WO2011161357A1 - Core for the manufacture of a turbine blade having impact-cooled leading edge cavity - Google Patents

Core for the manufacture of a turbine blade having impact-cooled leading edge cavity Download PDF

Info

Publication number
WO2011161357A1
WO2011161357A1 PCT/FR2011/051363 FR2011051363W WO2011161357A1 WO 2011161357 A1 WO2011161357 A1 WO 2011161357A1 FR 2011051363 W FR2011051363 W FR 2011051363W WO 2011161357 A1 WO2011161357 A1 WO 2011161357A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
core
inter
leading edge
blade
Prior art date
Application number
PCT/FR2011/051363
Other languages
French (fr)
Inventor
Huu-Thanh Tran
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Publication of WO2011161357A1 publication Critical patent/WO2011161357A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the field of the present invention is that of turbomachines and, in particular that of the manufacture of turbine blades of these turbomachines.
  • a turbomachine conventionally comprises, from upstream to downstream in the direction of the gas flow, a blower, one or more stages of compressors, for example a low pressure compressor and a high pressure compressor, a combustion chamber, one or more turbine stages, for example a high pressure turbine and a low pressure turbine, and a gas exhaust nozzle.
  • the turbine blades are subjected to high thermal stresses due to the heat of the gases in which they are immersed at the outlet of the combustion chamber, and they need to be cooled to withstand these temperatures. They are therefore hollow and traversed by cavities, in which circulates relatively cold air, taken at the output of a stage of a compressor.
  • the blades are produced by the classical technique known as lost wax casting.
  • This technique consists schematically in making a dawn in wax in which are drowned ceramic nuclei that reproduce cavities to come. The dawn wax is then embedded in a shell of refractory material, from which the wax is removed by heating. The metal constituting the blade is then poured into the refractory shell and the cores are then eliminated chemically, leaving in their place the desired cavities. Implementations of this method are in particular described in the patent applications of the applicant FR2875425 or FR2874186.
  • the cores for the modern turbine blades are constituted by elements, conventionally in the form of columns, which are positioned side by side and held together by means known to those skilled in the art. These modern turbine blades thus comprise several cavities arranged in parallel, oriented parallel to the leading edge of the blades blade. The cooling of the blade metal is made by a circulation of air within these cavities, which are fed by pipes connecting them to the feet of the blades.
  • the upstream cavity referred to as the leading edge cavity
  • the leading edge cavity is not supplied with cooling air by a specific pipe but by air from the adjacent cavity. , passing through micro-holes made in the partition between these two cavities. The leading edge of the blade is thus cooled by the impact of the air passing through the inter-cavity wall.
  • the ceramic core used for the manufacture of such blades must therefore comprise a series of refractory rods connecting the columns forming these two cavities, to form, after casting, holes in the inter-cavity wall. These holes must be very small, the two columns are connected by a series of rods, usually silica, extremely thin and therefore extremely fragile. The necessary handling of the cores during the preparation of the wax form of the dawn inevitably causes the breakage of some of these tubes and thus the disposal of the damaged core. This waste has a significant cost that should be eliminated as much as possible.
  • the object of the present invention is to remedy these drawbacks by proposing a core for producing cavities of a turbine blade which does not have the drawbacks of the prior art and, in particular, which does not have any fragile part capable of to break during handling. It also proposes a method of making a blade, with the use of such a core.
  • the subject of the invention is a ceramic core for producing internal cavities of a turbine blade by the lost-wax foundry technique, comprising at least two adjacent elements intended to create two substantially parallel cavities for the circulation of the cooling air of said blade, said elements being separated from each other by a spacing intended to form an inter-cavity wall, a first element being connected to the remainder of the core by connecting elements and a second element being connected to a column stand intended to form a cooling air supply pipe, characterized in that said elements of attachment (10) are located exclusively at the ends of the first element.
  • Drilling the inter-cavity wall after the foundry avoids having to place too fine bridges between the two columns that form the corresponding cavities and thus to have a nucleus too fragile.
  • the drilling of the inter-cavity wall is then performed by introducing a tool into one of the evacuation holes.
  • the column foot is shaped so as to direct the flow of cooling air passing through the feed pipe that it will form, exclusively to the cavity formed by said second element. In this configuration all of the cooling air which feeds the cavity coming from the first element will pass through holes made by drilling in the inter-cavity wall.
  • a first element is held in place by at least one bridge fixed on another element of said core, said bridge having a cylindrical or conical shape, so that the pipe that it will form can be closed by a plug having a simple geometric shape of the cylindrical, conical or spherical type.
  • the first element is a first column intended to form a leading edge cavity or trailing edge
  • the second element being a second column positioned parallel to the first column
  • the invention also relates to a method for producing a turbomachine hollow turbine blade using the lost wax foundry technique using a core comprising at least two adjacent elements intended to create two substantially parallel cavities. , separated from each other by a spacing for forming an inter-cavity wall, said method comprising, after the casting and removal of the core, a first step of drilling vent holes in the wall delimiting a first cavity followed by a second step of drilling at least one feed hole in the inter-cavity wall by means of a tool penetrating into the first cavity by one of the escape holes characterized in that it further comprises a subsequent step of providing a coating on the wall delimiting the first cavity so as to reduce the section of said discharge hole.
  • the diameter of the evacuation bore is reduced when a suitable coating is deposited on the leading edge of the vane after the drilling of the feed hole, which allows the diameter of the vane to be adjusted. this hole.
  • FIG. 1 is a generic view, in section, of a high pressure turbine module of a turbomachine
  • FIG. 2 is a front view of a turbine blade core, according to the prior art
  • FIG. 3 is a front view of a turbine blade core, according to one embodiment of the invention.
  • FIG. 4 is a front view of a high pressure turbine blade, made from the core of Figure 3;
  • FIG. 5 is a view of a turbine blade of FIG. 4, cut substantially at mid-height of its blade, and
  • FIG. 6 is a sectional view of the turbine blade of FIG. 4.
  • an aerospace turbomachine comprising a moving blade of a high-pressure turbine 1 located downstream of a fixed vane of distributor 2 and carried by a turbine disc 3.
  • the dawn distributor 2 and the blade 1 are positioned in a flow of gas 4 which leaves the combustion chamber, not shown, and which is at a very high temperature.
  • FIGS. 2 and 3 show a ceramic core 5 intended for producing a turbine blade 1, according to the prior art in the case of FIG. 2 and according to the invention in the case of FIG. ceramic 5, as shown in the figures, has five columns, without this number is imperative.
  • the first pillar 6, which is intended to meet the arrival side of the stream 4 corresponds to the leading edge cavity that will be created after foundry, while the second pillar 7 corresponds to the cavity adjacent thereto . This the latter receives a cooling flow through a pipe resulting, after casting, the presence of a first column foot 8 on the core 5.
  • the last three columns, which are formed in one piece making a round trip, correspond a second flow of cooling air which is brought by a pipe resulting from the presence of a second column foot 8b.
  • the first and second columns 6 and 7 are connected to each other by a series of bridges 9, to which will correspond, after casting, air feed holes through the inter-cavity wall, for cooling the leading edge cavity 16.
  • the size of these bridges 9 remains relatively large to prevent them breaking during handling of the core 5, which would make it unusable. This size constraint on the bridges 9 creates an additional constraint for the design of the blade since the passage section between the first two cavities can not be reduced below a certain value, value for which the bridges 9 become too fragile. .
  • the first and second pillars 6 and 7 are separated from each other by a spacing, thus leaving room for the creation of a full intercavital wall 22 during the casting of the metal.
  • a holding bridge 10 is placed between the lower end of the first pillar 6 and the first column foot 8. The presence of this holding bridge will result, after the foundry, the leading edge cavity 16 will be connected directly by a specific pipe to the supply line of the second cavity 17. A shutter must then be installed at the end of realization dawn on this specific pipe to suppress this communication and force the cooling air to enter the second cavity.
  • the holding bridge 10 is, here, represented in the form of a cylindrical rod coming off the first leg of the column to be attached in the lower part to the first column 6. It is not located in the axis of the circulation of the cooling air, the latter being intended to pass entirely into the second cavity 17 and the channel created by the holding bridge 10 having to be plugged for force the flow of air towards this second cavity.
  • the column foot 8 is therefore naturally extended in the direction of the second pillar 7, leaving the holding bridge 10 to diverge virtually in this direction so as not to be in the continuity of the foot of the column .
  • FIG 4 shows a blade 1 through which appear the cavities created by the presence of the core 5, according to the invention, during the casting of the metal.
  • the cavities are numbered with reference to the elements of the nucleus that created them, adding 10 to the reference of the corresponding element.
  • the leading edge 20 of the blade 1 is conventionally pierced with a multitude of holes 23 through which the cooling air is evacuated from the first cavity 16, before flowing along the profile of the dawn to cool its metal surface.
  • a hole 21 for feeding the leading edge cavity 16 is pierced through the inter-cavity wall 22 which separates the leading edge cavity 16 from the second cavity 17.
  • the cooling air coming from the supply line 18 passes from the second cavity 17 into the leading edge cavity 16 from which it flows outwards through a series of evacuation holes made in the leading edge 20 and referenced from 23a to 23e.
  • These evacuation holes are oriented substantially perpendicular to the leading edge, at the tip thereof, and are increasingly inclined towards the surface of the blade, as they move away from this tip for reasons of aerodynamic efficiency. In the case of drilling furthest away from the tip 23e, it is prolonged even by a tangential drilling which directs the flow of air along the profile of the blade.
  • the supply bore 21 is aligned with the exhaust bore 23c which is the one closest to the tip of the leading edge 20. Moreover, its orientation is directed to the inter-cavity wall 22. This alignment is necessary to be able to pierce the inter-cavity wall and perform the feed hole 21 by introducing a tool through the discharge bore 23c.
  • the core 5 is made according to traditional methods and embedded in a wax form reproducing the shape of the dawn to be manufactured. After the realization of a refractory shell enveloping the dawn in wax, the shell is heated to melt the wax and to evacuate it by orifices provided for this purpose. The actual dawn is then obtained by casting, casting the appropriate metal in the cavities left free by the melting of the wax, then removing the core 5 by a suitable chemical treatment.
  • a blade 1 is obtained in which the leading edge cavity 16 is separated from the second cavity 17 by the inter-cavity wall 22 which is solid, but which, on the other hand, is connected to the feed pipe 18 by a duct resulting from the existence of the holding bridge 10.
  • This duct is then closed, by means, for example, of the introduction of a ball in this duct, where it is brazed.
  • a conventional operation of perforation of the leading edge wall 20 is then carried out, which results in the creation of the holes 23a to 23e and which vents the leading edge cavity 16 in the open.
  • at least one hole 23c is oriented substantially orthogonal to the inter-cavity wall 22.
  • the drilling operation of this hole 23c is extended so as to reach the inter-cavity wall 22 and to pierce a feed hole 21 through it.
  • a channel for supplying the leading edge cavity 16 with cooling air is created by the second cavity 17.
  • This air, coming from the supply pipe 18, enters the second cavity 17 which it it cools and then passes through the inter-cavity wall 22 via the feed bores 21. It thus opens into the leading edge cavity 16 from which it emerges by the evacuation holes 23 in order to envelop the profile of the blade 1 and cool its surface.
  • the diameter of the feed bore 21 is equal to that of the tool used to perform it while the diameter of the bore 23c through which the tool is introduced may be less than this value, its diameter then being reduced, after the drilling operation of the inter-cavity wall, by deposition treatment of various coatings on the leading edge 20.
  • the designer of the blade is thus not limited to the choice of the size of the drilling of supply and it can freely define the diameters of the various drillings and the flows of air of cooling which they will allow.
  • the invention has been described by taking as an example a leading edge cavity fed with cooling air from the adjacent cavity. It is obvious that it can be implemented on any other cavity of a hollow turbine blade and in particular on a trailing edge cavity.
  • the holding bridge 10 has been described as having a cylindrical shape and the plug placed in the pipe that it generates as a ball; the bridge can also have a conical shape and the plug have any simple geometric shape that fits easily in the pipe to be plugged, such as a cylinder of the same size or a conical shape integrating into the cylindrical or conical shape of the corresponding pipeline.

Abstract

The invention relates to a ceramic core for producing the inner cavities of a turbine blade by means of the lost-wax foundry technique, said ceramic core comprising at least two adjacent elements (6, 7) for creating two substantially parallel cavities for circulating the air for cooling said blade, said elements being separated from each other by a spacing for forming an inter-cavity wall, wherein a first element (6) is connected to the rest of the core by means of attachment elements (10), and a second element (7) is connected to a column base (8) for forming a cooling-air supply pipe, characterized in that said attachment elements (10) are exclusively located at the ends of the first element (6).

Description

NOYAU POUR LA FABRICATION D'UNE AUBE DE TURBINE A CAVITÉ DE BORD DATTAQUE REFROIDIE PAR IMPACT.  CORE FOR MANUFACTURING AN IMPACT COOLED DATTATIC CAVITY TURBINE TURBINE BLADE.
Le domaine de la présente invention est celui des turbomachines et, en particulier celui de la fabrication des aubes de turbine de ces turbomachines. The field of the present invention is that of turbomachines and, in particular that of the manufacture of turbine blades of these turbomachines.
Une turbomachine comprend classiquement, d'amont en aval dans le sens de l'écoulement des gaz, une soufflante, un ou plusieurs étages de compresseurs, par exemple un compresseur basse pression et un compresseur haute pression, une chambre de combustion, un ou plusieurs étages de turbines, par exemple une turbine haute pression et une turbine basse pression, et une tuyère d'échappement des gaz.  A turbomachine conventionally comprises, from upstream to downstream in the direction of the gas flow, a blower, one or more stages of compressors, for example a low pressure compressor and a high pressure compressor, a combustion chamber, one or more turbine stages, for example a high pressure turbine and a low pressure turbine, and a gas exhaust nozzle.
Les aubes de turbine sont soumises à de fortes contraintes thermiques dues à la chaleur des gaz dans lesquelles elles sont plongées en sortie de la chambre de combustion, et elles nécessitent d'être refroidies pour supporter ces températures. Elles sont pour cela creuses et traversées par des cavités, dans lesquelles circule de l'air relativement froid, prélevé en sortie d'un étage d'un des compresseurs.  The turbine blades are subjected to high thermal stresses due to the heat of the gases in which they are immersed at the outlet of the combustion chamber, and they need to be cooled to withstand these temperatures. They are therefore hollow and traversed by cavities, in which circulates relatively cold air, taken at the output of a stage of a compressor.
Pour réaliser ces cavités, qui ont des formes complexes et dont la géométrie doit être respectée avec une grande précision, les aubes sont produites par la technique classique connue sous le nom de fonderie à la cire perdue. Cette technique consiste schématiquement à réaliser une aube en cire dans laquelle sont noyés des noyaux en céramique qui reproduisent les cavités à venir. L'aube en cire est ensuite noyée dans une coque en matériau réfractaire, de laquelle la cire est évacuée par chauffage. Le métal constituant l'aube est alors coulé dans la coque réfractaire et les noyaux sont ensuite éliminés par voie chimique, laissant à leur place les cavités recherchées. Des mises en œuvre de cette méthode sont en particulier décrites dans les demandes de brevets de la demanderesse FR2875425 ou FR2874186.  To achieve these cavities, which have complex shapes and whose geometry must be respected with great precision, the blades are produced by the classical technique known as lost wax casting. This technique consists schematically in making a dawn in wax in which are drowned ceramic nuclei that reproduce cavities to come. The dawn wax is then embedded in a shell of refractory material, from which the wax is removed by heating. The metal constituting the blade is then poured into the refractory shell and the cores are then eliminated chemically, leaving in their place the desired cavities. Implementations of this method are in particular described in the patent applications of the applicant FR2875425 or FR2874186.
Les noyaux pour les aubes de turbine modernes sont constitués par des éléments, ayant classiquement la forme de colonnettes, qui sont positionnés côte à côte et maintenus ensemble par des moyens connus de l'homme du métier. Ces aubes de turbine modernes comportent ainsi plusieurs cavités disposées en parallèle, orientées parallèlement au bord d'attaque de la pale des aubes. Le refroidissement du métal des aubes se fait par une circulation de l'air au sein de ces cavités, qui sont alimentées par des canalisations les reliant aux pieds des aubes. The cores for the modern turbine blades are constituted by elements, conventionally in the form of columns, which are positioned side by side and held together by means known to those skilled in the art. These modern turbine blades thus comprise several cavities arranged in parallel, oriented parallel to the leading edge of the blades blade. The cooling of the blade metal is made by a circulation of air within these cavities, which are fed by pipes connecting them to the feet of the blades.
Dans des cas particuliers de réalisation la cavité située le plus en amont, désignée sous le nom de cavité de bord d'attaque, n'est pas alimentée en air de refroidissement par une canalisation spécifique mais par de l'air provenant de la cavité adjacente, en passant au travers de micro-perçages réalisés dans la cloison qui sépare ces deux cavités. Le bord d'attaque de l'aube est ainsi refroidi par l'impact de l'air traversant la paroi inter-cavités.  In particular cases, the upstream cavity, referred to as the leading edge cavity, is not supplied with cooling air by a specific pipe but by air from the adjacent cavity. , passing through micro-holes made in the partition between these two cavities. The leading edge of the blade is thus cooled by the impact of the air passing through the inter-cavity wall.
Le noyau céramique utilisé pour la fabrication de telles aubes doit donc comporter une série de tiges réfractaires reliant les colonnettes formant ces deux cavités, pour former, après fonderie, des trous dans la paroi inter-cavités. Ces trous devant être très petits, les deux colonnettes sont reliées par une série de tiges, généralement en silice, extrêmement fines et de ce fait extrêmement fragiles. La nécessaire manipulation des noyaux au cours de la préparation de la forme en cire de l'aube entraîne inévitablement la casse de certains de ces tubes et donc la mise au rebut du noyau endommagé. Ces rebuts ont un coût non négligeable qu'il convient d'éliminer dans toute la mesure du possible.  The ceramic core used for the manufacture of such blades must therefore comprise a series of refractory rods connecting the columns forming these two cavities, to form, after casting, holes in the inter-cavity wall. These holes must be very small, the two columns are connected by a series of rods, usually silica, extremely thin and therefore extremely fragile. The necessary handling of the cores during the preparation of the wax form of the dawn inevitably causes the breakage of some of these tubes and thus the disposal of the damaged core. This waste has a significant cost that should be eliminated as much as possible.
La présente invention a pour but de remédier à ces inconvénients en proposant un noyau pour la réalisation des cavités d'une aube de turbine qui ne présente pas les inconvénients de l'art antérieur et, en particulier, qui ne présente pas de partie fragile susceptible de se rompre lors de sa manipulation. Elle propose également un procédé de réalisation d'une aube, avec l'utilisation d'un tel noyau.  The object of the present invention is to remedy these drawbacks by proposing a core for producing cavities of a turbine blade which does not have the drawbacks of the prior art and, in particular, which does not have any fragile part capable of to break during handling. It also proposes a method of making a blade, with the use of such a core.
A cet effet, l'invention a pour objet un noyau en céramique pour la réalisation de cavités internes d'une aube de turbine par la technique de fonderie à la cire perdue, comportant au moins deux éléments adjacents destinés à créer deux cavités sensiblement parallèles pour la circulation de l'air de refroidissement de ladite aube, lesdits éléments étant séparés l'un de l'autre par un espacement destiné à former une paroi inter-cavités, un premier élément étant relié au reste du noyau par des éléments de rattachement et un second élément étant relié à un pied de colonne destiné à former une canalisation d'alimentation en air de refroidissement, caractérisé en ce que lesdits éléments de rattachement (10) sont localisés exclusivement aux extrémités du premier élément. To this end, the subject of the invention is a ceramic core for producing internal cavities of a turbine blade by the lost-wax foundry technique, comprising at least two adjacent elements intended to create two substantially parallel cavities for the circulation of the cooling air of said blade, said elements being separated from each other by a spacing intended to form an inter-cavity wall, a first element being connected to the remainder of the core by connecting elements and a second element being connected to a column stand intended to form a cooling air supply pipe, characterized in that said elements of attachment (10) are located exclusively at the ends of the first element.
Le fait de percer la paroi inter-cavités après la fonderie permet d'éviter d'avoir à placer des ponts trop fins entre les deux colonnettes qui forment les cavités correspondantes et donc d'avoir un noyau trop fragile. Le perçage de la paroi inter-cavités est alors effectué par l'introduction d'un outil dans un des perçages d'évacuation.  Drilling the inter-cavity wall after the foundry avoids having to place too fine bridges between the two columns that form the corresponding cavities and thus to have a nucleus too fragile. The drilling of the inter-cavity wall is then performed by introducing a tool into one of the evacuation holes.
Avantageusement le pied de colonne est conformé de façon à diriger le flux d'air de refroidissement passant dans la canalisation d'alimentation qu'il formera, exclusivement vers la cavité formée par ledit second élément. Dans cette configuration la totalité de l'air de refroidissement qui alimente la cavité issue du premier élément passera par des trous pratiqués par perçage dans la paroi inter-cavités.  Advantageously, the column foot is shaped so as to direct the flow of cooling air passing through the feed pipe that it will form, exclusively to the cavity formed by said second element. In this configuration all of the cooling air which feeds the cavity coming from the first element will pass through holes made by drilling in the inter-cavity wall.
Dans un mode particulier de réalisation un premier élément est maintenu en place par au moins un pont fixé sur un autre élément dudit noyau, ledit pont ayant une forme cylindrique ou conique, de sorte que la canalisation qu'il formera pourra être obturée par un bouchon ayant une forme géométrique simple du type cylindrique, conique ou sphérique.  In a particular embodiment a first element is held in place by at least one bridge fixed on another element of said core, said bridge having a cylindrical or conical shape, so that the pipe that it will form can be closed by a plug having a simple geometric shape of the cylindrical, conical or spherical type.
Préférentiellement le premier élément est une première colonnette destinée à former une cavité de bord d'attaque ou de bord de fuite, le second élément étant une seconde colonnette positionnée parallèlement à la première colonnette.  Preferably the first element is a first column intended to form a leading edge cavity or trailing edge, the second element being a second column positioned parallel to the first column.
L'invention porte encore sur un procédé de réalisation d'une aube de turbine creuse pour turbomachine utilisant la technique de la fonderie à la cire perdue à l'aide d'un noyau comportant au moins deux éléments adjacents destinés à créer deux cavités sensiblement parallèles, séparés l'un de l'autre par un espacement destiné à former une paroi inter-cavités, ledit procédé comprenant, postérieurement à la fonderie et à l'élimination du noyau, une première étape de perçage de trous d'évacuation dans la paroi délimitant une première cavité suivie d'une seconde étape de perçage d'au moins un trou d'alimentation dans la paroi inter-cavités par l'intermédiaire d'un outil pénétrant dans la première cavité par l'un des trous d'évacuation caractérisé en ce qu'il comporte en outre une étape ultérieure d'apport d'un revêtement sur la paroi délimitant la première cavité de façon à réduire la section dudit trou d'évacuation. La réduction du diamètre du perçage d'évacuation est assurée, lors du dépôt d'un revêtement approprié sur le bord d'attaque de l'aube, effectué postérieurement au perçage du trou d'alimentation, ce qui permet l'ajustement du diamètre de ce trou. The invention also relates to a method for producing a turbomachine hollow turbine blade using the lost wax foundry technique using a core comprising at least two adjacent elements intended to create two substantially parallel cavities. , separated from each other by a spacing for forming an inter-cavity wall, said method comprising, after the casting and removal of the core, a first step of drilling vent holes in the wall delimiting a first cavity followed by a second step of drilling at least one feed hole in the inter-cavity wall by means of a tool penetrating into the first cavity by one of the escape holes characterized in that it further comprises a subsequent step of providing a coating on the wall delimiting the first cavity so as to reduce the section of said discharge hole. The diameter of the evacuation bore is reduced when a suitable coating is deposited on the leading edge of the vane after the drilling of the feed hole, which allows the diameter of the vane to be adjusted. this hole.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés.  The invention will be better understood, and other objects, details, features and advantages thereof will appear more clearly in the following detailed explanatory description of an embodiment of the invention given as a purely illustrative and non-limiting example, with reference to the accompanying schematic drawings.
Sur ces dessins :  On these drawings:
- la figure 1 est une vue générique, en coupe, d'un module de turbine haute pression d'une turbomachine ;  - Figure 1 is a generic view, in section, of a high pressure turbine module of a turbomachine;
- la figure 2 est une vue de face d'un noyau pour aube de turbine, selon l'art antérieur ;  - Figure 2 is a front view of a turbine blade core, according to the prior art;
- la figure 3 est une vue de face d'un noyau pour aube de turbine, selon un mode de réalisation de l'invention ;  FIG. 3 is a front view of a turbine blade core, according to one embodiment of the invention;
- la figure 4 est une vue de face d'une aube de turbine haute pression, réalisé à partir du noyau de la figure 3 ;  - Figure 4 is a front view of a high pressure turbine blade, made from the core of Figure 3;
- la figure 5 est une vue d'une aube de turbine de la figure 4, coupée sensiblement à mi-hauteur de sa pale, et  FIG. 5 is a view of a turbine blade of FIG. 4, cut substantially at mid-height of its blade, and
- la figure 6 est une vue en coupe de l'aube de turbine de la figure 4.  FIG. 6 is a sectional view of the turbine blade of FIG. 4.
En se référant à la figure 1, on voit les parties chaudes d'une turbomachine aéronautique comprenant une aube mobile de turbine haute pression 1 située en aval d'une aube fixe de distributeur 2 et portée par un disque de turbine 3. L'aube de distributeur 2 et l'aube mobile 1 sont positionnées dans un flux de gaz 4 qui sort de la chambre de combustion, non représentée, et qui est à une température très élevée.  Referring to FIG. 1, we can see the hot parts of an aerospace turbomachine comprising a moving blade of a high-pressure turbine 1 located downstream of a fixed vane of distributor 2 and carried by a turbine disc 3. The dawn distributor 2 and the blade 1 are positioned in a flow of gas 4 which leaves the combustion chamber, not shown, and which is at a very high temperature.
Les figures 2 et 3 représentent un noyau céramique 5 destiné à la réalisation d'une aube mobile de turbine 1, selon l'art antérieur dans le cas de la figure 2 et selon l'invention dans le cas de la figure 3. Le noyau céramique 5, tel que représenté sur les figures, comporte cinq colonnettes, sans que ce nombre soit impératif. La première colonnette 6, qui est destinée à se retrouver du côté de l'arrivée du flux 4, correspond à la cavité de bord d'attaque qui se créera après fonderie, alors que la seconde colonnette 7 correspond à la cavité qui lui est adjacente. Cette dernière reçoit un flux de refroidissement par une canalisation résultant, après fonderie, de la présence d'un premier pied de colonne 8 sur le noyau 5. Les trois dernières colonnettes, qui sont formées d'une seule pièce faisant un aller-retour, correspondent à un second flux d'air de refroidissement qui est amené par une canalisation issue de la présence d'un second pied de colonne 8b. FIGS. 2 and 3 show a ceramic core 5 intended for producing a turbine blade 1, according to the prior art in the case of FIG. 2 and according to the invention in the case of FIG. ceramic 5, as shown in the figures, has five columns, without this number is imperative. The first pillar 6, which is intended to meet the arrival side of the stream 4, corresponds to the leading edge cavity that will be created after foundry, while the second pillar 7 corresponds to the cavity adjacent thereto . This the latter receives a cooling flow through a pipe resulting, after casting, the presence of a first column foot 8 on the core 5. The last three columns, which are formed in one piece making a round trip, correspond a second flow of cooling air which is brought by a pipe resulting from the presence of a second column foot 8b.
Dans l'art antérieur de la figure 2, les première et seconde colonnettes 6 et 7 sont reliées l'une à l'autre par une série de ponts 9, auxquels correspondront, après fonderie, des trous d'alimentation en air à travers la paroi inter-cavités, pour le refroidissement de la cavité de bord d'attaque 16. La taille de ces ponts 9 reste relativement importante pour éviter leur rupture lors de la manipulation du noyau 5, ce qui rendrait celui-ci inutilisable. Cette contrainte de taille sur les ponts 9 crée une contrainte supplémentaire pour la conception de l'aube puisque la section de passage entre les deux premières cavités ne peut être diminuée en dessous d'une certaine valeur, valeur pour laquelle les ponts 9 deviendraient trop fragiles.  In the prior art of FIG. 2, the first and second columns 6 and 7 are connected to each other by a series of bridges 9, to which will correspond, after casting, air feed holes through the inter-cavity wall, for cooling the leading edge cavity 16. The size of these bridges 9 remains relatively large to prevent them breaking during handling of the core 5, which would make it unusable. This size constraint on the bridges 9 creates an additional constraint for the design of the blade since the passage section between the first two cavities can not be reduced below a certain value, value for which the bridges 9 become too fragile. .
Dans l'invention représentée sur la figure 3, les première et seconde colonnette 6 et 7 sont séparées l'une de l'autre par un espacement, laissant ainsi la place pour la création d'une paroi intercavités pleine 22 lors de la coulée du métal. Pour des raisons de maintien de la première colonnette 6 et de rigidité de l'ensemble du noyau 5 un pont de maintien 10 est mis en place entre l'extrémité inférieure de la première colonnette 6 et le premier pied de colonne 8. La présence de ce pont de maintien aura pour conséquence, après la fonderie, que la cavité de bord d'attaque 16 sera reliée directement par une canalisation spécifique à la canalisation d'alimentation de la seconde cavité 17. Un obturateur devra alors être installé en fin de réalisation de l'aube sur cette canalisation spécifique pour supprimer cette communication et forcer l'air de refroidissement à entrer dans la seconde cavité.  In the invention shown in Figure 3, the first and second pillars 6 and 7 are separated from each other by a spacing, thus leaving room for the creation of a full intercavital wall 22 during the casting of the metal. For reasons of maintaining the first pillar 6 and rigidity of the entire core 5 a holding bridge 10 is placed between the lower end of the first pillar 6 and the first column foot 8. The presence of this holding bridge will result, after the foundry, the leading edge cavity 16 will be connected directly by a specific pipe to the supply line of the second cavity 17. A shutter must then be installed at the end of realization dawn on this specific pipe to suppress this communication and force the cooling air to enter the second cavity.
Le pont de maintien 10 est, ici, représenté sous la forme d'une tige cylindrique se détachant du premier pied de colonne pour venir s'attacher en partie basse à la première colonnette 6. Il ne se situe pas dans l'axe de la circulation de l'air de refroidissement, celui-ci étant destiné à passer en totalité dans la seconde cavité 17 et la canalisation créée par le pont de maintien 10 ayant vocation à être bouchée pour forcer le flux d'air vers cette seconde cavité. Pour des raisons d'aérodynamique, le pied de colonne 8 se prolonge donc naturellement dans la direction de la seconde colonnette 7, laissant le pont de maintien 10 s'écarter franchement de cette direction pour ne pas se situer dans la continuité du pied de colonne. The holding bridge 10 is, here, represented in the form of a cylindrical rod coming off the first leg of the column to be attached in the lower part to the first column 6. It is not located in the axis of the circulation of the cooling air, the latter being intended to pass entirely into the second cavity 17 and the channel created by the holding bridge 10 having to be plugged for force the flow of air towards this second cavity. For reasons of aerodynamics, the column foot 8 is therefore naturally extended in the direction of the second pillar 7, leaving the holding bridge 10 to diverge frankly in this direction so as not to be in the continuity of the foot of the column .
La figure 4 montre une aube 1 au travers de laquelle apparaissent les cavités créées par la présence du noyau 5, selon l'invention, lors de la coulée du métal. Les cavités sont numérotées en référence aux éléments du noyau qui les ont créées, en ajoutant 10 à la référence de l'élément correspondant. Le bord d'attaque 20 de l'aube 1 est percé classiquement d'une multitude de trous 23 par lesquels s'évacue l'air de refroidissement en provenance de la première cavité 16, avant de s'écouler le long du profil de l'aube pour refroidir son métal en surface.  Figure 4 shows a blade 1 through which appear the cavities created by the presence of the core 5, according to the invention, during the casting of the metal. The cavities are numbered with reference to the elements of the nucleus that created them, adding 10 to the reference of the corresponding element. The leading edge 20 of the blade 1 is conventionally pierced with a multitude of holes 23 through which the cooling air is evacuated from the first cavity 16, before flowing along the profile of the dawn to cool its metal surface.
En se référant maintenant aux figure 5 et 6 on voit des perçages 23 effectués au niveau du bord d'attaque 20 de l'aube. Un trou 21 d'alimentation de la cavité de bord d'attaque 16 est percé au travers de la paroi inter-cavités 22 qui sépare la cavité de bord d'attaque 16 de la seconde cavité 17. L'air de refroidissement provenant de la canalisation d'alimentation 18, passe de la seconde cavité 17 dans la cavité de bord d'attaque 16 d'où il s'écoule vers l'extérieur par une série de perçages d'évacuation pratiqués dans le bord d'attaque 20 et référencés de 23a à 23e. Ces perçages d'évacuation sont orientés sensiblement perpendiculairement au bord d'attaque, à la pointe de celui-ci, et sont de plus en plus inclinés vers la surface de la pale, au fur et à mesure qu'ils s'éloignent de cette pointe pour des raisons d'efficacité aérodynamique. Dans le cas du perçage le plus éloigné de la pointe 23e, il se prolonge même par un perçage tangentiel qui oriente le flux d'air le long du profil de l'aube.  Referring now to FIGS. 5 and 6, bores 23 are seen at the leading edge 20 of the blade. A hole 21 for feeding the leading edge cavity 16 is pierced through the inter-cavity wall 22 which separates the leading edge cavity 16 from the second cavity 17. The cooling air coming from the supply line 18 passes from the second cavity 17 into the leading edge cavity 16 from which it flows outwards through a series of evacuation holes made in the leading edge 20 and referenced from 23a to 23e. These evacuation holes are oriented substantially perpendicular to the leading edge, at the tip thereof, and are increasingly inclined towards the surface of the blade, as they move away from this tip for reasons of aerodynamic efficiency. In the case of drilling furthest away from the tip 23e, it is prolonged even by a tangential drilling which directs the flow of air along the profile of the blade.
Il importe de remarquer, comme cela est visible sur la figure 6 que le perçage d'alimentation 21 est aligné avec le perçage d'évacuation 23c qui est celui situé le plus proche de la pointe du bord d'attaque 20. Par ailleurs son orientation est dirigée vers la paroi inter-cavités 22. Cet alignement est rendu nécessaire pour pouvoir percer la paroi inter-cavités et réaliser le perçage d'alimentation 21 en introduisant un outil par le perçage d'évacuation 23c. On va maintenant décrire le processus de fabrication d'une aube de turbine 1 à l'aide d'un noyau 5 selon l'invention. It should be noted, as can be seen in FIG. 6, that the supply bore 21 is aligned with the exhaust bore 23c which is the one closest to the tip of the leading edge 20. Moreover, its orientation is directed to the inter-cavity wall 22. This alignment is necessary to be able to pierce the inter-cavity wall and perform the feed hole 21 by introducing a tool through the discharge bore 23c. We will now describe the process of manufacturing a turbine blade 1 with a core 5 according to the invention.
Le noyau 5 est fabriqué selon les méthodes traditionnelles et noyé dans une forme en cire reproduisant la forme de l'aube à fabriquer. Après la réalisation d'une coque réfractaire enveloppant l'aube en cire, la coque est chauffée pour faire fondre la cire et l'évacuer par des orifices prévus à cet effet. L'aube proprement dite est alors obtenue par fonderie, en coulant le métal approprié dans les cavités laissées libres par la fonte de la cire, puis en éliminant le noyau 5 par un traitement chimique adapté.  The core 5 is made according to traditional methods and embedded in a wax form reproducing the shape of the dawn to be manufactured. After the realization of a refractory shell enveloping the dawn in wax, the shell is heated to melt the wax and to evacuate it by orifices provided for this purpose. The actual dawn is then obtained by casting, casting the appropriate metal in the cavities left free by the melting of the wax, then removing the core 5 by a suitable chemical treatment.
On obtient ainsi une aube 1 dans laquelle la cavité de bord d'attaque 16 est séparée de la seconde cavité 17 par la paroi inter-cavités 22 qui est pleine, mais qui, en revanche, est reliée à la canalisation d'alimentation 18 par un conduit résultant de l'existence du pont de maintien 10. Ce conduit est alors obturé, au moyen, par exemple, de l'introduction d'une bille dans ce conduit, où elle est brasée.  Thus, a blade 1 is obtained in which the leading edge cavity 16 is separated from the second cavity 17 by the inter-cavity wall 22 which is solid, but which, on the other hand, is connected to the feed pipe 18 by a duct resulting from the existence of the holding bridge 10. This duct is then closed, by means, for example, of the introduction of a ball in this duct, where it is brazed.
Une opération classique de perforation de la paroi du bord d'attaque 20 est alors conduite, qui aboutit à la création des perçages 23a à 23e et qui met à l'air libre la cavité de bord d'attaque 16. Lors de la conception de l'aube il a été prévu qu'au moins un perçage 23c soit orienté de façon sensiblement orthogonale à la paroi inter-cavités 22. L'opération de perçage de ce trou 23c est prolongée de façon à atteindre la paroi inter-cavités 22 et à percer un trou d'alimentation 21 à travers elle. On crée ainsi un canal d'alimentation de la cavité de bord d'attaque 16 en air de refroidissement, par la seconde cavité 17. Cet air, en provenance de la canalisation d'alimentation 18, pénètre dans la seconde cavité 17 qu'il refroidit puis passe à travers la paroi inter-cavités 22 par l'intermédiaire des perçages d'alimentation 21. Il débouche ainsi dans la cavité de bord d'attaque 16 d'où il ressort par les perçages d'évacuation 23 afin d'envelopper le profil de l'aube 1 et refroidir sa surface.  A conventional operation of perforation of the leading edge wall 20 is then carried out, which results in the creation of the holes 23a to 23e and which vents the leading edge cavity 16 in the open. the dawn it has been provided that at least one hole 23c is oriented substantially orthogonal to the inter-cavity wall 22. The drilling operation of this hole 23c is extended so as to reach the inter-cavity wall 22 and to pierce a feed hole 21 through it. Thus, a channel for supplying the leading edge cavity 16 with cooling air is created by the second cavity 17. This air, coming from the supply pipe 18, enters the second cavity 17 which it it cools and then passes through the inter-cavity wall 22 via the feed bores 21. It thus opens into the leading edge cavity 16 from which it emerges by the evacuation holes 23 in order to envelop the profile of the blade 1 and cool its surface.
Le diamètre du perçage d'alimentation 21 est égal à celui de l'outil utilisé pour l'effectuer alors que le diamètre du perçage 23c par lequel est introduit l'outil peut être inférieur à cette valeur, son diamètre étant alors réduit, postérieurement à l'opération de perçage de la paroi inter-cavités, par des traitement de dépôt de divers revêtements sur le bord d'attaque 20. Le concepteur de l'aube n'est ainsi pas limité pour le choix de la taille du perçage d'alimentation et il peut définir librement les diamètres des différents perçages et les débits d'air de refroidissement qu'ils autoriseront. The diameter of the feed bore 21 is equal to that of the tool used to perform it while the diameter of the bore 23c through which the tool is introduced may be less than this value, its diameter then being reduced, after the drilling operation of the inter-cavity wall, by deposition treatment of various coatings on the leading edge 20. The designer of the blade is thus not limited to the choice of the size of the drilling of supply and it can freely define the diameters of the various drillings and the flows of air of cooling which they will allow.
Au final on obtient le résultat recherché, à savoir une aube de turbine pour laquelle on peut optimiser la circulation de son air de refroidissement et qui est obtenue à l'aide d'un noyau 5 ayant une solidité suffisante pour pouvoir être manipulé sans risque excessif de casse.  In the end we obtain the desired result, namely a turbine blade for which we can optimize the circulation of its cooling air and which is obtained using a core 5 having sufficient strength to be handled without excessive risk. of breakage.
L'invention a été décrite en prenant pour exemple une cavité de bord d'attaque alimentée par de l'air de refroidissement provenant de la cavité adjacente. Il est bien évident qu'elle peut être mise en œuvre sur toute autre cavité d'une aube de turbine creuse et en particulier sur une cavité de bord de fuite.  The invention has been described by taking as an example a leading edge cavity fed with cooling air from the adjacent cavity. It is obvious that it can be implemented on any other cavity of a hollow turbine blade and in particular on a trailing edge cavity.
De même le pont de maintien 10 a été décrit comme ayant une forme cylindrique et le bouchon mis en place dans la canalisation qu'il génère comme étant une bille; le pont peut tout aussi bien avoir une forme conique et le bouchon avoir toute forme géométrique simple qui s'adapte aisément dans la canalisation à boucher, comme par exemple un cylindre de même taille ou une forme conique s'intégrant dans la forme cylindrique ou conique de la canalisation correspondante.  Similarly, the holding bridge 10 has been described as having a cylindrical shape and the plug placed in the pipe that it generates as a ball; the bridge can also have a conical shape and the plug have any simple geometric shape that fits easily in the pipe to be plugged, such as a cylinder of the same size or a conical shape integrating into the cylindrical or conical shape of the corresponding pipeline.

Claims

REVENDICATIONS
1. Noyau en céramique pour la réalisation de cavités internes d'une aube de turbine (1) par la technique de fonderie à la cire perdue, comportant au moins deux éléments adjacents (6, 7) destinés à créer deux cavités sensiblement parallèles (16, 17) pour la circulation de l'air de refroidissement de ladite aube, lesdits éléments étant séparés l'un de l'autre par un espacement destiné à former une paroi inter-cavités (22), un premier élément (6) étant relié au reste du noyau par des éléments de rattachement (10) et un second élément (7) étant relié à un pied de colonne (8) destiné à former une canalisation d'alimentation (18) en air de refroidissement, Ceramic core for producing internal cavities of a turbine blade (1) by the lost wax casting technique, comprising at least two adjacent elements (6, 7) intended to create two substantially parallel cavities (16). , 17) for the circulation of the cooling air of said blade, said elements being separated from each other by a spacing intended to form an inter-cavity wall (22), a first element (6) being connected the remainder of the core by connecting elements (10) and a second element (7) being connected to a column base (8) for forming a cooling air supply duct (18),
caractérisé en ce que lesdits éléments de rattachement (10) sont localisés exclusivement aux extrémités du premier élément (6). characterized in that said connecting elements (10) are located exclusively at the ends of the first element (6).
2. Noyau selon la revendication 1 dans lequel ledit pied de colonne (8) est conformé de façon à diriger le flux d'air de refroidissement passant dans la canalisation d'alimentation (18) qu'il formera, exclusivement vers la cavité (17) formée par ledit second élément (7).  2. Core according to claim 1 wherein said column foot (8) is shaped to direct the flow of cooling air passing through the supply pipe (18) that it will form, exclusively to the cavity (17). formed by said second element (7).
3. Noyau selon l'une des revendications 1 ou 2 dans lequel le premier élément (6) est maintenu en place par au moins un pont (10) fixé sur un autre élément (7) dudit noyau, ledit pont ayant une forme cylindrique ou conique, de sorte que la canalisation qu'il formera pourra être obturée par un bouchon ayant une forme géométrique simple du type cylindrique, conique ou sphérique.  3. Core according to one of claims 1 or 2 wherein the first element (6) is held in place by at least one bridge (10) fixed on another element (7) of said core, said bridge having a cylindrical shape or conical, so that the pipe that it will form can be closed by a plug having a simple geometric shape of the cylindrical type, conical or spherical.
4. Noyau selon l'une des revendications 1 à 3 dans lequel le premier élément est une première colonnette (6) destinée à former une cavité de bord d'attaque (16) ou de bord de fuite, le second élément étant une seconde colonnette (7) positionnée parallèlement à la première colonnette.  4. Core according to one of claims 1 to 3 wherein the first element is a first pillar (6) intended to form a leading edge cavity (16) or trailing edge, the second element being a second pillar (7) positioned parallel to the first pillar.
5. Procédé de réalisation d'une aube de turbine creuse (1) pour turbomachine utilisant la technique de la fonderie à la cire perdue à l'aide d'un noyau (5) comportant au moins deux éléments adjacents (6, 7) destinés à créer deux cavités sensiblement parallèles (16, 17), séparés l'un de l'autre par un espacement destiné à former une paroi inter-cavités (22), ledit procédé comprenant, postérieurement à la fonderie et à l'élimination du noyau, une première étape de perçage de trous d'évacuation (23) dans la paroi délimitant une première cavité (16), suivie d'une seconde étape de perçage d'au moins un trou d'alimentation (21) dans la paroi inter-cavités (22) par l'intermédiaire d'un outil pénétrant dans la première cavité (16) par l'un des trous d'évacuation (23c), caractérisé en ce qu'il comporte en outre une étape ultérieure d'apport d'un revêtement sur la paroi délimitant la première cavité (16) de façon à réduire la section dudit trou d'évacuation (23c). 5. A method of producing a hollow turbine blade (1) for a turbomachine using the lost wax foundry technique using a core (5) comprising at least two adjacent elements (6, 7) intended creating two substantially parallel cavities (16, 17), separated from each other by a gap for forming an inter-cavity wall (22), said method comprising, subsequent to the foundry and removing the core, a first step of drilling outflow holes (23) in the wall defining a first cavity (16), followed by a second step of drilling at least one feed hole (21) in the inter-cavity wall (22) via a tool penetrating into the first cavity (16) through one of the discharge holes (23c), characterized in that it further comprises a subsequent step providing a coating on the wall defining the first cavity (16) so as to reduce the section of said discharge hole (23c).
PCT/FR2011/051363 2010-06-21 2011-06-15 Core for the manufacture of a turbine blade having impact-cooled leading edge cavity WO2011161357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054894A FR2961552B1 (en) 2010-06-21 2010-06-21 IMPACT COOLED CAVITY TURBINE TURBINE BLADE
FR1054894 2010-06-21

Publications (1)

Publication Number Publication Date
WO2011161357A1 true WO2011161357A1 (en) 2011-12-29

Family

ID=43549195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051363 WO2011161357A1 (en) 2010-06-21 2011-06-15 Core for the manufacture of a turbine blade having impact-cooled leading edge cavity

Country Status (2)

Country Link
FR (1) FR2961552B1 (en)
WO (1) WO2011161357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508025A (en) * 2012-02-22 2015-03-16 スネクマ Foundry core assembly for manufacturing turbomachine blades, blade manufacturing method, and related blades
US10422229B2 (en) 2017-03-21 2019-09-24 United Technologies Corporation Airfoil cooling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034128B1 (en) 2015-03-23 2017-04-14 Snecma CERAMIC CORE FOR MULTI-CAVITY TURBINE BLADE
FR3046736B1 (en) 2016-01-15 2021-04-23 Safran REFRACTORY CORE INCLUDING A MAIN BODY AND A SHELL
FR3047767B1 (en) * 2016-02-12 2019-05-31 Safran METHOD FOR FORMING DEDUSTING HOLES FOR TURBINE BLADE AND CERAMIC CORE THEREFOR
FR3137316A1 (en) 2022-06-29 2024-01-05 Safran Aircraft Engines Ceramic core for hollow turbine blade with external holes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249291A (en) * 1979-06-01 1981-02-10 General Electric Company Method for forming a liquid cooled airfoil for a gas turbine
US5271715A (en) * 1992-12-21 1993-12-21 United Technologies Corporation Cooled turbine blade
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
EP1147849A1 (en) * 2000-04-21 2001-10-24 General Electric Company Method for repositioning or repairing holes
US6340047B1 (en) * 1999-03-22 2002-01-22 General Electric Company Core tied cast airfoil
EP1517003A2 (en) * 2003-09-17 2005-03-23 General Electric Company Cooled turbomachine blade
EP1605136A2 (en) * 2004-05-27 2005-12-14 United Technologies Corporation Cooled rotor blade
FR2874186A1 (en) 2004-08-12 2006-02-17 Snecma Moteurs Sa PROCESS FOR THE PRODUCTION BY LOST WAX MOLDING OF PARTS COMPRISING AT LEAST ONE CAVITY.
EP1629938A2 (en) * 2004-08-26 2006-03-01 United Technologies Corporation Turbine engine component manufacture
FR2875425A1 (en) 2004-09-21 2006-03-24 Snecma Moteurs Sa PROCESS FOR MANUFACTURING A TURBOMACHINE BLADE, CORE ASSEMBLY FOR CARRYING OUT THE PROCESS
US20070041835A1 (en) * 2005-08-16 2007-02-22 Charbonneau Robert A Turbine blade including revised trailing edge cooling
EP1760267A2 (en) * 2005-08-31 2007-03-07 General Electric Company Cooled turbine airfoil
EP1935532A1 (en) * 2006-12-19 2008-06-25 General Electric Company Cluster bridged casting core

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249291A (en) * 1979-06-01 1981-02-10 General Electric Company Method for forming a liquid cooled airfoil for a gas turbine
US5271715A (en) * 1992-12-21 1993-12-21 United Technologies Corporation Cooled turbine blade
US5498133A (en) * 1995-06-06 1996-03-12 General Electric Company Pressure regulated film cooling
US6340047B1 (en) * 1999-03-22 2002-01-22 General Electric Company Core tied cast airfoil
EP1147849A1 (en) * 2000-04-21 2001-10-24 General Electric Company Method for repositioning or repairing holes
EP1517003A2 (en) * 2003-09-17 2005-03-23 General Electric Company Cooled turbomachine blade
EP1605136A2 (en) * 2004-05-27 2005-12-14 United Technologies Corporation Cooled rotor blade
FR2874186A1 (en) 2004-08-12 2006-02-17 Snecma Moteurs Sa PROCESS FOR THE PRODUCTION BY LOST WAX MOLDING OF PARTS COMPRISING AT LEAST ONE CAVITY.
EP1629938A2 (en) * 2004-08-26 2006-03-01 United Technologies Corporation Turbine engine component manufacture
FR2875425A1 (en) 2004-09-21 2006-03-24 Snecma Moteurs Sa PROCESS FOR MANUFACTURING A TURBOMACHINE BLADE, CORE ASSEMBLY FOR CARRYING OUT THE PROCESS
US20070041835A1 (en) * 2005-08-16 2007-02-22 Charbonneau Robert A Turbine blade including revised trailing edge cooling
EP1760267A2 (en) * 2005-08-31 2007-03-07 General Electric Company Cooled turbine airfoil
EP1935532A1 (en) * 2006-12-19 2008-06-25 General Electric Company Cluster bridged casting core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508025A (en) * 2012-02-22 2015-03-16 スネクマ Foundry core assembly for manufacturing turbomachine blades, blade manufacturing method, and related blades
US10422229B2 (en) 2017-03-21 2019-09-24 United Technologies Corporation Airfoil cooling

Also Published As

Publication number Publication date
FR2961552B1 (en) 2014-01-31
FR2961552A1 (en) 2011-12-23

Similar Documents

Publication Publication Date Title
WO2011161357A1 (en) Core for the manufacture of a turbine blade having impact-cooled leading edge cavity
CA2730584C (en) Method of manufacturing a blading component
EP1607158B1 (en) Process for preparing a turbine stator casing
CA2576709C (en) Manufacturing process for a turbine engine part that includes cooling air exhaust orifices
CA2954024C (en) Method for manufacturing a two-component blade for a gas turbine engine and blade obtained by such a method
EP3423213A1 (en) Core for casting a blade of a turbomachine
CA2981994A1 (en) Ceramic core for a multi-cavity turbine blade
FR3061051A1 (en) CLUSTER-SHAPED MODEL AND CARAPACE FOR OBTAINING AN INDEPENDENT HANDLING ACCESSORY FOR SHAPED PARTS AND ASSOCIATED METHOD
EP2254729A1 (en) Method for manufacturing hollow blade
FR2874186A1 (en) PROCESS FOR THE PRODUCTION BY LOST WAX MOLDING OF PARTS COMPRISING AT LEAST ONE CAVITY.
FR3037829A1 (en) CORE FOR MOLDING A DAWN WITH OVERLAPPED CAVITIES AND COMPRISING A DEDUSISHING HOLE THROUGH A CAVITY PARTLY
CA3014022C (en) Method for forming dust-removal holes for a turbine blade and associated ceramic core
CA2971289C (en) Method for manufacturing a turbine engine blade including a tip provided with a complex well
CA2887335A1 (en) Method for manufacturing at least one metal turbine engine part
FR3042725B1 (en) MOLD FOR MANUFACTURING A PIECE BY METAL CASTING AND EPITAXIAL GROWTH, AND METHOD THEREOF
FR2957828A1 (en) Producing turbine blade by lost wax casting, comprises producing ceramic core, wax and cast shell, and removing connection rods positioned to make holes in a blade wall for existing cooling air from internal cavities of the blade
WO2012123379A1 (en) Method of producing a steam turbine deflector
FR3020292A1 (en) MOLD FOR MONOCRYSTALLINE FOUNDRY
WO2021181038A1 (en) Turbomachine hollow blade
EP3712378A1 (en) Turbine engine blade comprising deflectors in an internal cooling cavity
FR3037972A1 (en) PROCESS SIMPLIFYING THE CORE USED FOR THE MANUFACTURE OF A TURBOMACHINE BLADE
FR2995305A1 (en) Manufacturing ceramic core for blade module of turboshaft engine e.g. turbojet, of aircraft, comprises manufacturing workpiece from slurry comprising ceramics and binder, extracting binder, and heating workpiece to obtain ceramic core
CA3029438C (en) Directional solidification cooling furnace and cooling process using such a furnace
EP3942157A1 (en) Turbine engine vane equipped with a cooling circuit and lost-wax method for manufacturing such a vane
FR2977510A1 (en) Casting core, useful for fabricating blade of high and low pressure turbomachine, comprises first elongated core member for forming internal cavity, and second core member for forming cavity of bath tub in extension of first member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11735504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11735504

Country of ref document: EP

Kind code of ref document: A1