WO2011161383A1 - Procede de transport d'une composition hydraulique - Google Patents

Procede de transport d'une composition hydraulique Download PDF

Info

Publication number
WO2011161383A1
WO2011161383A1 PCT/FR2011/051451 FR2011051451W WO2011161383A1 WO 2011161383 A1 WO2011161383 A1 WO 2011161383A1 FR 2011051451 W FR2011051451 W FR 2011051451W WO 2011161383 A1 WO2011161383 A1 WO 2011161383A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic composition
hydraulic
weight
concrete
agent
Prior art date
Application number
PCT/FR2011/051451
Other languages
English (en)
Inventor
Serge Sabio
Hélène LOMBOIS-BURGER
Arnaud Jonnekin
Abdelaziz Labyad
Original Assignee
Lafarge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge filed Critical Lafarge
Priority to EP11736430.7A priority Critical patent/EP2585416B1/fr
Priority to CA2803528A priority patent/CA2803528C/fr
Priority to ES11736430.7T priority patent/ES2560628T3/es
Priority to US13/805,765 priority patent/US20130102705A1/en
Priority to PL11736430T priority patent/PL2585416T3/pl
Priority to RS20160061A priority patent/RS54550B1/en
Publication of WO2011161383A1 publication Critical patent/WO2011161383A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/003Methods for mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/16Discharge means, e.g. with intermediate storage of fresh concrete
    • B28C7/161Discharge means, e.g. with intermediate storage of fresh concrete with storage reservoirs for temporarily storing the fresh concrete; Charging or discharging devices therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation

Definitions

  • the invention relates to a method of transporting a hydraulic composition in the fresh state, in particular a concrete, comprising a hydraulic binder, aggregates and water.
  • a hydraulic composition is obtained by mixing a hydraulic binder, for example a cement, aggregates and water.
  • the site of manufacture of the hydraulic composition may be different from the site of use of the hydraulic composition. This is the case, for example, when the hydraulic composition corresponds to a concrete manufactured in a concrete plant. The hydraulic composition must then be transported from the manufacturing site to the site of use.
  • the router truck comprises a mixer in which the hydraulic composition is regularly agitated.
  • router truck presents several problems: a high cost of use, a lower availability than other means of transport, for example dump trucks, generally greater use constraints than for others.
  • means of transport for example dump trucks (in particular to avoid the risk of deviation in cornering roads).
  • some sites of use may not be accessible to a truck spindle which makes it necessary to manufacture the hydraulic composition on site.
  • the present invention relates to a method of transporting a fresh hydraulic composition comprising:
  • a rheology modifier distinct from the superplasticizer, comprising at least one compound chosen from a viscosifying agent, a retaining agent, water, a thresholding agent or a thixotropic agent,
  • the transport being carried out for more than ten minutes without agitation of the hydraulic composition.
  • the invention offers one of the advantages described below.
  • the hydraulic composition in the fresh state can be transported by any type of conventional means of transport.
  • the invention offers another advantage that the fresh hydraulic composition can be transported to sites of use that would not have been accessible with conventional means of transport.
  • the invention has the advantage of being used in one of the industries such as the building industry, the chemical industry (adjuvants) and the cement industry, in the construction markets (building, civil engineering, roads or prefabrication plant), or in concrete plants.
  • hydraulic binder is meant according to the present invention a powdery material which, mixed with water, forms a paste which sets and hardens as a result of reactions, and which after curing retains its strength and stability. stability even under water.
  • the hydraulic binder can be a cement according to EN 197-1.
  • hydraulic composition a mixture of a hydraulic binder, with mixing water, aggregates, optionally adjuvants, and optionally mineral additions.
  • a hydraulic composition may for example be a concrete, in particular a high performance concrete, a very high performance concrete, a self-reinforcing concrete. placing self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete.
  • concrete is also meant concretes having undergone a finishing operation such as bush-hammered concrete, deactivated or washed concrete, or polished concrete. This definition also includes prestressed concrete.
  • the term “concrete” includes mortars; in this case the concrete comprises a mixture of a hydraulic binder, sand, water, optionally adjuvants and possibly mineral additions.
  • the term “concrete” according to the present invention denotes indistinctly fresh concrete or hardened concrete.
  • the hydraulic composition according to the present invention can be used directly on site in the fresh state and cast in a formwork adapted to the intended application, or in prefabrication, or as a coating on a solid support.
  • the hydraulic composition is called a fresh hydraulic composition before setting.
  • the workability window is the period during which the fresh hydraulic composition can be implemented.
  • the workability window then corresponds to the time during which the slump or spread of the hydraulic composition remains greater than a threshold, determined in particular according to the type of hydraulic composition and the intended application.
  • aggregates is meant according to the present invention gravel, chippings and / or sand.
  • mineral additions a finely divided mineral material used in concrete in order to improve certain properties or to bring it particular properties.
  • these are, for example, fly ash (as defined in the EN 450 standard), silica fumes (as defined in the standard prEN 13263: 1998 or NF P 18-502), slag (such as defined in standard NF P 18-506), calcareous additions (as defined in standard NF P 18-508) and siliceous additions (as defined in standard NF P 18-509).
  • setting is meant according to the present invention the transition to the solid state of the hydraulic composition by hydration reaction.
  • the setting is usually followed by the hardening period.
  • clays is intended to mean, according to the present invention, aluminum silicates and / or magnesium silicates, especially phyllosilicates with a sheet structure, typically spaced from about 7 to about 14. Angstroms.
  • Clays frequently encountered in sands include montmorillonite, illite, kaolinite, muscovite and chlorites.
  • the clays can be of type 2: 1 but also of type 1: 1 (kaolinite) or 2: 1: 1 (chlorites).
  • plasticizer / water reducer is meant according to the present invention an adjuvant which, without modifying the consistency, makes it possible to reduce the water content of a given concrete, or which, without modifying the water content , increases the slump / spread of concrete, or produces both effects at the same time.
  • the EN 934-2 standard specifies that the water reduction must be greater than 5%.
  • the water reducers may, for example, be based on lignosulfonic acids, carboxylic acids or treated carbohydrates.
  • superplasticizer or "superfluidifier” or “super-water reducer” is meant according to the present invention a plasticizer / water reducer which reduces by more than 12% the amount of water required for realization of a concrete.
  • a superplasticizer has a fluidizing action since, for the same quantity of water, the workability of the concrete is increased when the superplasticizer is present.
  • the hydraulic composition according to the invention comprises a superplasticizer and a rheology modifying agent, distinct from the superplasticizer, comprising a compound chosen from a viscosing agent, a water retainer or a thresholding agent.
  • the hydraulic composition may further comprise a retarding agent.
  • the superplasticizer comprises a polymer comprising a main chain and more than three pendant chains connected to the main chain.
  • the superplasticizer comprises polyalkylene oxide polyphosphate polymer, polyalkylene oxide polyphosphonate polymer, polyalkylene oxide polysulfonate polymer or polyalkylene oxide polycarboxylate polymer (also known as polyox polycarboxylate or PCP).
  • the superplasticizer comprises a polycarboxylate polymer of polyalkylene oxide.
  • An example of a superplasticizer corresponds to a copolymer comprising at least one unit of formula (I):
  • R1, R2, R3, R6, R7 and R8 are independently a hydrogen atom, a linear or branched alkyl radical -C 2 o C, or an aromatic radical, or a radical -C00R1 1 R1 1 independently are hydrogen atom, a linear or branched alkyl radical C l -C 4, a monovalent cation, divalent or trivalent or an ammonium group;
  • R10 is a hydrogen atom, a linear or branched alkyl radical -C 2 o C, or an aromatic radical
  • R4 and R9 are independently a linear or branched C 2 to
  • R 5 is a hydrogen atom, a C 1 -C 20 alkyl group or an anionic or cationic group, for example a phosphonate group, a sulfonate group, a carboxylate group, etc. ;
  • W is an oxygen or nitrogen atom or an NH radical
  • n and t are independently integers from 0 to 2;
  • n and u are independently integers equal to 0 or 1; q is an integer equal to 0 or 1;
  • r and v are independently integers from 0 to 500;
  • the molar mass of said copolymer is from 10,000 to 400,000 daltons.
  • the radical R 1 or R 6 is a hydrogen atom.
  • the radical R2 or R7 is a hydrogen atom.
  • the radical R3 or R8 is a methyl radical or hydrogen.
  • the radical R4 or R9 is an ethyl radical.
  • the copolymer used according to the invention or a salt thereof has an integer from 1 to 300, preferably from 20 to 250, more preferably from 40 to 200, even more preferably from 40 to 150.
  • the superplasticizer may correspond to a salt of the copolymer defined above.
  • the copolymer may comprise several different units according to formula (I) having, in particular, different radicals R5.
  • the superplasticizer can be an immediate-acting superplasticizer whose maximum fluidizing action is obtained in the first fifteen minutes at 20 ° C after the addition of water to the hydraulic binder for conventional dosages.
  • the superplasticizer can be a superplasticizer with delayed efficiency whose maximum fluidizing action is obtained after fifteen first minutes at 20 ° C after the addition of water to the hydraulic binder for conventional dosages.
  • the measurement of the fluidizing action of the immediate-acting superplasticizer and the delayed-efficiency superplasticizer is measured by a measurement of spreading and / or settling.
  • the increase of the fluidifying action of the superplasticizer with delayed efficiency can be obtained by an increase of the capacity of the superplasticizer with delayed efficiency to be adsorbed on the mineral components (in particular the grains of cement) of the hydraulic composition.
  • one possibility is to increase the density of anionic charges of the superplasticizer.
  • An increase in the charge density of the superplasticizer can be obtained by two different phenomena that can occur simultaneously:
  • the reduction of the molecular weight of the superplasticizer can be achieved by choosing a superplasticizer comprising a main chain and pendant chains connected to the main chain and which can separate from the main chain when the superplasticizer is in the hydraulic composition.
  • the separation of pendant chains and / or the increase of the number of charges carried by the superplasticizer can be obtained by choosing a superplasticizer comprising hydrolysable chemical functions which, under the effect of hydroxide ions (OH " ) in the hydraulic composition, can to transform to provide carboxylate functions (COO " ).
  • the hydrolysable chemical functions are in particular anhydrides, esters and amides.
  • a hydrolyzable polymer is a polymer comprising hydrolysable chemical functions under the conditions of basicity and in the workability window of the hydraulic composition and a hydrolyzable monomer is a monomer comprising a hydrolysable function under the conditions of basicity and in the workability window. of the hydraulic composition.
  • superplasticizers examples include superplasticizers which include carboxylate and / or sulfonate and / or phosphonate and / or silane and / or phosphate functions and optionally polyalkylene oxide chains.
  • superplasticizers of the polyox polyphosphate or polysulfonate polyox type or better still of polyalkylene oxide polycarboxylate type also known as polyox polycarboxylate or PCP
  • An example of a superplasticizer is that described in EP-A-537872, US20030127026 and US20040149174.
  • an ionic monomer of the phosphonic, sulphonic or carboxylic type preferably carboxylic and advantageously of the (meth) acrylic type
  • a polyoxyalkylene glycol (C 1 -C 4 ) (meth) acrylate type monomer for example of the polyethylene glycol (PEG) (meth) acrylate type, whose molecular weight is, for example, from 100 to 10,000, of preferably from 500 to 5000 and advantageously from 750 to 2500.
  • PEG polyethylene glycol
  • the molar ratio between the unit according to formula (I) and the unit according to formula (II) may vary, for example from 90/10 to 45/55, preferably from 80/20 to 55/45.
  • acrylamide type for example N, N-dimethylacrylamide, 2,2'-dimethylamino (meth) acrylate or its salts, 2,2'-dimethylaminoalkyl (meth) acrylate or its salts with the alkyl group and in particular ethyl and propyl, and in general any monomer comprising an amine or amide type function;
  • hydrophobic type for example alkyl (meth) acrylate comprising from 1 to 18 carbon atoms, in particular methyl or ethyl.
  • the amount of this other monomer may be from 5 to 25 mol% of the total monomers.
  • the anionicity of the superplasticizer can increase in the concrete in the workability window.
  • delayed efficiency superplasticizers are described in EP 1 136 508, WO 2007/047407, US 2009/0312460 and PCT / US2006 / 039991.
  • the shape of the superplasticizer can vary from a liquid form to a solid form, through a waxy form.
  • the rheology modifier comprises a compound selected from a viscosifier, a water retainer, a thresholding agent, or a thixotropic agent. It is clear that the rheology modifying agent can simultaneously have several of the functions of the agents indicated above.
  • a water-retaining agent may be as defined in standard NF EN 934-2.
  • Examples of water retaining agents are cellulose ethers.
  • a viscosifying agent is an agent that increases the viscosity of a hydraulic composition.
  • An exemplary measurement representative of the viscosity of a hydraulic composition corresponds to the measurement of the flow time of the hydraulic composition to be tested through a device, for example V-funnel.
  • viscosifying agents are cellulose ethers, natural or modified gums, especially diutane, welan, xanthan, synthetic polymers, in particular polyacrylamides, polyacrylates, ethylene polyoxides, natural or modified polymers. , especially starch, associative polymers, etc.
  • a thresholding agent is an adjuvant suitable for increasing the flow threshold of the hydraulic composition.
  • Examples of thresholding agents are certain polysaccharides (diutane for example), certain clays, etc.
  • a thixotropic agent is a compound inducing a variation over time of the rheology (spontaneous structuring at rest, destructuration under shear).
  • examples of thixotropic agent include clays.
  • the rheology modifier is water soluble.
  • the rheology modifier agent comprises a cellulose or a cellulose derivative.
  • the rheology modifier comprises a cellulose ether.
  • a cellulose ether used according to the invention is methylhydroxypropylcellulose.
  • a cellulose ether used according to the invention is methylcellulose.
  • the retarding agent corresponds to the definition of the retarding agent mentioned in standard NF EN 934-2.
  • the retarding agent comprises a compound chosen from:
  • sugars and derived products in particular sucrose, glucose, reducing sugars (lactose, maltose, etc.), cellobiose, gallactose, etc., derivatives, for example glucolactone, etc. ;
  • carboxylic acids or their salts especially gluconic acid, gluconate, tartaric acid, citric acid, gallic acid, glucoheptonic acid, saccharic acid and salicylic acid.
  • Associated salts include, for example, ammonium salt, alkali metal salt (e.g., sodium salt, potassium salt, etc.), alkaline earth metal salt (e.g., calcium salt, magnesium salt, etc.). However other salts can also be used;
  • aminotri methylenephosphonic acid
  • pentasodium salt of aminotri methylenephosphonic acid
  • hexamethylenediamine tetra methylenephosphonic acid
  • diethylenetriamine penta methylenephosphonic acid and its sodium salt
  • alkylpolyglucosides APG and their derivatives
  • zinc salts especially zinc oxide, zinc borate and soluble salts of zinc (nitrate, chloride);
  • borates especially boric acid, zinc borate and boron salts
  • surfactants adapted to coat the surface of the cement grains, in particular certain cellulose ethers and acrylates;
  • surfactants adapted to coat the surface of the cement grains, in particular cellulose ethers, acrylates, alginates, stearates; and
  • the retarding agent comprises a carboxylic acid, a phosphonic acid or their salts.
  • the retarding agent comprises a hydroxycarboxylic acid or a hydroxycarboxylic acid salt.
  • the retarding agent comprises a gluconate.
  • the hydraulic binder comprises Portiand cement.
  • Suitable cements are the Portiand cements described in "Lea's Chemistry of Concrete and Concrete.”
  • Portiand cements include slag, pozzolana, fly ash, shale, limestone and composite cements. This is for example a cement of CEM I, CEM II, CEM III, CEM IV or CEM V type according to the "Cement" NF EN 197-1 standard.
  • the hydraulic composition comprises from 220 to 500 kg, preferably from 250 to 450 kg of the hydraulic binder per cubic meter of the hydraulic composition in the fresh state.
  • the hydraulic composition comprises from 220 to 500 kg, preferably from 250 to 450 kg of Portland cement per cubic meter of the hydraulic composition in the fresh state.
  • the hydraulic composition comprises from 400 to 1800 kg, preferably from 500 to 1600 kg, more preferably from 600 to 1100 kg of sand per cubic meter of the fresh hydraulic composition.
  • the sand has a D10 greater than 0.1 mm and a D90 less than 4 mm.
  • the sand can be of any mineral nature, limestone, siliceous or silico-limestone or other. Sand can be a mixture of sands of different natures.
  • the D90 also denoted D v 90 is the 90 th percentile of the volume distribution of particle size. In other words, 90% of the grains are smaller than D90 and 10% are larger than D90.
  • D10, also denoted D v 10 corresponds to the io th percentile of the volume distribution of particle size. In other words, 10% of the grains are smaller than D10 and 90% are larger than D10.
  • the hydraulic composition comprises from 150 to 1000 kg, preferably from 200 to 900 kg, more preferably from 300 to 900 kg of the gravel per cubic meter of the hydraulic composition in the fresh state.
  • the gravel has a D10 greater than 4 mm and a D90 less than 10 mm.
  • the composition may, in addition, comprise other aggregates, for example granules having a particle size strictly greater than 20 mm.
  • the hydraulic composition may further comprise from 5% to 40%, preferably from 10% to 30%, more preferably from 15% to 25% by weight relative to the weight of the hydraulic binder of a particulate material (also called inorganic addition) or a mixture of particulate materials.
  • the particulate material has an average particle size of less than 100 ⁇ .
  • the particulate material may comprise pozzolanic or non-pozzolanic materials or a mixture thereof.
  • particle as used in the context of the present invention should be understood in a broad sense and corresponds not only to compact particles having more or less a spherical shape but also to angular particles, flattened particles, particles flake-shaped, fiber-shaped particles, or fibrous particles, etc.
  • size of the particles in the context of the present invention means the smallest transverse dimension of the particles.
  • the size of the particles corresponds to the diameter of the fibers.
  • the particles of a material are understood to mean the particles taken individually (that is to say the unitary elements of the material), knowing that the material may be in the form of particle agglomerates.
  • average size is meant according to the present invention the particle size which is greater than the size of 50% by volume of the particles and smaller than the size of 50% by volume of the particles of a particle distribution. .
  • particulate material is slag, especially granulated blast furnace slag.
  • Suitable pozzolanic materials include fumed silica, also known as micro-silica, which is for example a by-product of the production of silicon or ferrosilicon alloys. It is known as a pozzolanic reactive material. Its main constituent is amorphous silicon dioxide.
  • the individual particles generally have a diameter of about 5 to 10 nm. Individual particles can agglomerate to form aggregates from 0.1 to 1 ⁇ . Aggregates from 0.1 to 1 ⁇ can aggregate to form aggregates of 20 to 30 ⁇ .
  • the silica fumes generally have a BET surface area of 10 - 30 m 2 / g. BET specific surfaces can be measured using a Beckman Coulter SA 3100 analyzer with nitrogen as the adsorbed gas.
  • Other pozzolanic materials include fly ash which generally has a D10 greater than 10 ⁇ and a D90 less than 120 ⁇ and has, for example, for example, a D50 of 30 to 50 ⁇ .
  • the D90 also denoted D v 90 is the 90 th percentile of the volume distribution of particle size. In other words, 90% of the grains are smaller than D90 and 10% are larger than D90.
  • the D50 also denoted D v 50 corresponds to the 50 th percentile of the volume distribution of particle size. In other words, 50% of the grains are smaller than D50 and 50% are larger than D50.
  • D10, also denoted D v 10 corresponds to the io th percentile of the volume distribution of particle size. In other words, 10% of the grains are smaller than D10 and 90% are larger than D10.
  • the average sizes and particle distributions can be determined by laser particle size (in particular using a Malvern MS2000 laser particle size analyzer) for particles smaller than 63 ⁇ , or by sieving for particles larger than 63 ⁇ . Nevertheless, when the individual particles have a tendency to aggregate, it is preferable to determine their size by electron microscopy, since the apparent size measured by laser diffraction granulometry is then larger than the actual particle size, which is likely to distort interpretation (agglomeration and flocculation).
  • the Blaine surface area can be determined as described in EN 196-6 paragraph 4.
  • pozzolanic materials include materials rich in aluminosilicate such as metakaolin and natural pozzolans with volcanic, sedimentary, or diagenic origins.
  • Suitable non-pozzolanic materials include materials containing calcium carbonate (eg ground or precipitated calcium carbonate), preferably crushed calcium carbonate.
  • Ground calcium carbonate may, for example, be the Durcal ® 1 (OMYA, France).
  • the non-pozzolanic materials preferably have an average particle size of less than 5 ⁇ , for example from 1 to 4 ⁇ .
  • Non-pozzolanic materials may be ground quartz, for example C800 which is a substantially non-pozzolanic silica filler supplied by Sifraco, France.
  • the preferred BET surface area (determined by known methods previously described) of calcium carbonate or crushed quartz is 2 - 10 m 2 / g, generally less than 8 m 2 / g, for example from 4 to 7 m 2 / g, preferably less than about 6 m 2 / g.
  • Precipitated calcium carbonate is also suitable as a non-pozzolanic material.
  • Individual particles usually have a (primary) size of the order of 20 nm.
  • the individual particles agglomerate into aggregates having a (secondary) size of 0.1 to 1 ⁇ . Aggregates with a (secondary) size of 0.1 to 1 ⁇ can themselves form aggregates with a (ternary) size greater than 1 ⁇ .
  • a single non-pozzolanic material or a mixture of non-pozzolanic materials may be used, for example ground calcium carbonate, ground quartz or precipitated calcium carbonate or a mixture thereof.
  • a mixture of pozzolanic materials or a mixture of pozzolanic and non-pozzolanic materials can also be used.
  • the time between the end of the workability window and the beginning of setting of the hydraulic composition is less than 36 hours, preferably less than 24 hours, more preferably less than 16 hours.
  • the amount of the retarding agent in the hydraulic composition is from 0.1 to 5% by weight of dry extract of the retarding agent relative to the mass of the dry hydraulic binder, preferably from 0.1 to 1.0% by weight of dry extract of the retarding agent relative to the weight of the dry hydraulic binder.
  • the amount of the superplasticizer in the hydraulic composition is 0.05 to 5% by mass of dry extract of the superplasticizer relative to the mass of the dry hydraulic binder, preferably 0.05 at 1% by mass of dry extract of the superplasticizer relative to the mass of the dry hydraulic binder, more preferably from 0.05 to 0.75% by mass of dry extract of the superplasticizer relative to the mass of the dry hydraulic binder, even more preferably from 0.05 to 0.5% by weight of dry extract of the superplasticizer relative to the mass of the dry hydraulic binder.
  • the amount of the rheology modifier agent in the hydraulic composition is from 0.01 to 0.5% by weight of dry extract of the rheology modifier agent relative to the mass of the dry hydraulic binder, preferably from 0.025 to 0.4% by weight of dry extract of the rheological modifier relative to the weight of the dry hydraulic binder.
  • the hydraulic binder may comprise Portland cement, according to EN 197-1.
  • the final amount of the retarding mixture depends on the properties under consideration (eg desired open time, concrete formula, etc.).
  • the hydraulic composition is obtained by mixing aggregates, hydraulic binder, admixtures and water.
  • the mass ratio of effective water / dry binder can be in general from 0.45 to 0.65.
  • the hydraulic composition may comprise other types of adjuvants than those already mentioned, commonly used in concrete.
  • adjuvants which can be used are: antifoaming agents, corrosion inhibitors, shrinkage reducing agents, fibers, pigments, pumpability assistants, alkali reducing agents, reinforcing agents, water-repellent compounds and their mixtures.
  • the hydraulic composition further comprises an inert clay agent, that is to say an adjuvant allowing the at least partial neutralization of the harmful effects due to the presence of the clay in a hydraulic composition, in particular a hydraulic composition comprising a superplasticizer.
  • an inert clay agent that is to say an adjuvant allowing the at least partial neutralization of the harmful effects due to the presence of the clay in a hydraulic composition, in particular a hydraulic composition comprising a superplasticizer.
  • the present invention relates to a method of manufacturing a hydraulic composition as defined above, comprising the step of mixing the hydraulic binder, the superplasticizer, the rheology modifying agent, optionally the retarding agent and water for obtain the hydraulic composition in the fresh state.
  • some of the adjuvants can be introduced in powder form directly into the various constituents of the hydraulic composition irrespective of their physical states (in liquid or solid form).
  • some of the adjuvants can also be introduced in the form of a liquid or semi-liquid solution in the mixing water.
  • the superplasticizer and optionally the rheology modifying agent and optionally the retarding agent may be added separately during the manufacture of the hydraulic composition.
  • a mixture of the superplasticizer, the rheology modifying agent and possibly the retarder can nevertheless be made beforehand, the mixture then being directly added to the hydraulic composition.
  • the transport of the hydraulic composition is carried out for more than ten minutes, preferably more than 20 minutes, even more preferably, more than 30 minutes, without agitation of the hydraulic composition.
  • the hydraulic composition according to the invention once manufactured does not need to be agitated until use.
  • agitation of the hydraulic composition is meant according to the present invention any mechanical system dedicated to perform a vigorous mixing operation of the hydraulic composition. This does not take into account the stresses (tremors, etc.) that necessarily undergoes the hydraulic composition during a transport operation.
  • the hydraulic composition can therefore be transported and / or stored in bags, drums, or any type of container without agitation of the hydraulic composition.
  • the delayed hydraulic composition according to the invention is stored in closed packaging, for example in a hermetically sealed container.
  • the hydraulic composition can be transported in bags of the order of one cubic meter.
  • the hydraulic composition can be transported horizontally (without agitation of the hydraulic composition), that is to say in a vehicle that does not comprise a mixer, for example in a truck other than a truck mixer.
  • a rheology modifying agent makes it possible to avoid any bleeding phenomena (upwelling on the surface of the concrete), sedimentation (higher concentration of aggregates at the base of the concrete) or consolidation (absence of pulp). at the level of the intergranular contacts) which can degrade the visual appearance of the concrete and / or hinder or even prevent in practice any remanipulation of the concrete (and especially its remixing and its use), although the hydraulic composition is not agitated during its transport and / or its storage.
  • the hydraulic composition further comprises a retarding agent.
  • the variation of the subsidence of the hydraulic composition, measured according to the EN 12350-2 standard is then advantageously less than 50 mm or the variation of the spreading of the hydraulic composition, measured with a cone according to the EN 12350-2 standard. , is less than 100 mm for at least 12 hours, preferably for at least 1 day, more preferably for at least 2 days, even more preferably at least 3 days, without triggering the setting of the hydraulic composition.
  • the spread is measured for the fluid concretes and the slump is measured for the other concretes.
  • the consistency of the hydraulic composition is maintained in the same consistency class with respect to the slump, as defined by EN 206-1, for at least 12 hours, preferably for at least 1 day, plus preferably for at least 2 days, more preferably at least 3 days without triggering the setting of the hydraulic composition.
  • the consistency class of the hydraulic composition is for example S4
  • the consistency class of the hydraulic composition remains the S4 class for at least 12 hours, preferably during less 1 day, more preferably for at least 2 days, even more preferably at least 3 days, without triggering the setting of the hydraulic composition.
  • the freshly-cooled hydraulic composition can be transported and / or stored without agitation of the hydraulic composition for at least 12 hours, preferably for at least 1 day, more preferably for at least 2 days, even more preferably at least 3 days.
  • the hydraulic composition can be stored outdoors at temperatures ranging from 5 ° C to 30 ° C. Even at temperatures below 10 ° C., the variation of the slump of the hydraulic composition measured according to the EN 12350-2 standard is less than 50 mm or the variation of the spreading of the hydraulic composition measured with a cone according to the EN 12350-2 standard is less than 100 mm for at least 12 hours, preferably for at least 1 day, more preferably for at least 2 days, even more preferably at least 3 days, without triggering the setting of the hydraulic composition.
  • triggering the setting of the hydraulic composition can be achieved by any means.
  • the catch can be obtained without any particular action after the end of the workability window.
  • the triggering of the setting of the hydraulic composition can be obtained by a physical, mechanical or chemical action, in particular by kneading, pumping, stirring by acoustic waves, etc. hydraulic composition, or chemical action.
  • the method comprises the following successive steps: - mixing the hydraulic binder and water to make the hydraulic composition in the fresh state;
  • the method comprises adding to the hydraulic composition an antifoam agent with the accelerator agent
  • Cement was the cement produced by Lafarge from the Saint Pierre La Cour site or the Le Havre site which was of the CEM I 52.5 N type according to the EN 197-1 standard.
  • the BL 200 TM filler material was a limestone mineral addition.
  • CHRYSOPIast CER TM is generally marketed as a plasticizer. However, it can also have a delaying action. In the present examples, CHRYSOPIast CER TM has been called a retarding agent even though it also has a fluidizing action.
  • GLENIUM 27 TM Adjuvant was a PCP superplasticizer with immediate action.
  • Rheotec Z60 TM adjuvant was a delayed-acting superplasticizer.
  • the Rheotec Z60 TM superplasticizer was a PCP.
  • Culminai adjuvant MHPC 20000 P TM was a rheology modifier for methylhydroxypropylcellulose.
  • Tylose MHS Adjuvant 3000000P6 was a rheology modifier corresponding to methylhydroxyethylcellulose.
  • a temperature recorder has been used, for example a temperature recorder sold by the company Testo.
  • the hydraulic composition was placed in an adiabatic enclosure.
  • the recorder has been arranged in the hydraulic composition.
  • An acquisition of the temperature was performed every minute.
  • the temperature of the hydraulic composition tended to decrease after manufacture of the hydraulic composition to stabilize at a constant temperature plateau until the setting during which the temperature temporarily increased.
  • the beginning of the setting corresponded, unless otherwise indicated, to the measured time from 24 hours after the manufacture of the hydraulic composition to the instant the temperature increased by two degrees relative to the temperature plateau for a hydraulic composition.
  • Two concretes B1 and B2 were prepared according to the formulation (1) at 20 ° C. For each concrete B1 and B2, about 20 liters of concrete were made.
  • the retarding agent for concretes B1 and B2 was CHRYSOPIast CER TM.
  • Each concrete B1 and B2 included 0.35% by weight of dry extract of the retarding agent relative to the mass of cement.
  • the rheology modifier for concrete B1 and B2 was Culminai MHPC 20000 P TM. Each concrete B1 and B2 comprised 0.1% by weight dry solids of the rheology modifier relative to the cement mass.
  • the superplasticizer for B1 concrete was GLENIUM 27 TM.
  • Concrete B1 comprised 0.4% by weight of GLENIUM 27 TM solids in relation to the cement mass.
  • the superplasticizer for B2 concrete was Rheotec Z60 TM.
  • Concrete B2 contained 0.4% by weight of dry extract of Rheotec Z60 TM relative to the cement mass.
  • Each concrete B1 and B2 was placed in a 25 liter bucket.
  • the buckets were sealed by a lid and then attached to a pallet which was carried by a forklift for 10 minutes, without agitation, at an average speed of a dozen kilometers per hour.
  • the forklift does not included by shock absorbers. Concretes B1 and B2 were then stored at rest, without agitation.
  • the 48-hour sag variation was less than 50 mm for B1 and B2 concretes. Concretes B1 and B2 were therefore satisfactory. In addition, the 72-hour sag variation was less than 50 mm for B2 concrete. In addition, no bleeding or sedimentation was noticeably observed for concretes B1 and B2, despite the fact that transport was unsteady.
  • the setting time was about 88 hours for concrete B1 and B2.
  • the duration between the end of the workability window and the start of setting concretes B1 and B2 was therefore less than 16 hours.
  • Concrete B3 was prepared according to formulation (1) at 20 ° C. Three wastes of about 500 liters each were prepared.
  • the retarding agent was CHRYSOPIast CER TM.
  • Concrete B3 included 0.35% by weight of dry extract of the retarding agent relative to the mass of cement.
  • the rheology modifier was Culminai MHPC 20000 P TM.
  • Concrete B3 comprised 0.13% by weight of dry extract of the rheology modifier relative to the cement mass.
  • the superplasticizer was GLENIUM 27 TM.
  • Concrete B3 comprised 0.40% by weight of GLENIUM 27 TM solids in relation to the cement mass.
  • the mixes were made in a Pemat type mixer.
  • the three spoils were homogenized by 70 turns in a Fiori mixer truck of 2 m 3 .
  • Three impermeable bag P1, P2 and P3 double jacket were each filled with about 400 liters of concrete B3.
  • the bags were transported by truck, without agitation, for 75 minutes, including 15 minutes at an average speed of 1 10 km / h and 60 minutes at an average speed of 80 km / h.
  • Concrete B3 was kept in the same consistency class (class S4) for 48 hours. No bleeding or settlement of aggregates was observed for each bag. Bags P1, P2 and P3 could be emptied without difficulty from the truck. Concrete B3 flowed by itself without having to vibrate it. In addition, the bags P1, P2 and P3 have emptied completely without the remains of dough or granules on the walls.
  • Concrete B4 was prepared according to formulation (2) at 20 ° C. A batch of about 500 liters was prepared.
  • the retarding agent was CHRYSOPIast CER TM.
  • Concrete B4 comprised 0.3% by weight of dry extract of the retarding agent relative to the mass of cement.
  • the rheology modifier was Culminai MHPC 20000 P TM.
  • Concrete B3 comprised 0.13% by weight of dry extract of the rheology modifier relative to the cement mass.
  • the superplasticizer was GLENIUM 27 TM.
  • Concrete B3 included 0.3% by weight of GLENIUM 27 TM solids in relation to the cement mass.
  • the tempering was carried out in a Pemat-type mixer and was homogenized by 70 turns in a Fiori mixer truck of 2 m 3 .
  • a double-walled bag was filled with approximately 400 liters of B4 concrete.
  • the bag was transported by truck, without agitation. The bag was then kept at rest.
  • the slump variation of concrete B4 was less than 50 mm over 48 hours. No bleeding or settling of the granular skeleton was observed after storage.
  • Two concretes B5 and B6 were prepared according to the formulation (4) at 20 ° C. For each concrete B5 and B6, about 20 liters of concrete were made.
  • the retarding agent for B5 and B6 was CHRYSOPIast CER TM.
  • Each concrete B5 and B6 comprised 0.3% by weight, expressed as solids, of the retarding agent relative to the mass of cement.
  • the superplasticizer for B5 and B6 was GLENIUM 27 TM.
  • Each concrete B5 and B6 comprised 0.3% by weight, expressed as solids, of the rheology modifier relative to the cement mass.
  • the rheology modifier for B5 concrete was the Culminai MHPC 20000 P TM.
  • Concrete B5 comprised 0.13% by weight, expressed as solids content, of the rheology modifier relative to the cement mass.
  • the rheology modifier for B6 concrete was Tylose MHS 300000P6.
  • Concrete B6 comprised 0.13% by weight, expressed as solids content, of the rheology modifier relative to the cement mass.
  • Each concrete B1 and B2 was placed in a 25 liter bucket.
  • the buckets were sealed with a lid, then attached to a pallet that was transported by a forklift for 10 minutes, without agitation, at an average speed of a dozen kilometers per hour.
  • the forklift did not include dampers. Concretes B1 and B2 were then stored at rest, without agitation.
  • the 48-hour sag variation was less than 50 mm for B5 and B6 concretes. Concretes B5 and B6 were therefore satisfactory. In addition, no bleeding or sedimentation was noticeably observed for the B5 and B6 concretes, despite a transport without agitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

La présente invention se rapporte à un procédé de de transport d'une composition hydraulique à l'état frais comprenant: -de 220 à 500kg, par mètre cube de la composition hydraulique à l'état frais, d'un liant hydraulique comprenant du ciment Portland; -de 400 à 1200kg, par mètre cube de la composition hydraulique à l'état frais, d'un sable; -de 150 à 1000kg, par mètre cube de la composition hydraulique à l'état frais, d'un gravier; -de 0,05 à 5% en masse d'extrait sec par rapport à la masse du liant hydraulique d'un superplastifiant; et -de 0,01 à 0,5% en masse d'extrait sec par rapport à la masse du liant hydraulique d'un agent modificateur de rhéologie, le transport étant réalisé pendant plus de dix minutes sans agitation de la composition hydraulique.

Description

PROCEDE DE TRANSPORT D'UNE COMPOSITION HYDRAULIQUE
L'invention se rapporte à un procédé de transport d'une composition hydraulique à l'état frais, notamment un béton, comprenant un liant hydraulique, des granulats et de l'eau.
Une composition hydraulique est obtenue en mélangeant un liant hydraulique, par exemple un ciment, des granulats et de l'eau. Le site de fabrication de la composition hydraulique peut être différent du site d'utilisation de la composition hydraulique. C'est le cas, par exemple, lorsque la composition hydraulique correspond à un béton fabriqué dans une centrale à béton. La composition hydraulique doit alors être transportée du site de fabrication jusqu'au site d'utilisation.
Tout au long du transport de la composition hydraulique à l'état frais du site de fabrication au site d'utilisation, la composition hydraulique doit être régulièrement mélangée pour éviter des phénomènes indésirable tels que le ressuage (remontée d'eau en surface du béton) ou la ségrégation (séparation des constituants, notamment les types différents de granulats, du béton frais). A cette fin, un camion- toupie peut être utilisé. Le camion-toupie comprend un malaxeur dans lequel la composition hydraulique est régulièrement agitée.
L'utilisation d'un camion-toupie présente plusieurs problèmes : un coût d'utilisation élevé, une disponibilité moindre que d'autres moyens de transport, par exemple les camions benne, des contraintes d'utilisation généralement plus importantes que pour d'autres moyens de transport, par exemple les camions benne (notamment pour éviter les risques de devers dans les virages des routes). En outre, certains sites d'utilisation peuvent ne pas être accessibles à un camion toupie ce qui rend nécessaire la fabrication de la composition hydraulique sur place.
Il serait toutefois souhaitable de disposer d'un procédé de transport plus simple et à coût réduit d'une composition hydraulique à l'état frais, notamment un béton, comprenant un liant hydraulique, des granulats et de l'eau. Dans ce but, la présente invention se rapporte à un procédé de transport d'une composition hydraulique à l'état frais comprenant :
-de 220 à 500 kg, par mètre cube de la composition hydraulique à l'état frais, d'un liant hydraulique comprenant du ciment Portland ;
-de 400 à 1200 kg, par mètre cube de la composition hydraulique à l'état frais, d'un sable ayant un D10 supérieur à 0,1 mm et un D90 inférieur à 4 mm ; -de 150 à 1000 kg, par mètre cube de la composition hydraulique à l'état frais, d'un gravier ayant un D10 supérieur à 4 mm et un D90 inférieur à 10 mm ; -de 0,05 à 5 % en masse d'extrait sec par rapport à la masse du liant hydraulique d'un superplastifiant comprenant un polymère polyphosphate de polyoxyde d'alkylène, un polymère polyphosphonate de polyoxyde d'alkylène, un polymère polysulfonate de polyoxyde d'alkylène ou un polymère polycarboxylate de polyoxyde d'alkylène ; et
-de 0,01 à 0,5 % en masse d'extrait sec par rapport à la masse du liant hydraulique d'un agent modificateur de rhéologie, distinct du superplastifiant, comprenant au moins un composé choisi parmi un agent viscosant, un rétenteur d'eau, un agent seuillant ou un agent de thixotropie,
le transport étant réalisé pendant plus de dix minutes sans agitation de la composition hydraulique.
L'invention offre l'un des avantages décrits ci-après.
Avantageusement, la composition hydraulique à l'état frais peut être transportée par tout type de moyens de transport classiques.
L'invention offre comme autre avantage que la composition hydraulique à l'état frais peut être transportée à des sites d'utilisation qui n'auraient pas été accessibles avec des moyens de transport classiques.
Enfin l'invention a pour avantage de pouvoir être utilisée dans l'une des industries telles que l'industrie du bâtiment, l'industrie chimique (adjuvantiers) et l'industrie cimentière, dans les marchés de la construction (bâtiment, génie civil, routes ou usine de préfabrication), ou dans les centrales à béton.
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre.
Par l'expression « liant hydraulique », on entend selon la présente invention un matériau pulvérulent qui, gâché avec de l'eau, forme une pâte qui fait prise et durcit par suite de réactions, et qui après durcissement, conserve sa résistance et sa stabilité même sous l'eau. Le liant hydraulique peut être un ciment selon la norme EN 197-1 .
Par l'expression « composition hydraulique », on entend selon la présente invention un mélange d'un liant hydraulique, avec de l'eau de gâchage, des granulats, éventuellement des adjuvants, et éventuellement des additions minérales. Une composition hydraulique peut par exemple être un béton, notament un béton hautes performances, un béton très hautes performances, un béton auto- plaçant, un béton auto-nivelant, un béton auto-compactant, un béton fibré, un béton prêt à l'emploi ou un béton coloré. Par le terme « béton », on entend également les bétons ayant subi une opération de finition telle que le béton bouchardé, le béton désactivé ou lavé, ou le béton poli. Cette définition comprend également le béton précontraint. Le terme « béton » comprend les mortiers ; dans ce cas précis le béton comprend un mélange d'un liant hydraulique, de sable, d'eau, éventuellement d'adjuvants et éventuellement d'additions minérales. Le terme « béton » selon la présente l'invention désigne indistinctement le béton frais ou le béton durci. La composition hydraulique selon la présente l'invention peut être utilisée directement sur chantier à l'état frais et coulée dans un coffrage adapté à l'application visée, ou alors en préfabrication, ou encore en tant qu'enduit sur un support solide. On appelle composition hydraulique à l'état frais la composition hydraulique avant la prise. On appelle fenêtre d'ouvrabilité la durée pendant laquelle la composition hydraulique à l'état frais peut être mise en oeuvre. La fenêtre d'ouvrabilité correspond alors à la durée pendant laquelle l'affaissement ou l'étalement de la composition hydraulique reste supérieur à un seuil, déterminé notamment en fonction du type de la composition hydraulique et de l'application prévue.
Par le terme « granulats », on entend selon la présente invention des graviers, des gravillons et/ou du sable.
Par l'expression « additions minérales », on entend selon la présente invention un matériau minéral finement divisé utilisé dans le béton afin d'améliorer certaines propriétés ou pour lui apporter des propriétés particulières. Il s'agit, par exemple, de cendres volantes (telles que définies dans la norme EN 450), de fumées de silice (telles que définies dans la norme prEN 13263 :1998 ou NF P 18- 502), de laitiers (tels que définis dans la norme NF P 18-506), d'additions calcaires (telles que définies dans la norme NF P 18-508) et les additions siliceuses (telles que définies dans la norme NF P 18-509).
Par l'expression « ciment Portland », on entend selon la présente invention un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme « Ciment » NF EN 197-1.
Par le terme « prise », on entend selon la présente invention le passage à l'état solide de la composition hydraulique par réaction d'hydratation. La prise est généralement suivie par la période de durcissement.
Par le terme « argiles », on entend désigner selon la présente invention des silicates d'aluminium et/ou des silicates de magnésium, notamment les phyllosilicates à structure en feuillets, typiquement espacés d'environ 7 à environ 14 Angstrôms. Des argiles rencontrées fréquemment dans les sables peuvent être notamment la montmorillonite, l'illite, la kaolinite, la muscovite et les chlorites. Les argiles peuvent être de type 2 : 1 mais aussi de type 1 : 1 (kaolinite) ou 2 : 1 : 1 (chlorites).
Par l'expression « plastifiant/réducteur d'eau », on entend selon la présente invention un adjuvant qui, sans modifier la consistance, permet de réduire la teneur en eau d'un béton donné, ou qui, sans modifier la teneur en eau, augmente l'affaissement/l'étalement du béton, ou produit les deux effets en même temps. La norme EN 934-2 spécifie que la réduction d'eau doit être supérieure à 5 %. Les réducteurs d'eau peuvent, par exemple, être à base d'acides lignosulfoniques, d'acides carboxyliques ou d'hydrates de carbone traités.
Par l'expression « superplastifiant » ou « superfluidifiant » ou « super réducteur d'eau », on entend selon la présente invention un plastifiant/réducteur d'eau qui permet de réduire de plus de 12 % la quantité d'eau nécessaire à la réalisation d'un béton. Un superplastifiant présente une action fluidifiante puisque, pour une même quantité d'eau, l'ouvrabilité du béton est augmentée lorsque le superplastifiant est présent.
La composition hydraulique selon l'invention comprend un superplastifiant et un agent modificateur de rhéologie, distinct du superplastifiant, comprenant un composé choisi parmi un agent viscosant, un rétenteur d'eau ou un agent seuillant. La composition hydraulique peut, en outre, comprendre un agent retardateur.
Superplastifiant
Selon un exemple de réalisation de l'invention, le superplastifiant comprend un polymère comprenant une chaîne principale et plus de trois chaînes pendantes reliées à la chaîne principale.
Le superplastifiant comprend un polymère polyphosphate de polyoxyde d'alkylène, un polymère polyphosphonate de polyoxyde d'alkylène, un polymère polysulfonate de polyoxyde d'alkylène ou un polymère polycarboxylate de polyoxyde d'alkylène (également appelés polycarboxylate polyox ou PCP). De préférence, le superplastifiant comprend un polymère polycarboxylate de polyoxyde d'alkylène.
Un exemple de superplastifiant correspond à un copolymère comprenant au moins une unité de formule (I) :
Figure imgf000006_0001
et au moins une unité de formule (II)
Figure imgf000006_0002
où R1 , R2, R3, R6, R7 et R8 sont indépendamment un atome d'hydrogène, un radical alkyle linéaire ou ramifié en Ci à C2o, ou un radical aromatique, ou un radical -C00R1 1 avec R1 1 représentant indépendamment un atome d'hydrogène, un radical alkyle linéaire ou ramifié en Ci à C4, un cation monovalent, divalent ou trivalent ou un groupe ammonium ;
R10 est un atome d'hydrogène, un radical alkyle linéaire ou ramifié en Ci à C2o, ou un radical aromatique ;
R4 et R9 sont indépendamment un radical alkyle linéaire ou ramifié en C2 à
R5 est un atome d'hydrogène, un groupe alkyle en Ci à C20 ou un groupe anionique ou cationique, par exemple un groupe phosphonate, un groupe sulfonate, un groupe carboxylate, etc. ;
W est un atome d'oxygène ou d'azote ou un radical NH ;
m et t sont indépendamment des nombres entiers compris de 0 à 2 ;
n et u sont indépendamment des nombres entiers égaux à 0 ou 1 ; q est un nombre entier égal à 0 ou 1 ;
r et v sont indépendamment des nombres entiers compris de 0 à 500 ;
et la masse molaire dudit copolymère est comprise de 10 000 à 400 000 daltons.
De préférence, le radical R1 ou R6 est un atome d'hydrogène. De préférence, le radical R2 ou R7 est un atome d'hydrogène. De préférence, le radical R3 ou R8 est un radical méthyle ou hydrogène. De préférence, le radical R4 ou R9 est un radical éthyle.
De préférence, le copolymère utilisé selon l'invention ou un de ses sels possède un nombre entier r de 1 à 300, de préférence de 20 à 250, plus préférentiellement de 40 à 200, encore plus préférentiellement de 40 à 150.
Le superplastifiant peut correspondre à un sel du copolymère défini précédemment.
Le copolymère peut comprendre plusieurs unités différentes selon la formule (I) ayant, notamment, des radicaux R5 différents.
Le superplastifiant peut être un superplastifiant à efficacité immédiate dont l'action fluidifiante maximale est obtenue dans les quinze premières minutes à 20°C après l'ajout d'eau au liant hydraulique pour des dosages conventionnels. Le superplastifiant peut être un superplastifiant à efficacité différée dont l'action fluidifiante maximale est obtenue après quinze premières minutes à 20°C après l'ajout d'eau au liant hydraulique pour des dosages classiques. La mesure de l'action fluidifiante du superplastifiant à efficacité immédiate et du superplastifiant à efficacité différée est mesurée par une mesure d'étalement et/ou d'affaissement.
L'augmentation de l'action fluidifiante du superplastifiant à efficacité différée peut être obtenue par une augmentation de la capacité du superplastifiant à efficacité différée à s'adsorber sur les composants minéraux (notamment les grains de ciments) de la composition hydraulique. Dans ce but, une possibilité consiste à augmenter la densité de charges anioniques du superplastifiant. Une augmentation de la densité de charges du superplastifiant peut être obtenue par deux phénomènes différents qui peuvent se produire simultanément :
-l'augmentation du nombre de charges portées par le polymère ; et
-la réduction du poids moléculaire du polymère.
La réduction du poids moléculaire du superplastifiant peut être obtenue en choisissant un superplastifiant comprenant une chaîne principale et des chaînes pendantes reliées à la chaîne principale et qui peuvent se séparer de la chaîne principale lorsque le superplastifiant est dans la composition hydraulique. La séparation de chaînes pendantes et/ou l'augmentation du nombre de charges portées par le superplastifiant peut être obtenue en choisissant un superplastifiant comprenant des fonctions chimiques hydrolysables qui, sous l'effet des ions hydroxyde (OH") dans la composition hydraulique, peuvent se transformer pour fournir des fonctions carboxylate (COO"). Les fonctions chimiques hydrolysables sont en particulier les anhydrides, les esters et les amides. Un polymère hydrolysable est un polymère comprenant des fonctions chimiques hydrolysables dans les conditions de basicité et dans la fenêtre d'ouvrabilité de la composition hydraulique et un monomère hydrolysable est un monomère comprenant une fonction hydrolysable dans les conditions de basicité et dans la fenêtre d'ouvrabilité de la composition hydraulique.
Des exemples de superplastifiants sont des superplastifiants qui comprennent des fonctions carboxylates et/ou sulfonates et/ou phosphonates et/ou silanes et/ou phosphates et éventuellement des chaînes polyoxyde d'alkylène. En particulier, des superplastifiants du type polyphosphate polyox ou polysulfonate polyox ou mieux encore de type polycarboxylate de polyoxyde d'alkylène (également appelés polycarboxylate polyox ou PCP) peuvent être utilisés. Un exemple de superplastifiant est celui décrit dans les documents EP-A-537872, US20030127026 et US20040149174.
Un exemple de superplastifiant est celui obtenu par polymérisation :
-d'un monomère ionique du type phosphonique, sulfonique ou carboxylique, de préférence carboxylique et avantageusement de type (méth)acrylique ; et
-d'un monomère de type (méth)acrylate de polyoxyalkylène glycol (de Ci à C4), par exemple de type (méth)acrylate de polyéthylène glycol (PEG), dont le poids moléculaire est par exemple de 100 à 10000, de préférence de 500 à 5000 et avantageusement de 750 à 2500.
Le ratio molaire entre l'unité selon la formule (I) et l'unité selon la formule (II) peut varier, par exemple de 90/10 à 45/55, de préférence de 80/20 à 55/45.
Il est possible d'utiliser un ou plusieurs autres monomère(s), par exemple ceux choisis parmi le :
(a) type acrylamide, par exemple N,N-diméthylacrylamide, 2,2'- diméthylamino (méth)acrylate ou ses sels, 2,2'-diméthylaminoalkyle (méth)acrylate ou ses sels avec le groupe alkyl et en particulier éthyle et propyle, et de façon générale tout monomère comprenant une fonction de type aminé ou amide ;
(b) type hydrophobe, par exemple (méth)acrylate d'alkyle comprenant de 1 à 18 atomes de carbone, en particulier méthyle ou éthyle. La quantité de cet autre monomère peut être de 5 à 25 % mol du total des monomères.
Dans le cas où le superplastifiant est un superplastifiant à action différée, l'anionicité du superplastifiant peut augmenter dans le béton dans la fenêtre d'ouvrabilité.
Des exemples de superplastifiants à efficacité différée sont décrits dans les documents EP 1 136 508, WO 2007/047407, US 2009/0312460 et PCT/US2006/039991 .
La forme du superplastifiant peut varier d'une forme liquide à une forme solide, en passant par une forme cireuse.
Agent modificateur de rhéologie ou AMR
L'agent modificateur de rhéologie comprend un composé choisi parmi un agent viscosant, un rétenteur d'eau, un agent seuillant ou un agent de thixotropie. Il est clair que l'agent modificateur de rhéologie peut avoir simultanément plusieurs des fonctions des agents indiqués ci-dessus.
Un agent rétenteur d'eau peut être tel que défini dans la norme NF EN 934-2. Des exemples d'agents rétenteur d'eau sont les éthers de cellulose.
Un agent viscosant est un agent qui augmente la viscosité d'une composition hydraulique. Un exemple de mesure représentative de la viscosité d'une composition hydraulique correspond à la mesure du temps d'écoulement de la composition hydraulique à tester au travers d'un dispositif, par exemple le V-funnel. Des exemples d'agents viscosants sont des éthers de cellulose, des gommes naturelles ou modifiées, notamment le diutane, le welane, le xanthane, des polymères synthétiques, notamment les polyacrylamides, les polyacrylates, les polyoxydes d'éthylène, des polymères naturels ou modifiés, notamment l'amidon, des polymères associatifs, etc.
Un agent seuillant est un adjuvant adapté à augmenter le seuil d'écoulement de la composition hydraulique. Des exemples d'agents seuillant sont certains polysaccharides (la diutane par exemple), certaines argiles, etc.
Un agent de thixotropie est un composé induisant une variation dans le temps de la rhéologie (structuration spontanée au repos, déstructuration sous cisaillement). Des exemples d'agent de thixotropie comprennent notamment des argiles.
De préférence, l'agent modificateur de rhéologie est hydrosoluble.
Selon un exemple de réalisation de l'invention, l'agent modificateur de rhéologie comprend une cellulose ou un dérivé de cellulose. Selon un exemple de réalisation de l'invention, l'agent modificateur de rhéologie comprend un éther de cellulose. Selon une variante de l'invention, un éther de cellulose utilisé selon l'invention est la methylhydroxypropylcellulose. Selon une autre variante de l'invention, un éther de cellulose utilisé selon l'invention est la méthylcellulose.
Agent retardateur
L'agent retardateur correspond à la définition du retardateur de prise mentionné dans la norme NF EN 934-2.
Selon un exemple de réalisation de l'invention, l'agent retardateur comprend un composé choisi parmi :
-les sucres et produits dérivés, notamment le saccharose, le glucose, les sucres réducteurs (lactose, maltose etc.), la cellobiose, le gallactose etc., les produits dérivés, par exemple la glucolactone, etc. ;
-les acides carboxyliques ou leurs sels, notamment l'acide gluconique, le gluconate, l'acide tartrique, l'acide citrique, l'acide gallique, l'acide glucoheptonique, l'acide saccharique et l'acide salicylique. Les sels associés comprennent par exemple le sel d'ammonium, le sel de métal alcalin (par exemple le sel de sodium, le sel de potassium, etc.), le sel de métal alcalino-terreux (par exemple le sel de calcium, le sel de magnésium, etc.). Cependant d'autres sels peuvent être également utilisés ;
-les acides phosphoniques et leurs sels, notamment l'acide aminotri(méthylènephosphonique), le sel pentasodique de l'acide aminotri(méthylènephosphonique), l'acide hexaméthylène-diamine-tétra(méthylène- phosphonique), l'acide diéthylène-triamine-penta(méthylène-phosphonique et son sel de sodium) ;
-les phosphates et leurs dérivés ;
-les esters de sorbitan ;
-les alkylpolyglucosides (APG) et leurs dérivés ;
-les sels de zinc, notamment l'oxyde de zinc, le borate de zinc et les sels solubles de zinc (nitrate, chlorure) ;
-les borates, notamment l'acide borique, le borate de zinc et les sels de bore ;
-les agents de surface adaptés pour enrober la surface des grains de ciment, notamment certains éthers de cellulose et les acrylates ; et
-les agents de surface adaptés pour enrober la surface des grains de ciment, notamment les éthers de cellulose, les acrylates, les alginates, les stéarates ; et
-les mélanges de ces composés. De préférence, l'agent retardateur comprend un acide carboxylique, un acide phosphonique ou leurs sels.
De préférence, l'agent retardateur comprend un acide hydroxycarboxylique ou un sel d'acide hydroxycarboxylique. Selon un exemple de réalisation de l'invention, l'agent retardateur comprend un gluconate.
Composition hydraulique
Le liant hydraulique comprend un ciment Portiand. Des ciments qui conviennent sont les ciments Portiand décrits dans l'ouvrage "Lea's Chemistry of Cernent and Concrète ». Les ciments Portiand incluent les ciments de laitier, de pouzzolane, de cendres volantes, de schistes brûlés, de calcaire et les ciments composites. Il s'agit par exemple d'un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme « Ciment » NF EN 197-1.
La composition hydraulique comprend de 220 à 500 kg, de préférence de 250 à 450 kg du liant hydraulique par mètre cube de la composition hydraulique à l'état frais.
La composition hydraulique comprend de 220 à 500 kg, de préférence de 250 à 450 kg de ciment Portiand par mètre cube de la composition hydraulique à l'état frais.
La composition hydraulique comprend de 400 à 1800 kg, de préférence de 500 à 1600 kg, plus préférentiellement de 600 à 1 100 kg du sable par mètre cube de la composition hydraulique à l'état frais.
du sable par mètre cube de la composition hydraulique à l'état frais:
Le sable a un D10 supérieur à 0,1 mm et un D90 inférieur à 4 mm. Le sable peut être de toute nature minérale, calcaire, siliceuse ou silico-calcaire ou autre. Le sable peut correspondre à un mélange de sables de natures différentes. Le D90, également noté Dv90, correspond au 90eme centile de la distribution en volume de taille des grains. Autrement dit, 90 % des grains ont une taille inférieure au D90 et 10 % ont une taille supérieure au D90. Le D10, également noté Dv10, correspond au i oeme centile de la distribution en volume de taille des grains. Autrement dit, 10 % des grains ont une taille inférieure au D10 et 90 % ont une taille supérieure au D10.
La composition hydraulique comprend de 150 à 1000 kg, de préférence de 200 à 900 kg, plus préférentiellement de 300 à 900 kg du gravier par mètre cube de la composition hydraulique à l'état frais. Le gravier a un D10 supérieur à 4 mm et un D90 inférieur à 10 mm.
La composition peut, en outre, comprendre d'autres granulats, par exemple des granulats ayant une granulométrie strictement supérieure à 20 mm. La composition hydraulique peut en outre comprendre de 5 % à 40 %, de préférence de 10 % à 30 %, plus préférentiellement de 15 % à 25 %, en masse par rapport à la masse du liant hydraulique d'un matériau particulaire (également appelé addition inorganique) ou d'un mélange de matériaux particulaires. Le matériau particulaire a par exemple une taille moyenne de particules inférieure à 100 μηη. Le matériau particulaire peut comprendre des matériaux pouzzolaniques ou non pouzzolaniques ou un mélange de ceux-ci.
Le terme « particule » tel qu'utilisé dans le cadre de la présente invention doit être compris dans un sens large et correspond non seulement des particules compactes ayant plus ou moins une forme sphérique mais aussi à des particules anguleuses, des particules aplaties, des particules en forme de flocon, des particules en forme de fibres, ou des particules fibreuses, etc. On comprendra que la « taille » des particules dans le cadre de la présente invention signifie la plus petite dimension transversale des particules. A titre d'exemple, dans le cas de particules en forme de fibres, la taille des particules correspond au diamètre des fibres. On entend par particules d'un matériau les particules prises individuellement (c'est-à-dire les éléments unitaires du matériau) sachant que le matériau peut se présenter sous la forme d'agglomérats de particules. Par le terme « taille moyenne », on entend selon la présente invention la taille de la particule qui est supérieure à la taille de 50 % en volume des particules et inférieure à la taille de 50 % en volume des particules d'une distribution de particules.
Un exemple de matériau particulaire correspond au laitier, notamment au laitier granulé de haut fourneau.
Des matériaux pouzzolaniques adaptés comprennent les fumées de silice, également connues sous le nom de micro-silice, qui sont par exemple un sous- produit de la production de silicium ou d'alliages de ferrosilicium. Il est connu comme un matériau pouzzolanique réactif. Son principal constituant est le dioxyde de silicium amorphe. Les particules individuelles ont généralement un diamètre d'environ 5 à 10 nm. Les particules individuelles peuvent s'agglomérer pour former des agrégats de 0,1 à 1 μηι. Les agrégats de 0,1 à 1 μηη peuvent s'agglomérer pour former des agrégats de 20 à 30 μηη. Les fumées de silice ont généralement une surface spécifique BET de 10 - 30 m2/g. Les surfaces spécifiques BET peuvent être mesurées en utilisant un analyseur SA 3100 de Beckman Coulter avec l'azote comme gaz adsorbé.
D'autres matériaux pouzzolaniques comprennent les cendres volantes qui ont généralement un D10 supérieur à 10 μηη et un D90 inférieur à 120 μηη et ont, par exemple, un D50 de 30 à 50 μηι. Le D90, également noté Dv90, correspond au 90eme centile de la distribution en volume de taille des grains. Autrement dit, 90 % des grains ont une taille inférieure au D90 et 10 % ont une taille supérieure au D90. Le D50, également noté Dv50, correspond au 50eme centile de la distribution en volume de taille des grains. Autrement dit, 50 % des grains ont une taille inférieure au D50 et 50 % ont une taille supérieure au D50. Le D10, également noté Dv10, correspond au i oeme centile de la distribution en volume de taille des grains. Autrement dit, 10 % des grains ont une taille inférieure au D10 et 90 % ont une taille supérieure au D10.
Les tailles moyennes et les distributions de particules peuvent être déterminées par granulométrie laser (notamment en utilisant un granulomètre laser Malvern MS2000) pour les particules de taille inférieure à 63 μηη, ou par tamisage pour les particules de taille supérieure à 63 μηι. Néanmoins, lorsque les particules individuelles ont une tendance à l'agrégation, il est préférable de déterminer leur taille par microscopie électronique, étant donné que la taille apparente mesurée par granulométrie par diffraction laser est alors plus importante que la taille particulaire réelle, ce qui est susceptible de fausser l'interprétation (agglomération et floculation).
La surface spécifique Blaine peut être déterminée comme cela est décrit dans la norme EN 196-6 paragraphe 4.
D'autres matériaux pouzzolaniques comprennent des matériaux riches en aluminosilicate tels que le métakaolin et les pouzzolanes naturelles ayant des origines volcaniques, sédimentaires, ou diagéniques.
Des matériaux non-pouzzolaniques adaptés comprennent des matériaux contenant du carbonate de calcium (par exemple du carbonate de calcium broyé ou précipité), de préférence un carbonate de calcium broyé. Le carbonate de calcium broyé peut, par exemple, être le Durcal® 1 (OMYA, France). Les matériaux non- pouzzolaniques ont de préférence une taille moyenne de particules inférieure à 5 μηη, par exemple de 1 à 4 μηη. Les matériaux non-pouzzolaniques peuvent être un quartz broyé, par exemple le C800 qui est un matériau de remplissage de silice sensiblement non-pouzzolanique fourni par Sifraco, France. La surface spécifique BET préférée (déterminée par des méthodes connues décrites précédemment) du carbonate de calcium ou du quartz broyé est de 2 - 10 m2/g, généralement moins de 8 m2/g, par exemple de 4 à 7 m2/g, de préférence moins d'environ 6 m2/g. Le carbonate de calcium précipité convient également comme matériau non- pouzzolanique. Les particules individuelles ont généralement une taille (primaire) de l'ordre de 20 nm. Les particules individuelles s'agglomèrent en agrégats ayant une taille (secondaire) de 0, 1 à 1 μηι. Les agrégats ayant une taille (secondaire) de 0,1 à 1 μηη peuvent eux-mêmes former des agrégats ayant une taille (ternaire) supérieure à 1 μηι.
Un matériau non-pouzzolanique unique ou un mélange de matériaux non- pouzzolaniques peut être utilisé, par exemple du carbonate de calcium broyé, du quartz broyé ou du carbonate de calcium précipité ou un mélange de ceux-ci. Un mélange de matériaux pouzzolaniques ou un mélange de matériaux pouzzolaniques et non-pouzzolaniques peuvent également être utilisés.
Selon un exemple de réalisation, la durée entre la fin de la fenêtre d'ouvrabilité et le début de la prise de la composition hydraulique est inférieure à 36 heures, de préférence inférieure à 24 heures, plus préférentiellement inférieure à 16 heures.
Par l'expression « fenêtre d'ouvrabilité » d'une composition hydraulique on entend selon la présente invention, la durée pendant laquelle l'affaissement de la composition hydraulique, mesuré selon la norme EN 12350-2, reste supérieure ou égale à 10 mm.
Selon un exemple de réalisation de l'invention, la quantité de l'agent retardateur dans la composition hydraulique est de 0,1 à 5 % en masse d'extrait sec de l'agent retardateur par rapport à la masse du liant hydraulique sec, de préférence de 0,1 à 1 ,0 % en masse d'extrait sec de l'agent retardateur par rapport à la masse du liant hydraulique sec.
Selon un exemple de réalisation de l'invention, la quantité du superplastifiant dans la composition hydraulique est de 0,05 à 5 % en masse d'extrait sec du superplastifiant par rapport à la masse du liant hydraulique sec, de préférence de 0,05 à 1 % en masse d'extrait sec du superplastifiant par rapport à la masse du liant hydraulique sec, plus préférentiellement de 0,05 à 0,75 % en masse d'extrait sec du superplastifiant par rapport à la masse du liant hydraulique sec, encore plus préférentiellement de 0,05 à 0, 5 % en masse d'extrait sec du superplastifiant par rapport à la masse du liant hydraulique sec.
Selon un exemple de réalisation de l'invention, la quantité de l'agent modificateur de rhéologie dans la composition hydraulique est de 0,01 à 0,5 % en masse d'extrait sec de l'agent modificateur de rhéologie par rapport à la masse du liant hydraulique sec, de préférence de 0,025 à 0,4 % en masse d'extrait sec de l'agent modificateur de rhéologie par rapport à la masse du liant hydraulique sec. Le liant hydraulique peut comprendre du ciment Portland, selon la norme EN 197-1 .
La quantité finale du mélange retardateur dépend des propriétés considérées (par exemple temps ouvert recherché, formule de béton, etc).
La composition hydraulique est obtenue en mélangeant des granulats, le liant hydraulique, les adjuvants et de l'eau.
De façon générale, le rapport en masse d'eau efficace / liant sec (rapport E/C) peut être en général de 0,45 à 0,65.
La composition hydraulique peut comprendre d'autres types d'adjuvants que ceux déjà mentionnés, couramment utilisés dans les bétons.
Des exemples d'adjuvants pouvant être utilisés sont : agents anti-mousse, inhibiteurs de corrosion, agents de réduction du retrait, fibres, pigments, agents d'aide à la pompabilité, agents réducteurs d'alcalis réactions, agents de renforcement, composés hydrofugeants et leurs mélanges.
Selon un exemple de réalisation de l'invention, la composition hydraulique comprend en outre un agent inertant d'argile, c'est-à-dire un adjuvant permettant la neutralisation au moins partielle des effets nuisibles dus à la présence de l'argile dans une composition hydraulique, notamment une composition hydraulique comprenant un superplastifiant.
Procédé de fabrication
La présente invention vise un procédé de fabrication d'une composition hydraulique telle que définie précédemment, comprenant l'étape consistant à mélanger le liant hydraulique, le superplastifiant, l'agent modificateur de rhéologie, éventuellement l'agent retardateur et de l'eau pour obtenir la composition hydraulique à l'état frais.
Selon un exemple de réalisation de l'invention, certains des adjuvants peuvent être introduits sous forme de poudre directement dans les divers constituants de la composition hydraulique quels que soient leurs états physiques (sous forme liquide ou solide).
Selon un exemple de réalisation de l'invention, certains des adjuvants peuvent aussi être introduits sous forme de solution liquide ou semi-liquide dans l'eau de gâchage.
Le superplastifiant et éventuellement l'agent modificateur de rhéologie et éventuellement l'agent retardateur peuvent être ajoutés séparément lors de la fabrication de la composition hydraulique. Un mélange du superplastifiant, de l'agent modificateur de rhéologie et éventuellement du retardateur peut néanmoins être réalisé au préalable, le mélange étant alors directement ajouté à la composition hydraulique.
Selon l'invention, le transport de la composition hydraulique est réalisé pendant plus de dix minutes, de préférence plus de 20 minutes, encore plus préférentiellement, plus de 30 minutes, sans agitation de la composition hydraulique.
De façon avantageuse, la composition hydraulique selon l'invention une fois fabriquée n'a pas besoin d'être agitée jusqu'à son utilisation. Par le terme « agitation » de la composition hydraulique, on entend selon la présente invention tout système mécanique dédié à réaliser une opération de mélange énergique de la composition hydraulique. Ceci ne tient pas compte des sollicitations (tremblements, etc.) que subit nécessairement la composition hydraulique pendant une opération de transport. La composition hydraulique peut donc être transportée et/ou stockée dans des sacs, des fûts, ou n'importe quel type de containeur sans agitation de la composition hydraulique. De préférence, la composition hydraulique retardée selon l'invention est stockée en emballage fermé, par exemple dans un container hermétiquement fermé. A titre d'exemple, la composition hydraulique peut être transportée dans des sacs de taille de l'ordre du mètre cube. De façon avantageuse, la composition hydraulique peut être transportée horizontalement (sans agitation de la composition hydraulique), c'est-à-dire dans un véhicule ne comprenant pas de malaxeur, par exemple dans un camion autre qu'un camion toupie.
L'utilisation d'un agent modificateur de rhéologie permet d'éviter tout phénomène de ressuage (remontée d'eau en surface du béton), de sédimentation (plus forte concentration de granulats à la base du béton) ou de consolidation (absence de pâte au niveau des contacts intergranulaires) pouvant dégrader l'aspect visuel du béton et/ou gêner voire empêcher en pratique toute remanipulation du béton (donc notamment son remélange et son utilisation), bien que la composition hydraulique ne soit pas agitée pendant son transport et/ou son stockage.
Selon un exemple de réalisation de la présente invention, la composition hydraulique comprend, en outre, un agent retardateur. La variation de l'affaissement de la composition hydraulique, mesuré selon la norme EN 12350-2, est alors avantageusement inférieure à 50 mm ou la variation de l'étalement de la composition hydraulique, mesuré avec un cône selon la norme EN 12350-2, est inférieure à 100 mm pendant au moins 12 heures, de préférence pendant au moins 1 jour, plus préférentiellement pendant au moins 2 jours, encore plus préférentiellement au moins 3 jours, sans déclenchement de la prise de la composition hydraulique. L'étalement est mesuré pour les bétons fluides et l'affaissement est mesuré pour les autres bétons.
De préférence, la consistance de la composition hydraulique est maintenue dans la même classe de consistance par rapport à l'affaissement, telle que définie par la norme EN 206-1 , pendant au moins 12 heures, de préférence pendant au moins 1 jour, plus préférentiellement pendant au moins 2 jours, encore plus préférentiellement au moins 3 jours sans déclenchement de la prise de la composition hydraulique. Ceci signifie que, si juste après la fabrication de la composition hydraulique, la classe de consistance de la composition hydraulique est par exemple S4, alors la classe de consistance de la composition hydraulique reste la classe S4 pendant au moins 12 heures, de préférence pendant au moins 1 jour, plus préférentiellement pendant au moins 2 jours, encore plus préférentiellement au moins 3 jours, sans déclenchement de la prise de la composition hydraulique.
Selon un exemple de réalisation, la composition hydraulique retardée à l'état frais peut être transportée et/ou stockée sans agitation de la composition hydraulique pendant au moins 12 heures, de préférence pendant au moins 1 jour, plus préférentiellement pendant au moins 2 jours, encore plus préférentiellement au moins 3 jours. La composition hydraulique peut être stockée en extérieur à des températures variant de 5°C à 30°C. Même à des températures inférieures à 10°C, la variation de l'affaissement de la composition hydraulique mesuré selon la norme EN 12350-2 est inférieure à 50 mm ou la variation de l'étalement de la composition hydraulique mesuré avec un cône selon la norme EN 12350-2 est inférieure à 100 mm pendant au moins 12 heures, de préférence pendant au moins 1 jour, plus préférentiellement pendant au moins 2 jours, encore plus préférentiellement au moins 3 jours, sans déclenchement de la prise de la composition hydraulique.
Lorsque la composition hydraulique selon l'invention est en outre retardée, le déclenchement de la prise de la composition hydraulique peut être réalisé par n'importe quel moyen. La prise peut être obtenue sans action particulière après la fin de la fenêtre d'ouvrabilité. Le déclenchement de la prise de la composition hydraulique peut être obtenu par une action physique, mécanique ou chimique, notamment par malaxage, pompage, agitation par ondes acoustiques, etc. de la composition hydraulique, ou action chimique.
Selon un exemple de réalisation de l'invention, le procédé comprend les étapes successives suivantes : -mélanger le liant hydraulique et de l'eau pour fabriquer la composition hydraulique à l'état frais ;
-transporter la composition hydraulique à l'état frais sans agitation de la composition hydraulique ; et
-ajouter un agent accélérateur à la composition hydraulique à l'état frais pour déclencher la prise de la composition hydraulique.
Selon un exemple de réalisation de l'invention, le procédé comprend l'ajout à la composition hydraulique d'un agent antimousse avec l'agent accélérateur
Des exemples illustrent l'invention sans en limiter sa portée.
EXEMPLES
Dans les exemples, les produits et matériaux utilisés sont disponibles auprès des fournisseurs suivants :
Produit ou matériau Fournisseur
(1 ) Ciment Portland Lafarge - Saint Pierre La Cour ou Le Havre
(2) Matériau de remplissage BL 200™ Omya
(3) Sable 0/5 mm Saint Bonnet, France
(4) Gravillon 5/10 mm Saint Bonnet, France
(5) Adjuvant CHRYSOPIast CER™ Chryso
(6) Adjuvant GLENIUM 27™ BASF
(7) Adjuvant Rheotec Z60™ BASF
(8) Adjuvant Culminai MHPC 20000 P™ Aqualon - Ashland
(9) Adjuvant Tylose MHS 3000000P6 SE Tylose
Le ciment était le ciment produit par la société Lafarge provenant du site de Saint Pierre La Cour ou du site du Havre qui était du type CEM I 52,5 N selon la norme EN 197-1 .
Le matériau de remplissage BL 200™ était une addition minérale calcaire.
Le sable 0/5 mm et le gravillon 5/10 mm de Saint Bonnet étaient du type alluvionnaire silico-calcaire.
Le CHRYSOPIast CER™ est généralement commercialisé comme fluidifiant. Il peut toutefois également avoir une action retardatrice. Dans les présents exemples, le CHRYSOPIast CER™ a été appelé agent retardateur même s'il avait également une action fluidifiante.
L'adjuvant GLENIUM 27™ était un superplastifiant de type PCP à action immédiate. L'adjuvant Rheotec Z60™ était un superplastifiant à action différée. Le superplastifiant Rheotec Z60™ était un PCP.
L'adjuvant Culminai MHPC 20000 P™ était un agent modificateur de rhéologie correspondant à un methylhydroxypropylcellulose.
L'adjuvant Tylose MHS 3000000P6 était un agent modificateur de rhéologie correspondant à un methylhydroxyéthylcellulose.
Formulations de béton
La formulation (1 ) de béton utilisée pour réaliser les essais est décrite dans le tableau 1 suivant :
Tableau 1 : Formulation (1 ) de béton
Figure imgf000019_0001
La formulation (3) de béton utilisée pour réaliser les essais est décrite dans le tableau 3 suivant : Tableau 3 : Formulation (3) de béton
Figure imgf000020_0001
Méthode de préparation d'un béton selon la formulation (1 ), (2) ou (3)
• Mettre les sables et les gravillons dans le bol d'un malaxeur Zyklos (capacité 30 ou 50 L) ou Sipe (capacité 230 L) ou Pemat (capacité 500 L) ;
• A T = 0 : débuter le malaxage et ajouter simultanément l'eau de mouillage en 30 secondes, puis continuer à malaxer jusqu'à 60 secondes ;
• A T = 60 secondes : arrêter le malaxage et laisser reposer pendant 4 minutes ;
• A T = 5 minutes (T0 pour le test de maintien de rhéologie) : ajouter le ciment Portland et l'agent modificateur de rhéologie et malaxer pendant 1 minute ;
• A T = 6 minutes : ajouter l'eau de gâchage (+ adjuvants éventuels) en 30 secondes tout en malaxant ;
• A T = 6 minutes et 30 secondes : malaxer pendant 1 minute 30 secondes ;
• A T = 8 minutes : arrêter le malaxage.
Méthode de mesure de l'affaissement d'une composition hydraulique
L'affaissement a été mesuré comme cela est décrit dans la norme EN 12350- 2 « Essai pour béton frais— Partie 2 : Essai d'affaissement ».
Méthode de mesure de la résistance de compression
La résistance à la compression a été mesurée pour les mortiers comme cela est décrit dans la norme EN 196-1 « Méthode d'essais des ciments » et pour les bétons comme cela est décrit dans la norme EN 12390-2 « Essai pour béton durci - Partie 2 : Confection et conservation des éprouvettes pour essais de résistance » et PR EN 12390-3:1999 « Essai pour béton durci - Partie 3 : Résistance à la compression des éprouvettes » avec des éprouvettes cylindriques ayant un diamètre de 1 1 cm et une hauteur de 22 cm.
Méthode de mesure du temps de prise d'une composition hydraulique
Un enregistreur de température a été utilisé, par exemple un enregistreur de température commercialisé par la société Testo. La composition hydraulique a été placée dans une enceinte adiabatique. L'enregistreur a été disposé dans la composition hydraulique. Une acquisition de la température était réalisée toutes les minutes. La température de la composition hydraulique tendait à diminuer après la fabrication de la composition hydraulique pour se stabiliser à un palier de température constant jusqu'à la prise pendant laquelle la température a augmenté temporairement. Pour des mesures réalisées à plus de 15°C, le début de la prise correspondait, sauf indication contraire, à la durée mesurée à partir de 24 heures après la fabrication de la composition hydraulique jusqu'à l'instant la température augmenté de deux degrés par rapport au palier de température pour une composition hydraulique.
EXEMPLE 1
Deux bétons B1 et B2 ont été préparés selon la formulation (1 ) à 20°C. Pour chaque béton B1 et B2, environ 20 litres de béton ont été réalisés.
L'agent retardateur pour les bétons B1 et B2, était le CHRYSOPIast CER™. Chaque béton B1 et B2 comprenait 0,35 % en masse d'extrait sec de l'agent retardateur par rapport à la masse de ciment.
L'agent modificateur de rhéologie pour les bétons B1 et B2, était le Culminai MHPC 20000 P™. Chaque béton B1 et B2 comprenait 0,1 1 % en masse d'extrait sec de l'agent modificateur de rhéologie par rapport à la masse de ciment.
Le superplastifiant pour le béton B1 , était le GLENIUM 27™. Le béton B1 comprenait 0,4 % en masse d'extrait sec de GLENIUM 27™ par rapport à la masse de ciment.
Le superplastifiant pour le béton B2, était le Rheotec Z60™. Le béton B2 comprenait 0,4 % en masse d'extrait sec de Rheotec Z60™ par rapport à la masse de ciment.
Chaque béton B1 et B2 a été placé dans un seau de 25 litres. Les seaux ont été fermés hermétiquement par un couvercle, puis fixés à une palette qui a été transportée par un charriot élévateur pendant 10 minutes, sans agitation, à une vitesse moyenne d'une douzaine de kilomètre par heure. Le charriot élévateur ne comprenait par d'amortisseurs. Les bétons B1 et B2 ont ensuite été conservés au repos, sans agitation.
Quatre échantillons ont été conservés pour chaque béton. Des mesures d'affaissement ont été réalisées, à 20°C, à 5 minutes pour le premier échantillon, à 24 heures pour le deuxième échantillon, à 48 heures pour le troisième échantillon et à 72 heures pour le quatrième échantillon. Chaque échantillon a été mélangé peu avant la mesure. Les résultats de ces essais sont rassemblés dans le tableau 4 suivant :
Tableau 4
Figure imgf000022_0001
La variation de l'affaissement sur 48 heures était inférieure à 50 mm pour les bétons B1 et B2,. Les bétons B1 et B2 étaient donc satisfaisants. De plus, la variation de l'affaissement sur 72 heures était inférieure à 50 mm pour le béton B2,. En outre, aucun ressuage ni aucune sédimentation n'a été sensiblement observé pour les bétons B1 et B2, et ce en dépit d'un transport sans agitation.
Le temps de prise était d'environ 88 heures pour les bétons B1 et B2. La durée entre la fin de la fenêtre d'ouvrabilité et le début de la prise des bétons B1 et B2 était donc inférieure à 16 heures.
EXEMPLE 2
Un béton B3 a été préparé selon la formulation (1 ) à 20°C. Trois gâchées d'environ 500 litres chacune ont été préparées.
L'agent retardateur était le CHRYSOPIast CER™. Le béton B3 comprenait 0,35 % en masse d'extrait sec de l'agent retardateur par rapport à la masse de ciment.
L'agent modificateur de rhéologie était le Culminai MHPC 20000 P™. Le béton B3 comprenait 0,13 % en masse d'extrait sec de l'agent modificateur de rhéologie par rapport à la masse de ciment.
Le superplastifiant était le GLENIUM 27™. Le béton B3 comprenait 0,40 % en masse d'extrait sec de GLENIUM 27™ par rapport à la masse de ciment. Les gâchées ont été réalisées dans un malaxeur de type Pemat. Les trois gâchées ont été homogénéisées par 70 tours dans un camion toupie Fiori de 2 m3. Trois sac imperméables P1 , P2 et P3 à double enveloppe ont été remplis chacun d'environ 400 litres du béton B3.
Les sacs ont été transportés par camion, sans agitation, pendant 75 minutes, comprenant 15 minutes à une vitesse moyenne de 1 10 km/h et 60 minutes à une vitesse moyenne de 80 km/h.
Les sacs ont ensuite été maintenus au repos.
L'affaissement a été mesuré à 4 heures pour le béton B3 du sac P1 ,. L'affaissement a été mesuré à 24 heures pour le béton B3 du sac P2, et l'affaissement a été mesuré à 48 heures pour le béton B3 du sac P3. Le béton a été mélangé peu avant la mesure. Les résultats de ces essais sont rassemblés dans le tableau 5 suivant :
Tableau 5
Figure imgf000023_0001
Le béton B3 a été maintenu dans la même classe de consistance (classe S4) pendant 48 heures. Aucun ressuage, ni aucun de tassement des granulats n'a été observé pour chaque sac. Les sacs P1 , P2 et P3 ont pu être vidés sans difficulté du camion toupie. Le béton B3 s'écoulait de lui-même sans devoir le vibrer. En outre, les sacs P1 , P2 et P3 se sont vidés intégralement sans qu'il reste d'amas de pâte ou de granulats sur les parois.
EXEMPLE 3
Un béton B4 a été préparé selon la formulation (2) à 20°C. Une gâchée d'environ 500 litres a été préparée.
L'agent retardateur était le CHRYSOPIast CER™. Le béton B4 comprenait 0,3 % en masse d'extrait sec de l'agent retardateur par rapport à la masse de ciment.
L'agent modificateur de rhéologie était le Culminai MHPC 20000 P™. Le béton B3 comprenait 0,13 % en masse d'extrait sec de l'agent modificateur de rhéologie par rapport à la masse de ciment. Le superplastifiant était le GLENIUM 27™. Le béton B3 comprenait 0,3 % en masse d'extrait sec de GLENIUM 27™ par rapport à la masse de ciment.
La gâchée a été réalisée dans un malaxeur de type Pemat et a été homogénéisée par 70 tours dans un camion toupie Fiori de 2 m3. Un sac à double enveloppe a été rempli d'environ 400 litres du béton B4.
Le sac a été transporté par camion, sans agitation. Le sac a ensuite été maintenu au repos.
Deux échantillons ont été conservés. Des mesures d'affaissement ont été réalisées, à 20°C, à 5 minutes pour le premier échantillon et à 48 heures pour le second échantillon. Chaque échantillon a été mélangé juste avant la mesure. Les résultats de ces essais sont rassemblés dans le tableau 6 suivant :
Tableau 6
Figure imgf000024_0001
La variation de l'affaissement du béton B4 était inférieure à 50 mm sur 48 heures. Aucun ressuage ni aucun tassement du squelette granulaire n'a été observé après stockage.
EXEMPLE 4
Deux bétons B5 et B6 ont été préparés selon la formulation (4) à 20°C. Pour chaque béton B5 et B6, environ 20 litres de béton ont été réalisés.
L'agent retardateur pour les bétons B5 et B6 était le CHRYSOPIast CER™. Chaque béton B5 et B6 comprenait 0,3 % en masse, exprimée en extrait sec, de l'agent retardateur par rapport à la masse de ciment.
Le superplastifiant pour les bétons B5 et B6 était le GLENIUM 27™. Chaque béton B5 et B6 comprenait 0,3 % en masse, exprimée extrait sec, de l'agent modificateur de rhéologie par rapport à la masse de ciment.
L'agent modificateur de rhéologie pour le béton B5 était le Culminai MHPC 20000 P™. Le béton B5 comprenait 0,13 % en masse, exprimée extrait sec, de l'agent modificateur de rhéologie par rapport à la masse de ciment.
L'agent modificateur de rhéologie pour le béton B6 était le Tylose MHS 300000P6. Le béton B6 comprenait 0,13 % en masse, exprimée extrait sec, de l'agent modificateur de rhéologie par rapport à la masse de ciment.
Chaque béton B1 et B2 a été placé dans un seau de 25 litres. Les seaux ont été fermés hermétiquement par un couvercle, puis fixés à une palette qui a été transportée par un charriot élévateur pendant 10 minutes, sans agitation, à une vitesse moyenne d'une douzaine de kilomètre par heure. Le charriot élévateur ne comprenait par d'amortisseurs. Les bétons B1 et B2 ont ensuite été conservés au repos, sans agitation.
Quatre échantillons ont été conservés pour chaque béton. Des mesures d'affaissement ont été réalisées, à 20°C, à 5 minutes pour le premier échantillon, à 24 heures pour le deuxième échantillon, à 48 heures pour le troisième échantillon et à 72 heures pour le quatrième échantillon. Chaque échantillon a été mélangé peu avant la mesure. Les résultats de ces essais sont rassemblés dans le tableau 7 suivant :
Tableau 7
Figure imgf000025_0001
La variation de l'affaissement sur 48 heures était inférieure à 50 mm pour les bétons B5 et B6. Les bétons B5 et B6 étaient donc satisfaisants. En outre, aucun ressuage ni aucune sédimentation n'a été sensiblement observé pour les bétons B5 et B6, et ce en dépit d'un transport sans agitation.

Claims

REVENDICATIONS
1 . Procédé de transport d'une composition hydraulique à l'état frais comprenant :
-de 220 à 500 kg, par mètre cube de la composition hydraulique à l'état frais, d'un liant hydraulique comprenant du ciment Portland ;
-de 400 à 1800 kg, par mètre cube de la composition hydraulique à l'état frais, d'un sable ayant un D10 supérieur à 0,1 mm et un D90 inférieur à 4 mm ; -de 150 à 1000 kg, par mètre cube de la composition hydraulique à l'état frais, d'un gravier ayant un D10 supérieur à 4 mm et un D90 inférieur à 10 mm ; -de 0,05 à 5 % en masse d'extrait sec par rapport à la masse du liant hydraulique d'un superplastifiant comprenant un polymère polyphosphate de polyoxyde d'alkylène, un polymère polyphosphonate de polyoxyde d'alkylène, un polymère polysulfonate de polyoxyde d'alkylène ou un polymère polycarboxylate de polyoxyde d'alkylène ; et
-de 0,01 à 0,5 % en masse d'extrait sec par rapport à la masse du liant hydraulique d'un agent modificateur de rhéologie, distinct du superplastifiant, comprenant au moins un composé choisi parmi un agent viscosant, un rétenteur d'eau, un agent seuillant ou un agent de thixotropie,
dans lequel le transport est réalisé pendant au moins plus de dix minutes sans agitation de la composition hydraulique.
2. Procédé selon la revendication 1 , dans lequel la composition hydraulique est transportée sur un véhicule ne comprenant pas de malaxeur.
3. Procédé selon la revendication 1 ou 2, dans lequel la composition hydraulique est transportée dans un container hermétiquement fermé.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la quantité de l'agent modificateur de rhéologie est de 0,01 à 2 % en masse d'extrait sec par rapport à la masse du liant hydraulique.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la quantité du superplastifiant est de 0,05 à 1 % en masse d'extrait sec par rapport à la masse du liant hydraulique.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la composition hydraulique comprend, en outre, de 0,1 à 5 % en masse d'extrait sec par rapport à la masse du liant hydraulique d'un agent retardateur, le temps de prise de la composition hydraulique étant supérieur ou égal à 12 heures sans déclenchement de la prise de la composition hydraulique et la variation de l'affaissement de la composition hydraulique mesuré selon la norme EN 12350-2 étant inférieure à 50 mm ou la variation de l'étalement de la composition hydraulique mesuré avec un cône selon la norme EN 12350-2 étant inférieure à 100 mm pendant au moins 12 heures sans déclenchement de la prise de la composition hydraulique.
7. Procédé selon la revendication 6, dans lequel l'agent retardateur comprend un acide hydroxycarboxylique ou un sel d'acide hydroxycarboxylique.
8. Procédé selon l'une quelconque des revendications 1 à 7, comprenant les étapes successives suivantes :
-mélanger le liant hydraulique et de l'eau pour fabriquer la composition hydraulique à l'état frais ;
-transporter la composition hydraulique à l'état frais sans agitation de la composition hydraulique ; et
-ajouter un agent accélérateur à la composition hydraulique à l'état frais pour déclencher la prise de la composition hydraulique.
9. Procédé selon la revendication 8, comprenant l'ajout à la composition hydraulique d'un agent antimousse avec l'agent accélérateur.
PCT/FR2011/051451 2010-06-24 2011-06-23 Procede de transport d'une composition hydraulique WO2011161383A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11736430.7A EP2585416B1 (fr) 2010-06-24 2011-06-23 Procede de transport d'une composition hydraulique
CA2803528A CA2803528C (fr) 2010-06-24 2011-06-23 Procede de transport d'une composition hydraulique
ES11736430.7T ES2560628T3 (es) 2010-06-24 2011-06-23 Procedimiento de transporte de una composición hidráulica
US13/805,765 US20130102705A1 (en) 2010-06-24 2011-06-23 Process for transportation of a hydraulic composition
PL11736430T PL2585416T3 (pl) 2010-06-24 2011-06-23 Sposób transportu kompozycji hydraulicznej
RS20160061A RS54550B1 (en) 2010-06-24 2011-06-23 PROCEDURE FOR TRANSPORT OF HYDRAULIC COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055067A FR2961807B1 (fr) 2010-06-24 2010-06-24 Procede de transport d'une composition hydraulique
FR1055067 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011161383A1 true WO2011161383A1 (fr) 2011-12-29

Family

ID=43502564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051451 WO2011161383A1 (fr) 2010-06-24 2011-06-23 Procede de transport d'une composition hydraulique

Country Status (8)

Country Link
US (1) US20130102705A1 (fr)
EP (1) EP2585416B1 (fr)
CA (1) CA2803528C (fr)
ES (1) ES2560628T3 (fr)
FR (1) FR2961807B1 (fr)
PL (1) PL2585416T3 (fr)
RS (1) RS54550B1 (fr)
WO (1) WO2011161383A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177695A1 (fr) * 2013-05-03 2014-11-06 Chryso Système d'adjuvant comprenant un phosphonate polyalcoxylé, un polycarboxylate polyalcoxylé et un retardateur de prise et son utilisation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198087A1 (fr) * 2015-06-08 2016-12-15 Cemex Research Group Ag. Procédé de production d'agrégats à partir de mélanges cimentaires non décantés
MX2018009980A (es) * 2016-02-19 2018-11-09 Etex Building Performance Int Sas Panel de yeso.
DK3260258T3 (da) 2016-06-22 2019-09-23 Holcim Technology Ltd Online-styring af reologien af byggemateriale til 3D-printning
US11746051B2 (en) 2020-01-24 2023-09-05 Permabase Building Products, Llc Cement board with water-resistant additive

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537872A1 (fr) 1991-10-18 1993-04-21 W.R. Grace & Co.-Conn. Additives inhibiteurs de la corrosion pour ciments hydrauliques et compositions les contenant
WO1997006120A1 (fr) * 1995-08-09 1997-02-20 Alpha Brevet S.A. Procede de durcissement rapide de beton leger
US5634972A (en) * 1994-09-20 1997-06-03 Sandoz Ltd. Hydration control of cementitious systems
EP1136508A1 (fr) 2000-03-22 2001-09-26 Sika AG, vorm. Kaspar Winkler & Co. Mélange de ciment à affaissement amélioré
GB2377930A (en) * 2001-06-08 2003-01-29 Rmc Readymix Ltd A self-levelling concrete composition
US20030127026A1 (en) 2001-11-05 2003-07-10 James Edward Anderson High early-strength cementitious composition
US20040149174A1 (en) 2003-02-05 2004-08-05 Mbt Holding Ag Accelerating admixture for concrete
EP1535887A1 (fr) * 2002-06-28 2005-06-01 Taiko Refractories Co., Ltd. Composition de poudre pour beton refractaire et materiau premelange contenant celle-ci, procede d'application du materiau premelange et produit refractaire durci
US20060039991A1 (en) 2004-08-20 2006-02-23 Alberto Gorrochategui Barrueta Biological tissue regenerative agent and method for preparing and using same
WO2007047407A2 (fr) 2005-10-14 2007-04-26 W.R. Grace & Co.-Conn. Retenue d'affaissement dans des compositions a base de ciment
FR2893938A1 (fr) * 2005-11-28 2007-06-01 Lafarge Sa Procede de realisation de pieces et ouvrages en beton
US20090044726A1 (en) * 2007-08-13 2009-02-19 Fred Brouillette Cement Stabilization of Soils Using a Proportional Cement Slurry
US20090312460A1 (en) 2008-06-16 2009-12-17 Lorenz Klaus K Copolymer Admixture System for Workability Retention of Cementitious Compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635884B2 (ja) * 1991-06-25 1997-07-30 日本国土開発株式会社 コンクリート組成物
CA2110658A1 (fr) * 1992-12-16 1994-06-17 Theodor A. Burge Additif thixotrope accelerant le durcissement utilise pour des melanges contenant un liant hydraulique, procede utilisant l'additif, appareil pour la preparation des melanges contenant un liant hydraulique et l'additif
US5968257A (en) * 1994-08-29 1999-10-19 Sandia Corporation Ultrafine cementitious grout
JPH1110630A (ja) * 1997-06-25 1999-01-19 Aigami Sangyo:Kk ポンプ車移送の先行モルタル用包装モルタル
US6800129B2 (en) * 2003-01-30 2004-10-05 W. R. Grace & Co.-Conn. High solids pumpable cement additives
JP4725742B2 (ja) * 2007-02-19 2011-07-13 信越化学工業株式会社 水硬性組成物
US20090158970A1 (en) * 2007-12-20 2009-06-25 Icrete, Llc Concrete compositions optimized for high workability

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0537872A1 (fr) 1991-10-18 1993-04-21 W.R. Grace & Co.-Conn. Additives inhibiteurs de la corrosion pour ciments hydrauliques et compositions les contenant
US5634972A (en) * 1994-09-20 1997-06-03 Sandoz Ltd. Hydration control of cementitious systems
WO1997006120A1 (fr) * 1995-08-09 1997-02-20 Alpha Brevet S.A. Procede de durcissement rapide de beton leger
EP1136508A1 (fr) 2000-03-22 2001-09-26 Sika AG, vorm. Kaspar Winkler & Co. Mélange de ciment à affaissement amélioré
GB2377930A (en) * 2001-06-08 2003-01-29 Rmc Readymix Ltd A self-levelling concrete composition
US20030127026A1 (en) 2001-11-05 2003-07-10 James Edward Anderson High early-strength cementitious composition
EP1535887A1 (fr) * 2002-06-28 2005-06-01 Taiko Refractories Co., Ltd. Composition de poudre pour beton refractaire et materiau premelange contenant celle-ci, procede d'application du materiau premelange et produit refractaire durci
US20040149174A1 (en) 2003-02-05 2004-08-05 Mbt Holding Ag Accelerating admixture for concrete
US20060039991A1 (en) 2004-08-20 2006-02-23 Alberto Gorrochategui Barrueta Biological tissue regenerative agent and method for preparing and using same
WO2007047407A2 (fr) 2005-10-14 2007-04-26 W.R. Grace & Co.-Conn. Retenue d'affaissement dans des compositions a base de ciment
FR2893938A1 (fr) * 2005-11-28 2007-06-01 Lafarge Sa Procede de realisation de pieces et ouvrages en beton
US20090044726A1 (en) * 2007-08-13 2009-02-19 Fred Brouillette Cement Stabilization of Soils Using a Proportional Cement Slurry
US20090312460A1 (en) 2008-06-16 2009-12-17 Lorenz Klaus K Copolymer Admixture System for Workability Retention of Cementitious Compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177695A1 (fr) * 2013-05-03 2014-11-06 Chryso Système d'adjuvant comprenant un phosphonate polyalcoxylé, un polycarboxylate polyalcoxylé et un retardateur de prise et son utilisation
FR3005314A1 (fr) * 2013-05-03 2014-11-07 Chryso Systeme d'adjuvant comprenant un phosphonate polyalcoxyle, un polycarboxylate polyalcoxyle et un retardateur de prise et son utilisation

Also Published As

Publication number Publication date
EP2585416B1 (fr) 2015-11-04
US20130102705A1 (en) 2013-04-25
EP2585416A1 (fr) 2013-05-01
FR2961807B1 (fr) 2013-11-01
RS54550B1 (en) 2016-06-30
PL2585416T3 (pl) 2016-06-30
ES2560628T3 (es) 2016-02-22
CA2803528A1 (fr) 2011-12-29
FR2961807A1 (fr) 2011-12-30
CA2803528C (fr) 2016-08-30

Similar Documents

Publication Publication Date Title
RU2648382C2 (ru) Добавка для масс, которые схватываются гидравлически
EP2334615B1 (fr) Composition à base de matériau hydraulique et/ou pouzzolanique
EP2585416B1 (fr) Procede de transport d'une composition hydraulique
EP2560929A1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton
WO2011020975A2 (fr) Ciment geopolymerique et son utilisation
WO2012089944A1 (fr) Beton permeable
EP2552850B1 (fr) Melange fluidifiant pour composition hydraulique
FR2978761A1 (fr) Procede de fabrication d'un liant hydraulique rapide
WO2012001292A1 (fr) Beton permeable
EP2585417B1 (fr) Composition hydraulique a prise retardee
WO2011161384A1 (fr) Composition hydraulique ayant sa prise retardee declenchee par un accelerateur
WO2010095097A1 (fr) Liant hydraulique rapide pour pieces et ouvrages en beton contenant un sel de calcium
Raki et al. Nanotechnology applications for sustainable cement-based products
US20230032346A1 (en) Water reducing admixture for stable air
WO2024030519A2 (fr) Mélanges de béton
FR2977583A1 (fr) Procede de fabrication d'une composition hydraulique
CN117865609A (zh) 一种抑制碱骨料膨胀的水泥基材料及其制备方法
CN115745458A (zh) 一种用于改善灌注桩混凝土流变性能的外加剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011736430

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2803528

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13805765

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: P-2016/0061

Country of ref document: RS