WO2011161819A1 - Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus - Google Patents

Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus Download PDF

Info

Publication number
WO2011161819A1
WO2011161819A1 PCT/JP2010/060859 JP2010060859W WO2011161819A1 WO 2011161819 A1 WO2011161819 A1 WO 2011161819A1 JP 2010060859 W JP2010060859 W JP 2010060859W WO 2011161819 A1 WO2011161819 A1 WO 2011161819A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply current
current
electronic circuit
power
Prior art date
Application number
PCT/JP2010/060859
Other languages
French (fr)
Japanese (ja)
Inventor
寿憲 村田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/060859 priority Critical patent/WO2011161819A1/en
Publication of WO2011161819A1 publication Critical patent/WO2011161819A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Definitions

  • the present invention relates to a power source current measuring device, a test device including a power source current measuring device, and an information processing device including a power source current measuring device.
  • the burn-in apparatus is an apparatus that performs an operation test of electronic circuit components in a high-temperature atmosphere before shipment in order to eliminate initial defects of electronic circuit components such as ICs.
  • a conventional electronic circuit component testing apparatus has a plurality of voltage compensation circuits for each electronic circuit component in addition to a power supply unit that supplies power to the entire electronic circuit component.
  • each voltage compensation circuit requires a current measuring unit.
  • the connection between the electronic circuit component and the voltage compensation circuit is selectively switched by a switch, there is a possibility that an instantaneous interruption may occur when the switch is switched.
  • the test of the electronic circuit component is interrupted, or the test time is caused by the necessity to initialize the electronic circuit component in addition to the problem that the test result is affected by the occurrence of power supply noise etc. In some cases, a problem such as a long time occurs.
  • an object of the present invention is to provide a power supply current measuring device, a test device including the power supply current measuring device, and an information processing device including the power supply current measuring device that can shorten the measurement time without causing an instantaneous interruption. .
  • Power supply current measuring apparatus is connected to the electronic circuit component test by the test device for an electronic circuit component is performed, a plurality of power supply terminals for supplying power, to be supplied to the electronic circuit component
  • a plurality of rectifying devices connected in series between each of the plurality of power supply ends and the first power supply unit, and connected in parallel to each other,
  • a plurality of second power supply units having an output voltage higher than that of one power supply unit, and each of the plurality of rectifying elements connected in series between the output terminals of the plurality of rectifying elements and the second power supply unit.
  • an information processing apparatus including a test apparatus including a power supply current measuring device, and a power supply current measuring device.
  • FIG. 1 is a block diagram showing a test apparatus including a power supply current measuring apparatus according to Embodiment 1.
  • FIG. 1 is a block diagram illustrating a power supply current measuring apparatus according to a first embodiment.
  • 4 is a flowchart illustrating a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment.
  • 6 is a block diagram illustrating an information processing apparatus including a power supply current measuring apparatus according to a modification of the first embodiment.
  • FIG. 1 is a block diagram showing a test apparatus including a power supply current measuring apparatus according to Embodiment 1.
  • FIG. 1 is a block diagram illustrating a power supply current measuring apparatus according to a first embodiment.
  • 4 is a flowchart illustrating a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment.
  • 6 is a block diagram illustrating an information processing apparatus including a power supply current measuring apparatus according to a modification of the first embodiment.
  • FIG. 6 is a block diagram illustrating a power supply current measuring apparatus according to a second embodiment.
  • FIG. 6 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 200 according to the second embodiment.
  • FIG. 10 is a block diagram showing a power supply current measuring apparatus according to a third embodiment. 10 is a flowchart showing processing contents of a short-circuit test in power supply current measuring apparatus 300 according to Embodiment 3.
  • FIG. 10 is a block diagram showing a power supply current measuring apparatus according to a fourth embodiment.
  • the power source current measuring device of the present invention the test device including the power source current measuring device, and the information processing device including the power source current measuring device are applied will be described.
  • FIG. 1 is a block diagram showing a conventional power source current measuring apparatus for measuring power source currents of a plurality of electronic circuit components.
  • ADC A / D converter
  • the conventional power source current measuring apparatus 1 supplies power to a device under test (Device Under Test (hereinafter abbreviated as DUT)) 11, 12, and 13 disposed in the thermostatic chamber 10, and measures each current value. .
  • DUT Device Under Test
  • the thermostat 10 is a device for keeping the temperatures of the DUTs 11, 12, and 13 constant when measuring the power supply currents of the DUTs 11, 12, and 13. It is also possible to perform a burn-in test on the DUTs 11, 12, and 13 by raising the temperature in the thermostat 10 to about 125 ° C., for example.
  • the DUTs 11, 12, and 13 are electronic circuit components, typically LSI (Large Scale Integration).
  • FIG. 1 shows three DUTs 11, 12, and 13 as an example. Actually, for example, hundreds to tens of thousands or more DUTs are arranged in the thermostatic chamber 10 to measure the power supply current. Connected to device 1.
  • DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as LSI, if the electronic circuit components operating at a DC power source, not limited to those fabricated by the semiconductor manufacturing technology.
  • the current limiters 2A, 2B, and 2C are connected in series to the power supply VDD and connected in parallel to each other, and are provided to limit the current flowing through the DUTs 11, 12, and 13.
  • inrush current limiters can be used as the current limiters 2A, 2B, and 2C.
  • Resistors 3A, 3B, and 3C are used as shunt resistors. One ends (right terminals in FIG. 1) of the resistors 3A, 3B, and 3C are respectively connected to the drains of the transistors 4A, 4B, and 4C, and the other ends (left terminals in FIG. 1) are respectively , DUTs 11, 12, and 13 are connected to power terminals 11A, 12A, and 13A.
  • the transistors 4A, 4B, and 4C are, for example, FETs (Field-Effect-Transistors).
  • the transistor 4A has a source connected to the current limiter 2A, a drain connected to the resistor 3A, and a gate connected to the output terminal of the error amplifier 5A.
  • transistor 4B has a source connected to the current limiter 2B, a drain connected to the resistor 3B, the gate is connected to the output terminal of the error amplifier 5B.
  • the transistor 4C has a source connected to the current limiter 2C, a drain connected to the resistor 3C, and a gate connected to the output terminal of the error amplifier 5C.
  • the power terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 are connected to one input terminals of the error amplifiers 5A, 5B, and 5C, respectively, and a reference voltage source (Vref that outputs a reference voltage) is connected to the other input terminal. ) Is connected.
  • the error amplifiers 5A, 5B, and 5C function as a voltage compensation circuit together with the transistors 4A, 4B, and 4C.
  • the error amplifiers 5A, 5B, and 5C correspond to the voltage difference between the voltage value input from the power supply terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 and the reference voltage input from the reference voltage source (Vref), respectively. Output voltage. More specifically, the error amplifiers 5A, 5B, and 5C control the gate voltages so that the voltage values of the power supply terminals 11A, 12A, and 13A are equal to the reference voltage of the reference voltage source (Vref), respectively. .
  • the voltage output from the error amplifiers 5A, 5B, and 5C is input to the gates of the transistors 4A, 4B, and 4C. Therefore, the transistors 4A, 4B, and 4C have the voltage values of the power supply terminals 11A, 12A, and 13A according to the voltage difference between the voltage value of the power supply terminals 11A, 12A, and 13A and the reference voltage of the reference voltage source (Vref). And the reference voltage of the reference voltage source (Vref) are driven to be equal.
  • resistors 3A, 3B are connected to respective ends of the 3C, resistors 3A, 3B, selectively connects one of 3C.
  • the A / D converter 8 is connected to the output terminal of the multiplexer 6 via the differential amplifier 7, is connected to the multiplexer 6, and converts the voltage value differentially amplified by the differential amplifier 7 into a digital value. Output.
  • a microcomputer 20 is connected to the output side of the A / D converter 8.
  • the microcomputer 20 includes, for example, a CPU (Central Processing Unit), and transmits data output from the A / D converter 8 to an external device (typically a host server) not shown.
  • a CPU Central Processing Unit
  • the ground terminals 11B, 12B, and 13B of the DUTs 11, 12, and 13 are grounded, but may be connected to the return terminal of the power supply VDD.
  • Such a conventional power supply current measuring apparatus 1 supplies current to the DUTs 11, 12, and 13 and selectively switches the connection destination of the multiplexer 6 from the resistors 3A, 3B, and 3C, thereby enabling the DUTs 11, 12, 13 power supply currents are measured.
  • the power source current measuring apparatus 1 supplies the current limiters 2A, 2B and 2C, transistors 4A, 4B and 4C, resistors 3A, 3B and 3C, and error amplifiers 5A, 5B and 5C to the respective power source currents of the DUTs 11, 12 and 13. Prepare for the line to measure.
  • the resistors 3A, 3B, and 3C are elements that are largely related to the accuracy of the current value supplied to the DUTs 11, 12, and 13, and the dispersion of the resistance value becomes a problem. Therefore, the resistors 3A, 3B, and 3C used as shunt resistors are required to be highly accurate, but the more accurate resistors are more expensive, and each line that supplies current to each of the DUTs 11, 12, and 13 is expensive. When arranged, there is a problem that the power supply current measuring apparatus 1 is increased in cost.
  • the current limiter is also a circuit in which transistors, resistors, and the like are combined. If the current limiter is provided for each line for supplying current to each, there is a problem that the power source current measuring apparatus 1 is increased in cost.
  • FIG. 2 is a block diagram showing another conventional power source current measuring apparatus for measuring power source currents of a plurality of electronic circuit components.
  • the power supply current measuring apparatus 1A shown in FIG. 2 uses the current limiters 2A, 2B, and 2C and the resistors 3A, 3B, and 3C in the power supply current measuring apparatus 1 shown in FIG. It replaces and is common about each line which supplies an electric current to each of DUT11,12,13.
  • a conventional power supply current measuring apparatus 1A shown in FIG. 2 includes a current limiter (CL) 2 connected to a power supply VDD, transistors 4A, 4B, 4C, a resistor 3, error amplifiers 5A, 5B, 5C, a differential amplifier 7, An A / D converter 8 and switches 9A, 9B, 9C are included.
  • CL current limiter
  • the current limiter 2 is the same as the current limiters 2A, 2B, and 2C shown in FIG.
  • the resistor 3 is the same as the resistors 3A, 3B, and 3C shown in FIG.
  • the current limiter 2 and the resistor 3 are shared by the lines that supply current to each of the DUTs 11, 12, and 13. Therefore, the power supply VDD, the current limiter, and the resistor 3 are connected in series, and the differential amplifier 7 is directly connected to both ends of the resistor 3 without the multiplexer 6 (see FIG. 1).
  • the lines for supplying current to each of the DUTs 11, 12, and 13 are branched on the downstream side of the resistor 3 when viewed from the power supply VDD side.
  • the power supply current measuring apparatus 1A includes switches 9A, 9B, and 9C between the resistor 3 and the sources of the transistors 4A, 4B, and 4C.
  • the switches 9A, 9B, and 9C are controlled to be opened and closed (on / off) by a control device (not shown).
  • the conventional power supply current measuring apparatus 1A supplies power to the DUTs 11, 12, and 13 disposed in the thermostat 10 and measures the power supply current.
  • the switches 9A, 9B, and 9C are turned on / off so that only the switch connected to the DUT to be tested is turned on to supply power to the DUT to be tested. Switch.
  • the switch 9A when measuring the power supply current of the DUT 11, the switch 9A is turned on and the switches 9B and 9C are turned off. At this time, since power is not supplied to the DUTs 12 and 13, when measuring the power supply current of the DUT 12 or 13 after measuring the power supply current of the DUT 11, it is necessary to initialize the DUT 12 or 13.
  • the initialization of the DUT includes, for example, setting of a multiplication circuit, setting of an I / O (Input / Output: input / output) port, and the like, which takes, for example, several tens of seconds.
  • the power source current measuring apparatus 1A shown in FIG. 2 can share the current limiter and the resistor, and includes a plurality of current limiters and resistors as in the power source current measuring apparatus 1 shown in FIG. Can solve the problem of variation.
  • FIG. 2 shows three DUTs 11, 12, 13 and three switches 9A, 9B, 9C. Actually, there are many DUTs (for example, hundreds to tens of thousands or more). )is there. The power supply current of each DUT is measured in turn by switching on / off a switch provided in a line that supplies current to each DUT.
  • the conventional power supply current measuring apparatus 1 and 1A includes a plurality of current limiters and a plurality of resistors, the current limit value and the variation of the resistance value, the cost increase, and the measurement time of the power supply current is prolonged. There is a problem.
  • Embodiments 1 to 4 described below an object is to provide a power supply current measuring apparatus that solves the above-described problems.
  • the power supply current measuring apparatus according to the first to fourth embodiments will be described.
  • FIG. 3 is a block diagram illustrating a test apparatus including the power supply current measuring apparatus according to the first embodiment.
  • the test apparatus shown in FIG. 3 is an LSI tester.
  • the LSI tester 30 includes a DUT power supply 31, a multiplexer (MUX) 32, a digital test unit 33, and an analog test unit 34.
  • MUX multiplexer
  • the DUT power supply 31 is a power supply for supplying power for burn-in test and power for power supply current measurement to the DUTs 11, 12, and 13 disposed in the thermostat 10.
  • the power supply current of the first embodiment A measurement device 100 is included.
  • thermostatic chamber 10 is heated for the burn-in test of the DUTs 11, 12, and 13.
  • the DUTs 11, 12, and 13 are the same electronic circuit components as the DUTs 11, 12, and 13 shown in FIGS. 1 and 2, and are typically LSIs (Large Scale Integration).
  • DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as LSI, if the electronic circuit components operating at a DC power source, not limited to those fabricated by the semiconductor manufacturing technology.
  • FIG. 3 shows three DUTs 11, 12, and 13 as an example. Actually, for example, hundreds to tens of thousands or more of DUTs are arranged in the thermostat 10, Connected to the current measuring apparatus 100.
  • the DUTs 11, 12, and 13 include power terminals 11A, 12A, and 13A, ground terminals 11B, 12B, and 13B, signal terminals 11C, 12C, and 13C, and ground terminals 11D, 12D, and 13D.
  • the power supply terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B are terminals for inputting the power necessary for the burn-in test and the power necessary for measuring the power supply current to the DUTs 11, 12, 13.
  • the signal terminals 11C, 12C, and 13C and the ground terminals 11D, 12D, and 13D are terminals for inputting pattern signals and the like necessary for an operation test. For example, when performing an operation confirmation test after a burn-in test, the pattern terminals A signal or the like is input.
  • the DUT power supply 31 is connected to the power terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B of the DUTs 11, 12, 13, respectively.
  • the power source current measuring apparatus 100 measures the power source current through the power terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B.
  • the multiplexer 32 is connected between the signal terminals 11C, 12C, and 13C of the DUTs 11, 12, and 13 and the ground terminals 11D, 12D, and 13D, and the digital test unit 33 and the analog test unit 34.
  • the multiplexer 32 switches the connection between the DUTs 11, 12, 13 and the digital test unit 33 or the analog test unit 34 when the digital test unit 33 or the analog test unit 34 performs various tests of the DUTs 11, 12, 13.
  • the digital test unit 33 is a test circuit unit that generates a digital waveform signal for performing an operation confirmation test of the DUTs 11, 12, and 13 and includes an electronic load.
  • Examples of the digital waveform signal generated by the digital test unit 33 include a clock waveform signal or a test pattern signal representing a test pattern.
  • the digital test unit 33 inputs predetermined test pattern signals and the like to the DUTs 11, 12, and 13 through the multiplexer 32, the signal terminals 11C, 12C, and 13C and the ground terminals 11D, 12D, and 13D, and confirms the operation of the DUTs 11, 12, and 13 Etc.
  • the analog test unit 34 is a test circuit unit that measures voltage values and current values of the signal terminals 11C, 12C, and 13C of the DUTs 11, 12, and 13 and the ground terminals 11D, 12D, and 13D. For example, when the digital test unit 33 inputs a test pattern signal or the like to the DUTs 11, 12, and 13 to check the operation of the DUTs 11, 12, and 13, the analog test unit 34 performs signal terminals 11 ⁇ / b> C, 12 ⁇ / b> C, 13 ⁇ / b> C, The voltage values and current values of the ground terminals 11D, 12D, and 13D are measured.
  • FIG. 4 is a block diagram showing the power supply current measuring apparatus 100 of the first embodiment.
  • the power supply current measuring apparatus 100 includes power supply terminals 101A, 101B, 101C, A power supply VDD1, a power supply VDD2, a current limiter (CL) 102, a resistor 103, transistors 104A, 104B, 104C, error amplifiers 105A, 105B, 105C, a differential amplifier 107, and an A / D converter (ADC) 108 are included.
  • the power supply current measuring apparatus 100 includes switches SW1, SW2, SW3, diodes D11, D12, D13, D21, D22, D23, D / A converters (DACs) 121, 122, 123, and a microcomputer 130.
  • the power source current measuring apparatus 100 supplies power for power source current measurement by switching the internal circuit while supplying power for burn-in test to the DUTs 11, 12, and 13 disposed in the thermostat 10. To measure the power supply current of the DUTs 11, 12, and 13.
  • DUTs 11, 12, and 13 are the same as DUTs 11, 12, and 13 shown in FIG.
  • the power supply terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B connected to the power supply current measuring apparatus 100 are shown, and the signal terminals 11C, 12C, 13C and the ground terminals 11D, 12D, 13D (see FIG. 3) are omitted.
  • the power supply terminals 101A, 101B, and 101C are connected to the power terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 to supply power.
  • Each of the power supply VDD1 and the power supply VDD2 is, for example, an AC / DC converter.
  • Power supply VDD2 as a power supply VDD1 and the second power supply portion of the first power source unit, respectively, converts the AC voltage supplied from an alternating current (AC) power source into a DC voltage.
  • the microcomputer 130 sets the output voltage values of the power supply VDD1 and the power supply VDD2.
  • the power supply current measuring apparatus 100 supplies power from the power supply VDD1 or the power supply VDD2 toward the power supply terminals 101A, 101B, and 101C.
  • the power supply VDD1 side or the power supply VDD2 side is referred to as the upstream side
  • the power supply terminals 101A, 101B, and 101C are referred to as the downstream side.
  • Diodes D11, D12, and D13 are connected in series between the power supply VDD1 and the power supply terminals 101A, 101B, and 101C, respectively.
  • the diodes D11, D12, and D13 are connected in series to the power supply VDD1 and are connected in parallel to each other.
  • a switch SW1 and a diode D21, a switch SW2 and a diode D22, and a switch SW3 and a diode D23 are connected in series between the power supply VDD2 and the power supply terminals 101A, 101B, and 101C, respectively.
  • the switch SW1 and the diode D21, the switch SW2 and the diode D22, and the switch SW3 and the diode D23 are connected to each other in series. Further, the switch SW1 and the diode D21, the switch SW2 and the diode D22, the switch SW3 and the diode D23 are connected in series to the power supply VDD2 as a pair, and are connected in parallel to each other.
  • the output ends of the diodes D11, D12, and D13 are connected to the output ends of the diodes D21, D22, and D23 at connection points P1, P2, and P3, respectively.
  • the switches SW1, SW2, and SW3 are connected to each other at an upstream connection point P4.
  • the diodes D11, D12, and D13 are rectifier elements connected in series between the power supply terminals 101A, 101B, and 101C and the power supply VDD1, respectively.
  • the diodes D11, D12, and D13 are provided to prevent backflow of current from the connection points P1, P2, and P3, respectively. Since the diodes D11, D12, and D13 only need to have a rectifying action that can prevent backflow of current, for example, a PN diode can be used.
  • the diodes D21, D22, D23 are connected to the downstream side of the switches SW1, SW2, SW3, respectively.
  • the diodes D21, D22, and D23 are provided to prevent reverse current flow when measuring the power supply current of the DUTs 11, 12, and 13. Since the diodes D21, D22, and D23 only need to have a rectifying action that can prevent backflow of current, for example, a PN diode can be used.
  • the forward voltages of the diodes D11, D12, and D13 are equal to the forward voltages of the diodes D21, D22, and D23.
  • the switches SW1, SW2 and SW3 are connected at their downstream terminals to the output terminals of the diodes D11, D12 and D13 at the connection points P1, P2 and P3 via the diodes D21, D22 and D23. Further, the switches SW1, SW2, and SW3 have their upstream terminals connected to the resistor 103 via the connection point P4.
  • the switches SW1, SW2, and SW3 are controlled to be opened and closed (on / off) by the microcomputer 130.
  • the switches SW1, SW2, and SW3, for example, electronic relays can be used.
  • the current limiter 102 is connected to the power supply VDD2, and is provided to limit the current flowing through the DUTs 11, 12, and 13 when measuring the power supply current.
  • the current limiters 2A, 2B, and 2C shown in FIG. 1 and the same current limiting circuit as the current limiter 2 shown in FIG. 2 can be used.
  • Resistor 103 the upstream side is connected to a current limiter 102, the downstream side is connected to the upstream side of the connection point P4 of the switch SW1, SW2, SW3. That is, the resistor 103 is connected as a common resistor for each line on the upstream side of the respective lines are connected from the connection point P4 power supply end 101A, 101B, to 101C.
  • Resistor 103 is a resistor used as the shunt resistor, it is possible to use resistors 3A shown in FIG. 1, 3B, 3C, and the same resistor and resistor 3 shown in FIG.
  • the transistors 104A, 104B, and 104C are, for example, FETs, and the same transistors as the transistors 4A, 4B, and 4C illustrated in FIGS. 1 and 2 can be used.
  • the transistor 104A has a source connected to the connection point P1, a drain connected to the power supply terminal 11A of the DUT 11, and a gate connected to the output terminal of the error amplifier 105A.
  • transistor 104B has a source connected to the connection point P2, a drain connected to the power supply terminal 12A of the DUT 12, the gate is connected to the output terminal of the error amplifier 105B.
  • the transistor 104C has a source connected to the connection point P3, the drain is connected to the power supply terminal 13A of DUT13, the gate is connected to the output terminal of the error amplifier 105C.
  • the sources of the transistors 104A, 104B, and 104C are located on the upstream side, they are connected to the connection points P1, P2, and P3 as current input terminals. Further, since the drains of the transistors 104A, 104B, and 104C are located on the downstream side, they are connected to the power supply terminals 101A, 101B, and 101C as current output terminals.
  • the sources and drains of the transistors 104A, 104B, and 104C may be reversed.
  • the drains of the transistors 104A, 104B, and 104C are connected to the connection points P1, P2, and P3 as current input terminals, and the sources are connected to the power supply terminals 101A, 101B, and 101C as current output terminals.
  • the power supply terminals 101A, 101B, and 101C are connected to one input terminals of the error amplifiers 105A, 105B, and 105C, respectively, and the D / A converters 121, 122, and 123 are connected to the other input terminals, respectively. ing.
  • the error amplifiers 105A, 105B, and 105C can be the same as the error amplifiers 5A, 5B, and 5C shown in FIGS.
  • the D / A converters 121, 122, and 123 are connected to the microcomputer 130.
  • the voltage signals input from the microcomputer 130 are converted into analog signals, and reference voltages (Vref1, Vref2, and Vref3) for the error amplifiers 105A, 105B, and 105C. Is output.
  • the reference voltages (Vref1, Vref2, Vref3) are controlled by the microcomputer 130.
  • the error amplifiers 105A, 105B, and 105C function as a voltage compensation circuit together with the transistors 104A, 104B, and 104C.
  • the error amplifiers 105A, 105B, and 105C have voltage values input from the power supply terminals 101A, 101B, and 101C, and reference voltages (Vref1, Vref2, and Vref3) input from the D / A converters 121, 122, and 123, respectively.
  • the voltage corresponding to the voltage difference is amplified and output.
  • the voltage output from the error amplifiers 105A, 105B, and 105C is input to the gates of the transistors 104A, 104B, and 104C.
  • the transistors 104A, 104B, and 104C are connected to the power supply terminals 101A, 101B, and 101C according to the voltage difference between the voltage values of the power supply terminals 101A, 101B, and 101C and the reference voltages (Vref1, Vref2, and Vref3). It is driven so that the voltage value and the reference voltages (Vref1, Vref2, Vref3) are equal.
  • the pair of input terminals of the differential amplifier 107 are connected to both ends of the resistor 103, and amplifies and outputs the voltage across the resistor 103.
  • the differential amplifier 107 may be an operational amplifier, for example.
  • the A / D converter 108 is connected to the output terminal of the differential amplifier 107, and digitally converts the voltage value (voltage value representing the current value of the power supply current) amplified by the differential amplifier 107 as power supply current data. Output.
  • a microcomputer 130 is connected to the A / D converter 108, and power supply current data is acquired by the microcomputer 130.
  • the resistor 103, the differential amplifier 107, and the A / D converter 108 are current detection units.
  • the microcomputer 130 includes, for example, a CPU, a RAM (Random Access Memory), and a ROM (Read Only Memory), and may be any device that can perform arithmetic processing and primary storage of data.
  • the microcomputer 130 is provided to execute a power supply current measurement process.
  • the microcomputer 130 sets the output voltage values of the power supply VDD1 and the power supply VDD2, the open / close control of the switches SW1, SW2, and SW3, and the reference that is input to the D / A converters 121, 122, and 123 when performing the power supply current measurement process. Set the voltage value.
  • the microcomputer 130 includes an acquisition process of the power supply current data outputted from the A / D converter 108, a process of transmitting the power supply current data to an external device (typically a host server of) performed.
  • the ground terminals 11B, 12B, and 13B of the DUTs 11, 12, and 13 are grounded.
  • the switches SW1, SW2, and SW3 are turned off, and the power supply terminal 101A from the power supply VDD1 through the diodes D11, D12, and D13, Power is supplied to 101B and 101C.
  • the burn-in tests of DUTs 11, 12, and 13 are performed.
  • the power supply current measuring apparatus 100 when measuring the power supply current, turns on one of the switches SW1, SW2, and SW3, and supplies the power supply terminal from the power supply VDD2 through the diodes D11, D12, and D13. Power is supplied to 101A, 101B, and 101C. In this case as well, since power is supplied to the DUT that measures the power supply current, the burn-in test is continued.
  • the output voltage of the power supply VDD2 is , Set higher than the output voltage of the power supply VDD1.
  • diodes D11, D12, and D13 Between the power supply VDD2 and the connection points P1, P2, and P3, there are a current limiter 102, a resistor 103, switches SW1, SW2, and SW3, and diodes D21, D22, and D23. As described above, the forward voltages of the diodes D11, D12, and D13 are equal to the forward voltages of the diodes D21, D22, and D23.
  • the output voltage of the power supply VDD2 takes the potentials at the connection points P1, P2, and P3 upstream of the diodes D11, D12, and D13 (input side) even if the voltage drop at the current limiter 102 and the resistor 103 is taken into consideration. It is necessary for the voltage value to be set higher than the potential of. As a result, the diodes D11, D12, and D13 are in a state where a reverse bias is applied and are cut off.
  • the diodes D11 and D12 , D13 can be applied with a reverse bias.
  • the switch SW1 When the switch SW1 is turned on, the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse-biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A and the power supply terminal 101A.
  • the diode D12 When the switch SW2 is turned on, the diode D12 is reverse-biased and cut off, and power is supplied to the DUT 12 from the power supply VDD2 through the transistor 104B and the power supply terminal 101B.
  • the switch SW3 when the switch SW3 is turned on, the diode D13 is reverse-biased and cut off, and power is supplied to the DUT 13 from the power supply VDD2 through the transistor 104C and the power supply terminal 101C.
  • FIG. 5 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment.
  • the switches SW1, SW2, and SW3 may be represented by using a general title SWn.
  • N representing the switch number is an integer of 1 or more.
  • step S1 When the microcomputer 130 starts the measurement process of the power supply current (START), it first performs an initial setting (step S1). In the initial setting in step S1, the microcomputer 130 sets all the voltage values of the power supply VDD1 and the power supply VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. The microcomputer 130 all the switches SW1, SW2, SW3 off.
  • the microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S2).
  • the microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S3).
  • the reference voltage of the D / A converters 121, 122, 123 is set to 3.3 (V)
  • the voltages from the error amplifiers 105A, 105B, 105C are input to the gates of the transistors 104A, 104B, 104C.
  • the transistors 104A, 104B, and 104C are turned on.
  • power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13, and the DUTs 11, 12, and 13 are in a power-on state.
  • the microcomputer 130 sets the switch number n of the switch SWn to be turned on to 1 to start measuring the power supply current of the DUTs 11, 12, and 13 (step S4).
  • the microcomputer 130 turns on the switch SWn and turns off switches other than SWn (step S5).
  • the switch number n is 1, the switch SW1 is turned on and the switches SW2 and SW3 are turned off.
  • the switch SW1 When the switch SW1 is turned on, the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse-biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A and the power supply terminal 101A.
  • the current flowing through the resistor 103 is detected as the power supply current of the DUT 11 and amplified by the differential amplifier 107.
  • the current amplified by the differential amplifier 107 is digitally converted by the A / D converter 108 and output as power supply current data.
  • the microcomputer 130 acquires power supply current data (step S6).
  • the microcomputer 130 stores the power supply current data in the RAM (step S7).
  • the microcomputer 130 determines whether or not the switch number n is smaller than the maximum value n (max) (step S8).
  • step S8 the switch number n is not smaller than the maximum value n (max) (that is, the switch number n reaches the maximum value n (max)). Steps S5 to S8 are executed until it is determined that
  • step S8 If the microcomputer 130 determines in step S8 that the switch number n is not smaller than the maximum value n (max) (that is, the switch number n has reached the maximum value n (max)), the power supply current measurement of all the DUTs is performed. It determines that it has finished, to transfer the power supply current data to the host server (step S10).
  • the microcomputer 130 finishes the power supply current measurement process (END).
  • the power supply to the connection point P1 is not interrupted from the power supply VDD1.
  • the power supply is switched to VDD2. That is, no instantaneous interruption occurs.
  • the switch SW2 is turned on when all the switches SW1 to SW3 are off, the power supply to the connection point P2 is switched from the power supply VDD1 to the power supply VDD2 without interruption.
  • the switch SW3 is turned on when all the switches SW1 to SW3 are off, the power supply to the connection point P3 is switched from the power supply VDD1 to the power supply VDD2 without interruption. That is, no interruption occurs in any case.
  • the power supply current measurement can be completed in a short time because no instantaneous interruption occurs when the DUT is switched.
  • the power supply currents of the DUT 11 and the DUT 12 can be measured simultaneously.
  • the value of the power supply current obtained in this case is the total value of the power supply current of the DUT 11 and the power supply current of the DUT 12, but the power supply current as the total value can be measured. For this reason, if the power supply currents of a plurality of DUTs are measured at a time, the time for measuring the power supply currents of all the DUTs can be further shortened.
  • the power supply current measuring apparatus 100 since the current limiter 102 and the resistor 103 are common to all the DUTs, the power supply current measuring apparatus 100 according to the first embodiment does not cause a problem of variations in the current limit value and the resistance value, and also increases the cost. Can be suppressed.
  • the current limiter 102 and the resistor 103 are connected to each DUT as in the conventional power supply current measuring apparatus 1 (see FIG. 1). If one pair is required, a cost of ⁇ 1,000,000 is required for ⁇ 1000 ⁇ 1000.
  • the power supply current measuring apparatus 100 according to the first embodiment requires only one current limiter 102 and one resistor 103 for ⁇ 1000, so that a significant cost reduction can be achieved.
  • the first embodiment it is possible to reduce the time required for measuring the power supply current by eliminating the instantaneous interruption while eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost.
  • the power supply current measuring apparatus 100 that can be realized.
  • the power supply current measuring apparatus 100 can switch between the power supply VDD1 and the power supply VDD2 without causing a momentary interruption, the power supply current measurement and other tests can be performed in parallel. required for the test can be shortened in total time.
  • the power source current measuring apparatus 100 has been described with respect to the power source currents of the power terminals 11A, 12A, and 13A included in the plurality of DUTs 11, 12, and 13, respectively.
  • power supply current measuring apparatus 100 of the first embodiment can measure the power supply current at each power supply terminal.
  • the number of DUTs to be measured by the power supply current measuring apparatus 100 of the first embodiment may be one.
  • the burn-in test is performed using LSIs as the DUTs 11, 12, and 13.
  • a DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as an LSI, and is not limited to one manufactured by a semiconductor manufacturing technique as long as it is an electronic circuit component that operates with a DC power supply. .
  • the power supplied from the power supply VDD1 to the power supply terminals 101A, 101B, and 101C in the state where the switches SW1, SW2, and SW3 of the power supply current measuring apparatus 100 according to the first embodiment are turned off is not limited to the burn-in test. It can be used for
  • power may be supplied to the DUT and used to hold the initialized state.
  • FIG. 6 is a block diagram showing an information processing apparatus including a power supply current measuring apparatus according to a modification of the first embodiment.
  • a server 60 as an information processing apparatus includes a main power supply 61, a CPU 62, a cache memory 63, a chip set 64, a graphic controller 65, a main memory 66, a hard disk controller 67, a display 68, and a hard disk 69. .
  • the Server 60 includes voltage regulators 71-76.
  • the voltage regulators 71 to 76 output DC voltages supplied to the main power supply 61, the CPU 62, the cache memory 63, the chip set 64, the graphic controller 65, the main memory 66, and the hard disk controller 67, respectively.
  • main power supply 61 the CPU 62, the cache memory 63, the chip set 64, the graphic controller 65, the main memory 66, and the hard disk controller 67 that are supplied with power by the voltage regulators 71 to 76 are shown without being particularly distinguished from each other. These are called modules.
  • the voltage regulators 71 to 76 include the power supply current measuring device 100 (see FIG. 4).
  • the voltage regulators 71 to 76 may include the power supply current measuring device 100 (see FIG. 4) alone.
  • the power supply current measuring device 100 may be shared.
  • the power supply current measuring apparatus 100 (see FIG. 4) included in the voltage regulators 71 to 76 normally supplies power to each module from the power supply VDD1. That is, each module is an electronic circuit component that receives power supply from the power supply current measuring apparatus according to the modification of the first embodiment.
  • the power supply current measuring apparatus 100 included in the voltage regulators 71 to 76 turns on SW1, SW2, and SW3, thereby using the power supplied from the power supply VDD2 to power the modules. The current can be measured. Thus, if the power supply current of each module is measured, the self-diagnosis or defect detection of each module can be performed.
  • the power source current of each module included in the information processing apparatus can be measured, and the problem and cost of variation in current limit value and resistance value can be measured.
  • the time required for measuring the power supply current can be shortened by eliminating the interruption problem while preventing the instantaneous interruption.
  • FIG. 7 is a block diagram showing a power supply current measuring apparatus according to the second embodiment.
  • the power supply current measuring apparatus 200 of the second embodiment is different from the power supply current measuring apparatus 100 of the first embodiment in that it includes switches SW11, SW12, and SW13 connected in parallel to the diodes D11, D12, and D13. Since the other configuration is the same as that of the power supply current measuring apparatus 100 of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, the difference from the power supply current measuring apparatus 100 according to the first embodiment will be mainly described.
  • the switches SW11, SW12, and SW13 are bypass switch units that are connected in parallel to the diodes D11, D12, and D13, and bypass the diodes D11, D12, and D13 when turned on.
  • the switches SW11, SW12, and SW13 are controlled to be opened and closed (on / off) by the microcomputer 130 in the same manner as the switches SW1, SW2, and SW3.
  • the switch SW11, SW12, SW13, for example, can be used relay.
  • the switches SW11, SW12, and SW13 bypass the diodes D11, D12, and D13 when power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13 to perform tests other than the power supply current measurement.
  • D13 is provided to prevent power loss at D13. Further, by bypassing the diodes D11, D12, and D13, voltage drops in the diodes D11, D12, and D13 do not occur. Therefore, it is possible to set the output voltage of the power supply VDD1 as low as the voltage drops of the diodes D11, D12, and D13. it can.
  • an operation mode in which the switches SW11, SW12, and SW13 are turned on to bypass the diodes D11, D12, and D13 and the output voltage of the power supply VDD1 is set lower by the voltage drop of the diodes D11, D12, and D13 is a low-loss mode. Called.
  • FIG. 8 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 200 according to the second embodiment.
  • step S11 When the microcomputer 130 starts the measurement process of the power supply current (START), it first performs an initial setting (step S11).
  • the microcomputer 130 sets all the voltage values of the power supplies VDD1 and VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. Further, the microcomputer 130 turns off all the switches SW1, SW2, and SW3 and turns on the switches SW11, SW12, and SW13. As a result, the low loss mode is set, and the diodes D11, D12, and D13 are bypassed by the switches SW11, SW12, and SW13.
  • the microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S12).
  • the output voltage value of the power supply VDD1 is set lower than the voltage drop of the diodes D11, D12, and D13 (here, 0.6 (V)) as compared with the first embodiment.
  • the switches SW1, SW2, and SW3 are off and the switches SW11, SW12, and SW13 are on, the sources of the transistors 104A, 104B, and 104C are supplied from the power source VDD1 through the switches SW11, SW12, and SW13. Power is supplied. That is, the diodes D11, D12, and D13 are bypassed.
  • the microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S13).
  • the reference voltage of the D / A converters 121, 122, 123 is set to 3.3 (V)
  • the voltages from the error amplifiers 105A, 105B, 105C are input to the gates of the transistors 104A, 104B, 104C.
  • the transistors 104A, 104B, and 104C are turned on.
  • power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13, and the DUTs 11, 12, and 13 are in a power-on state.
  • each of the error amplifiers 105A, 105B, and 105C sets a voltage corresponding to the voltage difference so that the voltage values of the power supply terminals 101A, 101B, and 101C are equal to the reference voltages (Vref1, Vref2, and Vref3). Output.
  • the microcomputer 130 sets the switch number n of the switch SWn to be turned on to 1 to start measuring the power supply current of the DUTs 11, 12, and 13 (step S15).
  • the microcomputer 130 turns on the switch SWn and turns off switches other than SWn (step S16).
  • the switch number n is 1, the switch SW1 is turned on and the switches SW2 and SW3 are turned off.
  • the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A.
  • the current flowing through the resistor 103 is detected as the power supply current of the DUT 11 and amplified by the differential amplifier 107.
  • the current amplified by the differential amplifier 107 is digitally converted by the A / D converter 108 and output as power supply current data.
  • the microcomputer 130 acquires power supply current data (step S17).
  • the microcomputer 130 stores the power supply current data in the RAM (step S18).
  • the microcomputer 130 determines whether or not the switch number n is smaller than the maximum value n (max) (step S19).
  • step S19 the switch number n is not smaller than the maximum value n (max) (that is, the switch number n reaches the maximum value n (max)). until the determined), and executes the processing of steps S16 ⁇ S19.
  • the switches SW2 and SW3 are sequentially turned on, and the power supply currents of the DUT 12 and DUT 13 are measured.
  • step S19 If the microcomputer 130 determines in step S19 that the switch number n is not smaller than the maximum value n (max) (that is, the switch number n has reached the maximum value n (max)), the power source current of all the DUTs is measured. It determines that it has finished, to set the low loss mode again (step S21).
  • the microcomputer 130 transfers the power supply current data to the host server (step S22).
  • the microcomputer 130 finishes the power supply current measurement process (END).
  • the power supply current is switched by switching the DUTs 11, 12, and 13 without causing an instantaneous interruption, as in the power supply current measuring apparatus 100 of the first embodiment. Can be measured. For this reason, it is not necessary to initialize the DUT when switching the measurement target of the power supply current, and the time required for measuring the power supply current can be shortened.
  • the power supply current measuring apparatus 200 turns on the switches SW11, SW12, and SW13 to bypass the diodes D11, D12, and D13 and sets the output voltage of the power supply VDD1 to be low. Electric power can be reduced.
  • the power source current measuring apparatus 200 since the current limiter 102 and the resistor 103 are common to all the DUTs, the power source current measuring apparatus 200 according to the second embodiment does not cause a problem of variations in the current limit value and the resistance value, and also increases the cost. Can be suppressed.
  • the time required for measuring the power supply current is reduced by eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost while preventing the instantaneous interruption.
  • the power supply current measuring apparatus 200 that can be realized.
  • the power supply current measuring apparatus 200 can switch between the power supply VDD1 and the power supply VDD2 without causing an instantaneous interruption, the power supply current measurement and other tests can be performed in parallel. required for the test can be shortened in total time. Further, when the power supply current is not measured, the voltage of the power supply VDD1 can be set low, so that power consumption can be reduced.
  • the switch one of SW1, SW2, and SW3 that is turned on to measure the power supply current is connected via the connection point P1, P2, or P3.
  • the switch any one of SW11, SW12, SW13 may be turned off.
  • the switches SW11, SW12, and SW13 are diodes (any one of D11, D12, and D13) connected in parallel with the switch (any one of SW11, SW12, and SW13) among the switches SW1, SW2, and SW3. While the switch connected to the output terminal (any one of SW1, SW2, SW3) is on, it may be turned off.
  • FIG. 9 is a block diagram showing a power supply current measuring apparatus according to the third embodiment.
  • the power supply current measuring apparatus 300 of the third embodiment is different from the power supply current measuring apparatus 100 of the first embodiment in that a short circuit test of the DUTs 11, 12, and 13 is performed before measuring the power supply currents of the DUTs 11, 12, and 13. Different. Since the other configuration is the same as that of the power supply current measuring apparatus 100 of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, the difference from the power supply current measuring apparatus 100 according to the first embodiment will be mainly described.
  • FIG. 9 shows the DUT11, DUT12, and DUT13. A state in which all of the switches SW1, SW2, and SW3 are turned on to perform a short circuit test is shown.
  • the reference voltages Vref1, Vref2, and Vref3 are all set to 0.1 (V).
  • a voltage of about 0.1 (V) is applied to the DUTs 11, 12, and 13 through the transistors 104A, 104B, and 104C.
  • the DUTs 11, 12, and 13 do not operate when the reference voltages Vref1, Vref2, and Vref3 are all set to 0.1 (V) unless a short circuit occurs in the internal circuit.
  • the voltage value of 0.1 (V) of the reference voltages Vref1, Vref2, and Vref3 is a voltage value that makes the DUTs 11, 12, and 13 inoperative.
  • FIG. 10 is a flowchart showing the processing contents of the short circuit test in the power supply current measuring apparatus 300 of the third embodiment.
  • step S31 the microcomputer 130 sets all the voltage values of the power supplies VDD1 and VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. Further, the microcomputer 130 turns on all the switches SW1, SW2, and SW3.
  • the microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S32).
  • the microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S33).
  • the reference voltage of the D / A converters 121, 122, and 123 is 0.1 (V)
  • the normal DUTs 11, 12, and 13 having no abnormality in the internal circuit do not operate.
  • the current value output from the A / D converter 108 should be 0 (mA).
  • the microcomputer 130 acquires data representing the current value output from the A / D converter 108 (step S34).
  • the microcomputer 130 determines whether or not the data acquired in step S34 is within a normal value range (step S35).
  • the range of normal values may be determined according to the type of electronic circuit components used as the DUTs 11, 12, and 13, and is set to 0 (mA) to 1 (mA), for example.
  • step S34 determines that all of the DUTs 11, 12, and 13 are normal, and proceeds to a power supply current measurement process. Thereafter, the power supply current measurement process shown in the first or second embodiment is executed.
  • step S34 determines that at least one of the DUTs 11, 12, and 13 is short-circuited, A short circuit test is performed for each of the DUTs 11, 12, and 13 (step S36).
  • step S36 the microcomputer 130 turns on only the switch SW1 and turns off the switches SW2 and SW3 when performing the short-circuit test of the DUT 11, and based on the data representing the current value output from the A / D converter 108. Determine if there is a short circuit.
  • the microcomputer 130 stores, in the RAM, an identifier representing a defective DUT in which the current value deviates from the normal value range in the individual short-circuit tests of the DUTs 11, 12, and 13 (step S37).
  • the microcomputer 130 does not measure the power supply current for the DUT in which the short circuit has occurred.
  • the power supply current measuring apparatus 300 can identify the DUT in which a short circuit has occurred in the internal circuit before performing the power supply current measurement process described in the first or second embodiment. It is possible to prevent the power supply current from being measured for the DUT in which the short circuit has occurred. Thereby, even when there is a short-circuited DUT, it is possible to prevent the power supply current from being measured for the short-circuited DUT.
  • FIG. 11 is a block diagram showing a power supply current measuring apparatus according to the fourth embodiment.
  • the power supply current measuring apparatus 400 of the fourth embodiment has one power supply (VDD1), and the current limiter 102 is connected to receive power supply from the power supply VDD1 in addition to the diodes D11, D12, and D13. Different from the power supply current measuring apparatus 100 of the first embodiment. Further, the power supply current measuring apparatus 400 of the fourth embodiment is such that the forward voltage (Vf2) of the diodes D21, D22, D23 is set lower than the forward voltage (Vf1) of the diodes D11, D12, D13. Different from the power supply current measuring apparatus 100 of the first embodiment.
  • diodes D11, D12, and D13 having Vf1 of 1.0 (V) are used.
  • diodes D21, D22, D23 having Vf2 of 0.3 (V) are used.
  • the voltage drop at the current limiter 102 and the resistor 103 is 0.2 (V).
  • the potential at the connection point P1 when the switch SW1 is turned on is from VDD (5.0 (V)) to the voltage drop (0.2 (V)) of the current limiter 102 and the resistor 103 and the diode D21.
  • Vf (0.3 (V)) is subtracted to 4.5 (V).
  • the switch SW1 when the switch SW1 is turned on, the diodes D11, D12, and D13 are reverse-biased, and the power supply VDD1 to the DUT11 is passed through the current limiter 102, the resistor 103, the switch SW1, the diode D21, the transistor 104A, and the power supply terminal 101A. Power is supplied. At this time, the voltage value across the resistor 103 is detected via the differential amplifier 107 and the A / D converter 108. Thereby, the power supply current of DUT11 is measured.
  • the forward voltages (Vf2) of the diodes D21, D22, and D23 are set so that the diodes D11, D12, and D13 are reverse-biased when the switches SW1, SW2, and SW3 are turned on.
  • the forward voltage (Vf1) of the diodes D11, D12, and D13 may be selected.
  • the fourth embodiment as in the first embodiment, by eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost, without causing instantaneous interruption, It is possible to provide the power supply current measuring apparatus 400 that can shorten the time required for measuring the power supply current.
  • the power supply current measuring apparatus 400 can switch the connection to the power supply current measurement circuit without causing a momentary interruption, the power supply current measurement and other tests can be performed in parallel. The total time required for measurement and other tests can be shortened.
  • the power source current measuring device, the test device including the power source current measuring device, and the information processing device including the power source current measuring device according to the exemplary embodiments of the present invention have been described above, but the present invention is specifically disclosed.
  • the present invention is not limited to the embodiments, and various modifications and changes can be made without departing from the scope of the claims.
  • the above first to fourth embodiments the following additional notes are disclosed.
  • a plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power; A first power supply unit that outputs power to be supplied to the electronic circuit component; A plurality of rectifier elements connected in series between each of the plurality of power supply ends and the first power supply unit; A second power supply unit having an output voltage higher than that of the first power supply unit; A plurality of switch units connected in series between each output terminal of the plurality of rectifying elements and the second power supply unit, and connected in parallel to each other; A connection point on the second power supply unit side of the plurality of switch units and the second power supply unit are connected in series, and when any of the plurality of switch units is closed, the switch unit is closed.
  • a current detection unit that detects a current supplied from the second power supply unit to the electronic circuit component via the switch unit.
  • Appendix 2 A plurality of transistors having a current input terminal and a current output terminal connected between an output terminal of each of the plurality of rectifying elements and each of the plurality of power supply terminals; And an error amplifier having one input terminal connected to each of the plurality of power supply terminals, a reference voltage input to the other input terminal, and an output terminal connected to a control terminal of the transistor. power supply current measuring apparatus according to 1.
  • a reference voltage control unit for controlling a reference voltage input to the error amplifier; A voltage value at which, among the plurality of switch units, the switch unit connected to the electronic circuit component that performs a short circuit test is closed, and the reference voltage control unit sets the reference voltage to the non-operating state of the electronic circuit component.
  • the power supply current measuring device according to appendix 2, wherein a short circuit test is performed on the electronic circuit component by supplying power to the electronic circuit component from the second power supply unit.
  • a plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power;
  • a power supply unit that outputs power to be supplied to the electronic circuit component;
  • a plurality of first rectifier elements connected in series between each of the plurality of power supply ends and the power supply unit, and connected in parallel to each other;
  • a plurality of switches connected in parallel to each of the plurality of first rectifying elements between the output terminals of the plurality of first rectifying elements and the power supply unit, and connected in series to the power supply unit, respectively.
  • a second rectifying element connected in series to the plurality of switch units between the output terminal of the first rectifying element and the power supply unit, and having a forward voltage lower than a forward voltage of the first rectifying element;
  • the first rectifying element is reverse-biased when one of the plurality of switch units is closed and connected in series between a connection point of the plurality of switch units on the power source unit side and the power source unit.
  • a current detection unit that detects a current supplied from the power supply unit to the electronic circuit component via the closed switch unit and the second rectifying element.

Abstract

This invention is directed to provision of a power supply current measurement apparatus wherein the prevention of occurrences of instantaneous interruptions and the reduction of measurement times are to be achieved. The power supply current measurement apparatus comprises: a plurality of power supplying terminals that are connected to an electronic circuit component, which is to be tested by an electronic circuit component test apparatus, for supplying a power to the electronic circuit component; a first power supply unit that outputs the power to be supplied to the electronic circuit component; a plurality of rectifier elements each of which is serially connected between the respective one of the plurality of power supplying terminals and the first power supply unit and which are connected in parallel to one another; a second power supply unit the output voltage of which is higher than that of the first power supply unit; a plurality of switch units each of which is serially connected between the output terminal of the respective one of the plurality of rectifier elements and the second power supply unit and which are connected in parallel to one another; and a current detection unit that is serially connected between the second power supply unit and a connection point of the plurality of switch units, which is on the second power supply unit side, and that, if any one of the plurality of switch units is closed to cause the rectifier element to be reversely biased, detects a current that is supplied from the second power supply unit to the electronic circuit component via the closed switch unit.

Description

電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置Power supply current measuring apparatus, test apparatus including power supply current measuring apparatus, and information processing apparatus including power supply current measuring apparatus
 電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置に関する。 The present invention relates to a power source current measuring device, a test device including a power source current measuring device, and an information processing device including a power source current measuring device.
 従来より、IC(Integrated Circuit:集積回路)のような電子回路部品の試験を行う装置の一例として、バーンイン装置がある。バーンイン装置は、IC等の電子回路部品の初期不良を排除するために、出荷前に高温雰囲気中で電子回路部品の動作試験を行う装置である。 Conventionally, there is a burn-in apparatus as an example of an apparatus for testing an electronic circuit component such as an IC (Integrated Circuit). The burn-in apparatus is an apparatus that performs an operation test of electronic circuit components in a high-temperature atmosphere before shipment in order to eliminate initial defects of electronic circuit components such as ICs.
特開2000-147054号公報JP 2000-147054 A
 従来の電子回路部品の試験装置は、電子回路部品全体に電力を供給する電源部に加え、各電子回路部品の電圧補償回路を複数有する。電源電流を測定する際には、各電圧補償回路に電流測定部が必要であるが、幅広い測定レンジに対応すると高コストとなる問題や、各電流測定部のばらつきの問題がある。そこで、電流測定部を共通化することが考えられるが、電子回路部品と電圧補償回路の接続をスイッチで選択的に切り替えるため、スイッチを切り替えるときに瞬断が発生する可能性があった。 A conventional electronic circuit component testing apparatus has a plurality of voltage compensation circuits for each electronic circuit component in addition to a power supply unit that supplies power to the entire electronic circuit component. When measuring the power supply current, each voltage compensation circuit requires a current measuring unit. However, there are problems of high costs when dealing with a wide measurement range, and variations in each current measuring unit. Therefore, it is conceivable to use a common current measuring unit. However, since the connection between the electronic circuit component and the voltage compensation circuit is selectively switched by a switch, there is a possibility that an instantaneous interruption may occur when the switch is switched.
 瞬断が発生すると、電子回路部品の試験が中断する、あるいは、電源ノイズ等の発生により試験結果に影響が生じる等の問題に加えて、電子回路部品を初期化する必要が生じることにより試験時間が長くなる等の問題が生じることがあった。 When an instantaneous interruption occurs, the test of the electronic circuit component is interrupted, or the test time is caused by the necessity to initialize the electronic circuit component in addition to the problem that the test result is affected by the occurrence of power supply noise etc. In some cases, a problem such as a long time occurs.
 そこで、瞬断を生じさせることなく、測定時間の短縮化を図った電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a power supply current measuring device, a test device including the power supply current measuring device, and an information processing device including the power supply current measuring device that can shorten the measurement time without causing an instantaneous interruption. .
 本発明の実施の形態の電源電流測定装置は、電子回路部品の試験装置によって試験が行われる電子回路部品に接続され、電力を供給する複数の電力供給端と、前記電子回路部品に供給するための電力を出力する第1電源部と、前記複数の電力供給端の各々と前記第1電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数の整流素子と、前記第1電源部よりも出力電圧の高い第2電源部と、前記複数の整流素子の各々の出力端と前記第2電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数のスイッチ部と、前記複数のスイッチ部の前記第2電源部側における接続点と、前記第2電源部との間に直列に接続され、前記複数のスイッチ部のいずれかが閉成されると、前記整流素子が逆バイアスになり、当該閉成されたスイッチ部を介して前記第2電源部から前記電子回路部品に供給される電流を検出する電流検出部とを含む。 Power supply current measuring apparatus according to an embodiment of the present invention is connected to the electronic circuit component test by the test device for an electronic circuit component is performed, a plurality of power supply terminals for supplying power, to be supplied to the electronic circuit component A plurality of rectifying devices connected in series between each of the plurality of power supply ends and the first power supply unit, and connected in parallel to each other, A plurality of second power supply units having an output voltage higher than that of one power supply unit, and each of the plurality of rectifying elements connected in series between the output terminals of the plurality of rectifying elements and the second power supply unit. When a switch unit, a connection point on the second power supply unit side of the plurality of switch units, and the second power supply unit are connected in series, and any of the plurality of switch units is closed, The rectifier element is reverse biased And a current detector for detecting a current supplied to the electronic circuit component from said through the closed to switch unit second power supply unit.
 瞬断を生じさせることなく、測定時間の短縮化を図った電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置を提供することができる。 Without causing instantaneous interruption, power supply current measuring device which aimed to shorten the measurement time, it is possible to provide an information processing apparatus including a test apparatus including a power supply current measuring device, and a power supply current measuring device.
複数の電子回路部品の電源電流を測定する従来の電源電流測定装置を示すブロック図である。It is a block diagram which shows the conventional power supply current measuring apparatus which measures the power supply current of several electronic circuit components. 複数の電子回路部品の電源電流を測定する従来の他の形態の電源電流測定装置を示すブロック図である。It is a block diagram which shows the power supply current measuring apparatus of the other conventional form which measures the power supply current of several electronic circuit components. 実施の形態1の電源電流測定装置を含む試験装置を示すブロック図である。1 is a block diagram showing a test apparatus including a power supply current measuring apparatus according to Embodiment 1. FIG. 実施の形態1の電源電流測定装置を示すブロック図である。1 is a block diagram illustrating a power supply current measuring apparatus according to a first embodiment. 実施の形態1の電源電流測定装置100のマイコン130が実行する電源電流の測定処理を示すフローチャートである。4 is a flowchart illustrating a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment. 実施の形態1の変形例の電源電流測定装置を含む情報処理装置を示すブロック図である。6 is a block diagram illustrating an information processing apparatus including a power supply current measuring apparatus according to a modification of the first embodiment. FIG. 実施の形態2の電源電流測定装置を示すブロック図である。6 is a block diagram illustrating a power supply current measuring apparatus according to a second embodiment. FIG. 実施の形態2の電源電流測定装置200のマイコン130が実行する電源電流の測定処理を示すフローチャートである。6 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 200 according to the second embodiment. 実施の形態3の電源電流測定装置を示すブロック図である。FIG. 10 is a block diagram showing a power supply current measuring apparatus according to a third embodiment. 実施の形態3の電源電流測定装置300における短絡試験の処理内容を示すフローチャートである。10 is a flowchart showing processing contents of a short-circuit test in power supply current measuring apparatus 300 according to Embodiment 3. 実施の形態4の電源電流測定装置を示すブロック図である。FIG. 10 is a block diagram showing a power supply current measuring apparatus according to a fourth embodiment.
 以下、本発明の電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置を適用した実施の形態について説明する。 Hereinafter, an embodiment in which the power source current measuring device of the present invention, the test device including the power source current measuring device, and the information processing device including the power source current measuring device are applied will be described.
 実施の形態1乃至4の電源電流測定装置について説明する前に、まず、図1及び図2を用いて、従来の電源電流測定装置で複数の電子回路部品の電源電流を測定する際の問題点について説明する。 Before describing the power supply current measuring apparatus of the first to fourth embodiments, first with reference to FIGS. 1 and 2, the conventional problems in measuring the power supply current of a plurality of electronic circuit components in the power supply current measuring device Will be described.
 図1は、複数の電子回路部品の電源電流を測定する従来の電源電流測定装置を示すブロック図である。 FIG. 1 is a block diagram showing a conventional power source current measuring apparatus for measuring power source currents of a plurality of electronic circuit components.
 図1に示す従来の電源電流測定装置1は、電源VDDに接続される電流リミッタ(CL:Current Limiter)2A、2B、2C、トランジスタ4A、4B、4C、抵抗器3A、3B、3C、誤差増幅器5A、5B、5C、マルチプレクサ(MUX:Multiplexer)6、差動差動増幅器7、及びA/Dコンバータ(ADC:A/D Converter)8を含む。 1 includes a current limiter (CL) 2A, 2B, 2C, transistors 4A, 4B, 4C, resistors 3A, 3B, 3C, and an error amplifier connected to a power supply VDD. 5A, 5B, 5C, a multiplexer (MUX: Multiplexer) 6, a differential differential amplifier 7, and an A / D converter (ADC: A / D converter) 8.
 従来の電源電流測定装置1は、恒温槽10内に配設される被試験デバイス(Device Under Test(以下、DUTと略す))11、12、13に電力を供給し、各電流値を測定する。 The conventional power source current measuring apparatus 1 supplies power to a device under test (Device Under Test (hereinafter abbreviated as DUT)) 11, 12, and 13 disposed in the thermostatic chamber 10, and measures each current value. .
 恒温槽10は、DUT11、12、13の電源電流を測定する際に、DUT11、12、13の温度を一定に保持するための装置である。恒温槽10内の温度を例えば125℃程度に上昇させることにより、DUT11、12、13のバーンイン試験を行うことも可能である。 The thermostat 10 is a device for keeping the temperatures of the DUTs 11, 12, and 13 constant when measuring the power supply currents of the DUTs 11, 12, and 13. It is also possible to perform a burn-in test on the DUTs 11, 12, and 13 by raising the temperature in the thermostat 10 to about 125 ° C., for example.
 DUT11、12、13は、電子回路部品であり、典型的には、LSI(Large Scale Integration:大規模集積回路)である。 The DUTs 11, 12, and 13 are electronic circuit components, typically LSI (Large Scale Integration).
 図1には、一例として3つのDUT11、12、13を示すが、実際には、例えば数百個から数万個あるいはそれ以上の数のDUTが恒温槽10内に配設され、電源電流測定装置1に接続される。 FIG. 1 shows three DUTs 11, 12, and 13 as an example. Actually, for example, hundreds to tens of thousands or more DUTs are arranged in the thermostatic chamber 10 to measure the power supply current. Connected to device 1.
 なお、電子回路部品としてのDUTは、LSIのような半導体集積回路に限らず、直流電源で動作する電子回路部品であれば、半導体製造技術によって作製されたものに限られない。 Incidentally, DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as LSI, if the electronic circuit components operating at a DC power source, not limited to those fabricated by the semiconductor manufacturing technology.
 電流リミッタ2A、2B、2Cは、それぞれが電源VDDに直列に接続されるとともに、互いに並列に接続されており、DUT11、12、13に流れる電流を制限するために設けられている。電流リミッタ2A、2B、2Cとしては、例えば、突入電流リミッタを用いることができる。 The current limiters 2A, 2B, and 2C are connected in series to the power supply VDD and connected in parallel to each other, and are provided to limit the current flowing through the DUTs 11, 12, and 13. For example, inrush current limiters can be used as the current limiters 2A, 2B, and 2C.
 抵抗器3A、3B、3Cは、シャント抵抗として用いられる。抵抗器3A、3B、3Cの一端(図1中の右側の端子)は、それぞれ、トランジスタ4A、4B、4Cのドレインに接続されており、他端(図1中の左側の端子)は、それぞれ、DUT11、12、13の電源端子11A、12A、13Aに接続されている。 Resistors 3A, 3B, and 3C are used as shunt resistors. One ends (right terminals in FIG. 1) of the resistors 3A, 3B, and 3C are respectively connected to the drains of the transistors 4A, 4B, and 4C, and the other ends (left terminals in FIG. 1) are respectively , DUTs 11, 12, and 13 are connected to power terminals 11A, 12A, and 13A.
 トランジスタ4A、4B、4Cは、例えば、FET(Field Effect Transistor:電界効果型トランジスタ)である。トランジスタ4Aは、ソースが電流リミッタ2Aに接続され、ドレインが抵抗器3Aに接続され、ゲートが誤差増幅器5Aの出力端に接続されている。 The transistors 4A, 4B, and 4C are, for example, FETs (Field-Effect-Transistors). The transistor 4A has a source connected to the current limiter 2A, a drain connected to the resistor 3A, and a gate connected to the output terminal of the error amplifier 5A.
 同様に、トランジスタ4Bは、ソースが電流リミッタ2Bに接続され、ドレインが抵抗器3Bに接続され、ゲートが誤差増幅器5Bの出力端に接続されている。また、トランジスタ4Cは、ソースが電流リミッタ2Cに接続され、ドレインが抵抗器3Cに接続され、ゲートが誤差増幅器5Cの出力端に接続されている。 Similarly, transistor 4B has a source connected to the current limiter 2B, a drain connected to the resistor 3B, the gate is connected to the output terminal of the error amplifier 5B. The transistor 4C has a source connected to the current limiter 2C, a drain connected to the resistor 3C, and a gate connected to the output terminal of the error amplifier 5C.
 なお、トランジスタ4A、4B、4Cのソースとドレインは逆であってもよい。 Note that the sources and drains of the transistors 4A, 4B, and 4C may be reversed.
 誤差増幅器5A、5B、5Cの一方の入力端には、それぞれ、DUT11、12、13の電源端子11A、12A、13Aが接続され、他方の入力端には基準電圧を出力する基準電圧源(Vref)が接続されている。 The power terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 are connected to one input terminals of the error amplifiers 5A, 5B, and 5C, respectively, and a reference voltage source (Vref that outputs a reference voltage) is connected to the other input terminal. ) Is connected.
 誤差増幅器5A、5B、5Cは、トランジスタ4A、4B、4Cとともに、電圧補償回路として機能する。 The error amplifiers 5A, 5B, and 5C function as a voltage compensation circuit together with the transistors 4A, 4B, and 4C.
 誤差増幅器5A、5B、5Cは、それぞれ、DUT11、12、13の電源端子11A、12A、13Aから入力される電圧値と、基準電圧源(Vref)から入力される基準電圧との電圧差に応じた電圧を出力する。より具体的には、誤差増幅器5A、5B、5Cは、それぞれ、電源端子11A、12A、13Aの電圧値と、基準電圧源(Vref)の基準電圧とが等しくなるように、ゲート電圧を制御する。 The error amplifiers 5A, 5B, and 5C correspond to the voltage difference between the voltage value input from the power supply terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 and the reference voltage input from the reference voltage source (Vref), respectively. Output voltage. More specifically, the error amplifiers 5A, 5B, and 5C control the gate voltages so that the voltage values of the power supply terminals 11A, 12A, and 13A are equal to the reference voltage of the reference voltage source (Vref), respectively. .
 誤差増幅器5A、5B、5Cから出力される電圧は、トランジスタ4A、4B、4Cのゲートに入力される。このため、トランジスタ4A、4B、4Cは、電源端子11A、12A、13Aの電圧値と、基準電圧源(Vref)の基準電圧との電圧差に応じて、電源端子11A、12A、13Aの電圧値と、基準電圧源(Vref)の基準電圧とが等しくなるように駆動される。 The voltage output from the error amplifiers 5A, 5B, and 5C is input to the gates of the transistors 4A, 4B, and 4C. Therefore, the transistors 4A, 4B, and 4C have the voltage values of the power supply terminals 11A, 12A, and 13A according to the voltage difference between the voltage value of the power supply terminals 11A, 12A, and 13A and the reference voltage of the reference voltage source (Vref). And the reference voltage of the reference voltage source (Vref) are driven to be equal.
 マルチプレクサ6は、抵抗器3A、3B、3Cのそれぞれの両端に接続されており、抵抗器3A、3B、3Cのいずれかを選択して接続する。 Multiplexer 6, resistors 3A, 3B, are connected to respective ends of the 3C, resistors 3A, 3B, selectively connects one of 3C.
 A/Dコンバータ8は、差動増幅器7を介してマルチプレクサ6の出力端に接続されており、マルチプレクサ6で接続され、差動増幅器7で差動増幅された電圧値をデジタル値に変換して出力する。 The A / D converter 8 is connected to the output terminal of the multiplexer 6 via the differential amplifier 7, is connected to the multiplexer 6, and converts the voltage value differentially amplified by the differential amplifier 7 into a digital value. Output.
 A/Dコンバータ8の出力側には、例えば、マイクロコンピュータ(以下、マイコンと略す)20が接続されている。マイコン20は、例えば、CPU(Central Processing Unit:中央演算装置)を含み、A/Dコンバータ8から出力されるデータを図示しない外部の装置(典型的には上位のサーバ)に伝送する。 For example, a microcomputer (hereinafter abbreviated as a microcomputer) 20 is connected to the output side of the A / D converter 8. The microcomputer 20 includes, for example, a CPU (Central Processing Unit), and transmits data output from the A / D converter 8 to an external device (typically a host server) not shown.
 なお、DUT11、12、13のグランド端子11B、12B、13Bは接地されているが、電源VDDのリターン端子に接続されていてもよい。 The ground terminals 11B, 12B, and 13B of the DUTs 11, 12, and 13 are grounded, but may be connected to the return terminal of the power supply VDD.
 このような従来の電源電流測定装置1は、DUT11、12、13に電流を供給し、マルチプレクサ6の接続先を抵抗器3A、3B、3Cのうちから選択的に切り替えることにより、DUT11、12、13の電源電流を測定する。 Such a conventional power supply current measuring apparatus 1 supplies current to the DUTs 11, 12, and 13 and selectively switches the connection destination of the multiplexer 6 from the resistors 3A, 3B, and 3C, thereby enabling the DUTs 11, 12, 13 power supply currents are measured.
 電源電流測定装置1は、電流リミッタ2A、2B、2C、トランジスタ4A、4B、4C、抵抗器3A、3B、3C、及び誤差増幅器5A、5B、5CをDUT11、12、13のそれぞれの電源電流を測定するためのラインに備える。 The power source current measuring apparatus 1 supplies the current limiters 2A, 2B and 2C, transistors 4A, 4B and 4C, resistors 3A, 3B and 3C, and error amplifiers 5A, 5B and 5C to the respective power source currents of the DUTs 11, 12 and 13. Prepare for the line to measure.
 これらのうち、特に、抵抗器3A、3B、3Cは、DUT11、12、13に供給される電流値の精度に大きく関わる素子であり、抵抗値のばらつきが問題となる。よって、シャント抵抗として用いる抵抗器3A、3B、3Cは、高精度であることが要求されるが、高精度のものほど高価であり、DUT11、12、13の各々に電流を供給するライン毎に配設すると、電源電流測定装置1のコストアップに繋がるという問題があった。電流リミッタもトランジスタや抵抗等を組み合わせた回路で、各々に電流を供給するライン毎に配設すると、電源電流測定装置1のコストアップに繋がるという問題があった。 Among these, in particular, the resistors 3A, 3B, and 3C are elements that are largely related to the accuracy of the current value supplied to the DUTs 11, 12, and 13, and the dispersion of the resistance value becomes a problem. Therefore, the resistors 3A, 3B, and 3C used as shunt resistors are required to be highly accurate, but the more accurate resistors are more expensive, and each line that supplies current to each of the DUTs 11, 12, and 13 is expensive. When arranged, there is a problem that the power supply current measuring apparatus 1 is increased in cost. The current limiter is also a circuit in which transistors, resistors, and the like are combined. If the current limiter is provided for each line for supplying current to each, there is a problem that the power source current measuring apparatus 1 is increased in cost.
 また、電流リミッタ2A、2B、2C又は抵抗器3A、3B、3Cのばらつきを吸収するための補正回路を設けることも考えられるが、補正回路の分だけコストアップが生じるという問題があった。 Also, although it is conceivable to provide a correction circuit for absorbing variations in the current limiters 2A, 2B, 2C or the resistors 3A, 3B, 3C, there is a problem that the cost is increased by the amount of the correction circuit.
 また、例えば1uA~1Aの電流レンジをカバーする場合、シャント抵抗を複数配置し切り換える必要があり、コストアップが生じるとういう問題があった。 Also, for example, when covering a current range of 1 uA to 1 A, there is a problem that a plurality of shunt resistors must be arranged and switched, resulting in an increase in cost.
 このため、DUT11、12、13の各々に電流を供給する各ラインについて、電流リミッタと抵抗器を共通化することが望まれていた。 For this reason, it has been desired to share a current limiter and a resistor for each line that supplies a current to each of the DUTs 11, 12, and 13.
 次に、図2を用いて電流リミッタと抵抗器を共通化した電源電流測定装置1Aについて説明する。 Next, a power supply current measuring apparatus 1A in which a current limiter and a resistor are shared will be described with reference to FIG.
 図2は、複数の電子回路部品の電源電流を測定する従来の他の形態の電源電流測定装置を示すブロック図である。 FIG. 2 is a block diagram showing another conventional power source current measuring apparatus for measuring power source currents of a plurality of electronic circuit components.
 上述のように、図2に示す電源電流測定装置1Aは、図1に示す電源電流測定装置1における電流リミッタ2A、2B、2Cと抵抗器3A、3B、3Cを電流リミッタ2及び抵抗器3に置き換え、DUT11、12、13の各々に電流を供給する各ラインについて共通化したものである。 As described above, the power supply current measuring apparatus 1A shown in FIG. 2 uses the current limiters 2A, 2B, and 2C and the resistors 3A, 3B, and 3C in the power supply current measuring apparatus 1 shown in FIG. It replaces and is common about each line which supplies an electric current to each of DUT11,12,13.
 以下、図2に示す電源電流測定装置1Aの説明では、図1に示す電源電流測定装置1の構成要素と同一又は同等の要素には同一符号を付し、その説明を省略する。 Hereinafter, in the description of the power supply current measuring device 1A shown in FIG. 2, the same reference numerals are given to components identical or equivalent elements of the power supply current measuring apparatus 1 shown in FIG. 1, the description thereof is omitted.
 図2に示す従来の電源電流測定装置1Aは、電源VDDに接続される電流リミッタ(CL)2、トランジスタ4A、4B、4C、抵抗器3、誤差増幅器5A、5B、5C、差動増幅器7、A/Dコンバータ8、及びスイッチ9A、9B、9Cを含む。 A conventional power supply current measuring apparatus 1A shown in FIG. 2 includes a current limiter (CL) 2 connected to a power supply VDD, transistors 4A, 4B, 4C, a resistor 3, error amplifiers 5A, 5B, 5C, a differential amplifier 7, An A / D converter 8 and switches 9A, 9B, 9C are included.
 電流リミッタ2は、図1に示す電流リミッタ2A、2B、2Cと同一のものである。抵抗器3は、図1に示す抵抗器3A、3B、3Cと同一のものである。 The current limiter 2 is the same as the current limiters 2A, 2B, and 2C shown in FIG. The resistor 3 is the same as the resistors 3A, 3B, and 3C shown in FIG.
 電源電流測定装置1Aでは、電流リミッタ2と抵抗器3がDUT11、12、13の各々に電流を供給する各ラインで共通化されている。このため、電源VDD、電流リミッタ、及び抵抗器3は直列に接続され、抵抗器3の両端にはマルチプレクサ6(図1参照)を介さずに差動増幅器7が直接接続されている。 In the power supply current measuring apparatus 1A, the current limiter 2 and the resistor 3 are shared by the lines that supply current to each of the DUTs 11, 12, and 13. Therefore, the power supply VDD, the current limiter, and the resistor 3 are connected in series, and the differential amplifier 7 is directly connected to both ends of the resistor 3 without the multiplexer 6 (see FIG. 1).
 また、電源電流測定装置1Aでは、DUT11、12、13の各々に電流を供給するラインは、電源VDD側から見て、抵抗器3の下流側で分岐している。 Further, in the power supply current measuring apparatus 1A, the lines for supplying current to each of the DUTs 11, 12, and 13 are branched on the downstream side of the resistor 3 when viewed from the power supply VDD side.
 電源電流測定装置1Aは、抵抗器3とトランジスタ4A、4B、4Cの各ソースとの間にスイッチ9A、9B、9Cを含む。スイッチ9A、9B、9Cは、図示しない制御装置によって開閉(オン/オフ)の制御が行われる。 The power supply current measuring apparatus 1A includes switches 9A, 9B, and 9C between the resistor 3 and the sources of the transistors 4A, 4B, and 4C. The switches 9A, 9B, and 9C are controlled to be opened and closed (on / off) by a control device (not shown).
 従来の電源電流測定装置1Aは、恒温槽10内に配設されるDUT11、12、13に電力を供給し、電源電流を測定する。電源電流を測定する際には、試験対象となるDUTに電力を供給すべく、試験対象となるDUTに接続されたスイッチだけをオンにするように、スイッチ9A、9B、9Cのオン/オフを切り替える。 The conventional power supply current measuring apparatus 1A supplies power to the DUTs 11, 12, and 13 disposed in the thermostat 10 and measures the power supply current. When measuring the power supply current, the switches 9A, 9B, and 9C are turned on / off so that only the switch connected to the DUT to be tested is turned on to supply power to the DUT to be tested. Switch.
 例えば、DUT11の電源電流を測定する際には、スイッチ9Aをオンにし、スイッチ9B、9Cをオフにする。このとき、DUT12、13には電源が供給されないため、DUT11の電源電流の測定後にDUT12又は13の電源電流を測定する際には、DUT12又は13の初期化を行う必要がある。DUTの初期化とは、例えば、逓倍回路の設定、I/O(Input/Output:入出力)ポートの設定等があり、例えば、数十秒の時間がかかる。 For example, when measuring the power supply current of the DUT 11, the switch 9A is turned on and the switches 9B and 9C are turned off. At this time, since power is not supplied to the DUTs 12 and 13, when measuring the power supply current of the DUT 12 or 13 after measuring the power supply current of the DUT 11, it is necessary to initialize the DUT 12 or 13. The initialization of the DUT includes, for example, setting of a multiplication circuit, setting of an I / O (Input / Output: input / output) port, and the like, which takes, for example, several tens of seconds.
 このように、図2に示す電源電流測定装置1Aでは、電流リミッタと抵抗器の共通化を行うことができ、図1に示す電源電流測定装置1のように複数の電流リミッタと抵抗器を含むことによるばらつきの問題を解決できる。 As described above, the power source current measuring apparatus 1A shown in FIG. 2 can share the current limiter and the resistor, and includes a plurality of current limiters and resistors as in the power source current measuring apparatus 1 shown in FIG. Can solve the problem of variation.
 しかしながら、いずれかのDUTの試験を行っている間は、その他のDUTには電力が供給されていないため、スイッチ9A、9B、9Cで試験対象となるDUTを切り替えたときは、まずDUTの初期化を行う必要がある。そして、DUTの初期化には時間を要するため、電源電流の測定時間が長時間化するという問題が生じる。 However, while any of the DUTs is being tested, power is not supplied to the other DUTs. Therefore, when the DUT to be tested is switched by the switches 9A, 9B, and 9C, first the initial DUT Need to be done. Since initialization of the DUT requires time, there is a problem that the measurement time of the power supply current becomes long.
 なお、図2には説明の便宜上、3つのDUT11、12、13と3つのスイッチ9A、9B、9Cを示すが、実際にはDUTは多数(例えば数百個から数万個あるいはそれ以上の数)ある。各DUTに電流を供給するラインに設けられたスイッチのオン/オフを切り替えることにより、各DUTの電源電流を順番に測定する。 For convenience of explanation, FIG. 2 shows three DUTs 11, 12, 13 and three switches 9A, 9B, 9C. Actually, there are many DUTs (for example, hundreds to tens of thousands or more). )is there. The power supply current of each DUT is measured in turn by switching on / off a switch provided in a line that supplies current to each DUT.
 一度に複数のスイッチをオンにすることにより、複数のDUTの電源電流をまとめて測定し、規定外の電源電流を検出することはできる。しかしながら、一度に電源電流を測定できるDUTの数にも限度があるため、多数のDUTの電源電流を一度に測定することはできない。 • By turning on multiple switches at once, it is possible to measure the power supply currents of multiple DUTs together and detect power supply currents outside the specification. However, since there is a limit to the number of DUTs that can measure the power supply current at a time, the power supply currents of a large number of DUTs cannot be measured at one time.
 このため、電流リミッタと抵抗器の共通化を行った場合には、試験対象となるDUTを切り替えるときに、DUTの初期化が必要になるため、電源電流の測定時間が長時間化するという問題が生じる。 For this reason, when the current limiter and the resistor are shared, it is necessary to initialize the DUT when switching the DUT to be tested, so that it takes a long time to measure the power supply current. Occurs.
 以上のように、従来の電源電流測定装置1、1Aは、複数の電流リミッタ、複数の抵抗器を含むため、電流制限値及び抵抗値のばらつき、コストアップ、電源電流の測定時間の長時間化の問題がある。 As described above, since the conventional power supply current measuring apparatus 1 and 1A includes a plurality of current limiters and a plurality of resistors, the current limit value and the variation of the resistance value, the cost increase, and the measurement time of the power supply current is prolonged. There is a problem.
 このため、以下で説明する実施の形態1乃至4では、上述の問題点を解決した電源電流測定装置を提供することを目的とする。以下、実施の形態1乃至4の電源電流測定装置について説明する。 For this reason, in Embodiments 1 to 4 described below, an object is to provide a power supply current measuring apparatus that solves the above-described problems. Hereinafter, the power supply current measuring apparatus according to the first to fourth embodiments will be described.
 <実施の形態1>
 図3は、実施の形態1の電源電流測定装置を含む試験装置を示すブロック図である。図3に示す試験装置は、LSIテスタである。
<Embodiment 1>
FIG. 3 is a block diagram illustrating a test apparatus including the power supply current measuring apparatus according to the first embodiment. The test apparatus shown in FIG. 3 is an LSI tester.
 LSIテスタ30は、DUT電源31、マルチプレクサ(MUX)32、デジタル試験部33、及びアナログ試験部34を含む。 The LSI tester 30 includes a DUT power supply 31, a multiplexer (MUX) 32, a digital test unit 33, and an analog test unit 34.
 DUT電源31は、恒温槽10内に配設されたDUT11、12、13に、バーンイン試験用の電力と電源電流測定用の電力とを供給するための電源であり、実施の形態1の電源電流測定装置100を含む。 The DUT power supply 31 is a power supply for supplying power for burn-in test and power for power supply current measurement to the DUTs 11, 12, and 13 disposed in the thermostat 10. The power supply current of the first embodiment A measurement device 100 is included.
 なお、実施の形態1では、恒温槽10は、DUT11、12、13のバーンイン試験用に昇温されているものとする。 In the first embodiment, it is assumed that the thermostatic chamber 10 is heated for the burn-in test of the DUTs 11, 12, and 13.
 DUT11、12、13は、図1及び図2に示すDUT11、12、13と同一の電子回路部品であり、典型的には、LSI(Large Scale Integration:大規模集積回路)である。なお、電子回路部品としてのDUTは、LSIのような半導体集積回路に限らず、直流電源で動作する電子回路部品であれば、半導体製造技術によって作製されたものに限られない。 The DUTs 11, 12, and 13 are the same electronic circuit components as the DUTs 11, 12, and 13 shown in FIGS. 1 and 2, and are typically LSIs (Large Scale Integration). Incidentally, DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as LSI, if the electronic circuit components operating at a DC power source, not limited to those fabricated by the semiconductor manufacturing technology.
 また、図3には、一例として3つのDUT11、12、13を示すが、実際には、例えば数百個から数万個あるいはそれ以上の数のDUTが恒温槽10内に配設され、電源電流測定装置100に接続される。 FIG. 3 shows three DUTs 11, 12, and 13 as an example. Actually, for example, hundreds to tens of thousands or more of DUTs are arranged in the thermostat 10, Connected to the current measuring apparatus 100.
 DUT11、12、13は、電源端子11A、12A、13A、グランド端子11B、12B、13B、信号端子11C、12C、13C、及びグランド端子11D、12D、13Dを有する。 The DUTs 11, 12, and 13 include power terminals 11A, 12A, and 13A, ground terminals 11B, 12B, and 13B, signal terminals 11C, 12C, and 13C, and ground terminals 11D, 12D, and 13D.
 電源端子11A、12A、13A、グランド端子11B、12B、13Bは、バーンイン試験に必要な電力と電源電流の測定に必要な電力をDUT11、12、13に入力するための端子である。 The power supply terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B are terminals for inputting the power necessary for the burn-in test and the power necessary for measuring the power supply current to the DUTs 11, 12, 13.
 信号端子11C、12C、13C、及びグランド端子11D、12D、13Dは、動作試験等に必要なパターン信号等を入力するための端子であり、例えば、バーンイン試験後に動作確認試験を行う際に、パターン信号等が入力される。 The signal terminals 11C, 12C, and 13C and the ground terminals 11D, 12D, and 13D are terminals for inputting pattern signals and the like necessary for an operation test. For example, when performing an operation confirmation test after a burn-in test, the pattern terminals A signal or the like is input.
 DUT電源31は、DUT11、12、13の電源端子11A、12A、13A、グランド端子11B、12B、13Bにそれぞれ接続されている。電源電流測定装置100は、電源端子11A、12A、13A、グランド端子11B、12B、13Bを通じて電源電流の測定を行う。 The DUT power supply 31 is connected to the power terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B of the DUTs 11, 12, 13, respectively. The power source current measuring apparatus 100 measures the power source current through the power terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B.
 マルチプレクサ32は、DUT11、12、13の信号端子11C、12C、13C、及びグランド端子11D、12D、13Dと、デジタル試験部33及びアナログ試験部34との間に接続されている。マルチプレクサ32は、デジタル試験部33又はアナログ試験部34がDUT11、12、13の各種試験を行う際に、DUT11、12、13と、デジタル試験部33又はアナログ試験部34の間の接続を切り替える。 The multiplexer 32 is connected between the signal terminals 11C, 12C, and 13C of the DUTs 11, 12, and 13 and the ground terminals 11D, 12D, and 13D, and the digital test unit 33 and the analog test unit 34. The multiplexer 32 switches the connection between the DUTs 11, 12, 13 and the digital test unit 33 or the analog test unit 34 when the digital test unit 33 or the analog test unit 34 performs various tests of the DUTs 11, 12, 13.
 デジタル試験部33は、DUT11、12、13の動作確認試験等を行うためのデジタル波形信号を発生する試験回路部であり、電子負荷を含む。デジタル試験部33が発生するデジタル波形信号としては、例えば、クロック波形信号又はテストパターンを表すテストパターン信号等がある。 The digital test unit 33 is a test circuit unit that generates a digital waveform signal for performing an operation confirmation test of the DUTs 11, 12, and 13 and includes an electronic load. Examples of the digital waveform signal generated by the digital test unit 33 include a clock waveform signal or a test pattern signal representing a test pattern.
 デジタル試験部33は、マルチプレクサ32、信号端子11C、12C、13C、及びグランド端子11D、12D、13Dを通じて所定のテストパターン信号等をDUT11、12、13に入力し、DUT11、12、13の動作確認等を行う。 The digital test unit 33 inputs predetermined test pattern signals and the like to the DUTs 11, 12, and 13 through the multiplexer 32, the signal terminals 11C, 12C, and 13C and the ground terminals 11D, 12D, and 13D, and confirms the operation of the DUTs 11, 12, and 13 Etc.
 アナログ試験部34は、DUT11、12、13の信号端子11C、12C、13C、及びグランド端子11D、12D、13Dの電圧値及び電流値の測定を行う試験回路部である。アナログ試験部34は、例えば、デジタル試験部33がテストパターン信号等をDUT11、12、13に入力してDUT11、12、13の動作確認を行っている際に、信号端子11C、12C、13C、及びグランド端子11D、12D、13Dの電圧値及び電流値の測定を行う。 The analog test unit 34 is a test circuit unit that measures voltage values and current values of the signal terminals 11C, 12C, and 13C of the DUTs 11, 12, and 13 and the ground terminals 11D, 12D, and 13D. For example, when the digital test unit 33 inputs a test pattern signal or the like to the DUTs 11, 12, and 13 to check the operation of the DUTs 11, 12, and 13, the analog test unit 34 performs signal terminals 11 </ b> C, 12 </ b> C, 13 </ b> C, The voltage values and current values of the ground terminals 11D, 12D, and 13D are measured.
 次に、図4を用いて実施の形態1の電源電流測定装置100について説明する。 Next, the power supply current measuring apparatus 100 according to the first embodiment will be described with reference to FIG.
 図4は、実施の形態1の電源電流測定装置100を示すブロック図である。 FIG. 4 is a block diagram showing the power supply current measuring apparatus 100 of the first embodiment.
 実施の形態1の電源電流測定装置100は、電力供給端101A、101B、101C、
電源VDD1、電源VDD2、電流リミッタ(CL)102、抵抗器103、トランジスタ104A、104B、104C、誤差増幅器105A、105B、105C、差動増幅器107、及びA/Dコンバータ(ADC)108を含む。また、電源電流測定装置100は、スイッチSW1、SW2、SW3、ダイオードD11、D12、D13、D21、D22、D23、D/Aコンバータ(DAC)121、122、123、及びマイコン130を含む。
The power supply current measuring apparatus 100 according to the first embodiment includes power supply terminals 101A, 101B, 101C,
A power supply VDD1, a power supply VDD2, a current limiter (CL) 102, a resistor 103, transistors 104A, 104B, 104C, error amplifiers 105A, 105B, 105C, a differential amplifier 107, and an A / D converter (ADC) 108 are included. The power supply current measuring apparatus 100 includes switches SW1, SW2, SW3, diodes D11, D12, D13, D21, D22, D23, D / A converters (DACs) 121, 122, 123, and a microcomputer 130.
 実施の形態1の電源電流測定装置100は、恒温槽10内に配設されるDUT11、12、13にバーンイン試験用の電力を供給しつつ、内部回路を切り替えることにより、電源電流測定用の電力を供給してDUT11、12、13の電源電流を測定する。 The power source current measuring apparatus 100 according to the first embodiment supplies power for power source current measurement by switching the internal circuit while supplying power for burn-in test to the DUTs 11, 12, and 13 disposed in the thermostat 10. To measure the power supply current of the DUTs 11, 12, and 13.
 DUT11、12、13は、図3に示すDUT11、12、13と同一である。 DUTs 11, 12, and 13 are the same as DUTs 11, 12, and 13 shown in FIG.
 ただし、ここでは、電源電流測定装置100による電源電流の測定について説明するため、電源電流測定装置100に接続される電源端子11A、12A、13A、及びグランド端子11B、12B、13Bを示し、信号端子11C、12C、13C、及びグランド端子11D、12D、13D(図3参照)を省略する。 However, here, in order to explain the measurement of the power supply current by the power supply current measuring apparatus 100, the power supply terminals 11A, 12A, 13A and the ground terminals 11B, 12B, 13B connected to the power supply current measuring apparatus 100 are shown, and the signal terminals 11C, 12C, 13C and the ground terminals 11D, 12D, 13D (see FIG. 3) are omitted.
 電力供給端101A、101B、101Cは、それぞれ、DUT11、12、13の電源端子11A、12A、13Aに接続され、電力を供給する。 The power supply terminals 101A, 101B, and 101C are connected to the power terminals 11A, 12A, and 13A of the DUTs 11, 12, and 13 to supply power.
 電源VDD1及び電源VDD2は、それぞれ、例えば、AC/DCコンバータである。第1電源部としての電源VDD1及び第2電源部としての電源VDD2は、それぞれ、交流(AC)電源から供給される交流電圧を直流電圧に変換して出力する。電源VDD1及び電源VDD2の出力電圧値は、マイコン130によって設定される。 Each of the power supply VDD1 and the power supply VDD2 is, for example, an AC / DC converter. Power supply VDD2 as a power supply VDD1 and the second power supply portion of the first power source unit, respectively, converts the AC voltage supplied from an alternating current (AC) power source into a DC voltage. The microcomputer 130 sets the output voltage values of the power supply VDD1 and the power supply VDD2.
 実施の形態1の電源電流測定装置100は、電源VDD1又は電源VDD2から電力供給端101A、101B、101Cに向かって電力を供給する。 The power supply current measuring apparatus 100 according to the first embodiment supplies power from the power supply VDD1 or the power supply VDD2 toward the power supply terminals 101A, 101B, and 101C.
 このため、以下で電源電流測定装置100に含まれる各要素について説明するにあたり、電源VDD1側、又は電源VDD2側を上流側と称し、電力供給端101A、101B、101Cの側を下流側と称する。 Therefore, in the following description of each element included in the power supply current measuring apparatus 100, the power supply VDD1 side or the power supply VDD2 side is referred to as the upstream side, and the power supply terminals 101A, 101B, and 101C are referred to as the downstream side.
 電源VDD1と電力供給端101A、101B、101Cとの間には、それぞれ、ダイオードD11、D12、D13が直列に接続されている。ダイオードD11、D12、D13は、電源VDD1にそれぞれ直列に接続され、かつ、互いに並列に接続されている。 Diodes D11, D12, and D13 are connected in series between the power supply VDD1 and the power supply terminals 101A, 101B, and 101C, respectively. The diodes D11, D12, and D13 are connected in series to the power supply VDD1 and are connected in parallel to each other.
 電源VDD2と電力供給端101A、101B、101Cの間には、それぞれ、スイッチSW1とダイオードD21、スイッチSW2とダイオードD22、スイッチSW3とダイオードD23が直列に接続されている。 A switch SW1 and a diode D21, a switch SW2 and a diode D22, and a switch SW3 and a diode D23 are connected in series between the power supply VDD2 and the power supply terminals 101A, 101B, and 101C, respectively.
 スイッチSW1とダイオードD21、スイッチSW2とダイオードD22、スイッチSW3とダイオードD23は、それぞれ、互いに直列に接続されている。また、スイッチSW1とダイオードD21、スイッチSW2とダイオードD22、スイッチSW3とダイオードD23は、それぞれの対として、電源VDD2に直列に接続され、かつ、互いに並列に接続されている。 The switch SW1 and the diode D21, the switch SW2 and the diode D22, and the switch SW3 and the diode D23 are connected to each other in series. Further, the switch SW1 and the diode D21, the switch SW2 and the diode D22, the switch SW3 and the diode D23 are connected in series to the power supply VDD2 as a pair, and are connected in parallel to each other.
 ダイオードD11、D12、D13の出力端は、それぞれ、接続点P1、P2、P3でダイオードD21、D22、D23の出力端と接続されている。 The output ends of the diodes D11, D12, and D13 are connected to the output ends of the diodes D21, D22, and D23 at connection points P1, P2, and P3, respectively.
 また、スイッチSW1、SW2、SW3は、それぞれ、上流側の接続点P4で接続されている。 The switches SW1, SW2, and SW3 are connected to each other at an upstream connection point P4.
 ダイオードD11、D12、D13は、それぞれ、電力供給端101A、101B、101Cと、電源VDD1との間に直列に接続される整流素子である。ダイオードD11、D12、D13は、それぞれ、接続点P1、P2、P3からの電流の逆流を防ぐために設けられている。ダイオードD11、D12、D13は、電流の逆流を防止できる整流作用があればよいため、例えば、PNダイオードを用いることができる。 The diodes D11, D12, and D13 are rectifier elements connected in series between the power supply terminals 101A, 101B, and 101C and the power supply VDD1, respectively. The diodes D11, D12, and D13 are provided to prevent backflow of current from the connection points P1, P2, and P3, respectively. Since the diodes D11, D12, and D13 only need to have a rectifying action that can prevent backflow of current, for example, a PN diode can be used.
 ダイオードD21、D22、D23は、それぞれ、スイッチSW1、SW2、SW3の下流側に接続されている。ダイオードD21、D22、D23は、DUT11、12、13の電源電流を測定する際に、電流の逆流を防ぐために設けられている。ダイオードD21、D22、D23は、電流の逆流を防止できる整流作用があればよいため、例えば、PNダイオードを用いることができる。 The diodes D21, D22, D23 are connected to the downstream side of the switches SW1, SW2, SW3, respectively. The diodes D21, D22, and D23 are provided to prevent reverse current flow when measuring the power supply current of the DUTs 11, 12, and 13. Since the diodes D21, D22, and D23 only need to have a rectifying action that can prevent backflow of current, for example, a PN diode can be used.
 なお、ここでは、ダイオードD11、D12、D13の順方向電圧と、ダイオードD21、D22、D23の順方向電圧とは、等しいものとする。 Here, it is assumed that the forward voltages of the diodes D11, D12, and D13 are equal to the forward voltages of the diodes D21, D22, and D23.
 スイッチSW1、SW2、SW3は、それぞれの下流側の端子がダイオードD21、D22、D23を介して、接続点P1、P2、P3において、ダイオードD11、D12、D13の各々の出力端に接続されている。また、スイッチSW1、SW2、SW3は、それぞれの上流側の端子が接続点P4を介して抵抗器103に接続されている。 The switches SW1, SW2 and SW3 are connected at their downstream terminals to the output terminals of the diodes D11, D12 and D13 at the connection points P1, P2 and P3 via the diodes D21, D22 and D23. . Further, the switches SW1, SW2, and SW3 have their upstream terminals connected to the resistor 103 via the connection point P4.
 スイッチSW1、SW2、SW3は、マイコン130によって開閉(オン/オフ)の制御が行われる。スイッチSW1、SW2、SW3としては、例えば、電子リレーを用いることができる。 The switches SW1, SW2, and SW3 are controlled to be opened and closed (on / off) by the microcomputer 130. As the switches SW1, SW2, and SW3, for example, electronic relays can be used.
 電流リミッタ102は、電源VDD2に接続されており、電源電流を測定する際にDUT11、12、13に流れる電流を制限するために設けられている。電流リミッタ102は、図1に示す電流リミッタ2A、2B、2C、及び図2に示す電流リミッタ2と同一の電流制限回路を用いることができる。 The current limiter 102 is connected to the power supply VDD2, and is provided to limit the current flowing through the DUTs 11, 12, and 13 when measuring the power supply current. As the current limiter 102, the current limiters 2A, 2B, and 2C shown in FIG. 1 and the same current limiting circuit as the current limiter 2 shown in FIG. 2 can be used.
 抵抗器103は、上流側が電流リミッタ102に接続されており、下流側はスイッチSW1、SW2、SW3の上流側の接続点P4に接続されている。すなわち、抵抗器103は、接続点P4から電力供給端101A、101B、101Cに接続される各ラインの上流側で各ラインに対する共通の抵抗器として接続されている。 Resistor 103, the upstream side is connected to a current limiter 102, the downstream side is connected to the upstream side of the connection point P4 of the switch SW1, SW2, SW3. That is, the resistor 103 is connected as a common resistor for each line on the upstream side of the respective lines are connected from the connection point P4 power supply end 101A, 101B, to 101C.
 抵抗器103は、シャント抵抗として用いられる抵抗器であり、図1に示す抵抗器3A、3B、3C、及び図2に示す抵抗器3と同一の抵抗器を用いることができる。 Resistor 103 is a resistor used as the shunt resistor, it is possible to use resistors 3A shown in FIG. 1, 3B, 3C, and the same resistor and resistor 3 shown in FIG.
 トランジスタ104A、104B、104Cは、例えば、FETであり、図1及び図2に示すトランジスタ4A、4B、4Cと同一のトランジスタを用いることができる。 The transistors 104A, 104B, and 104C are, for example, FETs, and the same transistors as the transistors 4A, 4B, and 4C illustrated in FIGS. 1 and 2 can be used.
 トランジスタ104Aは、ソースが接続点P1に接続され、ドレインがDUT11の電源端子11Aに接続され、ゲートが誤差増幅器105Aの出力端に接続されている。 The transistor 104A has a source connected to the connection point P1, a drain connected to the power supply terminal 11A of the DUT 11, and a gate connected to the output terminal of the error amplifier 105A.
 同様に、トランジスタ104Bは、ソースが接続点P2に接続され、ドレインがDUT12の電源端子12Aに接続され、ゲートが誤差増幅器105Bの出力端に接続されている。また、トランジスタ104Cは、ソースが接続点P3に接続され、ドレインがDUT13の電源端子13Aに接続され、ゲートが誤差増幅器105Cの出力端に接続されている。 Similarly, transistor 104B has a source connected to the connection point P2, a drain connected to the power supply terminal 12A of the DUT 12, the gate is connected to the output terminal of the error amplifier 105B. The transistor 104C has a source connected to the connection point P3, the drain is connected to the power supply terminal 13A of DUT13, the gate is connected to the output terminal of the error amplifier 105C.
 このように、トランジスタ104A、104B、104Cのソースは、上流側に位置するため、電流入力端として接続点P1、P2、P3に接続されている。また、トランジスタ104A、104B、104Cのドレインは、下流側に位置するため、電流出力端として電力供給端101A、101B、101Cに接続されている。 Thus, since the sources of the transistors 104A, 104B, and 104C are located on the upstream side, they are connected to the connection points P1, P2, and P3 as current input terminals. Further, since the drains of the transistors 104A, 104B, and 104C are located on the downstream side, they are connected to the power supply terminals 101A, 101B, and 101C as current output terminals.
 なお、トランジスタ104A、104B、104Cのソースとドレインは逆であってもよい。この場合は、トランジスタ104A、104B、104Cのドレインが電流入力端として接続点P1、P2、P3に接続され、各ソースが電流出力端として電力供給端101A、101B、101Cに接続される。 Note that the sources and drains of the transistors 104A, 104B, and 104C may be reversed. In this case, the drains of the transistors 104A, 104B, and 104C are connected to the connection points P1, P2, and P3 as current input terminals, and the sources are connected to the power supply terminals 101A, 101B, and 101C as current output terminals.
 誤差増幅器105A、105B、105Cの一方の入力端には、それぞれ、電力供給端101A、101B、101Cが接続され、他方の入力端には、それぞれ、D/Aコンバータ121、122、123が接続されている。誤差増幅器105A、105B、105Cは、図1及び図2に示す誤差増幅器5A、5B、5Cと同一のものを用いることができる。 The power supply terminals 101A, 101B, and 101C are connected to one input terminals of the error amplifiers 105A, 105B, and 105C, respectively, and the D / A converters 121, 122, and 123 are connected to the other input terminals, respectively. ing. The error amplifiers 105A, 105B, and 105C can be the same as the error amplifiers 5A, 5B, and 5C shown in FIGS.
 D/Aコンバータ121、122、123は、マイコン130に接続されており、マイコン130から入力される電圧信号をアナログ変換して誤差増幅器105A、105B、105C用の基準電圧(Vref1、Vref2、Vref3)を出力する。基準電圧(Vref1、Vref2、Vref3)は、マイコン130によって制御される。 The D / A converters 121, 122, and 123 are connected to the microcomputer 130. The voltage signals input from the microcomputer 130 are converted into analog signals, and reference voltages (Vref1, Vref2, and Vref3) for the error amplifiers 105A, 105B, and 105C. Is output. The reference voltages (Vref1, Vref2, Vref3) are controlled by the microcomputer 130.
 なお、誤差増幅器105A、105B、105Cは、トランジスタ104A、104B、104Cとともに、電圧補償回路として機能する。 The error amplifiers 105A, 105B, and 105C function as a voltage compensation circuit together with the transistors 104A, 104B, and 104C.
 誤差増幅器105A、105B、105Cは、それぞれ、電力供給端101A、101B、101Cから入力される電圧値と、D/Aコンバータ121、122、123から入力される基準電圧(Vref1、Vref2、Vref3)との電圧差に応じた電圧を増幅して出力する。 The error amplifiers 105A, 105B, and 105C have voltage values input from the power supply terminals 101A, 101B, and 101C, and reference voltages (Vref1, Vref2, and Vref3) input from the D / A converters 121, 122, and 123, respectively. The voltage corresponding to the voltage difference is amplified and output.
 誤差増幅器105A、105B、105Cから出力される電圧は、トランジスタ104A、104B、104Cのゲートに入力される。これにより、トランジスタ104A、104B、104Cは、電力供給端101A、101B、101Cの電圧値と、基準電圧(Vref1、Vref2、Vref3)との電圧差に応じて、電力供給端101A、101B、101Cの電圧値と、基準電圧(Vref1、Vref2、Vref3)とが等しくなるように駆動される。 The voltage output from the error amplifiers 105A, 105B, and 105C is input to the gates of the transistors 104A, 104B, and 104C. Thereby, the transistors 104A, 104B, and 104C are connected to the power supply terminals 101A, 101B, and 101C according to the voltage difference between the voltage values of the power supply terminals 101A, 101B, and 101C and the reference voltages (Vref1, Vref2, and Vref3). It is driven so that the voltage value and the reference voltages (Vref1, Vref2, Vref3) are equal.
 差動増幅器107の一対の入力端は、抵抗器103の両端に接続されており、抵抗器103の両端間電圧を増幅して出力する。差動増幅器107は、例えば、オペアンプであればよい。 The pair of input terminals of the differential amplifier 107 are connected to both ends of the resistor 103, and amplifies and outputs the voltage across the resistor 103. The differential amplifier 107 may be an operational amplifier, for example.
 A/Dコンバータ108は、差動増幅器107の出力端に接続されており、差動増幅器107で増幅された電圧値(電源電流の電流値を表す電圧値)をデジタル変換して電源電流データとして出力する。A/Dコンバータ108には、マイコン130が接続されており、電源電流データはマイコン130によって取得される。 The A / D converter 108 is connected to the output terminal of the differential amplifier 107, and digitally converts the voltage value (voltage value representing the current value of the power supply current) amplified by the differential amplifier 107 as power supply current data. Output. A microcomputer 130 is connected to the A / D converter 108, and power supply current data is acquired by the microcomputer 130.
 なお、抵抗器103、差動増幅器107、及びA/Dコンバータ108は、電流検出部である。 The resistor 103, the differential amplifier 107, and the A / D converter 108 are current detection units.
 マイコン130は、例えば、CPU、RAM(Random Access Memory:ランダムアクセスメモリ)、及びROM(Read Only Memory:読み出し専用メモリ)を含み、演算処理及びデータの一次保存が可能な装置であればよい。 The microcomputer 130 includes, for example, a CPU, a RAM (Random Access Memory), and a ROM (Read Only Memory), and may be any device that can perform arithmetic processing and primary storage of data.
 マイコン130は、電源電流の測定処理を実行するために設けられている。マイコン130は、電源電流の測定処理を実行するにあたり、電源VDD1、電源VDD2の出力電圧値の設定、スイッチSW1、SW2、SW3の開閉制御、及びD/Aコンバータ121、122、123に入力する基準電圧値の設定を行う。また、マイコン130は、A/Dコンバータ108から出力される電源電流データの取得処理と、電源電流データを外部の装置(典型的には上位のサーバ)に送信する処理を行う。 The microcomputer 130 is provided to execute a power supply current measurement process. The microcomputer 130 sets the output voltage values of the power supply VDD1 and the power supply VDD2, the open / close control of the switches SW1, SW2, and SW3, and the reference that is input to the D / A converters 121, 122, and 123 when performing the power supply current measurement process. Set the voltage value. The microcomputer 130 includes an acquisition process of the power supply current data outputted from the A / D converter 108, a process of transmitting the power supply current data to an external device (typically a host server of) performed.
 なお、DUT11、12、13のグランド端子11B、12B、13Bは接地されている。 The ground terminals 11B, 12B, and 13B of the DUTs 11, 12, and 13 are grounded.
 ここで、実施の形態1の電源電流測定装置100は、電源電流を測定しない場合には、スイッチSW1、SW2、SW3をオフにし、電源VDD1からダイオードD11、D12、D13を経て電力供給端101A、101B、101Cに電力を供給する。この電力供給により、DUT11、12、13のバーンイン試験が行われる。 Here, when the power supply current measuring apparatus 100 of the first embodiment does not measure the power supply current, the switches SW1, SW2, and SW3 are turned off, and the power supply terminal 101A from the power supply VDD1 through the diodes D11, D12, and D13, Power is supplied to 101B and 101C. By this power supply, burn-in tests of DUTs 11, 12, and 13 are performed.
 また、実施の形態1の電源電流測定装置100は、電源電流を測定する場合には、スイッチSW1、SW2、SW3のいずれかをオンにし、電源VDD2からダイオードD11、D12、D13を経て電力供給端101A、101B、101Cに電力を供給する。なお、この場合も、電源電流を測定するDUTには電力が供給されているため、バーンイン試験も引き続き行われることになる。 Further, when measuring the power supply current, the power supply current measuring apparatus 100 according to the first embodiment turns on one of the switches SW1, SW2, and SW3, and supplies the power supply terminal from the power supply VDD2 through the diodes D11, D12, and D13. Power is supplied to 101A, 101B, and 101C. In this case as well, since power is supplied to the DUT that measures the power supply current, the burn-in test is continued.
 電源の切り替えは、スイッチSW1、SW2、SW3のオン/オフの切り替えと、ダイオードD11、D12、D13を逆バイアスにして電力供給経路を切り替えることによって行う。 Power Switching, and switching of the switches SW1, SW2, SW3 on / off, the diodes D11, D12, D13 in the reverse bias performed by switching the power supply path.
 電源をVDD1からVDD2に切り替えるためには、ダイオードD11、D12、D13を逆バイアスにして電源VDD1から接続点P1、P2、P3への電力供給を遮断する必要があるため、電源VDD2の出力電圧は、電源VDD1の出力電圧よりも高く設定される。 In order to switch the power supply from VDD1 to VDD2, it is necessary to reversely bias the diodes D11, D12, and D13 to cut off the power supply from the power supply VDD1 to the connection points P1, P2, and P3. Therefore, the output voltage of the power supply VDD2 is , Set higher than the output voltage of the power supply VDD1.
 電源VDD1と接続点P1、P2、P3との間には、ダイオードD11、D12、D13がある。また、電源VDD2と接続点P1、P2、P3との間には、電流リミッタ102、抵抗器103、スイッチSW1、SW2、SW3、及びダイオードD21、D22、D23がある。そして、上述のように、ダイオードD11、D12、D13の順方向電圧と、ダイオードD21、D22、D23の順方向電圧とは、等しい。 There are diodes D11, D12, and D13 between the power supply VDD1 and the connection points P1, P2, and P3. Between the power supply VDD2 and the connection points P1, P2, and P3, there are a current limiter 102, a resistor 103, switches SW1, SW2, and SW3, and diodes D21, D22, and D23. As described above, the forward voltages of the diodes D11, D12, and D13 are equal to the forward voltages of the diodes D21, D22, and D23.
 このため、電源VDD2の出力電圧は、電流リミッタ102及び抵抗器103での電圧降下を考慮しても、接続点P1、P2、P3の電位をダイオードD11、D12、D13の上流側(入力側)の電位よりも高く設定できる程度の電圧値であることが必要である。これにより、ダイオードD11、D12、D13は、逆バイアスが印加された状態になり、遮断される。 For this reason, the output voltage of the power supply VDD2 takes the potentials at the connection points P1, P2, and P3 upstream of the diodes D11, D12, and D13 (input side) even if the voltage drop at the current limiter 102 and the resistor 103 is taken into consideration. It is necessary for the voltage value to be set higher than the potential of. As a result, the diodes D11, D12, and D13 are in a state where a reverse bias is applied and are cut off.
 ここでは、一例として、電源VDD2の出力電圧値をVDD2=6.0(V)に設定し、電源VDD1の出力電圧値をVDD1=5.0(V)に設定することにより、ダイオードD11、D12、D13に逆バイアスが印加できることとする。 Here, as an example, by setting the output voltage value of the power supply VDD2 to VDD2 = 6.0 (V) and setting the output voltage value of the power supply VDD1 to VDD1 = 5.0 (V), the diodes D11 and D12 , D13 can be applied with a reverse bias.
 なお、一例として、電流リミッタ102及び抵抗器103における電圧降下は0.2(V)であるとする。 As an example, it is assumed that the voltage drop in the current limiter 102 and the resistor 103 is 0.2 (V).
 スイッチSW1がオンになると、接続点P1の電位は、電源VDD1の出力電圧(5.0(V))によって設定される電位から電源VDD2の出力電圧(6.0(V))によって設定される電位に切り替わる。この結果、ダイオードD11は逆バイアスになって遮断し、DUT11には、トランジスタ104A及び電力供給端101Aを通じて電源VDD2から電力が供給される。 When the switch SW1 is turned on, the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse-biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A and the power supply terminal 101A.
 スイッチSW2がオンにされると、ダイオードD12が逆バイアスになって遮断し、DUT12にトランジスタ104B及び電力供給端101Bを通じて電源VDD2から電力が供給される。同様に、スイッチSW3がオンにされると、ダイオードD13が逆バイアスになって遮断し、DUT13にトランジスタ104C及び電力供給端101Cを通じて電源VDD2から電力が供給される。 When the switch SW2 is turned on, the diode D12 is reverse-biased and cut off, and power is supplied to the DUT 12 from the power supply VDD2 through the transistor 104B and the power supply terminal 101B. Similarly, when the switch SW3 is turned on, the diode D13 is reverse-biased and cut off, and power is supplied to the DUT 13 from the power supply VDD2 through the transistor 104C and the power supply terminal 101C.
 次に、図5を用いて、実施の形態1の電源電流測定装置100のマイコン130によって実行される電源電流の測定処理について説明する。 Next, a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment will be described with reference to FIG.
 図5は、実施の形態1の電源電流測定装置100のマイコン130が実行する電源電流の測定処理を示すフローチャートである。以下では、スイッチSW1、SW2、SW3を一般的な標記SWnを用いて表すことがある。スイッチの番号を表すnは、1以上の整数である。 FIG. 5 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 100 according to the first embodiment. Hereinafter, the switches SW1, SW2, and SW3 may be represented by using a general title SWn. N representing the switch number is an integer of 1 or more.
 マイコン130は、電源電流の測定処理をスタート(START)させると、まず、初期設定を行う(ステップS1)。ステップS1の初期設定では、マイコン130は、電源VDD1、電源VDD2の電圧値と、D/Aコンバータ121、122、123に入力する基準電圧(Vref1、Vref2、Vref3)をすべて零にする。また、マイコン130は、スイッチSW1、SW2、SW3をすべてオフにする。 When the microcomputer 130 starts the measurement process of the power supply current (START), it first performs an initial setting (step S1). In the initial setting in step S1, the microcomputer 130 sets all the voltage values of the power supply VDD1 and the power supply VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. The microcomputer 130 all the switches SW1, SW2, SW3 off.
 マイコン130は、電源VDD1、電源VDD2の電圧値を設定する(ステップS2)。マイコン130は、電源VDD2の設定電圧の方が電源VDD1の設定電圧よりも高くなるように、VDD1=5.0(V)、VDD2=6.0(V)に設定する。 The microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S2). The microcomputer 130 sets VDD1 = 5.0 (V) and VDD2 = 6.0 (V) so that the set voltage of the power supply VDD2 is higher than the set voltage of the power supply VDD1.
 このとき、スイッチSW1、SW2、SW3はオフであるため、トランジスタ104A、104B、104Cのソースには、電源VDD1からダイオードD11、D12、D13を通じて、電力が供給される。 At this time, since the switches SW1, SW2, and SW3 are off, power is supplied to the sources of the transistors 104A, 104B, and 104C from the power supply VDD1 through the diodes D11, D12, and D13.
 マイコン130は、D/Aコンバータ121、122、123の基準電圧(Vref1、Vref2、Vref3)を設定する(ステップS3)。マイコン130は、Vref1=Vref2=Vref3=3.3(V)に設定する。 The microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S3). The microcomputer 130 sets Vref1 = Vref2 = Vref3 = 3.3 (V).
 ここで、D/Aコンバータ121、122、123の基準電圧が3.3(V)に設定されると、トランジスタ104A、104B、104Cのゲートに誤差増幅器105A、105B、105Cから電圧が入力され、トランジスタ104A、104B、104Cがオンになる。これにより、電源VDD1からDUT11、12、13に電力が供給され、DUT11、12、13は電源が投入された状態になる。 Here, when the reference voltage of the D / A converters 121, 122, 123 is set to 3.3 (V), the voltages from the error amplifiers 105A, 105B, 105C are input to the gates of the transistors 104A, 104B, 104C. The transistors 104A, 104B, and 104C are turned on. As a result, power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13, and the DUTs 11, 12, and 13 are in a power-on state.
 マイコン130は、DUT11、12、13の電源電流の測定を開始すべく、オンにするスイッチSWnのスイッチ番号nを1に設定する(ステップS4)。 The microcomputer 130 sets the switch number n of the switch SWn to be turned on to 1 to start measuring the power supply current of the DUTs 11, 12, and 13 (step S4).
 マイコン130は、スイッチSWnをオンにし、SWn以外のスイッチをオフにする(ステップS5)。スイッチ番号nが1の場合は、スイッチSW1がオンにされ、スイッチSW2、SW3はオフにされる。 The microcomputer 130 turns on the switch SWn and turns off switches other than SWn (step S5). When the switch number n is 1, the switch SW1 is turned on and the switches SW2 and SW3 are turned off.
 スイッチSW1がオンになると、接続点P1の電位は、電源VDD1の出力電圧(5.0(V))によって設定される電位から電源VDD2の出力電圧(6.0(V))によって設定される電位に切り替わる。この結果、ダイオードD11は逆バイアスになって遮断し、DUT11には、トランジスタ104A及び電力供給端101Aを通じて電源VDD2から電力が供給される。 When the switch SW1 is turned on, the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse-biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A and the power supply terminal 101A.
 そして、このとき、抵抗器103に流れる電流は、DUT11の電源電流として検出され、差動増幅器107で増幅される。差動増幅器107で増幅された電流は、A/Dコンバータ108でデジタル変換され、電源電流データとして出力される。 At this time, the current flowing through the resistor 103 is detected as the power supply current of the DUT 11 and amplified by the differential amplifier 107. The current amplified by the differential amplifier 107 is digitally converted by the A / D converter 108 and output as power supply current data.
 マイコン130は、電源電流データを取得する(ステップS6)。 The microcomputer 130 acquires power supply current data (step S6).
 マイコン130は、電源電流データをRAMに保存する(ステップS7)。 The microcomputer 130 stores the power supply current data in the RAM (step S7).
 次いで、マイコン130は、スイッチ番号nが最大値n(max)より小さいか否かを判定する(ステップS8)。 Next, the microcomputer 130 determines whether or not the switch number n is smaller than the maximum value n (max) (step S8).
 マイコン130は、スイッチ番号nが最大値n(max)より小さい場合は、スイッチ番号nをインクリメントする(ステップS9)。すなわち、スイッチ番号nが1つ増やされる(n=n+1)。 The microcomputer 130 increments the switch number n when the switch number n is smaller than the maximum value n (max) (step S9). That is, the switch number n is incremented one 1 (n = n + 1).
 マイコン130は、スイッチ番号nをインクリメントすると、フローをステップS5にリターンし、ステップS8においてスイッチ番号nが最大値n(max)より小さくない(すなわち、スイッチ番号nが最大値n(max)に到達した)と判定するまで、ステップS5~S8の処理を実行する。 When the microcomputer 130 increments the switch number n, the flow returns to step S5. In step S8, the switch number n is not smaller than the maximum value n (max) (that is, the switch number n reaches the maximum value n (max)). Steps S5 to S8 are executed until it is determined that
 ステップS5~S8の処理が繰り返し実行されることにより、スイッチSW2、SW3が順次オンにされ、DUT12、DUT13の電源電流が測定される。 By repeatedly executing the processes of steps S5 to S8, the switches SW2 and SW3 are sequentially turned on, and the power supply currents of the DUT 12 and DUT 13 are measured.
 マイコン130は、ステップS8においてスイッチ番号nが最大値n(max)より小さくない(すなわち、スイッチ番号nが最大値n(max)に到達した)と判定すると、すべてのDUTの電源電流の測定が終了したと判定し、電源電流データを上位サーバに転送する(ステップS10)。 If the microcomputer 130 determines in step S8 that the switch number n is not smaller than the maximum value n (max) (that is, the switch number n has reached the maximum value n (max)), the power supply current measurement of all the DUTs is performed. It determines that it has finished, to transfer the power supply current data to the host server (step S10).
 上位サーバへの電源電流データの転送を終えると、マイコン130は電源電流の測定処理を終了する(END)。 When the transfer of the power supply current data to the host server is finished, the microcomputer 130 finishes the power supply current measurement process (END).
 以上のように、実施の形態1の電源電流測定装置100において、スイッチSW1~SW3がすべてオフのときに、スイッチSW1をオンにすると、接続点P1への電力供給は、途切れることなく電源VDD1から電源VDD2に切り替わる。すなわち、瞬断は生じない。 As described above, in the power supply current measuring apparatus 100 of the first embodiment, when the switches SW1 to SW3 are all off and the switch SW1 is turned on, the power supply to the connection point P1 is not interrupted from the power supply VDD1. The power supply is switched to VDD2. That is, no instantaneous interruption occurs.
 また、スイッチSW1~SW3がすべてオフのときに、スイッチSW2をオンにすると、接続点P2への電力供給は、途切れることなく電源VDD1から電源VDD2に切り替わる。同様に、スイッチSW1~SW3がすべてオフのときに、スイッチSW3をオンにすると、接続点P3への電力供給は、途切れることなく電源VDD1から電源VDD2に切り替わる。すなわち、いずれの場合も瞬断は生じない。 If the switch SW2 is turned on when all the switches SW1 to SW3 are off, the power supply to the connection point P2 is switched from the power supply VDD1 to the power supply VDD2 without interruption. Similarly, when the switch SW3 is turned on when all the switches SW1 to SW3 are off, the power supply to the connection point P3 is switched from the power supply VDD1 to the power supply VDD2 without interruption. That is, no interruption occurs in any case.
 このように瞬断が生じないため、すべてのDUTの電源電流を測定する前にすべてのDUTを同時に初期化しておけば、電源電流の測定対象がDUT11からDUT12に切り替わる際に、従来のようにDUT12の初期化を行う必要がない。これは、電源電流の測定対象がDUT12からDUT13に切り替わる際も同様である。 Since instantaneous interruption does not occur in this way, if all DUTs are initialized at the same time before measuring the power supply currents of all DUTs, when the power supply current measurement object is switched from DUT11 to DUT12, There is no need to initialize the DUT 12. This is the same when the power supply current measurement object is switched from the DUT 12 to the DUT 13.
 このように、電源電流の測定対象を切り替える際にDUTの初期化を行う必要がないため、電源電流の測定に要する時間の短縮化を図ることができる。 Thus, since it is not necessary to initialize the DUT when switching the power supply current measurement target, the time required for the power supply current measurement can be shortened.
 例えば、1つのDUTの電源電流の測定に要する時間が0.1秒であるとする。そして、DUTが1000個あるとすると、1000個のDUTの電源電流の測定は、0.1秒×1000=100秒となる。従来の電源電流測定装置1A(図2参照)のように、DUTの切り替え時に瞬断が生じると、DUTを切り替える度に初期化に数十秒かかるため、1000個のDUTの電源電流を測定する時間は、非常に長い時間になる。 For example, it is assumed that the time required for measuring the power supply current of one DUT is 0.1 second. If there are 1000 DUTs, the measurement of the power supply current of 1000 DUTs is 0.1 seconds × 1000 = 100 seconds. As in the case of the conventional power supply current measuring apparatus 1A (see FIG. 2), if a momentary interruption occurs during DUT switching, initialization takes several tens of seconds each time the DUT is switched, and therefore the power supply current of 1000 DUTs is measured. The time will be very long.
 これに対して、実施の形態1の電源電流測定装置100によれば、DUTの切り替え時に瞬断が生じないため、短時間で電源電流の測定を完了することができる。 On the other hand, according to the power supply current measuring apparatus 100 of the first embodiment, the power supply current measurement can be completed in a short time because no instantaneous interruption occurs when the DUT is switched.
 なお、例えば、図4においてスイッチSW1とSW2を両方オフにすれば、DUT11とDUT12の電源電流を同時に測定することができる。この場合に得られる電源電流の値は、DUT11の電源電流とDUT12の電源電流との合計値になるが、合計値としての電源電流を測定することが可能である。このため、一度に複数のDUTの電源電流を測定するようにすれば、すべてのDUTの電源電流を測定する時間をさらに短縮することができる。 For example, if both the switches SW1 and SW2 are turned off in FIG. 4, the power supply currents of the DUT 11 and the DUT 12 can be measured simultaneously. The value of the power supply current obtained in this case is the total value of the power supply current of the DUT 11 and the power supply current of the DUT 12, but the power supply current as the total value can be measured. For this reason, if the power supply currents of a plurality of DUTs are measured at a time, the time for measuring the power supply currents of all the DUTs can be further shortened.
 また、スイッチSW1~SW3がすべてオフのときには、DUT11、12、13には、電源VDD1から電力が供給されている。このため、電源電流を測定していないときには、DUT11、12、13に対して、電源電流測定以外の他の試験(実施の形態1ではバーンイン試験)を行うことができる。すなわち、電源電流測定とその他の試験を並列的に行うことができるので、試験に要する時間の短縮化を図ることができる。 When all the switches SW1 to SW3 are off, the DUTs 11, 12, and 13 are supplied with power from the power supply VDD1. For this reason, when the power supply current is not measured, a test other than the power supply current measurement (burn-in test in the first embodiment) can be performed on the DUTs 11, 12, and 13. That is, since the power supply current measurement and other tests can be performed in parallel, the time required for the tests can be shortened.
 また、実施の形態1の電源電流測定装置100は、電流リミッタ102及び抵抗器103がすべてのDUTに対して共通であるため、電流制限値及び抵抗値のばらつきの問題は生じず、コストアップも抑制できる。 In addition, since the current limiter 102 and the resistor 103 are common to all the DUTs, the power supply current measuring apparatus 100 according to the first embodiment does not cause a problem of variations in the current limit value and the resistance value, and also increases the cost. Can be suppressed.
 例えば、1つの電流リミッタ102と、1つの抵抗器103とで¥1000する場合に、従来の電源電流測定装置1(図1参照)のように、各DUTに対して電流リミッタ102及び抵抗器103の対が一対ずつ必要な場合には、¥1000×1000個で¥1000,000のコストが必要となる。これに対して、実施の形態1の電源電流測定装置100は、1つの電流リミッタ102と1つの抵抗器103とで¥1000で済むため、大幅なコストダウンを図ることができる。 For example, when one current limiter 102 and one resistor 103 are used for ¥ 1000, the current limiter 102 and the resistor 103 are connected to each DUT as in the conventional power supply current measuring apparatus 1 (see FIG. 1). If one pair is required, a cost of ¥ 1,000,000 is required for ¥ 1000 × 1000. On the other hand, the power supply current measuring apparatus 100 according to the first embodiment requires only one current limiter 102 and one resistor 103 for ¥ 1000, so that a significant cost reduction can be achieved.
 以上、実施の形態1によれば、電流制限値及び抵抗値のばらつきの問題とコストアップの問題を排除しつつ、瞬断が生じないようにすることにより、電源電流の測定に要する時間の短縮化を図ることができる電源電流測定装置100を提供することができる。 As described above, according to the first embodiment, it is possible to reduce the time required for measuring the power supply current by eliminating the instantaneous interruption while eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost. Thus, it is possible to provide the power supply current measuring apparatus 100 that can be realized.
 また、電源電流測定装置100は、瞬断を発生させることなく電源VDD1と電源VDD2を切り替えることができるので、電源電流測定とその他の試験を並列的に行うことができ、電源電流の測定とその他の試験に要するトータルの時間の短縮化を図ることができる。 Further, since the power supply current measuring apparatus 100 can switch between the power supply VDD1 and the power supply VDD2 without causing a momentary interruption, the power supply current measurement and other tests can be performed in parallel. required for the test can be shortened in total time.
 なお、以上では、実施の形態1の電源電流測定装置100が複数のDUT11、12、13にそれぞれ1つずつ含まれる電源端子11A、12A、13Aの電源電流を測定する形態について説明した。しかしながら、各DUTが複数の電源端子を有する場合は、実施の形態1の電源電流測定装置100は、それぞれの電源端子における電源電流を測定することができる。このようにDUTが複数の電源端子を有する場合に、実施の形態1の電源電流測定装置100の測定対象となるDUTの数は1つであってもよい。 In the above description, the power source current measuring apparatus 100 according to the first embodiment has been described with respect to the power source currents of the power terminals 11A, 12A, and 13A included in the plurality of DUTs 11, 12, and 13, respectively. However, when each DUT has a plurality of power supply terminals, power supply current measuring apparatus 100 of the first embodiment can measure the power supply current at each power supply terminal. When the DUT has a plurality of power supply terminals as described above, the number of DUTs to be measured by the power supply current measuring apparatus 100 of the first embodiment may be one.
 また、以上では、DUT11、12、13としてLSIを用い、バーンイン試験を行う形態について説明した。 In the above description, the burn-in test is performed using LSIs as the DUTs 11, 12, and 13.
 しかしながら、上述のように、電子回路部品としてのDUTは、LSIのような半導体集積回路に限らず、直流電源で動作する電子回路部品であれば、半導体製造技術によって作製されたものに限られない。 However, as described above, a DUT as an electronic circuit component is not limited to a semiconductor integrated circuit such as an LSI, and is not limited to one manufactured by a semiconductor manufacturing technique as long as it is an electronic circuit component that operates with a DC power supply. .
 また、実施の形態1の電源電流測定装置100のスイッチSW1、SW2、SW3をオフにしている状態で電源VDD1から電力供給端101A,101B、101Cに供給する電力は、バーンイン試験に限られず、種々の用途に用いることができる。 In addition, the power supplied from the power supply VDD1 to the power supply terminals 101A, 101B, and 101C in the state where the switches SW1, SW2, and SW3 of the power supply current measuring apparatus 100 according to the first embodiment are turned off is not limited to the burn-in test. It can be used for
 例えば、電源電流の測定に備えて、DUTに電源を供給して、初期化が済んだ状態に保持するために用いてもよい。 For example, in preparation for the measurement of the power supply current, power may be supplied to the DUT and used to hold the initialized state.
 ここで、図6を用いて、実施の形態1の変形例として、電源電流測定装置100を情報処理装置としてのサーバに適用した形態について説明する。 Here, as a modification of the first embodiment, a mode in which the power supply current measuring apparatus 100 is applied to a server as an information processing apparatus will be described with reference to FIG.
 図6は、実施の形態1の変形例の電源電流測定装置を含む情報処理装置を示すブロック図である。 FIG. 6 is a block diagram showing an information processing apparatus including a power supply current measuring apparatus according to a modification of the first embodiment.
 図6に示すように、情報処理装置としてのサーバ60は、主電源61、CPU62、キャッシュメモリ63、チップセット64、グラフィックコントローラ65、メインメモリ66、ハードディスクコントローラ67、ディスプレイ68、及びハードディスク69を含む。 As shown in FIG. 6, a server 60 as an information processing apparatus includes a main power supply 61, a CPU 62, a cache memory 63, a chip set 64, a graphic controller 65, a main memory 66, a hard disk controller 67, a display 68, and a hard disk 69. .
 サーバ60は、電圧レギュレータ71~76を含む。電圧レギュレータ71~76は、それぞれ、主電源61、CPU62、キャッシュメモリ63、チップセット64、グラフィックコントローラ65、メインメモリ66、及びハードディスクコントローラ67に供給する直流電圧を出力する。 Server 60 includes voltage regulators 71-76. The voltage regulators 71 to 76 output DC voltages supplied to the main power supply 61, the CPU 62, the cache memory 63, the chip set 64, the graphic controller 65, the main memory 66, and the hard disk controller 67, respectively.
 以下、電圧レギュレータ71~76によって電力供給を受ける主電源61、CPU62、キャッシュメモリ63、チップセット64、グラフィックコントローラ65、メインメモリ66、ハードディスクコントローラ67の各々を特に区別せずに各々を示す場合に、各モジュールと称する。 Hereinafter, when the main power supply 61, the CPU 62, the cache memory 63, the chip set 64, the graphic controller 65, the main memory 66, and the hard disk controller 67 that are supplied with power by the voltage regulators 71 to 76 are shown without being particularly distinguished from each other. These are called modules.
 実施の形態1の変形例では、電圧レギュレータ71~76が電源電流測定装置100(図4参照)を含む。電圧レギュレータ71~76は、各モジュール内に電力供給先が複数ある場合は、単独で電源電流測定装置100(図4参照)を含むようにすればよい。また、電圧レギュレータ71~76のうち、電力供給先が一つしかないものについては、電源電流測定装置100(図4参照)を共用すればよい。 In the modification of the first embodiment, the voltage regulators 71 to 76 include the power supply current measuring device 100 (see FIG. 4). When there are a plurality of power supply destinations in each module, the voltage regulators 71 to 76 may include the power supply current measuring device 100 (see FIG. 4) alone. For the voltage regulators 71 to 76 that have only one power supply destination, the power supply current measuring device 100 (see FIG. 4) may be shared.
 このような電圧レギュレータ71~76に含まれる電源電流測定装置100(図4参照)は、通常時は電源VDD1から各モジュールに電力供給を行う。すなわち、各モジュールは、実施の形態1の変形例の電源電流測定装置から電力供給を受ける電子回路部品である。 The power supply current measuring apparatus 100 (see FIG. 4) included in the voltage regulators 71 to 76 normally supplies power to each module from the power supply VDD1. That is, each module is an electronic circuit component that receives power supply from the power supply current measuring apparatus according to the modification of the first embodiment.
 また、電圧レギュレータ71~76に含まれる電源電流測定装置100(図4参照)は、SW1、SW2、SW3をオンにすることにより、電源VDD2から供給される電力を利用して、各モジュールの電源電流を測定することができる。このように各モジュールの電源電流を測定すれば、各モジュールの自己診断又は不良検出を行うことができる。 In addition, the power supply current measuring apparatus 100 (see FIG. 4) included in the voltage regulators 71 to 76 turns on SW1, SW2, and SW3, thereby using the power supplied from the power supply VDD2 to power the modules. The current can be measured. Thus, if the power supply current of each module is measured, the self-diagnosis or defect detection of each module can be performed.
 以上、実施の形態1の変形例の電源電流測定装置100によれば、情報処理装置に含まれる各モジュールの電源電流の測定を行うことができ、電流制限値及び抵抗値のばらつきの問題とコストアップの問題を排除しつつ、瞬断が生じないようにすることにより、電源電流の測定に要する時間の短縮化を図ることができる。 As described above, according to the power source current measuring apparatus 100 of the modification of the first embodiment, the power source current of each module included in the information processing apparatus can be measured, and the problem and cost of variation in current limit value and resistance value can be measured. The time required for measuring the power supply current can be shortened by eliminating the interruption problem while preventing the instantaneous interruption.
 <実施の形態2>
 図7は、実施の形態2の電源電流測定装置を示すブロック図である。
<Embodiment 2>
FIG. 7 is a block diagram showing a power supply current measuring apparatus according to the second embodiment.
 実施の形態2の電源電流測定装置200は、ダイオードD11、D12、D13に並列に接続されるスイッチSW11、SW12、SW13を含む点が実施の形態1の電源電流測定装置100と異なる。その他の構成は、実施の形態1の電源電流測定装置100と同一であるため、同一の構成要素には同一符号を付し、その説明を省略する。以下、実施の形態1の電源電流測定装置100との相違点を中心に説明する。 The power supply current measuring apparatus 200 of the second embodiment is different from the power supply current measuring apparatus 100 of the first embodiment in that it includes switches SW11, SW12, and SW13 connected in parallel to the diodes D11, D12, and D13. Since the other configuration is the same as that of the power supply current measuring apparatus 100 of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, the difference from the power supply current measuring apparatus 100 according to the first embodiment will be mainly described.
 スイッチSW11、SW12、SW13は、それぞれ、ダイオードD11、D12、D13に並列に接続され、オンにされることによってダイオードD11、D12、D13をバイパスするバイパススイッチ部である。 The switches SW11, SW12, and SW13 are bypass switch units that are connected in parallel to the diodes D11, D12, and D13, and bypass the diodes D11, D12, and D13 when turned on.
 スイッチSW11、SW12、SW13は、スイッチSW1、SW2、SW3と同様に、マイコン130によって開閉(オン/オフ)の制御が行われる。スイッチSW11、SW12、SW13としては、例えば、リレーを用いることができる。 The switches SW11, SW12, and SW13 are controlled to be opened and closed (on / off) by the microcomputer 130 in the same manner as the switches SW1, SW2, and SW3. The switch SW11, SW12, SW13, for example, can be used relay.
 実施の形態1において説明したように、電源電流測定以外の試験を行う際には、スイッチSW1、SW2、SW3はすべてオフにされ、DUT11、12、13には電源VDD1から電力が供給される。 As described in the first embodiment, when a test other than power supply current measurement is performed, all the switches SW1, SW2, and SW3 are turned off, and power is supplied to the DUTs 11, 12, and 13 from the power supply VDD1.
 スイッチSW11、SW12、SW13は、電源電流測定以外の試験を行うために電源VDD1からDUT11、12、13に電力を供給する際に、ダイオードD11、D12、D13をバイパスすることにより、ダイオードD11、D12、D13における電力損失が生じないようにするために設けられている。また、ダイオードD11、D12、D13をバイパスすることにより、ダイオードD11、D12、D13における電圧降下が生じなくなるため、電源VDD1の出力電圧をダイオードD11、D12、D13の電圧降下分だけ低く設定することができる。 The switches SW11, SW12, and SW13 bypass the diodes D11, D12, and D13 when power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13 to perform tests other than the power supply current measurement. , D13 is provided to prevent power loss at D13. Further, by bypassing the diodes D11, D12, and D13, voltage drops in the diodes D11, D12, and D13 do not occur. Therefore, it is possible to set the output voltage of the power supply VDD1 as low as the voltage drops of the diodes D11, D12, and D13. it can.
 以下では、スイッチSW11、SW12、SW13をオンにしてダイオードD11、D12、D13をバイパスするとともに、電源VDD1の出力電圧をダイオードD11、D12、D13の電圧降下分だけ低く設定する動作モードを低損失モードと称す。 In the following description, an operation mode in which the switches SW11, SW12, and SW13 are turned on to bypass the diodes D11, D12, and D13 and the output voltage of the power supply VDD1 is set lower by the voltage drop of the diodes D11, D12, and D13 is a low-loss mode. Called.
 次に、図8を用いて、実施の形態2の電源電流測定装置200のマイコン130によって実行される電源電流の測定処理について説明する。 Next, a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 200 according to the second embodiment will be described with reference to FIG.
 図8は、実施の形態2の電源電流測定装置200のマイコン130が実行する電源電流の測定処理を示すフローチャートである。 FIG. 8 is a flowchart showing a power supply current measurement process executed by the microcomputer 130 of the power supply current measuring apparatus 200 according to the second embodiment.
 マイコン130は、電源電流の測定処理をスタート(START)させると、まず、初期設定を行う(ステップS11)。ステップS11の初期設定では、マイコン130は、電源VDD1、電源VDD2の電圧値と、D/Aコンバータ121、122、123に入力する基準電圧(Vref1、Vref2、Vref3)をすべて零にする。また、マイコン130は、スイッチSW1、SW2、SW3をすべてオフにするとともに、スイッチSW11、SW12、SW13をオンにする。これにより、低損失モードが設定され、ダイオードD11、D12、D13はスイッチSW11、SW12、SW13によってバイパスされた状態となる。 When the microcomputer 130 starts the measurement process of the power supply current (START), it first performs an initial setting (step S11). In the initial setting in step S11, the microcomputer 130 sets all the voltage values of the power supplies VDD1 and VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. Further, the microcomputer 130 turns off all the switches SW1, SW2, and SW3 and turns on the switches SW11, SW12, and SW13. As a result, the low loss mode is set, and the diodes D11, D12, and D13 are bypassed by the switches SW11, SW12, and SW13.
 マイコン130は、電源VDD1、電源VDD2の電圧値を設定する(ステップS12)。マイコン130は、電源VDD2の設定電圧の方が電源VDD1の設定電圧よりも高くなるように、VDD1=4.4(V)、VDD2=6.0(V)に設定する。電源VDD1の出力電圧値は、実施の形態1と比べて、ダイオードD11、D12、D13の電圧降下分(ここでは0.6(V))だけ低く設定される。 The microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S12). The microcomputer 130 sets VDD1 = 4.4 (V) and VDD2 = 6.0 (V) so that the set voltage of the power supply VDD2 is higher than the set voltage of the power supply VDD1. The output voltage value of the power supply VDD1 is set lower than the voltage drop of the diodes D11, D12, and D13 (here, 0.6 (V)) as compared with the first embodiment.
 また、このとき、スイッチSW1、SW2、SW3はオフであり、スイッチSW11、SW12、SW13はオンであるため、トランジスタ104A、104B、104Cのソースには、電源VDD1からスイッチSW11、SW12、SW13を通じて、電力が供給される。すなわち、ダイオードD11、D12、D13はバイパスされる。 At this time, since the switches SW1, SW2, and SW3 are off and the switches SW11, SW12, and SW13 are on, the sources of the transistors 104A, 104B, and 104C are supplied from the power source VDD1 through the switches SW11, SW12, and SW13. Power is supplied. That is, the diodes D11, D12, and D13 are bypassed.
 マイコン130は、D/Aコンバータ121、122、123の基準電圧(Vref1、Vref2、Vref3)を設定する(ステップS13)。マイコン130は、Vref1=Vref2=Vref3=3.3(V)に設定する。 The microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S13). The microcomputer 130 sets Vref1 = Vref2 = Vref3 = 3.3 (V).
 ここで、D/Aコンバータ121、122、123の基準電圧が3.3(V)に設定されると、トランジスタ104A、104B、104Cのゲートに誤差増幅器105A、105B、105Cから電圧が入力され、トランジスタ104A、104B、104Cがオンになる。これにより、電源VDD1からDUT11、12、13に電力が供給され、DUT11、12、13は電源が投入された状態になる。 Here, when the reference voltage of the D / A converters 121, 122, 123 is set to 3.3 (V), the voltages from the error amplifiers 105A, 105B, 105C are input to the gates of the transistors 104A, 104B, 104C. The transistors 104A, 104B, and 104C are turned on. As a result, power is supplied from the power supply VDD1 to the DUTs 11, 12, and 13, and the DUTs 11, 12, and 13 are in a power-on state.
 このとき、誤差増幅器105A、105B、105Cは、それぞれ、電力供給端101A、101B、101Cの電圧値と、基準電圧(Vref1、Vref2、Vref3)とが等しくなるように、電圧差に応じた電圧を出力する。 At this time, each of the error amplifiers 105A, 105B, and 105C sets a voltage corresponding to the voltage difference so that the voltage values of the power supply terminals 101A, 101B, and 101C are equal to the reference voltages (Vref1, Vref2, and Vref3). Output.
 マイコン130は、DUT11、12、13の電源電流の測定を開始するために低損失モードを解除すべく、電源VDD1の出力電圧を変更するとともに、スイッチSW11、SW12、SW13をすべてオフにする(ステップS14)。これにより、電源VDD1の出力電圧は、VDD1=5.0(V)に上昇される。 The microcomputer 130 changes the output voltage of the power supply VDD1 and turns off all the switches SW11, SW12, and SW13 in order to cancel the low-loss mode in order to start measuring the power supply currents of the DUTs 11, 12, and 13 (step S1). S14). As a result, the output voltage of the power supply VDD1 is raised to VDD1 = 5.0 (V).
 マイコン130は、DUT11、12、13の電源電流の測定を開始すべく、オンにするスイッチSWnのスイッチ番号nを1に設定する(ステップS15)。 The microcomputer 130 sets the switch number n of the switch SWn to be turned on to 1 to start measuring the power supply current of the DUTs 11, 12, and 13 (step S15).
 マイコン130は、スイッチSWnをオンにし、SWn以外のスイッチをオフにする(ステップS16)。スイッチ番号nが1の場合は、スイッチSW1がオンにされ、スイッチSW2、SW3はオフにされる。 The microcomputer 130 turns on the switch SWn and turns off switches other than SWn (step S16). When the switch number n is 1, the switch SW1 is turned on and the switches SW2 and SW3 are turned off.
 スイッチSW1がオンになると、接続点P1の電位は、電源VDD1の出力電圧(5.0(V))によって設定される電位から電源VDD2の出力電圧(6.0(V))によって設定される電位に切り替わる。この結果、ダイオードD11は逆バイアスになって遮断し、DUT11には、トランジスタ104Aを通じて電源VDD2から電力が供給される。 When the switch SW1 is turned on, the potential at the connection point P1 is set by the output voltage (6.0 (V)) of the power supply VDD2 from the potential set by the output voltage (5.0 (V)) of the power supply VDD1. Switch to potential. As a result, the diode D11 is reverse biased and cut off, and power is supplied to the DUT 11 from the power supply VDD2 through the transistor 104A.
 そして、このとき、抵抗器103に流れる電流は、DUT11の電源電流として検出され、差動増幅器107で増幅される。差動増幅器107で増幅された電流は、A/Dコンバータ108でデジタル変換され、電源電流データとして出力される。 At this time, the current flowing through the resistor 103 is detected as the power supply current of the DUT 11 and amplified by the differential amplifier 107. The current amplified by the differential amplifier 107 is digitally converted by the A / D converter 108 and output as power supply current data.
 マイコン130は、電源電流データを取得する(ステップS17)。 The microcomputer 130 acquires power supply current data (step S17).
 マイコン130は、電源電流データをRAMに保存する(ステップS18)。 The microcomputer 130 stores the power supply current data in the RAM (step S18).
 次いで、マイコン130は、スイッチ番号nが最大値n(max)より小さいか否かを判定する(ステップS19)。 Next, the microcomputer 130 determines whether or not the switch number n is smaller than the maximum value n (max) (step S19).
 マイコン130は、スイッチ番号nが最大値n(max)より小さい場合は、スイッチ番号nをインクリメントする(ステップS20)。すなわち、スイッチ番号nが1つ増やされる(n=n+1)。 The microcomputer 130 increments the switch number n when the switch number n is smaller than the maximum value n (max) (step S20). That is, the switch number n is incremented one 1 (n = n + 1).
 マイコン130は、スイッチ番号nをインクリメントすると、フローをステップS16にリターンし、ステップS19においてスイッチ番号nが最大値n(max)より小さくない(すなわち、スイッチ番号nが最大値n(max)に到達した)と判定するまで、ステップS16~S19の処理を実行する。 When the microcomputer 130 increments the switch number n, the flow returns to step S16. In step S19, the switch number n is not smaller than the maximum value n (max) (that is, the switch number n reaches the maximum value n (max)). until the determined), and executes the processing of steps S16 ~ S19.
 ステップS16~S19の処理が繰り返し実行されることにより、スイッチSW2、SW3が順次オンにされ、DUT12、DUT13の電源電流が測定される。 By repeatedly executing the processing of steps S16 to S19, the switches SW2 and SW3 are sequentially turned on, and the power supply currents of the DUT 12 and DUT 13 are measured.
 マイコン130は、ステップS19においてスイッチ番号nが最大値n(max)より小さくない(すなわち、スイッチ番号nが最大値n(max)に到達した)と判定すると、すべてのDUTの電源電流の測定が終了したと判定し、再び低損失モードを設定する(ステップS21)。 If the microcomputer 130 determines in step S19 that the switch number n is not smaller than the maximum value n (max) (that is, the switch number n has reached the maximum value n (max)), the power source current of all the DUTs is measured. It determines that it has finished, to set the low loss mode again (step S21).
 マイコン130は、電源電流データを上位サーバに転送する(ステップS22)。 The microcomputer 130 transfers the power supply current data to the host server (step S22).
 上位サーバへの電源電流データの転送を終えると、マイコン130は電源電流の測定処理を終了する(END)。 When the transfer of the power supply current data to the host server is finished, the microcomputer 130 finishes the power supply current measurement process (END).
 以上のように、実施の形態2の電源電流測定装置200では、実施の形態1の電源電流測定装置100と同様に、瞬断を生じさせることなく、DUT11、12、13を切り替えて電源電流を測定することができる。このため、電源電流の測定対象を切り替える際にDUTの初期化を行う必要が生じず、電源電流の測定に要する時間の短縮化を図ることができる。 As described above, in the power supply current measuring apparatus 200 of the second embodiment, the power supply current is switched by switching the DUTs 11, 12, and 13 without causing an instantaneous interruption, as in the power supply current measuring apparatus 100 of the first embodiment. Can be measured. For this reason, it is not necessary to initialize the DUT when switching the measurement target of the power supply current, and the time required for measuring the power supply current can be shortened.
 また、スイッチSW1~SW3がすべてオフのときには、DUT11、12、13には、電源VDD1から電力が供給されているため、電源電流を測定していないときには、DUT11、12、13に電源電流測定以外の他の試験を行うことができる。すなわち、電源電流測定とその他の試験を並列的に行うことができるので、試験に要する時間の短縮化を図ることができる。 When all the switches SW1 to SW3 are off, power is supplied to the DUTs 11, 12, and 13 from the power supply VDD1, so when the power supply current is not measured, the DUTs 11, 12, and 13 are not subjected to power supply current measurement. Other tests can be performed. That is, since the power supply current measurement and other tests can be performed in parallel, the time required for the tests can be shortened.
 また、このとき、実施の形態2の電源電流測定装置200は、スイッチSW11、SW12、SW13をオンにしてダイオードD11、D12、D13をバイパスするとともに、電源VDD1の出力電圧を低く設定するので、消費電力を低減することができる。 At this time, the power supply current measuring apparatus 200 according to the second embodiment turns on the switches SW11, SW12, and SW13 to bypass the diodes D11, D12, and D13 and sets the output voltage of the power supply VDD1 to be low. Electric power can be reduced.
 また、実施の形態2の電源電流測定装置200は、電流リミッタ102及び抵抗器103がすべてのDUTに対して共通であるため、電流制限値及び抵抗値のばらつきの問題は生じず、コストアップも抑制できる。 In addition, since the current limiter 102 and the resistor 103 are common to all the DUTs, the power source current measuring apparatus 200 according to the second embodiment does not cause a problem of variations in the current limit value and the resistance value, and also increases the cost. Can be suppressed.
 以上、実施の形態2によれば、電流制限値及び抵抗値のばらつきの問題とコストアップの問題を排除しつつ、瞬断が生じないようにすることにより、電源電流の測定に要する時間の短縮化を図ることができる電源電流測定装置200を提供することができる。 As described above, according to the second embodiment, the time required for measuring the power supply current is reduced by eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost while preventing the instantaneous interruption. Thus, it is possible to provide the power supply current measuring apparatus 200 that can be realized.
 また、電源電流測定装置200は、瞬断を発生させることなく電源VDD1と電源VDD2を切り替えることができるので、電源電流測定とその他の試験を並列的に行うことができ、電源電流の測定とその他の試験に要するトータルの時間の短縮化を図ることができる。また、電源電流の測定を行わないときは、電源VDD1の電圧を低く設定できるので、消費電力を低減することができる。 In addition, since the power supply current measuring apparatus 200 can switch between the power supply VDD1 and the power supply VDD2 without causing an instantaneous interruption, the power supply current measurement and other tests can be performed in parallel. required for the test can be shortened in total time. Further, when the power supply current is not measured, the voltage of the power supply VDD1 can be set low, so that power consumption can be reduced.
 なお、以上では、DUT11、12、13のそれぞれの電源電流を測定する際に、すべてのスイッチSW11、SW12、SW13をオフにする形態について説明した。しかしながら、DUT11、12、13のそれぞれの電源電流を順番に測定する場合には、電源電流を測定しないDUTに対応するスイッチ(SW11、SW12、SW13のいずれか2つ)をオンにしてもよい。この場合は、電源電流を測定していないDUTに対応するラインにおいてダイオードをバイパスすることにより、電力損失を低減することができる。 In the above description, the mode in which all the switches SW11, SW12, and SW13 are turned off when measuring the power supply currents of the DUTs 11, 12, and 13 has been described. However, when the power supply currents of the DUTs 11, 12, and 13 are measured in order, the switches (any two of SW11, SW12, and SW13) corresponding to the DUTs that do not measure the power supply current may be turned on. In this case, the power loss can be reduced by bypassing the diode in the line corresponding to the DUT in which the power supply current is not measured.
 この場合は、スイッチSW1、SW2、SW3のうち、電源電流を測定するためにオンにされているスイッチ(SW1、SW2、SW3のいずれか)に接続点P1、P2、又はP3を介して接続されるスイッチ(SW11、SW12、SW13のいずれか)をオフにするようにすればよい。 In this case, of the switches SW1, SW2, and SW3, the switch (one of SW1, SW2, and SW3) that is turned on to measure the power supply current is connected via the connection point P1, P2, or P3. The switch (any one of SW11, SW12, SW13) may be turned off.
 すなわち、スイッチSW11、SW12、SW13は、スイッチSW1、SW2、SW3のうちスイッチ(SW11、SW12、SW13のうちのいずれか)と並列に接続されるダイオード(D11、D12、D13のうちのいずれか)の出力端に接続されるスイッチ(SW1、SW2、SW3のうちのいずれか)がオンの間は、オフにされるようにしてもよい。 That is, the switches SW11, SW12, and SW13 are diodes (any one of D11, D12, and D13) connected in parallel with the switch (any one of SW11, SW12, and SW13) among the switches SW1, SW2, and SW3. While the switch connected to the output terminal (any one of SW1, SW2, SW3) is on, it may be turned off.
 <実施の形態3>
 図9は、実施の形態3の電源電流測定装置を示すブロック図である。
<Embodiment 3>
FIG. 9 is a block diagram showing a power supply current measuring apparatus according to the third embodiment.
 実施の形態3の電源電流測定装置300は、DUT11、12、13の電源電流の測定を行う前に、DUT11、12、13の短絡試験を行う点が実施の形態1の電源電流測定装置100と異なる。その他の構成は、実施の形態1の電源電流測定装置100と同一であるため、同一の構成要素には同一符号を付し、その説明を省略する。以下、実施の形態1の電源電流測定装置100との相違点を中心に説明する。 The power supply current measuring apparatus 300 of the third embodiment is different from the power supply current measuring apparatus 100 of the first embodiment in that a short circuit test of the DUTs 11, 12, and 13 is performed before measuring the power supply currents of the DUTs 11, 12, and 13. Different. Since the other configuration is the same as that of the power supply current measuring apparatus 100 of the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, the difference from the power supply current measuring apparatus 100 according to the first embodiment will be mainly described.
 図9に示す実施の形態3の電源電流測定装置300の構成は、実施の形態1の電源電流測定装置100(図4参照)と同一であるが、図9には、DUT11、DUT12、DUT13の短絡試験を行うために、スイッチSW1、SW2、SW3をすべてオンにした状態を示す。 The configuration of the power supply current measuring apparatus 300 according to the third embodiment shown in FIG. 9 is the same as that of the power supply current measuring apparatus 100 (see FIG. 4) according to the first embodiment, but FIG. 9 shows the DUT11, DUT12, and DUT13. A state in which all of the switches SW1, SW2, and SW3 are turned on to perform a short circuit test is shown.
 また、図4には、電源VDD1をVDD1=0.0(V)、電源VDD2をVDD2=3.0(V)、D/Aコンバータ121、122、123から誤差増幅器105A、105B、105Cに入力する基準電圧Vref1、Vref2、Vref3をすべて0.1(V)に設定した状態を示す。 Further, in FIG. 4, the power supply VDD1 is VDD1 = 0.0 (V), the power supply VDD2 is VDD2 = 3.0 (V), and the D / A converters 121, 122, 123 input to the error amplifiers 105A, 105B, 105C. The reference voltages Vref1, Vref2, and Vref3 are all set to 0.1 (V).
 電源VDD1、電源VDD2、基準電圧Vref1、Vref2、Vref3をこれらの値に設定すると、トランジスタ104A、104B、104Cを通じてDUT11、12、13には約0.1(V)の電圧が印加される。 When the power supply VDD1, the power supply VDD2, and the reference voltages Vref1, Vref2, and Vref3 are set to these values, a voltage of about 0.1 (V) is applied to the DUTs 11, 12, and 13 through the transistors 104A, 104B, and 104C.
 ここで、DUT11、12、13は、内部回路に短絡が生じていなければ、基準電圧Vref1、Vref2、Vref3をすべて0.1(V)に設定した状態では、動作しないものとする。ここで、基準電圧Vref1、Vref2、Vref3の0.1(V)という電圧値は、DUT11、12、13の非動作状態にする電圧値である。 Here, it is assumed that the DUTs 11, 12, and 13 do not operate when the reference voltages Vref1, Vref2, and Vref3 are all set to 0.1 (V) unless a short circuit occurs in the internal circuit. Here, the voltage value of 0.1 (V) of the reference voltages Vref1, Vref2, and Vref3 is a voltage value that makes the DUTs 11, 12, and 13 inoperative.
 このように、DUT11、12、13の短絡試験は、DUT11、12、13のいずれも動作しない状態で行う。 Thus, the short-circuit test of DUTs 11, 12, and 13 is performed in a state where none of DUTs 11, 12, and 13 operate.
 次に、図10を用いて、実施の形態3の電源電流測定装置300における短絡試験の処理を説明する。 Next, the short-circuit test process in the power supply current measuring apparatus 300 according to the third embodiment will be described with reference to FIG.
 図10は、実施の形態3の電源電流測定装置300における短絡試験の処理内容を示すフローチャートである。 FIG. 10 is a flowchart showing the processing contents of the short circuit test in the power supply current measuring apparatus 300 of the third embodiment.
 マイコン130は、電源電流の測定処理をスタート(START)させると、まず、初期設定を行う(ステップS31)。ステップS31の初期設定では、マイコン130は、電源VDD1、電源VDD2の電圧値と、D/Aコンバータ121、122、123に入力する基準電圧(Vref1、Vref2、Vref3)をすべて零にする。また、マイコン130は、スイッチSW1、SW2、SW3をすべてオンにする。 When the microcomputer 130 starts the measurement process of the power supply current (START), the microcomputer 130 first performs an initial setting (step S31). In the initial setting in step S31, the microcomputer 130 sets all the voltage values of the power supplies VDD1 and VDD2 and the reference voltages (Vref1, Vref2, Vref3) input to the D / A converters 121, 122, 123 to zero. Further, the microcomputer 130 turns on all the switches SW1, SW2, and SW3.
 マイコン130は、電源VDD1、電源VDD2の電圧値を設定する(ステップS32)。マイコン130は、VDD1=0.0(V)、VDD2=3.0(V)に設定する。 The microcomputer 130 sets the voltage values of the power supply VDD1 and the power supply VDD2 (step S32). The microcomputer 130 sets VDD1 = 0.0 (V) and VDD2 = 3.0 (V).
 このとき、スイッチSW1、SW2、SW3はオンであるため、接続点P1、P2、P3には、電源VDD2からダイオードD21、D22、D23を通じて、約3.0(V)の電圧が印加される。 At this time, since the switches SW1, SW2, and SW3 are on, a voltage of about 3.0 (V) is applied to the connection points P1, P2, and P3 from the power supply VDD2 through the diodes D21, D22, and D23.
 マイコン130は、D/Aコンバータ121、122、123の基準電圧(Vref1、Vref2、Vref3)を設定する(ステップS33)。マイコン130は、Vref1=Vref2=Vref3=0.1(V)に設定する。 The microcomputer 130 sets the reference voltages (Vref1, Vref2, Vref3) of the D / A converters 121, 122, 123 (step S33). The microcomputer 130 sets Vref1 = Vref2 = Vref3 = 0.1 (V).
 ここで、上述のように、D/Aコンバータ121、122、123の基準電圧が0.1(V)では、内部回路に異常のない正常なDUT11、12、13は動作しない。このため、DUT11、12、13がすべて正常であれば、A/Dコンバータ108から出力される電流値は0(mA)になるはずである。 Here, as described above, when the reference voltage of the D / A converters 121, 122, and 123 is 0.1 (V), the normal DUTs 11, 12, and 13 having no abnormality in the internal circuit do not operate. For this reason, if all of the DUTs 11, 12, and 13 are normal, the current value output from the A / D converter 108 should be 0 (mA).
 マイコン130は、A/Dコンバータ108から出力される電流値を表すデータを取得する(ステップS34)。 The microcomputer 130 acquires data representing the current value output from the A / D converter 108 (step S34).
 マイコン130は、ステップS34で取得したデータが正常値の範囲内であるか否かを判定する(ステップS35)。なお、正常値の範囲は、DUT11、12、13として用いる電子回路部品の種類等に応じて決定すればよく、例えば、0(mA)~1(mA)に設定する。 The microcomputer 130 determines whether or not the data acquired in step S34 is within a normal value range (step S35). Note that the range of normal values may be determined according to the type of electronic circuit components used as the DUTs 11, 12, and 13, and is set to 0 (mA) to 1 (mA), for example.
 マイコン130は、ステップS34で取得したデータが正常値の範囲内であれば(S35 Yes)、DUT11、12、13はすべて正常であると判定し、電源電流の測定処理に移行する。以後、実施の形態1又は2に示した電源電流の測定処理が実行される。 If the data acquired in step S34 is within the range of the normal value (Yes in S35), the microcomputer 130 determines that all of the DUTs 11, 12, and 13 are normal, and proceeds to a power supply current measurement process. Thereafter, the power supply current measurement process shown in the first or second embodiment is executed.
 一方、マイコン130は、ステップS34で取得したデータが正常値の範囲内にない場合は(S35 No)、DUT11、12、13のうちの少なくともいずれか1つに短絡が生じていると判定し、DUT11、12、13のそれぞれについて短絡試験を行う(ステップS36)。 On the other hand, when the data acquired in step S34 is not within the normal value range (S35 No), the microcomputer 130 determines that at least one of the DUTs 11, 12, and 13 is short-circuited, A short circuit test is performed for each of the DUTs 11, 12, and 13 (step S36).
 ステップS36において、マイコン130は、DUT11の短絡試験を行う場合は、スイッチSW1だけをオンにし、スイッチSW2、SW3をオフにして、A/Dコンバータ108から出力される電流値を表すデータに基づいて短絡の有無を判定する。 In step S36, the microcomputer 130 turns on only the switch SW1 and turns off the switches SW2 and SW3 when performing the short-circuit test of the DUT 11, and based on the data representing the current value output from the A / D converter 108. Determine if there is a short circuit.
 同様に、DUT12の短絡試験を行う場合は、スイッチSW2だけをオンにし、スイッチSW1、SW3をオフにして、A/Dコンバータ108から出力される電流値を表すデータに基づいて短絡の有無を判定する。また、DUT13の短絡試験を行う場合は、スイッチSW3だけをオンにし、スイッチSW1、SW2をオフにして、A/Dコンバータ108から出力される電流値を表すデータに基づいて短絡の有無を判定する。 Similarly, when performing a short circuit test of the DUT 12, only the switch SW2 is turned on, the switches SW1 and SW3 are turned off, and the presence / absence of a short circuit is determined based on the data representing the current value output from the A / D converter 108. To do. When performing a short circuit test of the DUT 13, only the switch SW3 is turned on, the switches SW1 and SW2 are turned off, and the presence / absence of a short circuit is determined based on data representing the current value output from the A / D converter 108. .
 マイコン130は、DUT11、12、13の個別の短絡試験において、電流値が正常値の範囲から逸脱した不良のDUTを表す識別子をRAMに保存する(ステップS37)。 The microcomputer 130 stores, in the RAM, an identifier representing a defective DUT in which the current value deviates from the normal value range in the individual short-circuit tests of the DUTs 11, 12, and 13 (step S37).
 以上により、実施の形態3の電源電流測定装置300における短絡試験が終了する。 Thus, the short circuit test in the power supply current measuring apparatus 300 according to the third embodiment is completed.
 短絡試験が終了すると、マイコン130は、短絡の生じているDUTについては、電源電流の測定を行わないようにする。 When the short circuit test is completed, the microcomputer 130 does not measure the power supply current for the DUT in which the short circuit has occurred.
 以上のように、実施の形態3の電源電流測定装置300では、実施の形態1又は2で説明した電源電流の測定処理を行う前に、内部回路に短絡が生じているDUTを特定できるので、短絡の生じたDUTについて電源電流の測定処理を行わないようにすることができる。これにより、短絡の生じたDUTがある場合でも、短絡の生じたDUTについて電源電流の測定処理が行われることを未然に防止することができる。 As described above, the power supply current measuring apparatus 300 according to the third embodiment can identify the DUT in which a short circuit has occurred in the internal circuit before performing the power supply current measurement process described in the first or second embodiment. It is possible to prevent the power supply current from being measured for the DUT in which the short circuit has occurred. Thereby, even when there is a short-circuited DUT, it is possible to prevent the power supply current from being measured for the short-circuited DUT.
 <実施の形態4>
 図11は、実施の形態4の電源電流測定装置を示すブロック図である。
<Embodiment 4>
FIG. 11 is a block diagram showing a power supply current measuring apparatus according to the fourth embodiment.
 実施の形態4の電源電流測定装置400は、電源が1つ(VDD1)であり、ダイオードD11、D12、D13に加えて電流リミッタ102も電源VDD1から電力供給を受けるように接続されている点が実施の形態1の電源電流測定装置100と異なる。また、実施の形態4の電源電流測定装置400は、ダイオードD21、D22、D23の順方向電圧(Vf2)がダイオードD11、D12、D13の順方向電圧(Vf1)よりも低く設定されている点が実施の形態1の電源電流測定装置100と異なる。 The power supply current measuring apparatus 400 of the fourth embodiment has one power supply (VDD1), and the current limiter 102 is connected to receive power supply from the power supply VDD1 in addition to the diodes D11, D12, and D13. Different from the power supply current measuring apparatus 100 of the first embodiment. Further, the power supply current measuring apparatus 400 of the fourth embodiment is such that the forward voltage (Vf2) of the diodes D21, D22, D23 is set lower than the forward voltage (Vf1) of the diodes D11, D12, D13. Different from the power supply current measuring apparatus 100 of the first embodiment.
 ここで、例えば、ダイオードD11、D12、D13としては、Vf1が1.0(V)のものを用いる。また、ダイオードD21、D22、D23としては、Vf2が0.3(V)のものを用いる。 Here, for example, diodes D11, D12, and D13 having Vf1 of 1.0 (V) are used. Further, diodes D21, D22, D23 having Vf2 of 0.3 (V) are used.
 ここで、例えば、電流リミッタ102及び抵抗器103での電圧降下が0.2(V)であるとする。この場合、スイッチSW1をオンにした場合の接続点P1の電位は、VDD(5.0(V))から電流リミッタ102及び抵抗器103の電圧降下(0.2(V))とダイオードD21のVf(0.3(V))を引いて、4.5(V)となる。 Here, for example, it is assumed that the voltage drop at the current limiter 102 and the resistor 103 is 0.2 (V). In this case, the potential at the connection point P1 when the switch SW1 is turned on is from VDD (5.0 (V)) to the voltage drop (0.2 (V)) of the current limiter 102 and the resistor 103 and the diode D21. Vf (0.3 (V)) is subtracted to 4.5 (V).
 これに対して、スイッチSW1をオフにした場合は、接続点P1には電源VDD1からダイオードD11を経て電力が供給される。このため、スイッチSW1をオフにした場合の接続点P1の電位は、VDD(5.0(V))からダイオードD11のVf(1.0(V))を引いて、4.0(V)となる。 On the other hand, when the switch SW1 is turned off, power is supplied to the connection point P1 from the power supply VDD1 via the diode D11. Therefore, the potential at the connection point P1 when the switch SW1 is turned off is 4.0 (V) by subtracting Vf (1.0 (V)) of the diode D11 from VDD (5.0 (V)). It becomes.
 このため、スイッチSW1をオンにすると、ダイオードD11、D12、D13は逆バイアスとなり、電流リミッタ102、抵抗器103、スイッチSW1、ダイオードD21、トランジスタ104A、及び電力供給端101Aを通じて、電源VDD1からDUT11に電力が供給される。このとき、抵抗器103の両端間の電圧値は、差動増幅器107及びA/Dコンバータ108を介して検出される。これにより、DUT11の電源電流が測定される。 Therefore, when the switch SW1 is turned on, the diodes D11, D12, and D13 are reverse-biased, and the power supply VDD1 to the DUT11 is passed through the current limiter 102, the resistor 103, the switch SW1, the diode D21, the transistor 104A, and the power supply terminal 101A. Power is supplied. At this time, the voltage value across the resistor 103 is detected via the differential amplifier 107 and the A / D converter 108. Thereby, the power supply current of DUT11 is measured.
 同様に、スイッチSW2、SW3をオンにした場合は、DUT12、13の電源電流を測定することができる。 Similarly, when the switches SW2 and SW3 are turned on, the power supply currents of the DUTs 12 and 13 can be measured.
 以上、実施の形態4によれば、スイッチSW1、SW2、SW3をオンにしたときに、ダイオードD11、D12、D13が逆バイアスになるように、ダイオードD21、D22、D23の順方向電圧(Vf2)と、ダイオードD11、D12、D13の順方向電圧(Vf1)とを選択すればよい。これにより、実施の形態1のように出力電圧値の異なる電源VDD1、電源VDD2(図4参照)を用いた場合と同様に、瞬断なくDUT11、12、13に電力を供給できる。 As described above, according to the fourth embodiment, the forward voltages (Vf2) of the diodes D21, D22, and D23 are set so that the diodes D11, D12, and D13 are reverse-biased when the switches SW1, SW2, and SW3 are turned on. And the forward voltage (Vf1) of the diodes D11, D12, and D13 may be selected. As a result, power can be supplied to the DUTs 11, 12, and 13 without interruption as in the case of using the power supply VDD 1 and the power supply VDD 2 (see FIG. 4) having different output voltage values as in the first embodiment.
 このため、実施の形態4によれば、実施の形態1と同様に、電流制限値及び抵抗値のばらつきの問題とコストアップの問題を排除しつつ、瞬断が生じないようにすることにより、電源電流の測定に要する時間の短縮化を図ることができる電源電流測定装置400を提供することができる。 For this reason, according to the fourth embodiment, as in the first embodiment, by eliminating the problem of variation in the current limit value and the resistance value and the problem of increasing the cost, without causing instantaneous interruption, It is possible to provide the power supply current measuring apparatus 400 that can shorten the time required for measuring the power supply current.
 また、電源電流測定装置400は、瞬断を発生させることなく電源電流測定用の回路に接続を切り替えることができるので、電源電流測定とその他の試験を並列的に行うことができ、電源電流の測定とその他の試験に要するトータルの時間の短縮化を図ることができる。 In addition, since the power supply current measuring apparatus 400 can switch the connection to the power supply current measurement circuit without causing a momentary interruption, the power supply current measurement and other tests can be performed in parallel. The total time required for measurement and other tests can be shortened.
 以上、本発明の例示的な実施の形態の電源電流測定装置、電源電流測定装置を含む試験装置、及び電源電流測定装置を含む情報処理装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
以上の実施の形態1乃至4に関し、さらに以下の付記を開示する。
(付記1)
 電子回路部品の試験装置によって試験が行われる電子回路部品に接続され、電力を供給する複数の電力供給端と、
 前記電子回路部品に供給するための電力を出力する第1電源部と、
 前記複数の電力供給端の各々と前記第1電源部との間にそれぞれ直列に接続される複数の整流素子と、
 前記第1電源部よりも出力電圧の高い第2電源部と、
 前記複数の整流素子の各々の出力端と前記第2電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数のスイッチ部と、
 前記複数のスイッチ部の前記第2電源部側における接続点と、前記第2電源部との間に直列に接続され、前記複数のスイッチ部のいずれかが閉成されると、当該閉成されたスイッチ部を介して前記第2電源部から前記電子回路部品に供給される電流を検出する電流検出部と
 を含む、電源電流測定装置。
(付記2)
 前記複数の整流素子の各々の出力端と前記複数の電力供給端の各々との間に電流入力端及び電流出力端が接続される複数のトランジスタと、
 前記複数の電力供給端の各々に一方の入力端が接続されるとともに、他方の入力端に基準電圧が入力され、出力端が前記トランジスタの制御端に接続される誤差増幅器と
 をさらに含む、付記1に記載の電源電流測定装置。
(付記3)
 前記複数の整流素子の各々に並列に接続され、閉成されることにより前記整流素子をバイパスする複数のバイパススイッチ部をさらに含み、
 前記複数のバイパススイッチ部は、前記複数のスイッチ部が閉成されている間は、開放される、付記1に記載の電源電流測定装置。
(付記4)
 前記複数の整流素子の各々に並列に接続され、閉成されることにより前記整流素子をバイパスする複数のバイパススイッチ部をさらに含み、
 前記複数のバイパススイッチ部の各々は、前記複数のスイッチ部のうち当該バイパススイッチ部と並列に接続される整流素子の出力端に接続されるスイッチ部が閉成されている間は、開放される、付記1に記載の電源電流測定装置。
(付記5)
 前記誤差増幅器に入力される基準電圧を制御する基準電圧制御部をさらに含み、
 前記複数のスイッチ部のうち、短絡試験を行う前記電子回路部品に接続される前記スイッチ部を閉成し、前記基準電圧制御部が前記基準電圧を前記電子回路部品の非動作状態となる電圧値に制御するとともに、前記第2電源部から前記電子回路部品に電力を供給することにより、前記電子回路部品の短絡試験を行う、付記2に記載の電源電流測定装置。
(付記6)
 前記電流検出部は、
 前記複数のスイッチ部と前記第2電源部との間に直列に接続される抵抗器と、
 前記抵抗器で検出される電圧値をアナログデジタル変換するAD変換部と、
 前記AD変換部の出力値に基づいて前記抵抗器に通流する電流値を演算する演算部と
 を有する、付記1に記載の電源電流測定装置。
(付記7)
 前記電流検出部に直列に接続される電流リミッタをさらに含む、付記1に記載の電源電流測定装置。
(付記8)
 電子回路部品の試験装置によって試験が行われる電子回路部品に接続され、電力を供給する複数の電力供給端と、
 前記電子回路部品に供給するための電力を出力する電源部と、
 前記複数の電力供給端の各々と前記電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数の第1整流素子と、
 前記複数の第1整流素子の各々の出力端と前記電源部との間で前記複数の第1整流素子の各々に並列に接続され、かつ、前記電源部にそれぞれ直列に接続される複数のスイッチ部と、
 前記第1整流素子の出力端と前記電源部との間で前記複数のスイッチ部に直列に接続され、前記第1整流素子の順方向電圧よりも順方向電圧が低い第2整流素子と、
 前記複数のスイッチ部の前記電源部側における接続点と、前記電源部との間に直列に接続され、前記複数のスイッチ部のいずれかが閉成されると、前記第1整流素子が逆バイアスになり、当該閉成されたスイッチ部及び前記第2整流素子を介して前記電源部から前記電子回路部品に供給される電流を検出する電流検出部と
 を含む、電源電流測定装置。
(付記9)
 付記1に記載の電源電流測定装置を含み、前記電源電流測定装置によって電流の測定が行われる前記電子回路部品の試験を行う、試験装置。
(付記10)
 付記1に記載の電源電流測定装置を含む、情報処理装置。
The power source current measuring device, the test device including the power source current measuring device, and the information processing device including the power source current measuring device according to the exemplary embodiments of the present invention have been described above, but the present invention is specifically disclosed. The present invention is not limited to the embodiments, and various modifications and changes can be made without departing from the scope of the claims.
Regarding the above first to fourth embodiments, the following additional notes are disclosed.
(Appendix 1)
A plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power;
A first power supply unit that outputs power to be supplied to the electronic circuit component;
A plurality of rectifier elements connected in series between each of the plurality of power supply ends and the first power supply unit;
A second power supply unit having an output voltage higher than that of the first power supply unit;
A plurality of switch units connected in series between each output terminal of the plurality of rectifying elements and the second power supply unit, and connected in parallel to each other;
A connection point on the second power supply unit side of the plurality of switch units and the second power supply unit are connected in series, and when any of the plurality of switch units is closed, the switch unit is closed. And a current detection unit that detects a current supplied from the second power supply unit to the electronic circuit component via the switch unit.
(Appendix 2)
A plurality of transistors having a current input terminal and a current output terminal connected between an output terminal of each of the plurality of rectifying elements and each of the plurality of power supply terminals;
And an error amplifier having one input terminal connected to each of the plurality of power supply terminals, a reference voltage input to the other input terminal, and an output terminal connected to a control terminal of the transistor. power supply current measuring apparatus according to 1.
(Appendix 3)
A plurality of bypass switch units that are connected in parallel to each of the plurality of rectifying elements and closed to bypass the rectifying elements;
The power supply current measuring device according to appendix 1, wherein the plurality of bypass switch units are opened while the plurality of switch units are closed.
(Appendix 4)
A plurality of bypass switch units that are connected in parallel to each of the plurality of rectifying elements and closed to bypass the rectifying elements;
Each of the plurality of bypass switch units is opened while the switch unit connected to the output terminal of the rectifying element connected in parallel with the bypass switch unit among the plurality of switch units is closed. The power supply current measuring device according to appendix 1.
(Appendix 5)
A reference voltage control unit for controlling a reference voltage input to the error amplifier;
A voltage value at which, among the plurality of switch units, the switch unit connected to the electronic circuit component that performs a short circuit test is closed, and the reference voltage control unit sets the reference voltage to the non-operating state of the electronic circuit component. The power supply current measuring device according to appendix 2, wherein a short circuit test is performed on the electronic circuit component by supplying power to the electronic circuit component from the second power supply unit.
(Appendix 6)
Wherein the current detection unit,
A resistor connected in series between the plurality of switch units and the second power supply unit;
An AD converter for analog-to-digital conversion of the voltage value detected by the resistor;
The power supply current measuring device according to appendix 1, further comprising: an arithmetic unit that calculates a current value flowing through the resistor based on an output value of the AD conversion unit.
(Appendix 7)
The power supply current measuring device according to appendix 1, further comprising a current limiter connected in series to the current detection unit.
(Appendix 8)
A plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power;
A power supply unit that outputs power to be supplied to the electronic circuit component;
A plurality of first rectifier elements connected in series between each of the plurality of power supply ends and the power supply unit, and connected in parallel to each other;
A plurality of switches connected in parallel to each of the plurality of first rectifying elements between the output terminals of the plurality of first rectifying elements and the power supply unit, and connected in series to the power supply unit, respectively. and parts,
A second rectifying element connected in series to the plurality of switch units between the output terminal of the first rectifying element and the power supply unit, and having a forward voltage lower than a forward voltage of the first rectifying element;
The first rectifying element is reverse-biased when one of the plurality of switch units is closed and connected in series between a connection point of the plurality of switch units on the power source unit side and the power source unit. And a current detection unit that detects a current supplied from the power supply unit to the electronic circuit component via the closed switch unit and the second rectifying element.
(Appendix 9)
A test apparatus that includes the power supply current measuring apparatus according to appendix 1 and that tests the electronic circuit component in which current is measured by the power supply current measuring apparatus.
(Note 10)
An information processing apparatus including the power supply current measuring apparatus according to appendix 1.
 100、200、300、400 電源電流測定装置
 101A、101B、101C 電力供給端
 VDD1、VDD2 電源
 102 電流リミッタ
 103 抵抗器
 104A、104B、104C トランジスタ
 105A、105B、105C 誤差増幅器
 107 差動増幅器
 108 A/Dコンバータ
 SW1、SW2、SW3 スイッチ
 D11、D12、D13、D21、D22、D23 ダイオード
 121、122、123 D/Aコンバータ
 130 マイクロコンピュータ
 11、12、13 DUT
 11A、12A、13A 電源端子
 11B、12B、13B グランド端子
 SW11、SW12、SW13 スイッチ
100, 200, 300, 400 Power supply current measuring device 101A, 101B, 101C Power supply terminal VDD1, VDD2 Power supply 102 Current limiter 103 Resistor 104A, 104B, 104C Transistor 105A, 105B, 105C Error amplifier 107 Differential amplifier 108 A / D Converter SW1, SW2, SW3 Switch D11, D12, D13, D21, D22, D23 Diode 121, 122, 123 D / A converter 130 Microcomputer 11, 12, 13 DUT
11A, 12A, 13A Power supply terminal 11B, 12B, 13B Ground terminal SW11, SW12, SW13 Switch

Claims (9)

  1.  電子回路部品の試験装置によって試験が行われる電子回路部品に接続され、電力を供給する複数の電力供給端と、
     前記電子回路部品に供給するための電力を出力する第1電源部と、
     前記複数の電力供給端の各々と前記第1電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数の整流素子と、
     前記第1電源部よりも出力電圧の高い第2電源部と、
     前記複数の整流素子の各々の出力端と前記第2電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数のスイッチ部と、
     前記複数のスイッチ部の前記第2電源部側における接続点と、前記第2電源部との間に直列に接続され、前記複数のスイッチ部のいずれかが閉成されると、前記整流素子が逆バイアスになり、当該閉成されたスイッチ部を介して前記第2電源部から前記電子回路部品に供給される電流を検出する電流検出部と
     を含む、電源電流測定装置。
    A plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power;
    A first power supply unit that outputs power to be supplied to the electronic circuit component;
    A plurality of rectifying elements connected in series between each of the plurality of power supply ends and the first power supply unit and connected in parallel to each other;
    A second power supply unit having an output voltage higher than that of the first power supply unit;
    A plurality of switch units connected in series between each output terminal of the plurality of rectifying elements and the second power supply unit, and connected in parallel to each other;
    When the connection points on the second power supply unit side of the plurality of switch units and the second power supply unit are connected in series, and any of the plurality of switch units is closed, the rectifying element is A power source current measuring device comprising: a current detecting unit that detects a current that is reverse-biased and is supplied from the second power source unit to the electronic circuit component via the closed switch unit.
  2.  前記複数の整流素子の各々の出力端と前記複数の電力供給端の各々との間に電流入力端及び電流出力端が接続される複数のトランジスタと、
     前記複数の電力供給端の各々に一方の入力端が接続されるとともに、他方の入力端に基準電圧が入力され、出力端が前記トランジスタの制御端に接続される誤差増幅器と
     をさらに含む、請求項1に記載の電源電流測定装置。
    A plurality of transistors having a current input terminal and a current output terminal connected between an output terminal of each of the plurality of rectifying elements and each of the plurality of power supply terminals;
    And an error amplifier having one input terminal connected to each of the plurality of power supply terminals, a reference voltage input to the other input terminal, and an output terminal connected to a control terminal of the transistor. power supply current measuring device according to claim 1.
  3.  前記複数の整流素子の各々に並列に接続され、閉成されることにより前記整流素子をバイパスする複数のバイパススイッチ部をさらに含み、
     前記複数のバイパススイッチ部は、前記複数のスイッチ部が閉成されている間は、開放される、請求項1に記載の電源電流測定装置。
    A plurality of bypass switch units that are connected in parallel to each of the plurality of rectifying elements and closed to bypass the rectifying elements;
    The power supply current measuring apparatus according to claim 1, wherein the plurality of bypass switch units are opened while the plurality of switch units are closed.
  4.  前記複数の整流素子の各々に並列に接続され、閉成されることにより前記整流素子をバイパスする複数のバイパススイッチ部をさらに含み、
     前記複数のバイパススイッチ部の各々は、前記複数のスイッチ部のうち当該バイパススイッチ部と並列に接続される整流素子の出力端に接続されるスイッチ部が閉成されている間は、開放される、請求項1に記載の電源電流測定装置。
    A plurality of bypass switch units that are connected in parallel to each of the plurality of rectifying elements and closed to bypass the rectifying elements;
    Each of the plurality of bypass switch units is opened while the switch unit connected to the output terminal of the rectifying element connected in parallel with the bypass switch unit among the plurality of switch units is closed. The power supply current measuring device according to claim 1.
  5.  前記誤差増幅器に入力される基準電圧を制御する基準電圧制御部をさらに含み、
     前記複数のスイッチ部のうち、短絡試験を行う前記電子回路部品に接続される前記スイッチ部を閉成し、前記基準電圧制御部が前記基準電圧を前記電子回路部品の非動作状態となる電圧値に制御するとともに、前記第2電源部から前記電子回路部品に電力を供給することにより、前記電子回路部品の短絡試験を行う、請求項2に記載の電源電流測定装置。
    A reference voltage control unit for controlling a reference voltage input to the error amplifier;
    A voltage value at which, among the plurality of switch units, the switch unit connected to the electronic circuit component that performs a short circuit test is closed, and the reference voltage control unit sets the reference voltage to the non-operating state of the electronic circuit component. The power supply current measuring device according to claim 2, wherein a short circuit test of the electronic circuit component is performed by supplying power to the electronic circuit component from the second power supply unit.
  6.  前記電流検出部に直列に接続される電流リミッタをさらに含む、請求項1に記載の電源電流測定装置。 The power supply current measuring device according to claim 1, further comprising a current limiter connected in series to the current detection unit.
  7.  電子回路部品の試験装置によって試験が行われる電子回路部品に接続され、電力を供給する複数の電力供給端と、
     前記電子回路部品に供給するための電力を出力する電源部と、
     前記複数の電力供給端の各々と前記電源部との間にそれぞれ直列に接続され、かつ互いに並列に接続される複数の第1整流素子と、
     前記複数の第1整流素子の各々の出力端と前記電源部との間で前記複数の第1整流素子の各々に並列に接続され、かつ、前記電源部にそれぞれ直列に接続される複数のスイッチ部と、
     前記第1整流素子の出力端と前記電源部との間で前記複数のスイッチ部に直列に接続され、前記第1整流素子の順方向電圧よりも順方向電圧が低い第2整流素子と、
     前記複数のスイッチ部の前記電源部側における接続点と、前記電源部との間に直列に接続され、前記複数のスイッチ部のいずれかが閉成されると、前記第1整流素子が逆バイアスになり、当該閉成されたスイッチ部及び前記第2整流素子を介して前記電源部から前記電子回路部品に供給される電流を検出する電流検出部と
     を含む、電源電流測定装置。
    A plurality of power supply terminals connected to the electronic circuit components to be tested by the electronic circuit component testing apparatus and supplying power;
    A power supply unit that outputs power to be supplied to the electronic circuit component;
    A plurality of first rectifier elements connected in series between each of the plurality of power supply ends and the power supply unit, and connected in parallel to each other;
    A plurality of switches connected in parallel to each of the plurality of first rectifying elements between the output terminals of the plurality of first rectifying elements and the power supply unit, and connected in series to the power supply unit, respectively. and parts,
    A second rectifying element connected in series to the plurality of switch units between the output terminal of the first rectifying element and the power supply unit, and having a forward voltage lower than a forward voltage of the first rectifying element;
    The first rectifying element is reverse-biased when one of the plurality of switch units is closed and connected in series between a connection point of the plurality of switch units on the power source unit side and the power source unit. And a current detection unit that detects a current supplied from the power supply unit to the electronic circuit component via the closed switch unit and the second rectifying element.
  8.  請求項1に記載の電源電流測定装置を含み、前記電源電流測定装置によって電流の測定が行われる前記電子回路部品の試験を行う、試験装置。 A test apparatus that includes the power supply current measuring apparatus according to claim 1 and that tests the electronic circuit component in which current is measured by the power supply current measuring apparatus.
  9.  請求項1に記載の電源電流測定装置を含む、情報処理装置。 An information processing apparatus including the power supply current measuring apparatus according to claim 1.
PCT/JP2010/060859 2010-06-25 2010-06-25 Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus WO2011161819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060859 WO2011161819A1 (en) 2010-06-25 2010-06-25 Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060859 WO2011161819A1 (en) 2010-06-25 2010-06-25 Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus

Publications (1)

Publication Number Publication Date
WO2011161819A1 true WO2011161819A1 (en) 2011-12-29

Family

ID=45371031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060859 WO2011161819A1 (en) 2010-06-25 2010-06-25 Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus

Country Status (1)

Country Link
WO (1) WO2011161819A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245904A (en) * 2012-02-10 2013-08-14 阿尔卡特朗讯 Method and device for testing functional circuit
JP2016146071A (en) * 2015-02-06 2016-08-12 株式会社ワイ・イー・シー Hard disk drive device diagnosis device and copying device with hard disk drive device diagnosis function
WO2023245214A1 (en) * 2022-06-22 2023-12-28 Logicdev E.U. Pluggable load module to test a voltage regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273170A (en) * 1985-09-27 1987-04-03 Tokyo Denshi Koeki Kk Apparatus for measuring integrate circuit
JPH0450679A (en) * 1990-06-13 1992-02-19 Fujitsu Ltd Semiconductor integrated circuit and apparatus for testing the same
JPH05288798A (en) * 1992-04-14 1993-11-02 Hitachi Ltd Semiconductor integrated circuit and its testing method
JPH06310578A (en) * 1993-04-26 1994-11-04 Nec Corp Semiconductor device
JP2007028888A (en) * 2005-06-14 2007-02-01 Ntt Data Ex Techno Corp Rectifying circuit and voltage conversion circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273170A (en) * 1985-09-27 1987-04-03 Tokyo Denshi Koeki Kk Apparatus for measuring integrate circuit
JPH0450679A (en) * 1990-06-13 1992-02-19 Fujitsu Ltd Semiconductor integrated circuit and apparatus for testing the same
JPH05288798A (en) * 1992-04-14 1993-11-02 Hitachi Ltd Semiconductor integrated circuit and its testing method
JPH06310578A (en) * 1993-04-26 1994-11-04 Nec Corp Semiconductor device
JP2007028888A (en) * 2005-06-14 2007-02-01 Ntt Data Ex Techno Corp Rectifying circuit and voltage conversion circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245904A (en) * 2012-02-10 2013-08-14 阿尔卡特朗讯 Method and device for testing functional circuit
CN103245904B (en) * 2012-02-10 2016-03-30 阿尔卡特朗讯 A kind of method for test function circuit and device
JP2016146071A (en) * 2015-02-06 2016-08-12 株式会社ワイ・イー・シー Hard disk drive device diagnosis device and copying device with hard disk drive device diagnosis function
WO2023245214A1 (en) * 2022-06-22 2023-12-28 Logicdev E.U. Pluggable load module to test a voltage regulator

Similar Documents

Publication Publication Date Title
US6118293A (en) High resolution (quiescent) supply current system (IDD monitor)
US7367712B2 (en) RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode
KR101754264B1 (en) Instrumentation amplifier calibration method, system and apparatus
US7986164B2 (en) Integrated circuit with pin-selectable mode of operation and level-shift functionality and related apparatus, system, and method
US9335370B2 (en) On-chip test for integrated AC coupling capacitors
US7394273B2 (en) On-chip electromigration monitoring system
US20080284392A1 (en) Constant voltage power supply circuit and method of testing the same
US9696352B2 (en) Current sense circuit with offset calibration
KR20190095898A (en) Rf sensor in stacked transistors
EP2273277B1 (en) Internal self-check resistance bridge and method
US7221192B1 (en) Voltage access circuit configured for outputting a selected analog voltage signal for testing external to an integrated circuit
WO2011161819A1 (en) Power supply current measurement apparatus, test apparatus including power supply current measurement apparatus, and information processing apparatus including power supply current measurement apparatus
US8042404B2 (en) Stress detection circuit and semiconductor chip including same
US11567121B2 (en) Integrated circuit with embedded testing circuitry
US6859058B2 (en) Method and apparatus for testing electronic devices
US10944259B2 (en) System and method for over voltage protection in both positive and negative polarities
US11422168B2 (en) On-chip, low-voltage, current sensing circuit
US7429856B1 (en) Voltage source measurement unit with minimized common mode errors
JP3589641B2 (en) AC measuring device
Jung et al. Cost effective test methodology using PMU for automated test equipment systems
JP4530878B2 (en) Voltage comparator, overcurrent detection circuit using the same, and semiconductor device
US20180210027A1 (en) Semiconductor device testing
JP4480880B2 (en) Semiconductor circuit
JP5012430B2 (en) DC test equipment and semiconductor test equipment
Nagy et al. Accurate Supply Current Testing of Mixed-Signal IC Using Auto-Zero Voltage Comparator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP