WO2011161747A1 - Injection molding machine - Google Patents
Injection molding machine Download PDFInfo
- Publication number
- WO2011161747A1 WO2011161747A1 PCT/JP2010/060446 JP2010060446W WO2011161747A1 WO 2011161747 A1 WO2011161747 A1 WO 2011161747A1 JP 2010060446 W JP2010060446 W JP 2010060446W WO 2011161747 A1 WO2011161747 A1 WO 2011161747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- shaft
- injection molding
- movable
- molding machine
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/64—Mould opening, closing or clamping devices
- B29C45/66—Mould opening, closing or clamping devices mechanical
Definitions
- the present invention relates to an injection molding machine for forming a molded article by injecting a molten resin into a cavity formed between a stationary mold and a movable mold, with the movable mold approaching and separating the stationary mold.
- the movable mold In the injection molding machine, the movable mold is moved to a position where it contacts the fixed mold, both molds are closed, and the movable mold is pressed against the fixed mold by the mold clamping mechanism. Subsequently, a molten resin is injected into a cavity formed between the fixed mold and the movable mold to form a molded article.
- the mold clamping mechanism prevents the movable mold from leaving the fixed mold due to the injection pressure of the molten resin during the period from when injection is started to when the molten resin solidifies.
- a configuration described in Patent Document 1 is known as a mold clamping mechanism.
- ball screw shafts are rotatably supported at four corners of a fixed die plate to which a fixed mold is attached.
- Ball nuts are fitted at the four corners of the movable die plate to which the movable die is attached.
- a ball screw shaft is screwed into the ball nut.
- the movable die plate moves along the ball screw shaft, and the movable die is pressed against the fixed die.
- components such as a fixed die plate and a movable die plate are used in addition to the fixed die and the movable die that are in pressure contact with each other. These parts are arranged around fixed and movable molds. For this reason, the mold clamping mechanism is enlarged, and the injection molding machine is also enlarged.
- Patent Document 2 proposes a technique for solving the increase in size of the mold clamping mechanism.
- Patent Document 2 describes an injection molding machine of a type called a horizontal type in which the mold is moved in the horizontal direction to open and close the mold.
- the movable mold is formed with a through hole extending in the horizontal direction.
- the movable through hole is supported in a state where the shaft is inserted.
- An engagement portion (male screw portion) is provided at the end of the shaft adjacent to the fixed mold.
- a motor is drivingly connected to an end of the shaft opposite to the fixed type.
- An engaged portion (female screw portion) is provided coaxially with the through hole at a portion facing the fixed movable type.
- the engaging portion male screw portion
- the engaged portion female screw portion
- the movable mold is pressed against the fixed mold.
- the fixed die plate, movable die plate and the like disclosed in Patent Document 1 become unnecessary.
- parts such as the shaft and the engaged portion that constitute the mold clamping mechanism are located in the vicinity of the cavity. Therefore, the mold clamping mechanism can be miniaturized, that is, the injection molding machine can be miniaturized.
- the injection molding machine described in Patent Document 2 has a structure for rotatably supporting a shaft inserted into the through hole.
- the shaft is supported only at the end (proximal end) close to the motor, the shaft is inclined by its own weight, with the end (distal end) close to the fixed mold lower than the proximal end of the shaft.
- the axis of the shaft deviates from the axis of the engaged portion (female screw portion), it becomes difficult to engage (screw in) the engaging portion (male screw portion) with the engaged portion (female screw portion). Therefore, an operation and a mechanism for matching the axis of the shaft with the axis of the engaged portion are additionally required.
- An object of the present invention is to provide an injection molding machine capable of easily engaging an engaging portion of a shaft with an engaged portion at the time of mold clamping.
- a first mold and a second mold are provided, one of which is a fixed mold, the other is a movable mold, and the movable mold is raised and lowered.
- the movable mold is brought into contact with and separated from the fixed mold, the movable mold is brought into contact with the fixed mold, both molds are closed, and the movable mold is pressed against the fixed mold by the mold clamping mechanism, and formed between the first mold and the second mold.
- An injection molding machine is provided which injects a molten resin into a cavity to form a molded article.
- the mold clamping mechanism is a shaft supported in a state inserted through a through hole vertically penetrating the first mold, and has an engaging portion in at least a part in the axial direction of the shaft, and is rotated by an actuator
- the driven shaft and the engaged portion provided coaxially with the through hole in the second mold, and the first mold and the second mold are in contact with each other, and the shaft is rotated by the actuator.
- a direction in which the second mold and the first mold are made to approach each other is a mold clamping direction, and an engaging portion is engaged with the engaging portion.
- the first mold and the second mold are pressed against each other by the generated clamping direction force or the clamping direction force applied to the shaft after the engagement portion and the engaged portion are engaged.
- the shaft is supported in a state of being inserted into a vertically extending through hole.
- the direction of gravity acting on the shaft and the axial direction of the shaft are both vertical and coincide with the axial direction of the engaged portion.
- the present invention differs from the horizontal injection molding machine described in Patent Document 2 in which the shaft is inclined by its own weight and the axis of the shaft is easily displaced from the axis of the female screw.
- the engaging portion since the axis of the engaging portion and the axis of the engaged portion coincide with each other, when the shaft is rotated by the actuator, the engaging portion is easily engaged with the engaged portion.
- the first mold and the second mold are pressed against each other by the force in the mold clamping direction generated with this engagement or the force in the mold clamping direction applied to the shaft after engagement. Then, a molten resin is injected into a cavity formed between the first mold and the second mold to form a molded article.
- the second mold in a state where the engaging portion is engaged with the engaged portion and the shaft is connected to the second mold, the second mold is pressed by the force in the mold clamping direction. Directly pressed against the mold.
- the mold clamping mechanism described in Patent Document 1 in order to clamp the first mold and the second mold, the fixed die plate, the movable die plate, etc. become unnecessary. .
- parts such as a shaft and an engaged portion that constitute a mold clamping mechanism are located in the vicinity of the cavity.
- one of the engaging portion and the engaged portion is constituted by the female screw portion, and the other is constituted by the male screw portion, and the mold clamping mechanism screws the male screw portion into the female screw portion by rotation of the shaft.
- the mold clamping mechanism screws the male screw portion into the female screw portion by rotation of the shaft.
- the shaft when the engaging portion engages with the engaged portion and the male screw portion is screwed into the female screw portion, the shaft extends in the axial direction. At this time, a tensile force, that is, an axial force is generated on the shaft to return to its original state by repelling it.
- This axial force is a clamping direction force acting in a direction to make the second mold and the first mold approach each other. The first mold and the second mold are pressed against each other by this axial force, and mold clamping is performed.
- the second actuator can apply a force in the mold clamping direction to the shaft in which the engaging portion is engaged with the engaged portion. Therefore, a part of the axial force (required axial force) necessary for bringing the first mold and the second mold into pressure contact with each other is covered by the force generated by the second actuator. Therefore, the axial force to be generated by the extension due to the rotation of the shaft can be reduced.
- a small actuator with small output torque can be used as a first actuator for generating this axial force on the shaft. That is, the mold clamping mechanism can be miniaturized and the injection molding machine can be miniaturized.
- the second actuator includes a cylinder and a piston
- the piston is accommodated in the cylinder so as to be vertically movable, and divides the inside of the cylinder into two fluid pressure chambers, and two fluid pressures
- one of the chambers is a clamping fluid pressure chamber
- the clamping fluid pressure chamber is supplied with a working fluid when a force in the clamping direction is applied to the shaft.
- the working fluid is supplied to the clamping fluid pressure chamber in the cylinder constituting the second actuator.
- the pressure of the working fluid acting in the mold clamping direction is applied to the piston.
- a force acting in the mold clamping direction is applied to the shaft through the piston.
- the first mold and the second mold are pressed against each other by this force to perform mold clamping. That is, with a simple configuration such as a cylinder and a piston, a force in the mold clamping direction can be applied to the shaft.
- the first mold is a fixed mold
- the second mold is a movable mold
- the second mold is moved up and down on the lower side of the first mold to form the first mold.
- the movable body is constituted by the second mold and the member moving along with the elevation of the second mold, and the gravity acting on the movable body is pressed against the first mold by the clamping mechanism.
- it is used as at least a part of a mold release force for releasing the second mold from the first mold.
- the second mold functioning as the movable mold moves closer to and away from the first mold by moving up and down on the lower side of the first mold functioning as the fixed mold.
- the second mold in which the gravity acting on the movable body consisting of the second mold and the member moving with the second mold is pressed against the first mold by the mold clamping mechanism is the first It is used as part of the mold release force when mold release. Therefore, when the mold release mechanism for separating the second mold from the first mold is provided, mold release with a smaller mold release force becomes possible, so the mold release mechanism can be miniaturized, and the injection molding machine can be miniaturized. Can be In addition, when the gravity acting on the movable body is sufficiently large, it is possible to perform mold release without using a mold release mechanism.
- the mold (fixed type and movable type) is moved up and down to open and close.
- moving the movable mold in a direction to approach the fixed mold is referred to as “mold closing”
- pressing the movable mold in contact with the fixed mold against the fixed mold is referred to as “mold clamping”.
- releasing the clamped movable mold from the fixed mold is called “mold release”
- moving the mold released movable mold in a direction to separate it from the fixed mold is called "mold opening”.
- the vertical injection molding machine 10 includes a base 12 installed on the installation surface 11, a plurality of columns 13 provided on the base 12, and the upper ends of all the columns 13. And a top plate portion 15 fixed to the The top plate portion 15 is supported by the columns 13.
- a first mold 16 functioning as a fixed mold is fixed.
- a second mold 17 functioning as a movable mold is disposed below the first mold 16.
- the second mold 17 is raised and lowered between a mold closing position (see FIG. 2) in contact with the first mold 16 and a mold opening position (see FIG. 1) which is largely separated from the first mold 16 downward.
- the following mechanism is adopted to make it happen.
- a pair of ball screw shafts 21 extending in the vertical direction is rotatably supported between the base 12 and the top plate 15 respectively.
- Each ball screw shaft 21 is drivingly connected to a motor 22 such as a servomotor.
- a ball nut 23 is screwed into each ball screw shaft 21.
- a movable stand 24 is bridged between the ball nuts 23.
- the second mold 17 is fixed on the movable table 24.
- the second mold 17, both ball nuts 23 and the movable stand 24 constitute a movable body 25.
- a mold in-mold projecting mechanism 28 composed of a projecting plate 26, a plurality of projecting pins 27, and an inclined core (not shown) is provided.
- the projecting plate 26 is disposed substantially horizontally.
- Each projecting pin 27 extends upward from the projecting plate 26.
- the inclined core is provided at the upper end of each projecting pin 27.
- Each projecting pin 27 is inserted into a guide hole (not shown) or the like which penetrates the second mold 17 up and down.
- the inclined core constitutes a part of the forming projection 17A.
- the base 12 is provided with a forming machine side projecting mechanism 8 consisting of a projecting plate 6, a plurality of projecting pins 7, and a driving device (not shown).
- the projecting plate 6 is disposed substantially horizontally and is moved up and down by a drive device.
- Each projecting pin 7 extends upward from the projecting plate 6.
- Each projecting pin 7 is inserted into a guide hole (not shown) or the like passing through the movable table 24.
- the forming machine side projecting mechanism 8 moves the projecting plate 26 and the projecting pin 7 upward to move the projecting plate 26 upward.
- the projecting pin 27 and the inclined core are protruded upward in order to peel off the molded product in close contact with the second mold 17 (the molding projection 17A).
- the top plate portion 15 is provided with a plurality of mold clamping mechanisms 30.
- the mold clamping mechanism 30 presses the first mold 16 and the second mold 17 substantially uniformly at their contact surfaces. For this reason, the respective mold clamping mechanisms 30 are provided at substantially equal intervals corresponding to the peripheral edge portion of the contact surface.
- the mold clamping mechanism 30 prevents the second mold 17 from being separated from the first mold 16 by the injection pressure of the molten resin, from the start of injection to the solidification of the molten resin.
- the second mold 17 is pressed against the first mold 16.
- FIGS. 3A and 3B through holes 31 and 32 penetrating in the vertical direction are provided in the first mold 16 and the top plate portion 15, respectively.
- a female screw portion 36 as an engaged portion is disposed and fixed coaxially with the through hole 31.
- An internal thread 35 is formed on the inner peripheral surface of the internal thread portion 36.
- a support member 37 is fixed on the top plate portion 15 via a fluid pressure washer 55 as a second actuator.
- the support member 37 is elongated and extends in the vertical direction.
- a motor 38 such as a servomotor is disposed and fixed coaxially with the through holes 31 and 32.
- the motor 38 as a first actuator has an output shaft 39 extending downward.
- the shaft 41 is inserted through the through holes 31 and 32 and the fluid pressure washer 55.
- the shaft 41 is elongated and extends in the vertical direction.
- the shaft 41 is provided with a general portion 42 which occupies most of the shaft 41 and a large diameter portion 44 provided at the upper end portion of the general portion 42.
- the diameter of the large diameter portion 44 is larger than that of the general portion 42.
- the diameter of the general portion 42 is slightly smaller than that of the through holes 31 and 32.
- the general portion 42 is rotatably and vertically movably supported by a slide bearing (bush) 45 disposed in the through hole 32 of the top plate portion 15.
- a slide bearing (bush) 45 disposed in the through hole 32 of the top plate portion 15.
- an external thread portion 43 as an engagement portion which can be screwed into the internal thread portion 36 is formed.
- the large diameter portion 44 is located above the fluid pressure washer 55.
- the large diameter portion 44 is rotatably and vertically movably supported by a slide bearing (bush
- a cylindrical body 47 is rotatably supported by a rolling bearing 48 at an upper portion of the support member 37 and between the large diameter portion 44 of the shaft 41 and the motor 38.
- the cylindrical body 47 is connected to the output shaft 39 of the motor 38 by a coupling 52 or the like.
- a connecting member 49 is interposed between the cylindrical body 47 and the large diameter portion 44.
- the connecting member 49 is attached to the cylindrical body 47 so as to be vertically movable and integrally rotatable.
- the connecting member 49 is attached to the large diameter portion 44 of the shaft 41 so as to be integrally rotatable.
- the spring 51 is disposed in the cylindrical body 47 in a compressed state. The spring 51 always biases the shaft 41 downward via the connecting member 49.
- the fluid pressure washer 55 applies a force in the mold clamping direction to the shaft 41 in a state in which the male screw portion 43 is screwed into the female screw portion 36 separately from the motor 38.
- the fluid pressure washer 55 includes a cylinder 56 fixed on the top plate portion 15 and a piston 57 into which the general portion 42 of the shaft 41 is inserted.
- the piston 57 is accommodated in the cylinder 56 so as to be able to move up and down.
- the inside of the cylinder 56 is divided up and down by a piston 57 to form two fluid pressure chambers 58 and 59.
- the lower fluid pressure chamber 59 of the two fluid pressure chambers 58 and 59 is a clamping fluid pressure chamber 59.
- a hydraulic fluid such as hydraulic oil is supplied to the clamping fluid pressure chamber 59 when a force in the clamping direction (upward) is applied to the shaft 41.
- the mold clamping mechanism described in Patent Document 1 by moving the movable die plate, the movable die attached to the movable die plate is indirectly moved to move the movable die to the fixed die plate. It is made to press-fit to the fixed mold attached to.
- the second mold 17 is directly pressure-welded to the first mold 16 through the shaft 41. From this, in this embodiment, unlike the mold clamping mechanism described in Patent Document 1, in order to clamp the first mold 16 and the second mold 17, a fixed die plate, a movable die plate, and the like are used. Not used. Further, a mold release mechanism for separating the second mold 17 pressed against the first mold 16 by the mold clamping mechanism 30 from the first mold 16 after molding is not provided in the wedge-shaped injection molding machine 10 .
- FIG. 1 shows a vertical injection molding machine 10 in an open mold state.
- the second mold 17 is located at the mold opening position largely separated downward from the first mold 16.
- the rotation of the motor 38 is stopped.
- the fluid pressure washer 55 the fluid pressure in the fluid pressure chambers 58 and 59 is both reduced.
- a downward biasing force by a spring 51 is applied to the piston 57 via the shaft 41 and the like. Therefore, the piston 57 is located at the lowermost position of the cylinder 56. Further, at least a portion of the male screw portion 43 of the shaft 41 protrudes downward from the lower surface of the first mold 16.
- the motor 22 rotates the ball screw shaft 21 in a predetermined direction. Then, the movable body 25 screwed to the ball screw shaft 21 by the ball nut 23 starts to ascend. As the movable body 25 rises, the distance between the second mold 17 and the first mold 16 gradually narrows, and the distance between the male screw 43 of the shaft 41 and the female screw 36 of the second mold 17 gradually narrows.
- the shaft 41 is inserted into the through holes 31 and 32 and supported by the top plate portion 15 and the support member 37 by the slide bearings 45 and 46. For this reason, the direction of gravity acting on the shaft 41 and the direction of the axis L1 of the shaft 41 are both vertical, and coincide with the axis L2 of the corresponding female screw portion 36 of the second mold 17.
- the present embodiment is different from the horizontal injection molding machine described in Patent Document 2 in which the shaft is inclined by its own weight and the axis of the shaft is easily deviated from the axis of the female screw.
- the direction of rotation is the direction in which the externally threaded portion 43 of the shaft 41 is tightened to the internally threaded portion 36 of the second mold 17.
- the rotation of the motor 38 is transmitted to the shaft 41 via the coupling 52, the cylindrical body 47 and the connecting member 49.
- the shaft 41 is biased downward by a spring 51 via a connecting member 49.
- the axis L1 of the shaft 41 coincides with the axis L2 of the female screw portion 36. For this reason, the end of the male screw portion 43 matches and meshes with the end of the female screw 35, and the male screw portion 43 starts to be screwed (engaged) into the female screw portion 36.
- the shaft 41 is connected to the second mold 17 through the female screw portion 36 and extends along the axial direction.
- a tensile force that is, an axial force
- This axial force is a clamping direction force that matches the direction in which the second mold 17 and the first mold 16 are made to approach each other.
- the second mold 17 is pressed against the first mold 16 by the force in the mold clamping direction. Further, as the male screw portion 43 is screwed into the female screw portion 36, the large diameter portion 44 approaches the piston 57.
- the shaft 41 also continues to rotate. As shown in FIGS. 2 and 3A and 3B, when the male screw 43 is screwed into the female screw 36 by a predetermined amount, the rotation of the output shaft 39 of the motor 38 is stopped, and the coupling 52 The rotation of the cylindrical body 47, the connecting member 49 and the shaft 41 is also stopped.
- the hydraulic fluid is supplied into the clamping fluid pressure chamber 59 of the fluid pressure washer 55.
- the fluid pressure of the clamping fluid pressure chamber 59 is increased, and the fluid pressure is applied to the piston 57.
- the high fluid pressure is maintained for a period of time from the filling of the molten resin in the cavity 18 to the cooling and solidification.
- the high fluid pressure pushes the piston 57 upward with a large force.
- the pressing by the piston 57 further extends the shaft 41 and generates a large axial force.
- the axial force necessary to keep the second mold 17 pressed against the first mold 16 is required so that the second mold 17 does not separate from the first mold 16 by the injection pressure of the molten resin.
- the reverse operation is performed.
- the above-described mold clamping state is released. That is, in the mold clamping mechanism 30, the hydraulic fluid is discharged from the lower mold clamping fluid pressure chamber 59, and the working fluid is supplied into the upper hydraulic pressure chamber 58.
- the hydraulic pressure of the clamping fluid pressure chamber 59 is reduced, the hydraulic pressure of the other fluid pressure chamber 58 is increased.
- the piston 57 in the cylinder 56 is lowered. Therefore, the axial force by the fluid pressure washer 55 is reduced.
- the large diameter portion 44 of the shaft 41 is separated upward from the piston 57 and the male screw portion 43 is disengaged from the female screw portion 36 of the second mold 17 as the shaft 41 is retracted. Then, since the connection between the shaft 41 and the second mold 17 is released, the second mold 17 can be lowered.
- the second mold 17 is in close contact with the first mold 16. Further, a molded product obtained by cooling and solidifying the molten resin in the cavity 18 is in close contact with the molding recess 16 A of the first mold 16 and the molding projection 17 A of the second mold 17.
- the direction of gravity acting on the movable body 25 including the second mold 17 is the same as the direction in which the second mold 17 is released from the first mold 16. Therefore, the gravity acting on the movable body 25 can be used as at least a part of the mold release force. For this reason, the second mold 17 is released from the first mold 16 even if the mold release force is not separately applied between the first mold 16 and the second mold 17 (even by the release mechanism). can do.
- each ball screw shaft 21 is rotated by the motor 22 in the opposite direction to the time when the movable body 25 is lifted. Thereby, the movable body 25 starts to descend. As the movable body 25 descends, the second mold 17 separates from the first mold 16. On the other hand, as shown in FIG. 4A, since the shaft 41 is biased downward by the spring 51, the shaft 41 is lowered so as to follow the movable body 25 while keeping the male screw 43 in contact with the female screw 36. Do. When the large diameter portion 44 of the shaft 41 is lowered to a position where it contacts the piston 57, the lowering of the shaft 41 stops. On the other hand, the movable body 25 continues to descend. Therefore, as shown in FIG. 1, the female screw portion 36 descends and separates from the shaft 41. When the second mold 17 separates from the first mold 16, the molded product is separated from the molding recess 16A but keeps in close contact with the molding projection 17A of the second mold 17.
- the drive device of the forming machine side projecting mechanism 8 raises the projecting plate 6 and the projecting pin 7.
- the ejection plate 26 pushed by the ejection pin 7 ascends with the ejection pin 27 and the inclined core.
- the molded article is peeled off from the forming projection 17A by the inclined core projecting from the forming projection 17A and taken out from between the first mold 16 and the second mold 17.
- each projecting pin 27 in the mold inward projecting mechanism 28 extends in the vertical direction, and is supported by the projecting plate 26 at its lower end.
- the direction of gravity acting on the ejector pin 27 and the direction in which the axis L3 of the ejector pin 27 extends are both vertical and coincide with each other.
- each projecting pin 7 in the forming machine side projecting mechanism 8 extends in the vertical direction, and is supported by the projecting plate 6 at its lower end.
- the direction of gravity acting on the ejector pin 7 and the extending direction of the axis L4 of the ejector pin 7 are both vertical, and coincide with each other.
- the present embodiment is different from the horizontal injection molding machine described in Patent Document 2.
- the ejector pin In a lateral injection molding machine, the ejector pin extends horizontally and is supported at one end by a ejector plate.
- the axis of the ejector pin and the direction of gravity acting on the ejector pin are significantly different. For this reason, when the projecting pins move horizontally in a state of being inclined so as to become lower toward the tip, the projecting cores of the tips of the projecting pins and the projecting pins rub against the second mold, generating metal powder. There is a risk of
- the molded product is also protruded in an inclined state due to the inclination of the protruding pin and the inclined core, the molded product and the second mold are rubbed, which may generate resin waste.
- each protrusion pin 27 extends vertically and ascends in that state, so that each protrusion pin 27 and the inclined core do not easily rub against the second mold 17 and generation of metal powder is suppressed. Ru. Further, since the molded product is not protruded in the inclined state due to the inclination of the protruding pin 27, the molded product and the second mold 17 are not easily rubbed, and the generation of resin debris is also suppressed. Furthermore, in the present embodiment, each protrusion pin 7 extends in the vertical direction and rises in that state, so that each protrusion pin 7 does not easily rub against the movable table 24 and generation of metal powder is suppressed. In this way, through the series of operations of the vertical injection molding machine 10, a molded article is molded.
- the first mold 16 is a fixed mold
- the second mold 17 is a movable mold.
- the second mold 17 approaches and separates from the first mold 16 by moving up and down.
- Through holes 31 and 32 extending in the vertical direction are provided in the first mold 16 and the top plate portion 15, respectively.
- the shaft 41 is supported by the through holes 31 and 32 in the inserted state.
- the shaft 41 is rotated by the motor 38.
- a male screw portion 43 as an engaging portion is provided in the upper part of the second mold 17, a female screw portion 36 is provided coaxially with the through holes 31 and 32.
- the male screw portion 43 of the shaft 41 is engaged (screwed) in the female screw portion 36 as the engaged portion by rotating the shaft 41 in a state where the two molds 16 and 17 are in contact with each other. Then, in a state in which the second mold 17 is in contact with the first mold 16, the second mold 17 is generated by a force (axial force) in a mold clamping direction generated by screwing the male screw portion 43 into the female screw portion 36. Is pressed into contact with the first mold 16 (FIGS. 3A and 3B).
- the in-mold protrusion mechanism 28 and the forming-machine-side protrusion mechanism 8 are used for protruding and removing the molded product from the second mold 17 opened.
- the in-mold extension mechanism 28 comprises a protrusion plate 26, a plurality of protrusion pins 27, and a tilted core. Each projecting pin 27 extends vertically and is fixed to the projecting plate 26 at its lower end. The inclined core is provided on the upper end of each projecting pin 27 (FIGS. 1 and 2). For this reason, since each protrusion pin 27 does not incline easily by dead weight at the time of protrusion of a molded article, and it becomes difficult to rub with the 2nd metal mold 17, generation
- the forming machine side projecting mechanism 8 is provided with a projecting plate 6, a plurality of projecting pins 7, and a driving device.
- Each projecting pin 7 extends in the vertical direction, and is fixed to the projecting plate 6 at its lower end.
- the ejector plate 6 is moved up and down by a drive (FIGS. 1 and 2). For this reason, since each protrusion pin 7 does not incline easily by dead weight at the time of protrusion of a molded article, and it becomes difficult to rub with the movable stand 24, generation
- the second mold 17 is directly pressure-welded to the first mold 16 through the shaft 41 (FIGS. 1 and 2).
- a fixed die plate, a movable die plate, and the like are used in order to clamp the first mold 16 and the second mold 17, a fixed die plate, a movable die plate, and the like are used. It becomes unnecessary.
- a shaft 41, an internal thread portion 36, and the like that constitute the mold clamping mechanism 30 are disposed in the vicinity of the cavity 18. Therefore, the miniaturization of the mold clamping mechanism 30 and the miniaturization of the vertical injection molding machine 10 become possible.
- weight reduction of the movable body 25 is attained, energy saving for moving the movable body 25 can be reduced, and energy saving can also be achieved.
- the second mold 17 is positioned below the first mold 16 and moved up and down to perform mold closing and mold opening (FIG. 1, FIG. 1). 2).
- mold closing and mold opening directions do not affect the footprint of the vertical injection molding machine 10.
- the vertical injection molding machine 10 can make the installation space smaller than a horizontal injection molding machine in which the second mold is moved in the horizontal direction at the time of mold closing and mold opening.
- a fluid pressure washer 55 for applying a force in the mold clamping direction is provided to the shaft 41 in a state in which the male screw portion 43 is screwed into the female screw portion 36 (FIGS. 3A and 3B) . Therefore, a part of the required axial force, which is an axial force necessary to press the first die 16 and the second die 17, can be covered by the force generated by the fluid pressure washer 55. Therefore, the axial force to be generated with the rotation of the shaft 41 can be reduced. That is, as the motor 38 which generates an axial force on the shaft 41, a small motor with small output torque can be used. Therefore, the miniaturization of the clamping mechanism 30 and the further miniaturization of the vertical injection molding machine 10 become possible.
- the fluid pressure washer 55 is used as the second actuator.
- the fluid pressure washer 55 comprises a cylinder 56 and a piston 57.
- the piston 57 is vertically movably accommodated in the cylinder 56 in a state where the general portion 42 of the shaft 41 is inserted. Also, the piston 57 divides the inside of the cylinder 56 up and down to form two fluid pressure chambers 58 and 59.
- the lower fluid pressure chamber in the cylinder 56 is a clamping fluid pressure chamber 59.
- a working fluid is supplied to the clamping fluid pressure chamber 59 when a force in the clamping direction is applied to the shaft 41 (FIG. 3 (B)).
- the present invention can be embodied in the following another embodiment.
- the end (lower end) away from the motor 22 is also supported by the slide bearing or the like It is also good.
- the slide bearing or the like It is also good.
- the shaft 41 extending in the vertical direction is used. Therefore, even when the shaft 41 is supported by the slide bearing or the like at the end close to the motor and the end away from the motor, the direction of gravity acting on the shaft 41 and the axis of the slide bearing are aligned. Therefore, the shaft 41 can be easily inserted into all the slide bearings.
- This effect is particularly effective when one mold clamping mechanism 30 is commonly used for a plurality of types of first molds 16. In this case, every time the first mold 16 is replaced, it is necessary to remove, attach, or adjust the mold clamping mechanism 30, and the frequency of inserting the shaft 41 into the slide bearing is increased.
- the male screw portion 43 may be provided not only at the lower end but also in a wide area including the lower end in the direction of the axis L1 of the shaft 41. When the long shaft 41 is used, the male screw portion 43 may be provided at an intermediate portion in the direction of the axis L1 of the shaft 41.
- the female screw portion (engaged portion) 36 is provided not only at the upper end but also in a wide area including the upper end in the direction of the axis L2 of the second mold 17, on the condition that it is coaxial with the through hole 31. May be That is, the female screw portion 36 may be longer downward than the present embodiment.
- a hole or a hole coaxial with the through hole 31 may be provided in the second mold 17, and an internally threaded portion 36 may be provided at an axial intermediate portion of the hole or the hole.
- the target provided with the male screw portion 43 and the female screw portion 36 may be the reverse of the present embodiment. That is, when the shaft 41 having a large diameter is used, a female screw is provided at the end (for example, the lower end) of the shaft 41 close to the second mold 17 and the end close to the first mold 16 of the second mold 17 A male screw may be provided on the part (for example, the upper end). Also in this case, when the motor 41 rotates the shaft 41 to screw the male screw portion into the female screw portion, a force in the mold clamping direction can be generated.
- the fluid pressure washer 55 may be omitted. In this case, it is necessary to generate an axial force only by the extension due to the rotation of the shaft 41, and it is necessary to use a larger motor 38 than the case of using the fluid pressure washer 55. However, compared with the case of using a fixed die plate, a movable die plate, etc., the mold clamping mechanism 30 and the vertical injection molding machine 10 can be made smaller and lighter.
- a mold release mechanism is provided separately from the mold clamping mechanism 30. May be In this case, if the gravity acting on the movable body 25 is used as at least a part of the mold release force, mold release can be performed with a smaller force. Therefore, the mold release mechanism can be miniaturized, and the vertical injection molding machine 10 Miniaturization is possible.
- the gravity acting on the movable body 25 may not necessarily be used as a release force.
- a plurality of weights and a plurality of pulleys are used.
- Each pulley is rotatably mounted on the top of the vertical injection molding machine 10. Then, a wire may be hung from the upper side on each pulley, one end of the wire may be fixed to the movable body 25, and the other end of the wire may be fixed to the weight.
- the influence of gravity is large during movement of the movable mold, and the load on the motor is large in order to maintain the movement and stop of the movable mold.
- the load applied to the motor can be reduced by maintaining the balance between the weight and the movable body through the wire hung on the pulley.
- the second mold 17 may be raised and lowered by a hydraulic cylinder, or the chain belt may be driven by a motor to raise and lower the second mold 17.
- the second mold 17 may be a fixed mold and the first mold 16 may be a movable mold. In this case, the first mold 16 approaches and separates from the second mold 17 by moving up and down on the upper side of the second mold 17.
- the positional relationship between the first mold 16 and the second mold 17 may be opposite to that of the present embodiment. That is, the first mold 16 may be disposed below the second mold 17. In this case, in each mold clamping mechanism 30, the motor 38 is disposed below the shaft 41. Further, in this case, the second mold 17 may be a fixed mold, and the first mold 16 may be a movable mold which is moved up and down below the second mold 17. Alternatively, the first mold 16 may be fixed, and the second mold 17 may be movable above the first mold 16.
- the second mold 17 is pressed against the first mold 16 by the force in the mold clamping direction generated by screwing the male screw 43 into the female screw 36, but instead of this, After the engaging portion is engaged with the engaged portion, a force in the mold clamping direction may be applied to the shaft 41.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
A vertical injection molding machine is provided with a first mold (16) serving as a stationary mold and also with a second mold (17) serving as a movable mold which ascends and descends beneath the first mold (16). A mold clamp mechanism (30) is provided with a shaft (41) and a female screw section (36). The shaft (41) is supported while being inserted through a through-hole (31) vertically penetrating through the first mold (16). A male screw section (43) is formed at the lower end of the shaft (41). The shaft (41) is rotated by a motor (38). The female screw section (36) is provided in the second mold (17) so as to be coaxial with the through-hole (31). When the shaft (41) is rotated by the motor (38) with both the molds (16, 17) held in contact with each other, the male screw section (43) of the shaft (41) is screwed into the female screw section (36) of the second mold (17). The force generated as the male screw section (43) is screwed into the female screw section (36) and acting in the direction of clamping the molds causes the second mold (17) to be in pressure contact with the first mold (16). The configuration prevents the shaft (41) from tilting due to the weight thereof, and as a result, the male screw section (43) can be easily engaged with the female screw section (36) when the molds are clamped together.
Description
本発明は、可動型を固定型に接近及び離間させ、固定型及び可動型間に形成されるキャビティ内に溶融樹脂を射出して成形品を形成するための射出成形機に関する。
The present invention relates to an injection molding machine for forming a molded article by injecting a molten resin into a cavity formed between a stationary mold and a movable mold, with the movable mold approaching and separating the stationary mold.
射出成形機では、可動型が固定型に接触する位置まで移動して両型が閉じられ、さらに、型締め機構により可動型が固定型に圧接させられる。続いて、固定型及び可動型間に形成されるキャビティ内に溶融樹脂が射出されて、成形品が形成される。型締め機構は、射出が開始されてから溶融樹脂が固化するまでの期間、溶融樹脂の射出圧力によって可動型が固定型から離れないようにする。
In the injection molding machine, the movable mold is moved to a position where it contacts the fixed mold, both molds are closed, and the movable mold is pressed against the fixed mold by the mold clamping mechanism. Subsequently, a molten resin is injected into a cavity formed between the fixed mold and the movable mold to form a molded article. The mold clamping mechanism prevents the movable mold from leaving the fixed mold due to the injection pressure of the molten resin during the period from when injection is started to when the molten resin solidifies.
型締め機構として、例えば、特許文献1に記載される構成が知られている。この文献に開示の型締め機構では、固定型が取付けられた固定ダイプレートの四隅にボールねじ軸が回転可能に支持されている。可動型が取付けられた可動ダイプレートの四隅には、ボールナットが嵌合されている。ボールナットには、ボールねじ軸が螺合されている。モータによってボールねじ軸が回転されると、可動ダイプレートがボールねじ軸に沿って移動し、可動型が固定型に圧接される。この射出成形機では、互いに圧接される固定型及び可動型のほかに、固定ダイプレート、可動ダイプレート等の部品が用いられる。これらの部品は、固定型及び可動型の周りに配置されている。このため、型締め機構が大型化し、射出成形機も大型化する。
For example, a configuration described in Patent Document 1 is known as a mold clamping mechanism. In the mold clamping mechanism disclosed in this document, ball screw shafts are rotatably supported at four corners of a fixed die plate to which a fixed mold is attached. Ball nuts are fitted at the four corners of the movable die plate to which the movable die is attached. A ball screw shaft is screwed into the ball nut. When the ball screw shaft is rotated by the motor, the movable die plate moves along the ball screw shaft, and the movable die is pressed against the fixed die. In this injection molding machine, components such as a fixed die plate and a movable die plate are used in addition to the fixed die and the movable die that are in pressure contact with each other. These parts are arranged around fixed and movable molds. For this reason, the mold clamping mechanism is enlarged, and the injection molding machine is also enlarged.
型締め機構の大型化を解決するための技術が、例えば、特許文献2において提案されている。特許文献2には、型を水平方向に移動させて型を開閉する横型と呼ばれるタイプの射出成形機が記載されている。
For example, Patent Document 2 proposes a technique for solving the increase in size of the mold clamping mechanism. Patent Document 2 describes an injection molding machine of a type called a horizontal type in which the mold is moved in the horizontal direction to open and close the mold.
横型の射出成形機では、可動型に、水平方向に延びる貫通孔が形成されている。可動型の貫通孔には、シャフトが挿通された状態で支持されている。シャフトの固定型に近接する端部には、係合部(雄ねじ部)が設けられている。シャフトの固定型と反対側の端部には、モータが駆動連結されている。固定型の可動型に面する部分には、被係合部(雌ねじ部)が、貫通孔と同軸上に設けられている。型締めに際し、可動型が固定型に接触した状態で、シャフトはモータによって回転する。シャフトの回転に伴い、係合部(雄ねじ部)が被係合部(雌ねじ部)に係合(螺入)され、可動型が固定型に圧接される。この射出成形機では、特許文献1に開示の固定ダイプレート、可動ダイプレート等が不要となる。また、型締め機構を構成するシャフトや被係合部等の部品がキャビティの近傍に位置する。このため、型締め機構の小型化、即ち射出成形機の小型化が可能である。
In the horizontal injection molding machine, the movable mold is formed with a through hole extending in the horizontal direction. The movable through hole is supported in a state where the shaft is inserted. An engagement portion (male screw portion) is provided at the end of the shaft adjacent to the fixed mold. A motor is drivingly connected to an end of the shaft opposite to the fixed type. An engaged portion (female screw portion) is provided coaxially with the through hole at a portion facing the fixed movable type. At the time of mold clamping, the shaft is rotated by the motor with the movable mold in contact with the fixed mold. With the rotation of the shaft, the engaging portion (male screw portion) is engaged (screwed) with the engaged portion (female screw portion), and the movable mold is pressed against the fixed mold. In this injection molding machine, the fixed die plate, movable die plate and the like disclosed in Patent Document 1 become unnecessary. In addition, parts such as the shaft and the engaged portion that constitute the mold clamping mechanism are located in the vicinity of the cavity. Therefore, the mold clamping mechanism can be miniaturized, that is, the injection molding machine can be miniaturized.
特許文献2に記載された射出成形機は、貫通孔に挿通されたシャフトを回転可能に支持する構造を備えている。しかしながら、シャフトがモータに近接する端部(基端)のみで支持される場合、シャフトは、その自重により、固定型に近接する端部(先端)をシャフトの基端よりも下げて傾斜する。この場合、シャフトの軸線が被係合部(雌ねじ部)の軸線からずれるため、係合部(雄ねじ部)を被係合部(雌ねじ部)に係合(螺入)させることが難しくなる。よって、シャフトの軸線を被係合部の軸線に合致させるための作業や機構が別途必要となる。
The injection molding machine described in Patent Document 2 has a structure for rotatably supporting a shaft inserted into the through hole. However, when the shaft is supported only at the end (proximal end) close to the motor, the shaft is inclined by its own weight, with the end (distal end) close to the fixed mold lower than the proximal end of the shaft. In this case, since the axis of the shaft deviates from the axis of the engaged portion (female screw portion), it becomes difficult to engage (screw in) the engaging portion (male screw portion) with the engaged portion (female screw portion). Therefore, an operation and a mechanism for matching the axis of the shaft with the axis of the engaged portion are additionally required.
本発明の目的は、型締めに際し、シャフトの係合部を被係合部に容易に係合させることのできる射出成形機を提供することにある。
An object of the present invention is to provide an injection molding machine capable of easily engaging an engaging portion of a shaft with an engaged portion at the time of mold clamping.
上記目的を達成するため、本発明の第一の態様によれば、第1金型及び第2金型を備え、それらの一方を固定型とし、他方を可動型とし、可動型は昇降することにより固定型に接近及び離間し、可動型を固定型に接触させて両型を閉じて、型締め機構により可動型を固定型に圧接させ、第1金型及び第2金型間に形成されるキャビティに溶融樹脂を射出して成形品を形成する射出成形機が提供される。型締め機構は、第1金型を上下方向に貫通する貫通孔に挿通された状態で支持されるシャフトであって、シャフトの軸線方向の少なくとも一部に係合部を有し、アクチュエータにより回転駆動されるシャフトと、第2金型において貫通孔と同軸上に設けられる被係合部であって、第1金型及び第2金型が相互に接触した状態で、アクチュエータによるシャフトの回転により係合部が係合される被係合部とを備え、第2金型及び第1金型を互いに接近させる方向は型締め方向であり、係合部及び被係合部の係合に伴い発生する型締め方向の力、又は係合部及び被係合部の係合後においてシャフトに印加される型締め方向の力により、第1金型と第2金型とを互いに圧接させる。
In order to achieve the above object, according to a first aspect of the present invention, a first mold and a second mold are provided, one of which is a fixed mold, the other is a movable mold, and the movable mold is raised and lowered. The movable mold is brought into contact with and separated from the fixed mold, the movable mold is brought into contact with the fixed mold, both molds are closed, and the movable mold is pressed against the fixed mold by the mold clamping mechanism, and formed between the first mold and the second mold. An injection molding machine is provided which injects a molten resin into a cavity to form a molded article. The mold clamping mechanism is a shaft supported in a state inserted through a through hole vertically penetrating the first mold, and has an engaging portion in at least a part in the axial direction of the shaft, and is rotated by an actuator The driven shaft and the engaged portion provided coaxially with the through hole in the second mold, and the first mold and the second mold are in contact with each other, and the shaft is rotated by the actuator. A direction in which the second mold and the first mold are made to approach each other is a mold clamping direction, and an engaging portion is engaged with the engaging portion. The first mold and the second mold are pressed against each other by the generated clamping direction force or the clamping direction force applied to the shaft after the engagement portion and the engaged portion are engaged.
この構成によれば、第1金型と第2金型とを型締め機構によって圧接させる場合、シャフトがアクチュエータによって回転される。シャフトの回転に伴い、係合部が被係合部に係合されて、シャフトが第2金型に連結される。
According to this configuration, when the first mold and the second mold are pressure-welded by the mold clamping mechanism, the shaft is rotated by the actuator. As the shaft rotates, the engaging portion is engaged with the engaged portion, and the shaft is connected to the second mold.
ここで、シャフトは、上下方向に延びる貫通孔に挿通された状態で支持されている。このため、シャフトに作用する重力の方向及びシャフトの軸線方向はいずれも鉛直方向であって、被係合部の軸線方向と合致する。この点で、本発明は、シャフトが自重により傾斜してシャフトの軸線が雌ねじ部の軸線からずれ易い特許文献2に記載の横型の射出成形機と異なる。
Here, the shaft is supported in a state of being inserted into a vertically extending through hole. For this reason, the direction of gravity acting on the shaft and the axial direction of the shaft are both vertical and coincide with the axial direction of the engaged portion. In this respect, the present invention differs from the horizontal injection molding machine described in Patent Document 2 in which the shaft is inclined by its own weight and the axis of the shaft is easily displaced from the axis of the female screw.
このように、本発明によれば、係合部の軸線と被係合部の軸線とが合致しているため、シャフトがアクチュエータによって回転すると、係合部が被係合部に対し容易に係合される。この係合と共に発生する型締め方向の力、又は係合後にシャフトに加わる型締め方向の力により、第1金型と第2金型とが互いに圧接させられる。そして、第1金型及び第2金型間に形成されるキャビティに溶融樹脂が射出されて、成形品が形成される。
Thus, according to the present invention, since the axis of the engaging portion and the axis of the engaged portion coincide with each other, when the shaft is rotated by the actuator, the engaging portion is easily engaged with the engaged portion. United. The first mold and the second mold are pressed against each other by the force in the mold clamping direction generated with this engagement or the force in the mold clamping direction applied to the shaft after engagement. Then, a molten resin is injected into a cavity formed between the first mold and the second mold to form a molded article.
特許文献1に記載された型締め機構では、第1金型及び第2金型の周りに、固定ダイプレート、可動ダイプレート等が配置されている。そして、可動ダイプレートを移動させることで、その可動ダイプレートに取付けられた可動型を間接的に移動させて、その可動型を、固定ダイプレートに取付けられた固定型に圧接させるようにしている。このため、装置全体が大型化する。また、竪型射出成形機では、重力に抗して可動型を上昇させる必要がある。このため、可動体を動かすために、横型の射出成形機よりも多くのエネルギーが必要となる。
In the mold clamping mechanism described in Patent Document 1, a fixed die plate, a movable die plate, and the like are arranged around the first mold and the second mold. Then, by moving the movable die plate, the movable die attached to the movable die plate is indirectly moved to press the movable die against the fixed die attached to the fixed die plate. . For this reason, the whole apparatus enlarges. Further, in the vertical injection molding machine, it is necessary to lift the movable mold against gravity. For this reason, more energy is required to move the movable body than the horizontal injection molding machine.
その点、本発明の射出成形機では、係合部が被係合部に係合してシャフトが第2金型に連結した状態で、型締め方向の力により、第2金型が第1金型に直接圧接される。このことから、本発明では、特許文献1に記載された型締め機構とは異なり、第1金型及び第2金型を型締めするために、固定ダイプレート、可動ダイプレート等が不要となる。また、型締め機構を構成するシャフトや被係合部等の部品がキャビティの近傍に位置している。これらにより、特許文献1に記載された構成と比較して、型締め機構の小型化、及び射出成形機の小型化が可能となる。また、型締め機構の小型化により可動体の軽量化が可能となり、可動体を動かすためのエネルギーを少なくして、省エネルギー化を図ることもできる。
In that respect, in the injection molding machine of the present invention, in a state where the engaging portion is engaged with the engaged portion and the shaft is connected to the second mold, the second mold is pressed by the force in the mold clamping direction. Directly pressed against the mold. From this, in the present invention, unlike the mold clamping mechanism described in Patent Document 1, in order to clamp the first mold and the second mold, the fixed die plate, the movable die plate, etc. become unnecessary. . In addition, parts such as a shaft and an engaged portion that constitute a mold clamping mechanism are located in the vicinity of the cavity. By these, compared with the structure described in patent document 1, size reduction of a clamping mechanism and size reduction of an injection molding machine are attained. In addition, downsizing of the mold clamping mechanism makes it possible to reduce the weight of the movable body, thereby reducing energy for moving the movable body and achieving energy saving.
上記の射出成形機において、係合部及び被係合部の一方が雌ねじ部により構成され、他方が雄ねじ部により構成され、型締め機構は、シャフトの回転により雄ねじ部を雌ねじ部に螺入することによって型締め方向の力を発生することが好ましい。
In the above-mentioned injection molding machine, one of the engaging portion and the engaged portion is constituted by the female screw portion, and the other is constituted by the male screw portion, and the mold clamping mechanism screws the male screw portion into the female screw portion by rotation of the shaft. Thus, it is preferable to generate a force in the mold clamping direction.
この場合、係合部が被係合部に係合して雄ねじ部が雌ねじ部に螺入されると、シャフトはその軸方向に沿って伸びる。このとき、シャフトには、自身の伸びに反発して元に戻ろうとする引張り力、すなわち軸力が発生する。この軸力は、第2金型及び第1金型を互いに接近させる方向に作用する型締め方向の力となる。この軸力により第1金型と第2金型とが互いに圧接されて、型締めが行われる。
In this case, when the engaging portion engages with the engaged portion and the male screw portion is screwed into the female screw portion, the shaft extends in the axial direction. At this time, a tensile force, that is, an axial force is generated on the shaft to return to its original state by repelling it. This axial force is a clamping direction force acting in a direction to make the second mold and the first mold approach each other. The first mold and the second mold are pressed against each other by this axial force, and mold clamping is performed.
上記の射出成形機において、アクチュエータは第1アクチュエータであり、型締め機構は、さらに、第1アクチュエータとは別に、係合部を被係合部に係合させた状態のシャフトに対して型締め方向の力を印加するための第2アクチュエータを備えていることが好ましい。
In the above-described injection molding machine, the actuator is the first actuator, and the mold clamping mechanism further clamps the shaft with the engaging portion engaged with the engaged portion separately from the first actuator. Preferably, a second actuator is provided for applying a directional force.
第2アクチュエータは、係合部が被係合部に係合されているシャフトに対し、型締め方向の力を印加することができる。そのため、第1金型と第2金型とを圧接させるために必要な軸力(要求軸力)の一部が、第2アクチュエータが発生する力によって賄われる。このため、シャフトの回転による伸びによって発生すべき軸力を小さく抑えることができる。この軸力をシャフトに発生させるための第1アクチュエータとして、出力トルクの小さな小型のアクチュエータが使用可能となる。つまり、型締め機構の小型化、及び射出成形機の小型化が可能となる。
The second actuator can apply a force in the mold clamping direction to the shaft in which the engaging portion is engaged with the engaged portion. Therefore, a part of the axial force (required axial force) necessary for bringing the first mold and the second mold into pressure contact with each other is covered by the force generated by the second actuator. Therefore, the axial force to be generated by the extension due to the rotation of the shaft can be reduced. A small actuator with small output torque can be used as a first actuator for generating this axial force on the shaft. That is, the mold clamping mechanism can be miniaturized and the injection molding machine can be miniaturized.
上記の射出成形機において、第2アクチュエータは、シリンダ及びピストンを備え、ピストンは、シリンダの内部において上下動可能に収容され、かつシリンダの内部を2つの流体圧室に区画し、2つの流体圧室のうち一方が型締め用流体圧室であり、型締め用流体圧室には、シャフトに対し型締め方向の力を印加する際に作動流体が供給されることが好ましい。
In the above-described injection molding machine, the second actuator includes a cylinder and a piston, the piston is accommodated in the cylinder so as to be vertically movable, and divides the inside of the cylinder into two fluid pressure chambers, and two fluid pressures Preferably, one of the chambers is a clamping fluid pressure chamber, and the clamping fluid pressure chamber is supplied with a working fluid when a force in the clamping direction is applied to the shaft.
第1アクチュエータが作動して係合部が被係合部に係合した後、第2アクチュエータを構成するシリンダ内の型締め用流体圧室に作動流体が供給される。このとき、ピストンには、型締め方向に作用する作動流体の圧力が加えられる。このため、シャフトには、ピストンを通じて、型締め方向に作用する力が加えられる。この力により第1金型と第2金型とが互いに圧接されて、型締めが行われる。つまり、シリンダ及びピストン等の簡素な構成により、シャフトに対し型締め方向の力を加えることができる。
After the first actuator is actuated to engage the engaging portion with the engaged portion, the working fluid is supplied to the clamping fluid pressure chamber in the cylinder constituting the second actuator. At this time, the pressure of the working fluid acting in the mold clamping direction is applied to the piston. For this reason, a force acting in the mold clamping direction is applied to the shaft through the piston. The first mold and the second mold are pressed against each other by this force to perform mold clamping. That is, with a simple configuration such as a cylinder and a piston, a force in the mold clamping direction can be applied to the shaft.
上記の射出成形機において、第1金型は固定型であり、第2金型は可動型であり、第2金型は、第1金型の下側で昇降することにより第1金型に接近及び離間し、第2金型と、第2金型の昇降に伴い移動する部材とから可動体が構成され、可動体に作用する重力は、型締め機構により第1金型に圧接された第2金型を第1金型から離型するための離型力の少なくとも一部として利用されることが好ましい。
In the above-mentioned injection molding machine, the first mold is a fixed mold, the second mold is a movable mold, and the second mold is moved up and down on the lower side of the first mold to form the first mold. The movable body is constituted by the second mold and the member moving along with the elevation of the second mold, and the gravity acting on the movable body is pressed against the first mold by the clamping mechanism. Preferably, it is used as at least a part of a mold release force for releasing the second mold from the first mold.
可動型として機能する第2金型は、固定型として機能する第1金型の下側で昇降することで、第1金型に対し接近及び離間する。この場合、第2金型と、第2金型の昇降に伴い移動する部材とからなる可動体に作用する重力が、型締め機構によって第1金型に圧接された第2金型が第1金型から離型するときの離型力の一部として利用される。従って、第2金型を第1金型から離型させる離型機構を備える場合、より小さな離型力での離型が可能となるため、離型機構の小型化、及び射出成形機の小型化が可能となる。また、可動体に作用する重力が充分に大きい場合、離型機構を用いることなく離型を行なうこともできる。
The second mold functioning as the movable mold moves closer to and away from the first mold by moving up and down on the lower side of the first mold functioning as the fixed mold. In this case, the second mold in which the gravity acting on the movable body consisting of the second mold and the member moving with the second mold is pressed against the first mold by the mold clamping mechanism is the first It is used as part of the mold release force when mold release. Therefore, when the mold release mechanism for separating the second mold from the first mold is provided, mold release with a smaller mold release force becomes possible, so the mold release mechanism can be miniaturized, and the injection molding machine can be miniaturized. Can be In addition, when the gravity acting on the movable body is sufficiently large, it is possible to perform mold release without using a mold release mechanism.
以下、本発明の射出成形機を竪型射出成形機に具現化した一実施形態について図面を参照して説明する。
竪型射出成形機では、金型(固定型及び可動型)を上下に移動させて開閉させる。本明細書では、可動型を固定型に接近させる方向へ移動させることを「型閉じ」といい、固定型に接触した可動型を固定型に圧接させることを「型締め」という。また、型締めされた可動型を固定型から離すことを「離型」といい、離型された可動型を固定型から離間させる方向へ移動させることを「型開き」という。 Hereinafter, an embodiment in which the injection molding machine of the present invention is embodied in a vertical injection molding machine will be described with reference to the drawings.
In the vertical injection molding machine, the mold (fixed type and movable type) is moved up and down to open and close. In the present specification, moving the movable mold in a direction to approach the fixed mold is referred to as "mold closing", and pressing the movable mold in contact with the fixed mold against the fixed mold is referred to as "mold clamping". Further, releasing the clamped movable mold from the fixed mold is called "mold release", and moving the mold released movable mold in a direction to separate it from the fixed mold is called "mold opening".
竪型射出成形機では、金型(固定型及び可動型)を上下に移動させて開閉させる。本明細書では、可動型を固定型に接近させる方向へ移動させることを「型閉じ」といい、固定型に接触した可動型を固定型に圧接させることを「型締め」という。また、型締めされた可動型を固定型から離すことを「離型」といい、離型された可動型を固定型から離間させる方向へ移動させることを「型開き」という。 Hereinafter, an embodiment in which the injection molding machine of the present invention is embodied in a vertical injection molding machine will be described with reference to the drawings.
In the vertical injection molding machine, the mold (fixed type and movable type) is moved up and down to open and close. In the present specification, moving the movable mold in a direction to approach the fixed mold is referred to as "mold closing", and pressing the movable mold in contact with the fixed mold against the fixed mold is referred to as "mold clamping". Further, releasing the clamped movable mold from the fixed mold is called "mold release", and moving the mold released movable mold in a direction to separate it from the fixed mold is called "mold opening".
図1及び図2に示すように、竪型射出成形機10は、設置面11に設置される基台12と、基台12上に設けられた複数の支柱13と、全ての支柱13の上端に固定された天板部15とを備えている。天板部15は、支柱13によって支えられている。
As shown in FIGS. 1 and 2, the vertical injection molding machine 10 includes a base 12 installed on the installation surface 11, a plurality of columns 13 provided on the base 12, and the upper ends of all the columns 13. And a top plate portion 15 fixed to the The top plate portion 15 is supported by the columns 13.
天板部15の下面には、固定型として機能する第1金型16が固定されている。第1金型16の下方には、可動型として機能する第2金型17が配置されている。第2金型17を、第1金型16に接触する型閉じ位置(図2参照)と、第1金型16から下方へ大きく離間する型開き位置(図1参照)との間で、昇降させるため、次の機構が採用されている。
On the lower surface of the top plate 15, a first mold 16 functioning as a fixed mold is fixed. Below the first mold 16, a second mold 17 functioning as a movable mold is disposed. The second mold 17 is raised and lowered between a mold closing position (see FIG. 2) in contact with the first mold 16 and a mold opening position (see FIG. 1) which is largely separated from the first mold 16 downward. The following mechanism is adopted to make it happen.
基台12及び天板部15間には、上下方向に延びる一対のボールねじ軸21がそれぞれ回転可能に支持されている。各ボールねじ軸21は、サーボモータ等のモータ22に駆動連結されている。各ボールねじ軸21には、ボールナット23が螺合されている。両ボールナット23間には、可動台24が架け渡されている。可動台24上には、第2金型17が固定されている。第2金型17、両ボールナット23及び可動台24は、可動体25を構成する。各モータ22により各ボールねじ軸21がそれぞれ回転することにより、可動体25はボールねじ軸21に沿って昇降する。
A pair of ball screw shafts 21 extending in the vertical direction is rotatably supported between the base 12 and the top plate 15 respectively. Each ball screw shaft 21 is drivingly connected to a motor 22 such as a servomotor. A ball nut 23 is screwed into each ball screw shaft 21. A movable stand 24 is bridged between the ball nuts 23. The second mold 17 is fixed on the movable table 24. The second mold 17, both ball nuts 23 and the movable stand 24 constitute a movable body 25. When each ball screw shaft 21 is rotated by each motor 22, the movable body 25 is moved up and down along the ball screw shaft 21.
第2金型17の上部には、成形突部17Aが設けられている。第1金型16の下部には、成形凹部16Aが設けられている。第2金型17と第1金型16とが相互に接触させられた状態で、成形突部17Aは成形凹部16A内に入り込む。これにより、成形突部17A及び成形凹部16A間に、所望形状の成形品を形成するための空間であるキャビティ18が形成される(図2参照)。
On the upper part of the second mold 17, a forming protrusion 17A is provided. In the lower part of the first mold 16, a molding recess 16A is provided. With the second mold 17 and the first mold 16 in contact with each other, the forming projection 17A enters the forming recess 16A. Thus, a cavity 18 which is a space for forming a molded product having a desired shape is formed between the molding protrusion 17A and the molding recess 16A (see FIG. 2).
第2金型17内には、突出し板26、複数の突出しピン27、及び傾斜コア(図示略)からなる金型内突出し機構28が設けられている。突出し板26は、略水平に配置されている。各突出しピン27は、突出し板26から上方へそれぞれ延びている。傾斜コアは、各突出しピン27の上端にそれぞれ設けられている。各突出しピン27は、第2金型17を上下に貫通するガイド孔(図示略)等に挿通されている。傾斜コアは成形突部17Aの一部を構成している。
In the second mold 17, a mold in-mold projecting mechanism 28 composed of a projecting plate 26, a plurality of projecting pins 27, and an inclined core (not shown) is provided. The projecting plate 26 is disposed substantially horizontally. Each projecting pin 27 extends upward from the projecting plate 26. The inclined core is provided at the upper end of each projecting pin 27. Each projecting pin 27 is inserted into a guide hole (not shown) or the like which penetrates the second mold 17 up and down. The inclined core constitutes a part of the forming projection 17A.
基台12には、突出し板6、複数の突出しピン7、及び駆動装置(図示略)からなる成形機側突出し機構8が設けられている。突出し板6は、略水平に配置される共に、駆動装置によって昇降させられる。各突出しピン7は、突出し板6から上方へそれぞれ延びている。各突出しピン7は、可動台24を貫通するガイド孔(図示略)等に挿通されている。
The base 12 is provided with a forming machine side projecting mechanism 8 consisting of a projecting plate 6, a plurality of projecting pins 7, and a driving device (not shown). The projecting plate 6 is disposed substantially horizontally and is moved up and down by a drive device. Each projecting pin 7 extends upward from the projecting plate 6. Each projecting pin 7 is inserted into a guide hole (not shown) or the like passing through the movable table 24.
成形機側突出し機構8は、第2金型17が型開き位置まで下降したとき、突出し板6及び突出しピン7を上方へ移動させることにより、突出し板26を上方へ移動させる。これにより、突出しピン27及び傾斜コアが、第2金型17(成形突部17A)に密着している成形品を剥がすために上方へと突き出される。
When the second mold 17 is lowered to the mold opening position, the forming machine side projecting mechanism 8 moves the projecting plate 26 and the projecting pin 7 upward to move the projecting plate 26 upward. As a result, the projecting pin 27 and the inclined core are protruded upward in order to peel off the molded product in close contact with the second mold 17 (the molding projection 17A).
天板部15には、複数の型締め機構30が設けられている。型締め機構30は、第1金型16及び第2金型17をそれらの接触面において略均等に圧接する。このため、各型締め機構30は、接触面の周縁部に対応して略均等な間隔で設けられている。
The top plate portion 15 is provided with a plurality of mold clamping mechanisms 30. The mold clamping mechanism 30 presses the first mold 16 and the second mold 17 substantially uniformly at their contact surfaces. For this reason, the respective mold clamping mechanisms 30 are provided at substantially equal intervals corresponding to the peripheral edge portion of the contact surface.
成形品の成形に際し、射出が開始されてから溶融樹脂が固化するまでの期間、型締め機構30は、溶融樹脂の射出圧力によって第2金型17が第1金型16から離れないように、第2金型17を第1金型16に圧接する。
During molding of the molded product, the mold clamping mechanism 30 prevents the second mold 17 from being separated from the first mold 16 by the injection pressure of the molten resin, from the start of injection to the solidification of the molten resin. The second mold 17 is pressed against the first mold 16.
次に、各型締め機構30について説明する。図3(A),(B)に示すように、第1金型16及び天板部15には、上下方向に貫通する貫通孔31,32がそれぞれ設けられている。第2金型17の上部には、被係合部としての雌ねじ部36が、貫通孔31と同軸上に配置及び固定されている。雌ねじ部36の内周面には、雌ねじ35が形成されている。
Next, each clamping mechanism 30 will be described. As shown in FIGS. 3A and 3B, through holes 31 and 32 penetrating in the vertical direction are provided in the first mold 16 and the top plate portion 15, respectively. At an upper portion of the second mold 17, a female screw portion 36 as an engaged portion is disposed and fixed coaxially with the through hole 31. An internal thread 35 is formed on the inner peripheral surface of the internal thread portion 36.
天板部15上には、第2アクチュエータとしての流体圧ワッシャ55を介して、支持部材37が固定されている。支持部材37は細長く、上下方向に延びている。支持部材37上には、サーボモータ等のモータ38が、貫通孔31,32と同軸上に配置及び固定されている。第1アクチュエータとしてのモータ38は、下方へ延びる出力軸39を有している。
A support member 37 is fixed on the top plate portion 15 via a fluid pressure washer 55 as a second actuator. The support member 37 is elongated and extends in the vertical direction. On the support member 37, a motor 38 such as a servomotor is disposed and fixed coaxially with the through holes 31 and 32. The motor 38 as a first actuator has an output shaft 39 extending downward.
貫通孔31,32及び流体圧ワッシャ55には、シャフト41が挿通されている。シャフト41は細長く、上下方向に延びている。シャフト41は、その大部分を占める一般部42と、一般部42の上端部に設けられる大径部44とを備えている。大径部44の直径は、一般部42のそれよりも大きい。一般部42の直径は、貫通孔31,32のそれよりも若干小さい。一般部42は、天板部15の貫通孔32に配置された滑り軸受(ブッシュ)45により、回転可能かつ上下移動可能に支持されている。一般部42の下端部には、雌ねじ部36に螺入し得る係合部としての雄ねじ部43が形成されている。大径部44は、流体圧ワッシャ55の上方に位置している。大径部44は、支持部材37の下部に配置された滑り軸受(ブッシュ)46により、回転可能かつ上下移動可能に支持されている。
The shaft 41 is inserted through the through holes 31 and 32 and the fluid pressure washer 55. The shaft 41 is elongated and extends in the vertical direction. The shaft 41 is provided with a general portion 42 which occupies most of the shaft 41 and a large diameter portion 44 provided at the upper end portion of the general portion 42. The diameter of the large diameter portion 44 is larger than that of the general portion 42. The diameter of the general portion 42 is slightly smaller than that of the through holes 31 and 32. The general portion 42 is rotatably and vertically movably supported by a slide bearing (bush) 45 disposed in the through hole 32 of the top plate portion 15. At a lower end portion of the general portion 42, an external thread portion 43 as an engagement portion which can be screwed into the internal thread portion 36 is formed. The large diameter portion 44 is located above the fluid pressure washer 55. The large diameter portion 44 is rotatably and vertically movably supported by a slide bearing (bush) 46 disposed below the support member 37.
支持部材37の上部であってシャフト41の大径部44とモータ38との間には、筒状体47が、転がり軸受48により回転可能に支持されている。筒状体47は、カップリング52等により、モータ38の出力軸39に連結されている。筒状体47と大径部44との間には、連結部材49が介在されている。連結部材49は、筒状体47に対して上下移動可能かつ一体回転可能に取付けられている。また、連結部材49は、シャフト41の大径部44に対し一体回転可能に取付けられている。さらに、筒状体47内には、ばね51が圧縮された状態で配置されている。ばね51は、連結部材49を介してシャフト41を常に下方へと付勢している。
A cylindrical body 47 is rotatably supported by a rolling bearing 48 at an upper portion of the support member 37 and between the large diameter portion 44 of the shaft 41 and the motor 38. The cylindrical body 47 is connected to the output shaft 39 of the motor 38 by a coupling 52 or the like. A connecting member 49 is interposed between the cylindrical body 47 and the large diameter portion 44. The connecting member 49 is attached to the cylindrical body 47 so as to be vertically movable and integrally rotatable. The connecting member 49 is attached to the large diameter portion 44 of the shaft 41 so as to be integrally rotatable. Furthermore, the spring 51 is disposed in the cylindrical body 47 in a compressed state. The spring 51 always biases the shaft 41 downward via the connecting member 49.
図3(B)に示すように、流体圧ワッシャ55は、モータ38とは別に、雄ねじ部43が雌ねじ部36に螺入された状態のシャフト41に対して型締め方向の力を印加する。流体圧ワッシャ55は、天板部15上に固定されたシリンダ56と、シャフト41の一般部42が挿通されたピストン57とを備えている。ピストン57は、シリンダ56内に上下動可能に収容されている。シリンダ56の内部は、ピストン57によって上下に区画されて、2つの流体圧室58,59が形成されている。両流体圧室58,59のうち下側の流体圧室59は、型締め用流体圧室59である。型締め用流体圧室59には、シャフト41に対して型締め方向(上方)の力を印加する際に、作動油等の作動流体が供給される。
As shown in FIG. 3B, the fluid pressure washer 55 applies a force in the mold clamping direction to the shaft 41 in a state in which the male screw portion 43 is screwed into the female screw portion 36 separately from the motor 38. The fluid pressure washer 55 includes a cylinder 56 fixed on the top plate portion 15 and a piston 57 into which the general portion 42 of the shaft 41 is inserted. The piston 57 is accommodated in the cylinder 56 so as to be able to move up and down. The inside of the cylinder 56 is divided up and down by a piston 57 to form two fluid pressure chambers 58 and 59. The lower fluid pressure chamber 59 of the two fluid pressure chambers 58 and 59 is a clamping fluid pressure chamber 59. A hydraulic fluid such as hydraulic oil is supplied to the clamping fluid pressure chamber 59 when a force in the clamping direction (upward) is applied to the shaft 41.
ここで、特許文献1に記載された型締め機構では、可動ダイプレートを移動させることで、その可動ダイプレートに取付けられた可動型を間接的に移動させて、その可動型を、固定ダイプレートに取付けられた固定型に圧接させるようにしている。これに対し、本実施形態の型締め機構では、第2金型17がシャフト41を通じて第1金型16に直接圧接される。このことから、本実施形態では、特許文献1に記載された型締め機構とは異なり、第1金型16及び第2金型17を型締めするために、固定ダイプレート、可動ダイプレート等が用いられていない。また、型締め機構30により第1金型16に圧接された第2金型17を成形後に第1金型16から離すための離型機構も、竪型射出成形機10には設けられていない。
Here, in the mold clamping mechanism described in Patent Document 1, by moving the movable die plate, the movable die attached to the movable die plate is indirectly moved to move the movable die to the fixed die plate. It is made to press-fit to the fixed mold attached to. On the other hand, in the mold clamping mechanism of the present embodiment, the second mold 17 is directly pressure-welded to the first mold 16 through the shaft 41. From this, in this embodiment, unlike the mold clamping mechanism described in Patent Document 1, in order to clamp the first mold 16 and the second mold 17, a fixed die plate, a movable die plate, and the like are used. Not used. Further, a mold release mechanism for separating the second mold 17 pressed against the first mold 16 by the mold clamping mechanism 30 from the first mold 16 after molding is not provided in the wedge-shaped injection molding machine 10 .
次に、この竪型射出成形機10の動作について説明する。
図1は、型開きされた状態の竪型射出成形機10を示す。この状態で、第2金型17は、第1金型16から下方へ大きく離間した型開き位置に位置している。型締め機構30では、モータ38の回転が停止している。また、流体圧ワッシャ55では、流体圧室58,59の流体圧がともに低下している。ピストン57には、シャフト41等を介し、ばね51による下向きの付勢力が加わっている。このため、ピストン57は、シリンダ56の最下位置に位置している。また、シャフト41の雄ねじ部43の少なくとも一部が、第1金型16の下面から下方へ突出している。 Next, the operation of the verticalinjection molding machine 10 will be described.
FIG. 1 shows a verticalinjection molding machine 10 in an open mold state. In this state, the second mold 17 is located at the mold opening position largely separated downward from the first mold 16. In the mold clamping mechanism 30, the rotation of the motor 38 is stopped. Further, in the fluid pressure washer 55, the fluid pressure in the fluid pressure chambers 58 and 59 is both reduced. A downward biasing force by a spring 51 is applied to the piston 57 via the shaft 41 and the like. Therefore, the piston 57 is located at the lowermost position of the cylinder 56. Further, at least a portion of the male screw portion 43 of the shaft 41 protrudes downward from the lower surface of the first mold 16.
図1は、型開きされた状態の竪型射出成形機10を示す。この状態で、第2金型17は、第1金型16から下方へ大きく離間した型開き位置に位置している。型締め機構30では、モータ38の回転が停止している。また、流体圧ワッシャ55では、流体圧室58,59の流体圧がともに低下している。ピストン57には、シャフト41等を介し、ばね51による下向きの付勢力が加わっている。このため、ピストン57は、シリンダ56の最下位置に位置している。また、シャフト41の雄ねじ部43の少なくとも一部が、第1金型16の下面から下方へ突出している。 Next, the operation of the vertical
FIG. 1 shows a vertical
上記の状態から型閉じするため、モータ22が、ボールねじ軸21を所定の方向へ回転させる。すると、ボールナット23によりボールねじ軸21に螺合された可動体25が上昇し始める。可動体25の上昇に伴い、第2金型17と第1金型16との間隔が次第に狭まり、シャフト41の雄ねじ部43と第2金型17の雌ねじ部36との間隔が次第に狭まる。
In order to close the mold from the above state, the motor 22 rotates the ball screw shaft 21 in a predetermined direction. Then, the movable body 25 screwed to the ball screw shaft 21 by the ball nut 23 starts to ascend. As the movable body 25 rises, the distance between the second mold 17 and the first mold 16 gradually narrows, and the distance between the male screw 43 of the shaft 41 and the female screw 36 of the second mold 17 gradually narrows.
シャフト41は、貫通孔31,32に挿通され、かつ滑り軸受45,46により天板部15及び支持部材37に支持されている。このため、シャフト41に作用する重力の方向、及びシャフト41の軸線L1の方向はいずれも鉛直方向であり、第2金型17の対応する雌ねじ部36の軸線L2に合致する。この点で、本実施形態は、シャフトが自重により傾斜してシャフトの軸線が雌ねじ部の軸線からずれ易い特許文献2に記載の横型の射出成形機と異なっている。
The shaft 41 is inserted into the through holes 31 and 32 and supported by the top plate portion 15 and the support member 37 by the slide bearings 45 and 46. For this reason, the direction of gravity acting on the shaft 41 and the direction of the axis L1 of the shaft 41 are both vertical, and coincide with the axis L2 of the corresponding female screw portion 36 of the second mold 17. In this respect, the present embodiment is different from the horizontal injection molding machine described in Patent Document 2 in which the shaft is inclined by its own weight and the axis of the shaft is easily deviated from the axis of the female screw.
可動体25がさらに上昇すると、図4(A)に示すように、雌ねじ部36が、その軸線L2を軸線L1に合致させたままシャフト41の下端に接触する。この状態で、第2金型17は、第1金型16から下方へ僅かに離間している。また、ばね51によって下方へ付勢されたシャフト41は、その軸線L1を雌ねじ部36の軸線L2に合致させた状態で雌ねじ部36に押圧されている。そのため、さらに第2金型17が上昇すると、シャフト41はばね51を圧縮させながら上昇する。この上昇により、シャフト41の大径部44はピストン57から上方へ離れる。そして、図4(B)に示すように、第2金型17が第1金型16に接触した時点で、モータ22の作動が停止される。この状態で、第1金型16の成形凹部16A及び第2金型17の成形突部17A間にはキャビティ18が形成される。
When the movable body 25 further ascends, as shown in FIG. 4A, the female screw portion 36 contacts the lower end of the shaft 41 with the axis L2 thereof aligned with the axis L1. In this state, the second mold 17 is slightly separated downward from the first mold 16. Further, the shaft 41 biased downward by the spring 51 is pressed by the female screw portion 36 in a state in which the axis L1 thereof coincides with the axis L2 of the female screw portion 36. Therefore, when the second mold 17 further rises, the shaft 41 rises while compressing the spring 51. Due to this rise, the large diameter portion 44 of the shaft 41 is separated upward from the piston 57. Then, as shown in FIG. 4 (B), when the second mold 17 contacts the first mold 16, the operation of the motor 22 is stopped. In this state, a cavity 18 is formed between the molding recess 16A of the first mold 16 and the molding projection 17A of the second mold 17.
次に、モータ38の出力軸39の回転が開始される。回転の方向は、シャフト41の雄ねじ部43が第2金型17の雌ねじ部36に締め付けられる方向である。モータ38の回転は、カップリング52、筒状体47及び連結部材49を介してシャフト41に伝達される。シャフト41は、連結部材49を介し、ばね51によって下方へ付勢されている。また、シャフト41の軸線L1が雌ねじ部36の軸線L2に合致している。このため、雄ねじ部43の端は、雌ねじ35の端に合致して噛み合い、雄ねじ部43が雌ねじ部36に螺入(係合)し始める。この螺入に伴い、シャフト41は、雌ねじ部36を通じて第2金型17に連結されるとともに軸方向に沿って伸びる。このとき、シャフト41には、シャフト41の伸びに反発して元に戻ろうとする引張り力、すなわち軸力が発生する。この軸力は、第2金型17及び第1金型16を互いに接近させる方向と一致する型締め方向の力となる。型締め方向の力により、第2金型17が第1金型16に圧接される。また、雄ねじ部43の雌ねじ部36への螺入に伴い、大径部44がピストン57に近づく。
Next, the rotation of the output shaft 39 of the motor 38 is started. The direction of rotation is the direction in which the externally threaded portion 43 of the shaft 41 is tightened to the internally threaded portion 36 of the second mold 17. The rotation of the motor 38 is transmitted to the shaft 41 via the coupling 52, the cylindrical body 47 and the connecting member 49. The shaft 41 is biased downward by a spring 51 via a connecting member 49. Further, the axis L1 of the shaft 41 coincides with the axis L2 of the female screw portion 36. For this reason, the end of the male screw portion 43 matches and meshes with the end of the female screw 35, and the male screw portion 43 starts to be screwed (engaged) into the female screw portion 36. With this screwing, the shaft 41 is connected to the second mold 17 through the female screw portion 36 and extends along the axial direction. At this time, a tensile force, that is, an axial force, is generated on the shaft 41 in such a manner as to repel the extension of the shaft 41 and return it to the original state. This axial force is a clamping direction force that matches the direction in which the second mold 17 and the first mold 16 are made to approach each other. The second mold 17 is pressed against the first mold 16 by the force in the mold clamping direction. Further, as the male screw portion 43 is screwed into the female screw portion 36, the large diameter portion 44 approaches the piston 57.
さらに、モータ38の出力軸39が同方向へ回転し続けることで、シャフト41も回転し続ける。図2及び図3(A),(B)に示すように、雄ねじ部43が雌ねじ部36に所定量だけ螺入した時点で、モータ38の出力軸39の回転が停止すると共に、カップリング52、筒状体47、連結部材49及びシャフト41の回転も停止する。
Furthermore, as the output shaft 39 of the motor 38 continues to rotate in the same direction, the shaft 41 also continues to rotate. As shown in FIGS. 2 and 3A and 3B, when the male screw 43 is screwed into the female screw 36 by a predetermined amount, the rotation of the output shaft 39 of the motor 38 is stopped, and the coupling 52 The rotation of the cylindrical body 47, the connecting member 49 and the shaft 41 is also stopped.
続いて、流体圧ワッシャ55の型締め用流体圧室59内に作動油が供給される。これにより、型締め用流体圧室59の流体圧が上昇して、流体圧がピストン57に加わる。流体圧の高い状態は、キャビティ18内に溶融樹脂が充填されてから冷却及び固化するまでの期間、維持される。こうした高い流体圧により、ピストン57が大きな力で上方へと押圧される。このとき、シャフト41の回転は停止しているが、ピストン57による押圧によって、シャフト41がさらに伸びて大きな軸力を発生する。ここで、溶融樹脂の射出圧力により第2金型17が第1金型16から離れないように第2金型17を第1金型16に圧接し続けるために必要な軸力を要求軸力とする。本実施形態では、要求軸力の一部が、流体圧ワッシャ55により発生する軸力によって賄われる。表現を変えると、シャフト41の回転に伴い発生する軸力と要求軸力との差分が、流体圧ワッシャ55によって発生される軸力により補われる。その結果、シャフト41の回転に伴い発生する軸力が充分大きくなくても、要求軸力がシャフト41で発生するため、第2金型17が第1金型16に圧接されて、型締めが行われる。その後、図示しない射出装置から溶融樹脂が、キャビティ18内に供給されて、充填される。溶融樹脂は、冷却及び固化されて、キャビティ18内で所望の成形品に賦形される。
Subsequently, the hydraulic fluid is supplied into the clamping fluid pressure chamber 59 of the fluid pressure washer 55. Thereby, the fluid pressure of the clamping fluid pressure chamber 59 is increased, and the fluid pressure is applied to the piston 57. The high fluid pressure is maintained for a period of time from the filling of the molten resin in the cavity 18 to the cooling and solidification. The high fluid pressure pushes the piston 57 upward with a large force. At this time, although the rotation of the shaft 41 is stopped, the pressing by the piston 57 further extends the shaft 41 and generates a large axial force. Here, the axial force necessary to keep the second mold 17 pressed against the first mold 16 is required so that the second mold 17 does not separate from the first mold 16 by the injection pressure of the molten resin. I assume. In the present embodiment, a part of the required axial force is covered by the axial force generated by the fluid pressure washer 55. In other words, the difference between the axial force generated as the shaft 41 rotates and the required axial force is compensated by the axial force generated by the fluid pressure washer 55. As a result, even if the axial force generated with the rotation of the shaft 41 is not large enough, the required axial force is generated at the shaft 41, so the second mold 17 is pressed against the first mold 16 and clamping is performed. To be done. Thereafter, molten resin is supplied from the injection device (not shown) into the cavity 18 and filled. The molten resin is cooled and solidified to be shaped into the desired molded article in the cavity 18.
成形品の成形後には、上記とは逆の動作が行われる。まず、前述した型締め状態が解除される。すなわち、型締め機構30において、下側の型締め用流体圧室59から作動油が排出され、かつ上側の流体圧室58内に作動流体が供給される。これにより、型締め用流体圧室59の流体圧が低下する一方で、他方の流体圧室58の油圧は上昇する。シリンダ56内のピストン57が下降する。このため、流体圧ワッシャ55による軸力は減少する。
After molding of the molded article, the reverse operation is performed. First, the above-described mold clamping state is released. That is, in the mold clamping mechanism 30, the hydraulic fluid is discharged from the lower mold clamping fluid pressure chamber 59, and the working fluid is supplied into the upper hydraulic pressure chamber 58. As a result, while the fluid pressure of the clamping fluid pressure chamber 59 is reduced, the hydraulic pressure of the other fluid pressure chamber 58 is increased. The piston 57 in the cylinder 56 is lowered. Therefore, the axial force by the fluid pressure washer 55 is reduced.
続いて、モータ38の出力軸39の回転が開始される。回転の方向は、シャフト41の雄ねじ部43が第2金型17の雌ねじ部36に対し緩まる方向である。モータ38の回転は、カップリング52、筒状体47及び連結部材49を介してシャフト41へと伝達される。シャフト41は、ばね51の付勢力に抗しながら後退し、モータ38に向けて上昇する。これにより、雄ねじ部43の雌ねじ部36への螺入によってシャフト41に生じていた軸力が減少し、型締め状態が解除される。図4(B)に示すように、シャフト41の後退により、シャフト41の大径部44がピストン57から上方へ離れると共に雄ねじ部43が第2金型17の雌ねじ部36から抜け出る。すると、シャフト41と第2金型17との連結が解除されるため、第2金型17の下降が可能となる。
Subsequently, the rotation of the output shaft 39 of the motor 38 is started. The direction of rotation is such that the externally threaded portion 43 of the shaft 41 is loosened relative to the internally threaded portion 36 of the second mold 17. The rotation of the motor 38 is transmitted to the shaft 41 via the coupling 52, the cylindrical body 47 and the connecting member 49. The shaft 41 retracts against the biasing force of the spring 51 and rises toward the motor 38. As a result, the axial force generated on the shaft 41 by screwing the male screw portion 43 into the female screw portion 36 is reduced, and the mold clamping state is released. As shown in FIG. 4B, the large diameter portion 44 of the shaft 41 is separated upward from the piston 57 and the male screw portion 43 is disengaged from the female screw portion 36 of the second mold 17 as the shaft 41 is retracted. Then, since the connection between the shaft 41 and the second mold 17 is released, the second mold 17 can be lowered.
この状態で、第2金型17は、第1金型16に密着している。また、キャビティ18内の溶融樹脂が冷却及び固化してなる成形品は、第1金型16の成形凹部16A及び第2金型17の成形突部17Aに密着している。しかし、竪型射出成形機10では、第2金型17を含む可動体25に作用する重力の方向が、第2金型17を第1金型16から離型させる方向と同じである。そのため、可動体25に作用する重力を、離型力の少なくとも一部として利用することができる。このため、第1金型16及び第2金型17間に別途離型力を加えなくても(離型機構によらなくても)、第2金型17を第1金型16から離型することができる。
In this state, the second mold 17 is in close contact with the first mold 16. Further, a molded product obtained by cooling and solidifying the molten resin in the cavity 18 is in close contact with the molding recess 16 A of the first mold 16 and the molding projection 17 A of the second mold 17. However, in the vertical injection molding machine 10, the direction of gravity acting on the movable body 25 including the second mold 17 is the same as the direction in which the second mold 17 is released from the first mold 16. Therefore, the gravity acting on the movable body 25 can be used as at least a part of the mold release force. For this reason, the second mold 17 is released from the first mold 16 even if the mold release force is not separately applied between the first mold 16 and the second mold 17 (even by the release mechanism). can do.
その後、各ボールねじ軸21は、モータ22により、可動体25の上昇時とは反対方向に回転する。これにより、可動体25は下降し始める。可動体25の下降により、第2金型17は、第1金型16から離れていく。一方で、図4(A)に示すように、シャフト41は、ばね51によって下方へ付勢されているため、雄ねじ部43を雌ねじ部36に接触させたまま可動体25に追従するように下降する。シャフト41の大径部44がピストン57に接触する位置にまで下降した時点で、シャフト41の下降が止まる。これに対し、可動体25は引き続き下降する。このため、図1に示すように、雌ねじ部36が下降して、シャフト41から離間する。なお、第2金型17が第1金型16から離間する際、成形品は、成形凹部16Aから剥がれるものの、第2金型17の成形突部17Aに密着し続ける。
Thereafter, each ball screw shaft 21 is rotated by the motor 22 in the opposite direction to the time when the movable body 25 is lifted. Thereby, the movable body 25 starts to descend. As the movable body 25 descends, the second mold 17 separates from the first mold 16. On the other hand, as shown in FIG. 4A, since the shaft 41 is biased downward by the spring 51, the shaft 41 is lowered so as to follow the movable body 25 while keeping the male screw 43 in contact with the female screw 36. Do. When the large diameter portion 44 of the shaft 41 is lowered to a position where it contacts the piston 57, the lowering of the shaft 41 stops. On the other hand, the movable body 25 continues to descend. Therefore, as shown in FIG. 1, the female screw portion 36 descends and separates from the shaft 41. When the second mold 17 separates from the first mold 16, the molded product is separated from the molding recess 16A but keeps in close contact with the molding projection 17A of the second mold 17.
第2金型17が型開き位置まで下降した時点で、成形機側突出し機構8の駆動装置は、突出し板6及び突出しピン7を上昇させる。金型内突出し機構28では、突出しピン7によって押された突出し板26が突出しピン27及び傾斜コアを伴って上昇する。成形突部17Aから突出した傾斜コアにより成形品が、成形突部17Aから剥がされて、第1金型16及び第2金型17間から取り出される。
When the second mold 17 is lowered to the mold opening position, the drive device of the forming machine side projecting mechanism 8 raises the projecting plate 6 and the projecting pin 7. In the in-mold extrusion mechanism 28, the ejection plate 26 pushed by the ejection pin 7 ascends with the ejection pin 27 and the inclined core. The molded article is peeled off from the forming projection 17A by the inclined core projecting from the forming projection 17A and taken out from between the first mold 16 and the second mold 17.
ここで、金型内突出し機構28における各突出しピン27は、上下方向に延び、かつその下端部において突出し板26によって支持されている。このため、突出しピン27に作用する重力の方向、及び突出しピン27の軸線L3の延びる方向はいずれも鉛直方向であり、互いに合致する。また、成形機側突出し機構8における各突出しピン7は、上下方向に延び、かつその下端部において突出し板6によって支持されている。このため、突出しピン7に作用する重力の方向、及び突出しピン7の軸線L4の延びる方向はいずれも鉛直方向であり、互いに合致する。
Here, each projecting pin 27 in the mold inward projecting mechanism 28 extends in the vertical direction, and is supported by the projecting plate 26 at its lower end. For this reason, the direction of gravity acting on the ejector pin 27 and the direction in which the axis L3 of the ejector pin 27 extends are both vertical and coincide with each other. Further, each projecting pin 7 in the forming machine side projecting mechanism 8 extends in the vertical direction, and is supported by the projecting plate 6 at its lower end. For this reason, the direction of gravity acting on the ejector pin 7 and the extending direction of the axis L4 of the ejector pin 7 are both vertical, and coincide with each other.
この点で、本実施形態は、特許文献2に記載された横型の射出成形機と異なっている。横型の射出成形機では、突出しピンが水平方向へ延び、かつその一端部において突出し板によって支持されている。突出しピンの軸線と、突出しピンに作用する重力の方向とが大きく異なっている。このため、突出しピンはその先端に向かうほど低くなるように傾斜した状態で水平方向に移動する際、各突出しピンや突出ピンの先端の傾斜コアが第2金型と擦れるため、金属粉が発生する虞がある。また、突出しピン及び傾斜コアの傾斜により成形品も傾斜した状態で突き出されると、成形品と第2金型とが擦れるため、樹脂屑が発生する虞もある。
In this respect, the present embodiment is different from the horizontal injection molding machine described in Patent Document 2. In a lateral injection molding machine, the ejector pin extends horizontally and is supported at one end by a ejector plate. The axis of the ejector pin and the direction of gravity acting on the ejector pin are significantly different. For this reason, when the projecting pins move horizontally in a state of being inclined so as to become lower toward the tip, the projecting cores of the tips of the projecting pins and the projecting pins rub against the second mold, generating metal powder. There is a risk of In addition, when the molded product is also protruded in an inclined state due to the inclination of the protruding pin and the inclined core, the molded product and the second mold are rubbed, which may generate resin waste.
その点、本実施形態では、各突出しピン27が上下方向に延び、かつその状態で上昇するため、各突出しピン27や傾斜コアが第2金型17と擦れ難く、金属粉の発生が抑制される。また、突出しピン27の傾斜により成形品が傾斜した状態で突き出されることもないため、成形品と第2金型17とが擦れ難く、樹脂屑の発生も抑制される。さらに、本実施形態では、各突出しピン7が上下方向に延び、かつその状態で上昇するため、各突出しピン7が可動台24と擦れ難く、金属粉の発生が抑制される。このようにして、竪型射出成形機10の一連の動作を経て、成形品が成形される。
In that respect, in the present embodiment, each protrusion pin 27 extends vertically and ascends in that state, so that each protrusion pin 27 and the inclined core do not easily rub against the second mold 17 and generation of metal powder is suppressed. Ru. Further, since the molded product is not protruded in the inclined state due to the inclination of the protruding pin 27, the molded product and the second mold 17 are not easily rubbed, and the generation of resin debris is also suppressed. Furthermore, in the present embodiment, each protrusion pin 7 extends in the vertical direction and rises in that state, so that each protrusion pin 7 does not easily rub against the movable table 24 and generation of metal powder is suppressed. In this way, through the series of operations of the vertical injection molding machine 10, a molded article is molded.
以上、詳述した本実施形態によれば、次の効果が得られる。
(1)第1金型16を固定型とし、第2金型17を可動型とする。第2金型17は、昇降することにより第1金型16に対し接近及び離間する。第1金型16及び天板部15には、上下方向に延びる貫通孔31,32がそれぞれ設けられている。貫通孔31,32には、シャフト41が挿通された状態で支持されている。シャフト41は、モータ38により回転する。シャフト41の下端部には、係合部としての雄ねじ部43が設けられている。第2金型17の上部には、雌ねじ部36が、貫通孔31,32と同軸上に設けられている。被係合部としての雌ねじ部36には、両金型16,17を相互に接触させた状態でシャフト41を回転させることにより、シャフト41の雄ねじ部43が係合(螺入)される。そして、第2金型17を第1金型16に接触させた状態で、雄ねじ部43の雌ねじ部36への螺入により発生する型締め方向の力(軸力)によって、第2金型17を第1金型16に圧接させる(図3(A),(B))。 According to the embodiment described above, the following effects can be obtained.
(1) Thefirst mold 16 is a fixed mold, and the second mold 17 is a movable mold. The second mold 17 approaches and separates from the first mold 16 by moving up and down. Through holes 31 and 32 extending in the vertical direction are provided in the first mold 16 and the top plate portion 15, respectively. The shaft 41 is supported by the through holes 31 and 32 in the inserted state. The shaft 41 is rotated by the motor 38. At the lower end portion of the shaft 41, a male screw portion 43 as an engaging portion is provided. In the upper part of the second mold 17, a female screw portion 36 is provided coaxially with the through holes 31 and 32. The male screw portion 43 of the shaft 41 is engaged (screwed) in the female screw portion 36 as the engaged portion by rotating the shaft 41 in a state where the two molds 16 and 17 are in contact with each other. Then, in a state in which the second mold 17 is in contact with the first mold 16, the second mold 17 is generated by a force (axial force) in a mold clamping direction generated by screwing the male screw portion 43 into the female screw portion 36. Is pressed into contact with the first mold 16 (FIGS. 3A and 3B).
(1)第1金型16を固定型とし、第2金型17を可動型とする。第2金型17は、昇降することにより第1金型16に対し接近及び離間する。第1金型16及び天板部15には、上下方向に延びる貫通孔31,32がそれぞれ設けられている。貫通孔31,32には、シャフト41が挿通された状態で支持されている。シャフト41は、モータ38により回転する。シャフト41の下端部には、係合部としての雄ねじ部43が設けられている。第2金型17の上部には、雌ねじ部36が、貫通孔31,32と同軸上に設けられている。被係合部としての雌ねじ部36には、両金型16,17を相互に接触させた状態でシャフト41を回転させることにより、シャフト41の雄ねじ部43が係合(螺入)される。そして、第2金型17を第1金型16に接触させた状態で、雄ねじ部43の雌ねじ部36への螺入により発生する型締め方向の力(軸力)によって、第2金型17を第1金型16に圧接させる(図3(A),(B))。 According to the embodiment described above, the following effects can be obtained.
(1) The
そのため、特許文献2に記載された横型の射出成形機とは異なり、シャフト41が自重によって傾くのを抑制することができる。また、シャフト41の軸線L1と雌ねじ部36の軸線L2とを合致させて、シャフト41の雄ねじ部43を雌ねじ部36に容易に螺入させることができ、第2金型17を第1金型16に圧接させることができる。
Therefore, unlike the horizontal injection molding machine described in Patent Document 2, it is possible to suppress the shaft 41 from being inclined by its own weight. Also, the axis L1 of the shaft 41 and the axis L2 of the female screw 36 can be aligned, and the male screw 43 of the shaft 41 can be easily screwed into the female screw 36, and the second mold 17 can be used as the first mold. It can be pressed to 16.
(2)金型内突出し機構28及び成形機側突出し機構8は、型開きされた第2金型17から成形品を突き出して剥がすために用いられる。金型内突出し機構28は、突出し板26、複数の突出しピン27、及び傾斜コアを備えている。各突出しピン27は上下方向に延び、かつ下端部において突出し板26にそれぞれ固定されている。傾斜コアは、各突出しピン27の上端にそれぞれ設けられている(図1、図2)。このため、成形品の突き出し時に各突出しピン27が自重によって傾き難く、第2金型17と擦れ難くなるため、金属粉の発生を抑制できる。また、成形品が第2金型17(成形突部17A)と擦れ難くなるため、樹脂屑の発生も抑制できる。
(2) The in-mold protrusion mechanism 28 and the forming-machine-side protrusion mechanism 8 are used for protruding and removing the molded product from the second mold 17 opened. The in-mold extension mechanism 28 comprises a protrusion plate 26, a plurality of protrusion pins 27, and a tilted core. Each projecting pin 27 extends vertically and is fixed to the projecting plate 26 at its lower end. The inclined core is provided on the upper end of each projecting pin 27 (FIGS. 1 and 2). For this reason, since each protrusion pin 27 does not incline easily by dead weight at the time of protrusion of a molded article, and it becomes difficult to rub with the 2nd metal mold 17, generation | occurrence | production of metal powder can be suppressed. Moreover, since it becomes difficult to rub a molded article with the 2nd metal mold 17 (forming protrusion 17A), generation | occurrence | production of resin debris can also be suppressed.
また、成形機側突出し機構8は、突出し板6、複数の突出しピン7、及び駆動装置を備えている。各突出しピン7は上下方向に延び、かつ下端部において突出し板6にそれぞれ固定されている。突出し板6は駆動装置によって昇降させられる(図1、図2)。このため、成形品の突き出し時に各突出しピン7が自重によって傾き難く、可動台24と擦れ難くなるため、金属粉の発生を抑制できる。
Further, the forming machine side projecting mechanism 8 is provided with a projecting plate 6, a plurality of projecting pins 7, and a driving device. Each projecting pin 7 extends in the vertical direction, and is fixed to the projecting plate 6 at its lower end. The ejector plate 6 is moved up and down by a drive (FIGS. 1 and 2). For this reason, since each protrusion pin 7 does not incline easily by dead weight at the time of protrusion of a molded article, and it becomes difficult to rub with the movable stand 24, generation | occurrence | production of metal powder can be suppressed.
(3)特許文献1に記載された型締め機構では、第1金型及び第2金型の周りに、固定ダイプレート、可動ダイプレート、ボールねじ軸、ボールナット等が配置されている。そして、可動ダイプレートを移動させることで、その可動ダイプレートに取付けられた可動型を間接的に移動させて、その可動型を、固定ダイプレートに取付けられた固定型に圧接させるようにしている。このため、装置全体の大型化が問題となっている。また、可動型を含む可動体を昇降させる一般的な竪型射出成形機では、重力に抗して可動体を上昇させるときに、横型の射出成形機よりも多くのエネルギーを必要とする。
(3) In the mold clamping mechanism described in Patent Document 1, a fixed die plate, a movable die plate, a ball screw shaft, a ball nut and the like are arranged around the first mold and the second mold. Then, by moving the movable die plate, the movable die attached to the movable die plate is indirectly moved to press the movable die against the fixed die attached to the fixed die plate. . For this reason, the enlargement of the whole apparatus has become a problem. In addition, in a typical vertical injection molding machine that raises and lowers a movable body including a movable type, when raising the movable body against gravity, more energy is required than a horizontal injection molding machine.
この点、本実施形態の型締め機構30では、第2金型17がシャフト41を通じて第1金型16に直接圧接される(図1、図2)。このことから、本実施形態では、特許文献1に記載された型締め機構とは異なり、第1金型16及び第2金型17を型締めするために、固定ダイプレート、可動ダイプレート等が不要となる。また、型締め機構30を構成するシャフト41や雌ねじ部36等がキャビティ18の近傍に配置されている。よって、型締め機構30の小型化、及び竪型射出成形機10の小型化が可能となる。また、これにより、可動体25の軽量化が可能となり、可動体25を動かすためのエネルギーを少なくして、省エネルギー化を図ることもできる。
In this respect, in the mold clamping mechanism 30 of the present embodiment, the second mold 17 is directly pressure-welded to the first mold 16 through the shaft 41 (FIGS. 1 and 2). From this, in this embodiment, unlike the mold clamping mechanism described in Patent Document 1, in order to clamp the first mold 16 and the second mold 17, a fixed die plate, a movable die plate, and the like are used. It becomes unnecessary. In addition, a shaft 41, an internal thread portion 36, and the like that constitute the mold clamping mechanism 30 are disposed in the vicinity of the cavity 18. Therefore, the miniaturization of the mold clamping mechanism 30 and the miniaturization of the vertical injection molding machine 10 become possible. Moreover, thereby, weight reduction of the movable body 25 is attained, energy saving for moving the movable body 25 can be reduced, and energy saving can also be achieved.
(4)本実施形態の竪型射出成形機10では、型閉じ及び型開きを行うため、第2金型17が、第1金型16の下側に位置すると共に昇降する(図1、図2)。このような型閉じ及び型開きの方向は、竪型射出成形機10の設置面積に影響を及ぼさない。この点で、竪型射出成形機10は、型閉じ及び型開きの際に第2金型を水平方向に移動させる横型の射出成形機よりも、設置スペースを小さくすることができる。
(4) In the vertical injection molding machine 10 of the present embodiment, the second mold 17 is positioned below the first mold 16 and moved up and down to perform mold closing and mold opening (FIG. 1, FIG. 1). 2). Such mold closing and mold opening directions do not affect the footprint of the vertical injection molding machine 10. In this respect, the vertical injection molding machine 10 can make the installation space smaller than a horizontal injection molding machine in which the second mold is moved in the horizontal direction at the time of mold closing and mold opening.
(5)型締め機構30により第1金型16に圧接された第2金型17を第1金型16から離型する際、第2金型17を含む可動体25に作用する重力を、離型力の少なくとも一部として利用する(図1、図2)。そのため、離型機構を用いることなく離型を行なうことができる。よって、離型機構を別途設ける場合に比べ、竪型射出成形機10のさらなる小型化が可能となる。
(5) When the second mold 17 pressed against the first mold 16 by the mold clamping mechanism 30 is released from the first mold 16, the gravity acting on the movable body 25 including the second mold 17 is It is used as at least a part of mold release force (Fig. 1, Fig. 2). Therefore, mold release can be performed without using a mold release mechanism. Therefore, compared with the case where a release mechanism is separately provided, further miniaturization of the vertical injection molding machine 10 is possible.
(6)雄ねじ部43を雌ねじ部36に螺入させた状態のシャフト41に対し、型締め方向の力を印加する流体圧ワッシャ55が設けられている(図3(A),(B))。そのため、第1金型16と第2金型17とを圧接させるために必要な軸力である要求軸力の一部を、流体圧ワッシャ55の発生する力によって賄うことができる。そのため、シャフト41の回転に伴い発生すべき軸力を小さく抑えることができる。即ち、軸力をシャフト41に発生させるモータ38として、出力トルクの小さい小型のモータを使用できる。よって、型締め機構30の小型化、及び竪型射出成形機10のさらなる小型化が可能となる。
(6) A fluid pressure washer 55 for applying a force in the mold clamping direction is provided to the shaft 41 in a state in which the male screw portion 43 is screwed into the female screw portion 36 (FIGS. 3A and 3B) . Therefore, a part of the required axial force, which is an axial force necessary to press the first die 16 and the second die 17, can be covered by the force generated by the fluid pressure washer 55. Therefore, the axial force to be generated with the rotation of the shaft 41 can be reduced. That is, as the motor 38 which generates an axial force on the shaft 41, a small motor with small output torque can be used. Therefore, the miniaturization of the clamping mechanism 30 and the further miniaturization of the vertical injection molding machine 10 become possible.
(7)第2アクチュエータとして、流体圧ワッシャ55が用いられる。流体圧ワッシャ55は、シリンダ56及びピストン57を備える。ピストン57は、シャフト41の一般部42が挿通された状態でシリンダ56内において上下動可能に収容されている。また、ピストン57は、シリンダ56の内部を上下に区画して2つの流体圧室58,59を形成する。また、シリンダ56内の下側の流体圧室は型締め用流体圧室59である。型締め用流体圧室59には、シャフト41に対して型締め方向の力を印加する際に作動流体が供給される(図3(B))。このように、シリンダ56及びピストン57といった簡素な構成によって、シャフト41に対し型締め方向の力を印加することができる。
(7) The fluid pressure washer 55 is used as the second actuator. The fluid pressure washer 55 comprises a cylinder 56 and a piston 57. The piston 57 is vertically movably accommodated in the cylinder 56 in a state where the general portion 42 of the shaft 41 is inserted. Also, the piston 57 divides the inside of the cylinder 56 up and down to form two fluid pressure chambers 58 and 59. The lower fluid pressure chamber in the cylinder 56 is a clamping fluid pressure chamber 59. A working fluid is supplied to the clamping fluid pressure chamber 59 when a force in the clamping direction is applied to the shaft 41 (FIG. 3 (B)). Thus, with a simple configuration such as the cylinder 56 and the piston 57, a force in the mold clamping direction can be applied to the shaft 41.
本発明は、次に示す別の実施形態に具体化することができる。
・シャフト41を、モータ22に近接する端部(上端部)において滑り軸受45,46によって支持することに加え、モータ22から離れた端部(下端部)においても、滑り軸受等により支持してもよい。この場合、特許文献2に記載の横型の射出成形機に比べ、次の点で有利である。 The present invention can be embodied in the following another embodiment.
In addition to supporting theshaft 41 by the slide bearings 45 and 46 at the end (upper end) close to the motor 22, the end (lower end) away from the motor 22 is also supported by the slide bearing or the like It is also good. In this case, as compared to the horizontal injection molding machine described in Patent Document 2, it is advantageous in the following point.
・シャフト41を、モータ22に近接する端部(上端部)において滑り軸受45,46によって支持することに加え、モータ22から離れた端部(下端部)においても、滑り軸受等により支持してもよい。この場合、特許文献2に記載の横型の射出成形機に比べ、次の点で有利である。 The present invention can be embodied in the following another embodiment.
In addition to supporting the
横型の射出成形機においても、型締め機構のシャフトをモータに近接する端部と、モータから離れた端部とにおいて滑り軸受等により支持することで、重力によるシャフトの傾きを抑制することはできる。しかしながら、型締め機構を第1金型に装着する際、自重によって傾いているシャフトを全ての滑り軸受に挿通することは容易でない。
Even in a horizontal injection molding machine, the inclination of the shaft due to gravity can be suppressed by supporting the shaft of the mold clamping mechanism at the end close to the motor and the end remote from the motor by a slide bearing or the like. . However, when mounting the mold clamping mechanism in the first mold, it is not easy to insert the shaft inclined by its own weight into all the slide bearings.
この点、本実施形態の型締め機構30では、上下方向に延びるシャフト41が用いられている。そのため、シャフト41がモータに近接する端部と、モータから離れた端部とにおいて滑り軸受等により支持される場合であっても、シャフト41に作用する重力の方向と滑り軸受の軸線とが合致しているため、シャフト41を全ての滑り軸受に容易に挿通させることができる。
In this respect, in the mold clamping mechanism 30 of the present embodiment, the shaft 41 extending in the vertical direction is used. Therefore, even when the shaft 41 is supported by the slide bearing or the like at the end close to the motor and the end away from the motor, the direction of gravity acting on the shaft 41 and the axis of the slide bearing are aligned. Therefore, the shaft 41 can be easily inserted into all the slide bearings.
この効果は、1つの型締め機構30を、複数の種類の第1金型16について共通して使用する場合に特に有効である。この場合、第1金型16を交換する毎に型締め機構30を取外したり、取付けたり、調整したりする作業が必要となり、シャフト41を滑り軸受に挿通する頻度が高くなるためである。
This effect is particularly effective when one mold clamping mechanism 30 is commonly used for a plurality of types of first molds 16. In this case, every time the first mold 16 is replaced, it is necessary to remove, attach, or adjust the mold clamping mechanism 30, and the frequency of inserting the shaft 41 into the slide bearing is increased.
・雄ねじ部43を、シャフト41の軸線L1方向について、下端部だけでなく、下端部を含む広い領域に設けてもよい。また、長いシャフト41を用いた場合、雄ねじ部43を、シャフト41の軸線L1方向の中間部分に設けてもよい。
The male screw portion 43 may be provided not only at the lower end but also in a wide area including the lower end in the direction of the axis L1 of the shaft 41. When the long shaft 41 is used, the male screw portion 43 may be provided at an intermediate portion in the direction of the axis L1 of the shaft 41.
・雌ねじ部(被係合部)36は、貫通孔31と同軸上であることを条件に、第2金型17の軸線L2方向について、上端部だけでなく、上端部含む広い領域に設けられてもよい。即ち、雌ねじ部36は本実施形態よりも下方へ長いものであってもよい。また、第2金型17に貫通孔31と同軸の孔又は穴を設け、その孔又は穴の軸線方向の中間部分に雌ねじ部36を設けてもよい。
The female screw portion (engaged portion) 36 is provided not only at the upper end but also in a wide area including the upper end in the direction of the axis L2 of the second mold 17, on the condition that it is coaxial with the through hole 31. May be That is, the female screw portion 36 may be longer downward than the present embodiment. Alternatively, a hole or a hole coaxial with the through hole 31 may be provided in the second mold 17, and an internally threaded portion 36 may be provided at an axial intermediate portion of the hole or the hole.
・シャフト41及び第2金型17について、雄ねじ部43及び雌ねじ部36の設けられる対象は、本実施形態と逆であってもよい。
即ち、径の大きいシャフト41を用いる場合、シャフト41の第2金型17に近接する端部(例えば下端部)に雌ねじ部を設け、第2金型17の第1金型16に近接する端部(例えば上端部)に雄ねじ部を設けてもよい。この場合も、モータ38によりシャフト41を回転させて雄ねじ部を雌ねじ部に螺入させる際に、型締め方向の力を発生することができる。 In theshaft 41 and the second mold 17, the target provided with the male screw portion 43 and the female screw portion 36 may be the reverse of the present embodiment.
That is, when theshaft 41 having a large diameter is used, a female screw is provided at the end (for example, the lower end) of the shaft 41 close to the second mold 17 and the end close to the first mold 16 of the second mold 17 A male screw may be provided on the part (for example, the upper end). Also in this case, when the motor 41 rotates the shaft 41 to screw the male screw portion into the female screw portion, a force in the mold clamping direction can be generated.
即ち、径の大きいシャフト41を用いる場合、シャフト41の第2金型17に近接する端部(例えば下端部)に雌ねじ部を設け、第2金型17の第1金型16に近接する端部(例えば上端部)に雄ねじ部を設けてもよい。この場合も、モータ38によりシャフト41を回転させて雄ねじ部を雌ねじ部に螺入させる際に、型締め方向の力を発生することができる。 In the
That is, when the
・流体圧ワッシャ55を省略してもよい。この場合、シャフト41の回転による伸びのみによって軸力を発生させる必要があり、流体圧ワッシャ55を用いる場合よりも大型のモータ38を使用する必要がある。しかしながら、固定ダイプレート、可動ダイプレート等を用いる場合よりも、型締め機構30や竪型射出成形機10を小型・軽量化することができる。
The fluid pressure washer 55 may be omitted. In this case, it is necessary to generate an axial force only by the extension due to the rotation of the shaft 41, and it is necessary to use a larger motor 38 than the case of using the fluid pressure washer 55. However, compared with the case of using a fixed die plate, a movable die plate, etc., the mold clamping mechanism 30 and the vertical injection molding machine 10 can be made smaller and lighter.
・第2金型17を含む可動体25に作用する重力のみによって、第1金型16から第2金型17を離型させることができない場合、型締め機構30とは別に離型機構を設けてもよい。この場合、可動体25に作用する重力を離型力の少なくとも一部として利用すれば、より小さな力で離型することができるため、離型機構の小型化、及び竪型射出成形機10の小型化が可能となる。
-When the second mold 17 can not be released from the first mold 16 only by the gravity acting on the movable body 25 including the second mold 17, a mold release mechanism is provided separately from the mold clamping mechanism 30. May be In this case, if the gravity acting on the movable body 25 is used as at least a part of the mold release force, mold release can be performed with a smaller force. Therefore, the mold release mechanism can be miniaturized, and the vertical injection molding machine 10 Miniaturization is possible.
・可動体25に作用する重力は、必ずしも離型力として利用されなくてもよい。この場合、例えば、複数のウエイトと複数の滑車とを用いる。各滑車を竪型射出成形機10の上部に回転可能に取付ける。そして、各滑車にワイヤを上側から掛け、ワイヤの一端を可動体25に固定し、ワイヤの他端をウエイトに固定してもよい。
The gravity acting on the movable body 25 may not necessarily be used as a release force. In this case, for example, a plurality of weights and a plurality of pulleys are used. Each pulley is rotatably mounted on the top of the vertical injection molding machine 10. Then, a wire may be hung from the upper side on each pulley, one end of the wire may be fixed to the movable body 25, and the other end of the wire may be fixed to the weight.
一般的な竪型射出成形機では、可動型の移動時に重力の影響が大きく、可動型の移動及び停止状態を保つため、モータへの負荷が大きくなっている。しかしながら、この構成によれば、ウエイトと可動体とのバランスを滑車に掛けられたワイヤを介して保つことにより、モータに加わる負荷を小さくできる。
In a typical vertical injection molding machine, the influence of gravity is large during movement of the movable mold, and the load on the motor is large in order to maintain the movement and stop of the movable mold. However, according to this configuration, the load applied to the motor can be reduced by maintaining the balance between the weight and the movable body through the wire hung on the pulley.
・例えば、油圧シリンダで第2金型17を昇降させたり、モータでチェーンベルトを駆動させて第2金型17を昇降させたりしてもよい。
・第2金型17を固定型とし、第1金型16を可動型としてもよい。この場合、第1金型16は、第2金型17の上側で昇降することにより、第2金型17に対し接近及び離間する。 For example, thesecond mold 17 may be raised and lowered by a hydraulic cylinder, or the chain belt may be driven by a motor to raise and lower the second mold 17.
Thesecond mold 17 may be a fixed mold and the first mold 16 may be a movable mold. In this case, the first mold 16 approaches and separates from the second mold 17 by moving up and down on the upper side of the second mold 17.
・第2金型17を固定型とし、第1金型16を可動型としてもよい。この場合、第1金型16は、第2金型17の上側で昇降することにより、第2金型17に対し接近及び離間する。 For example, the
The
・第1金型16及び第2金型17の位置関係は、本実施形態と逆であってもよい。即ち、第1金型16を第2金型17の下側に配置してもよい。この場合、各型締め機構30は、モータ38がシャフト41の下側に配置される。また、この場合、第2金型17を固定型とし、第1金型16を第2金型17の下側で昇降する可動型としてもよい。また、それとは逆に、第1金型16を固定型とし、第2金型17を第1金型16の上側で昇降する可動型としてもよい。
The positional relationship between the first mold 16 and the second mold 17 may be opposite to that of the present embodiment. That is, the first mold 16 may be disposed below the second mold 17. In this case, in each mold clamping mechanism 30, the motor 38 is disposed below the shaft 41. Further, in this case, the second mold 17 may be a fixed mold, and the first mold 16 may be a movable mold which is moved up and down below the second mold 17. Alternatively, the first mold 16 may be fixed, and the second mold 17 may be movable above the first mold 16.
・本実施形態では、雄ねじ部43の雌ねじ部36への螺入に伴い発生する型締め方向の力により、第2金型17を第1金型16に圧接させていたが、これに代えて、係合部を被係合部に係合させた後、シャフト41に型締め方向の力を印加するようにしてもよい。
In the present embodiment, the second mold 17 is pressed against the first mold 16 by the force in the mold clamping direction generated by screwing the male screw 43 into the female screw 36, but instead of this, After the engaging portion is engaged with the engaged portion, a force in the mold clamping direction may be applied to the shaft 41.
例えば、シャフト41の第2金型17に近接する端部の外周面に、係合部としての複数の係合山を形成する。また、第2金型17の第1金型16に近接する端部に、係合部が係合される被係合部を設ける。被係合部は、シャフト41の端部の外形形状と一致する挿入穴からなる。挿入穴の内壁面には、複数の係合溝を形成する。そして、シャフト41の係合山と第2金型17の係合溝とが互い違いとなるように、シャフト41の先端を第2金型17の挿入穴に挿入する。そして、その状態で、モータ38によりシャフト41を僅かに回転させることで、係合山を係合溝に係合させる。なお、この場合、例えば、流体圧ワッシャ55により発生する力が、型締め方向の力としてシャフト41に対し印加される。
For example, on the outer peripheral surface of the end of the shaft 41 close to the second mold 17, a plurality of engagement peaks are formed as the engagement portion. In addition, an engaged portion in which the engaging portion is engaged is provided at an end of the second mold 17 close to the first mold 16. The engaged portion comprises an insertion hole that matches the outer shape of the end of the shaft 41. A plurality of engagement grooves are formed in the inner wall surface of the insertion hole. Then, the tip end of the shaft 41 is inserted into the insertion hole of the second mold 17 so that the engagement peak of the shaft 41 and the engagement groove of the second mold 17 are alternated. Then, in this state, by slightly rotating the shaft 41 by the motor 38, the engagement peak is engaged with the engagement groove. In this case, for example, a force generated by the fluid pressure washer 55 is applied to the shaft 41 as a force in the mold clamping direction.
10…竪型射出成形機(射出成形機)、16…第1金型、17…第2金型、18…キャビティ、25…可動体、30…型締め機構、31,32…貫通孔、36…雌ねじ部(被係合部)、38…モータ(第1アクチュエータ)、41…シャフト、43…雄ねじ部(係合部)、55…流体圧ワッシャ(第2アクチュエータ)、56…シリンダ、57…ピストン、58…流体圧室、59…型締め用流体圧室、L1~L4…軸線。
DESCRIPTION OF SYMBOLS 10 ... Vertical mold injection molding machine (injection molding machine), 16 ... 1st mold, 17 ... 2nd mold, 18 ... Cavity, 25 ... Movable body, 30 ... Clamping mechanism, 31, 32 ... Through hole, 36 ... Female screw part (engaged part), 38 ... motor (first actuator), 41 ... shaft, 43 ... male screw part (engagement part), 55 ... fluid pressure washer (second actuator), 56 ... cylinder, 57 ... Piston, 58: fluid pressure chamber, 59: clamping fluid pressure chamber, L1 to L4: axial line.
Claims (5)
- 第1金型及び第2金型を備え、それらの一方を固定型とし、他方を可動型とし、前記可動型は昇降することにより前記固定型に接近及び離間し、前記可動型を前記固定型に接触させて前記両型を閉じて、型締め機構により前記可動型を前記固定型に圧接させ、前記第1金型及び前記第2金型間に形成されるキャビティに溶融樹脂を射出して成形品を形成する射出成形機であって、
前記型締め機構は、
前記第1金型を上下方向に貫通する貫通孔に挿通された状態で支持されるシャフトであって、シャフトの軸線方向の少なくとも一部に係合部を有し、アクチュエータにより回転駆動されるシャフトと、
前記第2金型において前記貫通孔と同軸上に設けられる被係合部であって、前記第1金型及び前記第2金型が相互に接触した状態で、前記アクチュエータによる前記シャフトの回転により前記係合部が係合される被係合部とを備え、
前記第2金型及び前記第1金型を互いに接近させる方向は型締め方向であり、前記係合部及び前記被係合部の係合に伴い発生する前記型締め方向の力、又は前記係合部及び前記被係合部の係合後において前記シャフトに印加される前記型締め方向の力により、前記第1金型と前記第2金型とを互いに圧接させることを特徴とする射出成形機。 The first mold and the second mold are provided, one of which is a fixed mold and the other is a movable mold, and the movable mold is moved up and down toward and away from the fixed mold to move the movable mold to the fixed mold. Close both molds, press the movable mold against the fixed mold by the mold clamping mechanism, and inject molten resin into the cavity formed between the first mold and the second mold. An injection molding machine for forming a molded article, wherein
The mold clamping mechanism
A shaft supported in a state inserted through a through hole vertically penetrating the first mold, wherein at least a part of the shaft in the axial direction has an engaging portion and is rotationally driven by an actuator When,
An engaged portion provided coaxially with the through hole in the second mold, and in a state where the first mold and the second mold are in contact with each other, by rotation of the shaft by the actuator And an engaged portion engaged with the engaging portion;
The direction in which the second mold and the first mold approach each other is a mold clamping direction, and a force in the mold clamping direction generated with the engagement of the engaging portion and the engaged portion, or the engagement Injection molding characterized in that the first mold and the second mold are pressed against each other by the force in the mold clamping direction applied to the shaft after engagement of the joint portion and the engaged portion. Machine. - 前記係合部及び前記被係合部の一方が雌ねじ部により構成され、他方が雄ねじ部により構成され、
前記型締め機構は、前記シャフトの回転により前記雄ねじ部を前記雌ねじ部に螺入することによって前記型締め方向の力を発生することを特徴とする請求項1に記載の射出成形機。 One of the engaging portion and the engaged portion is constituted by a female screw portion, and the other is constituted by a male screw portion,
The injection molding machine according to claim 1, wherein the mold clamping mechanism generates a force in the mold clamping direction by screwing the male screw part into the female screw part by rotation of the shaft. - 前記アクチュエータは第1アクチュエータであり、前記型締め機構は、さらに、前記第1アクチュエータとは別に、前記係合部を前記被係合部に係合させた状態の前記シャフトに対して前記型締め方向の力を印加するための第2アクチュエータを備えていることを特徴とする請求項1又は2に記載の射出成形機。 The actuator is a first actuator, and the mold clamping mechanism further clamps the mold against the shaft in a state in which the engaging portion is engaged with the engaged portion separately from the first actuator. The injection molding machine according to claim 1 or 2, further comprising a second actuator for applying a directional force.
- 前記第2アクチュエータは、シリンダ及びピストンを備え、前記ピストンは、前記シリンダの内部において上下動可能に収容され、かつ前記シリンダの内部を2つの流体圧室に区画し、
前記2つの流体圧室のうち一方が型締め用流体圧室であり、前記型締め用流体圧室には、前記シャフトに対し前記型締め方向の力を印加する際に作動流体が供給されることを特徴とする請求項3に記載の射出成形機。 The second actuator comprises a cylinder and a piston, and the piston is accommodated in the cylinder so as to be vertically movable, and divides the inside of the cylinder into two fluid pressure chambers,
One of the two fluid pressure chambers is a clamping fluid pressure chamber, and a working fluid is supplied to the clamping fluid pressure chamber when a force in the clamping direction is applied to the shaft. The injection molding machine according to claim 3, characterized in that: - 前記第1金型は前記固定型であり、前記第2金型は可動型であり、前記第2金型は、前記第1金型の下側で昇降することにより前記第1金型に接近及び離間し、
前記第2金型と、前記第2金型の昇降に伴い移動する部材とから可動体が構成され、前記可動体に作用する重力は、前記型締め機構により前記第1金型に圧接された前記第2金型を前記第1金型から離型するための離型力の少なくとも一部として利用されることを特徴とする請求項1~4のいずれか1つに記載の射出成形機。 The first mold is the fixed mold, the second mold is the movable mold, and the second mold approaches the first mold by moving up and down on the lower side of the first mold. And spaced apart,
A movable body is composed of the second mold and a member that moves along with the elevation of the second mold, and gravity acting on the movable body is pressed against the first mold by the clamping mechanism. The injection molding machine according to any one of claims 1 to 4, wherein the injection molding machine is used as at least a part of a mold release force for releasing the second mold from the first mold.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012521186A JP5582191B2 (en) | 2010-06-21 | 2010-06-21 | Injection molding machine |
PCT/JP2010/060446 WO2011161747A1 (en) | 2010-06-21 | 2010-06-21 | Injection molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/060446 WO2011161747A1 (en) | 2010-06-21 | 2010-06-21 | Injection molding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011161747A1 true WO2011161747A1 (en) | 2011-12-29 |
Family
ID=45370961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060446 WO2011161747A1 (en) | 2010-06-21 | 2010-06-21 | Injection molding machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5582191B2 (en) |
WO (1) | WO2011161747A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108773037A (en) * | 2018-06-20 | 2018-11-09 | 台州市点睛模业有限公司 | Integrated injection moulding system with novel clamping mechanism |
CN111805848A (en) * | 2020-07-06 | 2020-10-23 | 深圳市晶鼎包装材料有限公司 | Internal thread tapping structure and die applying same |
CN114423576A (en) * | 2019-04-11 | 2022-04-29 | 佳能弗吉尼亚股份有限公司 | Injection molding system with transfer device for inserting or ejecting molds |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7093716B2 (en) | 2018-11-19 | 2022-06-30 | 三菱重工機械システム株式会社 | Electron beam welder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269748A (en) * | 1992-03-25 | 1993-10-19 | Okuma Mach Works Ltd | Clamping device |
JP2004230386A (en) * | 2002-04-17 | 2004-08-19 | Toshihara Kanagata Kogyo Co Ltd | Molding device and die unit used for this |
JP2008105391A (en) * | 2006-09-29 | 2008-05-08 | Toyoda Gosei Co Ltd | Mold clamping mechanism and injection molding machine |
JP2010143197A (en) * | 2008-12-22 | 2010-07-01 | Toyoda Gosei Co Ltd | Vertical injection molding machine |
-
2010
- 2010-06-21 JP JP2012521186A patent/JP5582191B2/en active Active
- 2010-06-21 WO PCT/JP2010/060446 patent/WO2011161747A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05269748A (en) * | 1992-03-25 | 1993-10-19 | Okuma Mach Works Ltd | Clamping device |
JP2004230386A (en) * | 2002-04-17 | 2004-08-19 | Toshihara Kanagata Kogyo Co Ltd | Molding device and die unit used for this |
JP2008105391A (en) * | 2006-09-29 | 2008-05-08 | Toyoda Gosei Co Ltd | Mold clamping mechanism and injection molding machine |
JP2010143197A (en) * | 2008-12-22 | 2010-07-01 | Toyoda Gosei Co Ltd | Vertical injection molding machine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108773037A (en) * | 2018-06-20 | 2018-11-09 | 台州市点睛模业有限公司 | Integrated injection moulding system with novel clamping mechanism |
CN114423576A (en) * | 2019-04-11 | 2022-04-29 | 佳能弗吉尼亚股份有限公司 | Injection molding system with transfer device for inserting or ejecting molds |
CN111805848A (en) * | 2020-07-06 | 2020-10-23 | 深圳市晶鼎包装材料有限公司 | Internal thread tapping structure and die applying same |
Also Published As
Publication number | Publication date |
---|---|
JP5582191B2 (en) | 2014-09-03 |
JPWO2011161747A1 (en) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803939B2 (en) | Clamping apparatus and molded product extrusion method | |
WO2011161747A1 (en) | Injection molding machine | |
JP5637447B2 (en) | Clamping device and extrusion method of injection molding machine | |
CN101152757B (en) | Mold clamping mechanism and injection molding machine | |
JP5105612B2 (en) | Ejector device and ejector device connection method | |
US20210078229A1 (en) | Mold clamping device having a half nut and injection molding apparatus | |
KR102261980B1 (en) | screw cap injection molded device | |
US8092211B2 (en) | Vertical type injection molding machine | |
JP5365995B2 (en) | Die casting machine injection equipment | |
CN216992822U (en) | Vertical clamping mechanism | |
JP2006248055A (en) | Two stage ejection mechanism of injection molding mold | |
RU2388577C2 (en) | Mechanical automatic press to form parts from metal powders with hole in complicated-shape cross section | |
JP2007152820A (en) | Injection molding machine | |
CN114102992A (en) | Vertical clamping mechanism | |
KR20150002220U (en) | A Under Cut Rotating Mold Purge Unit | |
KR101582589B1 (en) | Injection mold for forming product having female screw surface | |
CN111113776A (en) | Four-column hydraulic injection molding machine | |
CN110479987A (en) | A kind of double-plate metal-forming machines mold-locking and mold-adjusting apparatus | |
WO2013015153A1 (en) | Vertical injection molding machine | |
WO2019130785A1 (en) | Injection molding mold | |
CN221289316U (en) | Forming die is used in head production | |
CN212097285U (en) | Forming die for cup body hanging rope connecting piece | |
CN212666608U (en) | Ejection mechanism for plastic mold | |
WO2023013654A1 (en) | Full-electric core driving apparatus and molding machine | |
EP3162530B1 (en) | Injection molding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10853607 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012521186 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10853607 Country of ref document: EP Kind code of ref document: A1 |