JPH10318517A - Method of controlling combustion of fluidized bed incinerator and combustion controlling device - Google Patents

Method of controlling combustion of fluidized bed incinerator and combustion controlling device

Info

Publication number
JPH10318517A
JPH10318517A JP9129887A JP12988797A JPH10318517A JP H10318517 A JPH10318517 A JP H10318517A JP 9129887 A JP9129887 A JP 9129887A JP 12988797 A JP12988797 A JP 12988797A JP H10318517 A JPH10318517 A JP H10318517A
Authority
JP
Japan
Prior art keywords
main body
amount
combustion
fluidized bed
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9129887A
Other languages
Japanese (ja)
Inventor
Minoru Tanabe
実 田鍋
Hajime Akiyama
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9129887A priority Critical patent/JPH10318517A/en
Publication of JPH10318517A publication Critical patent/JPH10318517A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Abstract

PROBLEM TO BE SOLVED: To obtain a method of controlling combustion of a fluidized bed incinerator and a combustion controlling device that are simple and does not cause variation of the nature of exhaust gas in spite of the variation of the quantity of a fuel such as fed waste. SOLUTION: A fluidized bed incinerator is structured storing fluidizing sand 5 inside a fluidized bed incinerator main body 1, enabling the supply of fluidizing air for fluidizing the sand 5, enabling the supply of secondary air together with the waste inside the fluidized bed incinerator main body 1 and combusting the waste inside the fluidized bed incinerator main body 1. In this case, three or more thermometers 13 to 15 are arranged to the inside of the fluidized bed incinerator main body 1 each of them with different height, the temperature distribution inside the fluidized bed incinerator main body 1 is obtained from the measured values by the thermometer 13 to 15, the quantity of the waste is increased or decreased, and the quantity of the secondary air and the quantity of the fluidizing air are decreased or increased according to the temperature distribution inside the fluidized bed incinerator main body 1 and the central position of combustion is set to the position of the thermometer positioned at the center of the vertical height among the thermometers 13 to 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動床焼却炉の燃
焼制御方法および燃焼制御装置に関するもので、特に焼
却炉本体内の温度分布を計測し、燃焼中心位置を適性な
位置に保つことにより、燃料の量例えばごみ投入量が変
動しても排ガス性状の変動の少ない燃焼状態を維持する
燃焼制御方法および燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method and a combustion control device for a fluidized bed incinerator, and more particularly to a method for measuring a temperature distribution in an incinerator main body and keeping a combustion center at an appropriate position. The present invention relates to a combustion control method and a combustion control device that maintain a combustion state in which the characteristics of exhaust gas change little even when the amount of fuel, for example, the amount of waste input changes.

【0002】[0002]

【従来の技術】流動床焼却炉は、燃焼特性が優れてお
り、都市ごみや産業廃棄物の焼却炉として利用されてい
る。しかしながら、都市ごみや産業廃棄物はその性質上
連続した定量供給が困難であり、これを流動床焼却炉に
投入した場合、短時間で燃焼してしまうために、投入量
の変動がそのまま燃焼状態の変動や燃焼排ガス性状の変
動につながるという問題がある。燃焼排ガス性状として
は、環境問題の観点から、ダイオキシンとの相関が高い
とされる一酸化炭素COが注目されている。
2. Description of the Related Art Fluid bed incinerators have excellent combustion characteristics and are used as incinerators for municipal solid waste and industrial waste. However, continuous quantitative supply of municipal solid waste and industrial waste is difficult due to its nature, and when it is put into a fluidized bed incinerator, it burns in a short period of time. This leads to the problem of fluctuations in the exhaust gas quality and the characteristics of the combustion exhaust gas. As the properties of combustion exhaust gas, carbon monoxide CO, which is considered to have a high correlation with dioxin, has been attracting attention from the viewpoint of environmental problems.

【0003】ごみが燃焼して生成するCOは不完全燃焼
によるものであり、COがさらに酸化してCO2 になる
反応が進まないような低温度条件に起因する。従って、
COの量は温度が高くなるにつれ減少する傾向がある。
[0003] CO generated by burning refuse is due to incomplete combustion, and is caused by low temperature conditions such that the reaction of further oxidizing CO to CO 2 does not proceed. Therefore,
The amount of CO tends to decrease with increasing temperature.

【0004】このようなことから、従来COを低減する
ために、焼却炉内をある温度範囲に制御することが行わ
れており、その一例として特開平4−203802号公
報がある。
[0004] In view of the above, in order to reduce CO, the inside of the incinerator has been controlled to a certain temperature range, for example, Japanese Patent Application Laid-Open No. Hei 4-203802.

【0005】これは流動層炉内の二次空気が吹き込まれ
る燃焼室空間を小区画からなる多数の仮想セグメントに
分割し、この小区画の空間毎に二次空気の供給手段およ
びその後流に特定ガス例えば酸素の濃度計および/また
は温度計を設置し、これらの仮想セグメント毎に該ガス
濃度計および/または温度計の計測値が所定値になるよ
うに二次空気の供給量、および必要に応じて燃料量を制
御し、燃焼ガス空間における未燃ガスの偏在を解消し、
その燃料の完全燃焼を図るようにしたものである。
[0005] In this method, the combustion chamber space into which the secondary air in the fluidized bed furnace is blown is divided into a large number of virtual segments each composed of a small section, and the space for each of the small sections is specified as a secondary air supply means and a downstream stream. A gas and / or thermometer for gas, for example, oxygen is installed, and the supply amount of the secondary air and the necessity for the secondary air so that the measured value of the gas and / or thermometer becomes a predetermined value for each of these virtual segments. Control the amount of fuel accordingly, eliminating uneven distribution of unburned gas in the combustion gas space,
The complete combustion of the fuel is intended.

【0006】[0006]

【発明が解決しようとする課題】以上述べた公開公報に
よれば、各々の仮想セグメントの温度、酸素濃度を独立
して制御することができるため、CO濃度、窒素酸化物
の低減に最適な燃焼温度および窒素濃度の空間を形成す
ることができる。
According to the above-mentioned publication, the temperature and the oxygen concentration of each virtual segment can be controlled independently, so that the optimum combustion for reducing the CO concentration and the nitrogen oxides can be achieved. A space for temperature and nitrogen concentration can be formed.

【0007】しかしながら、該公開公報は上記効果とは
裏腹に仮想セグメント毎に、ガス濃度計および/または
温度計を設置する必要があるので、全体の構成が複雑に
なるという問題点がある。
[0007] However, contrary to the above-mentioned effect, this publication requires installation of a gas concentration meter and / or a thermometer for each virtual segment, and thus has a problem in that the entire configuration is complicated.

【0008】本発明は、以上のような問題点を除去する
ためなされたもので、構成が簡単でありながら、燃料の
量例えばごみ投入量に変動が生じても排ガス性状に変動
が生じない流動床焼却炉の燃焼制御方法および燃焼制御
装置を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned problems, and has a simple structure, but does not cause fluctuations in the properties of exhaust gas even when the amount of fuel, for example, the amount of waste, fluctuates. An object of the present invention is to provide a combustion control method and a combustion control device for a floor incinerator.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、流動床焼却炉本体内部
に流動媒体が収納され、この流動媒体を流動させるため
の流動化空気を供給可能に構成し、かつ前記焼却炉本体
内部に燃料と共に二次空気を供給可能に構成し、焼却炉
本体内部で前記燃料を燃焼させる流動床焼却炉におい
て、前記焼却炉本体内部に上下方向の高さ位置がそれぞ
れ異なるように少なくとも3個の温度計の検出部を配置
し、該各温度計の検出部の検出値に基づき前記焼却炉本
体内部の温度分布を求め、該温度分布に基づき前記燃料
の量ならびに前記二次空気の量および前記流動化空気の
量を制御し、前記各温度計の検出部のうち上下方向の高
さのほぼ中央に位置する温度計の検出部の検出値が最高
になるようにした流動床焼却炉の燃焼制御方法である。
In order to achieve the above object, an invention according to claim 1 is characterized in that a fluidized medium is accommodated in a fluidized bed incinerator main body, and fluidized air for flowing the fluidized medium is supplied. A fluidized bed incinerator configured to be able to supply and configured to be able to supply secondary air together with fuel inside the incinerator main body, and to burn the fuel inside the incinerator main body. The detectors of at least three thermometers are arranged so that the height positions are different from each other, a temperature distribution inside the incinerator main body is obtained based on a detection value of the detector of each thermometer, and the temperature distribution is determined based on the temperature distribution. The amount of fuel and the amount of the secondary air and the amount of the fluidized air are controlled, and among the detection units of the respective thermometers, the detection value of the detection unit of the thermometer located substantially at the center of the vertical height is adjusted. The best flow A combustion control method of the incinerator.

【0010】前記目的を達成するため、請求項2に対応
する発明は、流動床焼却炉本体内部に流動媒体が収納さ
れ、この流動媒体を流動させるための流動化空気を供給
可能に構成し、かつ前記焼却炉本体内部に燃料と共に二
次空気を供給可能に構成し、焼却炉本体内部で前記燃料
を燃焼させる流動床焼却炉において、前記焼却炉本体内
部に上下方向の高さ位置がそれぞれ異なるように少なく
とも3個の温度計の検出部を配置し、該各温度計の検出
部の検出値に基づき前記焼却炉本体内部の温度分布を求
め、該温度分布に基づき前記燃料の量を増加または減少
ならびに前記二次空気の量および前記流動化空気の量を
減少または増加し、前記燃焼の中心位置を、前記各温度
計の検出部のうち上下方向の高さのほぼ中央に位置する
温度計の検出部の位置に一致させるようにした流動床焼
却炉の燃焼制御方法である。
In order to achieve the above object, an invention according to claim 2 is configured such that a fluidized medium is housed inside a fluidized bed incinerator main body, and fluidized air for flowing the fluidized medium can be supplied, And in the fluidized bed incinerator configured to be able to supply secondary air together with fuel inside the incinerator main body and burn the fuel inside the incinerator main body, the height positions in the vertical direction inside the incinerator main body are different from each other. As described above, the detection units of at least three thermometers are arranged, the temperature distribution inside the incinerator main body is obtained based on the detection value of the detection unit of each thermometer, and the amount of the fuel is increased or Decreasing and decreasing or increasing the amount of the secondary air and the amount of the fluidizing air, and setting the center position of the combustion at a position substantially at the center of the vertical height of the detection unit of each of the thermometers Of the detector A combustion control method for a fluidized bed incinerator which is adapted to match the location.

【0011】前記目的を達成するため、請求項3に対応
する発明は、流動床焼却炉本体内部に流動媒体が収納さ
れ、この流動媒体を流動させるための流動化空気を供給
可能に構成し、かつ前記焼却炉本体内部に燃料と共に二
次空気を供給可能に構成し、焼却炉本体内部で前記燃料
を燃焼させる流動床焼却炉において、前記焼却炉本体内
部に上下方向の高さ位置がそれぞれ異なるように配置さ
れた少なくとも3個の温度計の検出部と、該各温度計の
検出部の検出値に基づき前記焼却炉本体内部の温度分布
を求め、該温度分布に基づき前記燃料の量ならびに前記
二次空気の量および前記流動化空気の量を制御し、前記
各温度計の検出部のうち上下方向の高さのほぼ中央に位
置する温度計の検出部の検出値が最高になるようにする
制御手段と、を具備した流動床焼却炉の燃焼制御装置で
ある。
In order to achieve the above object, the invention according to claim 3 is configured such that a fluidized medium is housed inside a fluidized bed incinerator main body and fluidized air for flowing the fluidized medium can be supplied, And in the fluidized bed incinerator configured to be able to supply secondary air together with fuel inside the incinerator main body and burn the fuel inside the incinerator main body, the height positions in the vertical direction inside the incinerator main body are different from each other. Detectors of at least three thermometers arranged as described above, the temperature distribution inside the incinerator main body is obtained based on the detection values of the detectors of each thermometer, the amount of the fuel and the amount of the fuel based on the temperature distribution The amount of the secondary air and the amount of the fluidized air are controlled so that the detection value of the detection unit of the thermometer located substantially at the center in the vertical direction among the detection units of the respective thermometers is the highest. Control means for performing A combustion control apparatus for a fluidized bed incinerator that.

【0012】請求項1〜3のいずれかに対応する発明に
よれば、構成が簡単でありながら、燃料の量例えばごみ
投入量に変動が生じても排ガス性状に変動が生じない流
動床焼却炉の燃焼制御方法および燃焼制御装置を提供す
ることができる。
According to the invention corresponding to any one of the first to third aspects, the fluidized bed incinerator has a simple structure and does not change the exhaust gas properties even if the amount of fuel, for example, the amount of refuse charged, changes. And a combustion control device.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。図1は、本発明の実施形態を
説明するための流動床焼却炉ならびにその燃焼制御装置
の概略構成図である。流動床焼却炉本体(以下焼却炉本
体と称する)1の内部には、給塵機2からのごみが、焼
却炉本体1に形成されたごみ投入口3を経て投入される
ようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fluidized bed incinerator and a combustion control device thereof for describing an embodiment of the present invention. In a fluidized bed incinerator main body (hereinafter, referred to as an incinerator main body) 1, refuse from a dust collector 2 is introduced through a refuse inlet 3 formed in the incinerator main body 1. .

【0014】焼却炉本体1の底部に配管4pの一端部が
接続され、該配管4pの他端部に一次送風機4が接続さ
れ、一次送風機4からの一次空気(流動化空気)によ
り、焼却炉本体1の内部の底部に収納された高温の流動
砂5が流動化されるようになっており、流動砂5により
該焼却炉本体1の内部に投入されたごみが接触すると共
に、熱分解されるようになっている。
One end of a pipe 4p is connected to the bottom of the incinerator main body 1, and a primary blower 4 is connected to the other end of the pipe 4p. The primary air (fluidized air) from the primary blower 4 causes The high-temperature fluidized sand 5 stored in the bottom of the inside of the main body 1 is fluidized, and the refuse introduced into the incinerator main body 1 comes into contact with the fluidized sand 5 and is thermally decomposed. It has become so.

【0015】該熱分解により発生したガスは、焼却炉本
体1に配管6pを介して接続された二次送風機6によ
り、焼却炉本体1の中央部に形成されている燃焼用空気
吹き出し口7を経て焼却炉本体1に供給される燃焼用空
気と接触して燃焼するようになっている。
The gas generated by the thermal decomposition is supplied to a combustion air outlet 7 formed in the center of the incinerator main body 1 by a secondary blower 6 connected to the incinerator main body 1 via a pipe 6p. The fuel is burned in contact with combustion air supplied to the incinerator body 1 via the incinerator.

【0016】焼却炉本体1の上部には、排ガス配管8の
一端部が接続され、排ガス配管8の他端部にはボイラ等
の熱回収工程部9、脱塩、脱臭等の処理を行う排ガス処
理工程部10、誘引送風機11を介して煙突12が接続
され、焼却炉本体1内部で燃焼した排ガスは熱回収工程
部9、排ガス処理工程部10を経て、誘引送風機11に
より煙突12から排出されるようになっている。
One end of an exhaust gas pipe 8 is connected to the upper part of the incinerator main body 1, and the other end of the exhaust gas pipe 8 is connected to a heat recovery process section 9 such as a boiler, and an exhaust gas for desalination and deodorization. A chimney 12 is connected via a treatment process unit 10 and an induction blower 11, and the exhaust gas burned inside the incinerator main body 1 passes through the heat recovery process unit 9 and the exhaust gas treatment process unit 10 and is discharged from the chimney 12 by the induction blower 11. It has become so.

【0017】なお、焼却炉本体1内部で、燃焼用空気吹
き出し口7の上方に中間天井12が配設されている。以
上述べた構成は、流動床焼却炉の概略構成であり、これ
以外に炉内温度計(以下単に温度計と称する)13,1
4,15、給塵量検出手段16、給塵量・空気量制御手
段17からなる燃焼制御装置を備えている。
Note that an intermediate ceiling 12 is provided inside the incinerator main body 1 above the combustion air outlet 7. The configuration described above is a schematic configuration of a fluidized bed incinerator. In addition, the in-furnace thermometer (hereinafter, simply referred to as a thermometer) 13, 1
4, a combustion control device including a dust supply amount detecting means 16 and a dust supply amount / air amount control means 17 is provided.

【0018】温度計13は、焼却炉本体1の内部の上下
方向の下部側で流動砂5に近い位置に配設され、温度計
14は、焼却炉本体1の内部の上下方向の中央部に配設
され、温度計15は、焼却炉本体1の内部の上下方向の
上部側で排ガスの出口部近くに配設されて、これらの温
度計13,14,15により焼却炉本体1の内部の温度
が計測できるようになっており、この測定値は給塵量・
空気量制御手段17に入力されるようになっている。
The thermometer 13 is disposed at a lower part in the vertical direction inside the incinerator main body 1 and at a position close to the fluidized sand 5, and the thermometer 14 is provided at the center in the vertical direction inside the incinerator main body 1. The thermometer 15 is disposed near the outlet of the exhaust gas on the upper side in the up-down direction inside the incinerator main body 1, and the thermometers 13, 14, and 15 are provided inside the incinerator main body 1. The temperature can be measured, and this measured value is
The data is input to the air amount control means 17.

【0019】給塵量・空気量制御手段17は、各温度計
13〜15の測定値に基づき焼却炉本体1内部の温度分
布を求め、該温度分布に基づき燃料の量例えばごみの量
ならびに二次空気の量および流動化空気の量を制御する
ために、給塵機2、二次送風機6、一次送風機4に対し
てそれぞれ制御信号を出力するものである。
The dust supply amount / air amount control means 17 obtains the temperature distribution inside the incinerator main body 1 based on the measured values of the respective thermometers 13 to 15, and based on the temperature distribution, the amount of fuel, for example, the amount of waste and the amount of waste. In order to control the amount of the secondary air and the amount of the fluidized air, control signals are output to the dust blower 2, the secondary blower 6, and the primary blower 4, respectively.

【0020】ここで、給塵量・空気量制御手段17内で
求められる温度分布は、例えば図2(a)〜(c)のよ
うなものになる。燃焼の中心は最も激しく燃焼している
ところであり、そのため温度が高くなり、燃焼の中心か
ら遠ざかるにつれ、温度は低くなる。図2(a)では、
図2(d)の最も低い位置にある炉内温度計13の温度
が最も高く、従って燃焼の中心位置は炉内温度計13よ
りさらに低い位置にあることになる。図2(a)のよう
な温度分布の場合には、燃焼は流動化空気のみで完結し
ており、二次空気は焼却炉内を冷却するので残っている
COを燃焼できない可能性がある。
Here, the temperature distribution obtained in the dust supply amount / air amount control means 17 is, for example, as shown in FIGS. 2 (a) to 2 (c). The center of combustion is where the combustion is most intense, so the temperature increases and the temperature decreases with distance from the center of combustion. In FIG. 2A,
The temperature of the in-furnace thermometer 13 at the lowest position in FIG. 2D is the highest, so that the center position of combustion is at a position lower than the in-furnace thermometer 13. In the case of the temperature distribution as shown in FIG. 2A, the combustion is completed only with the fluidizing air, and the secondary air cools the inside of the incinerator, so that the remaining CO may not be burned.

【0021】図2(b)では、図2(d)の最も高い位
置にある炉内温度計3の温度が最も高く、従って燃焼の
中心位置は炉内温度計3よりさらに高い位置にあること
になる。図2(b)のような温度分布の場合には、不完
全燃焼を起こしている可能性がある。
In FIG. 2 (b), the highest temperature of the in-furnace thermometer 3 in FIG. 2 (d) is the highest, and therefore, the center position of combustion is at a higher position than the in-furnace thermometer 3. become. In the case of the temperature distribution as shown in FIG. 2B, there is a possibility that incomplete combustion has occurred.

【0022】図2(c)では、図2(d)の焼却炉本体
1のほぼ中央にある炉内温度計14の温度が最も高く、
従って燃焼の中心は焼却炉のほぼ中央にある。図2
(c)のような温度分布の場合には、二次空気によって
ごみの燃焼が完結してその後二次空気の過剰分によって
冷却されおり、理想的な燃焼状態である。また、この状
態ではごみが一時的に過大投入されて燃焼に中心位置が
上昇しても、焼却炉内で燃焼が完結するだけの余裕があ
る。
In FIG. 2 (c), the temperature of the in-furnace thermometer 14 located substantially at the center of the incinerator body 1 of FIG.
Thus, the center of combustion is approximately at the center of the incinerator. FIG.
In the case of the temperature distribution as shown in (c), the combustion of the refuse is completed by the secondary air and then cooled by the excess amount of the secondary air, which is an ideal combustion state. Further, in this state, even if the dust is temporarily over-injected and the center position rises for the combustion, there is a margin for the completion of the combustion in the incinerator.

【0023】本発明は、排ガス性状の変動の少ない燃焼
状態を維持するために、焼却炉内の温度分布を指標と
し、図2(c)のような温度分布になるようごみの投入
量、二次空気量、一次空気量(流動化空気量)を制御す
ることを特徴とする。
The present invention uses the temperature distribution in the incinerator as an index in order to maintain a combustion state in which the exhaust gas properties fluctuate little, and the amount of refuse charged so that the temperature distribution as shown in FIG. It is characterized in that the amount of primary air and the amount of primary air (fluidized air amount) are controlled.

【0024】図2(c)のような温度分布を維持するこ
とで、燃焼の中心を焼却炉のほぼ中央に安定させ、ごみ
が完全燃焼する温度を保ち、しかも燃焼完了後も焼却炉
内で十分な滞留時間を得ることが可能になる。また、燃
焼の中心が焼却炉のほぼ中央にあるため、ごみが一時的
に大量に投入され燃焼の中心が上昇した場合でも焼却炉
内で燃焼が完結するだけの余裕があり、ごみ投入量が変
動してもそれが排ガス性状に与える影響が少ない。
By maintaining the temperature distribution as shown in FIG. 2 (c), the center of combustion is stabilized almost at the center of the incinerator, and the temperature at which the refuse is completely burned is maintained. It is possible to obtain a sufficient residence time. In addition, since the center of combustion is almost in the center of the incinerator, even if a large amount of refuse is temporarily injected and the center of combustion rises, there is room to complete combustion in the incinerator, and the amount of waste input is low. Even if it fluctuates, it has little effect on exhaust gas properties.

【0025】従来、排ガス性状の改善を目的として焼却
炉内をある温度範囲に制御する場合、通常は炉出口の温
度に注目して制御を行っている。炉出口の温度を、CO
が燃焼する温度範囲に維持することで、排ガス性状を改
善している。しかしながら、この温度を維持するため
に、ごみを大量に投入し燃焼負荷を高くした場合、燃焼
は炉出口近くで最も激しくなり、ごみの投入量が一時的
に過大になった場合に燃焼が完結せず、COの発生を招
き、所期の目的を達成することができなくなる。これを
避けるため、本発明による流動床焼却炉の燃焼制御は以
下のように行われる。 (1) 給塵機2によって焼却炉本体1内に投入される
ごみは、ごみ投入口3に至る途中で給塵量検出手段16
により投入量が検出される。検出されたごみの投入量と
ごみの発熱量をもとに、二次空気量の基準値を求める。 (2) 温度計13,14,15の計測結果から図2の
(a)から(c)のどの温度分布であるかを判断する。
図2の(a)あるいは(b)の温度分布の場合には以下
に示す操作を行い、(c)の温度分布に移行させる。 (3) 図2の(a)の温度分布であると判断された場
合、本来燃焼用空気として作用するはずの二次空気は、
焼却炉本体1内を冷却している。
Conventionally, when controlling the inside of an incinerator to a certain temperature range for the purpose of improving the properties of exhaust gas, the control is usually performed by paying attention to the temperature at the furnace outlet. The temperature at the furnace outlet was changed to CO
By maintaining the temperature in the temperature range in which the gas burns, the properties of the exhaust gas are improved. However, in order to maintain this temperature, if a large amount of refuse is injected and the combustion load is increased, the combustion is most violent near the furnace outlet, and if the input of refuse is temporarily excessive, the combustion is completed. Without this, CO is generated, and the intended purpose cannot be achieved. In order to avoid this, the combustion control of the fluidized bed incinerator according to the present invention is performed as follows. (1) The dust fed into the incinerator main body 1 by the dust feeder 2 passes through the dust feed port 3 and the dust feed amount detecting means 16.
Detects the input amount. A reference value for the secondary air amount is obtained based on the detected amount of waste input and the amount of heat generated by the waste. (2) From the measurement results of the thermometers 13, 14, and 15, it is determined which temperature distribution is shown in (a) to (c) of FIG.
In the case of the temperature distribution of FIG. 2A or 2B, the following operation is performed to shift to the temperature distribution of FIG. (3) If it is determined that the temperature distribution is as shown in FIG. 2 (a), the secondary air that should originally act as combustion air is:
The inside of the incinerator main body 1 is cooled.

【0026】図3にこのような温度分布の場合の排ガス
中のCOの濃度変動の様子を示す。温度が低いため、全
体にCO濃度が高く、しかも給塵量変動に対してCOが
急激に発生している。この状態を図2の(c)に示す適
正な温度分布状態に移行させるために、ごみの投入量を
増加し、(1)で求められた基準値より二次空気を減ら
し過剰な空気による焼却炉内の冷却を避け、同時に不燃
物の排出に支障をきたさない範囲で一次空気量(流動化
空気量)を減らして燃焼速度をおさえ、燃焼の中心位置
を上昇させる。 (4) 図2の(b)の温度分布であると判断された場
合、ごみの投入量に変動が生じた場合に不完全燃焼をお
こす可能性がある。図4にこのような温度分布の場合の
排ガス中のCOの濃度変動の様子を示す。
FIG. 3 shows how the concentration of CO in the exhaust gas fluctuates in such a temperature distribution. Since the temperature is low, the CO concentration is high as a whole, and CO is rapidly generated in response to a change in the amount of dust supplied. In order to shift this state to the appropriate temperature distribution state shown in FIG. 2C, the amount of waste is increased, the secondary air is reduced from the reference value obtained in (1), and incineration with excess air is performed. Cooling in the furnace is avoided, and at the same time, the primary air amount (fluidized air amount) is reduced within a range that does not hinder the discharge of incombustibles, the combustion speed is suppressed, and the center position of combustion is raised. (4) When it is determined that the temperature distribution is as shown in FIG. 2 (b), incomplete combustion may occur when the amount of waste input fluctuates. FIG. 4 shows how the concentration of CO in the exhaust gas fluctuates in such a temperature distribution.

【0027】焼却炉本体1の出口にあたる温度計15の
計測値は十分に高いにもかかわらず、給塵量変動に対し
てCOが急激に発生している。この状態を図2の(c)
に示す適正な温度分布状態に移行させるためにごみの投
入量を減少し、流動化空気量を増加して燃焼速度をはや
め、(1)で求められた基準値より二次空気を増して焼
却炉本体1内の燃焼がスの撹拌を促進して燃焼用空気吹
き出し口7付近で燃焼を完結させ、燃焼の中心位置を下
降させる。 (5) (3)あるいは(4)の操作の結果、温度分布
が図2の(c)のように安定した場合の排ガス中のCO
の濃度変動の様子を図5に示す。図4の場合と比較し
て、焼却炉本体1の出口にあたる炉内温度計15の計測
値はほぼ同じであり、給塵量の変動も同程度であるにも
かかわらず、COの急激な発生はほとんど起こっていな
い。
Although the measured value of the thermometer 15 corresponding to the outlet of the incinerator main body 1 is sufficiently high, CO is rapidly generated in response to the change in the amount of dust supplied. This state is shown in FIG.
In order to shift to the appropriate temperature distribution state shown in (1), reduce the amount of waste, increase the amount of fluidized air, stop the combustion speed, and incinerate by increasing the secondary air from the reference value obtained in (1). The combustion in the furnace body 1 promotes the agitation of the waste gas, completes the combustion near the combustion air outlet 7, and lowers the center position of the combustion. (5) As a result of the operation of (3) or (4), when the temperature distribution is stabilized as shown in FIG.
FIG. 5 shows how the density changes. Compared to the case of FIG. 4, the measured value of the in-furnace thermometer 15 at the outlet of the incinerator main body 1 is almost the same, and the fluctuation of the amount of dust is almost the same. Has hardly happened.

【0028】以上述べた実施形態によれば、焼却炉本体
1の内部の温度を測定する少なくとも3個の温度計1
3,14,15を、上下方向の高さ位置を異ならせて配
設し、これらにより測定された測定値に基づき、焼却炉
本体1の内部の温度分布を求め、この温度分布の温度の
最も高い位置に燃焼の中心が位置するようにするだけ
で、給塵量の変動が生じても、焼却炉内で燃焼が完結す
るだけの余裕のある燃焼状態を維持することができ、排
ガス性状の悪化を避けることができる。
According to the embodiment described above, at least three thermometers 1 for measuring the temperature inside the incinerator main body 1 are used.
3, 14 and 15 are arranged at different height positions in the vertical direction, and a temperature distribution inside the incinerator main body 1 is obtained based on the measured values, and the most By simply locating the center of combustion at a high position, even if the amount of dust supply fluctuates, it is possible to maintain a combustion state that allows sufficient combustion to complete in the incinerator, Deterioration can be avoided.

【0029】前述の炉内温度計13〜15の設置位置
は、炉内温度計13〜15のうち、1個は焼却炉本体1
の上下方向の高さのほぼ中央位置に設け、他の温度計の
設置位置はなるべく温度分布の形状がよくわかるように
流動砂5の直上と焼却炉本体1の出口が好ましい。
The in-furnace thermometers 13 to 15 are installed at one of the in-furnace thermometers 13 to 15 in the incinerator main body 1.
It is preferable that the other thermometers are installed at a position directly above the fluidized sand 5 and an outlet of the incinerator main body 1 so that the shape of the temperature distribution can be clearly understood as much as possible.

【0030】<変形例>本発明は、前述の実施形態に限
定されず、例えば以下のように変形できる。図1の給塵
量・空気量制御手段17を備えていないものであって
も、温度分布を表示できる手段と、給塵機2、一次送風
機4、二次送風機6にそれぞれ調節計を備えていれば、
オペレータが以下のように手動で行うことができる。こ
こで、始めに、ごみの投入量が一定と仮定して空気量と
温度の関係を、図6〜図8を参照して説明する。ごみの
投入量が増えた場合には、相対的に一次空気、二次空気
とも量が少なくなったことに等しく、逆にごみの投入量
が減った場合には、相対的に一次空気、二次空気とも量
が多くなったことに等しいので、以下の説明は一般的な
ものである。
<Modifications> The present invention is not limited to the above-described embodiment, and can be modified as follows, for example. Even if the dust supply amount / air amount control means 17 shown in FIG. 1 is not provided, a means capable of displaying a temperature distribution, and a controller provided in each of the dust blower 2, the primary blower 4, and the secondary blower 6 are provided. If
This can be done manually by the operator as follows. Here, first, the relationship between the amount of air and the temperature will be described with reference to FIGS. When the input amount of refuse increases, it is equivalent to a decrease in both the primary air and the secondary air, and conversely, when the input amount of refuse decreases, the primary air and the secondary air relatively decrease. The following description is general, since it is equivalent to an increase in the amount of secondary air.

【0031】図6は、一次空気量(流動化空気量)と炉
下部温度(炉内温度計13で計測される値)の関係を示
す図である。図7(a)は一次空気量が少ない場合で、
二次空気量と炉中間部温度(炉内温度計14で計測され
る値)の関係を示す図である。図7(b)は一次空気量
が多い場合で、二次空気量と炉中間部温度(炉内温度計
14で計測される値)の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the primary air amount (fluidized air amount) and the lower furnace temperature (value measured by the in-furnace thermometer 13). FIG. 7A shows a case where the primary air amount is small.
It is a figure which shows the relationship between the amount of secondary air and the furnace intermediate | middle part temperature (value measured by the in-furnace thermometer 14). FIG. 7B is a diagram showing the relationship between the amount of secondary air and the temperature in the middle of the furnace (the value measured by the in-furnace thermometer 14) when the amount of primary air is large.

【0032】図8(a)は一次空気量が少なく、図7
(a)の領域Sの場合の二次空気量と炉出口温度(炉内
温度計15で計測される値)の関係を示す図である。図
8(b)は一次空気量が少なく、図7(a)の領域Tの
場合の二次空気量と炉出口温度(炉内温度計15で計測
される値)の関係を示す図である。図8(c)は一次空
気量が多い場合の二次空気量と炉出口温度(炉内温度計
15で計測される値)の関係を示す図である。
FIG. 8A shows that the primary air amount is small and FIG.
It is a figure which shows the relationship between the amount of secondary air and the furnace outlet temperature (value measured with the furnace internal thermometer 15) in the case of area | region S of (a). FIG. 8B is a diagram showing the relationship between the amount of secondary air and the furnace outlet temperature (the value measured by the in-furnace thermometer 15) in the case of the region T in FIG. . FIG. 8C is a diagram showing the relationship between the amount of secondary air and the temperature at the furnace outlet (the value measured by the in-furnace thermometer 15) when the amount of primary air is large.

【0033】これらの図から、次のことがわかる。 1)一次空気量と温度の関係 一次空気量を増やすと、炉下部に供給される酸素量が増
えるため、炉下部で燃焼するごみ割合が増え、炉下部の
温度は上昇する。逆に、一次空気量を減らすと、炉下部
に供給される酸素量が減るため、炉下部で燃焼するごみ
割合が減り、炉下部の温度は下降する。また、一次空気
量は二次空気量と温度の関係に影響を与える。
The following can be seen from these figures. 1) Relationship between the amount of primary air and the temperature When the amount of primary air is increased, the amount of oxygen supplied to the lower part of the furnace increases, so that the ratio of refuse burning in the lower part of the furnace increases, and the temperature of the lower part of the furnace increases. Conversely, when the amount of primary air is reduced, the amount of oxygen supplied to the lower part of the furnace is reduced, so that the ratio of refuse burning in the lower part of the furnace is reduced, and the temperature of the lower part of the furnace is lowered. Also, the amount of primary air affects the relationship between the amount of secondary air and temperature.

【0034】2)二次空気量と温度の関係 (イ)一次空気量が少なく、炉中間部で未燃ガスが残っ
ている場合には、二次空気は燃焼用空気として作用する
ため、ある程度まで二次空気量を増やすと炉中間部での
燃焼が増え、炉中間部の温度は上昇する[図7(a)の
領域S]。この場合は、燃焼が炉上部でも続くため、炉
出口温度も上昇する。
2) Relationship between secondary air amount and temperature (a) When the primary air amount is small and unburned gas remains in the middle part of the furnace, the secondary air acts as combustion air. If the amount of secondary air is increased until then, the combustion in the middle part of the furnace increases, and the temperature in the middle part of the furnace rises (region S in FIG. 7A). In this case, since the combustion continues even in the upper part of the furnace, the furnace outlet temperature also increases.

【0035】さらに、二次空気量を増やすと、過剰な空
気のため炉中間部が冷却され始め、炉中間部の温度は下
降する[図7(a)の領域T]。この場合はこれ以上燃
焼が起こらないため、炉出口温度は下降する。
Further, when the amount of secondary air is increased, the middle part of the furnace starts to be cooled due to excessive air, and the temperature of the middle part of the furnace falls (region T in FIG. 7A). In this case, since no further combustion occurs, the furnace outlet temperature falls.

【0036】(ロ)一次空気量が多く、炉下部で燃焼が
完結している場合には、二次空気は炉中間部を冷却する
ため、二次空気量を増やすと、炉中間部の温度は下降す
る。炉出口温度も炉中間温度と同じく下降する。いずれ
の場合も、炉下部の温度には影響を与えない。
(B) When the amount of primary air is large and combustion is completed in the lower part of the furnace, the secondary air cools the middle part of the furnace. Descends. The furnace outlet temperature also drops as does the furnace intermediate temperature. In any case, the temperature of the lower part of the furnace is not affected.

【0037】上記1)、2)−(イ)、2)−(ロ)の
関係を用いて、オペレータは以下のようにして本発明に
よる燃焼制御を実施できる。まず、温度分布表示手段に
よる温度分布が図2(a)のようであった場合、一次空
気が多く炉下部で燃焼が完結し、二次空気は冷却用空気
として作用している状態にある。この場合は、まず一次
空気を減少し燃焼の中心位置を炉中央部に移すように操
作する。一次空気を減少した結果、二次空気の一部が燃
焼用空気として作用し始める。ここで、さらに温度分布
を観察し、まだ炉出口温度が低いようであれば、二次空
気も減少する。逆に、燃焼位置が炉出口に近づき過ぎ、
図2(b)の温度分布になってしまった場合には、二次
空気を増加することで燃焼の中心位置を炉中央部に移す
ように操作する。
Using the relationships 1), 2)-(a) and 2)-(b), the operator can carry out the combustion control according to the present invention as follows. First, when the temperature distribution by the temperature distribution display means is as shown in FIG. 2A, the primary air is large and the combustion is completed in the lower part of the furnace, and the secondary air is acting as cooling air. In this case, an operation is performed so that the primary air is first reduced and the center position of the combustion is moved to the center of the furnace. As a result of reducing the primary air, a portion of the secondary air begins to act as combustion air. Here, the temperature distribution is further observed, and if the furnace outlet temperature is still low, the amount of secondary air also decreases. Conversely, the combustion position is too close to the furnace outlet,
When the temperature distribution becomes as shown in FIG. 2B, an operation is performed so as to shift the center position of combustion to the center of the furnace by increasing the secondary air.

【0038】次に、温度分布表示手段による温度分布が
図2(b)のようであった場合、一次空気が少なく、か
つ二次空気も少なく、不完全燃焼に近い状態にある。こ
の場合は、まず二次空気を増加して炉中央部で燃焼が完
結するように操作する。二次空気の操作のみでは温度分
布を図2(c)の状態に移すことができない場合、一次
空気を増加して、炉下部で燃焼する割合を増やすよう操
作する。一次空気を増加すると、燃焼用の二次空気の一
部は冷却用空気として作用し始めるので、連動して二次
空気量も増減する。
Next, when the temperature distribution by the temperature distribution display means is as shown in FIG. 2 (b), the primary air is small and the secondary air is also small, and the state is close to incomplete combustion. In this case, first, the secondary air is increased to operate so that the combustion is completed in the central part of the furnace. If the temperature distribution cannot be shifted to the state shown in FIG. 2C only by the operation of the secondary air, the primary air is increased to operate to increase the rate of combustion at the lower part of the furnace. When the primary air is increased, part of the secondary air for combustion starts to act as cooling air, so that the secondary air amount also increases or decreases in conjunction with the increase.

【0039】[0039]

【発明の効果】本発明によれば、構成が簡単でありなが
ら、燃料の量例えばごみ投入量に変動が生じても排ガス
性状に変動が生じない流動床焼却炉の燃焼制御方法およ
び燃焼制御装置を提供することができる。
According to the present invention, a combustion control method and a combustion control apparatus for a fluidized bed incinerator which has a simple structure and does not cause fluctuations in the exhaust gas properties even if the amount of fuel, for example, the amount of waste, fluctuates. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による流動床焼却炉の燃焼制御装置の第
1の実施形態を説明するための図。
FIG. 1 is a view for explaining a first embodiment of a combustion control device for a fluidized bed incinerator according to the present invention.

【図2】図1の焼却炉本体内の温度計の配置の一例と、
温度分布を説明するための図。
FIG. 2 shows an example of the arrangement of a thermometer in the incinerator main body of FIG.
The figure for demonstrating a temperature distribution.

【図3】図1の焼却炉本体内に過剰な二次空気が導入さ
れ、焼却炉内を冷却している場合の給塵量変動と排ガス
中のCOの濃度変動の様子を示す図。
FIG. 3 is a diagram showing a state of a change in a dust supply amount and a change in a concentration of CO in exhaust gas when excessive secondary air is introduced into the incinerator main body of FIG. 1 to cool the incinerator.

【図4】図1の焼却炉本体出口では十分な温度があり、
燃焼負荷が高い場合の給塵量変動と排ガス中のCOの濃
度変動の様子を示す図。
FIG. 4 has a sufficient temperature at the outlet of the incinerator main body of FIG. 1,
The figure which shows the mode of the fluctuation | variation of the amount of dust supply and the density | concentration of CO in exhaust gas at the time of high combustion load.

【図5】本発明による燃焼制御方法を適用し温度分布を
適正に維持した場合の給塵量変動と排ガス中のCOの濃
度変動の様子を示す図。
FIG. 5 is a diagram showing a state of a change in dust supply amount and a change in the concentration of CO in exhaust gas when the temperature distribution is appropriately maintained by applying the combustion control method according to the present invention.

【図6】本発明の流動床焼却炉の燃焼制御方法を説明す
るための一次空気量と炉下部温度の関係を示す図。
FIG. 6 is a view showing a relationship between a primary air amount and a furnace lower temperature for explaining a combustion control method of a fluidized bed incinerator according to the present invention.

【図7】本発明の流動床焼却炉の燃焼制御方法を説明す
るための二次空気量と炉中間部温度の関係を示す図。
FIG. 7 is a diagram showing the relationship between the amount of secondary air and the temperature in the middle of the furnace for explaining the combustion control method of the fluidized bed incinerator of the present invention.

【図8】本発明の流動床焼却炉の燃焼制御方法を説明す
るための二次空気量と炉出口温度の関係を示す図。
FIG. 8 is a diagram showing the relationship between the amount of secondary air and the furnace outlet temperature for explaining the combustion control method of the fluidized bed incinerator of the present invention.

【符号の説明】[Explanation of symbols]

1…流動床焼却炉本体 2…給塵機 3…ごみ投入口 4…一次送風機 5…流動砂 6…二次送風機 7…燃焼用空気吹き出し口 13〜15…炉内温度計 16…給塵量検出手段 17…給塵量・空気量制御手段 DESCRIPTION OF SYMBOLS 1 ... Fluidized-bed incinerator main body 2 ... Dust supply device 3 ... Garbage inlet 4 ... Primary blower 5 ... Fluid sand 6 ... Secondary blower 7 ... Combustion air blow-off port 13-15 ... Furnace thermometer 16 ... Dust supply amount Detecting means 17: Dust supply amount / air amount control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流動床焼却炉本体内部に流動媒体が収納
され、この流動媒体を流動させるための流動化空気を供
給可能に構成し、かつ前記焼却炉本体内部に燃料と共に
二次空気を供給可能に構成し、焼却炉本体内部で前記燃
料を燃焼させる流動床焼却炉において、 前記焼却炉本体内部に上下方向の高さ位置がそれぞれ異
なるように少なくとも3個の温度計の検出部を配置し、
該各温度計の検出部の検出値に基づき前記焼却炉本体内
部の温度分布を求め、該温度分布に基づき前記燃料の量
ならびに前記二次空気の量および前記流動化空気の量を
制御し、前記各温度計の検出部のうち上下方向の高さの
ほぼ中央に位置する温度計の検出部の検出値が最高にな
るようにした流動床焼却炉の燃焼制御方法。
1. A fluidized medium is housed inside a fluidized bed incinerator main body, fluidized air for flowing the fluidized medium is supplied, and secondary air is supplied together with fuel into the incinerator main body. In a fluidized bed incinerator configured to be capable of burning the fuel inside the incinerator main body, at least three thermometer detectors are arranged inside the incinerator main body such that the height positions in the vertical direction are different from each other. ,
Determine the temperature distribution inside the incinerator main body based on the detection value of the detection unit of each thermometer, control the amount of the fuel and the amount of the secondary air and the amount of the fluidized air based on the temperature distribution, A combustion control method for a fluidized bed incinerator wherein the detection value of the detection unit of the thermometer located substantially at the center in the vertical direction among the detection units of the thermometers is maximized.
【請求項2】 流動床焼却炉本体内部に流動媒体が収納
され、この流動媒体を流動させるための流動化空気を供
給可能に構成し、かつ前記焼却炉本体内部に燃料と共に
二次空気を供給可能に構成し、焼却炉本体内部で前記燃
料を燃焼させる流動床焼却炉において、 前記焼却炉本体内部に上下方向の高さ位置がそれぞれ異
なるように少なくとも3個の温度計の検出部を配置し、
該各温度計の検出部の検出値に基づき前記焼却炉本体内
部の温度分布を求め、該温度分布に基づき前記燃料の量
を増加または減少ならびに前記二次空気の量および前記
流動化空気の量を減少または増加し、前記燃焼の中心位
置を、前記各温度計の検出部のうち上下方向の高さのほ
ぼ中央に位置する温度計の検出部の位置に一致させるよ
うにした流動床焼却炉の燃焼制御方法。
2. A fluidized medium is housed inside a fluidized bed incinerator main body, fluidized air for flowing the fluidized medium is supplied, and secondary air is supplied together with fuel into the incinerator main body. In a fluidized bed incinerator configured to be capable of burning the fuel inside the incinerator main body, at least three thermometer detectors are arranged inside the incinerator main body such that the height positions in the vertical direction are different from each other. ,
The temperature distribution inside the incinerator main body is obtained based on the detection value of the detection unit of each thermometer, and the amount of the fuel is increased or decreased based on the temperature distribution, and the amount of the secondary air and the amount of the fluidized air are calculated. Fluidized bed incinerator wherein the center position of the combustion is made to coincide with the position of the detection part of the thermometer which is located substantially at the center in the vertical direction among the detection parts of the respective thermometers. Combustion control method.
【請求項3】 流動床焼却炉本体内部に流動媒体が収納
され、この流動媒体を流動させるための流動化空気を供
給可能に構成し、かつ前記焼却炉本体内部に燃料と共に
二次空気を供給可能に構成し、焼却炉本体内部で前記燃
料を燃焼させる流動床焼却炉において、 前記焼却炉本体内部に上下方向の高さ位置がそれぞれ異
なるように配置された少なくとも3個の温度計の検出部
と、 該各温度計の検出部の検出値に基づき前記焼却炉本体内
部の温度分布を求め、該温度分布に基づき前記燃料の量
ならびに前記二次空気の量および前記流動化空気の量を
制御し、前記各温度計の検出部のうち上下方向の高さの
ほぼ中央に位置する温度計の検出部の検出値が最高にな
るようにする制御手段と、 を具備した流動床焼却炉の燃焼制御装置。
3. A fluidized medium is housed inside a fluidized bed incinerator main body, fluidized air for flowing the fluidized medium is supplied, and secondary air is supplied together with fuel into the incinerator main body. In a fluidized bed incinerator configured to be capable of burning the fuel inside the incinerator main body, detection units of at least three thermometers arranged inside the incinerator main body so as to have different vertical height positions. And calculating a temperature distribution inside the incinerator main body based on a detection value of a detection unit of each thermometer, and controlling an amount of the fuel, an amount of the secondary air, and an amount of the fluidized air based on the temperature distribution. And control means for making the detection value of the detection unit of the thermometer located substantially at the center of the height in the vertical direction among the detection units of the respective thermometers the highest. Combustion of the fluidized bed incinerator comprising: Control device.
JP9129887A 1997-05-20 1997-05-20 Method of controlling combustion of fluidized bed incinerator and combustion controlling device Pending JPH10318517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9129887A JPH10318517A (en) 1997-05-20 1997-05-20 Method of controlling combustion of fluidized bed incinerator and combustion controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9129887A JPH10318517A (en) 1997-05-20 1997-05-20 Method of controlling combustion of fluidized bed incinerator and combustion controlling device

Publications (1)

Publication Number Publication Date
JPH10318517A true JPH10318517A (en) 1998-12-04

Family

ID=15020808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9129887A Pending JPH10318517A (en) 1997-05-20 1997-05-20 Method of controlling combustion of fluidized bed incinerator and combustion controlling device

Country Status (1)

Country Link
JP (1) JPH10318517A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002992A1 (en) * 2000-07-05 2002-01-10 Nkk Corporation Waste incinerator and method of operating the incinerator
US20130098277A1 (en) * 2010-06-22 2013-04-25 Kobelco Eco-Solutions Co., Ltd. Fluidized bed furnace and waste treatment method
CN105674297A (en) * 2016-03-21 2016-06-15 安徽未名生物环保有限公司 Blanking system with constant-temperature control function
EP2587146B1 (en) * 2010-06-22 2017-11-29 Kobelco Eco-Solutions Co., Ltd Fluidized bed furnace and waste treatment method
CN112856413A (en) * 2021-01-15 2021-05-28 西安交通大学 Adjustable hydrogen injection/secondary air inlet burner and combustion method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002992A1 (en) * 2000-07-05 2002-01-10 Nkk Corporation Waste incinerator and method of operating the incinerator
US20130098277A1 (en) * 2010-06-22 2013-04-25 Kobelco Eco-Solutions Co., Ltd. Fluidized bed furnace and waste treatment method
EP2587147B1 (en) * 2010-06-22 2017-11-22 Kobelco Eco-Solutions Co., Ltd Fluidized bed furnace and waste processing method
EP2587146B1 (en) * 2010-06-22 2017-11-29 Kobelco Eco-Solutions Co., Ltd Fluidized bed furnace and waste treatment method
CN105674297A (en) * 2016-03-21 2016-06-15 安徽未名生物环保有限公司 Blanking system with constant-temperature control function
CN112856413A (en) * 2021-01-15 2021-05-28 西安交通大学 Adjustable hydrogen injection/secondary air inlet burner and combustion method

Similar Documents

Publication Publication Date Title
US7077069B2 (en) U-type slag-tap firing boiler and method of operating the boiler
JPS5837415A (en) Nox decreasing incinerator
US6190160B1 (en) Process for combustion of a fuel with an oxygen-rich oxidant
JPH10318517A (en) Method of controlling combustion of fluidized bed incinerator and combustion controlling device
EP1490632B1 (en) Method and device for controlling injection of primary and secondary air in an incineration system
WO1988008504A1 (en) Combustion control method for fluidized bed incinerator
JP3023091B1 (en) Combustion control method and device in refuse incinerator
JP4173791B2 (en) Fluidized incinerator system and method for operating the system
JPH10232014A (en) Freeboard temperature control method of fluidized incinerator
KR100316978B1 (en) Water Cooling Wall Incinerator and Combustion Method
JP3621805B2 (en) Combustion control method in fluidized bed incinerator
JPH109548A (en) Incineration of sludge by fluidized-bed incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JPH1061929A (en) Control method for supplying secondary combustion air in combustion device
JP2623404B2 (en) Operating method and apparatus of fluidized bed incinerator
JPH1114027A (en) Method of controlling combustion of incinerator
JPH10339420A (en) Combustion control method of combustion furnace and system therefor
JPH1182958A (en) Incinerator and method for controlling operation of incinerator
JP2795957B2 (en) Combustion control method for waste incinerator
JPH064172Y2 (en) Reactor pressure control device for fluidized bed combustor
JP3059311B2 (en) Air-cooled fluidized bed combustion device
JP3108742B2 (en) Combustion control method in fluidized bed incinerator
JP3665483B2 (en) Combustion control device for incinerator
JP2023048608A (en) Fluidized bed type sludge incineration furnace, and automatic combustion control method for fluidized bed type sludge incineration furnace
JPH08327038A (en) Fluidized bed incinerator