WO2011161948A1 - Fluidized bed furnace and waste processing method - Google Patents

Fluidized bed furnace and waste processing method Download PDF

Info

Publication number
WO2011161948A1
WO2011161948A1 PCT/JP2011/003528 JP2011003528W WO2011161948A1 WO 2011161948 A1 WO2011161948 A1 WO 2011161948A1 JP 2011003528 W JP2011003528 W JP 2011003528W WO 2011161948 A1 WO2011161948 A1 WO 2011161948A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
fluidized
region
fluidized bed
particles
Prior art date
Application number
PCT/JP2011/003528
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 松村
博之 細田
伊藤 正
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010141830A external-priority patent/JP5694690B2/en
Priority claimed from JP2010164745A external-priority patent/JP5694700B2/en
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to CN2011800311838A priority Critical patent/CN102947647A/en
Priority to PL11797837T priority patent/PL2587147T3/en
Priority to US13/805,922 priority patent/US20130098277A1/en
Priority to EP11797837.9A priority patent/EP2587147B1/en
Publication of WO2011161948A1 publication Critical patent/WO2011161948A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/22Fuel feeders specially adapted for fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • F23C10/26Devices for removal of material from the bed combined with devices for partial reintroduction of material into the bed, e.g. after separation of agglomerated parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/10Waste feed arrangements using ram or pusher
    • F23G2205/101Waste feed arrangements using ram or pusher sequentially operated

Definitions

  • the present invention relates to a fluidized bed furnace for extracting combustible gas from the waste by heating the waste in a fluidized bed in which fluidized particles are fluidized, and a waste treatment method.
  • this fluidized bed furnace has a furnace body 104 having fluidized sand (fluidized particles) 102 at the bottom of the furnace, and fluidized sand at the bottom of the furnace for fluidizing the fluidized sand 102 to form a fluidized bed.
  • An air supply unit 106 for supplying air into the air supply 102.
  • the furnace body 104 has side walls. The side wall is provided with a charging unit 108 for charging waste onto the fluidized bed.
  • the air supply unit 106 supplies air into the high-temperature fluidized sand 102.
  • the fluidized sand 102 is floated and fluidized to form a fluidized bed.
  • the fluidized state of the fluidized sand 102 is substantially the entire fluidized bed so that the waste introduced into the fluidized bed from the input unit 108 is taken into the bed and burned efficiently. Supply air so that it is constant.
  • waste is thrown into the hot fluidized sand from the throwing-in part 108, the waste is mixed with the hot fluidized sand 102 in the fluidized bed and pyrolyzed (gasified). Thereby, combustible gas is generated. This combustible gas is burned at a high temperature in a subsequent melting furnace, for example.
  • the waste thrown into the fluidized bed furnace 100 is taken into an active fluidized bed and burned or gasified.
  • the combustible in the waste burns rapidly, so that sudden fluctuations in the amount and concentration of the generated combustible gas are repeated.
  • This change in gasification reaction is highly dependent on the quantitative nature of the waste supply. For this reason, combustible gas cannot be generated stably when there is a change in waste supply or change in waste quality.
  • the waste contains a large amount of flammable garbage such as paper or sheet-like plastic, the generated flammable gas fluctuates more and its stabilization is required.
  • An object of the present invention is to provide a fluidized bed furnace and a waste treatment method capable of stably obtaining a combustible gas even if the waste contains easily burnable garbage.
  • a fluidized bed furnace for heating the waste and taking out the combustible gas from the waste, the fluidized particles constituting the fluidized bed for heating the waste,
  • a bottom wall that supports fluid particles from below and a side wall that rises from the bottom wall, and the bottom wall is heated in a non-combustible manner in the waste and the waste at a position biased in a specific direction from the center position thereof.
  • a mixture discharge port for discharging the generated carbide together with the fluidized particles is provided, and the top surface of the bottom wall is disposed on the top surface of the bottom wall so as to descend the fluidized particles toward the mixture discharge port.
  • a furnace body that is inclined so as to become lower toward the outlet; a gas supply section that fluidizes the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles; and the side wall
  • the waste is supplied to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the same side as the mixture discharge port with respect to the center position of the bottom wall.
  • a waste supply unit that moves the waste to the side of the opposite side wall that is located on the opposite side of the mixture discharge port across the center position of the bottom wall of the side wall.
  • the gas supply section has a first fluidization region having a fluidization degree such that waste can be retained on the upper side of the fluidized particles by blowing the fluidizing gas from the periphery of the mixture discharge port.
  • the fluidized gas is blown between the first fluidized region and the opposite side wall at a flow rate higher than the fluidized gas blown velocity in the first fluidized region.
  • the fluidized particles have a higher degree of fluidization than the one fluidized region, thereby forming a second fluidized region in which the fluidized particles are convected and mixed with the waste to gasify the waste,
  • the waste supply unit has the waste from the supply side wall so that the waste stays on the first flow region and the stayed waste sequentially enters the second flow region. Waste for fluidized bed To supply the goods.
  • FIG. 1 is a schematic configuration diagram of a fluidized bed furnace according to the present embodiment.
  • FIG. 2 is a cross-sectional view of the furnace main body for explaining the waste insertion position, the fluid particle insertion position, and the carbide insertion position in the fluidized bed furnace.
  • FIG. 3 is a view for explaining the arrangement of nozzles on the bottom wall of the furnace body.
  • FIG. 4 is a view for explaining a furnace main body in a fluidized bed furnace according to another embodiment and having a reflection portion on a front wall.
  • FIG. 5 is a view for explaining a furnace main body in a fluidized bed furnace according to another embodiment and having a guide portion on a rear wall.
  • FIG. 6 is a diagram for explaining a furnace main body in a fluidized bed furnace according to another embodiment having a roof portion on a front wall and a rear wall.
  • FIG. 7 is a view for explaining a furnace body including a thermometer and an air supply unit in a fluidized bed furnace according to another embodiment.
  • FIG. 8 is a diagram for explaining a waste supply unit in a fluidized bed furnace according to another embodiment.
  • FIG. 9 is a schematic configuration diagram of a conventional fluidized bed furnace.
  • the fluidized bed furnace takes out combustible gas from waste by heating the waste with high-temperature fluidized particles.
  • the fluidized bed furnace includes fluidized particles 12, a furnace body 20, a gas supply unit 30, a waste supply unit 40, a sand circulation device 50, and a carbide insertion device 60. .
  • the fluidized particles 12 constitute a fluidized bed 14 inside the furnace body 20 and heat the waste 18. That is, when the fluidized particles 12 heated to a high temperature by the combustion of a part of the waste 18 are mixed with the waste 18, the waste 18 is gasified to generate a combustible gas.
  • the fluidized particles 12 of this embodiment are silica sand or the like.
  • the furnace body 20 has fluid particles 12 inside, and takes out combustible gas from the waste 18 by the high temperature fluid particles 12.
  • the furnace body 20 includes a bottom wall 21 that supports the fluidized particles 12 from below, a side wall 22 that rises from the bottom wall 21, and a combustible gas discharge part 23 that is provided at the upper end of the side wall 22.
  • the side wall 22 has a rectangular tube shape extending vertically. Specifically, as shown in FIG. 2, the side wall 22 includes a front wall (supply side wall) 24 and a rear wall (opposite side wall) 25 that are opposed to each other at the front and rear (left and right in FIG. 2). It has horizontal walls 26 and 26 that connect the end portions of the front wall 24 and the rear wall 25, respectively. The lateral walls 26, 26 are parallel to each other. That is, the furnace body 20 has a planar shape in which the dimension in the width direction, which is the distance between the lateral walls 26, 26, is uniform in the front-rear direction.
  • the side wall (front wall) 24 located on the same side as the mixture discharge port 29 with respect to the center position of the bottom wall 21 of the side wall 22 has a sand insertion portion 27 and a waste insertion port 28.
  • the sand insertion portion 27 inserts the fluidized particles 12 into the furnace body 20, and the waste insertion port 28 inserts the waste 18 into the furnace body 20.
  • the side wall (rear wall) 25 located on the side opposite to the mixture discharge port 29 across the center position of the bottom wall 21 of the side wall 22 has a carbide insertion portion 63.
  • the carbide insertion portion 63 inserts carbide (for example, char) generated by heating the waste 18 into the furnace body 20.
  • the sand insertion portion 27 is located on the front wall 24 side in the furnace body 20 and in the width direction center portion so that the flowing particles can be inserted (see FIG. 2).
  • the sand insertion portion 27 is provided from the upper side of the fluidized particles 12 (fluidized bed 14) supported by the bottom wall 21 of the furnace body 20 to the fluidized bed 14 (specifically, the waste 18 that is supplied and retained on the fluidized bed 14). ) Is provided at a height position where the flowing particles 12 can be introduced. By providing the sand insertion portion 27 at such a position, the fluidized particles 12 can be put on the waste 18 staying on the fluidized bed 14.
  • the place where the flowing particles 12 are introduced is not limited to the front wall 24 but may be provided on the rear wall 25 or the lateral wall 26.
  • the carbide insertion portion 63 is provided in the center portion in the width direction at the lower portion of the rear wall 25 so that the carbide can be inserted into the center portion in the width direction on the rear wall 25 side in the furnace body 20 (see FIG. 2).
  • the carbide insertion portion 63 is provided at a height where the carbide can be charged from above the fluidized bed 14 in the furnace body 20 toward the fluidized bed 14.
  • carbonized_material insertion part 63 may be provided in the intermediate
  • the waste insertion port 28 is provided in substantially the entire width direction of the furnace body 20 below the front wall 24.
  • the waste insertion port 28 is provided at a height position where the waste 18 can be pushed sideways onto the upper surface of the fluidized bed 14 constituted by the fluidized particles 12 supported by the bottom wall 21 of the furnace body 20. That is, the waste insertion port 28 is provided at a position where the lower end of the waste insertion port 28 is slightly higher than the upper surface of the fluidized bed 14.
  • the combustible gas discharge unit 23 discharges the combustible gas generated in the furnace body 20.
  • This combustible gas discharge part 23 has an outer diameter narrower than that of the side wall 22 so that a duct or the like for supplying the combustible gas obtained in the furnace body 20 to, for example, a gas engine of a power generation process in the subsequent stage can be connected. Yes.
  • the bottom wall 21 has a mixture discharge port 29 for discharging incombustibles in the waste 18 and carbides generated by heating the waste 18 together with the fluidized particles 12 at a position deviated from the center position in a specific direction.
  • the mixture discharge port 29 opens over the entire width direction in the bottom wall 21.
  • the upper surface 21a of the bottom wall 21 is inclined so as to become lower toward the mixture outlet 29 so that the fluidized particles 12 descend on the upper surface 21a.
  • the bottom wall 21 of the present embodiment has a mixture discharge port 29 at a position biased to the front side, and the upper surface 21a of the bottom wall 21 moves downward (from left to right in FIG. 1) at a certain level. It is a slope.
  • the upper surface 21a of the bottom wall 21 is an inclined surface of 15 ° to 25 ° with respect to the horizontal plane.
  • the top wall 21a of the bottom wall 21 is inclined so as to become lower toward the mixture discharge port 29. For this reason, during the operation of the fluidized bed furnace 10, the fluidized particles 12 move from the rear wall 25 toward the front wall 24 in a region adjacent to the upper surface 21 a of the fluidized bed 14.
  • the gas supply unit 30 fluidizes the fluidized particles 12 by blowing fluidized gas from the bottom wall 21 toward the fluidized particles 12.
  • the gas supply unit 30 includes a plurality of nozzles 31 for blowing out the fluidizing gas, a wind box 32 that supplies the fluidizing gas to each nozzle 31, a blower unit 33 that blows the fluidizing gas to the wind box 32,
  • the plurality of nozzles 31 are arranged on the bottom wall 21 in a grid pattern spaced in the width direction and the front-rear direction. Each nozzle 31 is attached to the bottom wall 21 so as to penetrate the bottom wall 21.
  • the bottom wall 21 is divided into a rear region 21b and a front region 21c. And each nozzle 31 is arrange
  • regions 21b and 21c is not limited.
  • the number of nozzles 31 in the front region 21c and the number of nozzles 31 in the rear region 21b may be the same. Further, the number of nozzles 31 in the front region 21c may be larger than the number of nozzles 31 in the rear region 21b.
  • the wind box 32 has a box shape extending in the width direction and serves as a header for distributing the fluidized gas to the nozzles 31 arranged in the width direction on the bottom wall 21.
  • the air box 32 has a function of making the flow rate of the fluidized gas blown out from the nozzles 31 arranged in the width direction uniform.
  • a plurality of wind boxes 32 are arranged in the front-rear direction on the lower surface side of the bottom wall 21. Therefore, for each nozzle 31 corresponding to each wind box 32, the flow rate of the fluidized gas blown from the nozzle 31 can be changed.
  • five wind boxes 32a, 32b, 32c, 32d, and 32e are arranged in the front-rear direction. Specifically, four wind boxes 32a, 32b, 32c, and 32d are arranged on the rear wall 25 side of the mixture discharge port 29, and one wind box 32e is arranged on the front wall 24 side of the mixture discharge port 29. ing.
  • the blower 33 blows (supplies) fluidized gas to each wind box 32.
  • the blower 33 can blow the fluidizing gas at different flow rates for each wind box 32.
  • the air blowing unit 33 of the present embodiment is configured so that the flow rate of the fluidized gas blown to the wind box 32 on the rear side of the flow rate of the fluidized gas blown to the wind box 32 on the front side with respect to the wind boxes 32 and 32 adjacent in the front-rear direction.
  • the fluidizing gas is blown so that the flow rate is increased.
  • the air blower 33 blows air as a fluidizing gas to each wind box 32, but in addition to this air, an inert gas such as nitrogen can also be blown.
  • the blower 33 is connected to the mixture outlet 29.
  • the fluidizing gas is blown from the surroundings.
  • the air blowing unit 33 forms the first flow region 15 having a fluidization degree to the extent that the waste 18 can stay above the fluidized particles 12.
  • the blower 33 blows fluidized gas between the first fluidized region 15 and the rear wall 25 at a flow rate higher than the fluidized gas blown velocity in the first fluidized region 15.
  • the second fluidized region 16 having a higher degree of fluidization of the fluidized particles 12 than the first fluidized region 15 is formed.
  • the air blowing unit 33 has a rear air box (for example, a flow rate of fluidized gas blown to the front air box (for example, 32c) with respect to the air box 32 adjacent in the front-rear direction (for example, The flow rate of the fluidizing gas blown to 32b) is increased.
  • the blower 33 forms the first fluidized region 15 in which the fluidized state is suppressed around the mixture discharge port 29 in the fluidized bed 14, and between the first fluidized region 15 and the rear wall 25.
  • a second flow region 16 in which flow is active is formed.
  • the air blowing unit 33 makes the flow rate of the fluidizing gas supplied to the wind boxes 32c, 32d, 32e on the front wall 24 side constant, and fluidizes the flow rate supplied to the wind boxes 32a, 32b on the rear wall 25 side from this flow rate.
  • the gas flow rate may be increased.
  • the air blowing section 33 forms the first flow region 15 in which flow is suppressed in the region corresponding to the wind boxes 32c, 32d, and 32e on the front wall 24 side in the fluidized bed 14, and the wind on the rear wall 25 side.
  • a second flow region 16 in which flow is active is formed in a region corresponding to the boxes 32a and 32b.
  • the blower unit 33 blows the fluidizing gas at a flow rate at which U o / U mf is 1 or more and less than 2, and in the second flow region 16, U o / U Fluidizing gas is blown at a flow rate at which mf is 2 or more and less than 5.
  • U mf is the minimum fluidization speed that is the minimum flow velocity of the fluidization gas blowing for fluidizing the fluidized particles 12.
  • Uo is the average cross-sectional flow velocity of the fluidized gas.
  • the blower 33 is an inert gas to the air as a fluidizing gas supplied to each wind box 32. Blow the mixture.
  • the ventilation part 33 makes an inert gas gradually increase the ratio of the air and inert gas in fluidization gas. Thereby, the blower 33 suppresses the waste 18 remaining in the furnace body 20 from burning violently, and suppresses the temperature rise in the furnace body 20.
  • the waste 18 is burned and gasified in a state where the oxygen concentration is lower than a value suitable for the combustion of the waste 18.
  • the amount of combustible material in the furnace body 20 decreases.
  • the fluidizing gas (air) is supplied at a predetermined flow rate in order to maintain the fluidized bed 14 in the furnace body 20, the oxygen concentration in the furnace body 20 becomes high.
  • the oxygen concentration in the furnace body 20 becomes a value suitable for the combustion of the waste 18 remaining in the furnace body 20, the waste 18 burns violently and the temperature in the furnace body 20 is higher than that during normal operation. To rise.
  • the fluidized particles 12 forming the fluidized bed 14 are hardened by this heat.
  • the fluidized particles 12 are thus solidified, the fluidized particles 12 are not fluidized even if the fluidized gas is blown into the fluidized particles 12 to form the fluidized bed 14 next time. Therefore, when the insertion of the waste 18 into the furnace body 20 is stopped, the blower unit 33 mixes an inert gas with the air blown into the furnace body 20 and gradually increases the ratio of the inert gas. Thereby, the oxygen concentration in the furnace body 20 is kept lower than a value suitable for the combustion of the waste 18. As a result, the waste 18 remaining in the furnace body 20 can be prevented from burning violently.
  • the blower 33 can adjust the temperature of the fluidizing gas blown to the wind box 32.
  • the blower unit 33 blows high-temperature fluidized gas from the portion corresponding to the second fluidized region 16 toward the fluidized particles 12.
  • the blower 33 heats the fluidized particles 12 until the temperature reaches a temperature at which the waste 18 can be combusted and gasified.
  • the air blower 33 may lower the temperature of the fluidized gas blown to the wind box 32 when the combustion starts.
  • the waste supply unit 40 supplies the waste 18 from the front wall 24 to a region adjacent to the front wall 24 on the fluidized bed 14.
  • the waste supply unit 40 of the present embodiment pushes the waste 18 sideways onto the fluidized bed 14 from the front wall 24 (specifically, the waste insertion port 28 of the front wall 24), thereby 2 to the flow region 16 side. That is, the waste supply unit 40 pushes the waste 18 so that the waste 18 stays on the first flow region 15 and the stayed waste 18 sequentially enters the second flow region 16. I do.
  • the waste supply unit 40 includes a pusher 41 and a drive unit (not shown) for driving the pusher 41.
  • the pusher 41 has a pushing surface 42 extending in the width direction.
  • the length in the width direction of the pushing surface 42 is the same as the width of the waste insertion port 28 of the front wall 24. Further, the length of the pushing surface 42 in the vertical direction is substantially half of the opening height of the waste insertion port 28.
  • the pusher 41 is installed to be movable in the front-rear direction at the same height position as the waste insertion port 28.
  • the drive unit includes a power source such as a motor and a cylinder, and the pusher 41 is reciprocated in the front-rear direction by the power.
  • the specific configuration of the waste supply unit 40 is not limited. For example, in the waste supply unit 40 of the present embodiment, the pusher 41 pushes the waste 18 into the furnace.
  • the waste supply unit may be configured to push the waste 18 into the furnace by a screw pusher or the like (see FIG. 8A).
  • a screw pusher By using the pusher 41 and the screw pusher, dust having a small bulk specific gravity such as paper or plastic sheet and easily scattered is supplied into the furnace body 20 as a lump. Thereby, compared with the case where garbage is thrown in from the upper part of the conventional furnace, scattering of the garbage in the furnace main body 20 is suppressed.
  • the sand circulating device 50 circulates the fluidized particles 12 by separating the fluidized particles 12 from the mixture of incombustibles, carbides, and fluidized particles 12 discharged from the mixture outlet 29 and returning them to the furnace body 20. In this manner, the sand circulating device 50 separates the high temperature fluidized particles 12 from the mixture and returns them to the furnace body 20, thereby maintaining the amount of fluidized particles 12 constituting the fluidized bed 14 in the furnace body 20. It becomes easy to maintain the temperature of the fluidized bed 14.
  • the sand circulation device 50 includes a mixture discharge unit 51, a fluid particle separation unit 52, and a fluid particle transport unit 53.
  • the mixture discharge unit 51 is provided below the mixture discharge port 29 of the bottom wall 21, and moves the mixture of the incombustible material, the carbide, and the fluidized particles 12 that have dropped from the mixture discharge port 29 to the fluidized particle separation unit 52.
  • the mixture discharge part 51 of this embodiment moves the mixture which has fallen from the mixture discharge port 29 to the fluid particle separation part 52 with a screw pushing machine.
  • the fluid particle separation unit 52 separates the fluid particles 12 from the mixture sent from the mixture discharge unit 51.
  • the fluid particle separator 52 of this embodiment separates the fluid particles 12 from the mixture using a sieve.
  • the fluidized particle separation unit 52 sends the mixture after separating the fluidized particles 12 to the carbide separation unit 61.
  • the fluidized particle transport unit 53 transports the fluidized particles 12 separated in the fluidized particle separation unit 52 to the sand insertion unit 27 of the furnace body 20 and inserts the fluidized particle 12 into the furnace body 20 from the sand insertion unit 27.
  • the sand circulation apparatus 50 of this embodiment has thrown the fluid particle
  • the sand circulation device may return the fluidized particles 12 to the fluidized bed 14 by pushing directly into the fluidized bed 14.
  • the carbide insertion device 60 separates carbide from the mixture discharged from the mixture discharge port 29, and returns the separated carbide into the furnace body 20 from the rear wall 25 side. In this way, the carbide layer insertion device 60 returns the carbide discharged from the mixture discharge port 29 to the second flow region 16, thereby obtaining a combustible gas from the carbide discharged together with the incombustible material outside the furnace body 20. Is possible. As a result, combustible gas can be efficiently obtained from the waste 18 supplied to the fluidized bed furnace 10. Further, the temperature of the second flow region 16 is maintained at a high temperature by heat generated when the carbide is gasified.
  • the carbide insertion device 60 includes a carbide separation unit 61 and a carbide conveyance unit 62.
  • the carbide separator 61 separates the carbide from the mixture sent from the fluidized particle separator 52.
  • the carbide separation unit 61 of the present embodiment separates carbides from the mixture after the fluidized particles 12 are separated in the fluidized particle separation unit 52.
  • the carbide separator 61 is, for example, a specific gravity separator that separates carbides from the mixture by vibration.
  • the carbide conveying unit 62 conveys the carbide separated in the carbide separating unit 61 to the carbide inserting unit 63 of the furnace body 20, and inserts the conveyed carbide into the furnace main body 20 from the carbide inserting unit 63.
  • combustible gas is recovered from the waste 18 as follows.
  • Blower 33 supplies fluidizing gas to each wind box 32.
  • fluidized gas is blown from the bottom wall 21 toward the fluidized particles 12, and the fluidized bed 14 is formed in the furnace body 20.
  • the blower 33 adjusts the flow rate of the fluidizing gas blown to each wind box 32.
  • the first fluidized region 15 in which the fluid is suppressed is formed on the mixture discharge port 29 side, and the fluid is actively flowed between the first fluidized region 15 and the rear wall 25.
  • a flow region 16 is formed.
  • the blower unit 33 supplies a high-temperature fluidizing gas to the wind box 32 (in this embodiment, for example, the wind boxes 32a and 32b) corresponding to the second flow region 16, and The fluidized particles 12 are actively heated. At this time, movement of the fluidized particles 12 from the second region 16 to the first region 15 in the region near the upper surface 21a of the fluidized bed 14 caused by the inclination of the upper surface 21a of the bottom wall 21 causes the first fluidized region 15 to move to the first fluidized region 15. Heat is supplied.
  • the temperature of each of the regions 15 and 16 of the fluidized bed 14 formed in the furnace body 20 is a predetermined temperature (in this embodiment, the temperature of the second fluidized region 16 is about 600 ° C. to 800 ° C.
  • the waste supply unit 40 starts to push the waste 18 into the furnace body 20 from the waste insertion port 28.
  • the pusher 41 driven by the driving unit pushes the waste 18 sideways toward the rear wall 25 side. Thereby, the waste 18 is pushed into the area adjacent to the front wall 24 on the first flow area 15 (see FIG. 2).
  • the flow of the fluidized particles 12 in the first fluidized region 15 is suppressed. For this reason, the pushed waste 18 is not positively mixed with the fluidized particles 12, and most of the waste 18 stays on the first fluidized region 15, and a part of heavy incombustibles and carbides settle. Therefore, in the first flow region 15, the rapid combustion of the waste 18 is suppressed, and what is easily gasified in the waste 18 is gasified by thermal radiation in the furnace body 20. That is, the waste 18 that is easily gasified, such as plastic or paper, is gasified while moving on the surface layer of the first flow region 15. That is, the waste 18 that is easily gasified, such as plastic or paper, is gasified while moving on the surface layer of the second flow region 16.
  • some of the waste that is difficult to gasify such as a piece of wood, may be carbonized by passing through the first flow region 15 and discharged from the mixture discharge port 29.
  • the staying waste 18 is burned by the temperature in the furnace body 20 (heat of the free board portion) as described above.
  • the temperature in the furnace body 20 is 800 ° C. to 900 ° C. and higher than the fluidized particles 12 forming the fluidized bed 14, the contact between the waste 18 and the air is not good. For this reason, flammable garbage such as paper and sheet-like plastic mainly contained in the waste 18 is gasified.
  • new waste 18 is pushed into the furnace body 20 from the waste insertion port 28 by the pusher 41.
  • the waste 18 staying on the first flow region 15 is pushed by the pushed new waste 18 and sequentially enters the second region 16 side.
  • the waste 18 that has entered from the first flow region 15 is mixed with the fluidized particles 12 and is sufficiently gasified. To be done. Thereby, combustible gas is generated.
  • the fluidized bed 14 the fluidized state gradually becomes active from the front wall 24 toward the rear wall 25.
  • the waste 18 is gradually mixed with the fluidized particles 12 as it proceeds from the region adjacent to the front wall 24 on the first fluidized region 15 to the second fluidized region 16. Further, the amount of air (fluidized gas) blown into the fluidized bed 14 from the front wall 24 toward the rear wall 25 increases. For this reason, as the waste 18 advances from the first fluidized region 15 to the second fluidized region 16, it burns and the temperature of the fluidized particles 12 increases. The waste 18 is sufficiently mixed with the fluidized particles 12 in the high-temperature second fluidized region 16. Thereby, the gasification of the waste 18 left unburned in the first flow region 15 is sufficiently performed in the second flow region 16.
  • the waste 18 newly pushed onto the first fluidized area 15 by the pusher 41 stays on the first fluidized area 15 without being mixed with the fluidized particles 12 as described above.
  • the waste 18 gradually burns in a state where intense combustion is suppressed.
  • the waste 18 is pushed in one after another by the pusher 41 in the state where the first fluidized region 15 and the second fluidized region 16 are formed in the fluidized bed 14, so that the combustible gas is intermittently and suddenly pushed. Generation can be suppressed and generation of the gas can be stabilized.
  • the incombustibles and carbides that have settled in the first fluidized zone 15 are discharged together with the fluidized particles 12 from a mixture outlet 29 provided on the lower side of the first fluidized zone 15.
  • Incombustible materials and carbides that have settled in the second flow region 16 are inclined so that the upper surface 21a of the bottom wall 21 has a downward slope toward the mixture discharge port 29, and thus descend along this. Move to the mixture outlet 29.
  • the moved incombustibles and carbides are discharged together with the fluidized particles 12.
  • the sand circulation device 50 separates the fluidized particles 12 from the mixture discharged from the mixture discharge port 29 and inserts the separated fluidized particles 12 into the furnace body 20.
  • the carbide insertion device 60 separates carbide from the mixture discharged from the mixture discharge port 29 and inserts the separated carbide into the furnace body 20.
  • the mixture discharge unit 51 sends the mixture that has dropped from the mixture discharge port 29 of the furnace body 20 to the fluidized particle separation unit 52.
  • the fluidized particle separation unit 52 separates the fluidized particles 12 from the mixture, and the fluidized particle conveyance unit 53 conveys the fluidized particles separated by the fluidized particle separation unit 52 to the sand insertion unit 27 of the furnace body 20. Thereby, the amount of the fluidized particles 12 forming the fluidized bed 14 is maintained in the furnace body 20.
  • the fluid particle separator 52 sends the mixture from which the fluid particles 12 are separated to the carbide separator 61, and the carbide separator 61 separates the carbide from the mixture.
  • the carbide conveying unit 62 conveys the carbide separated by the carbide separating unit 61 to the carbide inserting unit 63 of the furnace body 20.
  • emitted from the furnace main body 20 with the incombustible substance can be returned in the furnace main body 20, and can be gasified.
  • combustible gas can be efficiently obtained from the waste 18.
  • the blower unit 33 blows air in which an inert gas is mixed as a fluidizing gas supplied to each wind box 32.
  • the air blowing unit 33 causes the inert gas to gradually increase the ratio of the air and the inert gas in the fluidized gas with the passage of time. In this way, the air blowing unit 33 suppresses the oxygen concentration in the furnace body 20 and suppresses the waste 18 remaining in the fluidized bed 14 from burning violently.
  • the ratio of the inert gas in the fluidized gas is gradually increased so that intense combustion of the waste 18 remaining in the fluidized bed 14 is suppressed.
  • the remaining waste 18 may be prevented from burning by spraying water on the fluidized bed 14.
  • the fluidized bed furnace 10 According to the fluidized bed furnace 10 described above, even if the waste 18 contains a lot of flammable garbage, intermittent and rapid generation of combustible gas is suppressed, and generation of the gas is stabilized. Specifically, in the fluidized bed 14, a first region 15 around the mixture outlet 29 and a second fluidized region 16 having a higher degree of fluidization than the first region 15 are formed. In this state, new waste 18 is pushed onto the first flow region 15. The waste 18 in which the new waste 18 stays on the first fluidized area 15 is made to enter the second fluidized area 16 in order. The above operation is repeated. Thereby, in the fluidized-bed furnace 10, the waste 18 is fully gasified while suppressing a rapid fluctuation of the obtained combustible gas.
  • the first flow region 15 is formed above the mixture discharge port 29 and the waste 18 is supplied to the upper side thereof, so that the waste 18 is retained on the first flow region 15 and the waste is discharged.
  • the flammable garbage in 18 is slowly gasified. Even if incombustibles and carbides sink to the furnace bottom while the flammable garbage is gasified, the incombustibles and carbides can be easily discharged from the furnace body 20. Moreover, even if incombustibles and carbides sink to the bottom wall 21 after the waste 18 enters the second flow region 16 from the first flow region 15, the waste 18 is inclined toward the mixture discharge port 29. Incombustible materials and carbides descend along the bottom wall upper surface 21a. For this reason, these incombustibles and carbides can be easily discharged. Further, since the fluidizing gas is actively supplied in the second flow region 16, this also promotes the descent toward the mixture outlet 29 of incombustibles and carbides.
  • the furnace body 20 has a planar shape in which the dimension in the width direction is uniform in the pushing direction of the waste 18. For this reason, when the waste 18 on the first flow region 15 is pushed by the waste 18 newly pushed from the waste supply unit 40 and enters the second flow region 16 side, the waste 18 The movement is stable.
  • the pusher 41 reciprocates in a direction parallel to the pushing direction (front-rear direction) so that the pushing surface 42 simultaneously pushes the waste 18 onto the fluidized bed 14 over the entire width direction of the pushing surface 42. .
  • the pushing surface 42 pushes the waste 18 onto the fluidized bed 14 uniformly in the width direction. Therefore, the movement of the waste 18 from the first flow region 15 to the second flow region 16 becomes substantially uniform in the width direction, and it is possible to prevent the waste 18 from concentrating on a part of the furnace.
  • fluidized bed furnace and the waste treatment method of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.
  • the side wall 22 of the above embodiment rises straight from the bottom wall 21 to the combustible gas discharge part 23, but is not limited to this.
  • the front wall 24 ⁇ / b> A may include a reflecting portion 224 that extends toward the rear wall 25 so as to cover the upper part of the first flow region 15 at a predetermined height position.
  • the waste 18 staying on the first flow region 15 is heated by the radiant heat from the reflecting portion 224.
  • the sand insertion portion 27 may be provided in a portion of the front wall 24A that stands vertically from the bottom wall 21 or may be provided in the reflection portion 224.
  • the rear wall 25 ⁇ / b> A may include a guide portion 225 that extends toward the front wall 24 so as to cover the upper part of the second flow region 16 at a predetermined height position.
  • the guide unit 225 guides the combustible gas so that the high-temperature combustible gas generated from the waste 18 in the second flow region 16 contacts the waste 18 staying on the first flow region 15.
  • the guide part 225 makes combustible gas contribute to the heating of the waste 18 on the said 1st flow area
  • the carbide insertion portion 63 may be provided at a portion of the rear wall 25 that stands vertically from the bottom wall 21 or may be provided at the guide portion 225.
  • the front wall 24B and the rear wall 25B may include roof portions 324 and 325 extending in directions approaching each other at the same height position.
  • the furnace body 20B can be downsized by reducing the size in the front-rear direction of the furnace body 20B at a position lower than the combustible gas discharge part 23 at the upper end of the furnace body 20B.
  • the sand insertion portion 27 may be provided in a portion of the front wall 24B that stands vertically from the bottom wall 21 or may be provided in the roof portion 324.
  • the carbide insertion portion 63 may be provided in a portion of the rear wall 25B that is vertically rising from the bottom wall 21 or may be provided in the roof portion 325.
  • the carbide is inserted from the carbide insertion portion 63 into the furnace main body 20, but the carbide may be inserted together with the fluidized particles 12 from the carbide insertion portion 63 into the furnace main body 20.
  • carbonized_material insertion apparatus 60 of the said embodiment inserts the carbide
  • emitted from the mixture discharge port 29 is a big lump, it can be made into the predetermined magnitude
  • the upper surface 21 a of the bottom wall 21 may be curved without being inclined straight from the rear wall 25 toward the mixture discharge port 29.
  • thermometers T may be disposed above the first flow region 15, and an air supply unit 65 capable of supplying air may be provided on the first flow region 15. .
  • an air supply unit 65 capable of supplying air may be provided on the first flow region 15. .
  • the retention value of the waste 18 on the first flow region 15 is estimated by utilizing the fact that the indicated value of the thermometer T buried in the waste 18 becomes low.
  • the air supply unit 65 supplies air to raise the temperature in the furnace body 20.
  • thermometer T As another method, if the temperature of the specified thermometer T is equal to or higher than the threshold value, it is determined that there is no dust at the position of the thermometer T. If the temperature is lower than the threshold value, dust is detected at the position of the thermometer T.
  • the amount of air may be controlled by determining that it is present (buried in garbage). Moreover, instead of controlling the amount of air, the amount of waste supplied may be controlled.
  • the air blowing unit 33 blows air or inert gas as fluidized gas, but is not limited thereto.
  • the blower 33 may blow steam or oxygen as fluidized gas according to the combustion state in the furnace body 20.
  • the fluidized bed furnace 10 is provided with a gas supply unit on the side wall 22 in addition to the gas supply unit 30, and air or gas is supplied from the gas supply unit into the furnace body 20 according to the combustion state of the fluidized bed 14 or the waste 18. You may be comprised so that oxygen, water vapor
  • the fluidizing gas supplied to the first fluidizing region 15 may be a high temperature fluidizing gas. Even when the first fluidized region 15 cannot be maintained at a necessary temperature only by the heat transmitted from the second fluidized region 16 by supplying the high-temperature fluidized gas, the supply amount of the fluidized gas is reduced. The temperature of the first flow region 15 can be kept high without increasing it.
  • the waste insertion port 28 is provided at a height position that partially overlaps the waste 18 staying on the fluidized bed 14 in the vertical direction, and is supplied from the waste insertion port 28.
  • the waste 18 stays on the upper surface of the fluidized bed 14 is positively moved in the lateral direction (first fluidized region 15 side)
  • the present invention is not limited to this. That is, the fluidized bed furnace 10 may be configured so that the waste 18 can be supplied to a region adjacent to the front wall (supply side wall) 24 on the fluidized bed 14.
  • the waste insertion port 28 is located at a height near the upper surface of the fluidized bed 14 and above the waste 18 staying on the fluidized bed 14.
  • the waste insertion port 28 is provided so that new waste 18 can be supplied laterally from a height position above the waste staying on the fluidized bed 14. May be.
  • the waste insertion port 28 may be provided so that new waste 18 can be supplied downward from above the waste 18 staying on the fluidized bed 14. Even if the waste 18 is supplied into the furnace main body 20 as described above, a new waste 18 is supplied onto the staying waste 18, so that the pile of the waste 18 collapses and expands, and the second flow. Waste 18 enters the region 16 side. For this reason, the waste 18 is sufficiently gasified while the rapid fluctuation of the combustible gas recovered from the fluidized bed furnace 10 is suppressed. As a result, combustible gas is stably generated from the waste 18.
  • the fluidizing gas may be blown at a flow rate such that U o / U mf is 2 or more and less than 5.
  • the fluidizing gas is not uniformly blown in the first flow region 15, but from the rear wall 25 side (left side in FIG. 1) to the front wall 24 side (right side in FIG. 1). It is preferable that the wind box 32 in which the supply amount of the fluidizing gas is larger than the flow rate during normal operation is sequentially changed.
  • the fluidized bed furnace is a fluidized bed furnace that heats waste and takes out combustible gas from the waste, and includes fluidized particles that constitute a fluidized bed for heating waste.
  • a bottom wall that supports the fluidized particles from below and a side wall that rises from the bottom wall, the non-combustible material in the waste and the waste in the waste
  • a mixture discharge port is provided for discharging carbide generated by heating together with the fluidized particles, and the upper surface of the bottom wall is disposed on the top surface of the bottom wall so as to lower the fluidized particles toward the mixture discharge port.
  • the waste is supplied from the supply side wall located on the same side as the mixture outlet to the center position of the bottom wall of the wall to the region adjacent to the supply side wall on the fluidized bed, thereby
  • a waste supply unit that moves waste on a fluidized bed to the side of the opposite side wall that is located on the opposite side of the mixture discharge port across the center position of the bottom wall of the side wall, and the gas supply
  • the part forms a first fluidized region having a fluidization degree such that waste can be retained on the upper side of the fluidized particles by blowing the fluidized gas from the periphery of the mixture discharge port.
  • a first region around the mixture outlet and a second fluidized region having a higher degree of fluidization than the first region are formed in the fluidized bed.
  • the waste supply section is on the fluidized bed so that the waste stays on the first fluidized area, and the waste accumulated on the first fluidized area is sequentially sent to the second fluidized area side. Waste is supplied to an area adjacent to the supply side wall.
  • the waste is sufficiently gasified while suppressing rapid fluctuations in the combustible gas recovered from the fluidized bed furnace, thereby stably generating the combustible gas from the waste.
  • the first flow region since the flow is suppressed so that the waste can stay on the upper surface of the first flow region, the first flow is not mixed with the flow particles.
  • the flammable garbage in the waste gas ifies slowly while staying on the area. Therefore, in the first flow region, rapid combustion of waste is suppressed, and thereby generation of combustible gas due to rapid gasification of waste is suppressed.
  • the waste staying on the first fluidized area sequentially enters the second area by supplying new waste into the furnace body by the waste supply section. Then, in this second flow region, since the flow is active and the temperature is high due to the combustion of the waste, the waste that has entered from the first flow region is sufficiently mixed with the flow particles, and thus the waste is disposed of. Goods are fully gasified and combustible gas is generated. As a result, intermittent and rapid generation of the combustible gas is suppressed, and the generation of the gas is stabilized.
  • a first flow region is formed above the mixture discharge port, and waste is supplied above the first flow region. For this reason, while the flammable garbage in the waste staying on the first flow region is slowly gasified, the non-combustible material in the waste and the carbide generated by the heating of the waste reach the furnace bottom. Even if it sinks, these incombustibles and carbides are easily discharged from the furnace body. In addition, even if incombustibles and carbides sink to the bottom wall after the waste enters the second flow region from the first flow region, along the top surface of the bottom wall inclined so as to become lower toward the mixture discharge port. Incombustibles and carbides fall. For this reason, these incombustibles and carbides are easily discharged from the furnace body.
  • the upper surface of the bottom wall is inclined so as to be lowered toward the mixture discharge port (that is, inclined so as to be lowered from the second region toward the first region),
  • the hot fluid particles descend on the top surface of the bottom wall toward the first fluid region. Thereby, heat is supplied to the first flow region.
  • the waste supply unit pushes a new waste laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. It is preferable to sequentially move objects into the second flow region.
  • the fluidized bed furnace includes a carbide insertion device that separates the carbide from the mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returns the carbide to the fluidized bed from the opposite side wall side.
  • a carbide insertion device that separates the carbide from the mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returns the carbide to the fluidized bed from the opposite side wall side.
  • the carbide insertion device returns the carbide discharged together with the flowing particles and the incombustible material from the mixture discharge port to the second flow region where the flow is active and high temperature.
  • combustible gas is obtained from the carbide.
  • combustible gas can be efficiently obtained from the waste.
  • the temperature of the second flow region is maintained at a high temperature by heat generated when the carbide is gasified.
  • U mf is the minimum fluidization velocity that is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U 0 is the average cross-sectional velocity of the fluidizing gas.
  • the air supply unit blows the fluidizing gas at a flow rate such that U 0 / U mf is 1 or more and less than 2 in the first flow region, and U 0 / U in the second flow region. It is preferable to blow the fluidizing gas at a flow rate at which mf is 2 or more and less than 5.
  • the fluidizing gas is blown at such a flow rate, the first fluidized region and the second fluidized region that are preferable in the fluidized bed are formed.
  • gasification of the waste is suitably performed while suppressing rapid combustion of the waste, and combustible gas can be stably obtained from the waste.
  • the sand circulating device separates the high-temperature fluidized particles from the mixture discharged from the mixture discharge port and returns it to the furnace body. As a result, the amount of fluidized particles constituting the fluidized bed is maintained and the temperature of the fluidized bed is easily maintained.
  • the sand circulation device returns the fluidized particles separated from the mixture onto the waste that remains on the first fluidized region.
  • the sand circulating device returns the high-temperature fluidized particles discharged from the mixture discharge port onto the waste staying on the first flow region.
  • flammable garbage in the waste is stably combusted (gasified) using the high-temperature fluidized particles as an ignition source.
  • the furnace body has a planar shape in which the dimension in the width direction, which is a direction orthogonal to the pushing direction of the waste by the waste supply unit, is uniform in the pushing direction.
  • the waste supply unit includes a pusher having a pushing surface extending in the width direction, and the pusher pushes the pusher so that the pushing surface of the pusher simultaneously pushes waste onto the fluidized bed over the entire width direction of the pushing surface. It is preferable to have a drive unit that reciprocates in a direction parallel to the direction.
  • the waste can be uniformly pushed in the width direction. For this reason, the movement of the waste from the first flow region to the second flow region becomes substantially uniform in the width direction. As a result, it is possible to prevent the waste from being concentrated in a part of the furnace.
  • the waste treatment method according to the above embodiment is a waste treatment method for heating waste to take out combustible gas from the waste, and includes a fluidized bed for heating the waste.
  • a non-combustible material in the waste having a fluidized particle, a bottom wall supporting the fluidized particle from below, and a side wall rising from the bottom wall at a position deviated in a specific direction from the center of the bottom wall;
  • a mixture outlet for discharging carbide generated by heating the waste together with the fluidized particles, and the bottom of the fluidized particles descends on the upper surface of the bottom wall toward the mixture outlet.
  • a fluidizing gas is blown toward the fluidized particles to form a first fluidized region having a fluidization degree that allows waste to stay above the fluidized particles, and the first fluidized region and the side wall.
  • Fluidized at a flow rate higher than the flow rate of the fluidized gas blown in the first flow region between the mixture discharge port and the opposite side wall on the opposite side across the center position of the bottom wall Forming a second fluidized region having a higher degree of fluidization of the fluidized particles than the first fluidized region by blowing gas, and discharging the mixture with respect to a center position of the bottom wall among the side walls.
  • the stay And waste are sequentially entered in the second flow region, characterized in that it comprises the steps of gasification, the by.
  • a first region around the mixture discharge port and a second fluidized region having a higher degree of fluidization than the first region are formed. Then, the waste stays on the first flow region, and the waste staying on the first flow region sequentially enters the second flow region. Thereby, the gasification of the waste is sufficiently performed while the rapid fluctuation of the combustible gas recovered from the fluidized bed furnace is suppressed. As a result, combustible gas is stably generated from the waste.
  • a first flow region is formed above the mixture discharge port, and waste is supplied to the upper surface thereof.
  • the upper surface of the bottom wall is inclined so as to be lowered toward the mixture discharge port (that is, inclined so as to be lowered from the second region toward the first region),
  • the hot fluid particles descend on the top surface of the bottom wall toward the first fluid region. Thereby, heat is supplied to the first flow region.
  • new waste is pushed laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. It is preferable to sequentially gasify the object by entering the second flow region.
  • the waste treatment method includes a step of separating carbide from a mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returning the separated carbide to the fluidized bed from the opposite side wall side.
  • the carbide discharged together with the flowing particles and the incombustible material is separated from the mixture discharge port, and the flow is active and returned to the high temperature second flow region.
  • carbonized_material is gasified reliably.
  • the minimum fluidization speed which is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U mf the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles
  • U 0 the average cross-sectional flow velocity of the fluidizing gas
  • the fluidizing gas is blown at a flow rate such that U 0 / U mf is 1 or more and less than 2
  • the flow rate is such that U 0 / U mf is 2 or more and less than 5. It is preferred that the fluidizing gas is blown.
  • the fluidizing gas When the fluidizing gas is blown at such a flow rate, the first fluidized region and the second fluidized region that are preferable in the fluidized bed are formed. As a result, gasification of the waste is suitably performed while suppressing rapid combustion of the waste, and combustible gas can be stably obtained from the waste.
  • the fluidized bed furnace and the waste treatment method according to the present invention are useful for extracting the combustible gas from the waste by heating the waste in the fluidized bed in which the fluidized particles are fluidized. Yes, it is suitable for stably obtaining flammable gas even if it is waste containing flammable garbage.

Abstract

The disclosed fluidized bed furnace is characterized by: forming a first fluid region (15), which is fluidized to a degree that waste (18) at the top of fluid particles (12) can be retained, by means of blowing fluidization gas in from the periphery of a mixture discharge port (29); forming a second fluid region (16) that has a higher degree of fluidization of fluid particles (12) than the first fluid region (15) does by means of blowing fluidization gas in between the first fluid region (15) and a reverse-side wall (25) at a high flow rate, and as a result the fluid particles (12) mix with the waste (18) and cause said waste (18) to be gasified; and supplying the waste (18) from a supply-side wall (24) to the fluidized bed (14) in a manner such that the waste (18) is retained over the first fluid region (15) and the retained waste (18) progressively advances into the second fluid region (16).

Description

流動層炉及び廃棄物処理方法Fluidized bed furnace and waste treatment method
 本発明は、流動粒子を流動化させた流動層において廃棄物を加熱することにより、当該廃棄物から可燃性ガスを取り出す流動層炉、及び廃棄物処理方法に関するものである。 The present invention relates to a fluidized bed furnace for extracting combustible gas from the waste by heating the waste in a fluidized bed in which fluidized particles are fluidized, and a waste treatment method.
 従来、流動層炉として特許文献1に記載のものが知られている。この流動層炉は、図9に示すように、炉底部に流動砂(流動粒子)102を有する炉本体104と、流動砂102を流動化させて流動層を形成するために炉底部の流動砂102中に空気を供給する空気供給部106と、を備える。炉本体104は側壁を有する。この側壁には、前記流動層の上に廃棄物を投入するための投入部108が設けられる。 Conventionally, a fluidized bed furnace described in Patent Document 1 is known. As shown in FIG. 9, this fluidized bed furnace has a furnace body 104 having fluidized sand (fluidized particles) 102 at the bottom of the furnace, and fluidized sand at the bottom of the furnace for fluidizing the fluidized sand 102 to form a fluidized bed. An air supply unit 106 for supplying air into the air supply 102. The furnace body 104 has side walls. The side wall is provided with a charging unit 108 for charging waste onto the fluidized bed.
 この流動層炉100では、空気供給部106が高温の流動砂102中に空気を供給する。これにより、流動砂102が浮遊懸濁状態となって流動化し、流動層が形成される。このとき、前記空気供給部106は、投入部108から流動層上に投入された廃棄物が層内部に取り込まれて効率よく燃焼するように、流動層の全域において流動砂102の流動状態が略一定となるように空気を供給する。 In the fluidized bed furnace 100, the air supply unit 106 supplies air into the high-temperature fluidized sand 102. As a result, the fluidized sand 102 is floated and fluidized to form a fluidized bed. At this time, in the air supply unit 106, the fluidized state of the fluidized sand 102 is substantially the entire fluidized bed so that the waste introduced into the fluidized bed from the input unit 108 is taken into the bed and burned efficiently. Supply air so that it is constant.
 高温の流動砂に投入部108から廃棄物が投入される度に、当該廃棄物は前記流動層の高温の流動砂102と混合されて熱分解(ガス化)される。これにより、可燃性ガスが発生する。この可燃性ガスは、例えば、後段の溶融炉で高温燃焼される。 Each time waste is thrown into the hot fluidized sand from the throwing-in part 108, the waste is mixed with the hot fluidized sand 102 in the fluidized bed and pyrolyzed (gasified). Thereby, combustible gas is generated. This combustible gas is burned at a high temperature in a subsequent melting furnace, for example.
 流動層炉100に投入される廃棄物は、活発な流動層の中に取り込まれて燃焼若しくはガス化する。このとき、廃棄物が間欠的に投入される度に廃棄物中の可燃物が急激に燃えることにより、発生する可燃性ガスの発生量や濃度等の急激な変動が繰り返される。このガス化反応の変化は、廃棄物の供給の定量性に大きく依存する。このため、廃棄物供給の変動やごみ質に変化がある場合、可燃性ガスを安定して発生させることができない。特に、廃棄物に紙やシート状のプラスチック等の燃え易いゴミが多く含まれる場合には、発生する可燃性ガスの変動がより大きくなり、その安定化が求められる。 The waste thrown into the fluidized bed furnace 100 is taken into an active fluidized bed and burned or gasified. At this time, every time the waste is intermittently added, the combustible in the waste burns rapidly, so that sudden fluctuations in the amount and concentration of the generated combustible gas are repeated. This change in gasification reaction is highly dependent on the quantitative nature of the waste supply. For this reason, combustible gas cannot be generated stably when there is a change in waste supply or change in waste quality. In particular, when the waste contains a large amount of flammable garbage such as paper or sheet-like plastic, the generated flammable gas fluctuates more and its stabilization is required.
 例えば、発生させた可燃性ガスをガスエンジンに用いて発電を行うような場合、可燃性ガスの変動が大きいと安定したエネルギーを得ることができない。このため、流動層炉において得られる可燃性ガスの安定化がより求められる。 For example, when power generation is performed using the generated combustible gas in a gas engine, stable energy cannot be obtained if the fluctuation of the combustible gas is large. For this reason, stabilization of the combustible gas obtained in a fluidized bed furnace is calculated | required more.
日本国特開2006-242454号公報Japanese Unexamined Patent Publication No. 2006-242454
 本発明の目的は、燃え易いゴミを含む廃棄物であっても可燃性ガスを安定して得ることができる流動層炉、及び廃棄物処理方法を提供することである。 An object of the present invention is to provide a fluidized bed furnace and a waste treatment method capable of stably obtaining a combustible gas even if the waste contains easily burnable garbage.
 本発明の一つの面によれば、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、前記廃棄物を加熱するための流動層を構成する流動粒子と、前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物及び前記廃棄物の加熱により生じた炭化物を前記流動粒子と共に排出するための混合物排出口が設けられ、この混合物排出口に向かって前記底壁の上面上を前記流動粒子を降下させるように当該底壁の上面が前記混合物排出口に向かって低くなるように傾斜する炉本体と、前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、前記側壁のうち前記底壁の中心位置に対して前記混合物排出口と同じ側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記側壁のうち前記底壁の中心位置を挟んで前記混合物排出口と反対側に位置する反対側側壁の側に移動させる廃棄物供給部と、を備える。そして、前記ガス供給部は、前記混合物排出口の周囲から前記流動化ガスを吹き込むことにより前記流動粒子の上側に廃棄物が滞留することが可能な程度の流動化度合いをもつ第1の流動領域を形成すると共に、この第1の流動領域と前記反対側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込むことにより、前記第1の流動領域よりも前記流動粒子の流動化の度合いが高く、これにより前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第2の流動領域を形成し、前記廃棄物供給部は、前記第1の流動領域上に前記廃棄物が滞留し、且つ、その滞留した廃棄物が順次前記第2の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行う。 According to one aspect of the present invention, there is provided a fluidized bed furnace for heating the waste and taking out the combustible gas from the waste, the fluidized particles constituting the fluidized bed for heating the waste, A bottom wall that supports fluid particles from below and a side wall that rises from the bottom wall, and the bottom wall is heated in a non-combustible manner in the waste and the waste at a position biased in a specific direction from the center position thereof. A mixture discharge port for discharging the generated carbide together with the fluidized particles is provided, and the top surface of the bottom wall is disposed on the top surface of the bottom wall so as to descend the fluidized particles toward the mixture discharge port. A furnace body that is inclined so as to become lower toward the outlet; a gas supply section that fluidizes the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles; and the side wall The waste is supplied to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the same side as the mixture discharge port with respect to the center position of the bottom wall. A waste supply unit that moves the waste to the side of the opposite side wall that is located on the opposite side of the mixture discharge port across the center position of the bottom wall of the side wall. The gas supply section has a first fluidization region having a fluidization degree such that waste can be retained on the upper side of the fluidized particles by blowing the fluidizing gas from the periphery of the mixture discharge port. And the fluidized gas is blown between the first fluidized region and the opposite side wall at a flow rate higher than the fluidized gas blown velocity in the first fluidized region. The fluidized particles have a higher degree of fluidization than the one fluidized region, thereby forming a second fluidized region in which the fluidized particles are convected and mixed with the waste to gasify the waste, The waste supply unit has the waste from the supply side wall so that the waste stays on the first flow region and the stayed waste sequentially enters the second flow region. Waste for fluidized bed To supply the goods.
図1は、本実施形態による流動層炉の概略構成図である。FIG. 1 is a schematic configuration diagram of a fluidized bed furnace according to the present embodiment. 図2は、前記流動層炉における廃棄物の挿入位置と流動粒子の挿入位置と炭化物の挿入位置とを説明するための炉本体の横断面図である。FIG. 2 is a cross-sectional view of the furnace main body for explaining the waste insertion position, the fluid particle insertion position, and the carbide insertion position in the fluidized bed furnace. 図3は、前記炉本体の底壁におけるノズルの配置を説明するための図である。FIG. 3 is a view for explaining the arrangement of nozzles on the bottom wall of the furnace body. 図4は、他実施形態による流動層炉における炉本体であって、前壁に反射部を有する炉本体を説明するための図である。FIG. 4 is a view for explaining a furnace main body in a fluidized bed furnace according to another embodiment and having a reflection portion on a front wall. 図5は、他実施形態による流動層炉における炉本体であって、後壁に案内部を有する炉本体を説明するための図である。FIG. 5 is a view for explaining a furnace main body in a fluidized bed furnace according to another embodiment and having a guide portion on a rear wall. 図6は、他実施形態による流動層炉における炉本体であって、前壁と後壁とに屋根部を有する炉本体を説明するための図である。FIG. 6 is a diagram for explaining a furnace main body in a fluidized bed furnace according to another embodiment having a roof portion on a front wall and a rear wall. 図7は、他実施形態による流動層炉における炉本体であって、温度計と空気供給部とを備えた炉本体を説明するための図である。FIG. 7 is a view for explaining a furnace body including a thermometer and an air supply unit in a fluidized bed furnace according to another embodiment. 図8は、他実施形態による流動層炉における廃棄物供給部を説明するための図である。FIG. 8 is a diagram for explaining a waste supply unit in a fluidized bed furnace according to another embodiment. 図9は、従来の流動層炉の概略構成図である。FIG. 9 is a schematic configuration diagram of a conventional fluidized bed furnace.
 以下、本発明の一実施形態について、添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
 本実施形態に係る流動層炉は、高温の流動粒子によって廃棄物を加熱することにより、廃棄物から可燃性ガスを取り出す。この流動層炉は、図1に示すように、流動粒子12と、炉本体20と、ガス供給部30と、廃棄物供給部40と、砂循環装置50と、炭化物挿入装置60と、を備える。 The fluidized bed furnace according to the present embodiment takes out combustible gas from waste by heating the waste with high-temperature fluidized particles. As shown in FIG. 1, the fluidized bed furnace includes fluidized particles 12, a furnace body 20, a gas supply unit 30, a waste supply unit 40, a sand circulation device 50, and a carbide insertion device 60. .
 流動粒子12は、炉本体20の内部において流動層14を構成し、廃棄物18を加熱する。即ち、廃棄物18の一部の燃焼によって加熱されて高温になった流動粒子12が廃棄物18と混合されることにより、廃棄物18がガス化されて可燃性ガスが発生する。本実施形態の流動粒子12は、珪砂等である。 The fluidized particles 12 constitute a fluidized bed 14 inside the furnace body 20 and heat the waste 18. That is, when the fluidized particles 12 heated to a high temperature by the combustion of a part of the waste 18 are mixed with the waste 18, the waste 18 is gasified to generate a combustible gas. The fluidized particles 12 of this embodiment are silica sand or the like.
 炉本体20は、流動粒子12を内部に有し、高温の流動粒子12により廃棄物18から可燃性ガスを取り出す。炉本体20は、流動粒子12を下方から支持する底壁21と、この底壁21から立上がる側壁22と、側壁22上端に設けられた可燃性ガス排出部23とを有する。 The furnace body 20 has fluid particles 12 inside, and takes out combustible gas from the waste 18 by the high temperature fluid particles 12. The furnace body 20 includes a bottom wall 21 that supports the fluidized particles 12 from below, a side wall 22 that rises from the bottom wall 21, and a combustible gas discharge part 23 that is provided at the upper end of the side wall 22.
 側壁22は、上下に延びる角筒形状を有する。具体的に、側壁22は、図2にも示すように、前後(図2において左右)に間隔をおいて対向する前壁(供給側側壁)24及び後壁(反対側側壁)25と、これら前壁24と後壁25との端部同士をそれぞれ接続する横壁26,26と、を有する。横壁26,26同士は互いに平行である。即ち、炉本体20は、横壁26,26同士の間隔である幅方向の寸法が前後方向について均一な平面形状を有する。 The side wall 22 has a rectangular tube shape extending vertically. Specifically, as shown in FIG. 2, the side wall 22 includes a front wall (supply side wall) 24 and a rear wall (opposite side wall) 25 that are opposed to each other at the front and rear (left and right in FIG. 2). It has horizontal walls 26 and 26 that connect the end portions of the front wall 24 and the rear wall 25, respectively. The lateral walls 26, 26 are parallel to each other. That is, the furnace body 20 has a planar shape in which the dimension in the width direction, which is the distance between the lateral walls 26, 26, is uniform in the front-rear direction.
 この側壁22のうち底壁21の中心位置に対して混合物排出口29と同じ側に位置する側壁(前壁)24は、砂挿入部27と、廃棄物挿入口28と、を有する。この砂挿入部27は、流動粒子12を炉本体20内へ挿入し、廃棄物挿入口28は、炉本体20内へ廃棄物18を挿入する。また、側壁22のうち底壁21の中心位置を挟んで混合物排出口29と反対側に位置する側壁(後壁)25は、炭化物挿入部63を有する。この炭化物挿入部63は、廃棄物18の加熱により生じた炭化物(例えば、チャー等)を炉本体20内へ挿入する。 The side wall (front wall) 24 located on the same side as the mixture discharge port 29 with respect to the center position of the bottom wall 21 of the side wall 22 has a sand insertion portion 27 and a waste insertion port 28. The sand insertion portion 27 inserts the fluidized particles 12 into the furnace body 20, and the waste insertion port 28 inserts the waste 18 into the furnace body 20. Further, the side wall (rear wall) 25 located on the side opposite to the mixture discharge port 29 across the center position of the bottom wall 21 of the side wall 22 has a carbide insertion portion 63. The carbide insertion portion 63 inserts carbide (for example, char) generated by heating the waste 18 into the furnace body 20.
 具体的に、砂挿入部27は、炉本体20内の前壁24側で且つ幅方向の中央部に流動粒子を挿入できるように(図2参照)、前壁24の下部の幅方向中央部に設けられる。この砂挿入部27は、炉本体20の底壁21に支持される流動粒子12(流動層14)の上方から流動層14(詳しくは、当該流動層14上に供給されて滞留する廃棄物18)に向けて流動粒子12を投入できる高さ位置に設けられる。砂挿入部27がこのような位置に設けられることにより、流動層14上に滞留する廃棄物18の上に流動粒子12が投入可能となる。これにより当該流動粒子12を着火源として、廃棄物18中の燃え易いごみのみが先に安定燃焼(ガス化)する。尚、流動粒子12を投入する箇所は、前壁24に限定されず、後壁25や横壁26に設けられてもよい。 Specifically, the sand insertion portion 27 is located on the front wall 24 side in the furnace body 20 and in the width direction center portion so that the flowing particles can be inserted (see FIG. 2). Provided. The sand insertion portion 27 is provided from the upper side of the fluidized particles 12 (fluidized bed 14) supported by the bottom wall 21 of the furnace body 20 to the fluidized bed 14 (specifically, the waste 18 that is supplied and retained on the fluidized bed 14). ) Is provided at a height position where the flowing particles 12 can be introduced. By providing the sand insertion portion 27 at such a position, the fluidized particles 12 can be put on the waste 18 staying on the fluidized bed 14. Thereby, only the flammable garbage in the waste 18 is stably burned (gasified) first with the fluidized particles 12 as an ignition source. The place where the flowing particles 12 are introduced is not limited to the front wall 24 but may be provided on the rear wall 25 or the lateral wall 26.
 炭化物挿入部63は、炉本体20内の後壁25側で且つ幅方向の中央部に炭化物を挿入できるように(図2参照)、後壁25の下部の幅方向中央部に設けられる。この炭化物挿入部63は、炉本体20内の流動層14の上方から当該流動層14に向けて炭化物を投入できる高さ位置に設けられる。尚、炭化物挿入部63は、上下方向における流動層14の中間の高さ位置に設けられてもよい。このような位置に炭化物挿入部63が設けられれば、炭化物が直接流動層14内に挿入される。このため、流動層14の上方から炭化物が投入される場合に流動層14上に滞留して流動粒子12と十分に混合され難い軽い炭化物であっても、流動層14内に確実に挿入されて確実にガス化する。 The carbide insertion portion 63 is provided in the center portion in the width direction at the lower portion of the rear wall 25 so that the carbide can be inserted into the center portion in the width direction on the rear wall 25 side in the furnace body 20 (see FIG. 2). The carbide insertion portion 63 is provided at a height where the carbide can be charged from above the fluidized bed 14 in the furnace body 20 toward the fluidized bed 14. In addition, the carbide | carbonized_material insertion part 63 may be provided in the intermediate | middle height position of the fluidized bed 14 in an up-down direction. If the carbide insertion portion 63 is provided at such a position, the carbide is directly inserted into the fluidized bed 14. For this reason, even if a light carbide that stays on the fluidized bed 14 and is not easily mixed with the fluidized particles 12 when the carbide is introduced from above the fluidized bed 14, it is reliably inserted into the fluidized bed 14. Ensure gasification.
 廃棄物挿入口28は、前壁24の下部において炉本体20の幅方向の略全域に設けられている。この廃棄物挿入口28は、炉本体20の底壁21が支持する流動粒子12により構成される流動層14の上面上に廃棄物18を横向きに押し込むことができる高さ位置に設けられる。即ち、廃棄物挿入口28は、当該廃棄物挿入口28の下端が流動層14の上面よりも僅かに高くなる位置に設けられる。 The waste insertion port 28 is provided in substantially the entire width direction of the furnace body 20 below the front wall 24. The waste insertion port 28 is provided at a height position where the waste 18 can be pushed sideways onto the upper surface of the fluidized bed 14 constituted by the fluidized particles 12 supported by the bottom wall 21 of the furnace body 20. That is, the waste insertion port 28 is provided at a position where the lower end of the waste insertion port 28 is slightly higher than the upper surface of the fluidized bed 14.
 可燃性ガス排出部23は、炉本体20内で発生した可燃性ガスを排出する。この可燃性ガス排出部23は、炉本体20において得られた可燃性ガスを後段の例えば発電プロセスのガスエンジン等に供給するダクト等を接続できるように、側壁22よりも外径が絞られている。 The combustible gas discharge unit 23 discharges the combustible gas generated in the furnace body 20. This combustible gas discharge part 23 has an outer diameter narrower than that of the side wall 22 so that a duct or the like for supplying the combustible gas obtained in the furnace body 20 to, for example, a gas engine of a power generation process in the subsequent stage can be connected. Yes.
 底壁21は、その中心位置から特定の方向に偏った位置に廃棄物18中の不燃物及び廃棄物18の加熱により生じた炭化物を流動粒子12と共に排出するための混合物排出口29を有する。この混合物排出口29は、底壁21において幅方向の全域に亘って開口する。底壁21の上面21aは、当該上面21a上を流動粒子12が降下するように混合物排出口29に向って低くなるように傾斜する。本実施形態の底壁21は、前方側に偏った位置に混合物排出口29を有し、底壁21の上面21aは、前方へ向かって(図1において左から右に向って)一定の下り勾配となっている。具体的に、底壁21の上面21aは、水平面に対して15°~25°の傾斜面である。このような位置に混合物排出口29が設けられることによって、前壁24に設けられた廃棄物挿入口28から流動層14上の前壁24に隣接する領域に挿入された廃棄物18から沈降する不燃物や炭化物が効率よく炉本体20の外へ排出される。また、流動層14上で後壁25側に拡散した廃棄物18から流動層14を沈降する不燃物や炭化物も、底壁21の上面21aの傾斜に沿って混合物排出口29まで降下する。このため、後壁25側において沈降した不燃物や炭化物も炉本体20の外へ容易に排出される。 The bottom wall 21 has a mixture discharge port 29 for discharging incombustibles in the waste 18 and carbides generated by heating the waste 18 together with the fluidized particles 12 at a position deviated from the center position in a specific direction. The mixture discharge port 29 opens over the entire width direction in the bottom wall 21. The upper surface 21a of the bottom wall 21 is inclined so as to become lower toward the mixture outlet 29 so that the fluidized particles 12 descend on the upper surface 21a. The bottom wall 21 of the present embodiment has a mixture discharge port 29 at a position biased to the front side, and the upper surface 21a of the bottom wall 21 moves downward (from left to right in FIG. 1) at a certain level. It is a slope. Specifically, the upper surface 21a of the bottom wall 21 is an inclined surface of 15 ° to 25 ° with respect to the horizontal plane. By providing the mixture discharge port 29 at such a position, the mixture settles from the waste 18 inserted in the region adjacent to the front wall 24 on the fluidized bed 14 from the waste insertion port 28 provided in the front wall 24. Incombustibles and carbides are efficiently discharged out of the furnace body 20. Incombustible materials and carbides that settle in the fluidized bed 14 from the waste 18 that has diffused toward the rear wall 25 on the fluidized bed 14 also descend to the mixture discharge port 29 along the inclination of the upper surface 21 a of the bottom wall 21. For this reason, incombustibles and carbides settled on the rear wall 25 side are also easily discharged out of the furnace body 20.
 また、底壁21の上面21aが混合物排出口29に向かって低くなるように傾斜する。このため、当該流動層炉10の操業時において、流動層14の上面21aに隣接する領域では後壁25から前壁24に向って流動粒子12が移動する。 Also, the top wall 21a of the bottom wall 21 is inclined so as to become lower toward the mixture discharge port 29. For this reason, during the operation of the fluidized bed furnace 10, the fluidized particles 12 move from the rear wall 25 toward the front wall 24 in a region adjacent to the upper surface 21 a of the fluidized bed 14.
 ガス供給部30は、底壁21から流動粒子12に向って流動化ガスを吹き込むことにより当該流動粒子12を流動化させる。このガス供給部30は、流動化ガスを吹き出すための複数のノズル31と、各ノズル31に流動化ガスを供給する風箱32と、風箱32へ流動化ガスを送風する送風部33と、を有する。 The gas supply unit 30 fluidizes the fluidized particles 12 by blowing fluidized gas from the bottom wall 21 toward the fluidized particles 12. The gas supply unit 30 includes a plurality of nozzles 31 for blowing out the fluidizing gas, a wind box 32 that supplies the fluidizing gas to each nozzle 31, a blower unit 33 that blows the fluidizing gas to the wind box 32, Have
 複数のノズル31は、底壁21において幅方向及び前後方向に間隔をおいた格子状に配設される。各ノズル31は、底壁21を貫通するように底壁21に取り付けられる。本実施形態では、図3にも示すように、底壁21が後側領域21bと前側領域21cとに分けられる。そして、各ノズル31は、後側領域21bに設けられたノズル31の数の方が前側領域21cに設けられたノズル31の数よりも多くなるように各領域21b,21cに配設される。尚、領域21b,21c間のノズル31の数の大小は限定されない。例えば、前側領域21cのノズル31の数と後側領域21bのノズル31の数とが同じでもよい。また、前側領域21cのノズル31の数の方が後側領域21bのノズル31の数より大きくてもよい。 The plurality of nozzles 31 are arranged on the bottom wall 21 in a grid pattern spaced in the width direction and the front-rear direction. Each nozzle 31 is attached to the bottom wall 21 so as to penetrate the bottom wall 21. In the present embodiment, as shown in FIG. 3, the bottom wall 21 is divided into a rear region 21b and a front region 21c. And each nozzle 31 is arrange | positioned in each area | region 21b, 21c so that the number of the nozzles 31 provided in the back side area | region 21b may be larger than the number of the nozzles 31 provided in the front side area | region 21c. In addition, the magnitude | size of the number of the nozzles 31 between the area | regions 21b and 21c is not limited. For example, the number of nozzles 31 in the front region 21c and the number of nozzles 31 in the rear region 21b may be the same. Further, the number of nozzles 31 in the front region 21c may be larger than the number of nozzles 31 in the rear region 21b.
 風箱32は、幅方向に延びる箱形状を有し、底壁21において幅方向に並ぶ各ノズル31に流動化ガスを分配するヘッダーとして働く。また、風箱32は、前記幅方向に並ぶ各ノズル31から吹き出される流動化ガスの流量を均一にする機能をもつ。本実施形態では、複数の風箱32が底壁21の下面側において前後方向に並ぶ。従って、各風箱32に対応するノズル31毎に、そのノズル31から吹き出す流動化ガスの流量が変更可能である。本実施形態では、5個の風箱32a,32b,32c,32d,32eが前後方向に並んでいる。詳しくは、混合物排出口29よりも後壁25側に4個の風箱32a,32b,32c,32dが配置され、混合物排出口29よりも前壁24側に1個の風箱32eが配置されている。 The wind box 32 has a box shape extending in the width direction and serves as a header for distributing the fluidized gas to the nozzles 31 arranged in the width direction on the bottom wall 21. The air box 32 has a function of making the flow rate of the fluidized gas blown out from the nozzles 31 arranged in the width direction uniform. In the present embodiment, a plurality of wind boxes 32 are arranged in the front-rear direction on the lower surface side of the bottom wall 21. Therefore, for each nozzle 31 corresponding to each wind box 32, the flow rate of the fluidized gas blown from the nozzle 31 can be changed. In the present embodiment, five wind boxes 32a, 32b, 32c, 32d, and 32e are arranged in the front-rear direction. Specifically, four wind boxes 32a, 32b, 32c, and 32d are arranged on the rear wall 25 side of the mixture discharge port 29, and one wind box 32e is arranged on the front wall 24 side of the mixture discharge port 29. ing.
 送風部33は、各風箱32に流動化ガスを送風(供給)する。この送風部33は、風箱32毎に流動化ガスを異なる流量で送風可能である。本実施形態の送風部33は、前後方向に隣り合う風箱32,32に対し、前側の風箱32に送風する流動化ガスの流量よりも後側の風箱32に送風する流動化ガスの流量が大きくなるように流動化ガスを送風する。送風部33は、各風箱32に流動化ガスとして空気を送風するが、この空気に加えて窒素等の不活性ガスも送風可能である。 The blower 33 blows (supplies) fluidized gas to each wind box 32. The blower 33 can blow the fluidizing gas at different flow rates for each wind box 32. The air blowing unit 33 of the present embodiment is configured so that the flow rate of the fluidized gas blown to the wind box 32 on the rear side of the flow rate of the fluidized gas blown to the wind box 32 on the front side with respect to the wind boxes 32 and 32 adjacent in the front-rear direction. The fluidizing gas is blown so that the flow rate is increased. The air blower 33 blows air as a fluidizing gas to each wind box 32, but in addition to this air, an inert gas such as nitrogen can also be blown.
 詳しくは、流動層炉10の通常の操業時、即ち、廃棄物18を炉本体20内に挿入してこの廃棄物18から可燃性ガスを発生させるときに、送風部33は、混合物排出口29の周囲から流動化ガスを吹き込ませる。このとき、送風部33は、流動粒子12の上側に廃棄物18が滞留することが可能な程度の流動化度合いをもつ第1の流動領域15を形成する。これと共に、送風部33は、前記第1の流動領域15と後壁25との間に第1の流動領域15での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込ませて、第1の流動領域15よりも流動粒子12の流動化の度合いが高い第2の流動領域16を形成する。即ち、送風部33は、前記のように、前後方向に隣り合う風箱32に対して前側の風箱(例えば、32c)に送風する流動化ガスの流量よりも後側の風箱(例えば、32b)に送風する流動化ガスの流量を大きくする。これにより、送風部33は、流動層14において混合物排出口29の周囲に流動状態が抑えられた第1の流動領域15を形成すると共にこの第1の流動領域15と後壁25とに間に流動が活発な第2の流動領域16を形成する。また、送風部33は、前壁24側の風箱32c,32d,32eへ供給する流動化ガスの流量を一定にしてこの流量よりも後壁25側の風箱32a,32bへ供給する流動化ガスの流量を多くしてもよい。これにより、送風部33は、流動層14において前壁24側の風箱32c,32d,32eに対応する領域に流動が抑えられた第1の流動領域15を形成すると共に後壁25側の風箱32a,32bに対応する領域に流動が活発な第2の流動領域16を形成する。 Specifically, during normal operation of the fluidized bed furnace 10, that is, when the waste 18 is inserted into the furnace body 20 and flammable gas is generated from the waste 18, the blower 33 is connected to the mixture outlet 29. The fluidizing gas is blown from the surroundings. At this time, the air blowing unit 33 forms the first flow region 15 having a fluidization degree to the extent that the waste 18 can stay above the fluidized particles 12. At the same time, the blower 33 blows fluidized gas between the first fluidized region 15 and the rear wall 25 at a flow rate higher than the fluidized gas blown velocity in the first fluidized region 15. The second fluidized region 16 having a higher degree of fluidization of the fluidized particles 12 than the first fluidized region 15 is formed. That is, as described above, the air blowing unit 33 has a rear air box (for example, a flow rate of fluidized gas blown to the front air box (for example, 32c) with respect to the air box 32 adjacent in the front-rear direction (for example, The flow rate of the fluidizing gas blown to 32b) is increased. As a result, the blower 33 forms the first fluidized region 15 in which the fluidized state is suppressed around the mixture discharge port 29 in the fluidized bed 14, and between the first fluidized region 15 and the rear wall 25. A second flow region 16 in which flow is active is formed. Further, the air blowing unit 33 makes the flow rate of the fluidizing gas supplied to the wind boxes 32c, 32d, 32e on the front wall 24 side constant, and fluidizes the flow rate supplied to the wind boxes 32a, 32b on the rear wall 25 side from this flow rate. The gas flow rate may be increased. As a result, the air blowing section 33 forms the first flow region 15 in which flow is suppressed in the region corresponding to the wind boxes 32c, 32d, and 32e on the front wall 24 side in the fluidized bed 14, and the wind on the rear wall 25 side. A second flow region 16 in which flow is active is formed in a region corresponding to the boxes 32a and 32b.
 具体的に、送風部33は、第1の流動領域15では、U/Umfが1以上2未満となる流速で流動化ガスを吹き込ませ、第2の流動領域16では、U/Umfが2以上5未満となる流速で流動化ガスを吹き込ませる。ここで、Umfは、流動粒子12を流動化するための流動化ガスの吹き込みの最小流速である最小流動化速度である。また、Uは、流動化ガスの平均断面流速である。 Specifically, in the first flow region 15, the blower unit 33 blows the fluidizing gas at a flow rate at which U o / U mf is 1 or more and less than 2, and in the second flow region 16, U o / U Fluidizing gas is blown at a flow rate at which mf is 2 or more and less than 5. Here, U mf is the minimum fluidization speed that is the minimum flow velocity of the fluidization gas blowing for fluidizing the fluidized particles 12. Uo is the average cross-sectional flow velocity of the fluidized gas.
 一方、流動層炉10の停止時、即ち、炉本体20内への廃棄物18の挿入が停止されたときには、送風部33は、各風箱32へ供給する流動化ガスとして空気に不活性ガスを混ぜたものを送風する。そして、送風部33は、流動化ガスにおける空気と不活性ガスとの比率を不活性ガスが徐々に多くなるようにする。これにより、送風部33は、炉本体20内に残っている廃棄物18が激しく燃えるのを抑制し、炉本体20内の温度上昇を抑える。 On the other hand, when the fluidized bed furnace 10 is stopped, that is, when the insertion of the waste 18 into the furnace main body 20 is stopped, the blower 33 is an inert gas to the air as a fluidizing gas supplied to each wind box 32. Blow the mixture. And the ventilation part 33 makes an inert gas gradually increase the ratio of the air and inert gas in fluidization gas. Thereby, the blower 33 suppresses the waste 18 remaining in the furnace body 20 from burning violently, and suppresses the temperature rise in the furnace body 20.
 詳しくは、炉本体20内において、通常の操業時には、酸素濃度が廃棄物18の燃焼に適した値よりも低い状態で廃棄物18の燃焼及びガス化等が行われている。この状態で廃棄物18の炉本体20内への挿入が停止されると、炉本体20内における可燃物の量が減少する。このとき、炉本体20内へは流動層14を維持するために所定の流量で流動化ガス(空気)が供給されているため炉本体20内の酸素濃度が高くなる。炉本体20内の酸素濃度が炉本体20内に残っている廃棄物18の燃焼に適した値となると、この廃棄物18が激しく燃焼して炉本体20内の温度が通常の操業時よりも上昇する。炉本体20内がこのような高温状態になると、この熱により流動層14を形成する流動粒子12が固まる。このように流動粒子12が固まると、次に流動層14を形成しようと流動粒子12に流動化ガスを吹き込んでも当該流動粒子12が流動化しない。そこで、送風部33は、廃棄物18の炉本体20内への挿入が停止されたときには、炉本体20内に吹き込ませる空気に不活性ガスを混ぜ、この不活性ガスの比率を徐々に増やす。これにより、炉本体20内の酸素濃度が廃棄物18の燃焼に適した値よりも低く保たれる。その結果、炉本体20内に残っている廃棄物18が激しく燃焼することが抑えられる。 Specifically, in the furnace body 20, during normal operation, the waste 18 is burned and gasified in a state where the oxygen concentration is lower than a value suitable for the combustion of the waste 18. When the insertion of the waste 18 into the furnace body 20 is stopped in this state, the amount of combustible material in the furnace body 20 decreases. At this time, since the fluidizing gas (air) is supplied at a predetermined flow rate in order to maintain the fluidized bed 14 in the furnace body 20, the oxygen concentration in the furnace body 20 becomes high. When the oxygen concentration in the furnace body 20 becomes a value suitable for the combustion of the waste 18 remaining in the furnace body 20, the waste 18 burns violently and the temperature in the furnace body 20 is higher than that during normal operation. To rise. When the inside of the furnace body 20 reaches such a high temperature state, the fluidized particles 12 forming the fluidized bed 14 are hardened by this heat. When the fluidized particles 12 are thus solidified, the fluidized particles 12 are not fluidized even if the fluidized gas is blown into the fluidized particles 12 to form the fluidized bed 14 next time. Therefore, when the insertion of the waste 18 into the furnace body 20 is stopped, the blower unit 33 mixes an inert gas with the air blown into the furnace body 20 and gradually increases the ratio of the inert gas. Thereby, the oxygen concentration in the furnace body 20 is kept lower than a value suitable for the combustion of the waste 18. As a result, the waste 18 remaining in the furnace body 20 can be prevented from burning violently.
 さらに、送風部33は、風箱32に送風する流動化ガスの温度を調整可能である。送風部33は、流動層炉10の運転を開始するときに、高温の流動化ガスを第2の流動領域16に対応する部位から流動粒子12に向けて吹き込ませる。このようにして、送風部33は、廃棄物18の燃焼やガス化が可能な温度になるまで流動粒子12の加熱を行う。この場合、流動粒子12が高温となり廃棄物18の燃焼が始まると、この燃焼により流動粒子12の温度が維持される。このため、送風部33は、前記燃焼が始まると、風箱32に送風する流動化ガスの温度を下げてもよい。 Furthermore, the blower 33 can adjust the temperature of the fluidizing gas blown to the wind box 32. When the operation of the fluidized bed furnace 10 is started, the blower unit 33 blows high-temperature fluidized gas from the portion corresponding to the second fluidized region 16 toward the fluidized particles 12. In this way, the blower 33 heats the fluidized particles 12 until the temperature reaches a temperature at which the waste 18 can be combusted and gasified. In this case, when the fluidized particles 12 become high temperature and the combustion of the waste 18 starts, the temperature of the fluidized particles 12 is maintained by this combustion. For this reason, the air blower 33 may lower the temperature of the fluidized gas blown to the wind box 32 when the combustion starts.
 廃棄物供給部40は、前壁24から流動層14上における前壁24に隣接する領域に廃棄物18を供給する。本実施形態の廃棄物供給部40は、前壁24(詳しくは、前壁24の廃棄物挿入口28)から流動層14上に廃棄物18を横向きに押込み、これにより当該廃棄物18を第2の流動領域16側に移動させる。即ち、廃棄物供給部40は、第1の流動領域15上に廃棄物18が滞留し、この滞留した廃棄物18が順次第2の流動領域16内に進入するように、廃棄物18の押込みを行う。この廃棄物供給部40は、プッシャ41と、このプッシャ41を駆動するための駆動部(図示省略)とを有する。プッシャ41は、幅方向に延びる押込み面42を有する。本実施形態において、押込み面42の幅方向の長さは、前壁24の廃棄物挿入口28の幅と同じである。また、押込み面42の上下方向の長さは、廃棄物挿入口28の開口高さの略半分である。このプッシャ41は、廃棄物挿入口28と同じ高さ位置において前後方向に移動可能に設置される。駆動部は、モータやシリンダ等の動力源を含み、その動力によりプッシャ41を前後方向に往復移動させる。尚、廃棄物供給部40の具体的構成は限定されない。例えば、本実施形態の廃棄物供給部40においては、プッシャ41が廃棄物18を炉内に押し込む。しかし、廃棄物供給部は、スクリュー押込み機等によって廃棄物18を炉内に押し込むように構成されてもよい(図8(A)参照)。プッシャ41やスクリュー押込み機が用いられることにより、紙やプラスチックシートのような嵩比重が小さく飛散しやすいごみが塊のまま炉本体20内に供給される。これにより、従来のような炉の上部からごみを投入する場合に比べ、炉本体20内におけるごみの飛散が抑制される。 The waste supply unit 40 supplies the waste 18 from the front wall 24 to a region adjacent to the front wall 24 on the fluidized bed 14. The waste supply unit 40 of the present embodiment pushes the waste 18 sideways onto the fluidized bed 14 from the front wall 24 (specifically, the waste insertion port 28 of the front wall 24), thereby 2 to the flow region 16 side. That is, the waste supply unit 40 pushes the waste 18 so that the waste 18 stays on the first flow region 15 and the stayed waste 18 sequentially enters the second flow region 16. I do. The waste supply unit 40 includes a pusher 41 and a drive unit (not shown) for driving the pusher 41. The pusher 41 has a pushing surface 42 extending in the width direction. In the present embodiment, the length in the width direction of the pushing surface 42 is the same as the width of the waste insertion port 28 of the front wall 24. Further, the length of the pushing surface 42 in the vertical direction is substantially half of the opening height of the waste insertion port 28. The pusher 41 is installed to be movable in the front-rear direction at the same height position as the waste insertion port 28. The drive unit includes a power source such as a motor and a cylinder, and the pusher 41 is reciprocated in the front-rear direction by the power. The specific configuration of the waste supply unit 40 is not limited. For example, in the waste supply unit 40 of the present embodiment, the pusher 41 pushes the waste 18 into the furnace. However, the waste supply unit may be configured to push the waste 18 into the furnace by a screw pusher or the like (see FIG. 8A). By using the pusher 41 and the screw pusher, dust having a small bulk specific gravity such as paper or plastic sheet and easily scattered is supplied into the furnace body 20 as a lump. Thereby, compared with the case where garbage is thrown in from the upper part of the conventional furnace, scattering of the garbage in the furnace main body 20 is suppressed.
 砂循環装置50は、混合物排出口29から排出された不燃物、炭化物、及び流動粒子12の混合物から流動粒子12を分離して炉本体20内に戻すことにより当該流動粒子12を循環させる。このように、砂循環装置50が混合物から高温の流動粒子12を分離して炉本体20内に戻すことにより、炉本体20内において流動層14を構成する流動粒子12の量が維持されると共に流動層14の温度が維持し易くなる。この砂循環装置50は、混合物排出部51と、流動粒子分離部52と、流動粒子搬送部53とを有する。 The sand circulating device 50 circulates the fluidized particles 12 by separating the fluidized particles 12 from the mixture of incombustibles, carbides, and fluidized particles 12 discharged from the mixture outlet 29 and returning them to the furnace body 20. In this manner, the sand circulating device 50 separates the high temperature fluidized particles 12 from the mixture and returns them to the furnace body 20, thereby maintaining the amount of fluidized particles 12 constituting the fluidized bed 14 in the furnace body 20. It becomes easy to maintain the temperature of the fluidized bed 14. The sand circulation device 50 includes a mixture discharge unit 51, a fluid particle separation unit 52, and a fluid particle transport unit 53.
 混合物排出部51は、底壁21の混合物排出口29の下方に設けられ、この混合物排出口29から落下してきた不燃物と炭化物と流動粒子12との混合物を流動粒子分離部52へ移動させる。本実施形態の混合物排出部51は、混合物排出口29から落下してきた混合物をスクリュー押込み機によって流動粒子分離部52まで移動させる。流動粒子分離部52は、混合物排出部51から送られてきた混合物から流動粒子12を分離する。本実施形態の流動粒子分離部52は、ふるいを用いて混合物から流動粒子12を分離する。この流動粒子分離部52は、流動粒子12を分離した後の混合物を炭化物分離部61に送出する。流動粒子搬送部53は、流動粒子分離部52において分離された流動粒子12を炉本体20の砂挿入部27まで搬送し、当該砂挿入部27から炉本体20内に挿入する。 The mixture discharge unit 51 is provided below the mixture discharge port 29 of the bottom wall 21, and moves the mixture of the incombustible material, the carbide, and the fluidized particles 12 that have dropped from the mixture discharge port 29 to the fluidized particle separation unit 52. The mixture discharge part 51 of this embodiment moves the mixture which has fallen from the mixture discharge port 29 to the fluid particle separation part 52 with a screw pushing machine. The fluid particle separation unit 52 separates the fluid particles 12 from the mixture sent from the mixture discharge unit 51. The fluid particle separator 52 of this embodiment separates the fluid particles 12 from the mixture using a sieve. The fluidized particle separation unit 52 sends the mixture after separating the fluidized particles 12 to the carbide separation unit 61. The fluidized particle transport unit 53 transports the fluidized particles 12 separated in the fluidized particle separation unit 52 to the sand insertion unit 27 of the furnace body 20 and inserts the fluidized particle 12 into the furnace body 20 from the sand insertion unit 27.
 尚、本実施形態の砂循環装置50は、流動層14の上方から当該流動層14の上面に向けて流動粒子12を投入しているが、これに限定されない。砂循環装置は、流動層14中に直接押し込むようにして流動粒子12を流動層14に戻してもよい。 In addition, although the sand circulation apparatus 50 of this embodiment has thrown the fluid particle | grains 12 toward the upper surface of the said fluidized bed 14 from the upper direction of the fluidized bed 14, it is not limited to this. The sand circulation device may return the fluidized particles 12 to the fluidized bed 14 by pushing directly into the fluidized bed 14.
 炭化物挿入装置60は、混合物排出口29から排出された混合物から炭化物を分離し、この分離した炭化物を後壁25側から炉本体20内に戻す。このように、炭化物層入装置60が混合物排出口29から排出された炭化物を第2の流動領域16に戻すことによって、炉本体20外へ不燃物と共に排出された炭化物から可燃性ガスを得ることが可能となる。その結果、当該流動層炉10に供給される廃棄物18から効率よく可燃性ガスが得られる。また、炭化物がガス化されるときの熱によって第2の流動領域16の温度が高温に維持される。この炭化物挿入装置60は、炭化物分離部61と、炭化物搬送部62とを有する。 The carbide insertion device 60 separates carbide from the mixture discharged from the mixture discharge port 29, and returns the separated carbide into the furnace body 20 from the rear wall 25 side. In this way, the carbide layer insertion device 60 returns the carbide discharged from the mixture discharge port 29 to the second flow region 16, thereby obtaining a combustible gas from the carbide discharged together with the incombustible material outside the furnace body 20. Is possible. As a result, combustible gas can be efficiently obtained from the waste 18 supplied to the fluidized bed furnace 10. Further, the temperature of the second flow region 16 is maintained at a high temperature by heat generated when the carbide is gasified. The carbide insertion device 60 includes a carbide separation unit 61 and a carbide conveyance unit 62.
 炭化物分離部61は、流動粒子分離部52から送られてきた混合物から炭化物を分離する。本実施形態の炭化物分離部61は、流動粒子分離部52において流動粒子12が分離された後の混合物から炭化物を分離する。この炭化物分離部61は、例えば、振動により混合物から炭化物を分離する比重分離器等である。炭化物搬送部62は、炭化物分離部61において分離された炭化物を炉本体20の炭化物挿入部63まで搬送し、搬送した炭化物を当該炭化物挿入部63から炉本体20内に挿入する。 The carbide separator 61 separates the carbide from the mixture sent from the fluidized particle separator 52. The carbide separation unit 61 of the present embodiment separates carbides from the mixture after the fluidized particles 12 are separated in the fluidized particle separation unit 52. The carbide separator 61 is, for example, a specific gravity separator that separates carbides from the mixture by vibration. The carbide conveying unit 62 conveys the carbide separated in the carbide separating unit 61 to the carbide inserting unit 63 of the furnace body 20, and inserts the conveyed carbide into the furnace main body 20 from the carbide inserting unit 63.
 以上のように構成される流動層炉10では、以下のようにして廃棄物18から可燃性ガスが回収される。 In the fluidized bed furnace 10 configured as described above, combustible gas is recovered from the waste 18 as follows.
 送風部33が各風箱32に流動化ガスを供給する。これにより、底壁21から流動粒子12に向けて流動化ガスが吹き込み、炉本体20内に流動層14が形成される。このとき送風部33は、各風箱32に送風する流動化ガスの流量を調整する。これにより、流動層14において混合物排出口29側に流動が抑えられた第1の流動領域15が形成されると共に第1の流動領域15と後壁25との間に流動が活発な第2の流動領域16が形成される。また、送風部33は、第2の流動領域16に対応する風箱32(本実施形態では、例えば、風箱32a,32b)に高温の流動化ガスを供給し、第2の流動領域16の流動粒子12を積極的に加熱する。このとき、底壁21の上面21aの傾斜によって生じる流動層14の上面21a近傍の領域における第2の領域16から第1の領域15への流動粒子12の移動により、第1の流動領域15に熱が供給される。 Blower 33 supplies fluidizing gas to each wind box 32. As a result, fluidized gas is blown from the bottom wall 21 toward the fluidized particles 12, and the fluidized bed 14 is formed in the furnace body 20. At this time, the blower 33 adjusts the flow rate of the fluidizing gas blown to each wind box 32. Thereby, in the fluidized bed 14, the first fluidized region 15 in which the fluid is suppressed is formed on the mixture discharge port 29 side, and the fluid is actively flowed between the first fluidized region 15 and the rear wall 25. A flow region 16 is formed. Further, the blower unit 33 supplies a high-temperature fluidizing gas to the wind box 32 (in this embodiment, for example, the wind boxes 32a and 32b) corresponding to the second flow region 16, and The fluidized particles 12 are actively heated. At this time, movement of the fluidized particles 12 from the second region 16 to the first region 15 in the region near the upper surface 21a of the fluidized bed 14 caused by the inclination of the upper surface 21a of the bottom wall 21 causes the first fluidized region 15 to move to the first fluidized region 15. Heat is supplied.
 このようにして、炉本体20内に形成された流動層14の各領域15,16の温度がそれぞれ所定の温度(本実施形態では、第2の流動領域16の温度が600℃~800℃程度、第1の流動領域15の温度が400℃~600℃程度)になると、廃棄物供給部40が廃棄物18を廃棄物挿入口28から炉本体20内に押込み始める。具体的には、駆動部により駆動されたプッシャ41が後壁25側へ向けて横向きに廃棄物18を押し込む。これにより、廃棄物18は、第1の流動領域15上の前壁24と隣接する領域に押し込まれる(図2参照)。 In this way, the temperature of each of the regions 15 and 16 of the fluidized bed 14 formed in the furnace body 20 is a predetermined temperature (in this embodiment, the temperature of the second fluidized region 16 is about 600 ° C. to 800 ° C. When the temperature of the first flow region 15 reaches about 400 ° C. to 600 ° C.), the waste supply unit 40 starts to push the waste 18 into the furnace body 20 from the waste insertion port 28. Specifically, the pusher 41 driven by the driving unit pushes the waste 18 sideways toward the rear wall 25 side. Thereby, the waste 18 is pushed into the area adjacent to the front wall 24 on the first flow area 15 (see FIG. 2).
 第1の流動領域15における流動粒子12の流動は抑えられている。このため、押し込まれた廃棄物18は流動粒子12と積極的には混合されず、その大部分が第1の流動領域15上に滞留し、重たい不燃物及び炭化物の一部が沈降する。そのため、第1の流動領域15においては、廃棄物18の急激な燃焼が抑えられ、廃棄物18中のガス化し易いものが炉本体20内の熱輻射によってガス化する。即ち、プラスチックや紙等のガス化し易い廃棄物18は、第1の流動領域15の表層を移動しながらガス化する。即ち、プラスチックや紙等のガス化し易い廃棄物18は、第2の流動領域16の表層を移動しながらガス化する。一方、木片などのガス化し難いものは一部がガス化されるものの、大部分がガス化せずに第2の流動領域16に到達する。このように、ガス化し易い廃棄物18が激しい流動層(第2の流動領域16)に到達する前に第1の流動領域15において穏やかな条件でガス化する。これにより、発生する可燃性ガスの変動が抑制される。また、重たい不燃物は第1の流動領域15において沈降しそのまま混合物排出口29から排出される。このため、不燃物が炉床に滞留しにくい。一方で、木片などのガス化しにくい廃棄物の一部も第1の流動領域15内を通過することにより炭化した状態となって混合物排出口29から排出される場合もある。尚、滞留している廃棄物18は、上記の通り炉本体20内の温度(フリーボード部の熱)によって燃焼する。しかし、この炉本体20内の温度が800℃~900℃と流動層14を形成する流動粒子12よりも高いものの、廃棄物18と空気との接触が良好ではない。このため、主に廃棄物18に含まれる紙やシート状のプラスチック等の燃え易いゴミがガス化する。このとき、温度が低く且つ第1の流動領域15に供給される空気(流動化ガス)が少ないため、前記燃え易いゴミであっても、徐々にガス化する。さらに、流動化ガスによる流動粒子12の流動によって、滞留する廃棄物18の一部が第1の流動領域15から第2の流動領域16(図1の右側から左側)へと少しずつ移動し若しくは拡散する。そのため、廃棄物18が塊状で投入され、その内部に燃え易い紙類があった場合でも、拡散時にこれら紙類が前記塊の表面側に出てくることによってガス化される。このように第1の流動領域15においては、廃棄物18の急激な燃焼が抑えられ、廃棄物18挿入時の可燃性ガスの急増が防がれる。 The flow of the fluidized particles 12 in the first fluidized region 15 is suppressed. For this reason, the pushed waste 18 is not positively mixed with the fluidized particles 12, and most of the waste 18 stays on the first fluidized region 15, and a part of heavy incombustibles and carbides settle. Therefore, in the first flow region 15, the rapid combustion of the waste 18 is suppressed, and what is easily gasified in the waste 18 is gasified by thermal radiation in the furnace body 20. That is, the waste 18 that is easily gasified, such as plastic or paper, is gasified while moving on the surface layer of the first flow region 15. That is, the waste 18 that is easily gasified, such as plastic or paper, is gasified while moving on the surface layer of the second flow region 16. On the other hand, some of the wood pieces and the like which are difficult to gasify are partially gasified, but most of them reach the second flow region 16 without being gasified. In this way, the waste 18 that is easily gasified is gasified in a gentle condition in the first fluidized region 15 before reaching the intense fluidized bed (second fluidized region 16). Thereby, the fluctuation | variation of the combustible gas to generate | occur | produce is suppressed. Further, the heavy incombustible material settles in the first flow region 15 and is discharged from the mixture discharge port 29 as it is. For this reason, incombustibles do not easily stay in the hearth. On the other hand, some of the waste that is difficult to gasify, such as a piece of wood, may be carbonized by passing through the first flow region 15 and discharged from the mixture discharge port 29. The staying waste 18 is burned by the temperature in the furnace body 20 (heat of the free board portion) as described above. However, although the temperature in the furnace body 20 is 800 ° C. to 900 ° C. and higher than the fluidized particles 12 forming the fluidized bed 14, the contact between the waste 18 and the air is not good. For this reason, flammable garbage such as paper and sheet-like plastic mainly contained in the waste 18 is gasified. At this time, since the temperature is low and the amount of air (fluidized gas) supplied to the first flow region 15 is small, even the flammable garbage is gradually gasified. Further, due to the flow of the fluidized particles 12 by the fluidizing gas, a part of the staying waste 18 moves little by little from the first fluidized region 15 to the second fluidized region 16 (from the right side to the left side in FIG. 1) or Spread. For this reason, even when the waste 18 is put in a lump and there is a flammable paper inside, the paper is gasified by coming out to the surface side of the lump at the time of diffusion. In this way, in the first flow region 15, the rapid combustion of the waste 18 is suppressed, and a rapid increase in combustible gas when the waste 18 is inserted is prevented.
 次に、新たな廃棄物18が廃棄物挿入口28からプッシャ41によって炉本体20内に押し込まれる。これにより、第1の流動領域15上に滞留している廃棄物18は、押し込まれた新たな廃棄物18に押されて順に第2の領域16側に進入する。第2の流動領域16では、流動が活発で且つ廃棄物18の燃焼により高温となるため、第1の流動領域15上から進入してきた廃棄物18が流動粒子12と混合されてガス化が十分に行われる。これにより可燃性ガスが発生する。詳しくは、流動層14において、前壁24から後壁25に向って流動状態が徐々に活発となっている。このため、廃棄物18は、第1の流動領域15上の前壁24と隣接する領域から第2の流動領域16に進むに従って徐々に流動粒子12と混合される。また、前壁24から後壁25に向って流動層14に吹き込まれる空気(流動化ガス)が多くなる。このため、廃棄物18が第1の流動領域15から第2の流動領域16に進むにしたがって燃焼して流動粒子12の温度が高くなる。そして、この高温の第2の流動領域16において、廃棄物18が流動粒子12と十分に混合される。これにより、第1の流動領域15で燃え残った廃棄物18のガス化が第2の流動領域16において十分に行われる。 Next, new waste 18 is pushed into the furnace body 20 from the waste insertion port 28 by the pusher 41. As a result, the waste 18 staying on the first flow region 15 is pushed by the pushed new waste 18 and sequentially enters the second region 16 side. In the second flow region 16, since the flow is active and the temperature of the waste 18 is increased due to the combustion of the waste 18, the waste 18 that has entered from the first flow region 15 is mixed with the fluidized particles 12 and is sufficiently gasified. To be done. Thereby, combustible gas is generated. Specifically, in the fluidized bed 14, the fluidized state gradually becomes active from the front wall 24 toward the rear wall 25. For this reason, the waste 18 is gradually mixed with the fluidized particles 12 as it proceeds from the region adjacent to the front wall 24 on the first fluidized region 15 to the second fluidized region 16. Further, the amount of air (fluidized gas) blown into the fluidized bed 14 from the front wall 24 toward the rear wall 25 increases. For this reason, as the waste 18 advances from the first fluidized region 15 to the second fluidized region 16, it burns and the temperature of the fluidized particles 12 increases. The waste 18 is sufficiently mixed with the fluidized particles 12 in the high-temperature second fluidized region 16. Thereby, the gasification of the waste 18 left unburned in the first flow region 15 is sufficiently performed in the second flow region 16.
 一方、プッシャ41によって第1の流動領域15上に新たに押し込まれた廃棄物18は、前記のように流動粒子12と殆ど混合されずに第1の流動領域15上に滞留する。そして、廃棄物18は、激しい燃焼を抑えられた状態で徐々に燃焼する。 On the other hand, the waste 18 newly pushed onto the first fluidized area 15 by the pusher 41 stays on the first fluidized area 15 without being mixed with the fluidized particles 12 as described above. The waste 18 gradually burns in a state where intense combustion is suppressed.
 このように、流動層14に第1の流動領域15と第2の流動領域16とが形成された状態において廃棄物18がプッシャ41によって次々に押し込まれることにより、可燃性ガスの間欠的且つ急激な発生を抑え、当該ガスの発生を安定させることができる。 As described above, the waste 18 is pushed in one after another by the pusher 41 in the state where the first fluidized region 15 and the second fluidized region 16 are formed in the fluidized bed 14, so that the combustible gas is intermittently and suddenly pushed. Generation can be suppressed and generation of the gas can be stabilized.
 第1の流動領域15において沈降した不燃物及び炭化物は、第1の流動領域15の下側に設けられた混合物排出口29から流動粒子12と共に排出される。また、第2の流動領域16において沈降した不燃物及び炭化物は、底壁21の上面21aが混合物排出口29に向って下り勾配となるように傾斜しているため、これに沿って降下して混合物排出口29まで移動する。この移動した不燃物及び炭化物は、流動粒子12と共に排出される。そして、砂循環装置50は、この混合物排出口29から排出された混合物から流動粒子12を分離し、この分離した流動粒子12を炉本体20内に挿入する。これと共に、炭化物挿入装置60は、混合物排出口29から排出された混合物から炭化物を分離し、この分離した炭化物を炉本体20内に挿入する。具体的に、混合物排出部51は、炉本体20の混合物排出口29から落下してきた混合物を流動粒子分離部52に送る。流動粒子分離部52は、混合物から流動粒子12を分離し、流動粒子搬送部53は、この流動粒子分離部52によって分離された流動粒子を炉本体20の砂挿入部27まで搬送する。これにより、炉本体20内において、流動層14を形成する流動粒子12の量が維持される。一方、流動粒子分離部52は、流動粒子12が分離された混合物を炭化物分離部61に送出し、炭化物分離部61は、この混合物から炭化物を分離する。そして、炭化物搬送部62は、炭化物分離部61によって分離された炭化物を炉本体20の炭化物挿入部63まで搬送する。これにより、不燃物と共に炉本体20から排出された炭化物が炉本体20内に戻されてガス化することができる。その結果、当該流動層炉10によれば、廃棄物18から効率よく可燃性ガスが得られる。 The incombustibles and carbides that have settled in the first fluidized zone 15 are discharged together with the fluidized particles 12 from a mixture outlet 29 provided on the lower side of the first fluidized zone 15. Incombustible materials and carbides that have settled in the second flow region 16 are inclined so that the upper surface 21a of the bottom wall 21 has a downward slope toward the mixture discharge port 29, and thus descend along this. Move to the mixture outlet 29. The moved incombustibles and carbides are discharged together with the fluidized particles 12. The sand circulation device 50 separates the fluidized particles 12 from the mixture discharged from the mixture discharge port 29 and inserts the separated fluidized particles 12 into the furnace body 20. At the same time, the carbide insertion device 60 separates carbide from the mixture discharged from the mixture discharge port 29 and inserts the separated carbide into the furnace body 20. Specifically, the mixture discharge unit 51 sends the mixture that has dropped from the mixture discharge port 29 of the furnace body 20 to the fluidized particle separation unit 52. The fluidized particle separation unit 52 separates the fluidized particles 12 from the mixture, and the fluidized particle conveyance unit 53 conveys the fluidized particles separated by the fluidized particle separation unit 52 to the sand insertion unit 27 of the furnace body 20. Thereby, the amount of the fluidized particles 12 forming the fluidized bed 14 is maintained in the furnace body 20. On the other hand, the fluid particle separator 52 sends the mixture from which the fluid particles 12 are separated to the carbide separator 61, and the carbide separator 61 separates the carbide from the mixture. The carbide conveying unit 62 conveys the carbide separated by the carbide separating unit 61 to the carbide inserting unit 63 of the furnace body 20. Thereby, the carbide | carbonized_material discharged | emitted from the furnace main body 20 with the incombustible substance can be returned in the furnace main body 20, and can be gasified. As a result, according to the fluidized bed furnace 10, combustible gas can be efficiently obtained from the waste 18.
 流動層炉10が停止するときには、先ず、プッシャ41による廃棄物18の炉本体20への押込みが停止される。廃棄物18の押込みが停止されると、送風部33は、各風箱32へ供給する流動化ガスとして空気に不活性ガスを混ぜたものを送風する。このとき、送風部33は、時間の経過に伴って流動化ガスにおける空気と不活性ガスとの比率を不活性ガスが徐々に多くなるようにする。このように、送風部33は、炉本体20内の酸素濃度を抑え、流動層14内に残っている廃棄物18が激しく燃えるのを抑制する。 When the fluidized bed furnace 10 stops, first, the pushing of the waste 18 into the furnace body 20 by the pusher 41 is stopped. When the pushing of the waste 18 is stopped, the blower unit 33 blows air in which an inert gas is mixed as a fluidizing gas supplied to each wind box 32. At this time, the air blowing unit 33 causes the inert gas to gradually increase the ratio of the air and the inert gas in the fluidized gas with the passage of time. In this way, the air blowing unit 33 suppresses the oxygen concentration in the furnace body 20 and suppresses the waste 18 remaining in the fluidized bed 14 from burning violently.
 尚、本実施形態では、流動層炉10の停止時に、流動化ガスにおける不活性ガスの比率が徐々に大きくなるようにして流動層14に残っている廃棄物18の激しい燃焼が抑制されている。しかし、流動層炉10の停止時に、流動層14に水が散布されることにより、残っている廃棄物18の燃焼が防止されてもよい。 In the present embodiment, when the fluidized bed furnace 10 is stopped, the ratio of the inert gas in the fluidized gas is gradually increased so that intense combustion of the waste 18 remaining in the fluidized bed 14 is suppressed. . However, when the fluidized bed furnace 10 is stopped, the remaining waste 18 may be prevented from burning by spraying water on the fluidized bed 14.
 以上の流動層炉10によれば、廃棄物18に燃え易いゴミが多く含まれていても、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生が安定する。具体的には、流動層14において混合物排出口29の周囲の第1の領域15とこの第1の領域15よりも流動化の度合いの高い第2の流動領域16とが形成される。この状態で、新たな廃棄物18が第1の流動領域15上に押し込まれる。この新たな廃棄物18が第1の流動領域15上に滞留している廃棄物18を順に第2の流動領域16側に進入させる。以上の動作が繰り返される。これにより、流動層炉10において、得られる可燃性ガスの急激な変動が抑えられつつ、廃棄物18のガス化が十分に行われる。その結果、廃棄物18から可燃性ガスを安定して発生させることが可能になる。また、廃棄物18が炉本体20への投入直後に活発な流動層14(第2の流動領域16)に曝されないため、軽量のごみが炉本体20内に多量に舞い上がり、フリーボード部で急激に燃焼することを抑制することができる。 According to the fluidized bed furnace 10 described above, even if the waste 18 contains a lot of flammable garbage, intermittent and rapid generation of combustible gas is suppressed, and generation of the gas is stabilized. Specifically, in the fluidized bed 14, a first region 15 around the mixture outlet 29 and a second fluidized region 16 having a higher degree of fluidization than the first region 15 are formed. In this state, new waste 18 is pushed onto the first flow region 15. The waste 18 in which the new waste 18 stays on the first fluidized area 15 is made to enter the second fluidized area 16 in order. The above operation is repeated. Thereby, in the fluidized-bed furnace 10, the waste 18 is fully gasified while suppressing a rapid fluctuation of the obtained combustible gas. As a result, combustible gas can be stably generated from the waste 18. In addition, since the waste 18 is not exposed to the active fluidized bed 14 (second fluidized region 16) immediately after being introduced into the furnace body 20, a large amount of light waste rises into the furnace body 20 and suddenly rises in the free board section. Combustion can be suppressed.
 また、混合物排出口29の上方に第1の流動領域15が形成されてその上側に廃棄物18が供給されることにより、この第1の流動領域15上に廃棄物18が滞留して廃棄物18中の燃え易いゴミがゆっくりガス化する。そして、前記燃え易いゴミがガス化している間に不燃物や炭化物が炉底まで沈んでも、これら不燃物や炭化物を炉本体20から容易に排出することができる。しかも、廃棄物18が第1の流動領域15から第2の流動領域16に進入してから不燃物や炭化物が底壁21に沈んでも、混合物排出口29に向って低くなるよう傾斜している底壁上面21aに沿って不燃物や炭化物が降下する。このため、これら不燃物及び炭化物も容易に排出することができる。さらに、第2の流動領域16においては流動化ガスが活発に供給されているため、これによっても不燃物及び炭化物の混合物排出口29に向けての降下が促される。 Further, the first flow region 15 is formed above the mixture discharge port 29 and the waste 18 is supplied to the upper side thereof, so that the waste 18 is retained on the first flow region 15 and the waste is discharged. The flammable garbage in 18 is slowly gasified. Even if incombustibles and carbides sink to the furnace bottom while the flammable garbage is gasified, the incombustibles and carbides can be easily discharged from the furnace body 20. Moreover, even if incombustibles and carbides sink to the bottom wall 21 after the waste 18 enters the second flow region 16 from the first flow region 15, the waste 18 is inclined toward the mixture discharge port 29. Incombustible materials and carbides descend along the bottom wall upper surface 21a. For this reason, these incombustibles and carbides can be easily discharged. Further, since the fluidizing gas is actively supplied in the second flow region 16, this also promotes the descent toward the mixture outlet 29 of incombustibles and carbides.
 炉本体20は、その幅方向の寸法が廃棄物18の押込み方向について均一な平面形状を有している。このため、第1の流動領域15上の廃棄物18が廃棄物供給部40から新たに押し込まれた廃棄物18に押されて第2の流動領域16側に進入するときに、廃棄物18の移動が安定する。 The furnace body 20 has a planar shape in which the dimension in the width direction is uniform in the pushing direction of the waste 18. For this reason, when the waste 18 on the first flow region 15 is pushed by the waste 18 newly pushed from the waste supply unit 40 and enters the second flow region 16 side, the waste 18 The movement is stable.
 廃棄物供給部40において、押込み面42が当該押込み面42の幅方向全域にわたって同時に廃棄物18を流動層14上に押し込むようにプッシャ41が押込み方向(前後方向)と平行な方向に往復動作する。これにより、押込み面42が幅方向に均一に廃棄物18を流動層14上に押し込む。従って、第1の流動領域15から第2の流動領域16側への廃棄物18の移動が幅方向において略均一となり、炉内の一部に廃棄物18が集中することを防ぐことができる。 In the waste supply unit 40, the pusher 41 reciprocates in a direction parallel to the pushing direction (front-rear direction) so that the pushing surface 42 simultaneously pushes the waste 18 onto the fluidized bed 14 over the entire width direction of the pushing surface 42. . Thereby, the pushing surface 42 pushes the waste 18 onto the fluidized bed 14 uniformly in the width direction. Therefore, the movement of the waste 18 from the first flow region 15 to the second flow region 16 becomes substantially uniform in the width direction, and it is possible to prevent the waste 18 from concentrating on a part of the furnace.
 尚、本発明の流動層炉及び廃棄物処理方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the fluidized bed furnace and the waste treatment method of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.
 上記実施形態の側壁22は、底壁21から可燃性ガス排出部23まで真っ直ぐに立上がっているが、これに限定されない。例えば、図4に示すように、前壁24Aは、所定の高さ位置において第1の流動領域15の上方を覆うように後壁25側に延びる反射部224を具備してもよい。この前壁24Aによれば、第1の流動領域15上に滞留する廃棄物18が反射部224からの輻射熱により加熱される。その結果、第1の流動領域15上に滞留している廃棄物18から可燃性ガスを発生させることができる。即ち、第1の流動領域15上に滞留している廃棄物18のガス化が促進される。この場合、砂挿入部27は、前壁24Aにおける底壁21から垂直に立上がっている部位に設けられてもよく、反射部224に設けられてもよい。 The side wall 22 of the above embodiment rises straight from the bottom wall 21 to the combustible gas discharge part 23, but is not limited to this. For example, as shown in FIG. 4, the front wall 24 </ b> A may include a reflecting portion 224 that extends toward the rear wall 25 so as to cover the upper part of the first flow region 15 at a predetermined height position. According to the front wall 24 </ b> A, the waste 18 staying on the first flow region 15 is heated by the radiant heat from the reflecting portion 224. As a result, combustible gas can be generated from the waste 18 staying on the first flow region 15. That is, the gasification of the waste 18 staying on the first flow region 15 is promoted. In this case, the sand insertion portion 27 may be provided in a portion of the front wall 24A that stands vertically from the bottom wall 21 or may be provided in the reflection portion 224.
 また、図5に示すように、後壁25Aは、所定の高さ位置において第2の流動領域16の上方を覆うように前壁24側に延びる案内部225を具備してもよい。この案内部225は、第2の流動領域16において廃棄物18から発生した高温の可燃性ガスが第1の流動領域15上に滞留する廃棄物18と接するように当該可燃性ガスを案内する。これにより、案内部225は、可燃性ガスを前記第1の流動領域15上の廃棄物18の加熱に寄与させる。その結果、炉本体20に特別な加熱手段が付加されることなく、第1の流動領域15上に滞留している廃棄物18のガス化が促進される。この場合、炭化物挿入部63は、後壁25における底壁21から垂直に立上がっている部位に設けられてもよく、案内部225に設けられてもよい。 Further, as shown in FIG. 5, the rear wall 25 </ b> A may include a guide portion 225 that extends toward the front wall 24 so as to cover the upper part of the second flow region 16 at a predetermined height position. The guide unit 225 guides the combustible gas so that the high-temperature combustible gas generated from the waste 18 in the second flow region 16 contacts the waste 18 staying on the first flow region 15. Thereby, the guide part 225 makes combustible gas contribute to the heating of the waste 18 on the said 1st flow area | region 15. FIG. As a result, gasification of the waste 18 staying on the first flow region 15 is promoted without adding any special heating means to the furnace body 20. In this case, the carbide insertion portion 63 may be provided at a portion of the rear wall 25 that stands vertically from the bottom wall 21 or may be provided at the guide portion 225.
 また、図6に示すように、前壁24Bと後壁25Bとは、同じ高さ位置において互いに接近する方向に延びる屋根部324,325をそれぞれ具備してもよい。この前壁24B及び後壁25Bによれば、第1の流動領域15上に滞留する廃棄物18が前壁24Bの屋根部324からの輻射熱によって加熱され、ガス化が促進される。また、炉本体20B上端の可燃性ガス排出部23よりも低い位置において炉本体20Bの前後方向の寸法を小さくすることにより、炉本体20Bの小型化を図ることもできる。この場合、砂挿入部27は、前壁24Bにおける底壁21から垂直に立上がっている部位に設けられてもよく、屋根部324に設けられてもよい。また、炭化物挿入部63は、後壁25Bにおける底壁21から垂直に立上がっている部位に設けられてもよく、屋根部325に設けられてもよい。 Further, as shown in FIG. 6, the front wall 24B and the rear wall 25B may include roof portions 324 and 325 extending in directions approaching each other at the same height position. According to the front wall 24B and the rear wall 25B, the waste 18 staying on the first flow region 15 is heated by the radiant heat from the roof portion 324 of the front wall 24B, and gasification is promoted. Further, the furnace body 20B can be downsized by reducing the size in the front-rear direction of the furnace body 20B at a position lower than the combustible gas discharge part 23 at the upper end of the furnace body 20B. In this case, the sand insertion portion 27 may be provided in a portion of the front wall 24B that stands vertically from the bottom wall 21 or may be provided in the roof portion 324. Further, the carbide insertion portion 63 may be provided in a portion of the rear wall 25B that is vertically rising from the bottom wall 21 or may be provided in the roof portion 325.
 上記実施形態においては、炭化物挿入部63から炉本体20内へ炭化物のみが挿入されるが、炭化物挿入部63から炉本体20内へ流動粒子12と共に炭化物が挿入してもよい。 In the above embodiment, only the carbide is inserted from the carbide insertion portion 63 into the furnace main body 20, but the carbide may be inserted together with the fluidized particles 12 from the carbide insertion portion 63 into the furnace main body 20.
 また、上記実施形態の炭化物挿入装置60は、混合物から分離した炭化物をそのまま炭化物挿入部63から炉本体20内へ挿入するが、分離した炭化物を破砕した後に炉本体20内へ挿入してもよい。これにより、混合物排出口29から排出された炭化物が大きな塊状であっても、加熱によりガス化し易い所定の大きさにして炉本体20内に戻すことができる。 Moreover, although the carbide | carbonized_material insertion apparatus 60 of the said embodiment inserts the carbide | carbonized_material isolate | separated from the mixture into the furnace main body 20 as it is from the carbide | carbonized_material insertion part 63, you may insert into the furnace main body 20 after crushing the isolate | separated carbide | carbonized_material. . Thereby, even if the carbide | carbonized_material discharged | emitted from the mixture discharge port 29 is a big lump, it can be made into the predetermined magnitude | size which is easy to gasify by heating, and can be returned in the furnace main body 20. FIG.
 また、底壁21の上面21aは、後壁25から混合物排出口29に向けて真っ直ぐに傾斜せずに湾曲していてもよい。 Further, the upper surface 21 a of the bottom wall 21 may be curved without being inclined straight from the rear wall 25 toward the mixture discharge port 29.
 図7に示すように、第1の流動領域15の上方に複数の温度計Tが配置されると共に、第1の流動領域15上に空気を供給可能な空気供給部65が設けられてもよい。かかる構成によれば、第1の流動領域15上に滞留する廃棄物18の滞留量が推定でき、この滞留量の制御ができる。具体的に、廃棄物18に埋まった温度計Tの指示値が低くなることが利用されて、第1の流動領域15上の廃棄物18の滞留量が推定される。滞留量が多い場合、即ち、廃棄物18に埋まる温度計Tが多い場合には、空気供給部65が空気を供給して炉本体20内の温度を上げる。そうすると、第1の流動領域15上に滞留している廃棄物18のガス化が促進され、廃棄物18の滞留量が減少する。尚、別の方法としては、指定した温度計Tの温度が閾値以上であれば当該温度計Tの位置にはごみが無いと判断され、閾値未満であれば当該温度計Tの位置にごみがある(ごみに埋まっている)と判断されて空気の量が制御されてもよい。また、空気の量の制御に代えてごみの供給量が制御されてもよい。 As shown in FIG. 7, a plurality of thermometers T may be disposed above the first flow region 15, and an air supply unit 65 capable of supplying air may be provided on the first flow region 15. . According to such a configuration, it is possible to estimate the staying amount of the waste 18 staying on the first flow region 15, and to control this staying amount. Specifically, the retention value of the waste 18 on the first flow region 15 is estimated by utilizing the fact that the indicated value of the thermometer T buried in the waste 18 becomes low. When the amount of residence is large, that is, when the thermometer T buried in the waste 18 is large, the air supply unit 65 supplies air to raise the temperature in the furnace body 20. Then, gasification of the waste 18 staying on the first flow region 15 is promoted, and the staying amount of the waste 18 is reduced. As another method, if the temperature of the specified thermometer T is equal to or higher than the threshold value, it is determined that there is no dust at the position of the thermometer T. If the temperature is lower than the threshold value, dust is detected at the position of the thermometer T. The amount of air may be controlled by determining that it is present (buried in garbage). Moreover, instead of controlling the amount of air, the amount of waste supplied may be controlled.
 上記実施形態では、送風部33は、空気や不活性ガスを流動化ガスとして送風するが、これに限定されない。例えば、送風部33は、炉本体20内の燃焼状態に応じて、水蒸気や酸素を流動化ガスとして送風してもよい。また、流動層炉10は、側壁22にガス供給部30とは別に気体供給部を設け、流動層14や廃棄物18の燃焼状況に応じて、前記気体供給部から炉本体20内に空気や酸素、水蒸気等を供給可能に構成されてもよい。 In the above embodiment, the air blowing unit 33 blows air or inert gas as fluidized gas, but is not limited thereto. For example, the blower 33 may blow steam or oxygen as fluidized gas according to the combustion state in the furnace body 20. Further, the fluidized bed furnace 10 is provided with a gas supply unit on the side wall 22 in addition to the gas supply unit 30, and air or gas is supplied from the gas supply unit into the furnace body 20 according to the combustion state of the fluidized bed 14 or the waste 18. You may be comprised so that oxygen, water vapor | steam, etc. can be supplied.
 また、第1の流動領域15に供給される流動化ガスは、高温の流動化ガスでもよい。高温の流動化ガスが供給されることにより、第2の流動領域16から伝わる熱のみでは第1の流動領域15を必要な温度に保てない場合であっても、流動化ガスの供給量を増加させることなく第1の流動領域15の温度を高く維持することができる。 Further, the fluidizing gas supplied to the first fluidizing region 15 may be a high temperature fluidizing gas. Even when the first fluidized region 15 cannot be maintained at a necessary temperature only by the heat transmitted from the second fluidized region 16 by supplying the high-temperature fluidized gas, the supply amount of the fluidized gas is reduced. The temperature of the first flow region 15 can be kept high without increasing it.
 上記実施形態では、廃棄物挿入口28が、流動層14上に滞留する廃棄物18に対して上下方向において一部重なる高さ位置に設けられて、廃棄物挿入口28から供給される廃棄物18が流動層14上面に滞留する廃棄物を積極的に横方向(第1の流動領域15側)に移動させる構成としたが、これに限定されない。即ち、流動層炉10は、流動層14上における前壁(供給側側壁)24に隣接する領域に廃棄物18を供給できるような構成であればよい。例えば、図8(A)及び図8(B)に示すように、廃棄物挿入口28が、流動層14の上面近傍の高さ位置で、且つ流動層14上に滞留する廃棄物18の上に新たな廃棄物18を載せるように挿入する高さ位置に設けられてもよい。この場合、廃棄物挿入口28は、例えば図8(A)に示すように、流動層14上に滞留する廃棄物よりも上方の高さ位置から横向きに新たな廃棄物18を供給可能に設けられてもよい。また、図8(B)に示すように、廃棄物挿入口28は、流動層14上に滞留する廃棄物18の上方から下方向きに新たな廃棄物18を供給可能に設けられてもよい。これらのように廃棄物18が炉本体20内に供給されても、滞留する廃棄物18上に新たな廃棄物18が供給されることにより廃棄物18の山が崩れて拡がって第2の流動領域16側に廃棄物18が進入する。このため、流動層炉10から回収される可燃性ガスの急激な変動が抑えられながら廃棄物18のガス化が十分に行われる。その結果、廃棄物18から可燃性ガスが安定して発生する。 In the above-described embodiment, the waste insertion port 28 is provided at a height position that partially overlaps the waste 18 staying on the fluidized bed 14 in the vertical direction, and is supplied from the waste insertion port 28. Although the waste 18 stays on the upper surface of the fluidized bed 14 is positively moved in the lateral direction (first fluidized region 15 side), the present invention is not limited to this. That is, the fluidized bed furnace 10 may be configured so that the waste 18 can be supplied to a region adjacent to the front wall (supply side wall) 24 on the fluidized bed 14. For example, as shown in FIGS. 8 (A) and 8 (B), the waste insertion port 28 is located at a height near the upper surface of the fluidized bed 14 and above the waste 18 staying on the fluidized bed 14. It may be provided at a height position where the new waste 18 is inserted so as to be placed thereon. In this case, as shown in FIG. 8A, for example, the waste insertion port 28 is provided so that new waste 18 can be supplied laterally from a height position above the waste staying on the fluidized bed 14. May be. Further, as shown in FIG. 8B, the waste insertion port 28 may be provided so that new waste 18 can be supplied downward from above the waste 18 staying on the fluidized bed 14. Even if the waste 18 is supplied into the furnace main body 20 as described above, a new waste 18 is supplied onto the staying waste 18, so that the pile of the waste 18 collapses and expands, and the second flow. Waste 18 enters the region 16 side. For this reason, the waste 18 is sufficiently gasified while the rapid fluctuation of the combustible gas recovered from the fluidized bed furnace 10 is suppressed. As a result, combustible gas is stably generated from the waste 18.
 また、上記実施形態において、炉床(底壁21の上面21a)の混合物排出口29付近に不燃物が滞留して外部に排出されない場合には、これを外部へ排出するために一定期間のみ第1の流動領域15においてもU/Umfが2以上5未満となる流速で流動化ガスを吹き込ませてもよい。この場合、第1の流動領域15において均一に流動化ガスが吹き込まれるのではなく、炉本体20の後壁25側(図1における左側)から前壁24側(図1における右側)に向けて流動化ガスの供給量が通常運転時の流量よりも多い風箱32が順々に替わることが好ましい。このような運転により、通常運転時に炉床の混合物排出口29付近に不燃物が滞留したとしても、当該不燃物が炉本体20の外へ確実に排出される。尚、上記の運転が行われるのはごくわずかな時間であるため、後段の設備への影響が最小限に抑えられる。 Moreover, in the said embodiment, when an incombustible substance stays in the vicinity of the mixture discharge port 29 of the hearth (upper surface 21a of the bottom wall 21) and is not discharged | emitted outside, in order to discharge | emit this outside, it is only a fixed period. Also in one flow region 15, the fluidizing gas may be blown at a flow rate such that U o / U mf is 2 or more and less than 5. In this case, the fluidizing gas is not uniformly blown in the first flow region 15, but from the rear wall 25 side (left side in FIG. 1) to the front wall 24 side (right side in FIG. 1). It is preferable that the wind box 32 in which the supply amount of the fluidizing gas is larger than the flow rate during normal operation is sequentially changed. By such an operation, even if an incombustible material stays in the vicinity of the mixture outlet 29 of the hearth during normal operation, the incombustible material is reliably discharged out of the furnace body 20. Since the above operation is performed for a very short time, the influence on the subsequent equipment can be minimized.
[実施の形態の概要]
 以上の実施形態をまとめると、以下の通りである。
[Outline of the embodiment]
The above embodiment is summarized as follows.
 即ち、上記の実施形態に係る流動層炉では、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、廃棄物を加熱するための流動層を構成する流動粒子と、前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物及び前記廃棄物の加熱により生じた炭化物を前記流動粒子と共に排出するための混合物排出口が設けられ、この混合物排出口に向かって前記底壁の上面上を前記流動粒子を降下させるように当該底壁の上面が前記混合物排出口に向かって低くなるように傾斜する炉本体と、前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、前記側壁のうち前記底壁の中心位置に対して前記混合物排出口と同じ側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記側壁のうち前記底壁の中心位置を挟んで前記混合物排出口と反対側に位置する反対側側壁の側に移動させる廃棄物供給部と、を備え、前記ガス供給部は、前記混合物排出口の周囲から前記流動化ガスを吹き込むことにより前記流動粒子の上側に廃棄物が滞留することが可能な程度の流動化度合いをもつ第1の流動領域を形成すると共に、この第1の流動領域と前記反対側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込むことにより、前記第1の流動領域よりも前記流動粒子の流動化の度合いが高く、これにより前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第2の流動領域を形成し、前記廃棄物供給部は、前記第1の流動領域上に前記廃棄物が滞留し、且つ、その滞留した廃棄物が順次前記第2の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行うことを特徴とする。 That is, the fluidized bed furnace according to the above embodiment is a fluidized bed furnace that heats waste and takes out combustible gas from the waste, and includes fluidized particles that constitute a fluidized bed for heating waste. A bottom wall that supports the fluidized particles from below and a side wall that rises from the bottom wall, the non-combustible material in the waste and the waste in the waste A mixture discharge port is provided for discharging carbide generated by heating together with the fluidized particles, and the upper surface of the bottom wall is disposed on the top surface of the bottom wall so as to lower the fluidized particles toward the mixture discharge port. A furnace body inclined to become lower toward the mixture discharge port, a gas supply section for fluidizing the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles, and The waste is supplied from the supply side wall located on the same side as the mixture outlet to the center position of the bottom wall of the wall to the region adjacent to the supply side wall on the fluidized bed, thereby A waste supply unit that moves waste on a fluidized bed to the side of the opposite side wall that is located on the opposite side of the mixture discharge port across the center position of the bottom wall of the side wall, and the gas supply The part forms a first fluidized region having a fluidization degree such that waste can be retained on the upper side of the fluidized particles by blowing the fluidized gas from the periphery of the mixture discharge port. By blowing fluidizing gas between the first fluidized region and the opposite side wall at a flow rate higher than the fluidizing gas blowing rate in the first fluidized region, Also said fluid particles The degree of fluidization is high, whereby the fluidized particles convect and mix with the waste to form a second fluidized region that gasifies the waste, and the waste supply unit The waste is retained on the fluidized zone, and the waste is supplied from the supply side wall to the fluidized bed so that the retained waste sequentially enters the second fluidized region. It is characterized by performing.
 この流動層炉によれば、流動層において混合物排出口の周囲の第1の領域とこの第1の領域よりも流動化の度合いの高い第2の流動領域とが形成される。そして、廃棄物が前記第1の流動領域上に滞留し、この第1の流動領域上に滞留した廃棄物が順に第2の流動領域側に送られるように廃棄物供給部が流動層上における供給側側壁に隣接する領域に廃棄物を供給する。その結果、流動層炉から回収される可燃性ガスの急激な変動が抑えられながら廃棄物のガス化が十分に行われ、これにより、廃棄物から可燃性ガスが安定して発生する。 According to this fluidized bed furnace, a first region around the mixture outlet and a second fluidized region having a higher degree of fluidization than the first region are formed in the fluidized bed. Then, the waste supply section is on the fluidized bed so that the waste stays on the first fluidized area, and the waste accumulated on the first fluidized area is sequentially sent to the second fluidized area side. Waste is supplied to an area adjacent to the supply side wall. As a result, the waste is sufficiently gasified while suppressing rapid fluctuations in the combustible gas recovered from the fluidized bed furnace, thereby stably generating the combustible gas from the waste.
 具体的に、第1の流動領域では、当該第1の流動領域の上面に廃棄物が滞留可能となるよう流動が抑えられているので、廃棄物が流動粒子と混合されずに第1の流動領域上に滞留しながら廃棄物中の燃え易いゴミがゆっくりガス化する。そのため、第1の流動領域では、廃棄物の急激な燃焼が抑えられ、これにより、廃棄物の急激なガス化による可燃性ガスの発生が抑えられる。この第1の流動領域上に滞留する廃棄物は、廃棄物供給部により炉本体内に新たな廃棄物が供給されることによって順に第2の領域に進入する。そうすると、この第2の流動領域では、流動が活発で且つ廃棄物の燃焼により高温であるため、第1の流動領域上から進入してきた廃棄物が流動粒子と十分に混合され、これにより、廃棄物が十分にガス化されて可燃性ガスが発生する。その結果、可燃性ガスの間欠的且つ急激な発生が抑えられ、当該ガスの発生が安定する。 Specifically, in the first flow region, since the flow is suppressed so that the waste can stay on the upper surface of the first flow region, the first flow is not mixed with the flow particles. The flammable garbage in the waste gasifies slowly while staying on the area. Therefore, in the first flow region, rapid combustion of waste is suppressed, and thereby generation of combustible gas due to rapid gasification of waste is suppressed. The waste staying on the first fluidized area sequentially enters the second area by supplying new waste into the furnace body by the waste supply section. Then, in this second flow region, since the flow is active and the temperature is high due to the combustion of the waste, the waste that has entered from the first flow region is sufficiently mixed with the flow particles, and thus the waste is disposed of. Goods are fully gasified and combustible gas is generated. As a result, intermittent and rapid generation of the combustible gas is suppressed, and the generation of the gas is stabilized.
 また、混合物排出口の上方に第1の流動領域が形成されてその上側に廃棄物が供給される。このため、この第1の流動領域上に滞留して廃棄物中の燃え易いゴミがゆっくりガス化している間に前記廃棄物中の不燃物や前記廃棄物の加熱により生じた炭化物が炉底まで沈んでも、これら不燃物や炭化物が炉本体から容易に排出される。しかも、廃棄物が第1の流動領域から第2の流動領域に進入してから不燃物や炭化物が底壁に沈んでも、混合物排出口に向って低くなるよう傾斜している底壁上面に沿って不燃物や炭化物が降下する。このため、これら不燃物及び炭化物が炉本体から容易に排出される。 Also, a first flow region is formed above the mixture discharge port, and waste is supplied above the first flow region. For this reason, while the flammable garbage in the waste staying on the first flow region is slowly gasified, the non-combustible material in the waste and the carbide generated by the heating of the waste reach the furnace bottom. Even if it sinks, these incombustibles and carbides are easily discharged from the furnace body. In addition, even if incombustibles and carbides sink to the bottom wall after the waste enters the second flow region from the first flow region, along the top surface of the bottom wall inclined so as to become lower toward the mixture discharge port. Incombustibles and carbides fall. For this reason, these incombustibles and carbides are easily discharged from the furnace body.
 また、底壁の上面が混合物排出口に向かって低くなるように傾斜(即ち、第2の領域から第1の領域に向って低くなるように傾斜)しているため、第2の流動領域の高温の流動粒子が底壁の上面上を第1の流動領域側に降下する。これにより、第1の流動領域に熱が供給される。 In addition, since the upper surface of the bottom wall is inclined so as to be lowered toward the mixture discharge port (that is, inclined so as to be lowered from the second region toward the first region), The hot fluid particles descend on the top surface of the bottom wall toward the first fluid region. Thereby, heat is supplied to the first flow region.
 前記廃棄物供給部は、前記第1の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第1の流動領域上に滞留する廃棄物を順次前記第2の流動領域内に進入させること、が好ましい。 The waste supply unit pushes a new waste laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. It is preferable to sequentially move objects into the second flow region.
 かかる構成によれば、新たな廃棄物が第1の流動領域上に滞留する廃棄物に向けて横向きに押し込まれる。このため、この廃棄物に押されて第1の流動領域上に滞留する廃棄物が確実に第2の流動領域内に進入する。 According to such a configuration, new waste is pushed sideways toward the waste staying on the first flow region. For this reason, the waste which is pushed by the waste and stays on the first flow region surely enters the second flow region.
 流動層炉は、前記混合物排出口から排出された前記不燃物と前記炭化物と前記流動粒子との混合物から炭化物を分離して前記反対側側壁の側から前記流動層に戻す炭化物挿入装置を備えること、が好ましい。 The fluidized bed furnace includes a carbide insertion device that separates the carbide from the mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returns the carbide to the fluidized bed from the opposite side wall side. Are preferred.
 かかる構成によれば、炭化物挿入装置が混合物排出口から流動粒子及び不燃物と共に排出された炭化物を流動が活発で且つ高温の第2の流動領域に戻す。これにより、前記炭化物から可燃性ガスが得られる。その結果、廃棄物から効率よく可燃性ガスが得られる。また、炭化物がガス化するときの熱によって第2の流動領域の温度が高温に維持される。 According to such a configuration, the carbide insertion device returns the carbide discharged together with the flowing particles and the incombustible material from the mixture discharge port to the second flow region where the flow is active and high temperature. Thereby, combustible gas is obtained from the carbide. As a result, combustible gas can be efficiently obtained from the waste. In addition, the temperature of the second flow region is maintained at a high temperature by heat generated when the carbide is gasified.
 尚、本発明に係る流動層炉において、前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記空気供給部は、前記第1の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスの吹き込みを行い、前記第2の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスの吹き込みを行うこと、が好ましい。このような流速で流動化ガスが吹き込まれることにより、流動層において好ましい第1の流動領域と第2の流動領域とが形成される。その結果、廃棄物の急激な燃焼が抑えられながら当該廃棄物のガス化が好適に行われ、廃棄物から可燃性ガスが安定して得られる。 In the fluidized bed furnace according to the present invention, U mf is the minimum fluidization velocity that is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles, and U 0 is the average cross-sectional velocity of the fluidizing gas. Then, the air supply unit blows the fluidizing gas at a flow rate such that U 0 / U mf is 1 or more and less than 2 in the first flow region, and U 0 / U in the second flow region. It is preferable to blow the fluidizing gas at a flow rate at which mf is 2 or more and less than 5. When the fluidizing gas is blown at such a flow rate, the first fluidized region and the second fluidized region that are preferable in the fluidized bed are formed. As a result, gasification of the waste is suitably performed while suppressing rapid combustion of the waste, and combustible gas can be stably obtained from the waste.
 前記混合物排出口から排出された前記混合物から前記流動粒子を分離し、この分離した流動粒子を前記炉本体内に戻す砂循環装置を備えること、が好ましい。 It is preferable to provide a sand circulation device that separates the flowing particles from the mixture discharged from the mixture discharge port and returns the separated flowing particles into the furnace body.
 かかる構成によれば、砂循環装置が混合物排出口から排出された混合物から高温の流動粒子を分離して炉本体内に戻す。これにより、流動層を構成する流動粒子の量が維持されると共に流動層の温度が維持し易くなる。 According to such a configuration, the sand circulating device separates the high-temperature fluidized particles from the mixture discharged from the mixture discharge port and returns it to the furnace body. As a result, the amount of fluidized particles constituting the fluidized bed is maintained and the temperature of the fluidized bed is easily maintained.
 この場合、前記砂循環装置は、前記混合物から分離した流動粒子を前記第1の流動領域上に滞留する廃棄物の上に戻すこと、が好ましい。 In this case, it is preferable that the sand circulation device returns the fluidized particles separated from the mixture onto the waste that remains on the first fluidized region.
 かかる構成によれば、砂循環装置が混合物排出口から排出された高温の流動粒子を第1の流動領域上に滞留する廃棄物上に戻す。これにより、廃棄物中の燃え易いゴミが前記高温の流動粒子を着火源として安定燃焼(ガス化)する。 According to such a configuration, the sand circulating device returns the high-temperature fluidized particles discharged from the mixture discharge port onto the waste staying on the first flow region. Thereby, flammable garbage in the waste is stably combusted (gasified) using the high-temperature fluidized particles as an ignition source.
 前記炉本体は、前記廃棄物供給部による前記廃棄物の押込み方向と直交する方向である幅方向の寸法が当該押込み方向について均一な平面形状を有すること、が好ましい。 It is preferable that the furnace body has a planar shape in which the dimension in the width direction, which is a direction orthogonal to the pushing direction of the waste by the waste supply unit, is uniform in the pushing direction.
 かかる構成によれば、第1の流動領域上の廃棄物が廃棄物供給部から新たに供給された廃棄物に押されて第2の流動領域側に進入するときに、炉本体の廃棄物の移動方向と直交する幅方向の寸法が均一であるため、前記廃棄物の移動が安定する。 According to this configuration, when the waste on the first flow region is pushed by the waste newly supplied from the waste supply unit and enters the second flow region, the waste of the furnace main body Since the dimension in the width direction orthogonal to the moving direction is uniform, the movement of the waste is stabilized.
 前記廃棄物供給部は、前記幅方向に延びる押込み面を有するプッシャと、このプッシャの押込み面が当該押込み面の幅方向全域にわたって同時に廃棄物を前記流動層上に押し込むように当該プッシャを前記押込み方向と平行な方向に往復動作させる駆動部とを有することが好ましい。 The waste supply unit includes a pusher having a pushing surface extending in the width direction, and the pusher pushes the pusher so that the pushing surface of the pusher simultaneously pushes waste onto the fluidized bed over the entire width direction of the pushing surface. It is preferable to have a drive unit that reciprocates in a direction parallel to the direction.
 かかる構成によれば、幅方向に均一に廃棄物を押し込むことができる。このため、第1の流動領域から第2の流動領域側への廃棄物の移動が幅方向において略均一となる。その結果、炉内の一部に廃棄物が集中することを防ぐことができる。 According to such a configuration, the waste can be uniformly pushed in the width direction. For this reason, the movement of the waste from the first flow region to the second flow region becomes substantially uniform in the width direction. As a result, it is possible to prevent the waste from being concentrated in a part of the furnace.
 また、上記の実施形態に係る廃棄物処理方法は、廃棄物を加熱して当該廃棄物から可燃性ガスを取り出すための廃棄物処理方法であって、前記廃棄物を加熱するための流動層を構成する流動粒子と、この流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物及び前記廃棄物の加熱により生じた炭化物を前記流動粒子と共に排出するための混合物排出口が設けられ、この混合物排出口に向かって前記底壁の上面上を前記流動粒子が降下するように当該底壁の上面が前記混合物排出口に向かって低くなるように傾斜する炉本体とを有する流動層炉を用意する工程と、前記炉本体の底壁のうち前記混合物排出口の周囲の領域から前記流動粒子に向けて流動化ガスを吹き込むことにより前記流動粒子の上側に廃棄物が滞留することが可能な程度の流動化度合いをもつ第1の流動領域を形成すると共に、この第1の流動領域と前記側壁のうち前記底壁の中心位置を挟んで前記混合物排出口と反対側に位置する反対側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込むことにより当該第1の流動領域よりも前記流動粒子の流動化の度合いが高い第2の流動領域を形成する工程と、前記側壁のうち前記底壁の中心位置に対して前記混合物排出口と同じ側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより、前記第1の流動領域上に前記廃棄物を滞留させ、且つ、その滞留した廃棄物を順次前記第2の流動領域内に進入させてガス化する工程と、を含むことを特徴とする。 In addition, the waste treatment method according to the above embodiment is a waste treatment method for heating waste to take out combustible gas from the waste, and includes a fluidized bed for heating the waste. A non-combustible material in the waste having a fluidized particle, a bottom wall supporting the fluidized particle from below, and a side wall rising from the bottom wall at a position deviated in a specific direction from the center of the bottom wall; And a mixture outlet for discharging carbide generated by heating the waste together with the fluidized particles, and the bottom of the fluidized particles descends on the upper surface of the bottom wall toward the mixture outlet. Providing a fluidized bed furnace having a furnace body inclined such that the upper surface of the wall is lowered toward the mixture outlet, and the flow from the region around the mixture outlet of the bottom wall of the furnace body particle A fluidizing gas is blown toward the fluidized particles to form a first fluidized region having a fluidization degree that allows waste to stay above the fluidized particles, and the first fluidized region and the side wall. Fluidized at a flow rate higher than the flow rate of the fluidized gas blown in the first flow region between the mixture discharge port and the opposite side wall on the opposite side across the center position of the bottom wall Forming a second fluidized region having a higher degree of fluidization of the fluidized particles than the first fluidized region by blowing gas, and discharging the mixture with respect to a center position of the bottom wall among the side walls. Supplying the waste to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the same side as the outlet, thereby retaining the waste on the first fluidized region; And the stay And waste are sequentially entered in the second flow region, characterized in that it comprises the steps of gasification, the by.
 この廃棄物処理方法によれば、流動層において混合物排出口の周囲の第1の領域とこの第1の領域よりも流動化の度合いの高い第2の流動領域とが形成される。そして、廃棄物が前記第1の流動領域上に滞留し且つこの第1の流動領域上に滞留した廃棄物が順に第2の流動領域側に進入する。これにより、流動層炉から回収される可燃性ガスの急激な変動が抑えられつつ廃棄物のガス化が十分に行われる。その結果、廃棄物から可燃性ガスが安定して発生する。 According to this waste treatment method, in the fluidized bed, a first region around the mixture discharge port and a second fluidized region having a higher degree of fluidization than the first region are formed. Then, the waste stays on the first flow region, and the waste staying on the first flow region sequentially enters the second flow region. Thereby, the gasification of the waste is sufficiently performed while the rapid fluctuation of the combustible gas recovered from the fluidized bed furnace is suppressed. As a result, combustible gas is stably generated from the waste.
 また、混合物排出口の上方に第1の流動領域が形成されてその上面に廃棄物が供給される。これにより、廃棄物が第1の流動領域上に滞留して前記廃棄物中の燃え易いゴミがゆっくりガス化している間に前記廃棄物中の不燃物や前記廃棄物の加熱により生じた炭化物が炉底まで沈んでも、これら不燃物や炭化物が炉本体から容易に且つ確実に排出される。しかも、廃棄物が第1の流動領域から第2の流動領域に進入してから不燃物や炭化物が底壁に沈んでも、混合物排出口に向って低くなるよう傾斜している底壁上面に沿って不燃物や炭化物が降下する。このため、これら不燃物及び炭化物が炉本体から容易に排出される。 Also, a first flow region is formed above the mixture discharge port, and waste is supplied to the upper surface thereof. Thereby, while the waste stays on the first flow region and the flammable garbage in the waste is slowly gasified, the non-combustible material in the waste and the carbide generated by heating the waste are generated. Even if it sinks to the furnace bottom, these incombustibles and carbides are easily and reliably discharged from the furnace body. In addition, even if incombustibles and carbides sink to the bottom wall after the waste enters the second flow region from the first flow region, along the top surface of the bottom wall inclined so as to become lower toward the mixture discharge port. Incombustibles and carbides fall. For this reason, these incombustibles and carbides are easily discharged from the furnace body.
 また、底壁の上面が混合物排出口に向かって低くなるように傾斜(即ち、第2の領域から第1の領域に向って低くなるように傾斜)しているため、第2の流動領域の高温の流動粒子が底壁の上面上を第1の流動領域側に降下する。これにより、第1の流動領域に熱が供給される。 In addition, since the upper surface of the bottom wall is inclined so as to be lowered toward the mixture discharge port (that is, inclined so as to be lowered from the second region toward the first region), The hot fluid particles descend on the top surface of the bottom wall toward the first fluid region. Thereby, heat is supplied to the first flow region.
 前記ガス化する工程では、前記第1の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第1の流動領域上に滞留する廃棄物を順次前記第2の流動領域内に進入させてガス化すること、が好ましい。 In the gasification step, new waste is pushed laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. It is preferable to sequentially gasify the object by entering the second flow region.
 かかる構成によれば、新たな廃棄物が第1の流動領域上に滞留する廃棄物に向けて横向きに押し込まれる。このため、この廃棄物に押されて第1の流動領域上に滞留する廃棄物が確実に第2の流動領域内に進入しガス化することができる。 According to such a configuration, new waste is pushed sideways toward the waste staying on the first flow region. For this reason, the waste that is pushed by the waste and stays on the first flow region can surely enter the second flow region and be gasified.
 前記廃棄物処理方法は、前記混合物排出口から排出される前記不燃物と前記炭化物と前記流動粒子との混合物から炭化物を分離して前記反対側側壁の側から前記流動層に戻す工程を備えること、が好ましい。 The waste treatment method includes a step of separating carbide from a mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returning the separated carbide to the fluidized bed from the opposite side wall side. Are preferred.
 かかる構成によれば、混合物排出口から流動粒子及び不燃物と共に排出された炭化物が分離されて流動が活発で且つ高温の第2の流動領域に戻される。これにより、この炭化物が確実にガス化される。また、炭化物がガス化したときの熱によって第2の流動領域の温度が高温に維持し易くなる。 According to such a configuration, the carbide discharged together with the flowing particles and the incombustible material is separated from the mixture discharge port, and the flow is active and returned to the high temperature second flow region. Thereby, this carbide | carbonized_material is gasified reliably. Moreover, it becomes easy to maintain the temperature of the second fluidized region at a high temperature by heat generated when the carbide is gasified.
 前記廃棄物処理方法において、前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記第1の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスが吹込まれ、前記第2の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスが吹込まれること、が好ましい。 In the waste treatment method, if the minimum fluidization speed, which is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles, is U mf and the average cross-sectional flow velocity of the fluidizing gas is U 0 , In the first flow region, the fluidizing gas is blown at a flow rate such that U 0 / U mf is 1 or more and less than 2, and in the second flow region, the flow rate is such that U 0 / U mf is 2 or more and less than 5. It is preferred that the fluidizing gas is blown.
 このような流速で流動化ガスが吹き込まれることにより、流動層において好ましい第1の流動領域と第2の流動領域とが形成される。その結果、廃棄物の急激な燃焼が抑えられながら当該廃棄物のガス化が好適に行われ、廃棄物から可燃性ガスが安定して得られる。 When the fluidizing gas is blown at such a flow rate, the first fluidized region and the second fluidized region that are preferable in the fluidized bed are formed. As a result, gasification of the waste is suitably performed while suppressing rapid combustion of the waste, and combustible gas can be stably obtained from the waste.
 以上のように、本発明に係る流動層炉及び廃棄物処理方法は、流動粒子を流動化させた流動層において廃棄物を加熱することにより、当該廃棄物から可燃性ガスを取り出すのに有用であり、燃え易いゴミを含む廃棄物であっても可燃性ガスを安定して得るのに適している。 As described above, the fluidized bed furnace and the waste treatment method according to the present invention are useful for extracting the combustible gas from the waste by heating the waste in the fluidized bed in which the fluidized particles are fluidized. Yes, it is suitable for stably obtaining flammable gas even if it is waste containing flammable garbage.

Claims (12)

  1.  廃棄物を加熱して当該廃棄物から可燃性ガスを取り出す流動層炉であって、
     廃棄物を加熱するための流動層を構成する流動粒子と、
     前記流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物及び前記廃棄物の加熱により生じた炭化物を前記流動粒子と共に排出するための混合物排出口が設けられ、この混合物排出口に向かって前記底壁の上面上を前記流動粒子を降下させるように当該底壁の上面が前記混合物排出口に向かって低くなるように傾斜する炉本体と、
     前記炉本体の底壁から前記流動粒子に向かって流動化ガスを吹き込むことにより当該流動粒子を流動化させるガス供給部と、
     前記側壁のうち前記底壁の中心位置に対して前記混合物排出口と同じ側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより前記流動層上の廃棄物を前記側壁のうち前記底壁の中心位置を挟んで前記混合物排出口と反対側に位置する反対側側壁の側に移動させる廃棄物供給部と、を備え、
     前記ガス供給部は、前記混合物排出口の周囲から前記流動化ガスを吹き込むことにより前記流動粒子の上側に廃棄物が滞留することが可能な程度の流動化度合いをもつ第1の流動領域を形成すると共に、この第1の流動領域と前記反対側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込むことにより、前記第1の流動領域よりも前記流動粒子の流動化の度合いが高く、これにより前記流動粒子が対流して前記廃棄物と混合することにより当該廃棄物をガス化させる第2の流動領域を形成し、
     前記廃棄物供給部は、前記第1の流動領域上に前記廃棄物が滞留し、且つ、その滞留した廃棄物が順次前記第2の流動領域内に進入するように、前記供給側側壁から前記流動層に対して廃棄物の供給を行う、流動層炉。
    A fluidized bed furnace that heats waste and takes out combustible gas from the waste,
    Fluidized particles constituting a fluidized bed for heating waste,
    A bottom wall that supports the fluidized particles from below and a side wall that rises from the bottom wall, the non-combustible material in the waste and the heating of the waste at a position deviated in a specific direction from the center position on the bottom wall A mixture outlet is provided for discharging the carbide generated by the above together with the fluidized particles, and the upper surface of the bottom wall is placed on the mixture so as to lower the fluidized particles on the upper surface of the bottom wall toward the mixture outlet. A furnace body that inclines so as to become lower toward the discharge port;
    A gas supply unit that fluidizes the fluidized particles by blowing fluidized gas from the bottom wall of the furnace body toward the fluidized particles;
    The waste is supplied to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the same side as the mixture discharge port with respect to the center position of the bottom wall among the side walls, thereby A waste supply unit that moves waste on the fluidized bed to the side of the opposite side wall located on the opposite side of the mixture discharge port across the center position of the bottom wall of the side wall, and
    The gas supply unit forms a first fluidized region having a fluidization degree such that waste can be retained above the fluidized particles by blowing the fluidized gas from around the mixture discharge port. In addition, the fluidizing gas is blown between the first fluidizing region and the opposite side wall at a flow rate higher than the fluidizing gas blowing velocity in the first fluidizing region. The fluidized particles have a higher degree of fluidization than the fluidized region, whereby the fluidized particles convect and mix with the waste to form a second fluidized region that gasifies the waste,
    The waste supply unit has the waste from the supply side wall so that the waste stays on the first flow region and the stayed waste sequentially enters the second flow region. A fluidized bed furnace that supplies waste to a fluidized bed.
  2.  請求項1記載の流動層炉において、
     前記廃棄物供給部は、前記第1の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第1の流動領域上に滞留する廃棄物を順次前記第2の流動領域内に進入させる、流動層炉。
    The fluidized bed furnace according to claim 1,
    The waste supply unit pushes a new waste laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. A fluidized bed furnace in which things sequentially enter the second fluidized zone.
  3.  請求項1又は2に記載の流動層炉において、
     前記混合物排出口から排出された前記不燃物と前記炭化物と前記流動粒子との混合物から炭化物を分離して前記反対側側壁の側から前記流動層に戻す炭化物挿入装置を備える、流動層炉。
    In the fluidized bed furnace according to claim 1 or 2,
    A fluidized bed furnace comprising a carbide insertion device that separates carbide from the mixture of the incombustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returns the mixture to the fluidized bed from the opposite side wall.
  4.  請求項1乃至3のいずれか1項に記載の流動層炉において、
     前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記空気供給部は、前記第1の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスの吹き込みを行い、前記第2の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスの吹き込みを行う、流動層炉。
    The fluidized bed furnace according to any one of claims 1 to 3,
    When the minimum fluidization speed that is the minimum flow velocity of the fluidization gas for fluidizing the fluidized particles is U mf and the average cross-sectional flow velocity of the fluidization gas is U 0 , the air supply unit is The fluidizing gas is blown at a flow rate where U 0 / U mf is 1 or more and less than 2 in the flow region of 1, and the flow rate of U 0 / U mf is 2 or more and less than 5 in the second flow region. A fluidized bed furnace that injects fluidized gas.
  5.  請求項1乃至4のいずれか1項に記載の流動層炉において、
     前記混合物排出口から排出された前記混合物から前記流動粒子を分離し、この分離した流動粒子を前記炉本体内に戻す砂循環装置を備える、流動層炉。
    The fluidized bed furnace according to any one of claims 1 to 4,
    A fluidized bed furnace comprising a sand circulation device that separates the fluidized particles from the mixture discharged from the mixture discharge port and returns the separated fluidized particles into the furnace body.
  6.  請求項5に記載の流動層炉において、
     前記砂循環装置は、前記混合物から分離した流動粒子を前記第1の流動領域上に滞留する廃棄物の上に戻す、流動層炉。
    The fluidized bed furnace according to claim 5,
    The sand circulation device is a fluidized bed furnace in which the fluidized particles separated from the mixture are returned onto the waste staying on the first fluidized zone.
  7.  請求項1乃至6のいずれか1項に記載に流動層炉において、
     前記炉本体は、前記廃棄物供給部による前記廃棄物の押込み方向と直交する方向である幅方向の寸法が当該押込み方向について均一な平面形状を有する、流動層炉。
    In a fluidized bed furnace given in any 1 paragraph of Claims 1 thru / or 6,
    The fluidized bed furnace, wherein the furnace body has a planar shape in which a dimension in a width direction which is a direction orthogonal to a pushing direction of the waste by the waste supply unit is uniform in the pushing direction.
  8.  請求項7記載の流動層炉において、
     前記廃棄物供給部は、前記幅方向に延びる押込み面を有するプッシャと、このプッシャの押込み面が当該押込み面の幅方向全域にわたって同時に廃棄物を前記流動層上に押し込むように当該プッシャを前記押込み方向と平行な方向に往復動作させる駆動部とを有する、流動層炉。
    The fluidized bed furnace according to claim 7,
    The waste supply unit includes a pusher having a pushing surface extending in the width direction, and the pusher pushes the pusher so that the pushing surface of the pusher simultaneously pushes waste onto the fluidized bed over the entire width direction of the pushing surface. A fluidized bed furnace having a drive unit that reciprocates in a direction parallel to the direction.
  9.  廃棄物を加熱して当該廃棄物から可燃性ガスを取り出すための廃棄物処理方法であって、
     前記廃棄物を加熱するための流動層を構成する流動粒子と、この流動粒子を下方から支持する底壁およびこの底壁から立上がる側壁を有し、前記底壁においてその中心位置から特定方向に偏った位置に前記廃棄物中の不燃物及び前記廃棄物の加熱により生じた炭化物を前記流動粒子と共に排出するための混合物排出口が設けられ、この混合物排出口に向かって前記底壁の上面上を前記流動粒子が降下するように当該底壁の上面が前記混合物排出口に向かって低くなるように傾斜する炉本体とを有する流動層炉を用意する工程と、
     前記炉本体の底壁のうち前記混合物排出口の周囲の領域から前記流動粒子に向けて流動化ガスを吹き込むことにより前記流動粒子の上側に廃棄物が滞留することが可能な程度の流動化度合いをもつ第1の流動領域を形成すると共に、この第1の流動領域と前記側壁のうち前記底壁の中心位置を挟んで前記混合物排出口と反対側に位置する反対側側壁との間に前記第1の流動領域での流動化ガスの吹き込みの流速よりも高い流速で流動化ガスを吹き込むことにより当該第1の流動領域よりも前記流動粒子の流動化の度合いが高い第2の流動領域を形成する工程と、
     前記側壁のうち前記底壁の中心位置に対して前記混合物排出口と同じ側に位置する供給側側壁から前記流動層上における当該供給側側壁に隣接する領域に前記廃棄物を供給し、これにより、前記第1の流動領域上に前記廃棄物を滞留させ、且つ、その滞留した廃棄物を順次前記第2の流動領域内に進入させてガス化する工程と、を含む廃棄物処理方法。
    A waste treatment method for heating waste to take out combustible gas from the waste,
    There are fluidized particles that constitute a fluidized bed for heating the waste, a bottom wall that supports the fluidized particles from below, and a sidewall that rises from the bottom wall, and the bottom wall has a specific direction from its center position. A mixture discharge port for discharging the non-combustible material in the waste and the carbide generated by heating the waste together with the fluidized particles is provided at a biased position on the upper surface of the bottom wall toward the mixture discharge port. Providing a fluidized bed furnace having a furnace body inclined so that the upper surface of the bottom wall is lowered toward the mixture discharge port so that the fluidized particles fall;
    The degree of fluidization that allows waste to stay above the fluidized particles by blowing fluidized gas toward the fluidized particles from the region around the mixture outlet in the bottom wall of the furnace body. Between the first flow region and the opposite side wall located on the opposite side of the mixture outlet from the side wall with the center position of the bottom wall interposed therebetween. A second fluidized region having a higher degree of fluidization of the fluidized particles than the first fluidized region by blowing fluidized gas at a flow rate higher than the flow rate of fluidizing gas blown in the first fluidized region. Forming, and
    The waste is supplied to a region adjacent to the supply side wall on the fluidized bed from a supply side wall located on the same side as the mixture discharge port with respect to the center position of the bottom wall among the side walls, thereby A waste treatment method comprising: stagnating the waste on the first fluidized area and gasifying the retained waste sequentially into the second fluidized area.
  10.  請求項9記載の廃棄物処理方法において、
     前記ガス化する工程では、前記第1の流動領域上に滞留する廃棄物に向けて前記供給側側壁から新たな廃棄物を横向きに押込み、これにより、前記第1の流動領域上に滞留する廃棄物を順次前記第2の流動領域内に進入させてガス化する、廃棄物処理方法。
    The waste disposal method according to claim 9, wherein
    In the gasification step, new waste is pushed laterally from the supply side wall toward the waste staying on the first flow region, and thereby the waste staying on the first flow region. A waste treatment method in which an object is sequentially gasified by entering the second flow region.
  11.  請求項9又は10記載の廃棄物処理方法において、
     前記混合物排出口から排出される前記不燃物と前記炭化物と前記流動粒子との混合物から炭化物を分離して前記反対側側壁の側から前記流動層に戻す工程を備える、廃棄物処理方法。
    The waste disposal method according to claim 9 or 10,
    A waste treatment method comprising: separating carbide from a mixture of the non-combustible material, the carbide, and the fluidized particles discharged from the mixture discharge port and returning the carbide to the fluidized bed from the opposite side wall.
  12.  請求項9乃至11のいずれか1項に記載に廃棄物処理方法において、
     前記流動粒子を流動化するための前記流動化ガスの吹き込みの最小流速である最小流動化速度をUmf、当該流動化ガスの平均断面流速をUとすると、前記第1の流動領域ではU/Umfが1以上2未満となる流速で前記流動化ガスが吹込まれ、前記第2の流動領域ではU/Umfが2以上5未満となる流速で前記流動化ガスが吹込まれる、廃棄物処理方法。
    The waste treatment method according to any one of claims 9 to 11,
    When the minimum fluidization speed that is the minimum flow velocity of the fluidizing gas for fluidizing the fluidized particles is U mf and the average cross-sectional flow velocity of the fluidizing gas is U 0 , U 1 in the first fluidized region The fluidizing gas is injected at a flow rate at which 0 / U mf is 1 or more and less than 2, and the fluidizing gas is injected at a flow rate at which U 0 / U mf is 2 or more and less than 5 in the second flow region. , Waste disposal methods.
PCT/JP2011/003528 2010-06-22 2011-06-21 Fluidized bed furnace and waste processing method WO2011161948A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800311838A CN102947647A (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste processing method
PL11797837T PL2587147T3 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste processing method
US13/805,922 US20130098277A1 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste treatment method
EP11797837.9A EP2587147B1 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010141830A JP5694690B2 (en) 2010-06-22 2010-06-22 Fluidized bed furnace and waste treatment method
JP2010-141830 2010-06-22
JP2010164745A JP5694700B2 (en) 2010-07-22 2010-07-22 Fluidized bed furnace and waste treatment method
JP2010-164745 2010-07-22

Publications (1)

Publication Number Publication Date
WO2011161948A1 true WO2011161948A1 (en) 2011-12-29

Family

ID=45371155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003528 WO2011161948A1 (en) 2010-06-22 2011-06-21 Fluidized bed furnace and waste processing method

Country Status (5)

Country Link
US (1) US20130098277A1 (en)
EP (1) EP2587147B1 (en)
CN (1) CN102947647A (en)
PL (1) PL2587147T3 (en)
WO (1) WO2011161948A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804183B2 (en) * 2015-01-30 2020-12-23 三菱重工環境・化学エンジニアリング株式会社 Fluidized bed sludge incinerator
CN105525275B (en) * 2016-01-15 2018-08-17 上海弘枫实业有限公司 Fluid bed furnace carbon carbon coating unit
FI127753B (en) 2017-06-09 2019-01-31 Bioshare Ab Recovery of chemicals from fuel streams
JP6928544B2 (en) * 2017-11-29 2021-09-01 川崎重工業株式会社 Fluidized bed monitoring method and equipment
CN114251661B (en) * 2021-11-30 2023-05-30 上海工程技术大学 Low-nitrogen combustion circulating fluidized bed system for treating kitchen waste and application thereof
SE2230025A1 (en) * 2022-01-30 2023-07-31 Bioshare Ab Biochar Production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205720A (en) * 1985-03-08 1986-09-11 Kobe Steel Ltd Lateral type fluidized bed type incinerator
JPH07110122A (en) * 1993-08-17 1995-04-25 Mitsubishi Heavy Ind Ltd Fluidized bed combustion apparatus
JPH07145921A (en) * 1993-11-22 1995-06-06 Takuma Co Ltd Fluidized bed incinerator
JPH09500714A (en) * 1993-12-23 1997-01-21 コンバッション エンヂニアリング インコーポレーテッド Internal circulation fluidized bed combustion system
JPH11159732A (en) * 1997-12-01 1999-06-15 Kawasaki Heavy Ind Ltd Secondary combustion method and device for unburnt matter in gasifying furnace

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108317A (en) * 1981-12-21 1983-06-28 Fuji Electric Co Ltd Incinerating material supply device for fluidized bed type incinetrating furnace
DE3406200A1 (en) * 1984-02-21 1985-08-22 Deutsche Babcock Werke AG, 4200 Oberhausen STEAM GENERATOR WITH A STATIONARY FLUID BURN FIRING
US4777889A (en) * 1987-05-22 1988-10-18 Smith Richard D Fluidized bed mass burner for solid waste
US4803973A (en) * 1987-12-14 1989-02-14 Harman Stove And Welding, Inc. Grate for coal stove
US5059404A (en) * 1989-02-14 1991-10-22 Manufacturing And Technology Conversion International, Inc. Indirectly heated thermochemical reactor apparatus and processes
US4974531A (en) * 1990-05-22 1990-12-04 Donlee Technologies, Inc. Method and apparatus for incinerating hazardous waste
JP2639885B2 (en) * 1993-08-18 1997-08-13 株式会社タクマ Waste incineration method and apparatus
JPH10318517A (en) * 1997-05-20 1998-12-04 Nkk Corp Method of controlling combustion of fluidized bed incinerator and combustion controlling device
CN2377450Y (en) * 1999-07-12 2000-05-10 中国科学院工程热物理研究所 Vortex circulation fluidised bed refuse incinerator
CN2490439Y (en) * 2001-07-16 2002-05-08 常州市三信环卫环保设备有限公司 Feeding apparatus of house refuse incinerator
CN1271371C (en) * 2004-12-09 2006-08-23 上海交通大学 Internal circulation fluidized bed garbage incineration method having melt sticking dechlorination function
CN101206026A (en) * 2007-12-14 2008-06-25 上海交通大学 Combustion device and method for biomass birdnesting slagoff fluidized bed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205720A (en) * 1985-03-08 1986-09-11 Kobe Steel Ltd Lateral type fluidized bed type incinerator
JPH07110122A (en) * 1993-08-17 1995-04-25 Mitsubishi Heavy Ind Ltd Fluidized bed combustion apparatus
JPH07145921A (en) * 1993-11-22 1995-06-06 Takuma Co Ltd Fluidized bed incinerator
JPH09500714A (en) * 1993-12-23 1997-01-21 コンバッション エンヂニアリング インコーポレーテッド Internal circulation fluidized bed combustion system
JPH11159732A (en) * 1997-12-01 1999-06-15 Kawasaki Heavy Ind Ltd Secondary combustion method and device for unburnt matter in gasifying furnace

Also Published As

Publication number Publication date
EP2587147A4 (en) 2015-10-07
PL2587147T3 (en) 2018-06-29
CN102947647A (en) 2013-02-27
EP2587147B1 (en) 2017-11-22
US20130098277A1 (en) 2013-04-25
EP2587147A1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2011161948A1 (en) Fluidized bed furnace and waste processing method
EP0736157B1 (en) Internal circulation fluidized bed (icfb) combustion system
WO2011161947A1 (en) Fluidized bed furnace and waste processing method
JPS6217123B2 (en)
WO2012132279A1 (en) Fluidized bed furnace
JP5744904B2 (en) Fluidized bed furnace and waste treatment method
US3702595A (en) Fluidised bed incinerators
JP2764382B2 (en) Circulating fluidized bed reactor for low-grade fuel
KR20130021718A (en) Fluidized bed combustion apparatus with stair type air distributor
JP5694700B2 (en) Fluidized bed furnace and waste treatment method
JP3749144B2 (en) Water-cooled stoker
US2276659A (en) Wet refuse furnace and system
EP2754960A1 (en) Fluidized bed furnace and waste disposal method using fluidized bed furnace
KR101378739B1 (en) Method and arrangement for feeding fuel into a circulating fluidized bed boiler
JP5766516B2 (en) Cylindrical fluidized bed furnace
JP2639885B2 (en) Waste incineration method and apparatus
JP3535835B2 (en) Fluidized bed incinerator
JP6814904B1 (en) Combustibles combustion equipment and methods
JP6460846B2 (en) Waste disposal method and waste disposal apparatus
RU2576545C1 (en) Method of burning of litter mass (lm) and plant for its implementation
EP3447375A1 (en) Grate and method of burning a granular fuel material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031183.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13805922

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201006700

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011797837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011797837

Country of ref document: EP