WO2011160529A1 - 一种外环功率控制方法和装置 - Google Patents

一种外环功率控制方法和装置 Download PDF

Info

Publication number
WO2011160529A1
WO2011160529A1 PCT/CN2011/074673 CN2011074673W WO2011160529A1 WO 2011160529 A1 WO2011160529 A1 WO 2011160529A1 CN 2011074673 W CN2011074673 W CN 2011074673W WO 2011160529 A1 WO2011160529 A1 WO 2011160529A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
sirtarget
loop power
adjustment
outer loop
Prior art date
Application number
PCT/CN2011/074673
Other languages
English (en)
French (fr)
Inventor
陈桂显
徐海燕
路宏涛
舒睿俊
赵哲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11797560.7A priority Critical patent/EP2584711B1/en
Publication of WO2011160529A1 publication Critical patent/WO2011160529A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate

Definitions

  • the present invention relates to power control techniques, and more particularly to an outer loop power control method and apparatus in a WCDMA system. Background technique
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA systems use code division multiplexed multiple access communication. Users have a mutual interference relationship. The signals of distant users may be submerged in the signals of nearby users, that is, the near-far effect. In order to effectively overcome this near-far effect, and resist fading in the wireless environment, save the battery of the mobile terminal, increase the system capacity, and need to control the transmission power, so as to meet the requirements of normal communication without wasting the transmission power, the power control becomes WCDMA.
  • One of the core technologies One of the core technologies.
  • Power control mainly includes: inner loop power control and outer loop power control.
  • the outer loop power control dynamically adjusts the signal to interference ratio target according to the specified block error ratio (BLER, Block Error Ratio) / frame error rate (BER, Bit Error Rate) and bit error rate (BER). Value (SIRstarget, Signal to Interference Ratio target ). If the measured BLER/FER/BER is higher than the specified value, the SIRtarget is up-regulated; if the measured BLER/FER/BER is lower than the specified value, the SIRtargeto inner loop power control is down-regulated, and the transmit power is dynamically adjusted according to the size of the SIRtarget, so that The Signal to Interference Ratio (SIR) converges to SIRtarget.
  • BLER Block Error Ratio
  • BER Bit Error Rate
  • BER bit error rate
  • the industry's common practice in outer loop power control is: set the tolerance period AcP, the error threshold ENum, the up step UStep, and the down step DStep.
  • the SIRtarget is immediately adjusted to UStep, and the counter is Cleared; If the number of error blocks is less than or equal to ENum, then SStep is lowered by DStep at the end of the tolerance period and the counter is cleared.
  • This kind of strategy can raise the SIRtarget in time when the channel is degraded, but when the channel is improved, it takes a long time to measure the BLER, which leads to the phenomenon that the current power control generally has a rapid rise and fall.
  • the slow drop phenomenon is particularly severe in the following situations: (1) In order to maintain a good call rate, the SIRtarget is usually configured with a higher initial value; (2) When the terminal passes through the uplink signal restricted area, SIRtarget Will quickly climb to the maximum; (3) in the case of the channel from bad to better changes. Converging from these states to a normal operating point takes a long time, wasting terminal transmission power and cell capacity.
  • the target BER is set according to the measured BLER, and the measured specific BER
  • the BER of the physical control channel is compared with the BERtarget (Bit Error Rate target) 4 to determine whether to up- or down-regulate the SIRtarget. Due to the long measurement time of the BLER, the BERtarget will also decrease slowly, resulting in excessive SIRtarget jitter. Even when the channel is getting better, the BERtarget is too high, causing the SIRtarget to quickly fall below the normal operating point.
  • the BLER is deteriorated and the BERtarget is raised, so that the BERtarget cannot fall and the power control fails. Summary of the invention
  • An object of the present invention is to provide an outer loop power control method for solving a guaranteed service Accelerated convergence under the premise of quality SIRtargeto
  • Another object of the present invention is to provide an outer loop power control apparatus for solving the problem of accelerating convergence of SIRtarget under the premise of ensuring quality of service.
  • an outer loop power control method comprising the following steps:
  • the block error rate obtaining unit obtains the BLER of the data by decoding the received data and performing cyclic redundancy check.
  • the bit error rate obtaining unit obtains the BER of the dedicated physical control channel by determining the pilot signal
  • BLERtarget Block Error Ratio target
  • n consecutive BERs are less than or equal to BERtarget, perform a second adjustment, where n is a positive integer.
  • an outer loop power control apparatus including: a block error rate obtaining unit, which obtains a BLER of data by performing decoding and cyclic redundancy check on received data;
  • the bit error rate obtaining unit obtains a bit error rate BER of the dedicated physical control channel by determining the pilot signal
  • the signal-to-interference ratio target value first adjusting unit determines whether the BLER of the data is greater than BLERtarget, and performs a first adjustment on the SIRstarge according to the judgment result;
  • the signal-to-interference ratio target value second adjustment unit performs a second adjustment if n consecutive BERs are less than or equal to BERtarget, where n is a positive integer.
  • the present invention provides a method for accelerating the convergence of the signal to interference ratio under the premise of ensuring the quality of the service, which not only ensures the minimum signal to interference ratio required by the service, but also The convergence rate is also faster.
  • FIG. 2 is a schematic diagram of an outer loop power control structure provided by the present invention.
  • Figure 5 is a comparison diagram of the prior art and the method of the present invention provided in an embodiment of the present invention. detailed description
  • FIG. 1 shows a flow of an outer loop power control method provided by the present invention.
  • the outer loop power control method provided by the present invention specifically includes the following steps:
  • Step S101 The block error rate obtaining unit obtains the BLER of the data by performing decoding and cyclic redundancy check on the received data.
  • the base station performs the BLER acquisition process by receiving data decoding and Cyclic Redundancy Check (CRC), and sends the acquired BLER to the Radio Network Controller (RNC).
  • CRC Cyclic Redundancy Check
  • RNC Radio Network Controller
  • Step S102 The error rate obtaining unit obtains the BER of the dedicated physical control channel by determining the pilot signal.
  • the BER acquisition process is also completed on the NodeB side, and the BER sent by the NodeB end is sent to the RNC side.
  • Step S103 Determine whether the BLER of the data is greater than a BLERtarget, and perform a first adjustment on the SIRstarge according to the judgment result.
  • Presetting the UStep and DStep in the first adjustment if the BLER is greater than the BLERtarget, then adjusting the SIRtarget to UStep; if the BLER is less than or equal to the BLERtarget, SIRtarget downgrades DStep and clears the counter in RNC.
  • Step S104 If the values of the n consecutive BERs are less than or equal to the BERtarget, perform a second adjustment, where n is a positive integer.
  • the BER of the data is first filtered to determine whether the filtered BER is less than or equal to BERtarget. If the BER is greater than BERtarget, the counter is cleared. If the BER is less than or equal to BERtarget, the counter is incremented by one. When the count value in the counter reaches the preset maximum count value, the BERtarget is down-regulated and the counter is cleared. The DStep in the second adjustment is preset.
  • the adjusted SIRtarget must be greater than or equal to the set minimum SIRtarget and less than or equal to the maximum SIRtarget.
  • the SIRtarget adjustment unit of the inner loop power control uses the adjusted SIRtarget as the SIRtarget of the inner loop power control, and the transmission power control unit transmits the transmission power to the user equipment according to the comparison result of the SIRtarget and the SIR of the inner loop power control. control commands.
  • the apparatus includes a block error rate acquisition unit, a bit error rate acquisition unit, a filtering unit, a signal to interference ratio target value first adjustment unit, and a letter.
  • the dry ratio target value second adjustment unit, the inner-loop power control signal-to-interference ratio target value adjustment unit, and the transmission power control unit, the functions of each unit are as follows:
  • the block error rate acquisition unit obtains the BLER of the data by decoding the received data and performing cyclic redundancy check.
  • the unit is set in the NodeB, and the verified BLER is sent to the SIRtarget first adjustment unit.
  • the bit error rate obtaining unit obtains the BER of the dedicated physical control channel by determining the pilot signal.
  • the unit is set in the NodeB and sends the resulting BER to the filtering unit.
  • the filtering unit is configured to filter the BER in the new data block. If there is no new data block, it is considered to be the old BER and is not processed.
  • the signal-to-interference ratio target value first adjusting unit determines whether the BLER of the data is greater than the block error rate target value, and performs a first adjustment on the signal-to-interference ratio target value according to the judgment result.
  • UStep and DStep in the first adjustment are preset. If the BLER is greater than the BLERtarget, the SIRtarget is adjusted to UStep. If the BLER is less than or equal to the BLERtarget, the SIRtarget is lowered by DStep, and the counter in the RNC is cleared.
  • the signal-to-interference ratio target value second adjustment unit performs a second adjustment if n consecutive BERs are less than or equal to BERtarget, where n is a positive integer.
  • the BER of the data is first filtered to determine whether the filtered BER is less than or equal to BERtarget. If the BER is greater than BERtarget, the counter is cleared. If the BER is less than or equal to BERtarget, the counter is incremented by one. When the count value in the counter reaches the preset maximum count value, the BERtarget is down-regulated and the counter is cleared. The DStep in the second adjustment is preset.
  • the adjusted SIRtarget must be greater than or equal to the set minimum SIRtarget and less than or equal to the maximum SIRtarget.
  • the signal-to-interference ratio target adjustment unit of the inner loop power control uses the adjusted signal-to-interference ratio target value as the signal-to-interference ratio target value of the inner loop power control.
  • the transmission power control unit sends a transmission power control command to the user equipment according to the comparison result between the signal-to-interference ratio target value and the signal-to-interference ratio of the inner loop power control.
  • FIG. 3 shows a conventional outer loop power control process provided by the prior art.
  • the outer loop power specifically includes the following steps: Step S301, decoding the received data.
  • Step S302 performing cyclic redundancy check CRC on the decoded data to obtain a BLER.
  • Step S303 determining a size relationship between the BLER and the BLERtarget in the tolerance period.
  • Step S304 when the number of error blocks in the tolerance period is greater than ENum error blocks, the SIRtarget is adjusted upwards by UStep.
  • Step S305 When the number of error blocks in the tolerance period is less than or equal to ENum error blocks, the SIRtarget is lowered by DStep.
  • Step S306 performing pilot decision on the dedicated physical control channel.
  • step S307 the BER of the dedicated physical control channel is calculated and reported to the RNC along with the FP frame.
  • Step S409 The transmission power control command is sent to the user equipment according to the SIRtarget of the inner loop power control to transmit the transmission power control command.
  • FIG. 4 shows an outer loop power control process according to an embodiment of the present invention.
  • the outer loop power control of the present invention specifically includes the following steps:
  • Step S401 Decode the received data.
  • Step S402 performing cyclic redundancy check CRC on the decoded data to obtain a BLER.
  • Step S403 determining a size relationship between the BLER and the BLERtarget in the tolerance period.
  • Step S404 when the number of error blocks in the tolerance period is greater than ENum error blocks, the SIRtarget is adjusted upwards by UStep.
  • Step S405 when the number of error blocks in the tolerance period is less than the ENum error block, the SIRtarget is lowered by DStep, and the counter Count is cleared.
  • different AcP, ENum and initial SIRtarget can ensure the quality of service required by various services.
  • Step S406 performing pilot decision on the dedicated physical control channel.
  • Step S407 Calculate the BER of the dedicated physical control channel, and send it to the RNC along with the frame (FP, Frame Packet) frame.
  • FP Frame Packet
  • Step S408 the RNC judges the received BER. If there is no new data block, it is considered to be the old BER, and no processing is performed. If it is a new value, the filtering calculation is performed, and the filtering formula is: F n , where k value filter coefficient, the value range is 0, 1 , 2 , . 14; Mn is the BER of the current new received data, Fn is the filtered BER to be sought, and F ( n-1 ) is the last filtered BER.
  • Step S409 the RNC compares the filtered BER with a preset BERtarget.
  • Step S410 if BER > BERtarget, the Count is cleared.
  • Step S414 SIRtarget downgrades DStep and clears Count at the same time.
  • the adjusted SIRtarget must be greater than or equal to the minimum SIRtarget and less than or equal to the maximum SIRtarget.
  • Step S415 The adjusted SIRtarget is used as the SIRtarget of the inner loop power control.
  • Step S416 Send a transmission power control command to the user equipment by using the transmission power control according to the SIRSIRtarget of the inner loop power control.
  • Each parameter in the algorithm has a significant effect on the frequency of SIRtarget adjustment, where:
  • K The smaller the value, the smaller the BER value is affected by the accumulated measured values in the past.
  • MaxCount The larger the value, the harsher the condition, the less obvious the acceleration convergence effect; the smaller the value, the more relaxed the condition, the more obvious the acceleration convergence effect, but the greater the fluctuation.
  • Figure 5 shows a comparison of the prior art and the method of the present invention provided in an embodiment of the present invention, as shown in Figure 5.
  • the full-rate transmission is performed, and the transmission time interval TTI is 20ms, that is, a data block is generated in 20ms.
  • the parameters of the present invention are set to:
  • the initial SIRtarget of the Csl2.2k voice service is 5db, and the first 240 seconds is additive white Gaussian noise (AWGN, Additive White Gaussion Noise M).
  • AWGN additive white Gaussian noise
  • the next 360 seconds are switched back and forth between the AWGN channel and the case3 channel, and the switching interval is 60s.
  • the average values of the SIRtarget in the AWGN channel and the case3 channel are 1. ldb and 2. ldb, respectively.
  • the traditional algorithm dropped from 5db to 1.3db using 193s, down to 1. ldb used 200s, and the convergence from the case3 channel to the AWGN channel took about 50s.
  • the average SIRtarget for the entire process of testing was 2.22 db, and the average SIRtarget for the switching process after convergence was 1.75 db.
  • the invention is reduced from 5db to 1.3db using 8s, and down to 1. ldb uses 35s, and the convergence from the case3 channel to the AWGN channel uses 3 ⁇ 5s.
  • the average SIRtarget for the entire process of testing was 1.43 db, and the average SIRtarget for the switching process after convergence was 1.41 db.
  • the comparison shows that the initial convergence speed (converges to 1.3 db) of the present invention is 24 times that of the conventional algorithm, and can quickly adapt to channel changes.
  • the average SIRtarget of the whole call process is 0.79 db lower, and the average SIRtarget of the handover process after convergence is 0.34 db lower. This means that the transmission power of the present invention can be saved by 0.79 db during the talk time and the cell capacity can be increased by 19.9%.
  • the present invention has the following technical effects: 1.
  • the quality of the service can be well guaranteed.
  • the traditional outer loop power control can quickly increase the SIRtarget to ensure the minimum SIR required by the service.
  • the filter coefficient k, BERtarget and count length MaxCount are set. They are all parameters that can be adjusted. Different BERtargets can be set according to specific services.
  • the convergence of the SIRtarget is assisted by the bit error rate of the dedicated physical control channel. 4, NodeB end does not need to make any changes, only A small amount of calculation needs to be added to the RNC side. 5.
  • the convergence speed of the present invention is several times that of the conventional technology.
  • the traditional algorithm uses BLER as the convergence basis.
  • the convergence speed of the voice service is typically 5 seconds.
  • the convergence of the present invention assists the BER of the dedicated physical control channel, and the convergence speed is one step of several tens to several hundreds of milliseconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

一种外环功率控制方法和装置 技术领域
本发明涉及功率控制技术, 特别涉及一种 WCDMA系统中的外环功率 控制方法和装置。 背景技术
随着信息技术的发展, 移动通信在人们的生活中变得不可或缺。 宽带 码分多址 (WCDMA, Wideband Code Division Multiple Access ) 以其成熟 的技术和灵活的架构, 平滑地演进成为 3G标准中最重要的技术之一。
WCDMA 系统使用码分复用的多址通信方式, 用户之间是一种互相干 扰的关系, 远处用户的信号可能淹没于近处用户的信号中, 即出现远近效 应。 为了有效克服这种远近效应, 并且抵抗无线环境中的衰落, 节约移动 终端的电池, 提高系统容量, 需要控制发射功率, 从而实现刚好满足正常 通信的要求而又不浪费发射功率,功率控制成为 WCDMA的核心技术之一。
功率控制主要包括: 内环功率控制和外环功率控制。 外环功率控制根 据规定的误块率( BLER, Block Error Ratio )/误帧率( FER, Frame Error Rate ) /误码率( BER, Bit Error Rate )误码率,动态地调整信干比目标值( SIRstarget, Signal to Interference Ratio target )。如果测得的 BLER/FER/BER高于规定值, 则上调 SIRtarget ; 如果测得的 BLER/FER/BER 低于规定值, 则下调 SIRtargeto 内环功率控制根据 SIRtarget的大小, 动态调整发射功率, 使得 信干比 ( SIR, Signal to Interference Ratio )收敛于 SIRtarget。
目前, 业界在外环功率控制的普遍做法是: 设定容忍周期 AcP, 错误 门限 ENum, 上调步长 UStep, 下调步长 DStep。 当接收的数据块在容忍周 期内出现大于 ENum个误块时, 立刻将 SIRtarget上调 UStep, 并将计数器 清零; 如果误块数小于等于 ENum, 则在容忍周期结束时将 SIRtarget下调 DStep,并将计数器清零。这一种策略可以在信道恶化时及时上调 SIRtarget, 但当信道改善时, 需要较长的时间来测量 BLER,从而导致目前功率控制普 遍存在快升慢降的现象。
慢降现象在以下几种情况影响尤其严重: (1 )为了保持较好的呼通率, 通常会给 SIRtarget配置较高的初始值; (2 ) 当终端穿过上行信号受限区域 时, SIRtarget会迅速攀升到最大; ( 3 )在信道从恶劣到较好变化的情况下。 从这些状态收敛到正常的工作点需要较长的时间, 浪费了终端发射功率和 小区容量。
针对这种快生慢降的现象, 目前有许多专利技术, 但还是有许多不足。 公开号为 CN1486100A、公开日期为 2004年 3月 31 日、发明名称为《一 种基于误码率测量的自适应外环功率控制方法和系统》 的中国专利技术提 出了以下技术方案: 根据业务要求的 BLER值转化为 BER值, 用测得的 BER值调整 SIRtarget, 可以加快 SIRtarget的收敛, 但由于不同信道下的 BER相差较大, 难以保证在不同信道下的业务质量。
公开号为 CN1691533A、公开日期为 2005年 11月 2日、发明名称为《一 种功率控制方法》 的中国专利技术提出了以下技术方案: 根据测量到的 BLER设定目标 BER, 由测量到的专用物理控制信道的 BER与误码率目标 值 ( BERtarget , Bit Error Rate target ) 4乍比较,以决定上调或下调 SIRtarget。 由于 BLER的测量时间较长,同样会导致 BERtarget下降较慢,导致 SIRtarget 抖动过大。 甚至在信道由差变好时, BERtarget过高, 导致 SIRtarget快速降 到正常工作点以下, 出现 BLER变坏而有抬升 BERtarget, 使 BERtarget不 能下降, 功控失效。 发明内容
本发明的目的在于提供一种外环功率控制方法, 用于解决在保证业务 质量的前提下加速收敛 SIRtargeto
本发明的另一目的在于提供一种外环功率控制装置, 用于解决在保证 业务质量的前提下加速收敛 SIRtarget。
根据本发明的一个方面, 提供了一种外环功率控制方法, 包括以下步 骤:
A、误块率获取单元通过对接收数据进行译码和循环冗余校验得到数据 的 BLER;
B、 误码率获取单元通过对导频信号的判决得到专用物理控制信道的 BER;
C、判断所述数据的 BLER是否大于误块率目标值( BLERtarget, Block Error Ratio target ) , 并根据判断结果对 SIRstarge进行第一调整;
D、 若连续 n个所述 BER小于或等于 BERtarget, 则进行第二调整, 其 中, n为正整数。
根据本发明的另一方面, 提供了一种外环功率控制装置, 包括: 误块率获取单元, 通过对接收数据进行译码和循环冗余校验得到数据 的 BLER;
误码率获取单元, 通过对导频信号的判决得到专用物理控制信道的误 码率 BER;
信干比目标值第一调整单元, 判断所述数据的 BLER 是否大于 BLERtarget , 并根据判断结果对 SIRstarge进行第一调整; 以及
信干比目标值第二调整单元, 若连续 n 个所述 BER 小于或等于 BERtarget, 则进行第二调整, 其中, n为正整数。
与现有技术相比较, 本发明的有益效果在于: 本发明提供了一种在保 证业务质量的前提下加速收敛信干比的方法, 不仅可以保证业务所需的最 小信干比, 而且信干比的收敛速度也较快。 附图说明
图 1是本发明提供的外环功率控制方法流程图;
图 2是本发明提供的外环功率控制结构示意图;
图 3是现有技术提供的传统外环功率控制流程图;
图 4是本发明实施例提供的外环功率控制流程图;
图 5是本发明实施例提供的现有技术和本发明方法在真实环境中测试 效果的对比图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
图 1显示了本发明提供的外环功率控制方法流程, 如图 1所示, 本发 明提供的外环功率控制方法具体包括以下步骤:
步骤 S101 , 误块率获取单元通过对接收数据进行译码和循环冗余校验 得到数据的 BLER。
基站 (NodeB ) 端通过接收数据译码和循环冗余校验(CRC , Cyclic Redundancy Check ) 两个步骤完成 BLER的获取过程, 将获取的 BLER发 送至无线网络控制器(RNC, Radio Network Controller )端。
步骤 S102 , 误码率获取单元通过对导频信号的判决得到专用物理控制 信道的 BER。
BER的获取过程也在 NodeB端完成, NodeB端将得到的 BER发送 RNC 端。
步骤 S103 , 判断所述数据的 BLER是否大于 BLERtarget, 并根据判断 结果对 SIRstarge进行第一调整。
预先设定好第一调整中的 UStep和 DStep, 若 BLER大于 BLERtarget, 则将 SIRtarget上调 UStep; 若所述 BLER小于或等于 BLERtarget, 则将 SIRtarget下调 DStep, 并将 RNC中的计数器清零。
步骤 S104, 若连续 n个所述 BER的值小于或等于 BERtarget, 则进行 第二调整, 其中, n为正整数。
在有新的数据块到来时,先对数据的 BER进行滤波,判断滤波后的 BER 是否小于等于 BERtarget,若 BER大于 BERtarget,则将计数器清零,若 BER 小于等于 BERtarget, 则计数器加 1 , 若计数器中的计数值达到预先设定的 最大计数值, 则对 BERtarget进行下调操作, 并将计数器清零, 其中, 第二 调整中的 DStep为预先设定的。
若第一调整中的下调操作和第二调整刚好同时触发, 则只进行第一调 整。
以上 SIRtarget的调整过程中,调整后的 SIRtarget必须大于等于设定的 最小 SIRtarget, 且小于等于最大 SIRtarget。
SIRtarget调整之后, 内环功率控制的 SIRtarget调整单元将调整后的 SIRtarget作为内环功率控制的 SIRtarget, 再由传输功率控制单元根据内环 功率控制的 SIRtarget和 SIR的比较结果向用户设备下发传输功率控制命令。
图 2显示了本发明提供的外环功率控制结构示意, 如图 2所示, 该装 置包括误块率获取单元、 误码率获取单元、 滤波单元、 信干比目标值第一 调整单元、 信干比目标值第二调整单元、 内环功率控制的信干比目标值调 整单元和传输功率控制单元, 各单元的功能如下:
误块率获取单元, 通过对接收数据进行译码和循环冗余校验得到数据 的 BLER。
该单元设置在 NodeB中,将校验得到的 BLER发送至 SIRtarget第一调 整单元。
误码率获取单元, 通过对导频信号的判决得到专用物理控制信道的 BER。 该单元设置在 NodeB中, 将得到的 BER发送至滤波单元。 滤波单元, 用于对新的数据块中的 BER进行滤波处理, 若没有新的数 据块, 则认为是旧的 BER, 不作处理。
信干比目标值第一调整单元, 判断所述数据的 BLER是否大于误块率 目标值, 并根据判断结果对信干比目标值进行第一调整。
预先设定好第一调整中的 UStep和 DStep, 若 BLER大于 BLERtarget, 则将 SIRtarget上调 UStep; 若所述 BLER小于或等于 BLERtarget, 则将 SIRtarget下调 DStep, 并将 RNC中的计数器清零。
信干比目标值第二调整单元, 若连续 n 个所述 BER 小于或等于 BERtarget, 则进行第二调整, 其中, n为正整数。
在有新的数据块到来时,先对数据的 BER进行滤波,判断滤波后的 BER 是否小于等于 BERtarget,若 BER大于 BERtarget,则将计数器清零,若 BER 小于等于 BERtarget, 则计数器加 1 , 若计数器中的计数值达到预先设定的 最大计数值, 则对 BERtarget进行下调操作, 并将计数器清零, 其中, 第二 调整中的 DStep为预先设定的。
若第一调整中的下调操作和第二调整刚好同时触发, 则只进行第一调 整。
以上 SIRtarget的调整过程中,调整后的 SIRtarget必须大于等于设定的 最小 SIRtarget, 且小于等于最大 SIRtarget。
内环功率控制的信干比目标值调整单元, 将调整后的信干比目标值作 为内环功率控制的信干比目标值。
传输功率控制单元, 根据内环功率控制的信干比目标值和信干比的比 较结果给用户设备下发传输功率控制命令。
图 3显示了现有技术提供的传统外环功率控制流程, 如图 3所示, 外 环功率具体包括以下步骤: 步骤 S301 , 对接收数据进行译码。
步骤 S302, 对译码后的数据进行循环冗余校验 CRC, 得到 BLER。 步骤 S303 , 判断容忍周期内 BLER与 BLERtarget的大小关系。
在此之前, 设定容忍周期 AcP, 错误门限 ENum, 上调步长 DStep, 下 调步长 DStep。
步骤 S304,在容忍周期内出现误块数大于 ENum个误块时,将 SIRtarget 上调 UStep。
步骤 S305 , 在容忍周期内出现误块数小于或等于 ENum个误块时, 将 SIRtarget下调 DStep。
步骤 S306, 对专用物理控制信道进行导频判决。
步骤 S307,计算获得专用物理控制信道的 BER,并随 FP帧上报给 RNC。 步骤 S308 , 将调整后的 SIRtarget作为内环功率控制的 SIRtarget。
步骤 S409,根据内环功率控制的 SIRtarget通过传输功率控制给用户设 备下发传输功率控制命令。
图 4显示了本发明实施例提供的外环功率控制流程, 如图 4所示, 本 发明的外环功率控制具体包括以下步骤:
步骤 S401 , 对接收数据进行译码。
步骤 S402, 对译码后的数据进行循环冗余校验 CRC, 得到 BLER。 步骤 S403 , 判断容忍周期内 BLER与 BLERtarget的大小关系。
在此之前, 设定容忍周期 AcP, 错误门限 ENum, 上调步长 DStep, 下 调步长 DStep。
步骤 S404,在容忍周期内出现误块数大于 ENum个误块时,将 SIRtarget 上调 UStep。
步骤 S405 ,在容忍周期内出现误块数小于 ENum个误块时,将 SIRtarget 下调 DStep, 并将计数器 Count清零。 根据不同的业务设置不同的 AcP、 ENum和初始 SIRtarget, 可以保证 各种业务所需要的业务质量。
步骤 S406, 对专用物理控制信道进行导频判决。
步骤 S407 , 计算获得专用物理控制信道的 BER, 并随帧包(FP, Frame Packet ) 帧上 4艮给 RNC。
步骤 S408 , RNC对接收到的 BER进行判断, 如果没有新的数据块, 则认为是旧的 BER, 不作处理, 如果是新值则进行滤波计算, 滤波公式为: Fn
Figure imgf000010_0001
, 其中, k值滤波系数, 取值 范围 0, 1 , 2 , . 14; Mn为当前新接收数据的 BER, Fn为滤波后的待求 BER, F ( n-1 )为上一滤波后的 BER。
步骤 S409 , RNC将滤波后的 BER与预设的 BERtarget比较。
步骤 S410, 如果 BER > BERtarget, 则将 Count清零。
步骤 S411 , 如果 BER <= BERtarget, 则计数器 Count加 1。
步骤 S412 , 判断 Count是否等于预先设定的最大计数值 MaxCount。 如果 Count != MaxCount, 则将 Count清零, 如果 Count = MaxCount, 则进 行步骤 S413。
步骤 S413 , 判断此时是否 BLER触发 SIRtarget下调。 如果 BLER触发 下调,则只进行 BLER触发的 SIRtarget下调操作,如果 BLER未触发下调, 则进行步骤 S414。
步骤 S414, SIRtarget下调 DStep, 同时将 Count清零。
在上面的 SIRtarget调整过程中,调整后的 SIRtarget必须大于等于最小 SIRtarget , 且小于等于最大 SIRtarget。
步骤 S415 , 将调整后的 SIRtarget作为内环功率控制的 SIRtarget。
步骤 S416 , 根据内环功率控制的 SIRSIRtarget通过传输功率控制向用 户设备下发传输功率控制命令。 算法中的各个参数会对 SIRtarget调整的频率有显著的影响, 其中:
K: 取值越小, BER值受过去累计测量值的影响越小, BER波形毛刺 越多, 如 k=0, 则 a=l, 那么 F (n) =M (n); 取值越大, QE值受过去累 计测量值的影响越大, BER波形稳定柔和, 如 k=14, 那么 F (n) =0.99F (n-1 ) +0.01M (n)。
MaxCount: 取值越大, 条件越苛刻, 加速收敛效果越不明显; 取值越 小, 条件越宽松, 加速收敛效果越明显, 但造成波动越大。
BERtarget: 取值越大, 越容易触发 SIRtarget 的下调, 如 BERtarget=100%, 则每次都触发; 取值越小, 越不容易触发 SIRtarget的下 调, 如取 BERtarget=0, 则每次都不触发。
图 5显示了本发明实施例提供的现有技术和本发明方法在真实环境中 测试效果的对比, 如图 5所示。
以 csl2.2k语音业务为例, 满速率发送, 传输时间间隔 TTI为 20ms, 即 20ms产生一个数据块。 本发明的参数设置为:
( 1 )传统算法:
容忍周期: 250
错误门限: 2
上调步长: 0.3db
下调步长: O.ldb
(2)本发明的 BER部分:
滤波系数: k=3
计数长度: MaxCount=5
目标 BER: BERtarget=4.5%
下调步长: O.ldb
从上面的参数可知: 传统算法下调一个步长的最小时间为 250 X 20ms=5s, 本发明下调一个步长的最小时间为 5 x 20ms=0.1s, 单就下调的最 小时间, 本发明下调速度的是传统算法的 50倍。 由于还必须满足连续 5个 BER值小于等于 BERtarget , 收敛速度会比理论值小的多。
Csl2.2k语音业务的初始 SIRtarget配置为 5db,开始 240秒为加性高斯 白噪声( AWGN , Additive White Gaussion Noise M言道,后面 360秒在 AWGN 信道和 case3信道中来回切换, 切换间隔为 60s。 测试中, 为了达到 0.8%的 BLER, SIRtarget在 AWGN信道和 case3信道的平均值分别为 1. ldb和 2. ldb。
从图 5分析可见:
传统算法从 5db下降到 1.3db使用了 193s, 下降到 1. ldb使用了 200s, 从 case3信道到 AWGN信道的收敛使用了约 50s。在测试的整个过程的平均 SIRtarget为 2.22db, 在收敛后的切换过程的平均 SIRtarget为 1.75db。
本发明从 5db下降到 1.3db使用 8s, 下降到 1. ldb使用了 35s,从 case3 信道下到 AWGN信道下的收敛使用了 3~5s。 在测试的整个过程的平均 SIRtarget为 1.43db, 在收敛后的切换过程的平均 SIRtarget为 1.41db。
对比可见: 本发明的初始收敛速度(收敛到 1.3db )为传统算法的 24 倍, 且能很快适应信道的变化。 本发明相比于传统技术在整个通话过程的 平均 SIRtarget低 0.79db, 在收敛后的切换过程的平均 SIRtarget低 0.34db。 这就意味着本发明的在通话时间内的发射功率可以节约 0.79db, 小区容量 提高 19.9%。
综上所述, 本发明具有以下技术效果: 1、 可以很好地保证业务质量。 当信道出现恶化时, 传统的外环功率控制可以快速提升 SIRtarget, 保证业 务所需要的最小 SIR。 2、 可以最大可能的节约发射功率, 提升小区容量。 设置了滤波系数 k , BERtarget和计数长度 MaxCount ,他们都是可以调整的 参数, 根据具体业务可以设置不同的 BERtarget。 3、 釆用专用物理控制信 道的误码率辅助 SIRtarget的收敛。 4、 NodeB端不需要进行任何改动, 仅 需要在 RNC端添加少量计算。 5、 本发明的收敛速度是传统技术的几十倍。 传统算法以 BLER作为收敛依据, 语音业务的收敛速度典型为 5秒一个步 长; 本发明的收敛辅助了专用物理控制信道的 BER, 收敛速度为几十到几 百毫秒一个步长。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本领域技 术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原理所 作的修改, 都应当理解为落入本发明的保护范围。

Claims

权利要求书
1、 一种外环功率控制方法, 其特征在于, 所述方法包括:
通过对接收数据进行译码和循环冗余校验得到数据的误块率 BLER; 判断所述数据的 BLER是否大于误块率目标值 BLERtarget, 并根据判 断结果对信干比目标值 SIRtarget进行第一调整。
2、 根据权利要求 1所述的一种外环功率控制方法, 其特征在于, 所述 方法还包括:
通过对导频信号的判决得到专用物理控制信道的误码率 BER;
若连续 n个所述 BER的值小于或等于误码率目标值 BERtarget, 则进 行第二调整, 其中, n为正整数。
3、 根据权利要求 1或 2所述的一种外环功率控制方法, 其特征在于, 所述第一调整包括上调 SIRtarget或下调 SIRtarget。
4、 根据权利要求 3所述的一种外环功率控制方法, 其特征在于, 所述 第二调整是下调 SIRtarget。
5、 根据权利要求 4所述的一种外环功率控制方法, 其特征在于, 若所 述 BLER大于 BLERtarget, 则将 SIRtarget根据第一调整上调 SIRtarget; 以 及若所述 BLER小于或等于 BLERtarget, 则将 SIRtarget根据第一调整下调 SIRtarget„
6、 根据权利要求 2所述的一种外环功率控制方法, 其特征在于, 在接 收到新的数据块时执行是否连续 n个所述 BER的值小于或等于误码率目标 值 BERtarget的判决; 以及, 在接收到新的数据块时对其 BER进行滤波处 理。
7、 根据权利要求 5所述的一种外环功率控制方法, 其特征在于, 连续 n个所述 BER 的值小于或等于 BERtarget, 在未触发第一调整中的下调 SIRtarget时, 进行第二调整。
8、 根据权利要求 2所述的一种外环功率控制方法, 其特征在于, 进行 第二调整之后, 所述方法还包括:
将调整后的 SIRtarget作为内环功率控制的 SIRtarget; 以及
通过传输功率控制给用户设备下发传输功率控制命令。
9、 根据权利要求 5所述的一种外环功率控制方法, 其特征在于, 所述 上调 SIRtarget和下调 SIRtarget均以步长为单位进行调整。
10、 一种外环功率控制装置, 其特征在于, 包括:
误块率获取单元, 通过对接收数据进行译码和循环冗余校验得到数据 的误块率 BLER;
信干比目标值第一调整单元, 判断所述数据的 BLER是否大于误块率 目标值 BLERtarget, 并根据判断结果对信干比目标值 SIRtarget进行第一调 整。
11、 根据权利要求 10所述的一种外环功率控制装置, 其特征在于, 该 装置还包括:
误码率获取单元, 通过对导频信号的判决得到专用物理控制信道的误 码率 BER;
信干比目标值第二调整单元, 若连续 n个所述 BER小于或等于误码率 目标值 BERtarget, 则进行第二调整, 其中, n为正整数。
12、 根据权利要求 11所述的一种外环功率控制装置, 其特征在于, 该 装置还包括:
内环功率控制的 SIRtarget调整单元,将调整后的 SIRtarget作为内环功 率控制的 SIRtarget; 以及
传输功率控制单元, 根据所述内环功率控制的 SIRtarget和信干比 SIR 的比较结果给用户设备下发传输功率控制命令。
13、 根据权利要求 12所述的一种外环功率控制装置, 其特征在于, 该 装置还包括滤波单元, 用于在判断所述数据的 BER是否大于 BERtarget之 前, 对 BER进行滤波处理。
14、 根据权利要求 11所述的一种外环功率控制装置, 其特征在于, 所 述误块率获取单元与误码率获取单元设置在基站 NodeB端, 所述信干比目 标值第一调整单元和信干比目标值第二调整单元设置在无线网络控制器
RNC端。
PCT/CN2011/074673 2010-06-21 2011-05-25 一种外环功率控制方法和装置 WO2011160529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11797560.7A EP2584711B1 (en) 2010-06-21 2011-05-25 Outer loop power control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010205871.9 2010-06-21
CN201010205871.9A CN102291765B (zh) 2010-06-21 2010-06-21 一种外环功率控制方法和装置

Publications (1)

Publication Number Publication Date
WO2011160529A1 true WO2011160529A1 (zh) 2011-12-29

Family

ID=45337815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074673 WO2011160529A1 (zh) 2010-06-21 2011-05-25 一种外环功率控制方法和装置

Country Status (3)

Country Link
EP (1) EP2584711B1 (zh)
CN (1) CN102291765B (zh)
WO (1) WO2011160529A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297179B (zh) * 2012-02-29 2016-06-22 展讯通信(上海)有限公司 一种生成信道质量指示的方法和装置
CN102802248B (zh) * 2012-08-13 2015-08-05 天津三星通信技术研究有限公司 外环功率控制方法及设备
CN103841630B (zh) * 2012-11-26 2018-09-14 南京中兴软件有限责任公司 一种控制用户设备功率的方法及装置
WO2014205655A1 (zh) * 2013-06-25 2014-12-31 华为技术有限公司 外环功率控制方法、装置及设备
EP3002886B1 (en) 2013-06-29 2018-06-06 Huawei Technologies Co., Ltd. Power control method, apparatus and system
EP3557793B1 (en) 2017-01-25 2020-12-02 Huawei Technologies Co., Ltd. Outer loop link adaptation adjustment method and apparatus
CN113549757B (zh) * 2020-04-24 2023-04-28 中冶长天国际工程有限责任公司 一种圆盘造球机的成球率调节方法及装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423439A (zh) * 2001-12-05 2003-06-11 华为技术有限公司 码分多址系统中一种外环功率控制方法
CN1486100A (zh) 2002-09-26 2004-03-31 Ut斯达康(中国)有限公司 一种基于误码率测量的自适应外环功率控制方法和系统
CN1499755A (zh) * 2002-11-08 2004-05-26 深圳市中兴通讯股份有限公司上海第二 优化的外环功率控制方法和装置
CN1684384A (zh) * 2004-04-12 2005-10-19 日本电气株式会社 无线电通信终端和发射功率控制方法
CN1691533A (zh) 2004-04-21 2005-11-02 华为技术有限公司 一种功率控制方法
CN1722633A (zh) * 2004-07-13 2006-01-18 华为技术有限公司 Wcdma系统组合业务外环功率控制方法
CN1815911A (zh) * 2005-02-05 2006-08-09 华为技术有限公司 一种外环功率控制的动态调整方法
CN1949676A (zh) * 2005-10-14 2007-04-18 大唐移动通信设备有限公司 组合业务的cdma系统中的外环功率控制方法及其装置
CN1993897A (zh) * 2004-03-10 2007-07-04 美商内数位科技公司 无线通信系统的外环功率控制中目标信干比的调节
CN101068121A (zh) * 2007-06-04 2007-11-07 华为技术有限公司 一种外环功率控制中信干比目标值的调整方法和装置
CN101170326A (zh) * 2006-10-25 2008-04-30 大唐移动通信设备有限公司 一种外环功率控制方法及系统
CN101207421A (zh) * 2006-12-18 2008-06-25 株式会社Ntt都科摩 移动通信终端及发送功率控制方法
CN101345558A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 控制上行外环功率的方法和装置
CN101640556A (zh) * 2008-07-29 2010-02-03 鼎桥通信技术有限公司 一种功率控制的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407233B (en) * 2003-10-16 2005-12-14 Motorola Inc Power control method and apparatus
JP4619192B2 (ja) * 2005-05-10 2011-01-26 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法および装置
JP4786709B2 (ja) * 2006-04-11 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法および移動体端末装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423439A (zh) * 2001-12-05 2003-06-11 华为技术有限公司 码分多址系统中一种外环功率控制方法
CN1486100A (zh) 2002-09-26 2004-03-31 Ut斯达康(中国)有限公司 一种基于误码率测量的自适应外环功率控制方法和系统
CN1499755A (zh) * 2002-11-08 2004-05-26 深圳市中兴通讯股份有限公司上海第二 优化的外环功率控制方法和装置
CN1993897A (zh) * 2004-03-10 2007-07-04 美商内数位科技公司 无线通信系统的外环功率控制中目标信干比的调节
CN1684384A (zh) * 2004-04-12 2005-10-19 日本电气株式会社 无线电通信终端和发射功率控制方法
CN1691533A (zh) 2004-04-21 2005-11-02 华为技术有限公司 一种功率控制方法
CN1722633A (zh) * 2004-07-13 2006-01-18 华为技术有限公司 Wcdma系统组合业务外环功率控制方法
CN1815911A (zh) * 2005-02-05 2006-08-09 华为技术有限公司 一种外环功率控制的动态调整方法
CN1949676A (zh) * 2005-10-14 2007-04-18 大唐移动通信设备有限公司 组合业务的cdma系统中的外环功率控制方法及其装置
CN101170326A (zh) * 2006-10-25 2008-04-30 大唐移动通信设备有限公司 一种外环功率控制方法及系统
CN101207421A (zh) * 2006-12-18 2008-06-25 株式会社Ntt都科摩 移动通信终端及发送功率控制方法
CN101068121A (zh) * 2007-06-04 2007-11-07 华为技术有限公司 一种外环功率控制中信干比目标值的调整方法和装置
CN101345558A (zh) * 2007-07-09 2009-01-14 大唐移动通信设备有限公司 控制上行外环功率的方法和装置
CN101640556A (zh) * 2008-07-29 2010-02-03 鼎桥通信技术有限公司 一种功率控制的方法和装置

Also Published As

Publication number Publication date
EP2584711A1 (en) 2013-04-24
CN102291765A (zh) 2011-12-21
EP2584711A4 (en) 2015-09-30
CN102291765B (zh) 2016-03-30
EP2584711B1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2011160529A1 (zh) 一种外环功率控制方法和装置
KR101395582B1 (ko) 역방향 링크 전력 제어의 방법들
KR101123571B1 (ko) 다운링크 송신 전력의 검출을 이용하여 다이나믹 레인지를제한하는 다운링크 전력 제어 방법
WO2004059872A1 (fr) Procede de regulation de puissance dans un systeme de communication mobile amrc large bande
JP4230288B2 (ja) 送信電力制御方法及び移動局
JP5336515B2 (ja) Tpcコマンドの送信方法
US8265681B2 (en) Outer loop transmit power control in wireless communication systems
WO2007050926A2 (en) Method and apparatus for estimating reverse link loading in a wireless communication system
JP5092745B2 (ja) 通信制御方法及び通信制御システム並びにその制御プログラム
EP1145462A2 (en) Method and apparatus for reverse link loading estimation
US7929480B2 (en) Quality indicator bit (QIB) generation in wireless communication systems
JP2006101509A (ja) 無線ネットワークにおける伝送電力を制御する方法および装置
JP2005006190A5 (zh)
CN1842219A (zh) 用于对不遵循功率控制命令的移动台进行检测的方法
WO2004114551A1 (ja) 送信電力制御方法及び装置
CN1225857C (zh) 一种移动通信系统中速率控制方法
JP2009505540A (ja) 無線通信方式のためのアウターループ電力制御方法および装置
CN1225858C (zh) 一种移动通信系统中速率控制方法
CN100367685C (zh) 多业务情况下提高外环功率控制性能的方法
WO2006081711A1 (fr) Méthode de contrôle de mesure entre systèmes et mesure entre fréquences
JP5710790B2 (ja) 信号特性に基づく信号対干渉比目標の調整
JP2003318820A (ja) パワー制御方法および通信システム
WO2017063483A1 (zh) 一种上行发送功率控制方法和装置
JP2009017587A (ja) 送信電力制御方法
EP3011780B1 (en) Power control method and mobile communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011797560

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE