WO2011161789A1 - Crystalline solar cell and manufacturing method for crystalline solar cell - Google Patents

Crystalline solar cell and manufacturing method for crystalline solar cell Download PDF

Info

Publication number
WO2011161789A1
WO2011161789A1 PCT/JP2010/060712 JP2010060712W WO2011161789A1 WO 2011161789 A1 WO2011161789 A1 WO 2011161789A1 JP 2010060712 W JP2010060712 W JP 2010060712W WO 2011161789 A1 WO2011161789 A1 WO 2011161789A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
crystalline
back surface
substrate
film
Prior art date
Application number
PCT/JP2010/060712
Other languages
French (fr)
Japanese (ja)
Inventor
美和 渡井
一也 斎藤
小松 孝
俊二 黒岩
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Priority to PCT/JP2010/060712 priority Critical patent/WO2011161789A1/en
Publication of WO2011161789A1 publication Critical patent/WO2011161789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a crystal solar cell and a method for manufacturing a crystal solar cell, and more particularly to a crystal solar cell that reuses transmitted light that passes through a crystalline substrate that exhibits a photoelectric conversion function, and a method for manufacturing the crystal solar cell. It is.
  • Solar cells that generate power using solar energy are power generation systems that are expected as alternative technologies for fossil fuels, and they tend to rapidly increase their production from the viewpoint of protecting the global environment. Such a rapid increase in production amount may cause a serious shortage of semiconductor materials as raw materials, for example, a shortage of silicon in silicon-based solar cells. Therefore, a technology capable of reducing the amount of raw material used per electric power is required for the solar cell production technology.
  • the types of silicon solar cells are classified into three types based on the crystallinity of the photoelectric conversion elements.
  • the junction of the photoelectric conversion element in this amorphous silicon solar cell is formed by stacking a p-type amorphous semiconductor film, an n-type amorphous semiconductor film, or the like on an insulating substrate.
  • the junction of the photoelectric conversion element in this single crystal silicon solar cell is formed by the diffusion process of impurities with respect to the single crystal wafer cut out from the ingot.
  • a polycrystalline silicon solar cell using a polycrystalline material for a photoelectric conversion element there is a polycrystalline silicon solar cell using a polycrystalline material for a photoelectric conversion element.
  • the junction of the photoelectric conversion element in this polycrystalline solar cell is formed by impurity diffusion treatment on the polycrystalline wafer cut out from the ingot, as in the case of the single crystal silicon solar cell.
  • An amorphous film in an amorphous silicon solar cell is thinner than a wafer used for a crystalline silicon solar cell, and therefore can be composed of a small amount of raw material compared to a crystalline solar cell.
  • a gas phase reaction with a high-purity source gas is generally used, and in addition to the object to be formed, a large amount of amorphous film is formed on the entire inner wall of the film forming apparatus. A large amount of source gas is exhausted to the outside of the film forming apparatus.
  • the amorphous film itself which is a constituent element, can be composed of a small amount of raw material, but the raw material gas consumed in the production process is increased, and as a result, the raw material consumption is higher than that of the crystalline solar cell. May even be higher.
  • the conversion efficiency of amorphous silicon solar cells is generally lower than that of crystalline silicon solar cells. Therefore, the technology for producing such an amorphous silicon solar cell requires a technology that satisfies the reduction of raw material consumption and the improvement of conversion efficiency.
  • the structure of the photoelectric conversion element in the crystalline silicon solar cell is various, such as a back contact structure having no electrode on the light receiving surface, and a pin structure using a heterojunction between single crystal silicon and amorphous silicon.
  • the conversion efficiency is improved by the structure.
  • wafers used for crystalline silicon solar cells have been reduced in thickness to 50 ⁇ m to 200 ⁇ m for the purpose of dealing with the above-described silicon shortage. Therefore, the production technology for crystalline silicon solar cells is expected as a technology that can reduce the amount of raw material used per electric power as compared with the above-described amorphous silicon solar cells.
  • the solar cell described in Patent Document 1 uses sunlight from the light receiving surface and the back surface for power generation, respectively, by a structure in which the light receiving surface and the back surface of the photoelectric conversion element are covered with a light transmitting plate.
  • a structure in which the light receiving surface and the back surface of the photoelectric conversion element are covered with a light transmitting plate is useful in an environment where sufficient sunlight can be supplied to the back surface of the photoelectric conversion element.
  • a structure or process for guiding the transmitted light that passes through the photoelectric conversion element itself to the photoelectric conversion element in order to improve the utilization efficiency of sunlight. Technology is needed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a crystal solar cell and a method for manufacturing the crystal solar cell that can easily reuse light emitted through the back surface of the crystalline substrate. Is to provide.
  • the crystalline solar cell includes a crystalline substrate that exhibits a photoelectric conversion function between a light-receiving surface that receives light and a back surface that faces the light-receiving surface, and light that is transmitted through the back surface of the crystalline substrate.
  • Another aspect of the present invention is a method for manufacturing a crystalline solar cell.
  • the method includes forming a crystalline substrate having a light-receiving surface that receives light and a back surface opposite to the light-receiving surface and expressing a photoelectric conversion function therebetween, and transmitting the back surface of the crystalline substrate. Forming a white coating film that reflects the emitted light into the crystalline substrate.
  • FIG. 1 shows a cross-sectional perspective structure of a crystalline solar cell 10 according to the first embodiment.
  • the crystalline solar cell 10 includes a crystalline substrate 11, a first electrode 12, a second electrode 13, and a white coating film 14.
  • the crystalline substrate 11 is a crystalline semiconductor substrate.
  • a p-type silicon substrate having a thickness of 50 ⁇ m to 200 ⁇ m and containing p-type impurities can be used.
  • a wafer cut from a single crystal silicon ingot formed by a pulling method, a wafer cut from a polycrystalline silicon ingot formed by a casting technique, or the like can be used.
  • a first electrode 12 electrically connected to the surface 11i is formed on the surface 11i, which is one main surface of the crystalline substrate 11, over substantially the entire surface 11i.
  • the first electrode 12 is formed of a conductive material having a light transmission property that transmits sunlight. When sunlight (arrow in FIG. 1) is irradiated toward the first electrode 12, the sunlight transmitted through the first electrode 12 reaches the surface 11i, and the surface 11i of the crystalline substrate 11 receives sunlight. It functions as a light receiving surface.
  • a transparent conductive material such as zinc oxide, tin oxide, or indium tin oxide can be used.
  • the second electrode 13 electrically connected to the back surface 11r is formed on substantially the entire back surface 11r on the back surface 11r which is another main surface facing the front surface 11i.
  • the second electrode 13 is formed of a conductive material selected according to the structure and process design of the crystalline solar cell 10.
  • a conductive material selected according to the structure and process design of the crystalline solar cell 10.
  • a low resistance material such as aluminum selected so as to suppress power loss
  • a transparent conductive material having a light transmission property that transmits light can be used.
  • the crystalline substrate 11 is formed with a semiconductor layer formed by diffusing impurities on the front surface 11i side.
  • the entire crystalline substrate 11 includes a first semiconductor layer 11a constituting the back surface 11r in the thickness direction. And the second semiconductor layer 11b constituting the surface 11i.
  • the first semiconductor layer 11a and the second semiconductor layer 11b are in a reverse conductive relationship.
  • the first semiconductor layer 11a is a p-type Si film.
  • the second semiconductor layer 11b is an n-type semiconductor layer.
  • the surface 11i of the crystalline substrate 11 receives sunlight
  • the sunlight incident from the surface 11i passes through the second semiconductor layer 11b and further enters the pn junction and the first semiconductor layer 11a.
  • the light absorbed in each part of the crystalline substrate 11 generates electrons and holes that are carriers.
  • the generated carriers are separated into the first semiconductor layer 11a and the second semiconductor layer 11b according to the potential gradient of the pn junction that is the junction between the first semiconductor layer 11a and the second semiconductor layer 11b.
  • the carriers separated in this way are collected by the first electrode 12 and the second electrode 13 to be converted into electric energy. That is, the light absorbed by the crystalline substrate 11 is converted into electric energy by the photoelectric conversion function of the crystalline substrate 11.
  • the thickness of the first semiconductor layer 11a and the thickness of the second semiconductor layer 11b described above are such that the p-type Si film is relatively thick and the n-type semiconductor layer is relatively thin. Is preferred. With such a thickness, recombination of carriers generated in the crystalline substrate 11 is reduced, and conversion efficiency is improved.
  • the impurity concentration in the depth direction of the first semiconductor layer 11 a described above is relatively high in the vicinity of the interface with the second electrode 13.
  • the impurity concentration in the depth direction of the first semiconductor layer 11 a described above is relatively high in the vicinity of the interface with the second electrode 13.
  • a white coating film 14 that reflects light is formed so as to face the back surface 11r across the second electrode 13.
  • the white coating film 14 is a white coating film having a high reflectance in the region of the absorption wavelength of the crystalline substrate 11, and the white component is at least selected from the group consisting of barium sulfate, magnesium oxide and titanium oxide. A kind of compound can be used.
  • the white coating film 14 is formed by applying a white paint composed of the white component fine particles, a binder, and a solvent to the back surface 11r.
  • the white coating film 14 having such a configuration functions as a reflecting surface that diffusely reflects a part of sunlight, which is light transmitted through the back surface 11r of the crystalline substrate 11 and emitted to the back surface 11r.
  • the surface 11i of the crystalline substrate 11 receives sunlight, the sunlight incident from the surface 11i is absorbed by the first semiconductor layer 11a and the second semiconductor layer 11b.
  • the thickness of the crystalline substrate 11 is reduced in order to reduce the amount of raw material used on the crystalline solar cell 10, the amount of light that cannot be absorbed by the crystalline substrate 11 increases, and a part of the sunlight incident from the surface 11i is increased. It passes through the crystalline substrate 11. In this way, a part of the light transmitted through the crystalline substrate 11 and emitted from the back surface 11 r is transmitted through the second electrode 13 and reaches the white coating film 14. At this time, the light reaching the white coating film 14 is reflected by the light reflectivity of the white coating film 14. Then, the light reflected by the white coating film 14 passes through the second electrode 13 again and is absorbed by the crystalline substrate 11. That is, part of the light transmitted through the crystalline substrate 11 is also converted into electric energy by the light reflecting function of the white coating film 14.
  • the light reflection function of the white coating film 14 can improve the light use efficiency in the crystalline solar cell 10.
  • the constituent material, film thickness, position, and the like of the white coating film 14 can be changed according to the optical characteristics of the crystalline substrate 11, the first electrode 12, and the second electrode 13, which are other constituent requirements. Therefore, by appropriately selecting such a configuration of the white coating film 14, reuse of transmitted light can be realized more appropriately and easily. Therefore, the crystalline substrate 11, the first electrode 12, and the second electrode 13 are not forced to change their constituent materials and design rules, and the light utilization efficiency can be improved.
  • the white coating film 14 described above preferably has a reflectance of 90% or more particularly in a wavelength region of 500 nm to 1200 nm. With the configuration having such a reflectance, light that can be absorbed by the crystalline substrate 11 out of the light transmitted through the crystalline substrate 11 can be efficiently reflected.
  • the constituent material of the second electrode 13 described above it is preferable to use a transparent conductive material having a light-transmitting property that transmits light, as in the case of the first electrode.
  • a transparent conductive material having a light-transmitting property that transmits light As in the case of the first electrode.
  • the light transmitted through the crystalline substrate 11 is hardly absorbed by the second electrode 13 and reenters the crystalline substrate 11, thereby further improving the light utilization efficiency. it can.
  • the crystal solar cell 10 described above is formed by the following manufacturing process. First, a diffusion process using an ion implantation method or a thermal diffusion method is performed on the surface 11i of the crystalline substrate 11, thereby forming a second semiconductor layer 11b which is an impurity diffusion layer. Next, a film forming process using a sputtering method, a printing method, or a coating method is performed on the surface 11 i of the crystalline substrate 11, thereby forming the first electrode 12. Further, a film forming process using a sputtering method, a printing method, or a coating method is performed on the back surface 11r of the crystalline substrate 11, whereby the second electrode 13 is formed.
  • the coating method which is a method for forming the white coating film 14 is a method in which mechanical and thermal distortion is less likely to be applied to the substrate that is the target of film formation, as compared with the other film formation methods described above. Therefore, according to such a manufacturing method, the thinning of the crystalline substrate 11 itself is not hindered regardless of the additional manufacturing process of the white coating film 14. Therefore, it is possible to sufficiently cope with a reduction in the amount of raw material used in the crystalline solar cell 10.
  • the white coating film 14 provided on the second electrode 13 guides the light transmitted through the crystalline substrate 11 to the crystalline substrate 11 again. Therefore, the reuse of transmitted light can be realized appropriately and easily only by appropriately changing the constituent material, film thickness, position, etc. of the white coating film 14 according to other constituent requirements. Therefore, the crystalline substrate 11, the first electrode 12, and the second electrode 13 are not forced to change their constituent materials or design rules. As a result, the crystalline solar cell 10 secures the degree of freedom of design for the crystalline substrate 11, the first electrode 12, and the second electrode 13 that is the back electrode, and further recycles the light transmitted through the crystalline substrate 11. Can be used.
  • the white component of the white coating film 14 is at least one of barium sulfate, magnesium oxide, and titanium oxide, a high solar reflectance can be achieved in the white coating film 14, and as a result, It becomes possible to improve utilization efficiency more.
  • the white coating film 14 is formed by a coating method, which is a method that hardly gives mechanical and thermal strain to the crystalline substrate 11. Therefore, the thinning of the crystalline substrate 11 itself is not hindered regardless of the additional manufacturing process of the white coating film 14. Therefore, it is possible to sufficiently cope with a reduction in the amount of raw material used in the crystalline solar cell 10.
  • FIG. 2 shows a cross-sectional perspective structure of the crystalline solar cell 10 according to the second embodiment.
  • a back surface passivation film 15 having optical transparency is formed over substantially the entire back surface 11r.
  • the second electrode 13 is partially connected to the back surface 11r through a contact 13a that penetrates the back surface passivation film 15 in the film thickness direction.
  • the back surface passivation film 15 limits the contact area between the back surface 11r and the second electrode 13 from its structure, and reduces crystal defects contained in the crystalline substrate 11 based on the constituent elements of the back surface passivation film 15.
  • the back surface passivation film 15 having such a configuration improves conversion efficiency by reducing carrier recombination at the interface between the back surface 11r and the second electrode 13, recombination of carriers due to crystal defects, and the like.
  • a back surface passivation film 15 for example, a silicon oxide film, a silicon nitride film, an aluminum oxide film, or the like can be used.
  • the back surface passivation film 15 described above is preferably an oxide or nitride formed by oxidizing or nitriding a constituent element common to the crystalline substrate 11. With such a constituent element, the back surface passivation film 15 can be formed by oxidizing or nitriding the back surface 11r of the crystalline substrate 11.
  • the refractive index of the back surface passivation film 15 is lower than that of the crystalline substrate 11, light that is transmitted through the crystalline substrate 11 and emitted from the back surface 11 r has a critical angle or more. Is reflected. Only light smaller than the critical angle passes through the back surface passivation film 15 and reaches the white coating film 14.
  • the direction of light reaching the white coating film 14 is generally defined by the refractive indexes of the crystalline substrate 11 and the back surface passivation film 15. Therefore, it is possible to appropriately grasp the optical characteristics required for the white coating film 14 itself based on the optical characteristics of the crystalline substrate 11 and the back surface passivation film 15. By designing the constituent material and film thickness of the white coating film 14, the light utilization efficiency itself can be greatly improved.
  • the crystal solar cell 10 described above is formed by the following manufacturing process. First, as in the first embodiment, a diffusion process using an ion implantation method or a thermal diffusion method is performed on the surface 11i of the crystalline substrate 11, thereby forming a second semiconductor layer 11b which is an impurity diffusion layer. The Next, a film forming process using a thermal oxidation method, a thermal nitridation method, a CVD method, or the like is performed on the back surface 11r of the crystalline substrate 11, whereby the back surface passivation film 15 is formed.
  • a patterning process using a photolithography method, a laser processing method, or the like is performed on the back surface passivation film 15, thereby forming a through hole (contact hole) corresponding to the contact 13a.
  • a film forming process using a sputtering method, a printing method, or a coating method is performed on the back surface passivation film 15, thereby forming the second electrode 13.
  • a film forming process using a sputtering method, a printing method, or a coating method is performed on the surface 11 i of the crystalline substrate 11, thereby forming the first electrode 12.
  • coating method using a white paint is given to the 2nd electrode 13, and, thereby, the white coating film 14 is formed.
  • the conversion efficiency can be improved.
  • the optical characteristics required for the white coating film 14 itself can be properly grasped based on the optical characteristics of the crystalline substrate 11 and the back surface passivation film 15. Then, by designing the material and film thickness of the white coating film 14 under such grasped characteristics, it becomes possible to greatly improve the light utilization efficiency itself.
  • the white coating film 14 and the crystalline substrate 11 hardly contact each other because the back surface passivation film 15 is interposed between the back surface 11r and the white coating film 14. Therefore, the constituent material of the white coating film 14 and the substrate contamination that may occur in the formation process thereof can be greatly suppressed, so that the selection range of materials applicable to the white coating film 14 can be expanded.
  • FIG. 3 shows a cross-sectional perspective structure of the crystalline solar cell 10 according to the third embodiment.
  • the crystal solar cell 10 has a basic structure of a pin structure in which an i-type semiconductor film is interposed between a crystalline substrate having an inverse conductivity type relationship and an amorphous semiconductor film.
  • the crystalline substrate 11a is an n-type silicon (Si) substrate, and an i-type amorphous Si (a-Si) film is formed on the surface of the crystalline substrate 11a.
  • a certain i-type surface Si film 11bi is laminated.
  • An i-type back Si film 11ci which is also an i-type a-Si film, is laminated on the back surface of the crystalline substrate 11a.
  • a p-type Si film 11bp which is a p-type a-Si film is laminated on the i-type front surface Si film 11bi, and an n-type a-Si film is formed on the i-type back surface Si film 11ci.
  • a type Si film 11cn is laminated.
  • the i-type front surface Si film 11bi and the i-type back surface Si film 11ci are depleted.
  • Most of the carriers excited by sunlight are generated by the i-type surface Si film 11bi and the i-type back surface Si film 11ci, and are generated by an internal electric field applied to the i-type surface Si film 11bi and the i-type back surface Si film 11ci. , It is transported to the corresponding first electrode 12 or second electrode 13. As a result, the conversion efficiency is increased.
  • the crystal solar cell 10 described above is formed by the following manufacturing process. First, a film forming process using the CVD method is performed on the surface of the crystalline substrate 11a, whereby the i-type surface Si film 11bi and the p-type Si film 11bp are sequentially stacked. Next, a film forming process using a CVD method is performed on the back surface of the crystalline substrate 11a, whereby the i-type back surface Si film 11ci and the n-type Si film 11cn are sequentially stacked.
  • a film forming process using a sputtering method, a printing method, or a coating method is performed on the front surface 11i of the p-type Si film bp and the back surface 11r of the n-type Si film cn.
  • a first electrode 12 and a second electrode 13 are formed.
  • coating method using a white paint is given to the 2nd electrode 13, and, thereby, the white coating film 14 is formed.
  • the pin structure using the crystalline substrate and the amorphous semiconductor film is a basic structure, the conversion efficiency can be improved in addition to the improvement of the utilization efficiency by the white coating film 14.
  • the said embodiment can also be changed and implemented as follows.
  • the configuration in which the second electrode 13 is interposed between the crystalline substrate 11 and the white coating film 14 has been described.
  • the second electrode 13 may not be interposed between the crystalline substrate 11 and the white coating film 14.
  • the back surface passivation film 15, the white coating film 14, and the second electrode 13 may be stacked in order from the back surface 11 r of the crystalline substrate 11. According to such a configuration, the light transmitted through the crystalline substrate 11 is not absorbed by the second electrode 13. Therefore, the use efficiency can be improved more effectively by the amount that the second electrode 13 is not interposed between the crystalline substrate 11 and the white coating film 14.
  • the first electrode 12 is formed on the front surface 11 i of the crystalline substrate 11, and the second electrode 13 is formed on the rear surface 11 r of the crystalline substrate 11 via the back surface passivation film 15.
  • the first electrode 12 and the second electrode 13 may be formed on the common back surface 11r.
  • the second semiconductor layer 11b and the third semiconductor layer 11c which are in a reverse conductive relationship with each other, are formed so as to be exposed from the back surface 11r.
  • the third semiconductor layer 11c may be the first semiconductor layer 11a.
  • the first electrode 12 and the second electrode 13 are electrically connected to the third semiconductor layer 11b and the second semiconductor layer 11c, respectively, through the back surface passivation film 15 in the film direction.
  • the first and second electrodes 12 and 13 are disposed on the back surface 11r as two back surface electrodes. And it can also be actualized to the structure by which the white coating film 14 is laminated
  • a configuration in which the light-transmitting surface passivation film 16 is formed over substantially the entire surface 11i, that is, a configuration in which the passivation film is provided on both the front surface 11i and the back surface 11r is preferable. According to such a configuration, the effect of improving the conversion efficiency obtained by the back surface passivation film 15 can be further obtained by the surface passivation film 16.
  • the passivation film 15 is formed on the back surface 11r of the crystalline substrate 11 has been described.
  • the passivation film may be formed on the front surface 11 i and the back surface 11 r of the crystalline substrate 11.
  • a surface passivation film 16 having optical transparency is formed over substantially the entire surface 11 i, and the first electrode 12 penetrates the surface passivation film 16 in the film thickness direction. Is partially connected to the surface 11i. According to such a configuration, the effect of improving the conversion efficiency obtained by the back surface passivation film 15 can be further obtained by the surface passivation film 16.
  • an antireflection film 17 may be laminated on the surface passivation film 16 so as to suppress the reflection loss of sunlight on the surface.
  • an antireflection film 17 may be laminated on the surface 11i.
  • silicon oxide, silicon nitride, cerium oxide, aluminum oxide, tin dioxide, titanium dioxide, magnesium fluoride, and tantalum oxide can be used as a constituent material of the antireflection film 17, for example, silicon oxide, silicon nitride, cerium oxide, aluminum oxide, tin dioxide, titanium dioxide, magnesium fluoride, and tantalum oxide can be used.
  • the configuration in which the front surface 11i and the back surface 11r are flat surfaces has been described.
  • at least one of the front surface 11i and the back surface 11r can also have a texture for confining sunlight in the crystalline substrate.
  • a texture can be embodied by, for example, a large number of protrusions having a quadrangular pyramid shape.
  • such a texture can be embodied by, for example, a method in which the front surface 11i or the back surface 11r that is the target surface is immersed in an aqueous potassium hydroxide solution. According to such a configuration, the white coating film 14 and the texture cooperate to confine sunlight in the crystalline substrate 11, and as a result, the utilization efficiency of sunlight is further improved.

Abstract

A crystalline solar cell (10) is provided with: a crystalline substrate (11) that achieves photovoltaic energy conversion between a light receiving surface (11i) that receives light and a back surface facing the light receiving surface; and a white coating film (14) that reflects light that has traveled through and exited the back surface (11r) of the crystalline substrate (11) back into the crystalline substrate (11).

Description

結晶太陽電池及び結晶太陽電池の製造方法Crystal solar cell and method for manufacturing crystal solar cell
 本発明は、結晶太陽電池及び結晶太陽電池の製造方法に関するものであり、特に光電変換機能を発現する結晶性基板を透過する透過光を再利用する結晶太陽電池及び結晶太陽電池の製造方法に関するものである。 The present invention relates to a crystal solar cell and a method for manufacturing a crystal solar cell, and more particularly to a crystal solar cell that reuses transmitted light that passes through a crystalline substrate that exhibits a photoelectric conversion function, and a method for manufacturing the crystal solar cell. It is.
 太陽光エネルギーを利用して発電する太陽電池は、化石燃料の代替技術として期待される発電システムであり、地球環境を保全できる観点からもその生産量を急速に増加させる傾向にある。こうした生産量の急増は、原料である半導体材料の不足、例えばシリコン系太陽電池におけるケイ素不足を深刻化させる虞がある。そこで、太陽電池の生産技術には、電力あたりの原料使用量を低減できる技術が要求されている。 Solar cells that generate power using solar energy are power generation systems that are expected as alternative technologies for fossil fuels, and they tend to rapidly increase their production from the viewpoint of protecting the global environment. Such a rapid increase in production amount may cause a serious shortage of semiconductor materials as raw materials, for example, a shortage of silicon in silicon-based solar cells. Therefore, a technology capable of reducing the amount of raw material used per electric power is required for the solar cell production technology.
 ところで、シリコン太陽電池の形式は、光電変換素子の結晶性に基づいて3種類に分類される。まず第1には、光電変換素子に非晶質材料を用いた非晶質シリコン太陽電池がある。この非晶質シリコン太陽電池における光電変換素子の接合は、p型の非晶質半導体膜やn型の非晶質半導体膜等が絶縁基板上に積層されることにより形成される。第2には、光電変換素子に単結晶材料を用いた単結晶シリコン太陽電池がある。この単結晶シリコン太陽電池における光電変換素子の接合は、インゴットから切り出された単結晶ウエハに対する不純物の拡散処理により形成される。そして第3には、光電変換素子に多結晶材料を用いた多結晶シリコン太陽電池がある。この多結晶太陽電池における光電変換素子の接合は、単結晶シリコン太陽電池と同じく、インゴットから切り出された多結晶ウエハに対する不純物の拡散処理により形成される。 By the way, the types of silicon solar cells are classified into three types based on the crystallinity of the photoelectric conversion elements. First, there is an amorphous silicon solar cell using an amorphous material for a photoelectric conversion element. The junction of the photoelectric conversion element in this amorphous silicon solar cell is formed by stacking a p-type amorphous semiconductor film, an n-type amorphous semiconductor film, or the like on an insulating substrate. Second, there is a single crystal silicon solar cell using a single crystal material for a photoelectric conversion element. The junction of the photoelectric conversion element in this single crystal silicon solar cell is formed by the diffusion process of impurities with respect to the single crystal wafer cut out from the ingot. Thirdly, there is a polycrystalline silicon solar cell using a polycrystalline material for a photoelectric conversion element. The junction of the photoelectric conversion element in this polycrystalline solar cell is formed by impurity diffusion treatment on the polycrystalline wafer cut out from the ingot, as in the case of the single crystal silicon solar cell.
 非晶質シリコン太陽電池における非晶質膜は、結晶系のシリコン太陽電池に利用されるウエハに比べて薄く、それゆえ結晶系の太陽電池に比べれば少量の原料により構成することが可能である。だが、こうした非晶質膜の成膜工程では、高純度の原料ガスによる気相反応が一般に利用されており、成膜対象物の他にも成膜装置の内壁全体に大量の非晶質膜が成膜され、さらに成膜装置の外部へも大量の原料ガスが排気される。その結果、構成要素である非晶質膜そのものは少量の原料で構成可能であるものの、その生産過程で消費される原料ガスが多くなってしまい、結果的に結晶系太陽電池よりも原料消費量が高くなる場合さえある。これにくわえ、非晶質シリコン太陽電池の変換効率は、結晶系シリコン太陽電池のそれよりも一般に低くなる。そのため、こうした非晶質シリコン太陽電池の生産技術には、原料消費量の低減と変換効率の向上とを満たす技術が必要になる。 An amorphous film in an amorphous silicon solar cell is thinner than a wafer used for a crystalline silicon solar cell, and therefore can be composed of a small amount of raw material compared to a crystalline solar cell. . However, in the process of forming such an amorphous film, a gas phase reaction with a high-purity source gas is generally used, and in addition to the object to be formed, a large amount of amorphous film is formed on the entire inner wall of the film forming apparatus. A large amount of source gas is exhausted to the outside of the film forming apparatus. As a result, the amorphous film itself, which is a constituent element, can be composed of a small amount of raw material, but the raw material gas consumed in the production process is increased, and as a result, the raw material consumption is higher than that of the crystalline solar cell. May even be higher. In addition, the conversion efficiency of amorphous silicon solar cells is generally lower than that of crystalline silicon solar cells. Therefore, the technology for producing such an amorphous silicon solar cell requires a technology that satisfies the reduction of raw material consumption and the improvement of conversion efficiency.
 これに対して、結晶系シリコン太陽電池における光電変換素子の構造は、受光面に電極を有しないバックコンタクト構造、単結晶シリコンと非晶質シリコンとのヘテロ接合を利用したpin構造等、各種の構造によって変換効率の向上が図れている。そのうえ、結晶系シリコン太陽電池に利用されるウエハは、上述するシリコン不足に対応することを目的として、その厚さが50μm~200μmにまで薄型化されている。そのため、結晶系シリコン太陽電池の生産技術は、上述する非晶質シリコン太陽電池よりも電力あたりの原料使用量を低減できる技術として期待されている。 On the other hand, the structure of the photoelectric conversion element in the crystalline silicon solar cell is various, such as a back contact structure having no electrode on the light receiving surface, and a pin structure using a heterojunction between single crystal silicon and amorphous silicon. The conversion efficiency is improved by the structure. In addition, wafers used for crystalline silicon solar cells have been reduced in thickness to 50 μm to 200 μm for the purpose of dealing with the above-described silicon shortage. Therefore, the production technology for crystalline silicon solar cells is expected as a technology that can reduce the amount of raw material used per electric power as compared with the above-described amorphous silicon solar cells.
 ただし、上述する素子構造を採用した結晶系シリコン太陽電池であっても、光電変換素子の薄型化が進行すると、光電変換素子で吸収できない光が多くなってしまい、太陽光の利用効率そのものを向上させる技術が必要になる。太陽光の利用効率を向上させる構造の一例として、特許文献1に記載の太陽電池は、隣合う光電変換素子の間隙に光反射性の充填材を充填している。このような充填材を利用する太陽電池によれば、隣合う光電変換素子間に入射した光が充填材により光電変換素子内へ反射されるため、光電変換素子間に入射した光までもが発電に寄与するようになる。したがって、太陽光の利用効率の低下に対して、その低下の一部を補償することが可能になる。
特開2006-073707号公報
However, even in crystalline silicon solar cells that employ the element structure described above, as the photoelectric conversion element becomes thinner, more light cannot be absorbed by the photoelectric conversion element, and the utilization efficiency of sunlight itself improves. Technology is required. As an example of a structure that improves the utilization efficiency of sunlight, a solar cell described in Patent Document 1 is filled with a light-reflective filler in the gap between adjacent photoelectric conversion elements. According to the solar cell using such a filler, since light incident between adjacent photoelectric conversion elements is reflected into the photoelectric conversion element by the filler, even light incident between the photoelectric conversion elements is generated. Will contribute. Therefore, it is possible to compensate for a part of the decrease in the use efficiency of sunlight.
JP 2006-073707 A
 ところで、上記特許文献1に記載の太陽電池は、光電変換素子の受光面及び裏面を透光板で覆う構造により、受光面及び裏面からの太陽光をそれぞれ発電に利用している。光電変換素子の裏面に対して十分な太陽光を供給できる環境であれば、このような構造は有益である。しかし、光電変換素子の裏面側に対して太陽光を供給できない環境では、太陽光の利用効率の向上を図るうえで、やはり光電変換素子そのものを透過する透過光を光電変換素子に導く構造やプロセス技術が必要になる。 Incidentally, the solar cell described in Patent Document 1 uses sunlight from the light receiving surface and the back surface for power generation, respectively, by a structure in which the light receiving surface and the back surface of the photoelectric conversion element are covered with a light transmitting plate. Such a structure is useful in an environment where sufficient sunlight can be supplied to the back surface of the photoelectric conversion element. However, in an environment where sunlight cannot be supplied to the back side of the photoelectric conversion element, a structure or process for guiding the transmitted light that passes through the photoelectric conversion element itself to the photoelectric conversion element in order to improve the utilization efficiency of sunlight. Technology is needed.
 こうした要請に応えるものとして、例えば光電変換素子の裏面電極に高い光反射性を付与する構成が考えられる。だが、太陽電池の裏面電極の構成材料や設計ルールは、そもそも電力損失を抑えるために大幅に制約されている。そのため、こうした裏面電極に光反射性を付与するためには、金属材料の中でも高価な銀等を電極材料に選択せざるを得なくなる。しかも、裏面電極に光反射性を付与できる場合であっても、上述する制約のもとでは、十分な光反射性を発現するための電極膜厚を採用できない虞もある。 In order to meet such a demand, for example, a configuration that imparts high light reflectivity to the back electrode of the photoelectric conversion element is conceivable. However, the constituent materials and design rules for the back electrode of solar cells are severely constrained to reduce power loss in the first place. Therefore, in order to impart light reflectivity to such a back electrode, it is necessary to select expensive silver or the like as the electrode material among the metal materials. Moreover, even if the back electrode can be provided with light reflectivity, there is a possibility that an electrode film thickness for exhibiting sufficient light reflectivity cannot be adopted under the above-described restrictions.
 本発明は上記問題に鑑みてなされたものであり、その目的は、結晶性基板の裏面を透過して出射した光の再利用を容易に可能にした結晶太陽電池及び結晶太陽電池の製造方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a crystal solar cell and a method for manufacturing the crystal solar cell that can easily reuse light emitted through the back surface of the crystalline substrate. Is to provide.
 本発明の一つの態様は、結晶太陽電池である。該結晶太陽電池は、光を受光する受光面とその受光面と対向する裏面との間で光電変換機能を発現する結晶性基板と、前記結晶性基板の前記裏面を透過して出射した光を前記結晶性基板の中へ反射する白色塗膜とを備える。 One embodiment of the present invention is a crystalline solar cell. The crystalline solar cell includes a crystalline substrate that exhibits a photoelectric conversion function between a light-receiving surface that receives light and a back surface that faces the light-receiving surface, and light that is transmitted through the back surface of the crystalline substrate. A white coating film reflecting into the crystalline substrate.
 本発明の別の態様は、結晶太陽電池の製造方法である。該方法は、光を受光する受光面とその受光面と対向する裏面とを有しそれらの間で光電変換機能を発現する結晶性基板を形成することと、前記結晶性基板の前記裏面を透過して出射した光を前記結晶性基板の中へ反射する白色塗膜を形成することとを備える。 Another aspect of the present invention is a method for manufacturing a crystalline solar cell. The method includes forming a crystalline substrate having a light-receiving surface that receives light and a back surface opposite to the light-receiving surface and expressing a photoelectric conversion function therebetween, and transmitting the back surface of the crystalline substrate. Forming a white coating film that reflects the emitted light into the crystalline substrate.
第1実施形態にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning 1st Embodiment. 第2実施形態にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning 2nd Embodiment. 第3実施形態にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning 3rd Embodiment. 変更例にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning the example of a change. 変更例にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning the example of a change. 変更例にかかる結晶太陽電池の断面斜視構造を示す斜視図。The perspective view which shows the cross-sectional perspective structure of the crystal solar cell concerning the example of a change.
 (第1実施形態)
 以下、本発明を具体化した結晶太陽電池の第1実施形態について図1を参照して説明する。図1は、第1実施形態にかかる結晶太陽電池10の断面斜視構造を示す。
(First embodiment)
Hereinafter, a first embodiment of a crystalline solar cell embodying the present invention will be described with reference to FIG. FIG. 1 shows a cross-sectional perspective structure of a crystalline solar cell 10 according to the first embodiment.
 図1に示されるように、結晶太陽電池10は、結晶性基板11、第1電極12、第2電極13、そして白色塗膜14を含む。結晶性基板11は、結晶性を有する半導体基板であり、例えば50μm~200μmの厚さを有してp型の不純物を含有するp型シリコン基板を用いることができる。このようなシリコン基板には、引き上げ法により形成される単結晶シリコンのインゴットから切り出されたウエハ、鋳造技術により形成される多結晶シリコンのインゴットから切り出されたウエハ等を利用することができる。 As shown in FIG. 1, the crystalline solar cell 10 includes a crystalline substrate 11, a first electrode 12, a second electrode 13, and a white coating film 14. The crystalline substrate 11 is a crystalline semiconductor substrate. For example, a p-type silicon substrate having a thickness of 50 μm to 200 μm and containing p-type impurities can be used. As such a silicon substrate, a wafer cut from a single crystal silicon ingot formed by a pulling method, a wafer cut from a polycrystalline silicon ingot formed by a casting technique, or the like can be used.
 結晶性基板11の一つの主面である表面11iには、該表面11iと電気的に接続された第1電極12が表面11iの略全体にわたり形成されている。第1電極12は、太陽光を透過する光透過性を有した導電材料により形成されている。この第1電極12に向けて太陽光(図1の矢印)が照射されるとき、第1電極12を透過した太陽光は表面11iに到達し、結晶性基板11の表面11iは太陽光を受光する受光面として機能する。このような第1電極12の構成材料としては、例えば、酸化亜鉛、酸化スズ、酸化スズインジウム等の透明導電材料を用いることができる。 A first electrode 12 electrically connected to the surface 11i is formed on the surface 11i, which is one main surface of the crystalline substrate 11, over substantially the entire surface 11i. The first electrode 12 is formed of a conductive material having a light transmission property that transmits sunlight. When sunlight (arrow in FIG. 1) is irradiated toward the first electrode 12, the sunlight transmitted through the first electrode 12 reaches the surface 11i, and the surface 11i of the crystalline substrate 11 receives sunlight. It functions as a light receiving surface. As a constituent material of the first electrode 12, for example, a transparent conductive material such as zinc oxide, tin oxide, or indium tin oxide can be used.
 これに対して、表面11iと対向する他の主面である裏面11rには、該裏面11rと電気的に接続された第2電極13が裏面11rの略全体にわたり形成されている。第2電極13は、結晶太陽電池10の構造やプロセス設計に応じて選択される導電材料により形成されている。このような第2電極13の構成材料としては、例えば電力損失を抑えるべく選択されるアルミニウム等の低抵抗材料、さらには第1電極12と同じく、光を透過する光透過性を有した透明導電材料等を用いることができる。 On the other hand, the second electrode 13 electrically connected to the back surface 11r is formed on substantially the entire back surface 11r on the back surface 11r which is another main surface facing the front surface 11i. The second electrode 13 is formed of a conductive material selected according to the structure and process design of the crystalline solar cell 10. As the constituent material of the second electrode 13, for example, a low resistance material such as aluminum selected so as to suppress power loss, and further, like the first electrode 12, a transparent conductive material having a light transmission property that transmits light. Materials and the like can be used.
 結晶性基板11には、不純物が拡散されてなる半導体層が表面11iの側に形成されており、結晶性基板11の全体は、その厚み方向において、裏面11rを構成する第1半導体層11aと、表面11iを構成する第2半導体層11bとに区画されている。これら第1半導体層11aと第2半導体層11bとは、互いに逆導電性の関係であり、例えば結晶性基板11にp型シリコン基板を用いる場合、第1半導体層11aはp型Si膜であり、第2半導体層11bはn型半導体層である。 The crystalline substrate 11 is formed with a semiconductor layer formed by diffusing impurities on the front surface 11i side. The entire crystalline substrate 11 includes a first semiconductor layer 11a constituting the back surface 11r in the thickness direction. And the second semiconductor layer 11b constituting the surface 11i. The first semiconductor layer 11a and the second semiconductor layer 11b are in a reverse conductive relationship. For example, when a p-type silicon substrate is used as the crystalline substrate 11, the first semiconductor layer 11a is a p-type Si film. The second semiconductor layer 11b is an n-type semiconductor layer.
 この結晶性基板11の表面11iが太陽光を受けるとき、表面11iから入射した太陽光は、第2半導体層11bを透過して、さらにpn接合部及び第1半導体層11aにも進入する。次いで、結晶性基板11の各部に吸収された光は、キャリアである電子や正孔を生成する。そして、生成されたキャリアは、第1半導体層11aと第2半導体層11bとの接合部であるpn接合部の電位勾配に従って、第1半導体層11aと第2半導体層11bとに分離される。このようにして分離されたキャリアは、第1電極12及び第2電極13に収集されることにより、電気エネルギーに変換される。すなわち、結晶性基板11に吸収された光は、結晶性基板11の光電変換機能によって、電気エネルギーに変換される。 When the surface 11i of the crystalline substrate 11 receives sunlight, the sunlight incident from the surface 11i passes through the second semiconductor layer 11b and further enters the pn junction and the first semiconductor layer 11a. Next, the light absorbed in each part of the crystalline substrate 11 generates electrons and holes that are carriers. The generated carriers are separated into the first semiconductor layer 11a and the second semiconductor layer 11b according to the potential gradient of the pn junction that is the junction between the first semiconductor layer 11a and the second semiconductor layer 11b. The carriers separated in this way are collected by the first electrode 12 and the second electrode 13 to be converted into electric energy. That is, the light absorbed by the crystalline substrate 11 is converted into electric energy by the photoelectric conversion function of the crystalline substrate 11.
 なお、上述する第1半導体層11aの厚さ、及び第2半導体層11bの厚さは、p型Si膜をなす層が相対的に厚く、n型半導体層をなす層が相対的に薄い構成が好ましい。このような厚さの構成であれば、結晶性基板11で生成されるキャリアの再結合が軽減されるかたちとなり、変換効率が向上される。 Note that the thickness of the first semiconductor layer 11a and the thickness of the second semiconductor layer 11b described above are such that the p-type Si film is relatively thick and the n-type semiconductor layer is relatively thin. Is preferred. With such a thickness, recombination of carriers generated in the crystalline substrate 11 is reduced, and conversion efficiency is improved.
 さらに、上述する第1半導体層11aの深さ方向における不純物濃度は、第2電極13との界面近傍で相対的に高くなる分布が好ましい。このような濃度分布の構成であれば、濃度差に基づく内部電界が第1半導体層11aに形成されるため、第1半導体層11aで生成されたキャリアが、pn接合部の電位勾配に抗した方向、つまり結晶性基板11と第2電極13との接合面へ流れなくなり、さらに再結合が軽減されるようになる。 Furthermore, it is preferable that the impurity concentration in the depth direction of the first semiconductor layer 11 a described above is relatively high in the vicinity of the interface with the second electrode 13. With such a concentration distribution configuration, since an internal electric field based on the concentration difference is formed in the first semiconductor layer 11a, carriers generated in the first semiconductor layer 11a resist the potential gradient of the pn junction. The direction, that is, the flow to the bonding surface between the crystalline substrate 11 and the second electrode 13 stops, and recombination is further reduced.
 上述する第2電極13には、光を反射する白色塗膜14が第2電極13を隔てて裏面11rと相対向するかたちで形成されている。白色塗膜14は、結晶性基板11の吸収波長の領域において高い反射率を有する白色の塗膜であり、その白色成分としては、硫酸バリウム、酸化マグネシウム及び酸化チタンからなる群から選択される少なくとも一種の化合物を用いることができる。白色塗膜14は、上記白色成分の微粒子とバインダと溶剤とからなる白色塗料が裏面11rに塗布されることにより形成されている。こうした構成からなる白色塗膜14は、結晶性基板11の裏面11rを透過して出射した光である太陽光の一部を裏面11rへ拡散反射する反射面として機能する。 On the second electrode 13 described above, a white coating film 14 that reflects light is formed so as to face the back surface 11r across the second electrode 13. The white coating film 14 is a white coating film having a high reflectance in the region of the absorption wavelength of the crystalline substrate 11, and the white component is at least selected from the group consisting of barium sulfate, magnesium oxide and titanium oxide. A kind of compound can be used. The white coating film 14 is formed by applying a white paint composed of the white component fine particles, a binder, and a solvent to the back surface 11r. The white coating film 14 having such a configuration functions as a reflecting surface that diffusely reflects a part of sunlight, which is light transmitted through the back surface 11r of the crystalline substrate 11 and emitted to the back surface 11r.
 上記結晶性基板11の表面11iが太陽光を受けるとき、表面11iから入射した太陽光は、第1半導体層11aや第2半導体層11bに吸収される。だが、結晶太陽電池10に掛かる原料使用量を低減すべく結晶性基板11の厚みが薄くなると、結晶性基板11で吸収できない光量が高くなってしまい、表面11iから入射した太陽光の一部が結晶性基板11を透過するようになる。このようにして結晶性基板11を透過して裏面11rから出射した光の一部は、第2電極13までも透過して白色塗膜14に到達する。この際、白色塗膜14に到達した光は、白色塗膜14が有する光反射性により反射される。そして、白色塗膜14で反射された光は、再び第2電極13を透過して結晶性基板11に吸収される。すなわち、結晶性基板11を透過した光の一部も、白色塗膜14の光反射機能によって、電気エネルギーに変換される。 When the surface 11i of the crystalline substrate 11 receives sunlight, the sunlight incident from the surface 11i is absorbed by the first semiconductor layer 11a and the second semiconductor layer 11b. However, when the thickness of the crystalline substrate 11 is reduced in order to reduce the amount of raw material used on the crystalline solar cell 10, the amount of light that cannot be absorbed by the crystalline substrate 11 increases, and a part of the sunlight incident from the surface 11i is increased. It passes through the crystalline substrate 11. In this way, a part of the light transmitted through the crystalline substrate 11 and emitted from the back surface 11 r is transmitted through the second electrode 13 and reaches the white coating film 14. At this time, the light reaching the white coating film 14 is reflected by the light reflectivity of the white coating film 14. Then, the light reflected by the white coating film 14 passes through the second electrode 13 again and is absorbed by the crystalline substrate 11. That is, part of the light transmitted through the crystalline substrate 11 is also converted into electric energy by the light reflecting function of the white coating film 14.
 したがって、この白色塗膜14の光反射機能によって、結晶太陽電池10における光の利用効率を向上させることができる。そのうえ、白色塗膜14の構成材料、膜厚、位置等は、他の構成要件である結晶性基板11、第1電極12及び第2電極13の光学特性に応じて変更可能である。従って、このような白色塗膜14の構成を適宜選択することにより、透過光の再利用がより適切にかつ容易に実現可能になる。ゆえに、結晶性基板11、第1電極12、及び第2電極13に対して、その構成材料や設計ルールの変更等を強いることがなく、光の利用効率を向上することができる。 Therefore, the light reflection function of the white coating film 14 can improve the light use efficiency in the crystalline solar cell 10. In addition, the constituent material, film thickness, position, and the like of the white coating film 14 can be changed according to the optical characteristics of the crystalline substrate 11, the first electrode 12, and the second electrode 13, which are other constituent requirements. Therefore, by appropriately selecting such a configuration of the white coating film 14, reuse of transmitted light can be realized more appropriately and easily. Therefore, the crystalline substrate 11, the first electrode 12, and the second electrode 13 are not forced to change their constituent materials and design rules, and the light utilization efficiency can be improved.
 なお、結晶性基板11としてシリコン基板を用いる場合、上述する白色塗膜14は、特に500nm~1200nmの波長領域で90%以上の反射率を有する構成が好ましい。このような反射率を有する構成であれば、結晶性基板11を透過した光の中から結晶性基板11で吸収可能な光を効率よく反射することができる。 When a silicon substrate is used as the crystalline substrate 11, the white coating film 14 described above preferably has a reflectance of 90% or more particularly in a wavelength region of 500 nm to 1200 nm. With the configuration having such a reflectance, light that can be absorbed by the crystalline substrate 11 out of the light transmitted through the crystalline substrate 11 can be efficiently reflected.
 さらに、上述する第2電極13の構成材料としては、上述する材料の中から、第1電極と同じく、光を透過する光透過性を有した透明導電材料を用いる構成が好ましい。このような材料であれば、結晶性基板11を透過した光が第2電極13で殆ど吸収されることなく、結晶性基板11に再入射するかたちとなり、さらに光の利用効率を向上することができる。 Furthermore, as the constituent material of the second electrode 13 described above, it is preferable to use a transparent conductive material having a light-transmitting property that transmits light, as in the case of the first electrode. With such a material, the light transmitted through the crystalline substrate 11 is hardly absorbed by the second electrode 13 and reenters the crystalline substrate 11, thereby further improving the light utilization efficiency. it can.
 上述する結晶太陽電池10は、以下のような製造工程により形成される。まず、イオン注入法や熱拡散法を用いた拡散処理が結晶性基板11の表面11iに施されて、これにより不純物の拡散層である第2半導体層11bが形成される。次いで、スパッタ法や印刷法あるいは塗布法を用いた成膜処理が結晶性基板11の表面11iに施されて、これにより第1電極12が形成される。さらに、スパッタ法や印刷法あるいは塗布法を用いた成膜処理が結晶性基板11の裏面11rに施されて、これにより第2電極13が形成される。 The crystal solar cell 10 described above is formed by the following manufacturing process. First, a diffusion process using an ion implantation method or a thermal diffusion method is performed on the surface 11i of the crystalline substrate 11, thereby forming a second semiconductor layer 11b which is an impurity diffusion layer. Next, a film forming process using a sputtering method, a printing method, or a coating method is performed on the surface 11 i of the crystalline substrate 11, thereby forming the first electrode 12. Further, a film forming process using a sputtering method, a printing method, or a coating method is performed on the back surface 11r of the crystalline substrate 11, whereby the second electrode 13 is formed.
 そして、白色塗料を利用する塗布法を用いた成膜処理が第2電極13に施されて、これにより白色塗膜14が形成される。白色塗膜14の形成方法である塗布法は、上述する他の成膜方法に比べて、成膜対象である基板に対し、機械的及び熱的な歪を与え難い方法である。そのため、このような製造方法によれば、白色塗膜14の製造工程が別途加わることに拘わらず、結晶性基板11そのものの薄型化を阻害することがない。ゆえに、結晶太陽電池10における原料使用量の低減に十分対応することもできる。 Then, a film forming process using a coating method using a white paint is performed on the second electrode 13, thereby forming a white coating film 14. The coating method, which is a method for forming the white coating film 14, is a method in which mechanical and thermal distortion is less likely to be applied to the substrate that is the target of film formation, as compared with the other film formation methods described above. Therefore, according to such a manufacturing method, the thinning of the crystalline substrate 11 itself is not hindered regardless of the additional manufacturing process of the white coating film 14. Therefore, it is possible to sufficiently cope with a reduction in the amount of raw material used in the crystalline solar cell 10.
 以上説明したように、上記第1実施形態によれば以下の効果を得ることができる。
 (1)第2電極13に設けられた白色塗膜14が、結晶性基板11を透過した光を、結晶性基板11へ再び導くことになる。そのため、白色塗膜14についての構成材料、膜厚、位置等を他の構成要件に応じて適宜変更するだけで、透過光の再利用が適切にかつ容易に実現可能になる。ゆえに、結晶性基板11、第1電極12及び第2電極13に対して、その構成材料や設計ルールの変更等を強いることがない。その結果、結晶太陽電池10は、結晶性基板11や第1電極12、そして裏面電極である第2電極13についての設計の自由度を確保しつつ、そのうえで結晶性基板11を透過した光の再利用を図ることができる。
As described above, according to the first embodiment, the following effects can be obtained.
(1) The white coating film 14 provided on the second electrode 13 guides the light transmitted through the crystalline substrate 11 to the crystalline substrate 11 again. Therefore, the reuse of transmitted light can be realized appropriately and easily only by appropriately changing the constituent material, film thickness, position, etc. of the white coating film 14 according to other constituent requirements. Therefore, the crystalline substrate 11, the first electrode 12, and the second electrode 13 are not forced to change their constituent materials or design rules. As a result, the crystalline solar cell 10 secures the degree of freedom of design for the crystalline substrate 11, the first electrode 12, and the second electrode 13 that is the back electrode, and further recycles the light transmitted through the crystalline substrate 11. Can be used.
 (2)白色塗膜14の白色成分が、硫酸バリウム、酸化マグネシウム及び酸化チタンの少なくとも一種であるため、白色塗膜14において高い太陽光の反射率を実現することができ、その結果、光の利用効率をより向上させることが可能になる。 (2) Since the white component of the white coating film 14 is at least one of barium sulfate, magnesium oxide, and titanium oxide, a high solar reflectance can be achieved in the white coating film 14, and as a result, It becomes possible to improve utilization efficiency more.
 (3)結晶性基板11の吸収波長に相当する光が、90%以上の高い確率で白色塗膜14に反射される。その結果、光の利用効率をより効果的に向上させることができる。
 (4)結晶性基板11に対して機械的及び熱的な歪を与え難い方法である塗布法によって、白色塗膜14を形成する。そのため、白色塗膜14の製造工程が別途加わることに拘わらず、結晶性基板11そのものの薄型化を阻害することがない。ゆえに、結晶太陽電池10における原料使用量の低減に十分対応することもできる。
(3) Light corresponding to the absorption wavelength of the crystalline substrate 11 is reflected by the white coating film 14 with a high probability of 90% or more. As a result, the light use efficiency can be improved more effectively.
(4) The white coating film 14 is formed by a coating method, which is a method that hardly gives mechanical and thermal strain to the crystalline substrate 11. Therefore, the thinning of the crystalline substrate 11 itself is not hindered regardless of the additional manufacturing process of the white coating film 14. Therefore, it is possible to sufficiently cope with a reduction in the amount of raw material used in the crystalline solar cell 10.
 (第2実施形態)
 以下、本発明を具体化した結晶太陽電池の第2実施形態について図2を参照して説明する。第2実施形態は、第1実施形態の結晶太陽電池10に裏面パッシベーション膜15を付加し、これにともない第2電極13の構造を変更したものである。そのため、以下では、こうした変更点について詳しく説明する。図2は、第2実施形態にかかる結晶太陽電池10の断面斜視構造を示す。
(Second Embodiment)
Hereinafter, a second embodiment of a crystalline solar cell embodying the present invention will be described with reference to FIG. In the second embodiment, the back surface passivation film 15 is added to the crystalline solar cell 10 of the first embodiment, and the structure of the second electrode 13 is changed accordingly. Therefore, in the following, these changes will be described in detail. FIG. 2 shows a cross-sectional perspective structure of the crystalline solar cell 10 according to the second embodiment.
 図2に示されるように、結晶性基板11の裏面11rと第2電極13との間には、光透過性を有する裏面パッシベーション膜15が、裏面11rの略全面にわたり形成されている。第2電極13は、この裏面パッシベーション膜15を膜厚方向に貫通するコンタクト13aを介して、裏面11rと部分的に接続されている。裏面パッシベーション膜15は、裏面11rと第2電極13との接触面積をその構造から制限し、また結晶性基板11に含まれる結晶欠陥を該裏面パッシベーション膜15の構成元素に基づいて低減する。こうした構成からなる裏面パッシベーション膜15は、裏面11rと第2電極13との界面におけるキャリアの再結合、結晶欠陥によるキャリアの再結合等を低減させて、変換効率を向上させる。このような裏面パッシベーション膜15としては、例えば、シリコン酸化膜、シリコン窒化膜、アルミニウム酸化膜等を用いることができる。 As shown in FIG. 2, between the back surface 11r of the crystalline substrate 11 and the second electrode 13, a back surface passivation film 15 having optical transparency is formed over substantially the entire back surface 11r. The second electrode 13 is partially connected to the back surface 11r through a contact 13a that penetrates the back surface passivation film 15 in the film thickness direction. The back surface passivation film 15 limits the contact area between the back surface 11r and the second electrode 13 from its structure, and reduces crystal defects contained in the crystalline substrate 11 based on the constituent elements of the back surface passivation film 15. The back surface passivation film 15 having such a configuration improves conversion efficiency by reducing carrier recombination at the interface between the back surface 11r and the second electrode 13, recombination of carriers due to crystal defects, and the like. As such a back surface passivation film 15, for example, a silicon oxide film, a silicon nitride film, an aluminum oxide film, or the like can be used.
 なお、上述する裏面パッシベーション膜15は、結晶性基板11と共通する構成元素を酸化あるいは窒化することによって形成される酸化物あるいは窒化物である構成が好ましい。このような構成元素であれば、結晶性基板11の裏面11rに対する酸化処理あるいは窒化処理により裏面パッシベーション膜15を形成することができる。そのうえ、裏面パッシベーション膜15の屈折率が結晶性基板11よりも低くなることから、結晶性基板11を透過して裏面11rから出射した光のうちで臨界角以上の光は、こうした裏面パッシベーション膜15により、反射されることになる。そして臨界角よりも小さい光だけが、裏面パッシベーション膜15を透過して白色塗膜14に到達することになる。 Note that the back surface passivation film 15 described above is preferably an oxide or nitride formed by oxidizing or nitriding a constituent element common to the crystalline substrate 11. With such a constituent element, the back surface passivation film 15 can be formed by oxidizing or nitriding the back surface 11r of the crystalline substrate 11. In addition, since the refractive index of the back surface passivation film 15 is lower than that of the crystalline substrate 11, light that is transmitted through the crystalline substrate 11 and emitted from the back surface 11 r has a critical angle or more. Is reflected. Only light smaller than the critical angle passes through the back surface passivation film 15 and reaches the white coating film 14.
 つまり、このような構成からなる結晶太陽電池10によれば、白色塗膜14に到達する光の方向が、結晶性基板11及び裏面パッシベーション膜15の屈折率によって概ね規定される。ゆえに、白色塗膜14そのものに要求される光学的な特性を、結晶性基板11及び裏面パッシベーション膜15の光学的な特性に基づいて適切に把握することが可能となり、このような特性の下で白色塗膜14の構成材料や膜厚が設計されることにより、光の利用効率そのものを大幅に向上させることが可能になる。 That is, according to the crystalline solar cell 10 having such a configuration, the direction of light reaching the white coating film 14 is generally defined by the refractive indexes of the crystalline substrate 11 and the back surface passivation film 15. Therefore, it is possible to appropriately grasp the optical characteristics required for the white coating film 14 itself based on the optical characteristics of the crystalline substrate 11 and the back surface passivation film 15. By designing the constituent material and film thickness of the white coating film 14, the light utilization efficiency itself can be greatly improved.
 上述する結晶太陽電池10は、以下のような製造工程により形成される。まず、第1実施形態と同じく、イオン注入法や熱拡散法を用いた拡散処理が結晶性基板11の表面11iに施されて、これにより不純物の拡散層である第2半導体層11bが形成される。次いで、熱酸化法や熱窒化法あるいはCVD法等を用いた成膜処理が結晶性基板11の裏面11rに施されて、これにより裏面パッシベーション膜15が形成される。さらに、フォトリソグラフィ法やレーザ加工法等を用いたパターニング処理が裏面パッシベーション膜15に施されて、これによりコンタクト13aに対応する貫通孔(コンタクトホール)が形成される。そして、スパッタ法や印刷法あるいは塗布法を用いた成膜処理が裏面パッシベーション膜15に施されて、これにより第2電極13が形成される。 The crystal solar cell 10 described above is formed by the following manufacturing process. First, as in the first embodiment, a diffusion process using an ion implantation method or a thermal diffusion method is performed on the surface 11i of the crystalline substrate 11, thereby forming a second semiconductor layer 11b which is an impurity diffusion layer. The Next, a film forming process using a thermal oxidation method, a thermal nitridation method, a CVD method, or the like is performed on the back surface 11r of the crystalline substrate 11, whereby the back surface passivation film 15 is formed. Further, a patterning process using a photolithography method, a laser processing method, or the like is performed on the back surface passivation film 15, thereby forming a through hole (contact hole) corresponding to the contact 13a. Then, a film forming process using a sputtering method, a printing method, or a coating method is performed on the back surface passivation film 15, thereby forming the second electrode 13.
 以後、第1実施形態と同じく、スパッタ法や印刷法あるいは塗布法を用いた成膜処理が結晶性基板11の表面11iとに施されて、これにより第1電極12が形成される。そして、白色塗料を利用する塗布法を用いた成膜処理が第2電極13に施されて、これにより白色塗膜14が形成される。 Thereafter, as in the first embodiment, a film forming process using a sputtering method, a printing method, or a coating method is performed on the surface 11 i of the crystalline substrate 11, thereby forming the first electrode 12. And the film-forming process using the apply | coating method using a white paint is given to the 2nd electrode 13, and, thereby, the white coating film 14 is formed.
 以上説明したように、上記第2実施形態によれば、第1実施形態の効果に加えて、以下の効果を得ることができる。
 (5)裏面パッシベーション膜15が裏面11rと白色塗膜14との間に介在するため、変換効率の向上を図ることができる。そのうえ、白色塗膜14そのものに要求される光学的な特性を、結晶性基板11及び裏面パッシベーション膜15の光学的な特性に基づいて適切に把握することが可能となる。そして、こうした把握された特性の下で白色塗膜14の材料や膜厚が設計されることにより、光の利用効率そのものを大幅に向上させることが可能になる。
As described above, according to the second embodiment, in addition to the effects of the first embodiment, the following effects can be obtained.
(5) Since the back surface passivation film 15 is interposed between the back surface 11r and the white coating film 14, the conversion efficiency can be improved. In addition, the optical characteristics required for the white coating film 14 itself can be properly grasped based on the optical characteristics of the crystalline substrate 11 and the back surface passivation film 15. Then, by designing the material and film thickness of the white coating film 14 under such grasped characteristics, it becomes possible to greatly improve the light utilization efficiency itself.
 (6)裏面11rと白色塗膜14との間に裏面パッシベーション膜15が介在する分だけ、白色塗膜14と結晶性基板11とが殆ど接触しない。そのため、白色塗膜14の構成材料やその形成過程にて発生し得る基板汚染を大幅に抑制できることから、白色塗膜14に適用できる材料の選択範囲が拡張可能になる。 (6) The white coating film 14 and the crystalline substrate 11 hardly contact each other because the back surface passivation film 15 is interposed between the back surface 11r and the white coating film 14. Therefore, the constituent material of the white coating film 14 and the substrate contamination that may occur in the formation process thereof can be greatly suppressed, so that the selection range of materials applicable to the white coating film 14 can be expanded.
 (第3実施形態)
 以下、本発明を具体化した結晶太陽電池の第3実施形態について図3を参照して説明する。第3実施形態は、第1実施形態の結晶性基板11の半導体層11bを変更したものである。そのため、以下では、こうした変更点について詳しく説明する。図3は、第3実施形態にかかる結晶太陽電池10の断面斜視構造を示す。
(Third embodiment)
Hereinafter, a third embodiment of a crystalline solar cell embodying the present invention will be described with reference to FIG. In the third embodiment, the semiconductor layer 11b of the crystalline substrate 11 of the first embodiment is changed. Therefore, in the following, these changes will be described in detail. FIG. 3 shows a cross-sectional perspective structure of the crystalline solar cell 10 according to the third embodiment.
 結晶太陽電池10は、逆導電型の関係をなす結晶性基板と非晶質半導体膜との間にi型の半導体膜を介在させたpin構造を基本構造としている。具体的には、図3に示されるように、結晶性基板11aがn型のシリコン(Si)基板であり、この結晶性基板11aの表面にはi型のアモルファスSi(a-Si)膜であるi型表面Si膜11biが積層されている。結晶性基板11aの裏面には、これもまたi型のa-Si膜であるi型裏面Si膜11ciが積層されている。さらに、i型表面Si膜11biには、p型のa-Si膜であるp型Si膜11bpが積層されており、i型裏面Si膜11ciには、n型のa-Si膜であるn型Si膜11cnが積層されている。 The crystal solar cell 10 has a basic structure of a pin structure in which an i-type semiconductor film is interposed between a crystalline substrate having an inverse conductivity type relationship and an amorphous semiconductor film. Specifically, as shown in FIG. 3, the crystalline substrate 11a is an n-type silicon (Si) substrate, and an i-type amorphous Si (a-Si) film is formed on the surface of the crystalline substrate 11a. A certain i-type surface Si film 11bi is laminated. An i-type back Si film 11ci, which is also an i-type a-Si film, is laminated on the back surface of the crystalline substrate 11a. Further, a p-type Si film 11bp which is a p-type a-Si film is laminated on the i-type front surface Si film 11bi, and an n-type a-Si film is formed on the i-type back surface Si film 11ci. A type Si film 11cn is laminated.
 こうした構成においては、i型表面Si膜11biとi型裏面Si膜11ciとが空乏化する。そして、太陽光によって励起されたキャリアの殆どが、i型表面Si膜11bi及びi型裏面Si膜11ciで生成されて、i型表面Si膜11biとi型裏面Si膜11ciとに加わる内部電界により、対応する第1電極12あるいは第2電極13へ輸送される。これにより、変換効率の増大が図られる。 In such a configuration, the i-type front surface Si film 11bi and the i-type back surface Si film 11ci are depleted. Most of the carriers excited by sunlight are generated by the i-type surface Si film 11bi and the i-type back surface Si film 11ci, and are generated by an internal electric field applied to the i-type surface Si film 11bi and the i-type back surface Si film 11ci. , It is transported to the corresponding first electrode 12 or second electrode 13. As a result, the conversion efficiency is increased.
 上述する結晶太陽電池10は、以下のような製造工程により形成される。まず、CVD法を用いた成膜処理が結晶性基板11aの表面に施されて、これによりi型表面Si膜11biとp型Si膜11bpとが順に積層される。次いで、CVD法を用いた成膜処理が結晶性基板11aの裏面に施されて、これによりi型裏面Si膜11ciとn型Si膜11cnとが順に積層される。そして、第1実施形態と同じく、スパッタ法や印刷法あるいは塗布法を用いた成膜処理がp型Si膜bpの表面11iとn型Si膜cnの裏面11rとに施されて、これにより第1電極12と第2電極13とが形成される。そして、白色塗料を利用する塗布法を用いた成膜処理が第2電極13に施されて、これにより白色塗膜14が形成される。 The crystal solar cell 10 described above is formed by the following manufacturing process. First, a film forming process using the CVD method is performed on the surface of the crystalline substrate 11a, whereby the i-type surface Si film 11bi and the p-type Si film 11bp are sequentially stacked. Next, a film forming process using a CVD method is performed on the back surface of the crystalline substrate 11a, whereby the i-type back surface Si film 11ci and the n-type Si film 11cn are sequentially stacked. Then, as in the first embodiment, a film forming process using a sputtering method, a printing method, or a coating method is performed on the front surface 11i of the p-type Si film bp and the back surface 11r of the n-type Si film cn. A first electrode 12 and a second electrode 13 are formed. And the film-forming process using the apply | coating method using a white paint is given to the 2nd electrode 13, and, thereby, the white coating film 14 is formed.
 以上説明したように、上記第3実施形態によれば、第1実施形態の効果に加えて、以下の効果を得ることができる。
 (7)結晶性基板と非晶質半導体膜とを利用したpin構造を基本構造とするため、白色塗膜14による利用効率の向上に加えて、変換効率を向上させることもできる。
As described above, according to the third embodiment, in addition to the effects of the first embodiment, the following effects can be obtained.
(7) Since the pin structure using the crystalline substrate and the amorphous semiconductor film is a basic structure, the conversion efficiency can be improved in addition to the improvement of the utilization efficiency by the white coating film 14.
 なお、上記実施形態は以下のように変更して実施することもできる。
 ・上記第2実施形態では、結晶性基板11と白色塗膜14との間に、第2電極13が介在する構成を説明した。これを変更して、結晶性基板11と白色塗膜14との間に、第2電極13が介在しない構成であってもよい。具体的には、図4に示されるように、結晶性基板11の裏面11rから順に、裏面パッシベーション膜15、白色塗膜14、そして第2電極13が積層される構成であってもよい。こうした構成によれば、結晶性基板11を透過した光が第2電極13で吸収されなくなる。したがって、結晶性基板11と白色塗膜14との間に第2電極13が介在しない分だけ、より効果的に利用効率を向上することができる。
In addition, the said embodiment can also be changed and implemented as follows.
In the second embodiment, the configuration in which the second electrode 13 is interposed between the crystalline substrate 11 and the white coating film 14 has been described. By changing this, the second electrode 13 may not be interposed between the crystalline substrate 11 and the white coating film 14. Specifically, as shown in FIG. 4, the back surface passivation film 15, the white coating film 14, and the second electrode 13 may be stacked in order from the back surface 11 r of the crystalline substrate 11. According to such a configuration, the light transmitted through the crystalline substrate 11 is not absorbed by the second electrode 13. Therefore, the use efficiency can be improved more effectively by the amount that the second electrode 13 is not interposed between the crystalline substrate 11 and the white coating film 14.
 ・上記第2実施形態では、結晶性基板11の表面11iに第1電極12が形成されて、そして結晶性基板11の裏面11rに裏面パッシベーション膜15を介して第2電極13が形成される構成を説明した。これを変更して、第1電極12及び第2電極13が、共通する裏面11rに形成される構成であってもよい。具体的には、図5に示されるように、互いに逆導電性の関係にある第2半導体層11bと第3半導体層11cとが、それぞれ裏面11rから露出するかたちで形成される。なお、第3半導体層11cは第1半導体層11aであってもよい。第1電極12及び第2電極13は、裏面パッシベーション膜15をその膜方向に貫通するかたちで、それぞれ上記第3半導体層11b及び第2半導体層11cに電気的に接続される。すなわち、第1および第2電極12,13は、2つの裏面電極として裏面11rに配置されている。そして、これら第1電極12、第2電極13、及び裏面パッシベーション膜15を覆うように、白色塗膜14が積層される構成に具体化することもできる。こうした構成によれば、受光面である表面11iから第1電極12を割愛できる分だけ、太陽光をより効果的に受光することができる。なおこの際、光透過性を有する表面パッシベーション膜16が表面11iの略全面にわたり形成される構成、すなわちパッシベーション膜が表面11i及び裏面11rの双方に設けられた構成が好ましい。こうした構成によれば、裏面パッシベーション膜15により得られる変換効率の向上効果を、さらに表面パッシベーション膜16によっても得られることができる。 In the second embodiment, the first electrode 12 is formed on the front surface 11 i of the crystalline substrate 11, and the second electrode 13 is formed on the rear surface 11 r of the crystalline substrate 11 via the back surface passivation film 15. Explained. By changing this, the first electrode 12 and the second electrode 13 may be formed on the common back surface 11r. Specifically, as shown in FIG. 5, the second semiconductor layer 11b and the third semiconductor layer 11c, which are in a reverse conductive relationship with each other, are formed so as to be exposed from the back surface 11r. Note that the third semiconductor layer 11c may be the first semiconductor layer 11a. The first electrode 12 and the second electrode 13 are electrically connected to the third semiconductor layer 11b and the second semiconductor layer 11c, respectively, through the back surface passivation film 15 in the film direction. That is, the first and second electrodes 12 and 13 are disposed on the back surface 11r as two back surface electrodes. And it can also be actualized to the structure by which the white coating film 14 is laminated | stacked so that these 1st electrode 12, 2nd electrode 13, and back surface passivation film 15 may be covered. According to such a configuration, sunlight can be received more effectively by the amount that the first electrode 12 can be omitted from the surface 11i that is the light receiving surface. In this case, a configuration in which the light-transmitting surface passivation film 16 is formed over substantially the entire surface 11i, that is, a configuration in which the passivation film is provided on both the front surface 11i and the back surface 11r is preferable. According to such a configuration, the effect of improving the conversion efficiency obtained by the back surface passivation film 15 can be further obtained by the surface passivation film 16.
 ・上記2実施形態では、パッシベーション膜15が結晶性基板11の裏面11rに形成される構成を説明した。これを変更して、パッシベーション膜が、結晶性基板11の表面11i及び裏面11rに形成される構成でもよい。具体的には、図6に示されるように、光透過性を有する表面パッシベーション膜16が表面11iの略全面にわたり形成されて、第1電極12が表面パッシベーション膜16を膜厚方向に貫通するかたちで表面11iと部分的に接続される。こうした構成によれば、裏面パッシベーション膜15により得られる変換効率の向上効果を、さらに表面パッシベーション膜16によっても得られることができる。 In the above-described two embodiments, the configuration in which the passivation film 15 is formed on the back surface 11r of the crystalline substrate 11 has been described. By changing this, the passivation film may be formed on the front surface 11 i and the back surface 11 r of the crystalline substrate 11. Specifically, as shown in FIG. 6, a surface passivation film 16 having optical transparency is formed over substantially the entire surface 11 i, and the first electrode 12 penetrates the surface passivation film 16 in the film thickness direction. Is partially connected to the surface 11i. According to such a configuration, the effect of improving the conversion efficiency obtained by the back surface passivation film 15 can be further obtained by the surface passivation film 16.
 ・また、図6に示されるように、太陽光の反射損失を表面で抑えるべく、表面パッシベーション膜16に反射防止膜17が積層される構成でもよい。あるいは、表面パッシベーション膜16がない場合には、表面11i上に反射防止膜17が積層されてもよい。反射防止膜17の構成材料には、例えば酸化シリコン、窒化シリコン、酸化セリウム、酸化アルミニウム、二酸化スズ、二酸化チタン、フッ化マグネシウム、酸化タンタルを用いることができる。 As shown in FIG. 6, an antireflection film 17 may be laminated on the surface passivation film 16 so as to suppress the reflection loss of sunlight on the surface. Alternatively, when there is no surface passivation film 16, an antireflection film 17 may be laminated on the surface 11i. As a constituent material of the antireflection film 17, for example, silicon oxide, silicon nitride, cerium oxide, aluminum oxide, tin dioxide, titanium dioxide, magnesium fluoride, and tantalum oxide can be used.
 ・上記各実施形態では、表面11i及び裏面11rが平坦面である構成を説明した。このような構成に限らず、表面11i及び裏面11rの少なくとも一方は、太陽光を結晶性基板に閉じ込めるためのテクスチャーを具備することもできる。こうしたテクスチャーは、例えば、四角錘状をなす多数の突起により具現化できる。また、こうしたテクスチャーは、例えば対象面である表面11iあるいは裏面11rを水酸化カリウム水溶液に浸漬させる方法により具現化できる。このような構成によれば、白色塗膜14とテクスチャーとが、太陽光を結晶性基板11内に閉じ込めるように協働し、その結果、太陽光の利用効率がさらに向上される。 In the above embodiments, the configuration in which the front surface 11i and the back surface 11r are flat surfaces has been described. Not limited to such a configuration, at least one of the front surface 11i and the back surface 11r can also have a texture for confining sunlight in the crystalline substrate. Such a texture can be embodied by, for example, a large number of protrusions having a quadrangular pyramid shape. Moreover, such a texture can be embodied by, for example, a method in which the front surface 11i or the back surface 11r that is the target surface is immersed in an aqueous potassium hydroxide solution. According to such a configuration, the white coating film 14 and the texture cooperate to confine sunlight in the crystalline substrate 11, and as a result, the utilization efficiency of sunlight is further improved.

Claims (14)

  1.  結晶太陽電池であって、
     光を受光する受光面と該受光面と対向する裏面との間で光電変換機能を発現する結晶性基板と、
     前記結晶性基板の前記裏面を透過して出射する光を前記結晶性基板の中へ反射する白色塗膜と、を備えることを特徴とする結晶太陽電池。
    A crystalline solar cell,
    A crystalline substrate that expresses a photoelectric conversion function between a light-receiving surface that receives light and a back surface that faces the light-receiving surface;
    A crystalline solar cell comprising: a white coating film that reflects light emitted through the back surface of the crystalline substrate into the crystalline substrate.
  2.  請求項1に記載の結晶太陽電池は更に、
     前記結晶性基板の前記裏面に電気的に接続された裏面電極を備えており、
     前記白色塗膜は、前記裏面電極に隣接していることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 1 further comprises:
    Comprising a back electrode electrically connected to the back surface of the crystalline substrate;
    The crystalline solar cell, wherein the white coating film is adjacent to the back electrode.
  3.  請求項2に記載の結晶太陽電池において、
     前記裏面電極が、前記結晶性基板の前記裏面と前記白色塗膜との間に位置していることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 2,
    The crystal solar cell, wherein the back electrode is located between the back surface of the crystalline substrate and the white coating film.
  4.  請求項2に記載の結晶太陽電池において、
     前記白色塗膜が、前記結晶性基板の前記裏面と前記裏面電極との間に位置していることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 2,
    The crystalline solar cell, wherein the white coating film is located between the back surface and the back electrode of the crystalline substrate.
  5.  請求項1に記載の結晶太陽電池において、
     前記結晶性基板がシリコン基板であり、
     前記結晶太陽電池は更に、
     前記シリコン基板の裏面を覆うパッシベーション膜を備えており、
     前記パッシベーション膜が前記シリコン基板の裏面と前記白色塗膜との間に位置していることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 1,
    The crystalline substrate is a silicon substrate;
    The crystal solar cell further includes
    A passivation film covering the back surface of the silicon substrate;
    The crystalline solar cell, wherein the passivation film is located between the back surface of the silicon substrate and the white coating film.
  6.  請求項5に記載の結晶太陽電池は更に、
     前記白色塗膜と前記パッシベーション膜との間に設けられ、前記パッシベーション膜を部分的に貫通して前記シリコン基板の裏面と電気的に接続される裏面電極を備えることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 5 further comprises:
    A crystal solar cell comprising a back electrode provided between the white coating film and the passivation film and partially penetrating the passivation film and electrically connected to the back surface of the silicon substrate.
  7.  請求項6に記載の結晶太陽電池において、
     前記シリコン基板は、互いに逆導電性を有する第1および第2半導体層を含み、前記裏面電極は、前記シリコン基板の裏面に配置されるとともに前記第1半導体層に電気的に接続されており、
     前記結晶太陽電池は更に、
     前記シリコン基板の裏面に配置されるとともに前記第2半導体層に電気的に接続される第2の裏面電極を備えることを特徴とする結晶太陽電池。
    In the crystalline solar cell according to claim 6,
    The silicon substrate includes first and second semiconductor layers having opposite conductivity, and the back electrode is disposed on the back surface of the silicon substrate and electrically connected to the first semiconductor layer,
    The crystal solar cell further includes
    A crystalline solar cell comprising a second back electrode disposed on the back surface of the silicon substrate and electrically connected to the second semiconductor layer.
  8.  請求項5に記載の結晶太陽電池は更に、
     前記白色塗膜及び前記パッシベーション膜を貫通して前記シリコン基板の裏面と電気的に接続された裏面電極を備えることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 5 further comprises:
    A crystal solar cell comprising a back electrode penetrating the white coating film and the passivation film and electrically connected to the back surface of the silicon substrate.
  9.  請求項5に記載の結晶太陽電池は更に、
     前記受光面として機能する前記シリコン基板の表面に配置される別のパッシベーション膜を備えることを特徴とする結晶太陽電池。
    The crystalline solar cell according to claim 5 further comprises:
    A crystalline solar cell comprising another passivation film disposed on a surface of the silicon substrate functioning as the light receiving surface.
  10.  前記白色塗膜は、硫酸バリウム、酸化マグネシウム及び酸化チタンからなる群から選択される少なくとも一種からなる白色成分を含むことを特徴とする請求項1~9のいずれか一項に記載の結晶太陽電池。 The crystalline solar cell according to any one of claims 1 to 9, wherein the white coating film contains at least one white component selected from the group consisting of barium sulfate, magnesium oxide and titanium oxide. .
  11.  前記結晶性基板がシリコン基板であり、
     前記白色塗膜が500nm~1200nmの波長で90%以上の反射率を有することを特徴とする請求項1~10のいずれか一項に記載の結晶太陽電池。
    The crystalline substrate is a silicon substrate;
    The crystalline solar cell according to any one of claims 1 to 10, wherein the white coating film has a reflectance of 90% or more at a wavelength of 500 nm to 1200 nm.
  12.  前記結晶性基板が50μm~200μmの厚さを有したシリコン基板であることを特徴とする請求項1~11のいずれか一項に記載の結晶太陽電池。 The crystalline solar cell according to any one of claims 1 to 11, wherein the crystalline substrate is a silicon substrate having a thickness of 50 袖 m to 200 袖 m.
  13.  結晶太陽電池を製造する方法であって、
     光を受光する受光面とその受光面と対向する裏面とを有しそれらの間で光電変換機能を発現する結晶性基板を形成すること、
     前記結晶性基板の前記裏面を透過して出射した光を前記結晶性基板の中へ反射する白色塗膜を形成すること、
    を備えることを特徴とする方法。
    A method for producing a crystalline solar cell, comprising:
    Forming a crystalline substrate that has a light-receiving surface that receives light and a back surface that faces the light-receiving surface and expresses a photoelectric conversion function between them;
    Forming a white coating film that reflects light emitted through the back surface of the crystalline substrate into the crystalline substrate;
    A method comprising the steps of:
  14.  請求項13に記載の方法において、
     前記結晶性基板がシリコン基板であり、当該方法は更に、
     前記シリコン基板の裏面にパッシベーション膜を成膜すること、
     前記パッシベーション膜に前記白色塗膜を積層すること、
    を備えることを特徴とする方法。
    The method of claim 13, wherein
    The crystalline substrate is a silicon substrate, and the method further includes:
    Depositing a passivation film on the back surface of the silicon substrate;
    Laminating the white coating film on the passivation film;
    A method comprising the steps of:
PCT/JP2010/060712 2010-06-24 2010-06-24 Crystalline solar cell and manufacturing method for crystalline solar cell WO2011161789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060712 WO2011161789A1 (en) 2010-06-24 2010-06-24 Crystalline solar cell and manufacturing method for crystalline solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060712 WO2011161789A1 (en) 2010-06-24 2010-06-24 Crystalline solar cell and manufacturing method for crystalline solar cell

Publications (1)

Publication Number Publication Date
WO2011161789A1 true WO2011161789A1 (en) 2011-12-29

Family

ID=45371002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060712 WO2011161789A1 (en) 2010-06-24 2010-06-24 Crystalline solar cell and manufacturing method for crystalline solar cell

Country Status (1)

Country Link
WO (1) WO2011161789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050404A1 (en) * 2000-06-02 2001-12-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell and method of manufacturing the same
EP1906455A1 (en) * 2005-06-22 2008-04-02 Kyocera Corporation Solar cell element and solar cell element manufacturing method
JP2009032779A (en) * 2007-07-25 2009-02-12 Toray Ind Inc Thin-film solar cell module
WO2009157053A1 (en) * 2008-06-23 2009-12-30 三菱電機株式会社 Photovoltaic system and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050404A1 (en) * 2000-06-02 2001-12-13 Honda Giken Kogyo Kabushiki Kaisha Solar cell and method of manufacturing the same
EP1906455A1 (en) * 2005-06-22 2008-04-02 Kyocera Corporation Solar cell element and solar cell element manufacturing method
JP2009032779A (en) * 2007-07-25 2009-02-12 Toray Ind Inc Thin-film solar cell module
WO2009157053A1 (en) * 2008-06-23 2009-12-30 三菱電機株式会社 Photovoltaic system and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
WO2012132615A1 (en) Photoelectric converter, and method for producing same
US20100024871A1 (en) Photovoltaic device and method of manufacturing the same
KR20170023139A (en) Passivation of light-receiving surfaces of solar cells with high energy gap(eg) materials
US20100163104A1 (en) Solar cell
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JP2006120745A (en) Thin film silicon laminated solar cell
JP2014107504A (en) Photovoltaic device
Soman et al. Tuneable and spectrally selective broadband reflector–modulated photonic crystals and its application in solar cells
US9310519B2 (en) See-through type photovoltaic module including 3-dimensional photonic crystal, manufacturing method thereof, and insulated glass unit including the same
CN217306521U (en) Solar cell and photovoltaic module
KR101275840B1 (en) Transparent Solar Cell
JP2010153740A (en) Crystal solar battery and method of manufacturing crystal solar battery
WO2009131212A1 (en) Solar cell
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
KR101306913B1 (en) Solar Cell
KR20120106259A (en) Solar cell and method of manufacturing the same
KR101814821B1 (en) Solar cell module
WO2011161789A1 (en) Crystalline solar cell and manufacturing method for crystalline solar cell
WO2014132516A1 (en) Solar cell, solar cell module, and production method for solar cell
JP5542025B2 (en) Photoelectric conversion device
JP5542038B2 (en) Thin film solar cell and method for manufacturing the same, thin film solar cell module
US20110308612A1 (en) Thin film solar cell and method for manufacturing the same
JP2010278148A (en) Photovoltaic apparatus and method of manufacturing the same
CN112567532A (en) Bifacial solar cell, solar module, and method for manufacturing bifacial solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP