WO2011160446A1 - 一种水电解装置 - Google Patents

一种水电解装置 Download PDF

Info

Publication number
WO2011160446A1
WO2011160446A1 PCT/CN2011/001061 CN2011001061W WO2011160446A1 WO 2011160446 A1 WO2011160446 A1 WO 2011160446A1 CN 2011001061 W CN2011001061 W CN 2011001061W WO 2011160446 A1 WO2011160446 A1 WO 2011160446A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ozone
plate
cathode
hydrogen
Prior art date
Application number
PCT/CN2011/001061
Other languages
English (en)
French (fr)
Inventor
刘迅
吴弢
Original Assignee
Liu Xun
Wu Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Xun, Wu Tao filed Critical Liu Xun
Priority to JP2013600027U priority Critical patent/JP3185328U/ja
Publication of WO2011160446A1 publication Critical patent/WO2011160446A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • Ozone is a strong oxidant, which has strong functions of instant sterilization, sterilization, disinfection, deodorization, decolorization, and preservation, and can also decompose organic matter that is difficult to decompose.
  • infectious diseases, viral diseases are popular, environmental fields that control air pollution, water pollution, industrial fields such as food and pharmaceuticals, washing in the electronics industry, disinfection of tap water and drinking water, industrial waste water, nuclear waste, etc.
  • the application of difficult chemical decomposition, its application has been very important.
  • ozone which is mainly used for disinfection and purification of air, decomposition of medium gas, decomposition and discharge of industrial exhaust gas, and the like. Ultra-pure ozone is widely used in the pharmaceutical industry, food industry, and medical fields.
  • Ultraviolet low-pressure mercury lamp method using natural air as raw material The ozone concentration extracted by this method is very low, and it is mostly used for air disinfection, and the utilization value of ozone water is not high.
  • High-frequency discharge method using pure oxygen as raw material The ozone concentration extracted by this method is higher than that of the ultraviolet low-pressure mercury lamp tube method. Both ozone utilization and ozone water utilization are popular methods. However, since this method simultaneously produces nitrogen oxides, which are carcinogenic substances, the application of this method in the field of pure water and drinking water is greatly limited.
  • Electrolysis using pure water as raw material uses water as a raw material to separate hydrogen and oxygen under the catalytic catalysis of P-Pb0 2 as the anode catalyst and platinum (Pt/c ) as the cathode catalyst.
  • Anode In the case of o 2 and o 3 , the concentration of ozone extracted by the cathode generation method is very high, but it is difficult to be popularized because of high energy consumption, high price, and difficulty in controlling the product.
  • the literature the research on water-electrolytic ozone generator began in 1886. After long-term research and progress, the SPE-type electrolytic ozone generator was introduced in 1985.
  • the basic structure of this type of ozone generator is ⁇ - ⁇ ) 2 as the anode catalytic layer, and the cathode catalytic layer with platinum (Pt/c) as a catalyst, sandwiching a solid polymer electrolyte membrane (SPE) between the anode and On the outer side of the cathode, a porous titanium plate or a foamed titanium material having an electric conductor function and functioning as a gas permeable and water permeable member is sandwiched, and an anisotropic titanium plate which receives positive and negative power supply is sandwiched on the outer side of the cathode.
  • the anode is supplied with pure water and passed through a direct current of 2 to 3.5 V.
  • the hydrogen atom moves to the cathode through the solid polymer electrolyte membrane (SPE) to generate hydrogen, and the remaining oxygen atoms.
  • SPE solid polymer electrolyte membrane
  • Ozone is generated at the anode discharge, and the platinum catalyst layer (Pt lmg/cm 2 ) of the cathode acts to redox the reaction to form hydrogen.
  • This form of technology is still the mainstream of today's Japanese market for electrolytic ozone generators.
  • the basic structure of the ozone generator is: a solid polymer electrolyte membrane (SPE) is placed in the center, an anode (+ electrode) and a cathode (-electrode) are placed on both sides, and an anode ultrapure water raw material electrolyzer and cathode
  • SPE solid polymer electrolyte membrane
  • an anode (+ electrode) and a cathode (-electrode) are placed on both sides
  • the water storage tanks are respectively placed on both sides of the anode electrode and the cathode electrode, and the oxygen-containing ozone body generated by the anode together with the ozone water containing ozone is discharged from the anode electrolysis cell into the anode gas-liquid separation chamber (generally referred to as an anode water tank), and utilized.
  • the ozone containing oxygen is discharged from the top of the gas-liquid separation chamber; the water is again introduced into the anode electrolytic cell through the unidirectional; the hydrogen and water generated by the cathode are discharged from the cathode water reservoir into the cathode.
  • the gas-liquid separation chamber (generally referred to as the cathode water tank) is separated by the different specific gravity of hydrogen and water, and the hydrogen is discharged from the top of the gas-liquid separation chamber and diluted by air to be discharged into the atmosphere; The liquid separation chamber is discharged.
  • the vertical arrangement of the electrolytic structure is equal to the electrode and the raw material water for electrolysis is also placed vertically, the electrode is in contact with the water side, the gravity of the water is downward, and the side contact causes the frictional contact between the electrode and the water during the electrolysis process.
  • the generated ozone body flows upward in the frictional waters, forming fluid turbulence and loss.
  • the volume of the electrolytic cell of this structure is not too large, resulting in a small amount of raw material water.
  • the loss caused by friction and turbulence causes the temperature of the liquid to rise. Therefore, in order to control the rise of the temperature, it is necessary to cool the external cooling water.
  • Ultra-pure water of 10 6 ⁇ ⁇ or more is required for the anode. This condition limits the application of the ozone generator, and cannot be applied in an environment where ultrapure water cannot be obtained;
  • the ozone generator is a consumable item and needs to be replaced when it is used for a certain period of life.
  • the complicated connection structure makes it impossible for the user to perform simple and safe disassembly and replacement, and must be replaced under certain operating conditions and techniques. This also creates difficulties for the application.
  • a first object of the embodiments of the present invention is to provide a water electrolysis device which can decompose water into ozone, ozone water, hydrogen and hydrogen-containing water, has a simple structure, low energy consumption, low cost, and can be widely applied.
  • a water electrolysis device comprising an electrolysis unit, a water tank, a gas-liquid mixer, a gas-liquid separator, a power source;
  • the electrolysis unit comprises a casing, the top of the casing is provided with a water inlet, and the bottom of the water inlet is provided with a laterally arranged anode titanium electric plate and P-Pb0 2 anode connected from top to bottom.
  • the anode catalytic electrode is integrated with a porous titanium plate, a Pt/C cathode catalytic electrode and a porous titanium plate, and the anode titanium is supplied to the orifice plate, the p-Pb0 2 anode catalytic plate, the solid polymer electrolyte membrane, and the Pt/C cathode catalyst.
  • the plate, the cathode titanium to the electroporation plate, the cathode sump are fastened to the integral electrolysis module by fastening bolts, and the cathode sump is provided with a hydrogen water discharge pipe;
  • the bottom of the water tank is provided with a nip interface which is matched with the water inlet of the casing, and the top of the water tank is provided with an ozone discharge pipe and a water supply port, and the tank of the water tank is provided with ozone water discharge ⁇ .
  • the gas-liquid mixer includes a mixer vessel for mixing ozone and water, and the mixer vessel is provided with an ozone inlet, a water inlet, and an ozone water outlet, and the ozone inlet and the ozone discharge pipe of the water tank Connecting, the water inlet is connected to an external application water source;
  • the gas-liquid separator comprises a separator vessel for separating hydrogen and water, the separator vessel is provided with a hydrogen water inlet, a drain port, a hydrogen discharge pipe, the hydrogen water inlet and the hydrogen water of the electrolysis unit The discharge pipes are connected;
  • the positive electrode of the power source is connected to the anode titanium to the electric orifice plate, and the negative electrode of the power source is connected to the cathode titanium to the electric orifice plate.
  • the top of the water tank of the present invention is further provided with a top cover, the ozone discharge pipe and the water filling port are disposed on the top cover; and the ozone discharge pipe is further provided with an ozone utilization port, An ozone decomposer, an ozone depletion protection valve, the ozone decomposer is used for reducing ozone to oxygen;
  • the top cover of the water tank is further provided with a liquid level gauge and a temperature sensor; an ozone inlet and a water inlet of the gas-liquid mixer A nozzle is respectively disposed;
  • the hydrogen discharge pipe is further provided with a hydrogen utilization port and a hydrogen leakage protection valve.
  • the power supply of the present invention includes an adjustment module for controlling the concentration, an overload protection module, an overheat protection module, and an abnormality protection module.
  • the electrolysis unit of the present invention is screwed to the water tank, the water inlet of the electrolysis unit is provided with internal threads, and the occlusion interface at the bottom of the water tank is correspondingly provided with external threads;
  • the water tanks may also be snap-fitted by a bayonet.
  • the anode titanium to the electroporation plate and the cathode titanium to the electroporation plate of the present invention are straight perforated plates with distributed hooks, and the area of the holes is the total of the anode titanium to the electroporation plate/cathode titanium to the electroporation plate. More than 40% of the area, the thickness of the anode titanium donor orifice/cathode titanium donor orifice plate is 0.5 mm or more.
  • the respective plates in the electrolysis unit of the present invention are disposed laterally, and the natural drop of water in the water tank directly acts on the anode electrode during operation, and the ozone body generated by the electrolysis directly rises, and the electrolysis unit is not caused by the frictional force and the gas countercurrent.
  • the loss reduces the consumption of electric energy and increases the speed of ozone concentration increase.
  • the size of the water tank can be as large or small as needed, and the water volume is sufficient, which can effectively remove the heat generated during the electrode catalytic process and achieve good cooling. The effect is simple in structure, low in energy consumption, low in cost, and widely applicable;
  • the electrolysis unit and the water tank are engaged with each other, and the electrolysis unit can be disassembled and installed like a bulb, without special tools, and is very convenient to use;
  • the present invention can simultaneously generate four substances which are extremely valuable and difficult to obtain, namely: ozone gas, ozone water, hydrogen gas and hydrogen-containing water, and the concentration of the high-purity ozone gas can be as high as possible. 250mg / L, ozone water concentration can be as high as 64ppm, a high concentration of ozone of about 4ml / min and 8ml / min of saturated hydrogen per 1 A current.
  • FIG. 2 is a schematic structural view of an electrolytic unit provided in a specific embodiment of the present invention
  • FIG. 3 is a schematic structural view of a water tank provided in a specific embodiment of the present invention
  • FIG. 5 is a schematic structural view of a gas-liquid separator provided in a specific embodiment of the present invention
  • FIG. 6 is a schematic structural view of a power supply plate provided in an embodiment of the present invention.
  • the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
  • 1 to 6 show an embodiment of a water electrolysis device according to the present invention, which comprises an electrolysis unit 1, a water tank 2, a gas-liquid mixer 3, a gas-liquid separator 4, a power source 5, and an electrolysis unit 1
  • the housing 10 includes a water inlet at the top of the housing 10, and an anode titanium to the electroporation plate 11 and a p-Pb0 2 anode catalytic plate 12 which are connected in series from the top to the bottom.
  • the molecular electrolyte membrane 13, the Pt/C cathode catalytic plate 14, the cathode titanium donor plate 15, the cathode sump 17, the p_Pb0 2 anode catalyst plate 12, and the Pt/C cathode catalyst plate 14 are respectively p-Pb02 anode catalytic electrode and porous Titanium plate, Pt/C cathode catalytic electrode and porous titanium plate are pressed together, anodized titanium donor plate 11, p-Pb0 2 anode catalyst plate 12, solid polymer electrolyte membrane 13, Pt/C cathode catalyst plate 14, cathode
  • the titanium feed plate 15 and the cathode sump 17 are fastened to the integral electrolytic module by the fastening bolts 18, and the cathode sump 17 is provided with hydrogen.
  • a gas water discharge pipe 19 a bottom of the water tank 2 is provided with a meshing interface 21 that is coupled with the water inlet of the casing 10, and an ozone discharge pipe 23 and a water supply port 24 are disposed on the top of the water tank 2, and the water tank 2 is provided on the tank body.
  • the gas-liquid mixer 3 includes a mixer vessel 31 for mixing ozone and water, and the mixer vessel 31 is provided with an ozone inlet 32, a water inlet 33, an ozone water outlet 34, an ozone inlet 32 and a water tank.
  • the ozone discharge pipe 23 of 2 is connected, and the water inlet 33 is connected to an external application water source;
  • the gas-liquid separator 4 includes a separator vessel 41 for separating hydrogen gas and water, and the separator vessel 41 is provided with a hydrogen water inlet 42 and drainage.
  • the port 44, the hydrogen discharge pipe 43, the hydrogen water inlet 42 are connected to the hydrogen water discharge pipe 19 of the electrolysis unit 1;
  • the positive electrode 51 of the power source 5 is connected to the anode titanium to the electric orifice plate 11, and the negative electrode 52 of the power source 5 and the cathode titanium are given
  • the cathodes of the electroporation plate 15 are connected.
  • the water in the water tank 2 naturally falls into the electrolysis unit 1 through the nip interface 21, and the water is electrolyzed into ozone and hydrogen, wherein the ozone rises into the water tank 2, and the water in the water tank 2 gradually becomes a high-concentration saturated ozone water, ozone.
  • the overflowing water surface enters the gas-liquid mixer 3 through the ozone discharge pipe 23 and the ozone inlet 32, and is continuously mixed with the applied water, and the medium-low concentration ozone water is obtained from the ozone water outlet 34; the hydrogen generated by the electrolysis is in the cathode sump 17
  • the inside is agitated into hydrogen water, and sequentially flows into the gas-liquid separator 4 through the discharge pipe 19 and the hydrogen water inlet 42. Hydrogen and water are continuously separated therein, and hydrogen is discharged from the hydrogen discharge pipe 43 to contain water which is not separated from the hydrogen gas.
  • the discharge from the drain port 44 can be directly utilized;
  • the p-Pb0 2 anode catalyst plate 12 and the Pt/C cathode catalyst plate 14 are respectively composed of a P-Pb02 anode catalytic electrode and a porous titanium plate, a Pt/C cathode catalytic electrode and a porous titanium plate. pressing the gap as a whole, there will be no contact failure, reducing the impedance of the conductive improve current efficiency;
  • ⁇ - ⁇ ) 2 anode plate 12 is made of a catalytic chemical method, does not Deterioration occurs, outages can then start back to work a short time, does not require batteries or with emergency backup power.
  • the top of the water tank 2 is also provided with a top cover 22, and the ozone discharge pipe 23 and the water supply port 24 are disposed on the top cover 22.
  • the movable top cover 22 can be detached during use to facilitate installation and repair;
  • the discharge pipe 23 is further provided with an ozone utilization port 26, an ozone decomposer 27, and an ozone leakage protection valve 28 for reducing ozone to oxygen, and the ozone leakage protection valve 28 prevents leakage when the ozone is not utilized. Ozone enters the ozone decomposer 27 and is completely reduced to oxygen before being discharged.
  • the top cover 22 of the water tank 2 is further provided with a liquid level gauge 29 and a temperature sensor 20, and the liquid level gauge 29 can adjust and control the liquid level in the water tank 2; the ozone inlet 32 and the water inlet of the gas-liquid mixer 3
  • the junction of 33 is provided with a nozzle 34; the hydrogen discharge pipe 43 is further provided with a hydrogen gas utilization port 45 and a hydrogen gas leakage protection valve 46.
  • the hydrogen gas leakage protection valve 46 can prevent hydrogen gas from leaking out;
  • the power source 5 includes In the control concentration control module, overload protection module, overheat protection module and abnormal protection module, the working performance of the power supply 5 is consistent with the characteristics of the yin and yang electrodes, and the ozone production can be adjusted by increasing or decreasing the output working power, thereby achieving the adjustment.
  • the function of the overheat protection module of the power supply 5 is to automatically cut off the power when the electrolytic unit is overheated.
  • the function of the overload protection module is to automatically adjust the current and voltage when the operating power is too high, and the function of the abnormal protection module
  • the electrolytic unit 1 and the water tank 2 are screwed together, and the water inlet of the electrolytic unit 1 is provided with an internal thread 16 , and the nip interface 21 at the bottom of the water tank 2 is correspondingly provided with an external thread, so that the electrolytic unit 1 can It is disassembled and installed like a light bulb. It does not require professional tools and is very convenient to use.
  • the electrolytic unit 1 and the water tank 2 can also be connected by a snap-fit connection.
  • the anode titanium feeding plate 11 and the cathode titanium feeding plate 15 are straight perforated plates which are uniformly distributed, and the area of the holes is an anode titanium feeding plate 11/cathode.
  • the thickness of the titanium to the electroporation plate 15 is more than 40%, and the thickness of the anode titanium to the electroporation plate 11 / the cathode titanium to the electroporation plate 15 is 0.5 mm or more, thereby improving the stability of the entire device and making it easier to control the temperature. rise.
  • the invention can be made into various sizes according to the required dosage and concentration, and can be plugged in and used as long as it can obtain single-phase direct current and drinking grade pure water, which can be widely used not only in industry, but also The widespread availability of homes, businesses, institutions, schools, dentistry, medical care, and public places has made it possible. If a small machine for a home is developed by the technique of the present invention, the power consumption is only about 25 W, and the amount of water consumed by the work is about 25 cc/h. Mixing with tap water and ozone with a concentration of up to 250 mg/L, you can continuously obtain ozone water with a flow rate of about 1.5L/min and a concentration of about 4ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

一种水电解装置
技术领域 本发明涉及一种水电解装置。 背景技术 臭氧是一种强氧化剂, 具有很强的瞬间杀菌、 灭菌、 消毒、 除臭、 脱色、 保鲜等功能, 还可以分解难以分解的有机物。 在传染病、 病毒大肆流行的公 共卫生和医疗领域, 治理大气污染、 水质污染的环境领域、 食品和制药等工 业领域、 电子工业的洗净领域、 自来水饮用水的消毒、 工业废水以及核废料 等高难度化学物质的分解处理领域, 它的应用已经非常重要。 臭氧的应用有两个方面: 一是臭氧体的应用, 它主要用于空气的消毒和 净化、 介质气体的分解、 工业尾气的分解排放等。 超纯净臭氧体在医药工业、 食品工业以及医疗等方面得到广泛应用; 二是臭氧水的应用, 目前的技术大 多是将臭氧混入水中获得, 混合方法很多, 不同的方式获得的臭氧水浓度不 同, 但要达到应用目的, 无论从设备投资成本还是能耗都比较高。 目前, 有利用价值的臭氧体制取方法有以下几种方式:
1. 以自然空气为原料的紫外线低压水银灯管法: 这种方法制取出来的臭 氧浓度很低, 多用于空气消毒, 而制取臭氧水的利用价值不高。
2. 以纯氧气为原料的高频放电法: 这种方法制取出来的臭氧浓度高于紫 外线低压水银灯管法, 无论是臭氧的利用还是臭氧水的利用, 都是目前比较 普及的方法。 然而由于这种方法同时产生氮氧化物, 而氮氧化物为致癌物质, 因此导致这种方法在纯净领域和饮用水领域的应用受到极大的限制。
3. 以纯水为原料的电解法: 这种方法以水为原料, 在以 P-Pb02为阳极催 化剂和以白金( Pt/c )为阴极催化剂的电解催化作用下将氢和氧分离, 阳极生 成 o2和 o3, 阴极生成 这种方法制取出来的臭氧浓度很高很纯净, 然而由 于能耗大、 价格昂贵, 而且产品难以掌控, 导致很难被普及采用。 据文献记载, 水电解式臭氧发生器的研究是从 1886年开始, 经过长期的 研究进步, 于 1985年 SPE式电解臭氧发生器问世。 这种形式的臭氧发生器基 本结构以 β-ΡΚ)2为阳极催化层, 以白金(Pt/c ) 为催化剂的阴极催化层, 其 中间夹着固体高分子电解质膜(SPE ), 在阳极和阴极的外侧夹上具有导电体 作用并起到透气透水作用的多孔质钛板或泡沫状钛材, 再在其各自的外侧夹 上接受正负电源给电的阴阳极钛板。 工作时, 给阳极供以纯水, 通以 2〜3.5V 的直流电, 水在阴阳电极的催化作用下, 氢原子通过固体高分子电解质膜 ( SPE )向阴极移动生成氢, 剩余下来的氧原子在阳极放电生成臭氧, 而阴极 的白金催化层(Pt lmg/cm2 )起到氧化还原反应生成氢的作用。 这种形式的技 术仍是当今日本市场电解臭氧发生器的主流。 这种臭氧发生器的基本结构是: 固体高分子电解质膜(SPE )立置于中央, 阳极(+电极)和阴极( -电极)立置于其两侧, 阳极超纯水原料电解槽和阴 极积水槽再分别立置于阳极电极和阴极电极的两侧, 阳极生成的含氧臭氧体 连同含有臭氧的臭氧水由阳极电解槽排入阳极气液分离室 (一般称其为阳极 水箱), 利用臭氧和水的不同比重在此经过分离后, 含有氧气的臭氧体由气液 分离室的顶部排出; 水再通过单向阔进入阳极电解槽; 阴极生成的氢气和水 由阴极积水槽排入阴极气液分离室(一般称其为阴极水箱), 利用氢气和水的 不同比重在此经过分离后, 氢气由气液分离室的顶部排出并经过空气稀释处 理后排放到大气中; 水由阴极气液分离室排放。 这种立式排列置放的电解结 构等于电极与电解用原料水也是立式置放, 电极与水为侧面接触, 水的重力 向下, 而侧面接触造成电解过程中电极与水的摩擦接触, 生成的臭氧体在摩 擦水域中朝上流动, 形成流体性乱流和损失。 而且, 这种结构电解槽容积不 易过大, 导致了原料水量很小。 此外, 摩擦和乱流造成的损失导致了液体的 升温, 因此为了控制温度的上升, 又不得不加以外部冷却水循环冷却等手段。 这个结构存在的缺陷是:
( 1 ) 由于臭氧是强氧化剂, 所以所有过流零件都必须采用耐腐蚀性很强 的材料,多以钛合金、不锈钢 316以上等金属材料或者聚四氟乙烯 PTFE、 PFA 等树脂材料, 零部件多, 连接环节多, 材料之间很难连接, 造成成本相当昂 贵, 复杂的结构会造成供水、 液面、 温度等控制系统的复杂化, 也造成使用 者在管理、 操作、 維护等方面难度增大, 这些都造成应用上的局限性;
( 2 )受其工艺所限,一旦中断供电,阳极催化层的 β-ΡΚ)2极易还原劣化, 再启动时要到达一定电流效率和浓度所用时间需要时间长, 为此一旦通以电 流后即不可断电, 装置中需要配备蓄电池或紧急备用电源, 因此难以使用普 及;
( 3 ) 臭氧发生器自身的臭氧浓度不可调节, 当不需要过高臭氧浓度时需 通过气泵充气稀释降低浓度, 在耗电高的臭氧发生器之外又增加了气泵的消 耗点和易损件隐患点;
( 4 )其阳极需要 106Ω η以上的超纯水, 这个条件限制了臭氧发生器的 应用, 而无法获得超纯水的环境下就无法应用;
( 5 ) 臭氧发生器是消耗品, 使用到一定寿命时就需要更换, 然而复杂的 连接结构使得用户不能进行简单安全的拆卸更换, 而必须在一定操作条件和 技术下完成更换。 这也给应用造成困难。
氢对人体抗氧化衰老和各种疾病的有效性早在上个世纪就已被认识到, 近年来, 日本的医学专家成功地从理论上解析了它对人体健康作用的机理引 起了轰动, 从各个角度探讨氢在日常保健、 疾病预防和临床治疗的医学效应 的研究正在加速展开。 人体接受氢的途径主要为呼吸氢气和引用含氢水, 也 有注射氢水的报道。 虽然氢是自然界大量存在的物质, 但是人们在日常生活 中却无法得到它, 目前有很多氢和氢水商品突然纷纷涌向市场, 但其可信度 和价格使人敬而远之。 发明内容 本发明实施例第一目的在于: 提供一种水电解装置, 可将水分解为臭氧、 臭氧水、 氢气和含氢水, 结构简单, 能耗较小, 成本较低, 可广泛应用。
为实现上述目的, 本发明的技术方案是:
一种水电解装置, 其包括电解单元、 水箱、 气液混合器、 气液分离器、 电源;
所述的电解单元包括壳体, 所述壳体的顶部开设有进水口, 所述进水口 的下方设有从上到下依次相连的横向设置的阳极钛给电孔板、 P-Pb02阳极催 化板、 固体高分子电解质膜、 Pt/C 阴极催化板、 阴极钛给电孔板、 阴极集水 槽, 所述的 β-ΡΚ)2阳极催化板、 Pt/C阴极催化板分别由 β-ΡΪ3θ2阳极催化电 极和多孔钛板、 Pt/C 阴极催化电极和多孔钛板压制为一体, 所述阳极钛给电 孔板、 p-Pb02阳极催化板、 固体高分子电解质膜、 Pt/C 阴极催化板、 阴极钛 给电孔板、 阴极集水槽通过紧固螺栓紧固为整体电解模块, 所述的阴极集水 槽设有氢气水排出管;
所述水箱的底部设有与所述壳体的进水口相配合连接的咬合接口, 所述 水箱的顶部上设有臭氧排出管、 补水口, 所述水箱的箱体上设有臭氧水排出 α; 所述气液混合器包括用于混合臭氧和水的混合器容器, 所述混合器容器 上设有臭氧入口、 进水口、 臭氧水出口, 所述臭氧入口与所述水箱的臭氧排 出管相连接, 所述进水口连接于外部的应用水源;
所述气液分离器包括用于分离氢气和水的分离器容器, 所述分离器容器 上设有氢气水入口、 排水口、 氢气排放管, 所述氢气水入口与所述电解单元 的氢气水排出管相连接;
所述电源的正极与阳极钛给电孔板相连接, 所述电源的负极与阴极钛给 电孔板相连接。 作为一种优选的结构, 本发明所述水箱的顶部还活动设有顶盖, 所述的 臭氧排出管、 补水口设置于顶盖上; 所述的臭氧排出管上还设有臭氧利用口、 臭氧分解器、 臭氧泄漏保护阀, 所述臭氧分解器用于将臭氧还原为氧气; 所 述水箱的顶盖上还设有液位计、 温度传感器; 所述气液混合器的臭氧入口和 进水口分别设有喷嘴; 所述氢气排放管上还设有氢气利用口和氢气泄漏保护 阀。
作为一种优选的改进结构, 本发明所述电源包括用于控制浓度的调节模 块、 过载保护模块、 过热保护模块和异常保护模块。
可选地, 本发明所述电解单元与水箱之间通过螺紋连接, 所述电解单元 的进水口上设有内螺纹, 所述水箱底部的咬合接口上对应设有外螺纹; 所述 电解单元与水箱之间也可以是通过卡口对扣咬合连接。
优选地, 本发明所述阳极钛给电孔板、 阴极钛给电孔板为分布均勾的直 穿孔板, 所述孔的面积和为阳极钛给电孔板 /阴极钛给电孔板总面积的 40%以 上, 所述阳极钛给电孔板 /阴极钛给电孔板的厚度为 0.5mm以上。 由上可见, 与现有技术相比, 本发明有如下有益效果:
( 1 )本发明电解单元中的各个板横向设置, 工作时水箱中的水自然下落 直接作用在阳极电极上, 经过电解生成的臭氧体直接上升, 电解单元内没有 因摩擦力和气体逆流而造成的损失, 减少了电能的消耗, 提高了臭氧浓度上 升的速度, 此外, 水箱的尺寸可以根据需要可大可小, 水量充足, 可有效带 走电极催化过程中产生的热量, 起到良好的冷却效果, 结构简单, 能耗较小, 成本较低, 可广泛应用;
( 2 )本发明中电解单元与水箱相互咬合, 电解单元可以像换灯泡一样拆 卸安装, 不需专业的工具, 使用非常方便;
( 3 )本发明可同时生成利用价值极高且难以获得的 4种物质, 即: 臭氧 气体、 臭氧水、 氢气体和含氢气水, 制得的高纯净度臭氧气体浓度可高达 250mg/L, 臭氧水浓度可高达 64ppm, 每 1 A电流可获得 4ml/min左右的高浓 度臭氧体以及 8ml/min的饱和氢气。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的不当限定, 在附图中: 图 1为本发明具体实施方式中提供的结构示意图;
图 2为本发明具体实施方式中提供的电解单元的结构示意图; 图 3为本发明具体实施方式中提供的水箱的结构示意图;
图 5为本发明具体实施方式中提供的气液分离器的结构示意图; 图 6为本发明具体实施方式中提供的给电板的结构示意图。 具体实施方式 下面将结合附图以及具体实施例来详细说明本发明, 在此本发明的示意 性实施例以及说明用来解释本发明, 但并不作为对本发明的限定。 如图 1至图 6所示为本发明所述的一种水电解装置的实施例, 其包括电 解单元 1、 水箱 2、 气液混合器 3、 气液分离器 4、 电源 5, 电解单元 1包括壳 体 10, 壳体 10的顶部开设有进水口, 进水口的下方设有从上到下依次相连的 横向设置的阳极钛给电孔板 11、 p-Pb02阳极催化板 12、 固体高分子电解质膜 13、 Pt/C阴极催化板 14、 阴极钛给电孔板 15、 阴极集水槽 17, p_Pb02阳极催 化板 12、 Pt/C阴极催化板 14分别由 p-Pb02阳极催化电极和多孔钛板、 Pt/C 阴极催化电极和多孔钛板压制为一体, 阳极钛给电孔板 11、 p-Pb02阳极催化 板 12、 固体高分子电解质膜 13、 Pt/C阴极催化板 14、 阴极钛给电孔板 15、 阴极集水槽 17通过紧固螺栓 18紧固为整体电解模块, 阴极集水槽 17设有氢 气水排出管 19;水箱 2的底部设有与壳体 10的进水口相配合连接的咬合接口 21 , 水箱 2的顶部上设有臭氧排出管 23、 补水口 24, 水箱 2的箱体上设有臭 氧水排出口 25; 气液混合器 3包括用于混合臭氧和水的混合器容器 31, 混合 器容器 31上设有臭氧入口 32、 进水口 33、 臭氧水出口 34, 臭氧入口 32与水 箱 2的臭氧排出管 23相连接, 进水口 33连接于外部的应用水源; 气液分离 器 4包括用于分离氢气和水的分离器容器 41 ,分离器容器 41上设有氢气水入 口 42、 排水口 44、 氢气排放管 43, 氢气水入口 42与电解单元 1的氢气水排 出管 19相连接; 电源 5的正极 51与阳极钛给电孔板 11相连接, 电源 5的负 极 52与阴极钛给电孔板 15的阴极相连接。 工作时, 水箱 2内的水通过咬合接口 21 自然下落至电解单元 1内, 水被 电解成臭氧和氢气, 其中臭氧上升至水箱 2内, 水箱 2内的水逐渐成为高浓 度饱和臭氧水, 臭氧溢出水面再通过臭氧排出管 23以及臭氧入口 32进入气 液混合器 3内, 与应用水进行连续混合, 从臭氧水出口 34可得到中低浓度的 臭氧水; 电解产生的氢气在阴极集水槽 17内集结为氢气水, 并依次通过排出 管 19以及氢气水入口 42流入气液分离器 4, 氢气和水在其中不断分开, 氢气 从氢气排放管 43 中排出, 含有未被分离掉的氢气的水从排水口 44中排出可 被直接利用; p-Pb02阳极催化板 12、 Pt/C阴极催化板 14分别由 P-Pb02阳极 催化电极和多孔钛板、 Pt/C 阴极催化电极和多孔钛板压制为一体, 不会存在 接触不良的间隙, 减少了导电的阻抗, 提高了电流工作效率; β-ΡΜ)2阳极催 化板 12由化学法制成, 不会出现劣化现象, 断电后再启动可在较短时间内恢 复正常工作, 不需要配备蓄电池或紧急备用电源。 在本实施例中, 水箱 2的顶部还活动设有顶盖 22, 臭氧排出管 23、 补水 口 24设置于顶盖 22上, 使用时活动设置的顶盖 22可拆卸下来, 便于安装修 理; 臭氧排出管 23上还设有臭氧利用口 26、 臭氧分解器 27、 臭氧泄漏保护 阀 28, 臭氧分解器 27用于将臭氧还原为氧气, 当臭氧不被利用时臭氧泄漏保 护阀 28可阻止其泄漏, 臭氧进入臭氧分解器 27, 被彻底还原成氧气后才排放 于空气中; 水箱 2的顶盖 22上还设有液位计 29、 温度传感器 20, 液位计 29 可调节控制水箱 2内的液面高度; 气液混合器 3的臭氧入口 32和进水口 33 的汇合处设有喷嘴 34; 氢气排放管 43上还设有氢气利用口 45和氢气泄漏保 护阀 46, 当氢气不被利用时, 氢气泄漏保护阀 46可阻止氢气泄露外流; 电源 5包括用于控制浓度的调节模块、 过载保护模块、 过热保护模块和异常保护模 块, 电源 5 的工作性能与阴阳电极特性相互吻合, 可通过提高或降低其输出 工作功率实现臭氧产量的大小调节, 进而达到调节应用臭氧水浓度的目的, 电源 5 的过热保护模块的作用是当电解单元工作过热时自动切断电源, 过载 保护模块的作用是当运行功率超高时电流和电压可自动调节, 异常保护模块 的作用是当电解单元老化或外界异常时可切断电源, 而且电源切断后可以自 由再启动, 不需要配备蓄电池或紧急备用保护电源。 在本实施例中, 电解单元 1与水箱 2之间采用螺紋连接, 电解单元 1的 进水口上设有内螺紋 16, 水箱 2底部的咬合接口 21上对应设有外螺纹, 这样 电解单元 1 可以像换灯泡一样拆卸安装, 不需专业的工具, 使用非常方便; 实际工作时, 电解单元 1与水箱 2之间也可以是通过卡口对扣咬合连接。 为了提高整体稳定性, 在本实施例中, 阳极钛给电孔板 11、 阴极钛给电 孔板 15为分布均勾的直穿孔板, 孔的面积和为阳极钛给电孔板 11/阴极钛给 电孔板 15总面积的 40%以上, 阳极钛给电孔板 11/阴极钛给电孔板 15的厚度 为 0.5mm以上, 这样可提高整个装置的稳定性, 也更容易控制温度的上升。 本发明可根据需求的用量和浓度, 制作成各种不同大小的装置, 可实现 只要能够获得单相直流电和饮用等级的纯净水, 就可以插电即用, 不仅可以 广泛应用于工业, 还为家庭、 事业所、 机关、 学校、 牙科、 医疗以及公共场 所的广泛普及提供了可能。 如利用本发明技术开发用于家庭的小型机器, 则 其耗电量仅为 25W左右, 工作消耗原料水量为 25cc/h左右。 用自来水与浓度 高达 250 mg/L左右的臭氧混合, 可源源不断地获得流量为 1.5L/min左右、 浓 度为 4ppm左右的臭氧水, 除可用于水果蔬菜、 水产品、 菜板、 刀具、 餐具、 毛巾等的洗净外, 也可以浸泡水果蔬菜和水产生肉等以消除表面的附着物以 达到保鲜和延长存放期的作用, 还可以用于洗手、 漱口、 洗脚、 洗发等。 直 取少量的高浓度臭氧水喷雾室内、 垃圾桶、 排污口等, 还可以起到净化空气、 除臭灭菌等作用。 直接利用微量的臭氧体, 更可以在细菌病毒流行时家庭、 机关、 学校以及公共场所等预防传染病蔓延, 同时制取的氢气和含氢水也可 利用, 防止人体老化和日常保健。 以上对本发明实施例所提供的技术方案进行了详细介绍, 本文中应用了 明只适用于帮助理解本发明实施例的原理; 同时, 对于本领域的一般技术人 员, 依据本发明实施例, 在具体实施方式以及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求 书
1、 一种水电解装置, 其特征是: 包括电解单元、 水箱、 气液混合器、 气 液分离器、 电源;
所述的电解单元包括壳体, 所述壳体的顶部开设有进水口, 所述进水口 的下方设有从上到下依次相连的横向设置的阳极钛给电孔板、 p-Pb02阳极催 化板、 固体高分子电解质膜、 Pt/C阴极催化板、 阴极钛给电孔板、 阴极集水 槽, 所述 P-Pb02阳极催化板、 Pt/C阴极催化板分别由 β-ΡΙ)02阳极催化电极 和多孔钛板、 Pt/C阴极催化电极和多孔钛板压制为一体, 所述阳极钛给电孔 板、 P-Pb02阳极催化板、 固体高分子电解质膜、 Pt/C阴极催化板、 阴极钛给 电孔板、 阴极集水槽通过紧固螺栓紧固为整体电解模块, 所述的阴极集水槽 上设有氢气水排出管;
所述水箱的底部设有与所述壳体的进水口相配合连接的咬合接口, 所述 水箱的顶部上设有臭氧排出管、 补水口, 所述水箱的箱体上设有臭氧水排出 所述气液混合器包括用于混合臭氧和水的混合器容器, 所述混合器容器 上设有臭氧入口、 进水口、 臭氧水出口, 所述臭氧入口与所述水箱的臭氧排 出管相连接, 所述进水口连接于外部的应用水源,
所述气液分离器包括用于分离氢气和水的分离器容器, 所述分离器容器 上设有氢气水入口、 排水口、 氢气排放管, 所述氢气水入口与所述电解单元 的氢气水排出管相连接,
所述电源的正极与阳极钛给电孔板相连接, 所述电源的负极与阴极钛给 电孔板相连接。
2、 根据权利要求 1所述的水电解装置, 其特征是: 所述水箱的顶部还活 动设有顶盖, 所述的臭氧排出管、 补水口设置于顶盖上。
3、 根据权利要求 1所述的水电解装置, 其特征是: 所述的臭氧排出管上 还设有臭氧利用口、 臭氧分解器、 臭氧泄漏保护阀, 所述臭氧分解器用于将 臭氧还原为氧气。
4、 根据权利要求 2所述的水电解装置, 其特征是: 所述水箱的顶盖上还 设有液位计、 温度传感器。
5、 根据权利要求 1所述的水电解装置, 其特征是: 所述气液混合器的臭 氧入口和进水口分别设有喷嘴。
6、 根据权利要求 1所述的水电解装置, 其特征是: 所述的氢气排放管上 还设有氢气利用口和氢气泄漏保护阀。
7、 根据权利要求 1所述的水电解装置, 其特征是: 所述的电源设有用于 控制浓度的调节模块、 过载保护模块、 过热保护模块和异常保护模块。
8、 根据权利要求 1所述的水电解装置, 其特征是: 所述电解单元与水箱 之间通过螺纹连接, 所述电解单元的进水口上设有内螺纹, 所述水箱底部的 咬合接口上对应设有外螺紋。
9、 根据权利要求 1所述的水电解装置, 其特征是: 所述电解单元与水箱 之间通过卡口对扣咬合连接。
10、 根据权利要求 1所述的水电解装置, 其特征是: 所述阳极钛给电孔 板、 阴极钛给电孔板为分布均勾的直穿孔板, 所述孔的面积和为阳极钛给电 孔板 /阴极钛给电孔板总面积的 40%以上,所述阳极钛给电孔板 /阴极钛给电孔 板的厚度为 0.5mm以上。
PCT/CN2011/001061 2010-06-22 2011-06-27 一种水电解装置 WO2011160446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013600027U JP3185328U (ja) 2010-06-22 2011-06-27 水電解装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010202356357U CN201746592U (zh) 2010-06-22 2010-06-22 一种水电解装置
CN201020235635.7 2010-06-22

Publications (1)

Publication Number Publication Date
WO2011160446A1 true WO2011160446A1 (zh) 2011-12-29

Family

ID=43581271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001061 WO2011160446A1 (zh) 2010-06-22 2011-06-27 一种水电解装置

Country Status (3)

Country Link
JP (1) JP3185328U (zh)
CN (1) CN201746592U (zh)
WO (1) WO2011160446A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106044992A (zh) * 2016-07-01 2016-10-26 张晟源 一种智能富氢温泉水制备装置
CN107130257A (zh) * 2017-06-23 2017-09-05 深圳市好美水科技开发有限公司 一种吸氢机
CN108531934A (zh) * 2018-05-30 2018-09-14 赵婧雯 电解式臭氧发生器的散热装置
CN109896592A (zh) * 2017-12-07 2019-06-18 福建金源泉科技发展有限公司 一种富氢弱碱直饮水机
CN110512227A (zh) * 2018-05-21 2019-11-29 洪昆喨 电催化放电反应器、制氢系统及制氢方法
CN115448423A (zh) * 2022-08-26 2022-12-09 大连东道尔膜技术有限公司 一种电催化废水除硬装置
EP4252888A1 (en) * 2022-03-31 2023-10-04 Estech A/S Electrolytic regeneration of amine based co2 absorbent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295326B (zh) * 2010-06-22 2012-11-28 刘迅 一种水电解装置
CN102899685B (zh) * 2012-09-12 2017-06-16 金华市广源环保科技有限公司 低压电解式臭氧发生器模块阴阳极催化剂及其制备方法
KR101746077B1 (ko) * 2014-07-31 2017-06-14 주식회사 솔고 바이오메디칼 수소수 제조용 수소 발생 유니트
CN111206265B (zh) * 2018-11-21 2021-06-04 元智大学 气水循环系统及其多功能水电解装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100190A (ja) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd ガス発生用電解装置
US5205994A (en) * 1990-09-06 1993-04-27 Permelec Electrode, Ltd. Electrolytic ozone generator
CN2431290Y (zh) * 2000-07-04 2001-05-23 胡柏 一种电解法臭氧发生装置
CN2431291Y (zh) * 2000-07-11 2001-05-23 上海奥赛科技有限公司 一种大流量臭氧水生成装置
US6398928B1 (en) * 1999-10-07 2002-06-04 Take-One Office, Ltd. Electrolytic ozone generating method, system and ozone water producing system
JP3297250B2 (ja) * 1995-06-15 2002-07-02 三菱重工業株式会社 電解式オゾン発生装置
CN1128759C (zh) * 1997-03-07 2003-11-26 武汉大学 电解式臭氧发生装置
US20080314740A1 (en) * 2005-12-23 2008-12-25 Daniel Szalay Ozone Generating Electrolysis Cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100190A (ja) * 1986-10-16 1988-05-02 Sasakura Eng Co Ltd ガス発生用電解装置
US5205994A (en) * 1990-09-06 1993-04-27 Permelec Electrode, Ltd. Electrolytic ozone generator
JP3297250B2 (ja) * 1995-06-15 2002-07-02 三菱重工業株式会社 電解式オゾン発生装置
CN1128759C (zh) * 1997-03-07 2003-11-26 武汉大学 电解式臭氧发生装置
US6398928B1 (en) * 1999-10-07 2002-06-04 Take-One Office, Ltd. Electrolytic ozone generating method, system and ozone water producing system
CN2431290Y (zh) * 2000-07-04 2001-05-23 胡柏 一种电解法臭氧发生装置
CN2431291Y (zh) * 2000-07-11 2001-05-23 上海奥赛科技有限公司 一种大流量臭氧水生成装置
US20080314740A1 (en) * 2005-12-23 2008-12-25 Daniel Szalay Ozone Generating Electrolysis Cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106044992A (zh) * 2016-07-01 2016-10-26 张晟源 一种智能富氢温泉水制备装置
CN107130257A (zh) * 2017-06-23 2017-09-05 深圳市好美水科技开发有限公司 一种吸氢机
CN109896592A (zh) * 2017-12-07 2019-06-18 福建金源泉科技发展有限公司 一种富氢弱碱直饮水机
CN110512227A (zh) * 2018-05-21 2019-11-29 洪昆喨 电催化放电反应器、制氢系统及制氢方法
CN108531934A (zh) * 2018-05-30 2018-09-14 赵婧雯 电解式臭氧发生器的散热装置
EP4252888A1 (en) * 2022-03-31 2023-10-04 Estech A/S Electrolytic regeneration of amine based co2 absorbent
WO2023187143A1 (en) * 2022-03-31 2023-10-05 Estech A/S Method for increased carbon capture in an electrolytic process
CN115448423A (zh) * 2022-08-26 2022-12-09 大连东道尔膜技术有限公司 一种电催化废水除硬装置
CN115448423B (zh) * 2022-08-26 2023-12-22 大连东道尔膜技术有限公司 一种电催化废水除硬装置

Also Published As

Publication number Publication date
CN201746592U (zh) 2011-02-16
JP3185328U (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP3185328U (ja) 水電解装置
CN102295326B (zh) 一种水电解装置
KR100964878B1 (ko) 수냉식 열교환기를 구비한 고효율의 비격막식 차아염소산나트륨발생장치
JP5544181B2 (ja) オゾン微細気泡の電解合成方法
CN1168674C (zh) 现场使用的可饮用水源的微生物控制
JP2006519090A (ja) 高電界電解セル
KR20110010502U (ko) 포터블 수소풍부수 제조장치
CN101608317A (zh) 臭氧产生器
CN104609532B (zh) 一种饮用水处理过程中去除PPCPs的方法
CN101531411A (zh) 气体扩散电极体系电化学消毒的方法
TWM559893U (zh) 富氫水壺電解裝置
CN202912689U (zh) 新型臭氧发生器装置
KR20060105238A (ko) 과전위전극 전해셀을 이용한 살균산화수 제조장치
CN107512760A (zh) 同步电生臭氧与双氧水的电解池装置及其制备方法、应用
CN112281184B (zh) 一种电化学产生过氧化氢的装置及其方法
CN108815540B (zh) 一种医疗器械臭氧消毒装置
KR100958677B1 (ko) 고성능 무격막 전해셀 및 이를 포함하는 이산화염소 발생장치
KR101679790B1 (ko) 정수기용 항균 및 수소수 생성장치
CN201046922Y (zh) 电解水电杀菌器
CN216038768U (zh) 一种臭氧水制备装置
CN207130343U (zh) 一种可自动添加电解液的电解式臭氧发生装置
CN205803201U (zh) 一种多相电氧化处理降解水的设备
CN214571421U (zh) 一种电催化臭氧耦合生物活性炭的分散式净水装置
KR200439134Y1 (ko) 산소발생장치
TW200932956A (en) Configurable ozone generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013600027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 11797477

Country of ref document: EP

Kind code of ref document: A1