)に変換されて、記憶手段40に保存される。 In the image data read process for reading image data from each radiation detection element 7, an on-voltage is sequentially applied to each line L1 to Lx of the scan line 5 from the gate scan line drive unit 15b of the scan drive unit 15. The charge accumulated in each radiation detection element 7 is discharged to the signal line 6 through the TFT 8 in which the ON voltage is applied to the gate electrode (expressed as G in FIG. 12), and is supplied to each readout circuit 17. After being read out and converted into analog image data by charge-voltage conversion in the amplifier circuit 18 or the like, it is converted into digital image data (ie, so-called raw data) by the A / D converter 20, It is stored in the storage means 40.
 また、このようにして読み出されたrawデータに対する画像処理においては、通常、各放射線検出素子7から得られた各rawデータに対してそれぞれオフセット補正やゲイン補正などの補正処理が施された後、補正処理された画像データに対して対数変換処理等が施されることで、診断用等の最終的な画像データが作成される。 Further, in the image processing on the raw data read out in this way, usually, after each of the raw data obtained from each radiation detection element 7 is subjected to correction processing such as offset correction and gain correction. The final image data for diagnosis or the like is created by performing logarithmic conversion processing or the like on the corrected image data.
 ところで、走査線5と信号線6とが交差する交差部分には、短絡を防止するために、通常、絶縁層が設けられている。そのため、当該交差部分には、走査線5と信号線6とその間の絶縁層でコンデンサ状の構造が形成されている。 Incidentally, an insulating layer is usually provided at an intersection where the scanning line 5 and the signal line 6 intersect to prevent a short circuit. Therefore, a capacitor-like structure is formed at the intersecting portion by the scanning line 5, the signal line 6, and an insulating layer therebetween.
 上記のような走査線5と信号線6との交差部分は、多数の各走査線5(各ラインL1~Lx)と多数の各信号線6とが交差する非常に多くの部分に形成されている。
 走査駆動手段15のゲート走査線駆動部15bから走査線5の各ラインL1~Lxに順次オン電圧を印加して各放射線検出素子7から画像データを読み出す画像データ読み出し処理を行う場合、1本の走査線5にはオン電圧が印加され、その他の多数の走査線5にはオフ電圧が印加される。
 ゲート走査線駆動部15bから印加される電圧(オン電圧やオフ電圧)には、通常、ノイズが生じているため、画像データ読み出し処理では、ゲート走査線駆動部15bから印加される電圧に時間的にランダムに生じているノイズ(ゆらぎ)の影響を受ける。
The intersections between the scanning lines 5 and the signal lines 6 as described above are formed in a very large number of portions where the multiple scanning lines 5 (lines L1 to Lx) and the multiple signal lines 6 intersect. Yes.
When performing an image data reading process of reading image data from each radiation detection element 7 by sequentially applying an on-voltage from the gate scanning line driving unit 15b of the scanning driving unit 15 to the lines L1 to Lx of the scanning line 5, An ON voltage is applied to the scanning line 5, and an OFF voltage is applied to many other scanning lines 5.
Since noise is usually generated in the voltage (ON voltage or OFF voltage) applied from the gate scanning line driving unit 15b, in the image data reading process, the voltage applied from the gate scanning line driving unit 15b is temporally changed. Affected by random noise (fluctuation).
 すなわち、画像データ読み出し処理の際には、走査線5と信号線6との交差部分に形成されているコンデンサ状の構造により交差部分に生じている寄生容量で、ゲート走査線駆動部15bから印加される電圧に生じているノイズが電荷的なノイズに変換され、その電荷的なノイズが放射線検出素子7から読み出されるべき真の画像データに重畳されてしまう。 That is, in the image data reading process, the parasitic capacitance generated at the intersection due to the capacitor-like structure formed at the intersection between the scanning line 5 and the signal line 6 is applied from the gate scanning line driving unit 15b. Noise generated in the applied voltage is converted into charge noise, and the charge noise is superimposed on the true image data to be read from the radiation detection element 7.
 なお、画像データ読み出し処理では、走査駆動手段15のゲート走査線駆動部15bからいずれかの走査線5にオン電圧が印加されるとともに、それ以外の走査線5にオフ電圧が印加され、当該オン電圧が印加されている走査線5にTFT8を介して接続されている各放射線検出素子7から画像データが読み出されるが、同一の走査線5に接続されている各放射線検出素子7からの画像データには、同一の電荷的なノイズが重畳される。 In the image data reading process, an on-voltage is applied to any one of the scanning lines 5 from the gate scanning line driving unit 15b of the scanning driving unit 15, and an off-voltage is applied to the other scanning lines 5, so Image data is read from each radiation detection element 7 connected to the scanning line 5 to which the voltage is applied via the TFT 8, but image data from each radiation detection element 7 connected to the same scanning line 5. Are superimposed with the same charge noise.
 しかしながら、オン電圧を印加する走査線5が次の走査線5に切り替えられた際には、ゲート走査線駆動部15bから印加される電圧に生じるノイズが時間的にランダムに発生するため、当該次の走査線5に接続されている各放射線検出素子7からの画像データには同一の電荷的なノイズが重畳されるが、この電荷的なノイズは、切り替えられる前の走査線5に接続されている各放射線検出素子7からの画像データに重畳された電荷的なノイズとは値が異なる。 However, when the scanning line 5 to which the ON voltage is applied is switched to the next scanning line 5, noise generated in the voltage applied from the gate scanning line driving unit 15b is randomly generated in time. The same charge noise is superimposed on the image data from each radiation detection element 7 connected to the scan line 5, and this charge noise is connected to the scan line 5 before switching. The value is different from the charge noise superimposed on the image data from each radiation detecting element 7.
 そのため、このようにして読み出された放射線検出素子7ごとの画像データに基づいて放射線画像を生成すると、走査線方向(通常、この方向は横方向とされる。)に延びる縞状の模様が現れるという現象が生じる。この走査線方向に延びる縞状の模様が生じるような上記のノイズは、一般に、横引きノイズと呼ばれる。 Therefore, when a radiation image is generated based on the image data for each radiation detection element 7 read out in this way, a striped pattern extending in the scanning line direction (usually this direction is the lateral direction) is formed. The phenomenon of appearing occurs. The above-described noise that causes a striped pattern extending in the scanning line direction is generally called horizontal noise.
 このような横引きノイズを効率的にリダクションするために、特許文献1では、入射した放射線を放射線検出部(図12の検出部Pに相当)で検出するステップと、放射線検出部はマトリクス状にアレイされた複数の画素を有し、検出信号を放射線検出部から読み出し部(図12の走査駆動手段15および読み出し手段16に相当)を経由して読み出すステップと、読み出された検出信号を補正部で補正する補正ステップとを有し、補正ステップは、放射線検出部に起因するノイズに対応する第1補正値に基づいて検出信号を補正する第1サブステップと、読み出し部に起因するノイズに対応する第2補正値に基づいて検出信号を補正する第2サブステップとを有し、第2サブステップを第1サブステップよりも前に実行する放射線検出器のノイズリダクション方法について開示されている。ここで、第1補正値は、放射線検出部のゲインノイズと放射線検出部の横引きノイズとに対応する補正値であり、第2補正値は、読み出し部のゲインノイズに対応する補正値である。
 さらに、特許文献1では、高精度な補正値を取得するために、読み出し部ゲインノイズを取得する際や、検出部ゲインノイズを取得する際は、読み出し部を放射線検出部から電気的にセパレートすることについても開示されている。
In order to efficiently reduce such horizontal noise, in Patent Document 1, a step of detecting incident radiation by a radiation detection unit (corresponding to the detection unit P in FIG. 12) and the radiation detection unit are arranged in a matrix. A step of reading out a detection signal from a radiation detection unit via a reading unit (corresponding to the scanning driving unit 15 and the reading unit 16 in FIG. 12) having a plurality of pixels arrayed, and correcting the read detection signal A correction step that corrects the detection signal based on the first correction value corresponding to the noise caused by the radiation detection unit, and the noise caused by the reading unit. And a second sub-step of correcting the detection signal based on the corresponding second correction value, wherein the second sub-step is executed before the first sub-step. It discloses a noise reduction method. Here, the first correction value is a correction value corresponding to the gain noise of the radiation detection unit and the horizontal noise of the radiation detection unit, and the second correction value is a correction value corresponding to the gain noise of the reading unit. .
Furthermore, in Patent Document 1, in order to acquire a highly accurate correction value, when acquiring reading unit gain noise or when acquiring detection unit gain noise, the reading unit is electrically separated from the radiation detection unit. This is also disclosed.
特開平9-73144号公報JP-A-9-73144 特開2006-058124号公報JP 2006-058124 A 特開平6-342099号公報Japanese Patent Laid-Open No. 6-342099 特開2001-99944号公報JP 2001-99944 A
 しかしながら、特許文献1記載の技術では、読み出し部ゲインノイズの情報は、読み出し部の初期製造段階で予め測定され、或いは、読み出し部の定期検査時に取得されて、補正部内にストアされている。また、検出部ゲインノイズの情報は、放射線検出部の初期製造段階で予め測定され、或いは、放射線検出部の定期検査時に取得されて、補正部内にストアされている。
 この場合、放射線画像撮影装置の動作状態や環境温度などによっては、補正値(ノイズの情報)の取得時と、画像データ読み出し処理時とで、ノイズ成分が異なる可能性があり、常に安定したノイズリダクション効果を得ることが難しいという問題がある。
However, in the technique described in Patent Document 1, information on the readout unit gain noise is measured in advance at the initial manufacturing stage of the readout unit, or is acquired at the periodic inspection of the readout unit and stored in the correction unit. Further, the information on the detection unit gain noise is measured in advance at the initial manufacturing stage of the radiation detection unit, or is acquired during the periodic inspection of the radiation detection unit and stored in the correction unit.
In this case, depending on the operating state of the radiographic imaging device and the environmental temperature, the noise component may differ between when the correction value (noise information) is acquired and when the image data is read out. There is a problem that it is difficult to obtain a reduction effect.
 具体的には、放射線画像撮影装置においては、その構成の都合上、走査駆動手段15と読み出し手段16とを直近に配置することが難しく、走査駆動手段15と読み出し手段16とを離して配置することが多い。また、その際、走査駆動手段15のGND電位と読み出し手段16のGND電位とを同一にするために、走査駆動手段15のグランド端子151や読み出し手段16のグランド端子161を電源部41のグランドGNDと接続することで放射線画像撮影装置のグランドレベルに接続しているが、走査駆動手段15のグランド端子151と電源部41のグランドGNDとの間のインピーダンスと、読み出し手段16のグランド端子161と電源部41のグランドGNDとの間のインピーダンスとに差が生じる場合が多い。
 このような場合、走査駆動手段15のGND電位と読み出し手段16のGND電位とを同一にするために、走査駆動手段15のグランド端子151や読み出し手段16のグランド端子161を放射線画像撮影装置のグランドレベルに接続しているにも関わらず、走査駆動手段15と読み出し手段16との間にインピーダンス起因によるGND電位差が生じてしまう。
Specifically, in the radiographic imaging apparatus, it is difficult to arrange the scanning drive unit 15 and the reading unit 16 closest to each other due to the configuration thereof, and the scanning driving unit 15 and the reading unit 16 are arranged apart from each other. There are many cases. At this time, in order to make the GND potential of the scanning drive unit 15 and the GND potential of the reading unit 16 the same, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are connected to the ground GND of the power supply unit 41. Is connected to the ground level of the radiation imaging apparatus, but the impedance between the ground terminal 151 of the scanning drive means 15 and the ground GND of the power supply unit 41, the ground terminal 161 of the reading means 16 and the power supply In many cases, a difference occurs between the impedance of the portion 41 and the ground GND.
In such a case, in order to make the GND potential of the scanning drive unit 15 and the GND potential of the reading unit 16 the same, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are connected to the ground of the radiation imaging apparatus. In spite of being connected to the level, a GND potential difference is caused between the scanning drive means 15 and the reading means 16 due to impedance.
 さらに、読み出し手段16は、走査駆動手段15よりも消費電流が大きく、走査駆動手段15の消費電流と、読み出し手段16の消費電流とに差があるため、走査駆動手段15と読み出し手段16との間には電流起因によるGND電位差も生じてしまう。 Further, since the reading unit 16 has a larger current consumption than the scanning driving unit 15 and there is a difference between the consumption current of the scanning driving unit 15 and the consumption current of the reading unit 16, the scanning driving unit 15 and the reading unit 16 are different. In the meantime, a GND potential difference due to current is also generated.
 ところで、走査駆動手段15のGND電位や読み出し手段16のGND電位には、通常、図13に示すように、ゆらぎが生じている。具体的には、図13に示すように、消費電流の大きい読み出し手段16の方が、GND電位のゆらぎの波形の振幅が大きくなる。なお、図13には、走査駆動手段15のGND電位のゆらぎの波形(図13で破線で示す波形)と、読み出し手段16のGND電位のゆらぎの波形(図13で実線で示す波形)とにおいて、位相や周波数が同一である場合が示されているが、これらの波形は、位相や周波数が互いに異なる場合もある。 Incidentally, fluctuations are usually generated in the GND potential of the scanning driving means 15 and the GND potential of the reading means 16 as shown in FIG. Specifically, as shown in FIG. 13, the readout means 16 having a larger current consumption has a larger amplitude of the waveform of fluctuation of the GND potential. FIG. 13 shows a waveform of fluctuation of the GND potential of the scanning drive means 15 (waveform shown by a broken line in FIG. 13) and a waveform of fluctuation of the GND potential of the reading means 16 (waveform shown by a solid line in FIG. 13). Although the case where the phase and frequency are the same is shown, these waveforms may have different phases and frequencies.
 走査駆動手段15のGND電位や読み出し手段16のGND電位にゆらぎが生じると、当該ゆらぎに付随して、ゲート走査線駆動部15bに対する電源回路15aからの電源や、読み出しIC16bに対する電源回路16aからの電源がゆらいでしまい、放射線の照射により発生した真の画像データにノイズが重畳されてしまう。 When fluctuations occur in the GND potential of the scanning drive means 15 and the GND potential of the readout means 16, the power supply from the power supply circuit 15a for the gate scanning line drive section 15b and the power supply circuit 16a for the readout IC 16b are accompanied by the fluctuation. The power supply fluctuates, and noise is superimposed on the true image data generated by radiation irradiation.
 例えば、前述した横引きノイズは、走査線5と信号線6との交差部分に生じている寄生容量に蓄積される電荷量が時間変動することによって生じる。詳述すると、走査線5の電圧と信号線6の電圧との差により走査線5と信号線6との交差部分に生じている寄生容量に電荷が蓄積されるが、横引きノイズは、走査線5に印加される電圧に、信号線6の電圧に対する相対的なゆらぎが生じ、この相対的なゆらぎに伴い当該寄生容量に蓄積される電荷量が時間変動することによって生じる。
 したがって、当該寄生容量に蓄積される電荷量が時間変動することなく一定であれば、すなわち、走査線5に印加される電圧に、信号線6の電圧に対する相対的なゆらぎが生じなければ、横引きノイズが生じることはない。
For example, the horizontal pulling noise described above is generated when the amount of charge accumulated in the parasitic capacitance generated at the intersection between the scanning line 5 and the signal line 6 varies with time. More specifically, charges are accumulated in the parasitic capacitance generated at the intersection between the scanning line 5 and the signal line 6 due to the difference between the voltage of the scanning line 5 and the voltage of the signal line 6, but the horizontal noise is caused by scanning. A relative fluctuation with respect to the voltage of the signal line 6 occurs in the voltage applied to the line 5, and the charge amount accumulated in the parasitic capacitance is caused by the time fluctuation due to the relative fluctuation.
Therefore, if the amount of charge accumulated in the parasitic capacitance is constant without time variation, that is, if the voltage applied to the scanning line 5 does not have a relative fluctuation with respect to the voltage of the signal line 6, Pulling noise does not occur.
 つまり、前述したように、走査駆動手段15と読み出し手段16との間には、インピーダンス起因によるGND電位差や、電流起因によるGND電位差が生じている。そのため、走査駆動手段15のGND電位や読み出し手段16のGND電位のゆらぎに付随して、図13に斜線で示される領域で表すように、走査駆動手段15と読み出し手段16との間のGND電位差にゆらぎが生じてしまう。
 そして、このような走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因で、走査線5に印加される電圧に、信号線6の電圧に対する相対的なゆらぎが生じ、横引きノイズのノイズが生じてしまう。
In other words, as described above, a GND potential difference caused by impedance or a GND potential difference caused by current is generated between the scanning drive unit 15 and the reading unit 16. For this reason, the GND potential difference between the scanning drive unit 15 and the reading unit 16 as shown by the hatched area in FIG. 13 accompanying fluctuations in the GND potential of the scanning driving unit 15 and the GND potential of the reading unit 16. Will cause fluctuations.
Then, due to the fluctuation of the GND potential difference between the scanning driving unit 15 and the reading unit 16, the voltage applied to the scanning line 5 is relatively fluctuated with respect to the voltage of the signal line 6, and the horizontal pulling is performed. Noise will be generated.
 オフセット補正やゲイン補正などの補正処理で、走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因のノイズ成分、具体的には横引きノイズ成分等を除去することは可能である。しかしながら、放射線画像撮影装置の動作状態や環境温度などによっては、補正値の取得時と、画像データ読み出し処理時とで、GND電位差のゆらぎが原因のノイズ成分が異なる可能性があり、常に安定したノイズリダクション効果を得ることが難しいという問題がある。 With correction processing such as offset correction and gain correction, it is possible to remove noise components caused by fluctuations in the GND potential difference between the scanning drive unit 15 and the reading unit 16, specifically, horizontal noise components. . However, depending on the operating state of the radiographic imaging device, the environmental temperature, etc., the noise component due to fluctuations in the GND potential difference may differ between when the correction value is acquired and when the image data is read out. There is a problem that it is difficult to obtain a noise reduction effect.
 補正処理を行ったとしても、常に安定したノイズリダクション効果が得られないと、ノイズ成分を完全に除去できない場合が生じてしまう。このような場合、放射線画像の画質が低下してしまい、例えば、画質が低下した放射線画像を用いて診断を行うと、病変部を見落としたり、正常な部分を病変部と見誤ったりして誤診が生じる等の不都合が生じてしまう虞がある。そのため、放射線画像撮影装置には、常に適切な画質の放射線画像を得るために、常に安定したノイズリダクション効果を得ることが望まれる。 Even if correction processing is performed, the noise component may not be completely removed unless a stable noise reduction effect is always obtained. In such a case, the image quality of the radiographic image is deteriorated. For example, if a diagnosis is performed using a radiographic image having a deteriorated image quality, a lesion is overlooked, or a normal part is mistaken for a lesion. There is a risk that inconveniences such as the occurrence of the Therefore, it is desired that the radiographic imaging device always obtains a stable noise reduction effect in order to always obtain a radiographic image with appropriate image quality.
 本発明は、上記の問題点を鑑みてなされたものであり、常に安定したノイズリダクション効果を得ることが可能な放射線画像撮影装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a radiographic imaging apparatus capable of always obtaining a stable noise reduction effect.
 前記の問題を解決するために、本発明の放射線画像撮影装置は、
 放射線画像撮影を行う放射線画像撮影装置において、
 互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および前記複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、を備える検出部と、
 前記放射線検出素子ごとに配置され、接続された前記走査線にオフ電圧が印加されるとオフ状態となるとともに、接続された前記走査線にオン電圧が印加されるとオン状態となり、前記オフ状態では前記放射線検出素子内で発生した電荷を前記放射線検出素子内に蓄積させ、前記オン状態では前記放射線検出素子から前記信号線に前記電荷を放出させるスイッチ手段と、
 前記走査線に印加する電圧を前記オン電圧と前記オフ電圧との間で切り替えるゲート走査線駆動部と、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給する走査駆動用電源回路と、を備える走査駆動手段と、
 前記放射線検出素子から放出された前記電荷を画像データに変換することによって、前記放射線検出素子から前記画像データを読み出す読み出し部と、前記読み出し部に電力を供給する読み出し用電源回路と、を備える読み出し手段と、
 少なくとも前記走査駆動手段および前記読み出し手段の動作を制御する制御部と、
 少なくとも前記走査駆動手段、前記読み出し手段および前記制御部に電力を供給する電源部と、
 を備え、
 前記走査駆動用電源回路は、前記電源部から供給された電力に基づいて、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給し、
 前記読み出し用電源回路は、前記電源部から供給された電力に基づいて、前記読み出し部に電力を供給し、
 前記走査駆動用電源回路のグランド端子および前記読み出し用電源回路のグランド端子は、前記放射線画像撮影装置のグランドレベルに接続され、
 さらに、前記走査駆動用電源回路の前記グランド端子と前記読み出し用電源回路の前記グランド端子とを電気的に直接接続する接続手段を備えることを特徴とする。
In order to solve the above-described problem, the radiographic imaging device of the present invention includes:
In a radiographic imaging device that performs radiographic imaging,
A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines A detection unit comprising:
When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line. Then, the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state,
A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit; Scanning drive means comprising:
A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charges emitted from the radiation detection element into image data; and a readout power supply circuit that supplies power to the readout unit. Means,
A control unit for controlling operations of at least the scanning driving unit and the reading unit;
A power supply unit that supplies power to at least the scanning drive unit, the readout unit, and the control unit;
With
The power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit,
The reading power supply circuit supplies power to the reading unit based on the power supplied from the power supply unit,
The ground terminal of the power supply circuit for scanning drive and the ground terminal of the power supply circuit for readout are connected to the ground level of the radiation imaging apparatus,
The power supply circuit further comprises connection means for directly and electrically connecting the ground terminal of the power supply circuit for scanning and the ground terminal of the power supply circuit for reading.
 また、本発明の放射線画像撮影装置は、
 放射線画像撮影を行う放射線画像撮影装置において、
 互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および前記複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、を備える検出部と、
 前記放射線検出素子ごとに配置され、接続された前記走査線にオフ電圧が印加されるとオフ状態となるとともに、接続された前記走査線にオン電圧が印加されるとオン状態となり、前記オフ状態では前記放射線検出素子内で発生した電荷を前記放射線検出素子内に蓄積させ、前記オン状態では前記放射線検出素子から前記信号線に前記電荷を放出させるスイッチ手段と、
 前記走査線に印加する電圧を前記オン電圧と前記オフ電圧との間で切り替えるゲート走査線駆動部と、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給する走査駆動用電源回路と、を備える走査駆動手段と、
 前記放射線検出素子から放出された前記電荷を画像データに変換することによって、前記放射線検出素子から前記画像データを読み出す読み出し部と、前記読み出し部に電力を供給する読み出し用電源回路と、を備える読み出し手段と、
 少なくとも前記走査駆動手段および前記読み出し手段の動作を制御する制御部と、
 少なくとも前記走査駆動手段、前記読み出し手段および前記制御部に電力を供給する電源部と、
 を備え、
 前記走査駆動用電源回路は、前記電源部から供給された電力に基づいて、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給し、
 前記読み出し用電源回路は、前記電源部から供給された電力に基づいて、前記読み出し部に電力を供給し、
 前記走査駆動用電源回路と前記読み出し用電源回路とは、共通の電源回路であり、
 前記共通の電源回路のグランド端子は、前記放射線画像撮影装置のグランドレベルに接続されていることを特徴とする。
Moreover, the radiographic imaging device of the present invention is
In a radiographic imaging device that performs radiographic imaging,
A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines A detection unit comprising:
When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line. Then, the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state,
A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit; Scanning drive means comprising:
A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charge emitted from the radiation detection element into image data; and a readout power supply circuit that supplies electric power to the readout unit Means,
A control unit for controlling operations of at least the scanning driving unit and the reading unit;
A power supply unit that supplies power to at least the scanning drive unit, the readout unit, and the control unit;
With
The power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit,
The reading power supply circuit supplies power to the reading unit based on the power supplied from the power supply unit,
The scanning drive power supply circuit and the readout power supply circuit are a common power supply circuit,
The ground terminal of the common power supply circuit is connected to a ground level of the radiation imaging apparatus.
 本発明のような方式の放射線画像撮影装置によれば、走査駆動用電源回路のグランド端子および読み出し用電源回路のグランド端子は、電源部のグランドと電気的に接続され、走査駆動用電源回路のグランド端子と読み出し用電源回路のグランド端子とを電気的に直接接続する接続手段を備えている。或いは、走査駆動用電源回路と読み出し用電源回路とは、共通の電源回路であり、共通の電源回路のグランド端子は、電源部のグランドと電気的に接続されている。 According to the radiographic imaging apparatus of the present invention, the ground terminal of the scanning drive power supply circuit and the ground terminal of the readout power supply circuit are electrically connected to the ground of the power supply unit, and Connection means for directly and electrically connecting the ground terminal and the ground terminal of the read power supply circuit is provided. Alternatively, the scanning drive power supply circuit and the readout power supply circuit are a common power supply circuit, and the ground terminal of the common power supply circuit is electrically connected to the ground of the power supply unit.
 したがって、走査駆動手段のGND電位のゆらぎと、読み出し手段のGND電位のゆらぎとが一致し、走査駆動手段と読み出し手段との間にGND電位差が生じないため、走査駆動手段と読み出し手段との間のGND電位差のゆらぎが原因のノイズが発生することがない。そのため、走査駆動手段と読み出し手段との間のGND電位差のゆらぎが原因のノイズが重畳されていない画像データを読み出すことができる。 Therefore, the fluctuation of the GND potential of the scanning drive unit and the fluctuation of the GND potential of the readout unit coincide with each other, and no GND potential difference is generated between the scanning drive unit and the readout unit. Noise due to fluctuations in the GND potential difference is not generated. Therefore, it is possible to read image data on which noise due to fluctuations in the GND potential difference between the scanning drive means and the reading means is not superimposed.
 これにより、動作状態や環境温度などの変化の影響を受けない常に安定したノイズリダクション効果を得ることが可能となり、常に適切な画質の放射線画像を得ることができる。そのため、このような放射線画像を用いて診断を行うような場合に、医師等が病変部を見落としたり、正常な部分を病変部と見誤ったりして誤診が生じる等の不都合が生じることを的確に防止することが可能となる。 This makes it possible to always obtain a stable noise reduction effect that is not affected by changes in the operating state, environmental temperature, etc., and to always obtain a radiographic image with an appropriate image quality. Therefore, when making a diagnosis using such a radiographic image, it is possible to accurately inconvenience that a doctor or the like overlooks a lesioned part or misidentifies a normal part as a lesioned part, resulting in a misdiagnosis. Can be prevented.
各実施形態に係る放射線画像撮影装置を示す斜視図である。It is a perspective view which shows the radiographic imaging apparatus which concerns on each embodiment. 図1におけるX-X線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line XX in FIG. 基板の構成を示す平面図である。It is a top view which shows the structure of a board | substrate. 図3の基板上の小領域に形成された放射線検出素子とTFT等の構成を示す拡大図である。It is an enlarged view which shows the structure of the radiation detection element, TFT, etc. which were formed in the small area | region on the board | substrate of FIG. 図4におけるY-Y線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line YY in FIG. COFやPCB基板等が取り付けられた基板を説明する側面図である。It is a side view explaining the board | substrate with which COF, a PCB board | substrate, etc. were attached. 第1の実施の形態に係る放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the radiographic imaging apparatus which concerns on 1st Embodiment. 第1の実施の形態の変形例1の一例に係る放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the radiographic imaging apparatus which concerns on an example of the modification 1 of 1st Embodiment. 第1の実施の形態の変形例1の他の一例に係る放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the radiographic imaging apparatus which concerns on another example of the modification 1 of 1st Embodiment. 第1の実施の形態の変形例2に係る放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the radiographic imaging apparatus which concerns on the modification 2 of 1st Embodiment. 第2の実施の形態に係る放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the radiographic imaging apparatus which concerns on 2nd Embodiment. 従来の放射線画像撮影装置の等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of the conventional radiographic imaging apparatus. 従来の放射線画像撮影装置における、走査駆動手段のGND電位のゆらぎと、読み出し手段のGND電位のゆらぎとを示す図である。It is a figure which shows the fluctuation | variation of the GND electric potential of a scanning drive means, and the fluctuation | variation of the GND electric potential of a reading means in the conventional radiographic imaging apparatus.
 以下、図面を参照して、本発明に係る放射線画像撮影装置の実施の形態について説明する。ただし、本発明は図示例に限定されるものではない。 Hereinafter, an embodiment of a radiographic image capturing apparatus according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the illustrated example.
 なお、本実施形態では、放射線画像撮影装置が、シンチレータ等を備え、照射された放射線を可視光等の他の波長の電磁波に変換し、放射線検出素子で電気信号である画像データに変換する、いわゆる間接型の放射線画像撮影装置である場合について説明するが、本発明はその場合に限定されず、シンチレータ等を介さずに放射線を放射線検出素子で直接検出する、いわゆる直接型の放射線画像撮影装置に対しても適用可能である。
 また、本実施形態では、放射線画像撮影装置が可搬型である場合について説明するが、本発明はその場合に限定されず、例えば、支持台と一体的に形成された固定型の放射線画像撮影装置に対しても適用可能である。
In the present embodiment, the radiographic imaging device includes a scintillator or the like, converts the irradiated radiation into electromagnetic waves of other wavelengths such as visible light, and converts them into image data that is an electrical signal by the radiation detection element. The case of a so-called indirect radiographic imaging device will be described, but the present invention is not limited to that case, and the so-called direct radiographic imaging device that directly detects radiation with a radiation detection element without using a scintillator or the like. It is applicable to.
In the present embodiment, the case where the radiographic image capturing apparatus is portable is described. However, the present invention is not limited to this case. For example, the fixed radiographic image capturing apparatus integrally formed with the support base is used. It is applicable to.
[第1の実施の形態]
 図1は、本実施形態に係る放射線画像撮影装置の外観斜視図であり、図2は、図1のX-X線に沿う断面図である。
 本実施形態に係る放射線画像撮影装置1は、図1や図2に示すように、筐体2内にシンチレータ3や基板4などが収納された可搬型(カセッテ型)の装置として構成されている。放射線画像撮影装置1は、放射線画像撮影に用いられ、放射線を検出して放射線量に応じた画像データを生成して取得するものである。
[First Embodiment]
FIG. 1 is an external perspective view of the radiographic image capturing apparatus according to the present embodiment, and FIG. 2 is a cross-sectional view taken along line XX of FIG.
The radiographic image capturing apparatus 1 according to the present embodiment is configured as a portable (cassette type) apparatus in which a scintillator 3, a substrate 4, and the like are housed in a housing 2 as shown in FIGS. 1 and 2. . The radiographic image capturing apparatus 1 is used for radiographic image capturing, detects radiation, and generates and acquires image data corresponding to the radiation dose.
 筐体2は、少なくとも放射線の照射を受ける側の面R(以下、放射線入射面Rという。)が放射線を透過するカーボン板やプラスチックなどの材料で形成されている。
 なお、図1や図2では、筐体2がフレーム板2Aとバック板2Bとで形成された、いわゆる弁当箱型である場合が示されているが、筐体2を一体的に角筒状に形成した、いわゆるモノコック型とすることも可能である。
The housing 2 is formed of a material such as a carbon plate or plastic that transmits radiation at least on a surface R (hereinafter referred to as a radiation incident surface R) that receives radiation.
1 and 2 show a case in which the housing 2 is a so-called lunch box type formed by the frame plate 2A and the back plate 2B. However, the housing 2 is integrally formed in a rectangular tube shape. It is also possible to use a so-called monocoque type.
 また、図1に示すように、本実施形態では、筐体2の側面部分に、電源スイッチ36や、LED等で構成されたインジケータ37、電源部41(後述する図7参照)が有するバッテリの交換等のために開閉可能とされた蓋部材38などが配置されている。また、本実施形態では、蓋部材38の側面部に、外部装置と無線方式で通信するための通信手段であるアンテナ装置39が埋め込まれている。 Further, as shown in FIG. 1, in this embodiment, a battery of a power switch 36, an indicator 37 composed of an LED or the like, and a power source 41 (see FIG. A lid member 38 that can be opened and closed for replacement or the like is disposed. In the present embodiment, an antenna device 39 that is a communication means for communicating with an external device in a wireless manner is embedded in the side surface of the lid member 38.
 なお、アンテナ装置39の設置位置は蓋部材38の側面部に限らず、放射線画像撮影装置1の任意の位置にアンテナ装置39を設置することが可能である。
 また、設置するアンテナ装置39は1個に限らず、複数設けることも可能である。
 さらに、外部装置と有線方式で通信するように構成することも可能であり、その場合は、例えば、通信手段として、ケーブル等を差し込むなどして接続するための接続端子等が放射線画像撮影装置1の側面部等に設けられる。
The installation position of the antenna device 39 is not limited to the side surface portion of the lid member 38, and the antenna device 39 can be installed at an arbitrary position of the radiographic image capturing apparatus 1.
The number of antenna devices 39 to be installed is not limited to one, and a plurality of antenna devices 39 may be provided.
Furthermore, it is also possible to communicate with an external device in a wired manner. In this case, for example, as a communication means, a connection terminal or the like for connection by inserting a cable or the like is used as the radiation imaging apparatus 1. It is provided on the side surface portion or the like.
 筐体2の内部には、図2に示すように、基板4の下方側に図示しない鉛の薄板等を介して基台31が配置され、基台31には、電子部品32等が配設されたPCB基板33や緩衝部材34などが取り付けられている。なお、本実施形態では、基板4やシンチレータ3の放射線入射面R側には、それらを保護するためのガラス基板35が配設されている。 As shown in FIG. 2, a base 31 is disposed on the lower side of the substrate 4 via a lead thin plate (not shown), and the electronic component 32 is disposed on the base 31. The PCB substrate 33, the buffer member 34, and the like are attached. In the present embodiment, a glass substrate 35 for protecting the substrate 4 and the scintillator 3 on the radiation incident surface R side is disposed.
 シンチレータ3は、基板4の後述する検出部Pに対向する状態で配置されている。シンチレータ3は、例えば、蛍光体を主成分とし、放射線の入射を受けると300~800nmの波長の電磁波、すなわち可視光を中心とした電磁波に変換して出力するものが用いられる。 The scintillator 3 is arranged in a state of facing a detection unit P described later of the substrate 4. The scintillator 3 is, for example, a phosphor whose main component is converted into an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when it receives radiation, and that is output.
 基板4は、本実施形態では、ガラス基板で構成されており、図3に示すように、基板4のシンチレータ3に対向する側の面4a上には、複数の走査線5と複数の信号線6とが互いに交差するように配設されている。基板4の面4a上の複数の走査線5および複数の信号線6により区画された各領域rには、それぞれ放射線検出素子7が設けられている。 In the present embodiment, the substrate 4 is formed of a glass substrate. As shown in FIG. 3, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. A radiation detection element 7 is provided in each region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4.
 このように、走査線5と信号線6とで区画された各領域rに二次元状に配列された複数の放射線検出素子7が設けられた領域r全体、すなわち図3に一点鎖線で示される領域が検出部Pとされる。 Thus, the entire region r in which the plurality of radiation detection elements 7 arranged in a two-dimensional manner are provided in each region r partitioned by the scanning lines 5 and the signal lines 6, that is, shown by a one-dot chain line in FIG. The region is a detection unit P.
 本実施形態では、放射線検出素子7としてフォトダイオードが用いられているが、この他にも例えばフォトトランジスタ等を用いることも可能である。
 各放射線検出素子7は、図3や図3の拡大図である図4に示すように、スイッチ手段として機能するTFT8のソース電極8sに接続されている。また、TFT8のドレイン電極8dは信号線6に接続されている。
In the present embodiment, a photodiode is used as the radiation detection element 7, but other than this, for example, a phototransistor or the like can also be used.
As shown in FIG. 4 which is an enlarged view of FIG. 3 and FIG. 3, each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 functioning as a switch means. The drain electrode 8 d of the TFT 8 is connected to the signal line 6.
 そして、TFT8は、後述する走査駆動手段15により、接続された走査線5にオン電圧が印加され、当該走査線5を介してゲート電極8gにオン電圧が印加されるとオン状態となり、放射線検出素子7内で発生し蓄積されている電荷を当該放射線検出素子7から信号線6に放出させるようになっている。
 また、TFT8は、接続された走査線5にオフ電圧が印加され、当該走査線5を介してゲート電極8gにオフ電圧が印加されるとオフ状態となり、放射線検出素子7から信号線6への電荷の放出を停止し、放射線検出素子7内で発生した電荷を当該放射線検出素子7内に保持して蓄積させるようになっている。
The TFT 8 is turned on when an on-voltage is applied to the connected scanning line 5 by the scanning driving means 15 described later, and is applied to the gate electrode 8g via the scanning line 5, thereby detecting radiation. Electric charges generated and accumulated in the element 7 are emitted from the radiation detection element 7 to the signal line 6.
The TFT 8 is turned off when an off voltage is applied to the connected scanning line 5 and applied to the gate electrode 8 g via the scanning line 5, and the TFT 8 is turned off from the radiation detection element 7 to the signal line 6. The emission of the charge is stopped, and the charge generated in the radiation detection element 7 is held and accumulated in the radiation detection element 7.
 ここで、本実施形態における放射線検出素子7やTFT8の構造について、図5に示す断面図を用いて簡単に説明する。図5は、図4におけるY-Y線に沿う断面図である。 Here, the structure of the radiation detection element 7 and the TFT 8 in this embodiment will be briefly described with reference to a cross-sectional view shown in FIG. FIG. 5 is a sectional view taken along line YY in FIG.
 基板4の面4a上に、AlやCrなどからなるTFT8のゲート電極8gが走査線5と一体的に積層されて形成されており、ゲート電極8g上および面4a上に積層された窒化シリコン(SiNx)等からなるゲート絶縁層81上のゲート電極8gの上方部分に、水素化アモルファスシリコン(a-Si)等からなる半導体層82を介して、放射線検出素子7の第1電極74と接続されたソース電極8sと、信号線6と一体的に形成されるドレイン電極8dとが積層されて形成されている。 A gate electrode 8g of a TFT 8 made of Al, Cr, or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a). An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiNx) is connected to the first electrode 74 of the radiation detecting element 7 through a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like. The source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
 ソース電極8sとドレイン電極8dとは、窒化シリコン(SiNx)等からなる第1パッシベーション層83によって分割されており、さらに第1パッシベーション層83は両電極8s、8dを上側から被覆している。また、半導体層82とソース電極8sやドレイン電極8dとの間には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたオーミックコンタクト層84a、84bがそれぞれ積層されている。以上のようにしてTFT8が形成されている。 The source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiNx) or the like, and the first passivation layer 83 covers both the electrodes 8s and 8d from above. In addition, ohmic contact layers 84a and 84b formed in an n-type by doping hydrogenated amorphous silicon with a group VI element are stacked between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, respectively. The TFT 8 is formed as described above.
 また、放射線検出素子7の部分では、基板4の面4a上にゲート絶縁層81と一体的に形成される絶縁層71の上にAlやCrなどが積層されて補助電極72が形成されており、補助電極72上に第1パッシベーション層83と一体的に形成される絶縁層73を挟んでAlやCr、Moなどからなる第1電極74が積層されている。第1電極74は、第1パッシベーション層83に形成されたホールHを介してTFT8のソース電極8sに接続されている。なお、補助電極72は必ずしも設けられなくても良い。 In the radiation detection element 7, an auxiliary electrode 72 is formed by laminating Al, Cr or the like on an insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4. A first electrode 74 made of Al, Cr, Mo, or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween. The first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83. Note that the auxiliary electrode 72 is not necessarily provided.
 第1電極74の上には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたn層75、水素化アモルファスシリコンで形成された変換層であるi層76、水素化アモルファスシリコンにIII族元素をドープしてp型に形成されたp層77が下方から順に積層されて形成されている。 On the first electrode 74, an n layer 75 formed in an n-type by doping a hydrogenated amorphous silicon with a group VI element, an i layer 76 which is a conversion layer formed of hydrogenated amorphous silicon, and a hydrogenated amorphous A p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below.
 そして、放射線画像撮影時に、放射線画像撮影装置1に対して照射された放射線が筐体2の放射線入射面Rから入射し、シンチレータ3で可視光等の電磁波に変換され、変換された電磁波が図中上方から照射されると、電磁波は放射線検出素子7のi層76に到達して、i層76内で電子正孔対が発生する。放射線検出素子7は、このようにして、シンチレータ3から照射された電磁波を電荷(電子正孔対)に変換するようになっている。 And at the time of radiographic imaging, the radiation irradiated with respect to the radiographic imaging apparatus 1 injects from the radiation entrance surface R of the housing | casing 2, is converted into electromagnetic waves, such as visible light, with the scintillator 3, and the converted electromagnetic waves are illustrated. When irradiated from above, the electromagnetic wave reaches the i layer 76 of the radiation detection element 7, and electron-hole pairs are generated in the i layer 76. In this way, the radiation detection element 7 converts the electromagnetic waves irradiated from the scintillator 3 into electric charges (electron hole pairs).
 また、p層77の上には、ITO等の透明電極とされた第2電極78が積層されて形成されており、照射された電磁波がi層76等に到達するように構成されている。本実施形態では、以上のようにして放射線検出素子7が形成されている。なお、p層77、i層76、n層75の積層の順番は上下逆であっても良い。また、本実施形態では、放射線検出素子7として、上記のようにp層77、i層76、n層75の順に積層されて形成されたいわゆるpin型の放射線検出素子を用いる場合が説明されているが、これに限定されない。 Further, on the p layer 77, a second electrode 78 made of a transparent electrode such as ITO is laminated and formed so that the irradiated electromagnetic wave reaches the i layer 76 and the like. In the present embodiment, the radiation detection element 7 is formed as described above. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed. Further, in the present embodiment, a case where a so-called pin-type radiation detection element formed by sequentially stacking the p layer 77, the i layer 76, and the n layer 75 as described above is used as the radiation detection element 7. However, it is not limited to this.
 放射線検出素子7の第2電極78の上面には、第2電極78を介して放射線検出素子7にバイアス電圧を印加するバイアス線9が接続されている。なお、放射線検出素子7の第2電極78やバイアス線9、TFT8側に延出された第1電極74、TFT8の第1パッシベーション層83等、すなわち放射線検出素子7とTFT8の上面部分は、その上方側から窒化シリコン(SiNx)等からなる第2パッシベーション層79で被覆されている。 A bias line 9 for applying a bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78. The second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are The upper side is covered with a second passivation layer 79 made of silicon nitride (SiNx) or the like.
 図3や図4に示すように、本実施形態では、それぞれ列状に配置された複数の放射線検出素子7に1本のバイアス線9が接続されており、各バイアス線9はそれぞれ信号線6に平行に配設されている。また、各バイアス線9は、基板4の検出部Pの外側の位置で1本の結線10に結束されている。 As shown in FIGS. 3 and 4, in this embodiment, one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other. In addition, each bias line 9 is bound to one connection 10 at a position outside the detection portion P of the substrate 4.
 本実施形態では、図3に示すように、各走査線5や各信号線6、バイアス線9の結線10は、それぞれ基板4の端縁部付近に設けられた入出力端子(パッドともいう)11に接続されている。各入出力端子11には、図6に示すように、後述する走査駆動手段15のゲート走査線駆動部15bを構成するゲートIC12a等のチップがフィルム上に組み込まれたフレキ基板COF(Chip On Film)12が異方性導電接着フィルム(Anisotropic Conductive Film)や異方性導電ペースト(Anisotropic Conductive Paste)などの異方性導電性接着材料13を介して接続されている。 In this embodiment, as shown in FIG. 3, each scanning line 5, each signal line 6, and connection 10 of the bias line 9 are input / output terminals (also referred to as pads) provided near the edge of the substrate 4. 11 is connected. As shown in FIG. 6, each input / output terminal 11 has a flexible substrate COF (Chip On Film) on which a chip such as a gate IC 12a constituting a gate scanning line driving unit 15b of the scanning driving means 15 described later is incorporated on a film. ) 12 are connected via an anisotropic conductive adhesive material 13 such as an anisotropic conductive adhesive film (Anisotropic Conductive Film) or an anisotropic conductive paste (Anisotropic Conductive Paste).
 また、フレキ基板COF12は、基板4の裏面4b側に引き回され、裏面4b側でPCB基板33に接続されている。このようにして、放射線画像撮影装置1の基板4部分が形成されている。なお、図6では、電子部品32等の図示が省略されている。 The flexible substrate COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 on the back surface 4b side. Thus, the board | substrate 4 part of the radiographic imaging apparatus 1 is formed. In FIG. 6, illustration of the electronic component 32 and the like is omitted.
 ここで、放射線画像撮影装置1の回路構成について説明する。図7は本実施形態に係る放射線画像撮影装置1の等価回路を表すブロック図である。 Here, the circuit configuration of the radiation image capturing apparatus 1 will be described. FIG. 7 is a block diagram showing an equivalent circuit of the radiation image capturing apparatus 1 according to this embodiment.
 前述したように、基板4の検出部Pの各放射線検出素子7は、その第2電極78にそれぞれバイアス線9が接続されており、各バイアス線9は結線10に結束されてバイアス電源14に接続されている。バイアス電源14は、結線10および各バイアス線9を介して各放射線検出素子7の第2電極78にそれぞれバイアス電圧を印加するようになっている。 As described above, each radiation detection element 7 of the detection unit P of the substrate 4 has the bias line 9 connected to the second electrode 78, and each bias line 9 is bound to the connection 10 to the bias power supply 14. It is connected. The bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9.
 本実施形態では、放射線検出素子7のp層77側(図5参照)に第2電極78を介してバイアス線9が接続されていることからも分かるように、バイアス電源14からは、放射線検出素子7の第2電極78にバイアス線9を介してバイアス電圧として放射線検出素子7の第1電極74側にかかる電圧以下の電圧(すなわちいわゆる逆バイアス電圧)が印加されるようになっている。 In the present embodiment, as can be seen from the fact that the bias line 9 is connected to the p-layer 77 side (see FIG. 5) of the radiation detection element 7 via the second electrode 78, the radiation from the bias power source 14 is detected. A voltage equal to or lower than the voltage applied to the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage) is applied as a bias voltage to the second electrode 78 of the element 7 via the bias line 9.
 なお、本実施形態では、図7に示すように、バイアス電源14は、読み出し手段16の電源回路16aおよび制御部22を介して電源部41と配線(電源ライン)で結ばれており、制御部22および読み出し手段16の電源回路16aを介して電源部41から電力が供給されるように構成されている。また、バイアス電源14のグランド端子141は、電源回路16aのグランド端子161と配線(GNDライン)で結ばれている。
 また、本実施形態では、図7に示すように、バイアス電源14は、読み出し手段16の電源回路16aを介して制御部22と配線で結ばれており、読み出し手段16の電源回路16aを介して制御部22から制御信号が入力されるように構成されているが、これに限定されることはなく、バイアス電源14を、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されるように構成しても良い。
In the present embodiment, as shown in FIG. 7, the bias power supply 14 is connected to the power supply unit 41 via a power supply circuit 16 a of the reading unit 16 and the control unit 22 via a wiring (power supply line). 22 and the power supply circuit 16 a of the reading means 16 are configured to be supplied with power from the power supply unit 41. The ground terminal 141 of the bias power supply 14 is connected to the ground terminal 161 of the power supply circuit 16a by wiring (GND line).
Further, in the present embodiment, as shown in FIG. 7, the bias power supply 14 is connected to the control unit 22 via the power supply circuit 16a of the reading means 16 and is connected to the control unit 22 via the power supply circuit 16a of the reading means 16. Although the control signal is input from the control unit 22, the present invention is not limited to this, and the bias power supply 14 is directly connected to the control unit 22 by wiring, and the control signal is directly transmitted from the control unit 22. You may comprise so that it may be input.
 各放射線検出素子7の第1電極74はTFT8のソース電極8s(図7中ではSと表記されている。)に接続されており、各TFT8のゲート電極8g(図7中ではGと表記されている。)は、後述する走査駆動手段15のゲート走査線駆動部15bから延びる各走査線5にそれぞれ接続されている。また、各TFT8のドレイン電極8d(図7中ではDと表記されている。)は、各信号線6にそれぞれ接続されている。 The first electrode 74 of each radiation detection element 7 is connected to the source electrode 8s (denoted as S in FIG. 7) of the TFT 8, and the gate electrode 8g of each TFT 8 (denoted as G in FIG. 7). Is connected to each scanning line 5 extending from a gate scanning line driving unit 15b of the scanning driving means 15 described later. Further, the drain electrode 8 d (denoted as D in FIG. 7) of each TFT 8 is connected to each signal line 6.
 走査駆動手段15は、本実施形態では、ゲート走査線駆動部15bにオン電圧やオフ電圧を供給する走査駆動用電源回路として機能する電源回路15aと、各走査線5、すなわち走査線5の各ラインL1~Lxに印加する電圧をオン電圧とオフ電圧との間で切り替えるゲート走査線駆動部15bと、を備えている。 In this embodiment, the scanning drive unit 15 includes a power supply circuit 15a that functions as a scanning drive power supply circuit that supplies an on-voltage and an off-voltage to the gate scanning line driving unit 15b, and each scanning line 5, that is, each scanning line 5. A gate scanning line driving unit 15b that switches a voltage applied to the lines L1 to Lx between an on-voltage and an off-voltage.
 走査駆動手段15の電源回路15aは、電源部41から供給された電力に基づいて、走査線5の各ラインL1~Lxを介してTFT8のゲート電極8gに印加するオン電圧およびオフ電圧を、ゲート走査線駆動部15bに対して供給するように構成されている。
 なお、本実施形態では、図7に示すように、走査駆動手段15の電源回路15aは、制御部22を介して電源部41と配線で結ばれており、制御部22を介して電源部41から電力が供給されるように構成されている。また、走査駆動手段15のグランド端子151(具体的には、走査駆動手段15の電源回路15aのグランド端子151)は、ノイズ抑制手段51(後述)、制御部22および電源部41を介して電源部41のグランドGNDと配線で結ばれており、ノイズ抑制手段51、制御部22および電源部41を介して電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続、すなわち接地されている。
The power supply circuit 15a of the scanning drive unit 15 gates on and off voltages to be applied to the gate electrode 8g of the TFT 8 via the lines L1 to Lx of the scanning line 5 based on the power supplied from the power supply unit 41. The scanning line driving unit 15b is configured to be supplied.
In the present embodiment, as shown in FIG. 7, the power supply circuit 15 a of the scan driving unit 15 is connected to the power supply unit 41 through the control unit 22 by wiring, and the power supply unit 41 through the control unit 22. It is comprised so that electric power may be supplied from. The ground terminal 151 of the scanning drive unit 15 (specifically, the ground terminal 151 of the power supply circuit 15a of the scan drive unit 15) is supplied with power via the noise suppression unit 51 (described later), the control unit 22 and the power supply unit 41. The ground GND of the radiographic imaging apparatus 1 is connected to the ground GND of the unit 41 by wiring and is electrically connected to the ground GND of the power source 41 via the noise suppression unit 51, the control unit 22, and the power source 41. Connected to level, ie grounded.
 ゲート走査線駆動部15bは、ゲートIC12aがフィルム上に組み込まれたフレキ基板COF12が複数並設されて形成されており、走査線5の各ラインL1~Lxを介してTFT8のゲート電極8gに印加する電圧をオン電圧とオフ電圧との間で切り替えて、各TFT8のオン状態とオフ状態とを切り替えるように構成されている。
 なお、本実施形態では、図7に示すように、ゲート走査線駆動部15bは、走査駆動手段15の電源回路15aを介して制御部22と配線で結ばれており、走査駆動手段15の電源回路15aを介して制御部22から制御信号が入力されるように構成されているが、これに限定されることはなく、ゲート走査線駆動部15bを、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されるように構成しても良い。
The gate scanning line driving unit 15b is formed by arranging a plurality of flexible substrates COF12 in which a gate IC 12a is incorporated on a film, and is applied to the gate electrode 8g of the TFT 8 via each line L1 to Lx of the scanning line 5. The voltage to be switched is switched between an on-voltage and an off-voltage, so that each TFT 8 is switched between an on state and an off state.
In the present embodiment, as shown in FIG. 7, the gate scanning line driving unit 15 b is connected to the control unit 22 via the power supply circuit 15 a of the scanning driving unit 15, and the power source of the scanning driving unit 15 is connected. The control signal is input from the control unit 22 via the circuit 15a. However, the present invention is not limited to this, and the gate scanning line driving unit 15b is directly connected to the control unit 22 by wiring. You may comprise so that a control signal may be input directly from the control part 22. FIG.
 読み出し手段16は、本実施形態では、読み出しIC16bに電力を供給する読み出し用電源回路として機能する電源回路16aと、各放射線検出素子7から放出された電荷を画像データに変換することによって、各放射線検出素子7から画像データを読み出す読み出し部として機能する読み出しIC16bと、を備えている。
 本実施形態では、読み出し手段16は、走査駆動手段15が収められている基板とは別の基板に収められているとともに、バイアス電源14と同一の基板に収められていることとする。
In the present embodiment, the reading unit 16 converts each radiation to a power supply circuit 16a that functions as a reading power supply circuit that supplies power to the reading IC 16b and converts the electric charges emitted from each radiation detection element 7 into image data. And a reading IC 16b that functions as a reading unit that reads image data from the detection element 7.
In this embodiment, it is assumed that the reading unit 16 is housed on a substrate different from the substrate on which the scanning driving unit 15 is housed, and is housed on the same substrate as the bias power source 14.
 読み出し手段16の電源回路16aは、電源部41から供給された電力に基づいて、読み出しIC16bを構成する各部やバイアス電源14に対して電力を供給するように構成されている。
 なお、本実施形態では、図7に示すように、読み出し手段16の電源回路16aは、制御部22を介して電源部41と配線で結ばれており、制御部22を介して電源部41から電力が供給されるように構成されている。また、読み出し手段16のグランド端子161(具体的には、読み出し手段16の電源回路16aのグランド端子161)は、ノイズ抑制手段52(後述)、制御部22および電源部41を介して電源部41のグランドGNDと配線で結ばれており、ノイズ抑制手段52、制御部22および電源部41を介して電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続、すなわち接地されている。
The power supply circuit 16 a of the reading unit 16 is configured to supply power to each unit constituting the read IC 16 b and the bias power supply 14 based on the power supplied from the power supply unit 41.
In the present embodiment, as shown in FIG. 7, the power supply circuit 16 a of the reading unit 16 is connected to the power supply unit 41 via the control unit 22 and is connected to the power supply unit 41 via the control unit 22. Electric power is supplied. The ground terminal 161 of the reading unit 16 (specifically, the ground terminal 161 of the power supply circuit 16a of the reading unit 16) is connected to the power supply unit 41 via the noise suppression unit 52 (described later), the control unit 22, and the power supply unit 41. Is connected to the ground GND of the radiographic imaging apparatus 1 by being electrically connected to the ground GND of the power supply unit 41 via the noise suppression means 52, the control unit 22, and the power supply unit 41. Connected, ie grounded.
 読み出しIC16bは、増幅回路18や相関二重サンプリング回路19などで構成されている読み出し回路17と、アナログマルチプレクサ21と、A/D変換器20と、を備えている。なお、図7中では、相関二重サンプリング回路19はCDSと表記されている。 The readout IC 16b includes a readout circuit 17, which includes an amplifier circuit 18, a correlated double sampling circuit 19, and the like, an analog multiplexer 21, and an A / D converter 20. In FIG. 7, the correlated double sampling circuit 19 is denoted as CDS.
 図7に示したように、各信号線6は、読み出しIC16b内に形成された各読み出し回路17にそれぞれ接続されている。なお、各読み出しIC16bには所定個数の読み出し回路17がそれぞれ設けられており、読み出しIC16bが複数設けられることによって、信号線6の本数分の読み出し回路17が設けられている。 As shown in FIG. 7, each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16b. Each read IC 16b is provided with a predetermined number of read circuits 17, and by providing a plurality of read ICs 16b, the read circuits 17 corresponding to the number of signal lines 6 are provided.
 例えば、放射線画像撮影の際、被写体を介して放射線画像撮影装置1に放射線が照射されると、シンチレータ3で放射線が他の波長の電磁波に変換されて、その直下の放射線検出素子7に照射される。そして、放射線検出素子7で照射された放射線の線量(電磁波の光量)に応じて電荷が発生する。 For example, when radiation image capturing is performed, the radiation image capturing apparatus 1 is irradiated with radiation through the subject, and the scintillator 3 converts the radiation into electromagnetic waves of other wavelengths and is irradiated to the radiation detection element 7 immediately below the radiation. The Then, charges are generated according to the radiation dose (the amount of electromagnetic waves) irradiated by the radiation detection element 7.
 各放射線検出素子7から画像データを読み出す画像データ読み出し処理においては、走査駆動手段15のゲート走査線駆動部15bから走査線5の各ラインL1~Lxを介してゲート電極8gにオン電圧が印加されたTFT8がオン状態となり、放射線検出素子7から信号線6に電荷が放出される。
 そして、放射線検出素子7から放出された電荷量に応じて増幅回路18から電圧値が出力され、それを相関二重サンプリング回路19で相関二重サンプリングしてアナログ値の画像データがアナログマルチプレクサ21に出力される。アナログマルチプレクサ21から順次出力された画像データは、A/D変換器20で順次デジタル値の画像データに変換され、記憶手段40に出力されて順次保存されるようになっている。
In the image data reading process for reading image data from each radiation detection element 7, an on-voltage is applied to the gate electrode 8 g from the gate scanning line driving unit 15 b of the scanning driving unit 15 through the lines L 1 to Lx of the scanning line 5. The TFT 8 is turned on, and charges are emitted from the radiation detection element 7 to the signal line 6.
Then, a voltage value is output from the amplifier circuit 18 in accordance with the amount of charge emitted from the radiation detection element 7, and is correlated double-sampled by the correlated double sampling circuit 19, and analog value image data is input to the analog multiplexer 21. Is output. The image data sequentially output from the analog multiplexer 21 is sequentially converted into digital value image data by the A / D converter 20, output to the storage means 40, and sequentially stored.
 なお、本実施形態では、図7に示すように、読み出しIC16bは、読み出し手段16の電源回路16aを介して制御部22と配線で結ばれており、読み出し手段16の電源回路16aを介して制御部22から制御信号が入力されたり、読み出し手段16の電源回路16aを介して制御部22にデジタル値の画像データを出力したりするように構成されているが、これに限定されることはなく、読み出しIC16bを、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されたり、制御部22にデジタル値の画像データを直接出力したりするように構成しても良い。 In the present embodiment, as shown in FIG. 7, the read IC 16 b is connected to the control unit 22 via the power supply circuit 16 a of the read means 16 and is connected via the power supply circuit 16 a of the read means 16. The control signal is input from the unit 22 or the digital value image data is output to the control unit 22 via the power supply circuit 16a of the reading unit 16. However, the present invention is not limited to this. The read IC 16b may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22 or digital value image data is directly output to the control unit 22.
 制御部22は、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェースなどがバスに接続されたコンピュータ、FPGA(Field Programmable Gate Array)等により構成されている。なお、制御部22は、専用の制御回路で構成されていても良い。 The control unit 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), and the like. Has been. Note that the control unit 22 may be configured with a dedicated control circuit.
 制御部22は、放射線画像撮影装置1の各機能部の動作等を制御する。
 具体的には、例えば、制御部22は、バイアス電源14を制御して各放射線検出素子7に印加する逆バイアス電圧を制御したり、走査駆動手段15を制御して走査線5に印加する電圧をオン電圧とオフ電圧との間で切り替えたり、読み出し手段16を制御して各放射線検出素子7からの画像データの読み出しを行ったりして、各放射線検出素子7から画像データを読み出す画像データ読み出し処理を行う。
 そして、各放射線検出素子7から読み出された各画像データは、制御部22により制御される図示しないメモリコントローラによって、記憶手段40の画像記憶領域に保存される。
The control unit 22 controls the operation of each functional unit of the radiographic image capturing apparatus 1.
Specifically, for example, the control unit 22 controls the bias power supply 14 to control the reverse bias voltage applied to each radiation detection element 7 or the scan driving unit 15 to control the voltage applied to the scanning line 5. Image data read out from each radiation detection element 7 by switching between ON voltage and OFF voltage, or by reading out the image data from each radiation detection element 7 by controlling the readout means 16 Process.
Each image data read from each radiation detection element 7 is stored in an image storage area of the storage unit 40 by a memory controller (not shown) controlled by the control unit 22.
 図7等に示すように、制御部22には、DRAM(Dynamic RAM)等で構成される記憶手段40やアンテナ装置39が接続されており、さらに、図7では図示を省略するが、電源スイッチ36やインジケータ37などが接続されている。
 また、制御部22には、バイアス電源14や、走査駆動手段15、読み出し手段16、制御部22などの、放射線画像撮影装置1の各機能部に電力を供給するための電源部41が接続されている。
As shown in FIG. 7 and the like, the control unit 22 is connected to a storage means 40 and an antenna device 39 configured by a DRAM (Dynamic RAM) or the like. Further, although not shown in FIG. 36, an indicator 37, and the like are connected.
The control unit 22 is connected to a power supply unit 41 for supplying power to each functional unit of the radiographic imaging apparatus 1 such as the bias power supply 14, the scanning drive unit 15, the reading unit 16, and the control unit 22. ing.
 電源部41は、図7に示すように、制御部22を介して走査駆動手段15(具体的には走査駆動手段15の電源回路15a)に電力を供給することにより、放射線画像撮影装置1の各機能部のうちの走査駆動手段15に電力を供給するように構成されている。
 また、電源部41は、図7に示すように、制御部22を介して読み出し手段16(具体的には読み出し手段16の電源回路16a)に電力を供給することにより、放射線画像撮影装置1の各機能部のうちの読み出し手段16やバイアス電源14に電力を供給するように構成されている。
As shown in FIG. 7, the power supply unit 41 supplies power to the scanning drive unit 15 (specifically, the power supply circuit 15 a of the scan drive unit 15) via the control unit 22, thereby It is configured to supply power to the scanning drive means 15 of each functional unit.
Further, as shown in FIG. 7, the power supply unit 41 supplies power to the reading unit 16 (specifically, the power supply circuit 16 a of the reading unit 16) via the control unit 22, so that the radiographic imaging device 1 It is configured to supply power to the reading means 16 and the bias power supply 14 among the functional units.
 ここで、走査駆動手段15や、読み出し手段16、制御部22などの各機能部のグランド端子は、各機能部のGND電位を同一にするために、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続、すなわち接地されている。
 具体的には、例えば、図7に示すように、走査駆動手段15のグランド端子151(すなわち、走査駆動手段15の電源回路15aのグランド端子151)は、ノイズ抑制手段51(後述)、制御部22および電源部41を介して電源部41のグランドGNDと配線で結ばれている。また、読み出し手段16のグランド端子161(すなわち、読み出し手段16の電源回路16aのグランド端子161)は、ノイズ抑制手段52(後述)、制御部22および電源部41を介して電源部41のグランドGNDと配線で結ばれている。
Here, the ground terminals of the functional units such as the scanning drive unit 15, the reading unit 16, and the control unit 22 are electrically connected to the ground GND of the power supply unit 41 in order to make the GND potential of each functional unit the same. As a result, the radiation image capturing apparatus 1 is connected to the ground level, that is, is grounded.
Specifically, for example, as shown in FIG. 7, the ground terminal 151 of the scanning drive unit 15 (that is, the ground terminal 151 of the power supply circuit 15 a of the scan driving unit 15) includes a noise suppression unit 51 (described later) and a control unit. 22 and the power supply unit 41 and are connected to the ground GND of the power supply unit 41 by wiring. The ground terminal 161 of the reading unit 16 (that is, the ground terminal 161 of the power supply circuit 16a of the reading unit 16) is connected to the ground GND of the power supply unit 41 via the noise suppression unit 52 (described later), the control unit 22, and the power supply unit 41. It is connected with wiring.
 さらに、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とは、接続手段50によって電気的に直接接続されている。
 なお、接続手段50としては、後述するように走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161との間を低インピーダンス接続できるものであれば、その材質や形状などは任意であり、具体的には、金具や線材などが好ましく用いられる。
Further, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are electrically connected directly by the connecting unit 50.
As the connecting means 50, as long as it can make a low impedance connection between the ground terminal 151 of the scanning driving means 15 and the ground terminal 161 of the reading means 16 as will be described later, the material and shape thereof are arbitrary. Specifically, metal fittings and wire rods are preferably used.
 また、図7に示すように、走査駆動手段15のグランド端子151と、制御部22および電源部41との間には、走査駆動手段15に対する制御部22や電源部41からのノイズの侵入を抑制する走査駆動用ノイズ抑制手段として機能するノイズ抑制手段51が挿入されている。同様に、読み出し手段16のグランド端子161と、制御部22および電源部41との間には、バイアス電源14や読み出し手段16に対する制御部22や電源部41からのノイズの侵入を抑制する読み出し用ノイズ抑制手段として機能するノイズ抑制手段52が挿入されている。
 なお、ノイズ抑制手段51、52としては、制御部22や電源部41からのノイズ、具体的にはデジタルノイズや電流変動によるノイズなどのノイズの侵入を抑制できるものであれば、その構成は任意であり、具体的には、フィルタや、FPC(Flexible Printed Circuits)、フェライトビーズ、抵抗などが好ましく用いられる。
Further, as shown in FIG. 7, noise intrusion from the control unit 22 or the power supply unit 41 to the scanning drive unit 15 is caused between the ground terminal 151 of the scanning drive unit 15 and the control unit 22 and the power supply unit 41. A noise suppression unit 51 that functions as a scanning drive noise suppression unit is inserted. Similarly, between the ground terminal 161 of the reading unit 16 and the control unit 22 and the power supply unit 41, for reading, which suppresses intrusion of noise from the control unit 22 and the power supply unit 41 to the bias power supply 14 and the reading unit 16. A noise suppression means 52 that functions as a noise suppression means is inserted.
The noise suppression means 51 and 52 can be configured arbitrarily as long as noise from the control unit 22 or the power supply unit 41, specifically digital noise or noise due to current fluctuation, can be suppressed. Specifically, filters, FPC (Flexible Printed Circuits), ferrite beads, resistors, and the like are preferably used.
 次に、本実施形態にかかる放射線画像撮影装置1の作用について説明する。 Next, the operation of the radiation image capturing apparatus 1 according to the present embodiment will be described.
 まず、制御部22は、放射線画像撮影において、放射線画像撮影装置1に放射線が照射されて各放射線検出素子7内で発生して蓄積された電荷すなわち画像データを、できるだけ正確に取得するために、放射線の照射に先立って、各放射線検出素子7内に残存している余分な電荷を各放射線検出素子7から放出させて各放射線検出素子7をリセットするリセット処理を行うように構成されている。
 このリセット処理は、走査駆動手段15から走査線5にオン電圧を印加して放射線検出素子7から信号線6に余分な電荷を放出させることによって実現することができる。
First, in the radiographic image capturing, the control unit 22 acquires the charge generated by the radiation image capturing apparatus 1 by being irradiated with radiation and accumulated in each radiation detecting element 7, that is, image data as accurately as possible. Prior to the irradiation of radiation, a reset process is performed to reset each radiation detection element 7 by discharging excess charges remaining in each radiation detection element 7 from each radiation detection element 7.
This reset process can be realized by applying an on-voltage to the scanning line 5 from the scanning drive unit 15 and releasing extra charge from the radiation detecting element 7 to the signal line 6.
 次に、制御部22は、走査駆動手段15のゲート走査線駆動部15bから全ての走査線5、すなわち走査線5の全てのラインL1~Lxにオフ電圧を印加して各TFT8をオフ状態にすることによって、放射線の照射により各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させる電荷蓄積処理を行うように構成されている。 Next, the control unit 22 applies the off voltage to all the scanning lines 5, that is, all the lines L1 to Lx of the scanning line 5 from the gate scanning line driving unit 15b of the scanning driving unit 15 to turn off each TFT 8. Thus, a charge accumulation process for accumulating charges generated in each radiation detection element 7 due to radiation irradiation in each radiation detection element 7 is performed.
 次に、制御部22は、走査駆動手段15から走査線5にオン電圧を印加することによって放射線検出素子7から信号線6に当該放射線検出素子7に蓄積された電荷を放出させ、読み出し回路17に当該放出された電荷を画像データに変換させることによって、各放射線検出素子7から画像データを読み出す画像データ読み出し処理を行うように構成されている。 Next, the control unit 22 applies an ON voltage to the scanning line 5 from the scanning driving unit 15 to release the charge accumulated in the radiation detecting element 7 from the radiation detecting element 7 to the signal line 6. The image forming apparatus is configured to perform an image data reading process for reading image data from each radiation detection element 7 by converting the emitted charges into image data.
 さらに、本実施形態において、制御部22は、放射線画像撮影に引き続いて、放射線画像を補正するための補正用暗画像の取得を行うように構成されている。 Furthermore, in the present embodiment, the control unit 22 is configured to acquire a correction dark image for correcting the radiographic image following the radiographic image capturing.
 各放射線検出素子7内では、各放射線検出素子7自体の熱による熱励起等によりいわゆる暗電荷が常時発生しており、各放射線検出素子7から画像データを読み出す画像データ読み出し処理の際には、各放射線検出素子7から、放射線の照射により発生した真の画像データである電荷の他に暗電荷も読み出され、暗電荷によるオフセット分が重畳された画像データが読み出される。
 そのため、制御部22は、読み出された画像データから暗電荷によるオフセット分を差し引いて真の画像データを得るために、放射線画像撮影に引き続いて補正用暗画像の取得を行って、放射線画像撮影装置1に放射線を照射しない状態で当該放射線画像撮影装置1を放置した後、各放射線検出素子7から暗電荷によるオフセット分のデータ(暗画像データ)をオフセット補正値として読み出すように構成されている。
In each radiation detection element 7, so-called dark charges are constantly generated due to thermal excitation or the like due to heat of each radiation detection element 7 itself, and at the time of image data read processing for reading image data from each radiation detection element 7, In addition to the charges that are true image data generated by radiation irradiation, dark charges are also read from each radiation detection element 7, and image data on which offsets due to dark charges are superimposed is read.
Therefore, in order to subtract the offset due to dark charge from the read image data to obtain true image data, the control unit 22 acquires a correction dark image subsequent to the radiographic image capture, and performs radiographic image capture. After the radiation image capturing apparatus 1 is left in a state where no radiation is applied to the apparatus 1, the offset detection data (dark image data) due to dark charges is read from each radiation detection element 7 as an offset correction value. .
 具体的には、例えば、制御部22は、放射線画像撮影時の画像データ読み出し処理が終了すると、その時点で放射線画像撮影を終了して、補正用暗画像の取得を開始する。そして、まず、放射線画像撮影時のリセット処理の場合と同様にして、各放射線検出素子7をリセットするリセット処理を行う。 Specifically, for example, when the image data reading process at the time of radiographic image capture ends, the control unit 22 ends radiographic image capture at that time and starts acquiring a correction dark image. And first, the reset process which resets each radiation detection element 7 is performed similarly to the case of the reset process at the time of radiographic imaging.
 次に、制御部22は、放射線画像撮影時の電荷蓄積処理の場合と同様にして、各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させる電荷蓄積処理を行う。その際、放射線画像撮影装置1が補正用暗画像の取得を行っている間は、当該放射線画像撮影装置1に対して放射線が照射されないため、各放射線検出素子7には暗電荷のみが蓄積される。 Next, the control unit 22 performs a charge accumulation process for accumulating the charges generated in each radiation detection element 7 in each radiation detection element 7 in the same manner as the charge accumulation process at the time of radiographic image capturing. At this time, while the radiographic image capturing apparatus 1 is acquiring a correction dark image, the radiation image capturing apparatus 1 is not irradiated with radiation, and therefore, only the dark charge is accumulated in each radiation detection element 7. The
 次に、制御部22は、放射線画像撮影時の画像データ読み出し処理の場合と同様にして、各放射線検出素子7から画像データを読み出す画像データ読み出し処理を行う。その際、補正用暗画像の取得時の電荷蓄積処理において各放射線検出素子7に蓄積される電荷は暗電荷であるため、補正用暗画像の取得時の画像データ読み出し処理では各放射線検出素子7から暗画像データが読み出される。 Next, the control unit 22 performs an image data read process for reading image data from each radiation detection element 7 in the same manner as the image data read process at the time of radiographic image capturing. At this time, since the charge accumulated in each radiation detection element 7 in the charge accumulation process at the time of acquisition of the correction dark image is a dark charge, each radiation detection element 7 in the image data reading process at the time of acquisition of the correction dark image. Dark image data is read out from.
 なお、補正用暗画像の取得は、放射線画像撮影の前に行うことも可能である。
 また、補正用暗画像の取得時のリセット処理、電荷蓄積処理および画像データ読み出し処理を繰り返して複数回実行し、毎回得られる暗画像データの平均値を正式な暗画像データとして採用することも可能である。
Note that the correction dark image can be acquired before radiographic image capturing.
It is also possible to repeatedly execute reset processing, charge accumulation processing, and image data readout processing at the time of acquisition of a correction dark image, and adopt the average value of the dark image data obtained each time as formal dark image data. It is.
 そして、制御部22は、放射線画像撮影時の画像データ読み出し処理により得られた放射線画像の画像データと、補正用暗画像の取得時の画像データ読み出し処理により得られた暗画像データとを、アンテナ装置39から外部装置に送信する。
 これにより、外部装置で、当該暗画像データ、すなわちオフセット補正値に基づいて、当該放射線画像の画像データに対するオフセット補正が行われる。
 また、外部装置には、放射線画像撮影装置1用のゲイン補正値が予め記憶されており、外部装置で、当該ゲイン補正値に基づいて、当該放射線画像の画像データに対するゲイン補正が行われるように構成されている。
Then, the control unit 22 uses the image data of the radiation image obtained by the image data reading process at the time of radiographic image capturing and the dark image data obtained by the image data reading process at the time of obtaining the correction dark image to the antenna. The data is transmitted from the device 39 to the external device.
As a result, the external device performs offset correction on the image data of the radiation image based on the dark image data, that is, the offset correction value.
In addition, the external apparatus stores in advance a gain correction value for the radiographic image capturing apparatus 1, and the external apparatus performs gain correction on the image data of the radiographic image based on the gain correction value. It is configured.
 なお、本実施形態では、外部装置で、オフセット補正やゲイン補正などの補正処理を行うように構成したが、これに限ることはなく、放射線画像撮影装置1で当該補正処理を行い、例えば、当該補正処理が施された画像データを、外部装置に送信するように構成しても良い。 In the present embodiment, the external device is configured to perform correction processing such as offset correction and gain correction. However, the present invention is not limited to this, and the radiographic imaging device 1 performs the correction processing. You may comprise so that the image data in which the correction process was performed may be transmitted to an external device.
 ここで、まず、前述した、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とが電気的に直接接続されていない従来の放射線画像撮影装置について再度説明する。 Here, first, the above-described conventional radiographic imaging apparatus in which the ground terminal 151 of the scanning drive unit 15 and the ground terminal 161 of the reading unit 16 are not directly electrically connected will be described again.
 放射線画像撮影装置においては、その構成の都合上、走査駆動手段15と読み出し手段16とを直近に配置することが難しく、本実施形態のように、走査駆動手段15と読み出し手段16とは離れて配置されることが多い。そのため、走査駆動手段15のグランド端子151と電源部41のグランドGNDとの間のインピーダンスと、読み出し手段16のグランド端子161と電源部41のグランドGNDとの間のインピーダンスとに差が生じる場合が多い。
 このような場合、走査駆動手段15のGND電位と読み出し手段16のGND電位とを同一にするために、走査駆動手段15のグランド端子151や読み出し手段16のグランド端子161を放射線画像撮影装置1のグランドレベルに接続しているにも関わらず、走査駆動手段15と読み出し手段16との間にインピーダンス起因によるGND電位差が生じてしまう。
In the radiographic image capturing apparatus, it is difficult to dispose the scanning drive unit 15 and the readout unit 16 closest to each other due to the configuration thereof, and the scanning drive unit 15 and the readout unit 16 are separated from each other as in the present embodiment. Often placed. Therefore, there may be a difference between the impedance between the ground terminal 151 of the scanning drive unit 15 and the ground GND of the power supply unit 41 and the impedance between the ground terminal 161 of the reading unit 16 and the ground GND of the power supply unit 41. Many.
In such a case, in order to make the GND potential of the scanning drive unit 15 and the GND potential of the reading unit 16 the same, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are connected to the radiation imaging apparatus 1. In spite of being connected to the ground level, a GND potential difference due to impedance occurs between the scanning driving means 15 and the reading means 16.
 さらに、読み出し手段16は、走査駆動手段15よりも消費電流が大きく、走査駆動手段15の消費電流と、読み出し手段16の消費電流とに差があるため、走査駆動手段15と読み出し手段16との間には電流起因によるGND電位差も生じてしまう。 Further, since the reading unit 16 has a larger current consumption than the scanning driving unit 15 and there is a difference between the consumption current of the scanning driving unit 15 and the consumption current of the reading unit 16, the scanning driving unit 15 and the reading unit 16 are different. In the meantime, a GND potential difference due to current is also generated.
 ところで、走査駆動手段15のGND電位(すなわち、走査駆動手段15の電源回路15aのGND電位)や、読み出し手段16のGND電位(すなわち、読み出し手段16の電源回路16aのGND電位)には、通常、図13に示すように、ゆらぎが生じている。
 走査駆動手段15のGND電位や読み出し手段16のGND電位にゆらぎが生じると、当該ゆらぎに付随して、ゲート走査線駆動部15bに対する電源回路15aからの電源(電力)や、読み出しIC16bに対する電源回路16aからの電源(電力)がゆらいでしまい、放射線の照射により発生した真の画像データにノイズが重畳されてしまう。
By the way, the GND potential of the scanning drive means 15 (that is, the GND potential of the power supply circuit 15a of the scanning drive means 15) and the GND potential of the reading means 16 (namely, the GND potential of the power supply circuit 16a of the reading means 16) are usually used. As shown in FIG. 13, fluctuation occurs.
When fluctuations occur in the GND potential of the scanning drive means 15 and the GND potential of the reading means 16, the power supply (electric power) from the power supply circuit 15a for the gate scanning line driving section 15b and the power supply circuit for the readout IC 16b are accompanied with the fluctuation. The power source (electric power) from 16a fluctuates, and noise is superimposed on the true image data generated by radiation irradiation.
 例えば、前述した横引きノイズは、走査線5と信号線6の交差部分に生じている寄生容量に蓄積される電荷量が時間変動することによって生じる。詳述すると、走査線5の電圧と信号線6の電圧との差により走査線5と信号線6とバイアス線の交差部分に生じている寄生容量に電荷が蓄積されるが、横引きノイズは、走査線5に印加される電圧に、信号線6の電圧に対する相対的なゆらぎが生じ、この相対的なゆらぎに伴い当該寄生容量に蓄積される電荷量が時間変動することによって生じる。
 したがって、当該寄生容量に蓄積される電荷量が時間変動することなく一定であれば、すなわち、走査線5に印加される電圧に、信号線6の電圧に対する相対的なゆらぎが生じなければ、横引きノイズが生じることはない。
 つまり、走査駆動手段15のGND電位や読み出し手段16のGND電位がゆらいでも、これらの波形が一致し、走査駆動手段15と読み出し手段16との間のGND電位差にゆらぎが生じなければ、GND電位のゆらぎが相殺されて、当該寄生容量に蓄積される電荷量が一定となり、横引きノイズが生じることはない。
For example, the above-described lateral noise is generated when the amount of charge accumulated in the parasitic capacitance generated at the intersection of the scanning line 5 and the signal line 6 varies with time. More specifically, electric charges are accumulated in the parasitic capacitance generated at the intersection of the scanning line 5, the signal line 6, and the bias line due to the difference between the voltage of the scanning line 5 and the voltage of the signal line 6, but the lateral noise is The voltage applied to the scanning line 5 is caused by a relative fluctuation with respect to the voltage of the signal line 6, and the amount of charge accumulated in the parasitic capacitance is caused by the time fluctuation due to the relative fluctuation.
Therefore, if the amount of charge accumulated in the parasitic capacitance is constant without time variation, that is, if the voltage applied to the scanning line 5 does not have a relative fluctuation with respect to the voltage of the signal line 6, Pulling noise does not occur.
That is, even if the GND potential of the scanning driving unit 15 and the GND potential of the reading unit 16 fluctuate, these waveforms match and if the GND potential difference between the scanning driving unit 15 and the reading unit 16 does not fluctuate, Fluctuations are offset, the amount of charge accumulated in the parasitic capacitance is constant, and no lateral noise is generated.
 しかしながら、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とが電気的に直接接続されていないと、走査駆動手段15と読み出し手段16との間に、インピーダンス起因によるGND電位差や、電流起因によるGND電位差が生じてしまうため、走査駆動手段15のGND電位や読み出し手段16のGND電位のゆらぎに付随して、図13に斜線で示される領域で表すように、走査駆動手段15と読み出し手段16との間のGND電位差にゆらぎが生じてしまう。 However, if the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are not electrically connected directly, a GND potential difference caused by impedance, between the scanning driving unit 15 and the reading unit 16, Since a GND potential difference due to current is generated, the scan driving means 15 and the GND potential of the scanning driving means 15 and the GND potential of the reading means 16 are accompanied by fluctuations of the scanning driving means 15 as shown by the hatched area in FIG. A fluctuation in the GND potential difference with the reading means 16 occurs.
 また、例えば、ゲート走査線駆動部15bに対する電源回路15aからの電源(電力)に生じているノイズや、読み出しIC16bに対する電源回路16aからの電源(電力)に生じているノイズを除去するために、電源回路15aとゲート走査線駆動部15bとの間や、電源回路16aと読み出しIC16bとの間に、ノイズを除去するためのフィルタ等を挿入したとしても、当該フィルタで、電源回路15aや電源回路16aで発生したノイズは除去できるものの、GND電位のゆらぎに起因するノイズは除去できないため、やはり、走査駆動手段15と読み出し手段16との間のGND電位差にゆらぎが生じてしまう。 Further, for example, in order to remove noise generated in the power supply (power) from the power supply circuit 15a for the gate scanning line driving unit 15b and noise generated in the power supply (power) from the power supply circuit 16a for the readout IC 16b, Even if a filter or the like for removing noise is inserted between the power supply circuit 15a and the gate scanning line driving unit 15b, or between the power supply circuit 16a and the readout IC 16b, the power supply circuit 15a and the power supply circuit are connected with the filter. Although noise generated in 16a can be removed, noise due to fluctuations in the GND potential cannot be removed, so that fluctuations also occur in the GND potential difference between the scanning drive means 15 and the readout means 16.
 これに対し、本実施形態では、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とを、接続手段50によって電気的に直接接続することで、走査駆動手段15と読み出し手段16との間にGND電位差が生じないように、すなわち、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致するようにしている。これにより、GND電位差のゆらぎが原因のノイズ、具体的には走査線5に印加される電圧のゆらぎに起因するノイズ(横引きノイズなど)等が重畳されていない画像データを読み出すことが可能となる。 On the other hand, in the present embodiment, the ground terminal 151 of the scanning driving unit 15 and the ground terminal 161 of the reading unit 16 are electrically directly connected by the connecting unit 50, so that the scanning driving unit 15 and the reading unit 16 are connected. In other words, the GND potential fluctuation waveform of the scanning drive means 15 and the fluctuation waveform of the GND potential fluctuation of the reading means 16 are made to coincide with each other. As a result, it is possible to read out image data on which noise caused by fluctuations in the GND potential difference, specifically noise caused by fluctuations in the voltage applied to the scanning line 5 (such as horizontal noise) is not superimposed. Become.
 したがって、接続手段50としては、走査駆動手段15と読み出し手段16との間にGND電位差が生じることを防止できる程度に、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161との間を低インピーダンス接続できるものであれば、その材質や形状などは任意である。 Therefore, as the connection means 50, the ground potential 151 between the scanning drive means 15 and the ground terminal 161 of the readout means 16 can be prevented to the extent that a GND potential difference can be prevented between the scan drive means 15 and the readout means 16. As long as it can be connected with low impedance, the material, shape, etc. are arbitrary.
 さらに、走査線5と信号線6とが交差する部分だけでなく、バイアス線9や結線10と信号線6とが交差する部分にも、バイアス線9(或いは結線10)と信号線6とその間の絶縁層でコンデンサ状の構造が形成されている。したがって、このバイアス線9(或いは結線10)と信号線6との交差部分に生じている寄生容量で、バイアス電圧に生じるノイズが電荷的なノイズに変換され、その電荷的なノイズが放射線検出素子7から読み出されるべき真の画像データに重畳されてしまう可能性がある。
 また、放射線検出素子7自体も、第1電極74と第2電極78との間に変換層であるi層76が介在するコンデンサ状の構造を有しており、第2電極78にバイアス電圧が印加される。したがって、コンデンサ状の構造を有する放射線検出素子7自体に生じる寄生容量で、バイアス電圧に生じるノイズが電荷的なノイズに変換され、その電荷的なノイズが放射線検出素子7から読み出されるべき真の画像データに重畳されてしまう可能性もある。
Further, not only at the portion where the scanning line 5 and the signal line 6 intersect, but also at the portion where the bias line 9 or the connection line 10 and the signal line 6 intersect, the bias line 9 (or the connection line 10) and the signal line 6 and between them. A capacitor-like structure is formed by the insulating layer. Therefore, noise generated in the bias voltage is converted into charge noise by the parasitic capacitance generated at the intersection of the bias line 9 (or connection 10) and the signal line 6, and the charge noise is converted into the radiation detection element. 7 may be superimposed on the true image data to be read from the image data.
The radiation detection element 7 itself also has a capacitor-like structure in which an i layer 76 as a conversion layer is interposed between the first electrode 74 and the second electrode 78, and a bias voltage is applied to the second electrode 78. Applied. Therefore, the parasitic capacitance generated in the radiation detection element 7 itself having a capacitor-like structure, noise generated in the bias voltage is converted into charge noise, and the charge noise is a true image to be read from the radiation detection element 7. There is also the possibility of being superimposed on the data.
 これに対し、本実施形態では、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とを、接続手段50によって電気的に直接接続するとともに、バイアス電源14のグランド端子141と読み出し手段16のグランド端子161とを、GNDラインによって電気的に直接接続するように構成することで、バイアス電源14と走査駆動手段15と読み出し手段16との間にGND電位差が生じないように、すなわち、バイアス電源14のGND電位のゆらぎの波形と、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致するようにしている。これにより、バイアス線9(或いは結線10)と信号線6との交差部分に生じている寄生容量に蓄積される電荷量や、放射線検出素子7自体に生じる寄生容量に蓄積される電荷量が一定となり、GND電位差のゆらぎが原因のノイズ、具体的にはバイアス電圧のゆらぎに起因するノイズ等が重畳されていない画像データを読み出すことが可能となる。
 具体的には、例えば、図12に示す放射線画像撮影装置のように、バイアス電源14のグランド端子141が、読み出し手段16のグランド端子161を介さずに、電源部41のグランドGNDと接続されている場合には、たとえ、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とを、接続手段50によって電気的に直接接続したとしても、バイアス電源14と走査駆動手段15や読み出し手段16との間にGND電位差が生じてしまう。そこで、本実施形態では、走査駆動手段15のグランド端子151と読み出し手段16のグランド端子161とを、接続手段50によって電気的に直接接続するとともに、バイアス電源14のグランド端子141と読み出し手段16のグランド端子161とを、GNDラインによって電気的に直接接続するように構成することで、バイアス電源14と走査駆動手段15と読み出し手段16との間にGND電位差が生じないようにしている。
On the other hand, in the present embodiment, the ground terminal 151 of the scanning drive unit 15 and the ground terminal 161 of the readout unit 16 are electrically connected directly by the connection unit 50, and the ground terminal 141 of the bias power supply 14 and the readout unit are connected. 16 ground terminals 161 are configured to be electrically connected directly by the GND line, so that a GND potential difference does not occur between the bias power source 14, the scan driving means 15, and the reading means 16, that is, The waveform of the fluctuation of the GND potential of the bias power supply 14, the waveform of the fluctuation of the GND potential of the scanning drive unit 15, and the waveform of the fluctuation of the GND potential of the reading unit 16 are made to coincide. As a result, the amount of charge accumulated in the parasitic capacitance generated at the intersection of the bias line 9 (or connection 10) and the signal line 6 and the amount of charge accumulated in the parasitic capacitance generated in the radiation detection element 7 itself are constant. Thus, it is possible to read out image data on which noise caused by fluctuations in the GND potential difference, specifically noise caused by fluctuations in the bias voltage, etc. are not superimposed.
Specifically, for example, the ground terminal 141 of the bias power supply 14 is connected to the ground GND of the power supply unit 41 without passing through the ground terminal 161 of the reading unit 16 as in the radiographic imaging apparatus shown in FIG. Even if the ground terminal 151 of the scanning driving means 15 and the ground terminal 161 of the reading means 16 are electrically connected directly by the connecting means 50, the bias power supply 14, the scanning driving means 15 and the reading means are provided. Therefore, a GND potential difference is generated. Therefore, in the present embodiment, the ground terminal 151 of the scanning drive unit 15 and the ground terminal 161 of the reading unit 16 are electrically connected directly by the connecting unit 50, and the ground terminal 141 of the bias power supply 14 and the reading unit 16 are connected. The ground terminal 161 is configured to be electrically connected directly by the GND line, so that a GND potential difference is not generated among the bias power source 14, the scan driving unit 15, and the reading unit 16.
 また、本実施形態のように、制御部22や電源部41を介して、走査駆動手段15のグランド端子151が電源部41のグランドGNDに接続されている場合、走査駆動手段15に対して制御部22や電源部41からノイズが侵入してしまう虞がある。同様にして、本実施形態のように、制御部22や電源部41を介して、読み出し手段16のグランド端子161が電源部41のグランドGNDに接続されている場合、読み出し手段16に対して制御部22や電源部41からノイズが侵入してしまう虞がある。そのため、制御部22や電源部41からのノイズが放射線検出素子7から読み出されるべき真の画像データに重畳されてしまう可能性がある。 Further, as in the present embodiment, when the ground terminal 151 of the scanning drive unit 15 is connected to the ground GND of the power supply unit 41 via the control unit 22 or the power supply unit 41, the scanning drive unit 15 is controlled. There is a risk that noise may enter from the unit 22 or the power supply unit 41. Similarly, when the ground terminal 161 of the reading unit 16 is connected to the ground GND of the power supply unit 41 via the control unit 22 or the power supply unit 41 as in the present embodiment, the control is performed on the reading unit 16. There is a risk that noise may enter from the unit 22 or the power supply unit 41. Therefore, noise from the control unit 22 and the power supply unit 41 may be superimposed on the true image data to be read from the radiation detection element 7.
 これに対し、本実施形態では、走査駆動手段15のグランド端子151と、制御部22および電源部41との間にノイズ抑制手段51を挿入するとともに、読み出し手段16のグランド端子161と、制御部22および電源部41との間にノイズ抑制手段52を挿入することで、走査駆動手段15や読み出し手段16に対する制御部22や電源部41からのノイズの侵入を抑制するようにしている。これにより、制御部22や電源部41からのノイズの重畳が抑制された画像データを読み出すことが可能となる。 On the other hand, in the present embodiment, the noise suppression unit 51 is inserted between the ground terminal 151 of the scan driving unit 15 and the control unit 22 and the power supply unit 41, and the ground terminal 161 of the reading unit 16 and the control unit The noise suppression means 52 is inserted between the power supply section 41 and the power supply section 41 so as to suppress the intrusion of noise from the control section 22 and the power supply section 41 to the scanning drive means 15 and the readout means 16. As a result, it is possible to read image data in which noise superposition from the control unit 22 and the power supply unit 41 is suppressed.
 この場合、ノイズ抑制手段51、52として、制御部22や電源部41からのノイズの侵入を防止できるものを採用すれば、制御部22や電源部41からのノイズが重畳されていない画像データを読み出すことが可能となり、より好適である。
 したがって、ノイズ抑制手段51、52としては、制御部22や電源部41からのノイズの侵入を抑制、好ましくはノイズの侵入を防止できるものであれば、その構成は任意である。
In this case, if noise suppression means 51, 52 that can prevent the intrusion of noise from the control unit 22 or the power supply unit 41 is adopted, image data on which noise from the control unit 22 or the power supply unit 41 is not superimposed is obtained. It becomes possible to read out, which is more preferable.
Therefore, as the noise suppression means 51 and 52, the structure is arbitrary as long as the noise intrusion from the control unit 22 and the power supply unit 41 can be suppressed, and preferably the noise intrusion can be prevented.
 なお、本実施形態では、バイアス電源14を、読み出し手段16の電源回路16aを介して電源部41と配線で結び、バイアス電源14に、読み出し手段16の電源回路16aを介して電源部41から電力を供給するように構成したが、これに限定されることはなく、例えば、バイアス電源14を、走査駆動手段15の電源回路15aを介して電源部41と配線で結んで、バイアス電源14に、走査駆動手段15の電源回路15aを介して電源部41からの電力を供給するように構成しても良いし、バイアス電源14用の電源回路を別途備え、バイアス電源14を、当該バイアス電源14用の電源回路を介して電源部41と配線で結んで、バイアス電源14に、当該バイアス電源14用の電源回路を介して電源部41からの電力を供給するように構成しても良い。 In the present embodiment, the bias power supply 14 is connected to the power supply unit 41 via the power supply circuit 16a of the reading unit 16 by wiring, and power is supplied to the bias power supply 14 from the power supply unit 41 via the power supply circuit 16a of the reading unit 16. However, the present invention is not limited to this. For example, the bias power supply 14 is connected to the power supply unit 41 via the power supply circuit 15a of the scanning drive unit 15 by wiring, and the bias power supply 14 is connected. The power from the power supply unit 41 may be supplied via the power supply circuit 15a of the scan driving unit 15, or a power supply circuit for the bias power supply 14 is separately provided, and the bias power supply 14 is provided for the bias power supply 14. The power supply unit 41 is connected to the power supply unit 41 via a wiring, and the bias power supply 14 is supplied with power from the power supply unit 41 via the power supply circuit for the bias power supply 14. It may be sea urchin configuration.
 なお、バイアス電源14用の電源回路を別途備える場合、バイアス電源14と走査駆動手段15と読み出し手段16との間にGND電位差が生じないように、すなわち、バイアス電源14のGND電位のゆらぎの波形と、走査駆動手段15のGND電位のゆらぎの波形や読み出し手段16のGND電位のゆらぎの波形とが一致するようにするために、バイアス電源14のグランド端子(具体的には、バイアス電源14用の電源回路のグランド端子)を、走査駆動手段15のグランド端子151および/または読み出し手段16のグランド端子161と電気的に直接接続するように構成しても良い。 When a power supply circuit for the bias power supply 14 is separately provided, a GND potential difference waveform is not generated between the bias power supply 14, the scanning drive means 15, and the reading means 16, that is, the GND potential fluctuation waveform. And the ground potential of the bias power supply 14 (specifically, for the bias power supply 14) in order to match the fluctuation waveform of the GND potential of the scanning drive means 15 and the fluctuation waveform of the GND potential of the reading means 16. The ground terminal of the power supply circuit) may be electrically connected directly to the ground terminal 151 of the scanning drive unit 15 and / or the ground terminal 161 of the reading unit 16.
 また、バイアス電源14用の電源回路を別途備える場合、バイアス電源14に対する制御部22や電源部41からのノイズの侵入を抑制(好ましくは、ノイズの侵入を防止)するために、バイアス電源14用の電源回路のグランド端子と、制御部22および電源部41との間にノイズ抑制手段を挿入するように構成しても良い。 In the case where a power supply circuit for the bias power supply 14 is separately provided, in order to suppress the entry of noise from the control unit 22 and the power supply unit 41 to the bias power supply 14 (preferably to prevent the intrusion of noise), A noise suppression unit may be inserted between the ground terminal of the power supply circuit and the control unit 22 and the power supply unit 41.
 以上説明した第1の実施の形態における放射線画像撮影装置1によれば、走査駆動手段15の電源回路15aのグランド端子151および読み出し手段16の電源回路16aのグランド端子161は、放射線画像撮影装置のグランドレベルに接続されているとともに、走査駆動手段15の電源回路15aのグランド端子151と読み出し手段16の電源回路16aのグランド端子161とは、接続手段50によって電気的に直接接続されている。 According to the radiographic imaging apparatus 1 in the first embodiment described above, the ground terminal 151 of the power supply circuit 15a of the scanning drive unit 15 and the ground terminal 161 of the power supply circuit 16a of the reading unit 16 are the same as those of the radiographic imaging apparatus. In addition to being connected to the ground level, the ground terminal 151 of the power supply circuit 15 a of the scanning drive means 15 and the ground terminal 161 of the power supply circuit 16 a of the reading means 16 are electrically connected directly by the connection means 50.
 すなわち、走査駆動手段15と読み出し手段16とが低インピーダンス接続されている。したがって、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致し、走査駆動手段15と読み出し手段16との間にGND電位差が生じないため、走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因のノイズ、具体的には、走査線5に印加される電圧のゆらぎに起因するノイズ(横引きノイズなど)等が発生することがない。そのため、走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因のノイズが重畳されていない画像データを読み出すことができる。
 これにより、動作状態や環境温度などの変化の影響を受けない常に安定したノイズリダクション効果を得ることが可能となり、常に適切な画質の放射線画像を得ることができる。そのため、このような放射線画像を用いて診断を行うような場合に、医師等が病変部を見落としたり、正常な部分を病変部と見誤ったりして誤診が生じる等の不都合が生じることを的確に防止することが可能となる。
That is, the scanning drive unit 15 and the reading unit 16 are connected with low impedance. Therefore, the waveform of the GND potential fluctuation of the scanning drive unit 15 and the waveform of the GND potential fluctuation of the reading unit 16 coincide with each other, and no GND potential difference is generated between the scanning driving unit 15 and the reading unit 16. Noise due to fluctuations in the GND potential difference between the driving means 15 and the reading means 16, specifically noise (such as lateral pulling noise) caused by fluctuations in the voltage applied to the scanning line 5 occurs. There is no. Therefore, it is possible to read image data on which noise due to fluctuations in the GND potential difference between the scanning drive unit 15 and the reading unit 16 is not superimposed.
As a result, it is possible to always obtain a stable noise reduction effect that is not affected by changes in the operating state, environmental temperature, and the like, and it is possible to always obtain a radiographic image with an appropriate image quality. Therefore, when making a diagnosis using such a radiographic image, it is possible to accurately inconvenience that a doctor or the like overlooks a lesioned part or misidentifies a normal part as a lesioned part, resulting in a misdiagnosis. Can be prevented.
 また、以上説明した第1の実施の形態における放射線画像撮影装置1によれば、走査駆動手段15の電源回路15aのグランド端子151は、制御部22および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続され、読み出し手段16の電源回路16aのグランド端子161は、制御部22および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続され、走査駆動手段15の電源回路15aのグランド端子151と、制御部22および電源部41との間に挿入され、走査駆動手段15に対するノイズの侵入を抑制するノイズ抑制手段51と、読み出し手段16の電源回路16aのグランド端子161と、制御部22および電源部41との間に挿入され、読み出し手段16に対するノイズの侵入を抑制するノイズ抑制手段52と、を備えている。 Moreover, according to the radiographic imaging device 1 in the first embodiment described above, the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is connected to the power supply unit 41 via the control unit 22 and the power supply unit 41. By being electrically connected to the ground GND, it is connected to the ground level of the radiation imaging apparatus 1, and the ground terminal 161 of the power supply circuit 16 a of the reading unit 16 is connected to the power supply unit 41 via the control unit 22 and the power supply unit 41. It is connected to the ground level of the radiation imaging apparatus 1 by being electrically connected to the ground GND of the radiographic imaging apparatus 1 and is inserted between the ground terminal 151 of the power supply circuit 15a of the scanning drive means 15 and the control section 22 and the power supply section 41. The noise suppression means 51 for suppressing the intrusion of noise into the scanning drive means 15 and the power supply circuit 16a of the readout means 16 A terminal 161, is inserted between the control unit 22 and the power supply unit 41, and a suppressing noise suppression means 52 for noise intrusion to the read means 16, a.
 すなわち、走査駆動手段15と制御部22および電源部41との間のインピーダンスが高められているとともに、読み出し手段16と制御部22および電源部41との間のインピーダンスが高められている。したがって、走査駆動手段15や読み出し手段16に対する制御部22や電源部41からのノイズの侵入が抑制されるため、制御部22や電源部41からのノイズ、具体的にはデジタルノイズや電流変動によるノイズなどのノイズの重畳が抑制された画像データを読み出すことができる。
 これにより、制御部22や電源部41でデジタルノイズや電流変動によるノイズなどのノイズが発生したとしても、このようなノイズの影響が軽減されるため、安定したノイズリダクション効果を得ることが可能となる。
That is, the impedance between the scanning drive unit 15 and the control unit 22 and the power supply unit 41 is increased, and the impedance between the reading unit 16 and the control unit 22 and the power supply unit 41 is increased. Accordingly, intrusion of noise from the control unit 22 and the power supply unit 41 to the scanning drive unit 15 and the reading unit 16 is suppressed, and therefore noise from the control unit 22 and the power supply unit 41, specifically, digital noise and current fluctuations. Image data in which superimposition of noise such as noise is suppressed can be read.
As a result, even if noise such as digital noise or noise due to current fluctuation occurs in the control unit 22 or the power supply unit 41, the influence of such noise is reduced, so that a stable noise reduction effect can be obtained. Become.
 また、以上説明した第1の実施の形態における放射線画像撮影装置1によれば、放射線検出素子7にバイアス線9および結線10を介してバイアス電圧を印加するバイアス電源14を備え、読み出し手段16の電源回路16aは、電源部41から供給された電力に基づいて、バイアス電源14に電力を供給するよう構成されている。 Further, according to the radiographic imaging apparatus 1 in the first embodiment described above, the bias detector 14 that applies a bias voltage to the radiation detection element 7 via the bias line 9 and the connection 10 is provided. The power supply circuit 16 a is configured to supply power to the bias power supply 14 based on the power supplied from the power supply unit 41.
 したがって、バイアス電源14のGND電位のゆらぎの波形と、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致し、バイアス電源14と走査駆動手段15と読み出し手段16との間にGND電位差が生じないため、バイアス電源14と走査駆動手段15との間のGND電位差のゆらぎが原因のノイズや、バイアス電源14と読み出し手段16との間のGND電位差のゆらぎが原因のノイズ、具体的には、バイアス電圧のゆらぎに起因するノイズ等が重畳されていない画像データを読み出すことができる。
 これにより、動作状態や環境温度などの変化の影響を受けない、より安定したノイズリダクション効果を常に得ることが可能となる。
Therefore, the fluctuation waveform of the GND potential of the bias power supply 14, the fluctuation waveform of the GND potential of the scanning drive means 15, and the fluctuation waveform of the GND potential of the reading means 16 coincide with each other. Since no GND potential difference occurs between the bias power supply 14 and the scanning drive means 15, noise caused by fluctuations in the GND potential difference between the bias power supply 14 and the scanning drive means 15, or the GND potential difference between the bias power supply 14 and the read means 16. It is possible to read out image data on which noise caused by fluctuations, specifically, noises caused by fluctuations in bias voltage and the like are not superimposed.
As a result, it is possible to always obtain a more stable noise reduction effect that is not affected by changes in the operating state or the environmental temperature.
<変形例1>
 次に、本実施形態の変形例1について説明する。
 本実施形態では、走査駆動手段15の電源回路15aのグランド端子151と、読み出し手段16の電源回路16aのグランド端子161との両方を、接続手段50と接続するとともに、放射線画像撮影装置1のグランドレベルに接続するように構成したが、これに限ることはなく、グランド端子151およびグランド端子161のうち、いずれか一方は放射線画像撮影装置1のグランドレベルに接続させなくても良い。
<Modification 1>
Next, Modification 1 of the present embodiment will be described.
In the present embodiment, both the ground terminal 151 of the power supply circuit 15a of the scanning drive means 15 and the ground terminal 161 of the power supply circuit 16a of the readout means 16 are connected to the connection means 50 and the ground of the radiographic imaging apparatus 1 is connected. However, the present invention is not limited to this, and one of the ground terminal 151 and the ground terminal 161 may not be connected to the ground level of the radiation imaging apparatus 1.
 具体的には、例えば、図8に示すように、読み出し手段16の電源回路16aのグランド端子161が放射線画像撮影装置1のグランドレベルに接続しているのであれば、走査駆動手段15の電源回路15aのグランド端子151は放射線画像撮影装置1のグランドレベルに接続させなくても良い。
 この場合、走査駆動手段15の電源回路15aのグランド端子151は、接続手段50、読み出し手段16の電源回路16aのグランド端子161および電源部41を介して電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続されている。
 また、この場合、読み出し手段16の電源回路16aのグランド端子161と、制御部22および電源部41との間に挿入されているノイズ抑制手段52が、バイアス電源14や、走査駆動手段15、読み出し手段16に対するノイズの侵入を抑制するノイズ抑制手段として機能する。
Specifically, for example, as shown in FIG. 8, if the ground terminal 161 of the power supply circuit 16 a of the reading unit 16 is connected to the ground level of the radiation imaging apparatus 1, the power supply circuit of the scanning drive unit 15. The ground terminal 151 of 15a may not be connected to the ground level of the radiation image capturing apparatus 1.
In this case, the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is electrically connected to the ground GND of the power supply unit 41 through the connection unit 50, the ground terminal 161 of the power supply circuit 16 a of the readout unit 16 and the power supply unit 41. By doing so, the radiation image capturing apparatus 1 is connected to the ground level.
In this case, the noise suppression means 52 inserted between the ground terminal 161 of the power supply circuit 16a of the reading means 16 and the control section 22 and the power supply section 41 is connected to the bias power supply 14, the scanning drive means 15, It functions as a noise suppression unit that suppresses noise intrusion into the unit 16.
 或いは、例えば、図9に示すように、走査駆動手段15の電源回路15aのグランド端子151が放射線画像撮影装置1のグランドレベルに接続しているのであれば、読み出し手段16の電源回路16aのグランド端子161は放射線画像撮影装置1のグランドレベルに接続させなくても良い。
 この場合、読み出し手段16の電源回路16aのグランド端子161は、接続手段50、走査駆動手段15の電源回路15aのグランド端子151および電源部41を介して電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続されている。
 また、この場合、走査駆動手段15の電源回路15aのグランド端子151と、制御部22および電源部41との間に挿入されているノイズ抑制手段51が、バイアス電源14や、走査駆動手段15、読み出し手段16に対するノイズの侵入を抑制するノイズ抑制手段として機能する。
Alternatively, for example, as shown in FIG. 9, if the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is connected to the ground level of the radiation image capturing apparatus 1, the ground of the power supply circuit 16 a of the reading unit 16. The terminal 161 may not be connected to the ground level of the radiation image capturing apparatus 1.
In this case, the ground terminal 161 of the power supply circuit 16 a of the reading unit 16 is electrically connected to the ground GND of the power supply unit 41 through the connection unit 50, the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15, and the power supply unit 41. By doing so, the radiation image capturing apparatus 1 is connected to the ground level.
Further, in this case, the noise suppression means 51 inserted between the ground terminal 151 of the power supply circuit 15a of the scan driving means 15 and the control section 22 and the power supply section 41 includes the bias power supply 14, the scan drive means 15, It functions as a noise suppression unit that suppresses noise intrusion into the reading unit 16.
 本変形例の場合も、第1の実施の形態の場合と同様の作用・効果を得ることができる。 In the case of this modification, the same operation and effect as in the case of the first embodiment can be obtained.
<変形例2>
 次に、本実施形態の変形例2について説明する。
 本実施形態では、走査駆動手段15と読み出し手段16との両方を、制御部22と直接接続するように構成したが、これに限ることはなく、少なくともいずれか一方は、電源部41を介して制御部22と接続するように構成しても良い。
<Modification 2>
Next, a second modification of the present embodiment will be described.
In the present embodiment, both the scanning driving unit 15 and the reading unit 16 are configured to be directly connected to the control unit 22. However, the present invention is not limited to this, and at least one of the scanning driving unit 15 and the reading unit 16 is connected via the power supply unit 41. You may comprise so that it may connect with the control part 22. FIG.
 具体的には、例えば、図10に示すように、走査駆動手段15を、電源部41と直接接続して、電源部41を介して制御部22と接続するとともに、読み出し手段16を、電源部41と直接接続して、電源部41を介して制御部22と接続するように構成しても良い。 Specifically, for example, as shown in FIG. 10, the scanning drive unit 15 is directly connected to the power supply unit 41 and is connected to the control unit 22 via the power supply unit 41, and the reading unit 16 is connected to the power supply unit. 41 may be connected directly to the control unit 22 via the power supply unit 41.
 この場合、走査駆動手段15に対する制御部22からの制御信号の入力は、電源部41を介して行われる。
 また、走査駆動手段15の電源回路15aのグランド端子151は、ノイズ抑制手段51および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続されている。そして、ノイズ抑制手段51は、走査駆動手段15の電源回路15aのグランド端子151と電源部41との間に挿入されて、走査駆動手段15に対する制御部22や電源部41からのノイズの侵入を抑制するようになっている。
In this case, the input of the control signal from the control unit 22 to the scanning drive unit 15 is performed via the power supply unit 41.
Further, the ground terminal 151 of the power supply circuit 15 a of the scanning drive unit 15 is electrically connected to the ground GND of the power supply unit 41 via the noise suppression unit 51 and the power supply unit 41, so that the ground of the radiographic image capturing apparatus 1 can be obtained. Connected to the level. The noise suppression means 51 is inserted between the ground terminal 151 of the power supply circuit 15 a of the scan driving means 15 and the power supply section 41 to prevent noise from entering the scan drive means 15 from the control section 22 and the power supply section 41. It comes to suppress.
 また、この場合、バイアス電源14や読み出し手段16に対する制御部22からの制御信号の入力や、制御部22に対する読み出し手段16からの画像データの入力は、電源部41を介して行われる。
 また、読み出し手段16の電源回路16aのグランド端子161は、ノイズ抑制手段52および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続されている。そして、ノイズ抑制手段52は、読み出し手段16の電源回路16aのグランド端子161と電源部41との間に挿入されて、バイアス電源14や読み出し手段16に対する制御部22や電源部41からのノイズの侵入を抑制するようになっている。
In this case, the control signal from the control unit 22 to the bias power supply 14 and the reading unit 16 and the image data from the reading unit 16 to the control unit 22 are input via the power supply unit 41.
In addition, the ground terminal 161 of the power supply circuit 16a of the reading unit 16 is electrically connected to the ground GND of the power supply unit 41 via the noise suppression unit 52 and the power supply unit 41, so that the ground level of the radiographic image capturing apparatus 1 is reached. It is connected to the. The noise suppression unit 52 is inserted between the power supply unit 41 and the ground terminal 161 of the power supply circuit 16 a of the reading unit 16, and noise from the control unit 22 and the power supply unit 41 with respect to the bias power supply 14 and the reading unit 16. Intrusion is suppressed.
 なお、図10では、走査駆動手段15と読み出し手段16との両方を、電源部41と直接接続して、電源部41を介して制御部22と接続するように構成したが、これに限ることはなく、走査駆動手段15と読み出し手段16とのいずれか一方を、電源部41と直接接続して、電源部41を介して制御部22と接続し、いずれか他方を、制御部22と直接接続して、制御部22を介して電源部41と接続するように構成しても良い。 In FIG. 10, both the scanning driving unit 15 and the reading unit 16 are configured to be directly connected to the power supply unit 41 and connected to the control unit 22 via the power supply unit 41. However, the present invention is not limited thereto. Rather, one of the scanning drive means 15 and the reading means 16 is directly connected to the power supply unit 41 and is connected to the control unit 22 via the power supply unit 41, and the other is directly connected to the control unit 22. The power supply unit 41 may be connected via the control unit 22.
 本変形例の場合も、第1の実施の形態の場合と同様の作用・効果を得ることができる。 In the case of this modification, the same operation and effect as in the case of the first embodiment can be obtained.
[第2の実施の形態]
 次に、第2の実施の形態における放射線画像撮影装置について説明する。
 なお、第2の実施の形態の放射線画像撮影装置1は、走査駆動手段15の電源回路15aと読み出し手段16の電源回路16aとが共通である点が、第1の実施の形態の放射線画像撮影装置1と異なる。したがって、以下では、第1の実施の形態と異なる箇所のみについて説明し、その他の共通する部分は同一符号を付して説明は省略する。
[Second Embodiment]
Next, a radiographic image capturing apparatus according to the second embodiment will be described.
The radiographic image capturing apparatus 1 of the second embodiment has the same power supply circuit 15a of the scanning drive means 15 and power supply circuit 16a of the reading means 16 in that the radiographic image capturing of the first embodiment. Different from device 1. Therefore, below, only a different part from 1st Embodiment is demonstrated, and another common part attaches | subjects the same code | symbol and abbreviate | omits description.
 具体的には、本実施形態の放射線画像撮影装置1において、走査駆動手段15は、ゲート走査線駆動部15bは備えているが、電源回路15aは備えておらず、また、読み出し手段16は、読み出しIC16bは備えているが、電源回路16aは備えていない。そして、バイアス電源14や、ゲート走査線駆動部15b、読み出しIC16bなどは、同一の基板内に収められており、共通の電源回路である電源回路60から電力の供給を受けたり、電源回路60を介して制御部22からの制御信号の入力を受けたりするように構成されている。 Specifically, in the radiographic imaging device 1 of the present embodiment, the scanning drive unit 15 includes the gate scanning line driving unit 15b but does not include the power supply circuit 15a, and the reading unit 16 includes Although the read IC 16b is provided, the power supply circuit 16a is not provided. The bias power supply 14, the gate scanning line driving unit 15b, the readout IC 16b, and the like are housed in the same substrate, and are supplied with power from the power supply circuit 60, which is a common power supply circuit, The control unit 22 is configured to receive an input of a control signal.
 すなわち、電源回路60は、電源部41から供給された電力に基づいて、読み出しIC16bを構成する各部やバイアス電源14に対して電力を供給するとともに、走査線5の各ラインL1~Lxを介してTFT8のゲート電極8gに印加するオン電圧およびオフ電圧をゲート走査線駆動部15bに対して供給するように構成されている。 That is, the power supply circuit 60 supplies power to each unit constituting the readout IC 16b and the bias power supply 14 based on the power supplied from the power supply unit 41, and via each line L1 to Lx of the scanning line 5. An ON voltage and an OFF voltage applied to the gate electrode 8g of the TFT 8 are configured to be supplied to the gate scanning line driving unit 15b.
 そして、電源回路60のグランド端子601は、制御部22および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続、すなわち接地されている。
 また、電源回路60のグランド端子601と、制御部22および電源部41との間には、バイアス電源14や、走査駆動手段15、読み出し手段16に対するノイズの侵入を抑制するノイズ抑制手段として機能するノイズ抑制手段61が挿入されている。
The ground terminal 601 of the power supply circuit 60 is connected to the ground level of the radiographic imaging apparatus 1 by being electrically connected to the ground GND of the power supply unit 41 via the control unit 22 and the power supply unit 41, that is, grounding. Has been.
Further, between the ground terminal 601 of the power supply circuit 60 and the control unit 22 and the power supply unit 41, it functions as a noise suppression unit that suppresses intrusion of noise to the bias power supply 14, the scan driving unit 15, and the reading unit 16. Noise suppression means 61 is inserted.
 なお、本実施形態では、図11に示すように、ゲート走査線駆動部15bは、電源回路60を介して制御部22と配線で結ばれており、電源回路60を介して制御部22から制御信号が入力されるように構成されているが、これに限定されることはなく、ゲート走査線駆動部15bに対し、電源回路60を介して電源部41から電力が供給されるのであれば、ゲート走査線駆動部15bを、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されるように構成しても良い。 In the present embodiment, as shown in FIG. 11, the gate scanning line driving unit 15 b is connected to the control unit 22 via the power supply circuit 60 by wiring, and is controlled from the control unit 22 via the power supply circuit 60. However, the present invention is not limited to this. If power is supplied from the power supply unit 41 via the power supply circuit 60 to the gate scanning line driving unit 15b, The gate scanning line driving unit 15b may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22.
 また、本実施形態では、図11に示すように、読み出しIC16bは、電源回路60を介して制御部22と配線で結ばれており、電源回路60を介して制御部22から制御信号が入力されたり、電源回路60を介して制御部22に画像データを出力したりするように構成されているが、これに限ることはなく、読み出しIC16bに対し、電源回路60を介して電源部41から電力が供給されるのであれば、読み出しIC16bを、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されたり、制御部22に画像データを直接出力したりするように構成しても良い。 In the present embodiment, as shown in FIG. 11, the readout IC 16 b is connected to the control unit 22 through the power supply circuit 60 by wiring, and a control signal is input from the control unit 22 through the power supply circuit 60. Or the image data is output to the control unit 22 via the power supply circuit 60. However, the present invention is not limited to this, and power is supplied from the power supply unit 41 to the readout IC 16b via the power supply circuit 60. Is connected directly to the control unit 22 by wiring, and the control signal is directly input from the control unit 22 or the image data is directly output to the control unit 22. May be.
 また、本実施形態では、図11に示すように、バイアス電源14は、電源回路60を介して制御部22と配線で結ばれており、電源回路60を介して制御部22から制御信号が入力されるように構成されているが、これに限ることはなく、バイアス電源14を、制御部22と配線で直接結んで、制御部22から制御信号が直接入力されるように構成しても良い。 In the present embodiment, as shown in FIG. 11, the bias power supply 14 is connected to the control unit 22 via the power supply circuit 60 by wiring, and a control signal is input from the control unit 22 via the power supply circuit 60. However, the present invention is not limited to this, and the bias power supply 14 may be directly connected to the control unit 22 by wiring so that a control signal is directly input from the control unit 22. .
 次に、本実施形態に係る放射線画像撮影装置1の作用について説明する。 Next, the operation of the radiation image capturing apparatus 1 according to this embodiment will be described.
 本実施形態では、走査駆動手段15の電源回路と読み出し手段16の電源回路を共通にすることで、走査駆動手段15と読み出し手段16との間にGND電位差が生じないように、すなわち、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致するようにしている。これにより、GND電位差のゆらぎが原因のノイズ、具体的には走査線5に印加される電圧のゆらぎに起因するノイズ(横引きノイズなど)等が重畳されていない画像データを読み出すことが可能となる。 In the present embodiment, by making the power supply circuit of the scanning drive unit 15 and the power supply circuit of the readout unit 16 common, no GND potential difference is generated between the scan drive unit 15 and the readout unit 16, that is, scan drive. The waveform of the fluctuation of the GND potential of the means 15 and the waveform of the fluctuation of the GND potential of the reading means 16 are made to coincide with each other. As a result, it is possible to read out image data on which noise caused by fluctuations in the GND potential difference, specifically noise caused by fluctuations in the voltage applied to the scanning line 5 (such as horizontal noise) is not superimposed. Become.
 なお、この他の点は第1の実施の形態で示したものと同様であるので、その説明は省略する。 Since other points are the same as those shown in the first embodiment, the description thereof is omitted.
 以上説明した第2の実施の形態における放射線画像撮影装置1によれば、走査駆動手段15の電源回路と読み出し手段16の電源回路とは共通の電源回路、すなわち電源回路60である。 According to the radiographic imaging apparatus 1 in the second embodiment described above, the power supply circuit of the scanning drive means 15 and the power supply circuit of the readout means 16 are a common power supply circuit, that is, the power supply circuit 60.
 したがって、走査駆動手段15のGND電位のゆらぎの波形と、読み出し手段16のGND電位のゆらぎの波形とが一致し、走査駆動手段15と読み出し手段16との間にGND電位差が生じないため、走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因のノイズ、具体的には、走査線5に印加される電圧のゆらぎに起因するノイズ(横引きノイズなど)等が発生することがない。そのため、走査駆動手段15と読み出し手段16との間のGND電位差のゆらぎが原因のノイズが重畳されていない画像データを読み出すことができる。
 これにより、動作状態や環境温度などの変化の影響を受けない常に安定したノイズリダクション効果を得ることが可能となり、常に適切な画質の放射線画像を得ることができる。そのため、このような放射線画像を用いて診断を行うような場合に、医師等が病変部を見落としたり、正常な部分を病変部と見誤ったりして誤診が生じる等の不都合が生じることを的確に防止することが可能となる。
Therefore, the waveform of the GND potential fluctuation of the scanning drive unit 15 and the waveform of the GND potential fluctuation of the reading unit 16 coincide with each other, and no GND potential difference is generated between the scanning driving unit 15 and the reading unit 16. Noise due to fluctuations in the GND potential difference between the driving means 15 and the reading means 16, specifically noise (such as lateral pulling noise) caused by fluctuations in the voltage applied to the scanning line 5 occurs. There is no. Therefore, it is possible to read image data on which noise due to fluctuations in the GND potential difference between the scanning drive unit 15 and the reading unit 16 is not superimposed.
As a result, it is possible to always obtain a stable noise reduction effect that is not affected by changes in the operating state, environmental temperature, and the like, and it is possible to always obtain a radiographic image with an appropriate image quality. Therefore, when making a diagnosis using such a radiographic image, it is possible to accurately inconvenience that a doctor or the like overlooks a lesioned part or misidentifies a normal part as a lesioned part, resulting in a misdiagnosis. Can be prevented.
 また、以上説明した第2の実施の形態における放射線画像撮影装置1によれば、共通の電源回路60のグランド端子601は、制御部22および電源部41を介して、電源部41のグランドGNDと電気的に接続することで、放射線画像撮影装置1のグランドレベルに接続されており、共通の電源回路60のグランド端子601と、制御部22および電源部41の間に挿入され、走査駆動手段15や読み出し手段16に対するノイズの侵入を抑制するノイズ抑制手段61を備えている。 Further, according to the radiographic imaging device 1 in the second embodiment described above, the ground terminal 601 of the common power supply circuit 60 is connected to the ground GND of the power supply unit 41 via the control unit 22 and the power supply unit 41. By being electrically connected, the radiation imaging apparatus 1 is connected to the ground level, and is inserted between the ground terminal 601 of the common power supply circuit 60, the control unit 22, and the power supply unit 41. And noise suppression means 61 that suppresses the intrusion of noise into the reading means 16.
 したがって、走査駆動手段15や読み出し手段16に対する制御部22や電源部41からのノイズの侵入が抑制されるため、制御部22や電源部41からのノイズ、具体的にはデジタルノイズや電流変動によるノイズなどのノイズの重畳が抑制された画像データを読み出すことができる。
 これにより、制御部22や電源部41でデジタルノイズや電流変動によるノイズなどのノイズが発生したとしても、このようなノイズの影響が軽減されるため、安定したノイズリダクション効果を得ることが可能となる。
Accordingly, intrusion of noise from the control unit 22 and the power supply unit 41 to the scanning drive unit 15 and the reading unit 16 is suppressed, and therefore noise from the control unit 22 and the power supply unit 41, specifically, digital noise and current fluctuations. Image data in which superimposition of noise such as noise is suppressed can be read.
As a result, even if noise such as digital noise or noise due to current fluctuation occurs in the control unit 22 or the power supply unit 41, the influence of such noise is reduced, so that a stable noise reduction effect can be obtained. Become.
 なお、この他の点は第1の実施の形態で示したものと同様であるので、その説明は省略する。 Since other points are the same as those shown in the first embodiment, the description thereof is omitted.
 なお、本発明が、上記の実施の形態に限定されず、適宜変更可能であることは言うまでもない。
 また、上述の実施形態及び変形例の構成を組み合わせて適用しても良い。
Needless to say, the present invention is not limited to the above-described embodiment, and can be changed as appropriate.
Moreover, you may apply combining the structure of the above-mentioned embodiment and modification.
 放射線画像撮影を行う分野(特に医療分野)において利用可能性がある。 It may be used in the field of radiographic imaging (especially in the medical field).
1 放射線画像撮影装置
5 走査線
6 信号線
7 放射線検出素子
8 TFT(スイッチ手段)
9 バイアス線
10 結線(バイアス線)
14 バイアス電源
15 走査駆動手段
15a 電源回路(走査駆動用電源回路)
15b ゲート走査線駆動部
16 読み出し手段
16a 電源回路(読み出し用電源回路)
16b 読み出しIC(読み出し部)
22 制御部
41 電源部
50 接続手段
51 ノイズ抑制手段(走査駆動用ノイズ抑制手段)
52 ノイズ抑制手段(読み出し用ノイズ抑制手段)
60 電源回路(共通の電源回路)
61 ノイズ抑制手段
151 グランド端子(走査駆動用電源回路のグランド端子)
161 グランド端子(読み出し用電源回路のグランド端子)
601 グランド端子(共通の電源回路のグランド端子)
GND グランド(電源部のグランド)
r 領域
P 検出部
DESCRIPTION OF SYMBOLS 1 Radiographic imaging device 5 Scanning line 6 Signal line 7 Radiation detection element 8 TFT (switch means)
9 Bias line 10 Connection (bias line)
14 Bias power supply 15 Scanning drive means 15a Power supply circuit (scanning drive power supply circuit)
15b Gate scanning line drive unit 16 Readout means 16a Power supply circuit (readout power supply circuit)
16b Read IC (read unit)
22 Control unit 41 Power supply unit 50 Connection unit 51 Noise suppression unit (scanning drive noise suppression unit)
52 Noise suppression means (Reading noise suppression means)
60 Power supply circuit (Common power supply circuit)
61 Noise suppression means 151 Ground terminal (Ground terminal of power supply circuit for scanning drive)
161 Ground terminal (ground terminal of power supply circuit for reading)
601 Ground terminal (common power circuit ground terminal)
GND ground (Power supply ground)
r region P detector

Claims (7)

  1.  放射線画像撮影を行う放射線画像撮影装置において、
     互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および前記複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、を備える検出部と、
     前記放射線検出素子ごとに配置され、接続された前記走査線にオフ電圧が印加されるとオフ状態となるとともに、接続された前記走査線にオン電圧が印加されるとオン状態となり、前記オフ状態では前記放射線検出素子内で発生した電荷を前記放射線検出素子内に蓄積させ、前記オン状態では前記放射線検出素子から前記信号線に前記電荷を放出させるスイッチ手段と、
     前記走査線に印加する電圧を前記オン電圧と前記オフ電圧との間で切り替えるゲート走査線駆動部と、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給する走査駆動用電源回路と、を備える走査駆動手段と、
     前記放射線検出素子から放出された前記電荷を画像データに変換することによって、前記放射線検出素子から前記画像データを読み出す読み出し部と、前記読み出し部に電力を供給する読み出し用電源回路と、を備える読み出し手段と、
     少なくとも前記走査駆動手段および前記読み出し手段の動作を制御する制御部と、
     少なくとも前記走査駆動手段、前記読み出し手段および前記制御部に電力を供給する電源部と、
     を備え、
     前記走査駆動用電源回路は、前記電源部から供給された電力に基づいて、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給し、
     前記読み出し用電源回路は、前記電源部から供給された電力に基づいて、前記読み出し部に電力を供給し、
     前記走査駆動用電源回路のグランド端子および前記読み出し用電源回路のグランド端子は、前記放射線画像撮影装置のグランドレベルに接続され、
     さらに、前記走査駆動用電源回路の前記グランド端子と前記読み出し用電源回路の前記グランド端子とを電気的に直接接続する接続手段を備えることを特徴とする放射線画像撮影装置。
    In a radiographic imaging device that performs radiographic imaging,
    A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines A detection unit comprising:
    When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line. Then, the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state,
    A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit; Scanning drive means comprising:
    A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charges emitted from the radiation detection element into image data; and a readout power supply circuit that supplies power to the readout unit. Means,
    A control unit for controlling operations of at least the scanning driving unit and the reading unit;
    A power supply unit that supplies power to at least the scanning drive unit, the readout unit, and the control unit;
    With
    The power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit,
    The reading power supply circuit supplies power to the reading unit based on the power supplied from the power supply unit,
    A ground terminal of the scanning drive power supply circuit and a ground terminal of the readout power supply circuit are connected to a ground level of the radiographic image capturing apparatus,
    The radiographic imaging apparatus further comprises a connection means for electrically directly connecting the ground terminal of the power supply circuit for scanning and the ground terminal of the power supply circuit for readout.
  2.  前記走査駆動用電源回路の前記グランド端子は、少なくとも前記電源部を介して、前記電源部のグランドと電気的に接続することで、前記グランドレベルに接続され、
     前記読み出し用電源回路の前記グランド端子は、少なくとも前記電源部を介して、前記電源部の前記グランドと電気的に接続することで、前記グランドレベルに接続され、
     前記走査駆動用電源回路の前記グランド端子と少なくとも前記電源部との間に挿入され、前記走査駆動手段に対するノイズの侵入を抑制する走査駆動用ノイズ抑制手段と、
     前記読み出し用電源回路の前記グランド端子と少なくとも前記電源部との間に挿入され、前記読み出し手段に対するノイズの侵入を抑制する読み出し用ノイズ抑制手段と、
     を備えることを特徴とする請求の範囲第1項に記載の放射線画像撮影装置。
    The ground terminal of the power supply circuit for scanning drive is connected to the ground level by electrically connecting with the ground of the power supply unit through at least the power supply unit.
    The ground terminal of the power supply circuit for reading is connected to the ground level by being electrically connected to the ground of the power supply unit through at least the power supply unit.
    A noise suppression means for scanning drive inserted between the ground terminal of the power supply circuit for scanning drive and at least the power supply unit, and suppressing noise intrusion to the scanning drive means;
    Read noise suppression means that is inserted between the ground terminal of the read power supply circuit and at least the power supply unit, and suppresses noise intrusion to the read means;
    The radiographic image capturing apparatus according to claim 1, further comprising:
  3.  前記読み出し用電源回路の前記グランド端子は、少なくとも前記電源部を介して、前記電源部のグランドと電気的に接続することで、前記グランドレベルに接続され、
     前記走査駆動用電源回路の前記グランド端子は、前記接続手段、前記読み出し用電源回路の前記グランド端子および前記電源部を介して前記電源部の前記グランドと電気的に接続することで、前記グランドレベルに接続され、
     前記読み出し用電源回路の前記グランド端子と少なくとも前記電源部との間に挿入され、前記走査駆動手段および前記読み出し手段に対するノイズの侵入を抑制するノイズ抑制手段を備えることを特徴とする請求の範囲第1項に記載の放射線画像撮影装置。
    The ground terminal of the power supply circuit for reading is connected to the ground level by electrically connecting to the ground of the power supply unit through at least the power supply unit.
    The ground terminal of the power supply circuit for scanning drive is electrically connected to the ground of the power supply section through the connection means, the ground terminal of the power supply section for readout, and the power supply section. Connected to
    A noise suppression unit that is inserted between the ground terminal of the power supply circuit for reading and at least the power supply unit, and that suppresses intrusion of noise to the scan driving unit and the reading unit. The radiographic imaging apparatus of item 1.
  4.  前記走査駆動用電源回路の前記グランド端子は、少なくとも前記電源部を介して、前記電源部のグランドと電気的に接続することで、前記グランドレベルに接続され、
     前記読み出し用電源回路の前記グランド端子は、前記接続手段、前記走査駆動用電源回路の前記グランド端子および前記電源部を介して前記電源部の前記グランドと電気的に接続することで、前記グランドレベルに接続され、
     前記走査駆動用電源回路の前記グランド端子と少なくとも前記電源部との間に挿入され、前記走査駆動手段および前記読み出し手段に対するノイズの侵入を抑制するノイズ抑制手段を備えることを特徴とする請求の範囲第1項に記載の放射線画像撮影装置。
    The ground terminal of the power supply circuit for scanning drive is connected to the ground level by electrically connecting with the ground of the power supply unit through at least the power supply unit.
    The ground terminal of the power supply circuit for reading is electrically connected to the ground of the power supply section via the connection means, the ground terminal of the power supply circuit for scanning drive, and the power supply section, so that the ground level Connected to
    A noise suppression unit that is inserted between the ground terminal of the scanning drive power supply circuit and at least the power supply unit, and that suppresses noise intrusion into the scan driving unit and the readout unit. The radiographic imaging device according to item 1.
  5.  放射線画像撮影を行う放射線画像撮影装置において、
     互いに交差するように配設された複数の走査線および複数の信号線と、前記複数の走査線および前記複数の信号線により区画された各領域に二次元状に配列された複数の放射線検出素子と、を備える検出部と、
     前記放射線検出素子ごとに配置され、接続された前記走査線にオフ電圧が印加されるとオフ状態となるとともに、接続された前記走査線にオン電圧が印加されるとオン状態となり、前記オフ状態では前記放射線検出素子内で発生した電荷を前記放射線検出素子内に蓄積させ、前記オン状態では前記放射線検出素子から前記信号線に前記電荷を放出させるスイッチ手段と、
     前記走査線に印加する電圧を前記オン電圧と前記オフ電圧との間で切り替えるゲート走査線駆動部と、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給する走査駆動用電源回路と、を備える走査駆動手段と、
     前記放射線検出素子から放出された前記電荷を画像データに変換することによって、前記放射線検出素子から前記画像データを読み出す読み出し部と、前記読み出し部に電力を供給する読み出し用電源回路と、を備える読み出し手段と、
     少なくとも前記走査駆動手段および前記読み出し手段の動作を制御する制御部と、
     少なくとも前記走査駆動手段、前記読み出し手段および前記制御部に電力を供給する電源部と、
     を備え、
     前記走査駆動用電源回路は、前記電源部から供給された電力に基づいて、前記ゲート走査線駆動部に前記オン電圧および前記オフ電圧を供給し、
     前記読み出し用電源回路は、前記電源部から供給された電力に基づいて、前記読み出し部に電力を供給し、
     前記走査駆動用電源回路と前記読み出し用電源回路とは、共通の電源回路であり、
     前記共通の電源回路のグランド端子は、前記放射線画像撮影装置のグランドレベルに接続されていることを特徴とする放射線画像撮影装置。
    In a radiographic imaging device that performs radiographic imaging,
    A plurality of scanning lines and a plurality of signal lines arranged so as to cross each other, and a plurality of radiation detection elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines A detection unit comprising:
    When each of the radiation detection elements is arranged and connected, the off-state is applied to the connected scanning line, and the on-state is applied when the on-voltage is applied to the connected scanning line. Then, the switch means for accumulating the charge generated in the radiation detection element in the radiation detection element, and releasing the charge from the radiation detection element to the signal line in the ON state,
    A gate scanning line driving unit that switches a voltage applied to the scanning line between the on-voltage and the off-voltage, and a scanning driving power supply circuit that supplies the on-voltage and the off-voltage to the gate scanning line driving unit; Scanning drive means comprising:
    A readout comprising: a readout unit that reads out the image data from the radiation detection element by converting the electric charges emitted from the radiation detection element into image data; and a readout power supply circuit that supplies power to the readout unit. Means,
    A control unit for controlling operations of at least the scanning driving unit and the reading unit;
    A power supply unit that supplies power to at least the scanning drive unit, the readout unit, and the control unit;
    With
    The power supply circuit for scanning drive supplies the on-voltage and the off-voltage to the gate scanning line driving unit based on the power supplied from the power supply unit,
    The reading power supply circuit supplies power to the reading unit based on the power supplied from the power supply unit,
    The scanning drive power supply circuit and the readout power supply circuit are a common power supply circuit,
    The radiographic imaging apparatus characterized in that a ground terminal of the common power supply circuit is connected to a ground level of the radiographic imaging apparatus.
  6.  前記共通の電源回路の前記グランド端子は、少なくとも前記電源部を介して、前記電源部のグランドと電気的に接続することで、前記グランドレベルに接続され、
     前記共通の電源回路の前記グランド端子と少なくとも前記電源部との間に挿入され、前記走査駆動手段および前記読み出し手段に対するノイズの侵入を抑制するノイズ抑制手段を備えることを特徴とする請求の範囲第5項に記載の放射線画像撮影装置。
    The ground terminal of the common power supply circuit is connected to the ground level by electrically connecting to the ground of the power supply unit through at least the power supply unit.
    A noise suppression unit that is inserted between the ground terminal of the common power supply circuit and at least the power supply unit, and that suppresses noise intrusion into the scan driving unit and the readout unit. 6. A radiographic imaging apparatus according to item 5.
  7.  前記放射線検出素子にバイアス線を介してバイアス電圧を印加するバイアス電源を備え、
     前記走査駆動用電源回路または前記読み出し用電源回路は、前記電源部から供給された電力に基づいて、前記バイアス電源に電力を供給することを特徴とする請求の範囲第1項から第6項のいずれか一項に記載の放射線画像撮影装置。
    A bias power source for applying a bias voltage to the radiation detection element via a bias line;
    The power supply circuit for scanning or the power supply circuit for readout supplies power to the bias power supply based on the power supplied from the power supply unit. The radiographic imaging apparatus as described in any one of Claims.
PCT/JP2011/054888 2010-06-23 2011-03-03 Radiological imaging device WO2011161988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012521344A JPWO2011161988A1 (en) 2010-06-23 2011-03-03 Radiation imaging equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-142335 2010-06-23
JP2010142335 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011161988A1 true WO2011161988A1 (en) 2011-12-29

Family

ID=45371192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054888 WO2011161988A1 (en) 2010-06-23 2011-03-03 Radiological imaging device

Country Status (2)

Country Link
JP (1) JPWO2011161988A1 (en)
WO (1) WO2011161988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179290A1 (en) * 2016-04-15 2017-10-19 東芝電子管デバイス株式会社 Radiation detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332550A (en) * 1999-05-19 2000-11-30 Canon Inc Signal processing circuit and its driving method, and radiation image pickup system
JP2003163343A (en) * 2001-07-30 2003-06-06 Canon Inc Imaging device and imaging system
JP2009008490A (en) * 2007-06-27 2009-01-15 Toshiba Corp Radiation detection device
JP2009128186A (en) * 2007-11-22 2009-06-11 Toshiba Corp Radiation detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3554244B2 (en) * 1999-02-25 2004-08-18 キヤノン株式会社 Photoelectric conversion device, image sensor and image input system using the same
JP2003121553A (en) * 2001-08-06 2003-04-23 Canon Inc Radiation imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332550A (en) * 1999-05-19 2000-11-30 Canon Inc Signal processing circuit and its driving method, and radiation image pickup system
JP2003163343A (en) * 2001-07-30 2003-06-06 Canon Inc Imaging device and imaging system
JP2009008490A (en) * 2007-06-27 2009-01-15 Toshiba Corp Radiation detection device
JP2009128186A (en) * 2007-11-22 2009-06-11 Toshiba Corp Radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179290A1 (en) * 2016-04-15 2017-10-19 東芝電子管デバイス株式会社 Radiation detector
CN108886597A (en) * 2016-04-15 2018-11-23 东芝电子管器件株式会社 Radiation detector
TWI649863B (en) * 2016-04-15 2019-02-01 日商佳能電子管設備股份有限公司 Radiation detector

Also Published As

Publication number Publication date
JPWO2011161988A1 (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5505416B2 (en) Radiation imaging equipment
JP5233831B2 (en) Radiographic imaging apparatus and radiographic imaging system
WO2011135917A1 (en) Radiation image photography device
JP5655780B2 (en) Radiation imaging equipment
JP2009219538A (en) Radiation image detector and radiographic imaging system
JP5459066B2 (en) Radiation imaging equipment
JP5447519B2 (en) Radiation imaging equipment
JP2011185622A (en) Radiographic imaging apparatus
JP5617913B2 (en) Radiation imaging equipment
JP2011193306A (en) Apparatus and system for photographing radiation image
JP2009044587A (en) Radiographic image detector
JP5332619B2 (en) Portable radiographic imaging device and radiographic imaging system
WO2011013390A1 (en) Radiation image capturing device
JP5617541B2 (en) Radiation imaging equipment
JP5099000B2 (en) Portable radiographic imaging device and radiographic imaging system
JP2012182346A (en) Radiological imaging device
WO2011161988A1 (en) Radiological imaging device
JP5556367B2 (en) Radiographic imaging apparatus and radiographic imaging system
JP2011133302A (en) Radiographic imaging device and radiographic imaging system
JP2010263517A (en) Radiographic image photographing apparatus
WO2011086826A1 (en) Radiographic imaging device
JP2012100081A (en) Radiation image photographing apparatus
WO2010073838A1 (en) Portable radiological image capturing apparatus and radiological image capturing system
JP2011142476A (en) Radiographic imaging device
JP2011130880A (en) Radiation image radiographing apparatus and radiation image radiographing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012521344

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797876

Country of ref document: EP

Kind code of ref document: A1