WO2011160431A1 - 一种基于芳纶纤维的电池隔膜及其制备方法 - Google Patents

一种基于芳纶纤维的电池隔膜及其制备方法 Download PDF

Info

Publication number
WO2011160431A1
WO2011160431A1 PCT/CN2011/001015 CN2011001015W WO2011160431A1 WO 2011160431 A1 WO2011160431 A1 WO 2011160431A1 CN 2011001015 W CN2011001015 W CN 2011001015W WO 2011160431 A1 WO2011160431 A1 WO 2011160431A1
Authority
WO
WIPO (PCT)
Prior art keywords
aramid
battery separator
fiber
weight
parts
Prior art date
Application number
PCT/CN2011/001015
Other languages
English (en)
French (fr)
Inventor
刘宜云
衡沛之
王丽萍
Original Assignee
深圳吴天龙邦复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010204780A external-priority patent/CN101867030A/zh
Priority claimed from CN2010102047659A external-priority patent/CN101872852B/zh
Application filed by 深圳吴天龙邦复合材料有限公司 filed Critical 深圳吴天龙邦复合材料有限公司
Publication of WO2011160431A1 publication Critical patent/WO2011160431A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the membrane technology of an ion battery, in particular to a battery separator based on aramid fiber and a preparation method thereof. Background technique
  • Lithium-ion batteries consist of a positive and negative electrode, an electrolyte, and a separator. Among them, an important function of the separator is to isolate the positive and negative electrodes and prevent electrons from passing through the battery, and at the same time allow ions to pass through, thereby completing the rapid transfer of lithium ions between the positive and negative electrodes during electrochemical charging and discharging. The performance of the diaphragm directly affects the discharge capacity and cycle life of the battery.
  • the preparation method of the microporous membrane for the membrane can be divided into two methods: dry method (melt stretching, MSCS) and wet method (thermal phase separation, TIPS). Both of the above methods include at least one orientation step to cause pores in the film and increase the tensile strength.
  • the factors affecting the film structure include process conditions such as melt draw ratio, extrusion temperature and heat treatment temperature.
  • the degree of molecular orientation is affected by the melt draw ratio and extrusion temperature, and the film crystallinity is affected by melting.
  • the effect of the stretching ratio and the heat treatment temperature is not easily regulated during the film forming process.
  • the film formation process by the thermally induced phase separation method is easy to control, and the pore size, pore size distribution and porosity are well controlled, but a large amount of solvent is required in the preparation process, which is liable to cause environmental pollution, and the process is relatively complicated compared with the melt drawing method.
  • the above two molding materials are polyolefin plastics such as polyethylene and polypropylene, and their heat resistance is poor, which seriously affects the application of battery separators in a wider range of fields.
  • the object of the present invention is to provide a battery separator based on aramid fiber and a preparation method thereof, which is mainly made of ultra-short aramid fiber and is prepared by adding aramid fibrid fiber;
  • the battery separator has superior comprehensive performance, that is, excellent temperature resistance, high strength, fatigue resistance, low deformation, fire resistance, chemical resistance and the like.
  • the invention adopts ultra-short aramid fiber, and through the microfibrillation treatment of beating, simultaneously adjusts the ratio of the aramid fibrid fiber and the hot rolling process, so that the air permeability and porosity of the aramid paper are comparable to those of the plastic diaphragm.
  • the invention discloses a battery separator based on aramid fiber, and the battery separator is applied to an ion battery
  • ultrashort aramid fiber (preferably a lithium ion battery) consisting of 65 to 97 parts by weight of ultrashort aramid fiber (1414 or 1313) and 3 to 35 parts by weight of aramid (1414 or 1313) fibrid, wherein ultrashort aramid
  • the fiber has a fiber length of less than 1.5 mm (mm).
  • the invention also discloses a preparation method of the aramid fiber-based battery separator, which mainly comprises the steps of batch pulping, copy forming, drying and preheating, high temperature hot rolling and the like.
  • aramid fiber 1414 or aramid 1313 fiber are cut, slurried and beaten, and diluted with water to obtain a pulping degree of 10 to 70.
  • Slurry A of SR the aramid 1414 or 1313 fibers in the slurry A are microfibrillated into ultrashort aramid fibers having a fiber length of less than 1.5 mm. 3 to 35 parts by weight of aramid 1414 fibrid or aramid 1313 fibrids are decomposed and beaten, and diluted with water to obtain a pulping degree of 10 to 75.
  • Slurry of SR B Slurry of SR B.
  • the two slurries A and B are mixed in a mixing tank to form a mixed slurry which can be added to the former head of the mold.
  • the aramid 1414 fiber or the aramid fiber 1313 fiber filament after the aramid 1414 fiber or the aramid fiber 1313 fiber filament is chopped and disintegrated, it can be beaten by a slot beater or a disc mill or a large taper refiner to control the beating pressure and concentration, and finally Ultra-short aramid fiber with a pulping degree of 10 ⁇ 70 ° SR and a fiber length of less than 1.5 mm.
  • the beating after dissolving the aramid 1414 fibrid or aramid 1313 fibrid, the beating can be beaten by a slot beater or a disc or a large taper refiner to control the beating pressure and concentration, and finally The degree of pulping is 10 to 75. SR.
  • the method for producing a battery separator of the present invention in the step of mixing the slurry A and the slurry B to form a mixed slurry, it is extremely difficult to disperse in water due to the hydrophobicity of the aramid fiber and the aramid fibrid.
  • an antiflocculant may be added to the liquid slurry to increase the movement resistance of the fibers in the slurry, delay the entanglement of the fibers, and flocculate the fibers in the water.
  • the dispersion is improved to achieve the purpose of improving the uniformity of the battery separator.
  • the antiflocculating agent used in the present invention is preferably polyethylene oxide. The anti-flocculating agent is used alone, depending on the viscosity of the synthetic fiber slurry and the type and specification of the film, and the type of the film former.
  • the slurry is wet-formed by a rotary cutter.
  • the rotary wire former is a multi-circular net shaper or a single-round net shaper, and the slurry net indenter is adjusted by a vibrating box, and the slurry is uniformly distributed to the forming wire in the headbox, and the excess slurry overflows. Flow to the pre-pool.
  • a drying tunnel type drying device or a multi-drying type drying device is used, the former dried material is loose, and the latter dried compact is relatively tight.
  • the drying tunnel drying device is divided into multiple temperature zones.
  • the wet billet is operated in the drying tunnel by means of a conveyor belt, and reaches the middle and rear sections of the drying tunnel.
  • the moisture in the billet can be completely removed, and the water vapor is discharged through the dehumidifying fan, and at the end of the drying tunnel In the section, the temperature in the drying tunnel can reach the melting temperature of the bonded fiber (aramid fibrid).
  • the hot rolling is performed at a temperature close to the polycondensation temperature point, and the hot rolling mill is hot-rolled once, and the hot rolling line pressure is controlled to 10 to 120 kg/cm (kg/cm), and the surface temperature of the roll is hot rolled.
  • the temperature is 130 ⁇ 300 ° C
  • the rolling speed is 3 ⁇ 30m / min (m / min)
  • the two fibers are organically joined to each other, forming the strength of the battery separator.
  • the control fiber membrane thickness is between 0.03 - 0.06mm, and the density is between 0.30 ⁇ 0.65g / cm 3 (g / cm3), so that the porosity of the fiber membrane is in the range of 28 ⁇ 75%, breathable
  • the Gurley value is 1 ⁇ 25s (seconds).
  • the Gurley is used to characterize the air permeability, which is the time in seconds that a certain volume of gas is transmitted through a certain area of the sample.
  • the aramid fiber battery separator formed by the above-mentioned high-temperature hot rolling can also perform subsequent work such as trimming and shaping.
  • the invention uses a battery separator made of high temperature resistant aramid fiber to overcome the weakness of the existing plastic diaphragm, and can adjust the fiber formulation and forming process of the blank to meet the gas permeability and porosity requirements of the battery separator.
  • the influence of cooling rate on the phase separation process during the manufacture of plastic-based battery separators is avoided; the concentration of the polymer solution, the molecular weight, the movement and crystallization ability of the solvent molecules, and the influence of the nucleating agent on the pore structure of the membrane;
  • the interaction with the polymer affects the phase diagram of the system, which in turn affects the phase separation process. That is, the interaction is large, the liquid-solid phase separation is easy to occur, and the spherulite structure is formed. The interaction is small, and the honeycomb structure is obtained.
  • the battery separator of the invention meets the requirements of the ion battery separator: has electronic insulation to ensure mechanical isolation of the positive and negative electrodes; has a certain pore size and porosity, ensures low electrical resistance and high ionic conductivity, and is opposite to ions (such as lithium) Ion Li+) has good permeability. Because the solvent of the electrolyte is strongly polar Compound, the diaphragm must resist electrolyte corrosion, have sufficient chemical and electrochemical stability; have good wettability to the electrolyte and have sufficient liquid absorption and moisturizing ability; have sufficient mechanical properties, including puncture strength, tensile strength, etc. ; Space stability and flatness; Good thermal stability and automatic shutdown protection.
  • the battery separator based on aramid fiber of the invention can be fully used in the manufacture of various ion batteries.
  • the aramid fiber and the aramid fibrid fiber are formed into a membrane material by special wet forming and high-temperature hot rolling, and different membrane separators can be obtained for different battery separator thicknesses.
  • the addition of anti-flocculant during the process enables the fiber to be fully dispersed; the longer aramid fiber and its shorter aramid pulp or fibrid fiber can better solve the battery separator puncture strength and paper-making hook. The requirement for fiber length.
  • the invention combines the advantages of aramid fiber and fibrid fiber respectively, and prepares a kind of aramid fiber 1414 and aramid fiber 1414 fibrid or aramid 1313 fibrid fiber fiber, or aramid fiber 1313 and aramid 1414
  • the fiber or aramid 1313 fibrid fiber fiber is copied into a battery separator.
  • the battery separator prepared in accordance with the ratio of the preferred components of the present invention excels in tear strength, temperature resistance and the like as compared with the plastic separator produced in the prior art.
  • the battery separator of the invention has the advantages of light weight, softness, high specific strength, high specific modulus, high temperature resistance, fatigue resistance, flame retardancy, chemical corrosion resistance, good radiation resistance, low thermal expansion coefficient and good biocompatibility. Can be widely used in high-tech fields such as electromechanical, aerospace and aerospace. detailed description
  • Aramid 1414 fiber produced by Teijin Corporation
  • Aramid 1414 fibrid produced by Teijin Corporation;
  • Aramid 1313 fiber produced by Guangdong Xinhui Company
  • Aramid 1313 fibrid produced by Chengdu Longbang Company
  • the battery separator of the first embodiment was prepared in the following proportions: Aramid 1414 fiber (less than 1.5mm) 75 parts by weight
  • the above-mentioned content of aramid fiber 1414 was disintegrated by a hydraulic disintegrator at a concentration of 1% by weight, and further beaten by disc grinding to finally form a slurry having a decomposing degree of 10 to 70 ° SR slurry A.
  • the above-mentioned content of aramid fiber 1414 was decomposed in a hydraulic disintegrator and further beaten by disc grinding to obtain a decomposing degree of 10 to 75.
  • SR slurry B, then slurry A and slurry B are mixed with water in the batching tank to form a slurry which can be added to the former tank of the former, and an appropriate amount of polyethylene oxide is added to the slurry tank.
  • the slurry is adjusted to the net indenter through the slurry tank, and the slurry is uniformly distributed to the forming wire in the headbox, and the excess slurry is overflowed to the pre-pool.
  • the slurry runs along the forming wire, most of the water is filtered out of the slurry by the action of the volt rolls.
  • the wet slab exits the surface of the former, passes through the felt, and further removes moisture through the vacuum box to the wet press, and enters the drying section.
  • the remaining moisture is removed, and then hot-rolled by a hot rolling mill to control the hot rolling line pressure to 10 to 120 kg/cm and the hot rolling temperature to be in the range of 150 to 300 °C.
  • the hot-rolled battery separator is further shaped by a calender to achieve a satisfactory result in the density of the battery separator, the surface characteristics of the battery separator, and the stiffness of the battery separator. The results are shown in Table 1:
  • the preparation method of the battery separator is the same as that in the first embodiment, and the results obtained are shown in Table 2:
  • the battery separator of this Example 3 was prepared in the following parts by weight:
  • Aramid 1414 precipitated fiber 35 parts by weight
  • the preparation method of the battery separator is the same as that in the first embodiment, and the test results obtained are shown in Table 3:
  • the battery separator of this example 4 was prepared in the following proportions:
  • Aramid 1414 fiber (less than 1.5mm) 25 parts by weight
  • the preparation method of the battery separator is the same as that in the first embodiment, and the test results obtained are shown in Table 4:
  • the battery separator of the present example 5 was prepared in the following parts by weight:
  • Example 1 For Example 1, aramid 1313 fibrid was used instead of aramid 1414 fibrid, and the rest of the steps were carried out in the same manner as in Example 1. The test results are shown in Table 5:
  • the aramid fiber 1314 was used to replace the aramid fiber 1414.
  • the rest of the steps were carried out in the same manner as in Example 1.
  • the test results are shown in Table 6:
  • the aramid fiber 1414 was used to replace the aramid fiber 1414, and the aramid fiber 1314 was used to replace the aramid fiber 1414.
  • the remaining steps were carried out in the same manner as in the first embodiment.
  • the test results are shown in the table. 7:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)

Description

一种基于芳纶纤维的电池隔膜及其制备方法
技术领域
本发明涉及离子电池的隔膜技术,尤其涉及一种基于芳纶纤维的电池隔膜 及其制备方法。 背景技术
自 20世纪 90年代初索尼(SONY )公司开发成功锂离子电池以来, 锂离 子电池以其能量密度高、循环寿命长和电压高等优异的电性能而获得了迅速的 发展。 目前已经广泛应用于手机、 便携式电脑、 照相机、 摄像机等电子产品领 域, 而且应用领域仍在不断扩展之中。 锂离子电池由正负极、 电解质和隔膜组 成。 其中, 隔膜的一个重要功能是隔离正负极并阻止电池内电子穿过, 同时能 够允许离子的通过,从而完成在电化学充放电过程中锂离子在正负极之间的快 速传输。 隔膜性能的优劣直接影响着电池的放电容量和循环使用寿命。
目前, 隔膜用微孔膜的制备方法可分为干法(熔融拉伸, MSCS )和湿法 (热致相分离, TIPS )两种技术。 上述两种方法都包括至少一个取向步骤使薄 膜产生孔隙并提高拉伸强度。熔融拉伸法制膜过程中,影响膜结构的因素有熔 融牵伸比、挤出温度与热处理温度等工艺条件,分子取向度受熔融牵伸比与挤 出温度的影响, 薄膜结晶性受熔融牵伸比与热处理温度的影响, 制膜过程中不 易调控。 而热致相分离法的制膜过程容易调控, 可较好地控制孔径、 孔径分布 和孔隙率, 但制备过程中需要大量的溶剂, 容易造成环境污染, 与熔融拉伸法 相比工艺相对复杂。 上述两种制模材料为聚乙烯、 聚丙烯等聚烯烃塑料, 其耐 热性较差, 严重影响了电池隔膜在更广泛领域中的应用。
综上可知, 现有电池隔膜技术在实际使用上, 显然存在不便与缺陷, 所以 有必要加以改进。 发明内容
针对上述的缺陷,本发明的目的在于提供一种基于芳纶纤维的电池隔膜及 其制备方法, 该电池隔膜以超短芳纶纤维为主, 配加芳纶沉析纤维抄造而成; 所述电池隔膜具有更优异的综合性能, 即优异的耐温性能、 高强度、 耐疲劳性 能、 低变形、 耐火阻燃性能、 耐化学腐蚀性能等优点。
已有普遍采用的芳纶短纤维(结构纤维)加芳纶沉析纤维(粘接纤维), 并在高温、 高压下轧制而成的芳纶纤维纸的制造技术,如果直接应用于电池隔 膜, 其存在透气性低、 孔径大、 孔径分布不均等缺陷。 本发明则采用超短芳纶 纤维, 并通过打浆的微纤化处理, 同时调整芳纶沉析纤维的配比和热轧工艺, 使芳纶纸的透气度和孔隙率与塑料隔膜相当, 达到了电池隔膜的使用要求。
本发明公开了一种基于芳纶纤维的电池隔膜,该电池隔膜应用于离子电池
(优选为锂离子电池) 中, 由 65〜97重量份的超短芳纶(1414或者 1313 ) 紆 维和 3〜35 重量份的芳纶( 1414或者 1313 )沉析纤维组成, 其中超短芳纶纤 维的纤维长度小于 1.5mm (毫米)。
本发明还公开了一种所述基于芳纶纤维的电池隔膜的制备方法,所述制备 方法主要包括配料制浆、 抄造成形、 干燥并预热、 高温热轧等步骤。
在配料制浆步骤中,将 65~97重量份的芳纶 1414纤维或者芳纶 1313纤维 进行切短、 疏解和打浆, 按重量份用水稀释, 制得成浆叩解度为 10 ~ 70。SR的 浆料 A, 所述浆料 A 中芳纶 1414或者 1313 纤维被微纤化成纤维长度小于 1.5mm的超短芳纶纤维。 将 3〜35 重量份的芳纶 1414沉析纤维或者芳纶 1313 沉析纤维进行疏解和打浆, 按重量份用水稀释, 制得成浆叩解度为 10 ~ 75。SR 的浆料 B。 最后将两种浆料 A和 B在配浆池中混合, 进而形成能够添加至成 型器网前箱的混合浆料。
按照本发明的一方面, 对芳纶 1414纤维或者芳纶 1313纤维长丝经切短、 疏解后, 可用槽式打浆机或盘磨或大锥度精浆机进行打浆,控制打浆压力和浓 度, 最终成浆叩解度 10 ~ 70°SR, 纤维长度小于 1.5mm的超短芳纶纤维。按照 本发明的又一方面,对芳纶 1414沉析纤维或者芳纶 1313沉析纤维进行疏解后, 可用槽式打浆机或盘磨或大锥度精浆机进行打浆,控制打浆压力和浓度, 最终 成浆叩解度 10 ~ 75。SR。
在本发明电池隔膜的制备方法中将所述浆料 A和浆料 B混合形成混合浆 料步骤中, 因芳纶纤维和芳纶沉析纤维的憎水性, 在水中极难分散。 为了促进 上述纤维在水中的分散, 可在所述液体浆料中加入 0 ~ 10重量份的防絮凝剂, 增加纤维在浆料中的运动阻力, 延緩纤维的缠绕、 絮聚, 使纤维在水中的悬浮 分散得到改进,从而达到提高电池隔膜匀度的目的。本发明所用的防絮凝剂优 选为聚氧化乙烯。 所述防絮凝剂单独使用, 视合成纤维浆液粘度和膜的型号、 规格、 膜成型器类型调整用量。
在抄造成形步骤中, 釆用圆网成型器, 将浆料湿法抄造成型。 所述圆网成 型器为多圆网成型器或单圆网成型器, 经稳浆箱调节浆料上网压头,在流浆箱 中浆被均勾分布到成形网上, 而多余浆料经溢流至抄前池。
在干燥预热步骤中, 采用烘道式干燥装置或多烘缸式干燥装置, 前者干燥 后的坯料疏松, 后者干燥后的坯料较紧密。 烘道式干燥装置分多温区, 湿坯料 借助传送带在烘道内运行, 到达烘道的中后段, 坯料中的水分可全部排除掉, 水蒸气经抽湿风机排出, 而在烘道的末段, 烘道内温度可达到粘接纤维(芳纶 沉析纤维) 的熔融温度。
在高温热轧步骤中,在接近沉析纤维缩聚温度点时热轧, 经热轧机一次热 轧成型, 控制热轧线压力 10 ~ 120kg/cm (千克 /厘米), 轧辊表面温度即热轧温 度为 130 ~ 300°C, 轧速为 3 ~ 30m/min (米 /分钟), 使两种纤维之间有机地接 合, 形成了电池隔膜所具备的强度。 采用限位热轧方式, 控制纤维膜厚度在 0.03 - 0.06mm, 密度在 0.30 ~ 0.65g/cm3 (克 /立方厘米)之间, 这样形成纤维 膜的孔隙率范围在 28 ~ 75%, 透气度 Gurley值 1 ~ 25s (秒)。 所述 Gurley用 来表征空气透过性,是以一定压力一定体积的气体透过一定面积的样品所消耗 的时间,单位秒。 经上述高温热轧制成的芳纶纤维电池隔膜还可以进行切边整 形等后续工作。
本发明用具有耐高温的芳纶纤维制成的电池隔膜,克服现有塑料隔膜不耐 温的弱点,同时可通过调整坯料的纤维配方和成形工艺以满足电池隔膜的透气 性和孔隙率要求,避免了基于塑料的电池隔膜制造过程中,冷却速率对分相过 程的影响; 聚合物溶液浓度、 分子量、 溶剂分子的运动与结晶能力、 成核剂对 膜孔结构形态的影响; 避免了因溶剂与聚合物的相互作用影响到的体系相图, 进而影响相分离的历程, 即相互作用大则易发生液 -固相分离, 生成球晶结构; 相互作用小则易发生, 得到蜂窝状结构。
本发明的电池隔膜达到了离子电池隔膜的要求: 具有电子绝缘性,保证正 负极的机械隔离; 有一定的孔径和孔隙率, 保证低的电阻和高的离子电导率, 对离子(例如锂离子 Li+ )有很好的透过性。 由于电解质的溶剂为强极性的有 机化合物, 隔膜必须耐电解液腐蚀, 有足够的化学和电化学稳定性; 对电解液 的浸润性好并具有足够的吸液保湿能力;具有足够的力学性能,包括穿刺强度、 拉伸强度等; 空间稳定性和平整性好; 热稳定性和自动关断保护性能好。 本发 明基于芳纶纤维的电池隔膜完全可用于各种离子电池的制造中。
本发明将芳纶纤维和芳纶沉析纤维, 经特殊的湿法成形, 高温热轧定型制 成隔膜材料, 针对不同的电池隔膜厚度, 可以获得不同性能优良的隔膜。 工艺 过程中防絮凝剂的加入使纤维能充分分散;较长的芳纶纤维及其较短的芳纶浆 粕或沉析纤维的参配,可较好地解决电池隔膜穿刺强度和抄造勾度对纤维长度 的要求。
本发明综合了芳纶纤维和沉析纤维各自的优势, 制备了一种芳纶 1414纤 维和芳纶 1414沉析纤维或芳纶 1313沉析纤维纤维抄造, 或芳纶 1313纤维和 芳纶 1414沉析纤维或芳纶 1313沉析纤维纤维抄造成一体的电池隔膜。特别是 依据本发明优选组分之配比制备的电池隔膜, 较之现有技术生产的塑料隔膜, 在撕裂强度、 耐温等性能方面表现优异。
本发明的电池隔膜具有轻质、 柔软、 高比强、 高比模、 耐高温、 耐疲劳、 阻燃、 抗化学腐蚀、 良好的抗辐射性、 低热膨胀系数、 生物相溶性好等优异特 性, 可被广泛用于机电、 航空、 航天等高技术领域。 具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
材料来源:
芳纶 1414纤维: 日本帝人公司生产;
芳纶 1414沉析纤维: 日本帝人公司生产;
芳纶 1313纤维: 广东新会公司生产;
芳纶 1313沉析纤维: 成都龙邦公司生产;
【实施例 1 ]
按下述比例配制本实施例 1电池隔膜: 芳纶 1414纤维(小于 1.5mm ) 75重量份
芳纶 1414沉析纤维 25重量份
将上述含量的芳纶 1414纤维按 1%重量浓度经水力疏解机疏解后,通过盘 磨进一步打浆, 最终成浆叩解度 10 ~ 70°SR浆料 A。 将上述含量芳纶 1414沉 析纤维按在水力疏解机中疏解,并通过盘磨进一步打浆,最终制成叩解度 10 ~ 75。SR浆料 B,然后将浆液 A和浆液 B在配料池中加水混合均勾,从而形成能 够添加至成型器网前箱的浆料,在稳浆箱中加入适量的聚氧化乙烯。 经稳浆箱 调节浆液上网压头,在流浆箱中浆液被均勾分布到成形网上, 多余浆液经溢流 至抄前池。 当浆液沿成形网运行时,借助伏辊的作用,大部分水从浆料中滤出, 湿浆坯离开成型器网面, 通过毛毯, 经真空箱到湿压榨进一步脱去水分, 进入 干燥部,烘去余下水分, 随后经热轧机一次热轧成型,控制热轧线压力为 10 ~ 120kg/cm, 控制热轧温度 150 ~ 300°C范围内。 热轧后的电池隔膜经压光机进 一步整型, 使电池隔膜的密度、 电池隔膜的表面特性、 电池隔膜的挺度达到令 人满意的效果。 得到结果见表 1 :
表 1
项 目 单 位 测试结果
定 量 g m2 32.0
厚 度 mm 0.050
密 度 g/m3 0.65
抗张强度 KN/m MD 1.80
Gurley s 6
孔隙率 % 44
【实施例 2】
按下述重量份配制本实施例 2 电池隔膜:
芳纶 1414纤维 (小于 1.5mm ) 97重量份
芳纶 1414沉析纤维 3重量份
电池隔膜的制备方法与实施例 1相同, 得到的结果见表 2:
表 2 项 目 单 位 测试结果 定 量 g m2 35.0
厚 度 mm 0.059
密 度 g/m3 0.59
抗张强度 KN/m MD 0.20
Gurley s 2
孔隙率 % 70
【实施例 3 ]
按下述重量份配制本实施例 3 电池隔膜:
芳纶 1414纤维(小于 1.5mm ) 65重量份
芳纶 1414沉析纤维 35重量份
电池隔膜的制备方法与实施例 1相同, 得到的测试结果见表 3:
表 3
项 目 单 位 测试结果 定 量 g m2 35.0
厚 度 mm 0.060
密 度 g/m3 0.58
抗张强度 KN/m MD 2.10
Gurley s 8
孔隙率 % 39
【实施例 4]
按下述比例配制本实施例 4 电池隔膜:
芳纶 1414纤维 (小于 1.5mm ) 25重量份
芳纶 1414沉析纤维 75重量份
电池隔膜的制备方法与实施例 1相同, 得到的测试结果见表 4:
表 4
项 目 单 位 测试结果 定 量 g/m2 35.0
厚 度 mm 0.055
密 度 g m3 0.64
抗张强度 KN/m MD 2.60
Gurley s 17
孔隙率 % 28
【实施例 5】
按下述重量份配制本实施例 5电池隔膜:
芳纶 1414纤维 (小于 1.5mm ) 75重量份
芳纶 1313沉析纤维 25重量份
针对实施例 1, 用芳纶 1313沉析纤维替代芳纶 1414沉析纤维, 其余步骤 按实施例 1相同的制备方法进行, 所得到的测试结果见表 5:
表 5
项 目 单 位 测试结果
定 量 g/m2 36.0
厚 度 mm 0.055
密 度 g m3 0.65
抗张强度 KN/m MD 1.70
Gurley s 8
孔隙率 % 45 ί实施例 6]
按下述重量份配制本实施例 6电池隔膜:
芳纶 1313纤维 (小于 1.5mm ) 80重量份
芳纶 1414沉析纤维 20重量份
针对实施例 1, 用芳纶 1313纤维替代芳纶 1414纤维, 其余步骤按实施例 1相同的制备方法进行, 所得到的测试结果见表 6:
表 6 项 目 单 位 测试结果
定 量 g m2 32.0
厚 度 mm 0.050
密 度 g/m3 0.65
抗张强度 KN/m MD 1.40
Gurley s 5
孔隙率 % 50
【实施例 7]
按下述重量份配制本实施例 6电池隔膜:
芳纶 1313纤维 (小于 1.5mm ) 70重量份
芳纶 1313沉析纤维 30重量份
针对实施例 1, 用芳纶 1313纤维替代芳纶 1414纤维, 并用芳纶 1313沉 析纤维代替芳纶 1414沉析纤维, 其余步骤按实施例 1相同的制备方法进行, 所得到的测试结果见表 7:
表 7
项 目 单 位 测试结果
定 量 g m2 32.0
厚 度 mm 0.050
密 度 g m3 0.65
抗张强度 KN/m MD 1.45
Gurley s 3
孔隙率 % 57 当然, 本发明还可有其它多种实施例,在不背离本发明精神及其实盾的情 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims

权利要求书
1、 一种基于芳纶纤维的电池隔膜, 该电池隔膜应用于离子电池中, 其特 征在于, 所述电池隔膜由下述组分组成:
超短芳纶纤维 65〜97重量份;
芳纶沉析纤维 3~35重量份;
其中, 所述超短芳纶纤维的纤维长度小于 1.5mm。
2、 根据权利要求 1所述的电池隔膜, 其特征在于, 所述超短芳纶纤维是 超短芳纶 1414纤维或者超短芳纶 1313纤维; 所述芳纶沉析纤维是芳纶 1414 沉析纤维或芳纶 1313沉析纤维。
3、 根据权利要求 2所述的电池隔膜, 其特征在于, 所述电池隔膜由下述 组分组成:
超短芳纶 1414纤维 65~97重量份;
芳纶 1414沉析纤维 3~35重量份。
4、 根据权利要求 2所述的电池隔膜, 其特征在于, 所述电池隔膜由下述 组分组成:
超短芳纶 1414纤维 65〜97重量份;
芳纶 1413沉析纤维 3~35重量份。
5、 根据权利要求 2所述的电池隔膜, 其特征在于, 所述电池隔膜由下述 组分组成:
超短芳纶 1413纤维 65〜97重量份;
芳纶 1414沉析纤维 3〜35重量份。
6、 根据权利要求 2所述的电池隔膜, 其特征在于, 所述电池隔膜由下述 组分组成:
超短芳纶 1413纤维 65~97重量份;
芳纶 1413沉析纤维 3〜35重量份。
7、 根据权利要求 1所述的电池隔膜, 其特征在于, 所述电池隔膜的透气 度 Gurley为 1 ~ 25秒。
8、 根据权利要求 1所述的电池隔膜, 其特征在于, 所述电池隔膜的孔隙 率为 28 ~ 75%。
9、 根据权利要求 1所述的电池隔膜, 其特征在于, 所述电池隔膜的厚度 为 0.03 ~ 0.06mm。
10、根据权利要求 1所述的电池隔膜, 其特征在于, 所述电池隔膜的密度 为 0.30 ~ 0.65g/cm3
11、一种基于芳纶纤维的电池隔膜的制备方法, 该电池隔膜应用于离子电 池中, 其特征在于, 所述电池隔膜由下述组分组成:
超短芳纶纤维 65~97重量份;
芳纶沉析纤维 3~35 重量份;
其中, 所述超短芳纶纤维的纤维长度小于 1.5mm;
所述制备方法包括下述步骤:
1 )将等同所述超短芳纶纤维含量的芳纶纤维进行切短、 疏解和打浆, 制 得成浆叩解度为 10 ~ 70°SR的浆料 A, 所述浆料 A中所述芳纶纤维被微纤化 成纤维长度小于 1.5mm的超短芳纶纤维;
2 )将上述含量的芳纶沉析纤维进行疏解和打浆, 制得成浆叩解度为 10 ~ 75。SR的浆料 B;
3 )将所述浆料 A和浆料 B混合形成混合浆料;
4 )将所述混合浆料抄造成形;
5 )干燥并预热;
6 ) 高温热轧得到所述电池隔膜。
12、 根据权利要求 11所述的制备方法, 其特征在于, 所述步骤 1 )或步 骤 2 )中所述芳纶纤维和芳纶沉析纤维被疏解后, 用槽式打浆机或盘磨或大锥 度精浆机进行打浆, 最终制得所述浆料 A或浆料 B。
13、 根据权利要求 11 所述的制备方法, 其特征在于, 所述步骤 3 ) 中还 包括在所述混合浆料中加入防絮凝剂的步骤。
14、 根据权利要求 11 所述的制备方法, 其特征在于, 所述步骤 4 ) 中采 用圓网成型器将所述混合浆料湿法抄造成形,所述圆网成型器为多圆网成型器 或单圆网成型器。
15、 根据权利要求 11所述的制备方法, 其特征在于, 所述步骤 6 ) 中热 轧温度为 130 ~ 300。C, 热轧线压力为 10 ~ 120kg/cm, 轧速为 3 ~ 30米 /分钟。
16、根据权利要求 11~15任一项所述的制备方法, 其特征在于, 所述超短 芳纶纤维是超短芳纶 1414纤维或者超短芳纶 1313纤维;所述芳纶沉析纤维是 芳纶 1414沉析纤维或芳纶 1313沉析纤维。
17、根据权利要求 11~15任一项所述的制备方法, 其特征在于, 所述电池 隔膜的透气度 Gurley为 1 ~ 25秒。
18、根据权利要求 1卜 15任一项所述的制备方法, 其特征在于, 所述电池 隔膜的孔隙率为 28 ~ 75%。
19、根据权利要求 1卜 15任一项所述的制备方法, 其特征在于, 所述电池 隔膜的厚度为 0.03 ~ 0.06mm。
20、根据权利要求 11~15任一项所述的制备方法, 其特征在于, 所述电池 隔膜的密度为 0.30 ~ 0.65g/cm3
PCT/CN2011/001015 2010-06-21 2011-06-20 一种基于芳纶纤维的电池隔膜及其制备方法 WO2011160431A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010204780.3 2010-06-21
CN201010204780A CN101867030A (zh) 2010-06-21 2010-06-21 基于芳纶纤维的电池隔膜
CN201010204765.9 2010-06-21
CN2010102047659A CN101872852B (zh) 2010-06-21 2010-06-21 基于芳纶纤维的电池隔膜的制备方法

Publications (1)

Publication Number Publication Date
WO2011160431A1 true WO2011160431A1 (zh) 2011-12-29

Family

ID=45370854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001015 WO2011160431A1 (zh) 2010-06-21 2011-06-20 一种基于芳纶纤维的电池隔膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2011160431A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108521A4 (en) * 2014-02-19 2017-08-16 The Regents of The University of Michigan Dendrite-suppressing ion-conductors from aramid nanofibers withstanding extreme battery conditions
CN114552118A (zh) * 2022-01-25 2022-05-27 华南理工大学 一种纤维素基钠离子电池隔膜及其制备方法
CN115207559A (zh) * 2022-06-28 2022-10-18 陈克复 一种高性能芳纶隔膜及其制备方法与应用
CN115787123A (zh) * 2022-09-16 2023-03-14 株洲时代华先材料科技有限公司 一种长度分布集中的高保水值间位芳纶沉析纤维及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295191A (ja) * 2000-04-10 2001-10-26 Teijin Ltd 芳香族ポリアミド繊維紙
JP2002302837A (ja) * 2001-04-05 2002-10-18 Teijin Ltd 染色性の改良された全芳香族ポリアミド繊維構造物
JP2003105126A (ja) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd 繊維の微細粉砕物およびその製造方法
EP1310593A1 (en) * 2000-08-04 2003-05-14 Teijin Limited Heat-resistant fibrous paper
CN101867030A (zh) * 2010-06-21 2010-10-20 深圳市龙邦新材料有限公司 基于芳纶纤维的电池隔膜
CN101872852A (zh) * 2010-06-21 2010-10-27 深圳市龙邦新材料有限公司 基于芳纶纤维的电池隔膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295191A (ja) * 2000-04-10 2001-10-26 Teijin Ltd 芳香族ポリアミド繊維紙
EP1310593A1 (en) * 2000-08-04 2003-05-14 Teijin Limited Heat-resistant fibrous paper
JP2002302837A (ja) * 2001-04-05 2002-10-18 Teijin Ltd 染色性の改良された全芳香族ポリアミド繊維構造物
JP2003105126A (ja) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd 繊維の微細粉砕物およびその製造方法
CN101867030A (zh) * 2010-06-21 2010-10-20 深圳市龙邦新材料有限公司 基于芳纶纤维的电池隔膜
CN101872852A (zh) * 2010-06-21 2010-10-27 深圳市龙邦新材料有限公司 基于芳纶纤维的电池隔膜的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108521A4 (en) * 2014-02-19 2017-08-16 The Regents of The University of Michigan Dendrite-suppressing ion-conductors from aramid nanofibers withstanding extreme battery conditions
US10651449B2 (en) 2014-02-19 2020-05-12 The Regents Of The University Of Michigan Dendrite-suppressing ion-conductors from aramid nanofibers withstanding extreme battery conditions
CN114552118A (zh) * 2022-01-25 2022-05-27 华南理工大学 一种纤维素基钠离子电池隔膜及其制备方法
CN115207559A (zh) * 2022-06-28 2022-10-18 陈克复 一种高性能芳纶隔膜及其制备方法与应用
CN115207559B (zh) * 2022-06-28 2024-03-22 陈克复 一种高性能芳纶隔膜及其制备方法与应用
CN115787123A (zh) * 2022-09-16 2023-03-14 株洲时代华先材料科技有限公司 一种长度分布集中的高保水值间位芳纶沉析纤维及其制备方法

Similar Documents

Publication Publication Date Title
Sheng et al. Ultra-light cellulose nanofibril membrane for lithium-ion batteries
WO2016095771A1 (zh) 具有热闭孔功能复合纳米纤维隔膜、制备方法和储能器件
CN101872852B (zh) 基于芳纶纤维的电池隔膜的制备方法
WO2005100688A1 (ja) アラミド薄葉材およびそれを用いた電気電子部品
CN104885257A (zh) 制造具有纳米纤维和微米纤维成分的单层锂离子电池隔膜的方法
CN105870383B (zh) 一种电池电容器隔膜及其制备方法
CN102522515A (zh) 锂二次电池用纤维素/聚合物纤维复合隔膜材料及其制备方法
CN104871341A (zh) 具有纳米纤维和微米纤维成分的通用单层锂离子电池隔膜
WO2011160431A1 (zh) 一种基于芳纶纤维的电池隔膜及其制备方法
JP2011035373A (ja) 蓄電デバイス用セパレータ
WO2017152731A1 (zh) 一种锂离子电池隔膜的制备方法
WO2018047742A1 (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
TW201332192A (zh) 電化學元件用分隔件及其製造方法
CN101867030A (zh) 基于芳纶纤维的电池隔膜
CN106654122A (zh) 一种动力锂离子电池隔膜的制备方法
JP4577819B2 (ja) 湿式不織布、湿式不織布の製造方法、及び電気二重層キャパシタ用セパレータ、リチウムイオン二次電池用セパレータ、並びに電気二重層キャパシタ、リチウムイオン二次電池
CN103515562A (zh) 一种新型锂离子电池隔膜及其制备方法
CN106592322A (zh) 一种碱性电池隔膜纸的制备方法
WO2009060989A1 (ja) 薄葉材、その製造方法及びそれを用いた電気・電子部品
CN114243218A (zh) 一种膜面平整的隔膜及其制备方法和应用
CN103700800B (zh) 一种锂离子电池隔膜制作方法
CN106531929A (zh) 一种陶瓷包覆细菌纤维素多孔薄膜的干燥工艺
CN106229448B (zh) 一种锂电池隔膜纸及其制备方法
WO2023045312A1 (zh) 一种高孔均匀性微多孔膜及其制备方法、电池
CN116130888A (zh) 一种复合隔膜及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11797462

Country of ref document: EP

Kind code of ref document: A1