WO2011160399A1 - 检测基站天线所在位置的空间热噪声的方法及设备 - Google Patents

检测基站天线所在位置的空间热噪声的方法及设备 Download PDF

Info

Publication number
WO2011160399A1
WO2011160399A1 PCT/CN2010/079662 CN2010079662W WO2011160399A1 WO 2011160399 A1 WO2011160399 A1 WO 2011160399A1 CN 2010079662 W CN2010079662 W CN 2010079662W WO 2011160399 A1 WO2011160399 A1 WO 2011160399A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
thermal noise
frequency
spatial thermal
signal
Prior art date
Application number
PCT/CN2010/079662
Other languages
English (en)
French (fr)
Inventor
李京海
罗军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to IN1919DEN2012 priority Critical patent/IN2012DN01919A/en
Publication of WO2011160399A1 publication Critical patent/WO2011160399A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a device for detecting spatial thermal noise in a working frequency band where a base station antenna is located.
  • the base station system includes a duplexer and a transceiver.
  • the transceiver includes a radio frequency analog circuit and a data intermediate frequency circuit.
  • the Received Signal Strength Indicator (RSI) of the signal received in the space near the base station antenna can be Detected in the digital intermediate frequency circuit of the reverse receiver link of the transceiver.
  • RSSI Received Signal Strength Indicator
  • the detected RSSI includes the signal strength of the two parts of the signal, one is the signal strength of the carrier signal transmitted through the base station antenna, and the other is the signal strength of the spatial thermal noise (also referred to as the noise floor) where the base station antenna is located.
  • the first method for detecting spatial thermal noise is to use a measuring instrument to perform a field measurement at the base station antenna to determine the signal strength of the spatial thermal noise in the signal received in the applied frequency band.
  • the second method for detecting spatial thermal noise is: when the base station system does not have a terminal (that is, when the base station system is in an idle state), since the signals received by the base station antenna are all spatial thermal noise, the base station can be detected.
  • the RSSI of the signal received by the antenna in the idle state determines the spatial thermal noise.
  • the spatial thermal noise can only be detected under certain conditions, and real-time detection of spatial thermal noise cannot be realized. Since the spatial thermal noise state near the base station antenna cannot be known in real time, In this way, the wireless environment of the base station antenna cannot be monitored and maintained in real time, and the high-performance operation of the base station cannot be guaranteed. Summary of the invention
  • the embodiments of the present invention provide a method and a device for detecting spatial thermal noise of a location of a base station antenna, which are used to solve the problem that the space thermal noise cannot be detected in real time in the prior art.
  • a method for detecting spatial thermal noise of a location of a base station antenna comprising: determining a detection frequency band in an idle state in a working frequency band of a transceiver in a base station, and establishing a baseband processing link by using the detection frequency band;
  • a mixed signal including a carrier signal and spatial thermal noise on the baseband processing link; filtering the received mixed signal according to a preset spatial thermal noise center frequency and bandwidth to obtain spatial thermal noise in the mixed signal ; as well as
  • a signal strength of spatial thermal noise in the detected frequency band is detected.
  • a device for detecting spatial thermal noise at a location of a base station antenna comprising: a frequency band determining module configured to determine a detection frequency band in an idle state in a working frequency band of the transceiver in the base station;
  • a link establishing module configured to establish a baseband processing link by using the detected frequency band
  • a signal receiving module configured to receive a mixed signal including a carrier signal and spatial thermal noise on the baseband processing link
  • a filtering module configured to filter the mixed signal received by the signal receiving module according to a preset spatial thermal noise center frequency and bandwidth to obtain spatial thermal noise in the mixed signal; and a detecting module configured to detect the detection Signal strength of spatial thermal noise in the band.
  • a baseband processing link is newly constructed in a detecting frequency band in an idle state in the working frequency band of the transceiver in the base station, and the mixed signal including the carrier signal and the spatial thermal noise is filtered by using the newly constructed baseband processing link.
  • the carrier information in the mixed signal is filtered out, and the obtained signal strength of the spatial thermal noise is detected to achieve the purpose of detecting the signal intensity of the spatial thermal noise in the detected frequency band in real time.
  • BRIEF abstract 1 is a schematic diagram of a baseband processing link of a current receiver
  • FIG. 2 is a schematic structural diagram of a baseband processing link according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing the steps of a method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a device according to Embodiment 2 of the present invention.
  • an embodiment of the present invention uses a baseband processing link of a conventional receiver to construct a baseband processing link in an idle state in a working frequency band of a transceiver in a base station, and utilizes a new baseband processing link.
  • the newly-built baseband processing link filters the mixed signal including the carrier signal and the spatial thermal noise, filters out the carrier information in the mixed signal, and detects the signal intensity of the spatial thermal noise obtained after filtering, because the spatial thermal noise is The entire working frequency band is evenly distributed. Therefore, detecting the signal strength of the spatial thermal noise in the detection frequency band can determine the signal intensity of the spatial thermal noise in the working frequency band of the transceiver, thereby realizing the location of the base station antenna. Real-time measurement of the signal strength of spatial thermal noise.
  • FIG. 1 is a schematic diagram of a baseband processing link of a current receiver, assuming that the number of available carriers of the base station is 4, four baseband processing links are set in the receiver, and each baseband processing link occupies a certain frequency band, and each A baseband processing link outputs a carrier signal of a carrier obtained by processing the baseband processing link through multiple operations and filtering.
  • the specific operation is: receiving a mixed signal including a carrier signal and a carrier side space thermal noise through the base station antenna, and the mixed signal occupies the working frequency band of the receiver.
  • the mixed signal is amplified and adjusted by the reverse receiver link and transmitted to an analog-to-digital converter (ADC). After the converted mixed signal is converted into a wideband digital signal by the ADC, the mixed digital signal is used.
  • the signal branches are output to each baseband processing link.
  • Each baseband processing link includes a digital mixer and a Numerical Controlled Oscillator (NCO) circuit called an NCO circuit.
  • NCO Numerical Controlled Oscillator
  • the mixed signal received by the baseband processing link 1 occupies the working frequency band. Therefore, the center frequency of the mixed signal is the center frequency of the working frequency band.
  • the digital mixer and the NCO circuit in the baseband processing link 1 convert the center frequency of the received mixed signal to the baseband processing link 1 occupied frequency band.
  • the central frequency point is obtained, and the converted wideband digital signal is obtained; then the converted wideband digital signal is filtered by a band pass filter to obtain a digital signal of the carrier 1. Since the band pass filter F1 in the baseband processing link 1 is configured according to the preset center frequency and bandwidth of the carrier 1, after entering the band pass filter of the baseband processing link 1, only the carrier signal of the baseband carrier 1 is obtained. Output, the remaining signals are filtered.
  • the embodiment of the present invention improves the structure of the foregoing baseband processing link, not only filtering the carrier signal, but also multi-branching a baseband processing link that filters out spatial thermal noise, which is received by the branched baseband processing link.
  • the mixed signal including the carrier signal and the spatial thermal noise is filtered, and the pure spatial thermal noise is output, and the spatial thermal noise of the output is detected to achieve the purpose of detecting the signal intensity of the spatial thermal noise at the position of the base station antenna in real time.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic structural diagram of a baseband processing link according to Embodiment 1 of the present invention.
  • the first embodiment of the present invention uses a detection frequency band in an idle state to construct a baseband processing link, and uses the detection.
  • the frequency band is filtered to obtain pure spatial thermal noise.
  • FIG. 3 A schematic diagram of the method of the first embodiment of the present invention is shown in FIG. 3, and includes the following steps:
  • Step 101 Determine a working frequency band of the transceiver in the base station.
  • Step 102 Determine a detection frequency band from an idle frequency band in the working frequency band.
  • the configuration bandwidth of the base station duplexer and the transceiver is larger than the actual bandwidth required.
  • the bandwidth of a transceiver of a code division multiple access (CDMA) base station is generally not less than 11M, and the number of carriers commonly used by a base station in an actual environment is 2 carriers, 4 carriers, or 8 carriers. Even when the number of carriers is 8, the 11M bandwidth carries the carrier signal of 8 carriers and the 1.16M idle band that does not carry the carrier signal remains. Since the 11M application band only allows the transmission of the carrier signal in the area covered by the base station, there is only spatial thermal noise in the idle frequency band.
  • CDMA code division multiple access
  • the idle frequency band in the working frequency band may be determined according to the working frequency band and the frequency point of each carrier signal in the mixed signal.
  • the working frequency band of the CDMA base station duplexer configuration is 824MHz ⁇ 835MHz, the bandwidth is 11M, the number of carriers is 4, and the frequency of each carrier is 37MHz, 78MHz, 119MHz and 160MHz, then the idle frequency band in the duplexer band can be determined as 824MHz ⁇ 825.49MHz and 829.8MHz ⁇ 835MHz.
  • a detection frequency band of a certain bandwidth may be determined from the idle frequency band. For example, a detection frequency band with a center frequency point of 824.8 MHz and a bandwidth of 1 M is determined from an idle frequency band of 824 MHz to 825.49 MHz.
  • Step 103 Establish a baseband processing link by using the detection frequency band.
  • the baseband processing link 1 to the baseband processing link 4 in FIG. 2 can be used as a processing link of a carrier signal, and the newly constructed baseband processing link n can be regarded as a processing link of spatial thermal noise.
  • the new baseband processing link also includes a digital mixer and NCO circuit (called NCOn) and a bandpass filter Fln.
  • the related information of the baseband processing link n configured in the OMC background is: the bandwidth of the detection frequency band occupied by the baseband processing link n, the center frequency point, the NCO local frequency frequency point data of the digital mixer circuit determined according to the center frequency point, and The baseband processes the information of the bandpass filter in link n.
  • the NCO local oscillation frequency point data is determined by the following method: Because in the frequency conversion scheme, according to the central frequency point before the frequency conversion and the NCO local oscillation frequency point data After the frequency conversion operation, the center frequency point after the frequency conversion can be obtained. Therefore, in this step, the NCO local frequency point data can be derived according to the central frequency point of the known working frequency band and the center frequency point of the detection frequency band, and the NCO is derived. The local frequency data is stored in the OMC background.
  • the information of the bandpass filter in the baseband processing link n is the center frequency of the spatial thermal noise and the bandwidth of the spatial thermal noise, and enters the bandpass filter.
  • the information of the band pass filter may be determined according to the bandwidth and requirements of the actual idle frequency band, and may be a preset fixed value or an adjustable variable, which is configured by the OMC background.
  • the mixed signal including the carrier signal and the spatial thermal noise is processed in the manner shown in FIG. 1 and then output to the baseband processing link 1 to the baseband processing link 4 and the baseband processing link n through the ADC branch.
  • the wideband digital signals received by one baseband processing link are the same.
  • the baseband processing link 1 to the baseband processing link 4 still processes the carrier signal in the manner shown in FIG. 1, and after receiving the mixed signal, the baseband processing link n is configured according to the NCO local oscillator that has been configured in the OMC background in step 103.
  • the frequency point data is used to frequency convert the center frequency of the working frequency band, so that the center frequency of the frequency band occupied by the mixed signal after the frequency conversion is the same as the center frequency of the detection frequency band.
  • Step 105 Filter the mixed signal according to a preset center frequency of the spatial thermal noise and a bandwidth of the spatial thermal noise.
  • Step 106 Detect the signal strength of the spatial thermal noise in the filtered detection frequency band.
  • the signal strength of the spatial thermal noise measured in real time can be given to the OMC backend.
  • the working thermal noise of the entire operating frequency band can be further determined after detecting the spatial thermal noise in the detected frequency band in step 106.
  • the working frequency band is 11M bandwidth
  • the detection frequency band is 1M bandwidth
  • the signal intensity of spatial thermal noise in the detection frequency band is X watts
  • the signal intensity of spatial thermal noise in the whole working frequency band is 11 times X watts.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment of the present invention further provides a device for detecting spatial thermal noise of a location of a base station antenna, where the device includes a frequency band determining module 11, a link establishing module 12, a signal receiving module 13, and a filtering module 14.
  • the frequency band determining module 11 is configured to determine a detecting frequency band in an idle state in a working frequency band of the transceiver in the base station;
  • the link establishing module 12 is configured to establish a baseband processing link by using the detecting frequency band a signal receiving module 13 configured to receive a mixed signal comprising a carrier signal and spatial thermal noise on the baseband processing link;
  • the filtering module 14 The method is configured to filter the received mixed signal according to a preset spatial thermal noise center frequency and bandwidth to obtain spatial thermal noise in the mixed signal; and the detecting module 15 is configured to detect the signal intensity of the spatial thermal noise on the detected frequency band.
  • the device further includes a frequency conversion module 16 configured to frequency convert a center frequency point of a working frequency band occupied by the received mixed signal with respect to a center frequency point of the detection frequency band; on the basis, the device
  • the filtering module 14 is configured to filter the mixed signal according to a preset spatial thermal noise center frequency and bandwidth after the frequency conversion module performs frequency conversion on the center frequency of the working frequency band occupied by the mixed signal. Spatial thermal noise in the mixed signal.
  • the frequency band determining module 11 is configured to determine, according to the working frequency band of the transceiver in the base station and the frequency of each carrier signal in the mixed signal received by the base station antenna, the frequency band in the working frequency band is in an idle state, and is in an idle state.
  • a continuous frequency band in which a set bandwidth is determined in the frequency band is used as a detection frequency band.
  • the device further includes a local frequency determination module 17 configured to determine a digital mixer circuit on the baseband processing link according to a center frequency of the operating frequency band and a center frequency of the detection frequency band.
  • the local frequency point data of the device; the frequency conversion module 16 in the device is configured to use the local frequency point data to compare the center frequency of the working frequency band occupied by the mixed signal with respect to the detection frequency band Frequency conversion at the center frequency.
  • the detecting module 15 is further configured to determine a signal strength of spatial thermal noise in a working frequency band of the transceiver in the base station according to a signal strength of spatial thermal noise in the detected frequency band.
  • the device in the second embodiment is a device in the base station capable of implementing the functions involved in the first embodiment.
  • the frequency band determining module 11 may allocate a detection frequency band to the baseband processing link n in FIG. 2; 12 may establish the baseband processing link n in FIG. 2, and store related information of the baseband processing link n in the OMC background; the frequency conversion module 16 may perform frequency conversion by using local oscillator frequency data stored in the OMC background; the filtering module 14 may be The baseband processes the bandpass filter Fln in link n.
  • the method and the device provided by the embodiments of the present invention can measure the signal strength of the spatial thermal noise at the location of the base station antenna in real time, so as to obtain real-time monitoring of the spatial thermal noise state near the base station antenna, and real-time monitoring of the base station antenna wireless environment. Maintenance, ensuring high performance operation of the base station.
  • the present invention filters the mixed signal including the carrier signal and the spatial thermal noise by using the newly constructed baseband processing link, filters out the carrier information in the mixed signal, and detects the signal strength of the obtained spatial thermal noise.
  • the purpose of real-time detection of the signal strength of spatial thermal noise in the detected frequency band can be achieved.

Abstract

本发明公开了一种检测基站天线所在位置的空间热噪声的方法和设备,主要内容包括:利用基站内收发信机的工作频段内的处于空闲状态的一段检测频段新建一基带处理链路,利用该新建的基带处理链路对包含载波信号和空间热噪声的混合信号进行滤波,滤除混合信号中的载波信息,对得到的空间热噪声的信号强度进行检测,以达到实时检测在检测频段内空间热噪声的信号强度的目的。

Description

检测基站天线所在位置的空间热噪声的方法及设备
技术领域
本发明涉及通信领域, 尤其涉及一种检测基站天线所在位置在工作频段 内空间热噪声的方法及设备。
背景技术
基站系统包括双工器和收发信机, 其中, 收发信机包括射频模拟电路和 数据中频电路两部分, 在基站天线附近空间接收到的信号的接收信号强度指 示 ( Received Signal Strength Indicator, RSSI )可在收发信机的反向接收机链 路的数字中频电路中检测。
检测出的 RSSI包括两部分信号的信号强度,一部分是通过基站天线传输 的载波信号的信号强度, 另一部分是基站天线所在位置的空间热噪声 (也称 之为底噪) 的信号强度。
由于基站天线附近的无线环境好坏会直接影响基站是否能够正常运行, 因此, 需要准确地检测基站天线附近空间内在应用频段内的空间热噪声, 进 而根据检测出的空间热噪声状态判断当前基站天线附近的无线环境状态。 目 前, 常用的检测空间热噪声的方法有以下两种:
第一种检测空间热噪声的方法是: 利用测量仪器在基站天线处进行实地 测量, 确定在应用频段内接收到的信号中空间热噪声的信号强度。
第二种检测空间热噪声的方法是: 在基站系统没有接入的终端时(也就 是基站系统处于空闲状态时) , 由于基站天线接收到的信号全部是空间热噪 声, 因此, 可以通过检测基站天线在空闲状态下接收到的信号的 RSSI来确定 空间热噪声。 在上述两种空间热噪声的检测方法中, 只能在特定条件下才能对空间热 噪声进行检测, 无法实现对空间热噪声的实时检测, 由于无法实时获知基站 天线附近的空间热噪声状态, 因此也就无法实时监测、 维护基站天线的无线 环境, 无法保障基站的高性能运行。 发明内容
本发明实施例提供一种检测基站天线所在位置的空间热噪声的方法和设 备, 用以解决现有技术中存在的无法对空间热噪声进行实时检测的问题。
一种检测基站天线所在位置的空间热噪声的方法, 所述方法包括: 在基站内收发信机的工作频段中确定出处于空闲状态的检测频段, 利用 所述检测频段建立一基带处理链路;
在所述基带处理链路上接收包含载波信号和空间热噪声的混合信号; 根据预先设定的空间热噪声中心频点和带宽对接收到的混合信号进行滤 波, 得到混合信号中的空间热噪声; 以及
检测所述检测频段内空间热噪声的信号强度。
一种检测基站天线所在位置的空间热噪声的设备, 所述设备包括: 频段确定模块, 其设置成在基站内收发信机的工作频段中确定出处于空 闲状态的检测频段;
链路建立模块, 其设置成利用所述检测频段建立一路基带处理链路; 信号接收模块, 其设置成在所述基带处理链路上接收包含载波信号和空 间热噪声的混合信号;
滤波模块, 其设置成根据预先设定的空间热噪声中心频点和带宽对信号 接收模块接收到的混合信号进行滤波, 得到混合信号中的空间热噪声; 以及 检测模块, 其设置成检测该检测频段内空间热噪声的信号强度。
本发明实施例利用基站内收发信机的工作频段内的处于空闲状态的一段 检测频段新建一路基带处理链路, 利用该新建的基带处理链路对包含载波信 号和空间热噪声的混合信号进行滤波, 滤除混合信号中的载波信息, 对得到 的空间热噪声的信号强度进行检测, 以达到实时检测在检测频段内空间热噪 声的信号强度的目的。
附图概述 图 1为目前接收机的基带处理链路示意图;
图 2为本发明实施例一的基带处理链路的结构示意图;
图 3为本发明实施例一的方法步骤示意图;
图 4为本发明实施例二的设备结构示意图。
本发明的较佳实施方式
为了实现本发明目的, 本发明实施例在常规的接收机的基带处理链路基 础上, 利用基站内收发信机的工作频段内的处于空闲状态的一段检测频段再 新建一路基带处理链路, 利用该新建的基带处理链路对包含载波信号和空间 热噪声的混合信号进行滤波, 滤除混合信号中的载波信息, 进而对滤波后得 到的空间热噪声的信号强度进行检测, 由于空间热噪声在整个工作频段内是 均匀分布的, 因此, 检测出在检测频段内空间热噪声的信号强度也就能够确 定在收发信机的工作频段内空间热噪声的信号强度, 以此实现对基站天线所 在位置的空间热噪声的信号强度的实时测量。
如图 1所示, 为目前接收机的基带处理链路示意图, 假设基站的可用载 波数量为 4, 则在接收机设置 4条基带处理链路, 每条基带处理链路占用一 定的频段, 每一条基带处理链路通过多项操作与滤波, 输出该基带处理链路 处理后得到的一个载波的载波信号。
以基带处理链路 1得到载波 1的载波信号为例, 具体的操作是: 通过基 站天线接收包含载波信号和载波旁空间热噪声的混合信号, 该混合信号占用 接收机的工作频段。 混合信号经反向接收机链路放大、 调整后传输至模 /数转 换器( Analog-to-Digital Converter, ADC ) , 由 ADC将接收到的混合信号变 换为宽带数字信号后, 将该宽带数字信号分路输出给各条基带处理链路。 每 一路基带处理链路中包含一个数字混频器及数字控制振荡器 (Numerical Controlled Oscillator, NCO ) 电路, 称之为 NCO电路。
基带处理链路 1接收到的混合信号占用的是工作频段, 因此, 该混合信 号的中心频点是工作频段的中心频点。 基带处理链路 1 中的数字混频器及 NCO电路将接收到的混合信号的中心频点变频为基带处理链路 1占用频段的 中心频点, 得到变频后的宽带数字信号; 然后将变频后的宽带数字信号通过 带通滤波器进行过滤, 得到载波 1的数字信号。 由于基带处理链路 1中的带 通滤波器 F1根据预先设定的载波 1的中心频率以及带宽进行配置, 因此, 进 入基带处理链路 1的带通滤波器后, 只有基带载波 1的载波信号输出, 其余 信号被过滤。
本发明实施例对上述基带处理链路的结构进行改进, 不仅对载波信号进 行滤波, 同时还多分支出一路滤出空间热噪声的基带处理链路, 通过对分支 出的基带处理链路接收到的包含载波信号和空间热噪声的混合信号进行过 滤, 输出纯空间热噪声, 对输出的空间热噪声进行检测, 以达到实时检测基 站天线所在位置的空间热噪声的信号强度的目的。
下面结合说明书附图对本发明实施例进行详细描述。
实施例一:
如图 2所示, 为本发明实施例一的基带处理链路的结构示意图, 与图 1 相比, 本发明实施例一利用一段处于空闲状态的检测频段新建一路基带处理 链路, 利用该检测频段来滤波得到纯空间热噪声。 本发明实施例一的方法步 骤示意图如图 3所示, 包括以下步骤:
步骤 101 : 确定基站内收发信机的工作频段。
基站系统大多是宽带设计, 工作频段可通过软件方式灵活配置。
步骤 102: 从该工作频段内的空闲频段中确定检测频段。
为了保证配置的工作频段能够满足实际载波信号传输的需要, 基站双工 器及收发信机的配置带宽比实际需要占用的带宽要大一些。 例如, 码分多址 ( Code Division Multiple Access , CDMA )基站的收发信机的带宽一般不小于 11M, 基站在实际环境中常用的载波数量为 2载波、 4载波或 8载波。 即使在 载波数量为 8时, 11M的带宽承载 8个载波的载波信号后还剩余 1.16M未承 载载波信号的空闲频段。 由于在基站覆盖的区域内, 11M的应用频段只允许 载波信号的发射, 因此, 空闲频段内只有空间热噪声。
具体地, 可以根据工作频段以及混合信号中各载波信号的频点确定工作 频段内的空闲频段。 例如: CDMA基站双工器配置的工作频段为 824MHz~835MHz, 带宽为 11M, 载波数量为 4, 每个载波的频点为 37MHz、 78MHz, 119MHz和 160MHz, 则 可确定双工器带内的空闲频段为 824MHz~825.49MHz和 829.8MHz~835MHz。
在确定空闲频段后, 可以从空闲频段中确定出一定带宽的检测频段, 例 如, 从 824MHz~825.49MHz的空闲频段中确定出中心频点为 824.8MHz、 带 宽为 1M的检测频段。
步骤 103: 利用检测频段建立一路基带处理链路。
在本步骤中, 为了方便识别, 可以将图 2中的基带处理链路 1〜基带处理 链路 4作为载波信号的处理链路, 将新建的基带处理链路 n作为空间热噪声 的处理链路, 新建的基带处理链路也包含数字混频器及 NCO 电路(称之为 NCOn ) 、 带通滤波器 Fln。
新建基带处理链路 n后, 需要将该基带处理链路 n的相关信息配置在操 作维护中心 ( Operations & Maintenance Center, OMC )后台, 以便于后续当 有信号输入时能够快速输出需要的空间热噪声。基带处理链路 n配置在 OMC 后台的相关信息有: 基带处理链路 n所占检测频段的带宽、 中心频点、 根据 该中心频点确定的数字混频器电路的 NCO本振频点数据以及基带处理链路 n 中带通滤波器的信息。
在上述基带处理链路 n配置在 OMC后台的相关信息中, NCO本振频点 数据通过以下方式确定: 由于在变频的方案中, 根据变频之前的中心频点和 NCO本振频点数据进行的变频操作后可以得到变频后的中心频点, 因此, 在 本步骤中, 根据已知的工作频段的中心频点和检测频段的中心频点可以推导 出 NCO本振频点数据, 并将该 NCO本振频点数据存储在 OMC后台。
在上述基带处理链路 n配置在 OMC后台的相关信息中,基带处理链路 n 中带通滤波器的信息为空间热噪声的中心频点和空间热噪声的带宽, 进入该 带通滤波器的信号中, 只允许与所述空间热噪声的中心频点和空间热噪声的 带宽相同的信号通过, 也就是只有空间热噪声能够通过, 其他载波信号将被 滤除。 所述带通滤波器的信息可以根据实际的空闲频段的带宽及需求确定, 可以是预设的固定值, 也可以是可调的变量, 由 OMC后台配置。 步骤 104: 将基带处理链路接收到的包含载波信号和底噪的混合信号所 占用的工作频段的中心频点转换为所述检测频段的中心频点。
在本步骤中, 利用图 1所示的方式将包含载波信号和空间热噪声的混合 信号处理后通过 ADC分路输出给基带处理链路 1〜基带处理链路 4以及基带 处理链路 n, 每一条基带处理链路接收到的宽带数字信号相同。
基带处理链路 1〜基带处理链路 4仍然按照图 1所示的方式对载波信号进 行处理,基带处理链路 n接收到混合信号后,根据在步骤 103中已配置在 OMC 后台的 NCO本振频点数据,对工作频段的中心频点进行变频,使得变频后混 合信号占用频段的中心频点与检测频段的中心频点相同。
步骤 105: 根据预先设定的空间热噪声的中心频点和空间热噪声的带宽 对混合信号进行滤波。
在本步骤中, 由于空间热噪声的中心频点和空间热噪声的带宽已配置在 OMC后台, 因此, 通过基带处理链路 n中的带通滤波器后的信号只剩空间热 噪声, 其他载波信号被全部滤除, 输出纯空间热噪声。
步骤 106: 检测滤波后的检测频段内空间热噪声的信号强度。
实时测量出的空间热噪声的信号强度可以上 4艮给 OMC后台。
由于空间热噪声在整个工作频段内均匀分布, 因此, 在步骤 106中检测 出在检测频段内的空间热噪声后可以进一步确定整个工作频段的工作热噪 声。 例如: 假设工作频段为 11M带宽, 检测频段为 1M带宽, 检测频段内的 空间热噪声的信号强度为 X瓦, 则整个工作频段内空间热噪声的信号强度为 11倍 X瓦。
实施例二:
如图 4所示, 本发明实施例二还提供一种检测基站天线所在位置的空间 热噪声的设备, 所述设备包括频段确定模块 11、 链路建立模块 12、 信号接收 模块 13、 滤波模块 14和检测模块 15, 其中: 频段确定模块 11设置成在基站 内收发信机的工作频段中确定出处于空闲状态的检测频段; 链路建立模块 12 设置成利用所述检测频段建立一基带处理链路;信号接收模块 13设置成在所 述基带处理链路上接收包含载波信号和空间热噪声的混合信号; 滤波模块 14 设置成根据预先设定的空间热噪声中心频点和带宽对接收到的混合信号进行 滤波, 得到混合信号中的空间热噪声; 检测模块 15用于检测该检测频段上空 间热噪声的信号强度。
所述设备还包括变频模块 16, 变频模块 16设置成将接收到的混合信号 所占用的工作频段的中心频点相对于所述检测频段的中心频点进行变频; 在 此基础上,所述设备中的滤波模块 14是设置成在变频模块对该混合信号所占 用的工作频段的中心频点进行变频之后, 才根据预先设定的空间热噪声中心 频点和带宽对该混合信号进行滤波, 得到该混合信号中的空间热噪声。
所述频段确定模块 11 是设置成根据基站内收发信机的工作频段以及基 站天线接收到的混合信号中各载波信号的频点确定该工作频段内处于空闲状 态的频段, 并从处于空闲状态的频段中确定设定带宽的连续频段作为检测频 段。
所述设备还包括本振频点确定模块 17, 本振频点确定模块 17设置成根 据工作频段的中心频点和检测频段的中心频点确定所述基带处理链路上的数 字混频器电路的本振频点数据; 在此基础上, 设备中的所述变频模块 16是设 置成利用所述本振频点数据将混合信号所占用的工作频段的中心频点相对于 所述检测频段的中心频点进行变频。
所述检测模块 15 还设置成根据所述检测频段内空间热噪声的信号强度 确定在基站内收发信机的工作频段内空间热噪声的信号强度。
本实施例二中的设备是能够实现实施例一中涉及的各项功能的基站中的 设备, 如: 频段确定模块 11可以为图 2中的基带处理链路 n分配检测频段; 链路建立模块 12可以建立图 2中的基带处理链路 n, 并将基带处理链路 n的 相关信息存储在 OMC后台; 变频模块 16可以利用存储在 OMC后台的本振 频率数据进行变频;滤波模块 14可以是基带处理链路 n中的带通滤波器 Fln。
通过本发明实施例提供的方法及设备, 可以实时测量出基站天线所在位 置的空间热噪声的信号强度, 以便于实时获知基站天线附近的空间热噪声状 态, 实现对基站天线无线环境的实时监测、 维护, 保障基站的高性能运行。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
工业实用性
与现有技术相比, 本发明利用新建的基带处理链路对包含载波信号和空 间热噪声的混合信号进行滤波, 滤除混合信号中的载波信息, 对得到的空间 热噪声的信号强度进行检测, 能够达到实时检测在检测频段内空间热噪声的 信号强度的目的。

Claims

权 利 要 求 书
1、 一种检测基站天线所在位置的空间热噪声的方法, 所述方法包括: 在基站内收发信机的工作频段中确定出处于空闲状态的检测频段, 利用 所述检测频段建立一基带处理链路;
在所述基带处理链路上接收包含载波信号和空间热噪声的混合信号; 根据预先设定的空间热噪声中心频点和带宽对接收到的混合信号进行滤 波, 得到混合信号中的空间热噪声; 以及
检测所述检测频段内空间热噪声的信号强度。
2、如权利要求 1所述的方法, 其在对接收到的混合信号进行滤波的步骤 之前还包括: 将接收到的混合信号所占用的工作频段的中心频点相对于所述 检测频段的中心频点进行变频。
3、 如权利要求 1所述的方法, 其中, 在基站内收发信机的工作频段中确 定出处于空闲状态的检测频段的步骤包括:
根据所述工作频段以及基站接收到的混合信号中各载波信号的频点确定 所述工作频段内处于空闲状态的频段, 并从所述处于空闲状态的频段中确定 设定带宽的连续频段作为检测频段。
4、 如权利要求 2所述的方法, 其中, 将接收到的混合信号所占用的工作
根据所述混合信号所占用的工作频段的中心频点和检测频段的中心频点 确定所述基带处理链路上的数字混频器电路的本振频点数据; 以及
利用所述本振频点数据将所述混合信号所占用的工作频段的中心频点进 行变频。
5、 如权利要求 1所述的方法, 其中, 在所述基带处理链路中接收到的混 合信号是: 通过基站天线接收到的信号经反向接收机链路放大、 调整后, 由 模数转换器 ADC变换后得到的宽带数字信号。
6、如权利要求 1所述的方法, 其在检测所述检测频段内空间热噪声的信 号强度的步骤之后, 还包括: 根据所述检测频段内空间热噪声的信号强度确定在所述工作频段内空间 热噪声的信号强度。
7、 一种检测基站天线所在位置的空间热噪声的设备, 所述设备包括: 频段确定模块, 其设置成在基站内收发信机的工作频段中确定出处于空 闲状态的检测频段;
链路建立模块, 其设置成利用所述检测频段建立一基带处理链路; 信号接收模块, 其设置成在所述基带处理链路上接收包含载波信号和空 间热噪声的混合信号;
滤波模块, 其设置成根据预先设定的空间热噪声中心频点和带宽对信号 接收模块接收到的混合信号进行滤波, 得到该混合信号中的空间热噪声; 以 及
检测模块, 其设置成检测所述检测频段内空间热噪声的信号强度。
8、 如权利要求 7所述的设备, 还包括变频模块;
所述变频模块设置成将所述信号接收模块接收到的混合信号所占用的工 作频段的中心频点相对于所述检测频段的中心频点进行变频;
所述滤波模块是设置成在所述变频模块将所述混合信号所占用的工作频 段的中心频点进行变频之后, 才根据预先设定的空间热噪声中心频点和带宽 对所述混合信号进行滤波, 得到该混合信号中的空间热噪声。
9、 如权利要求 7所述的设备, 其中,
所述频段确定模块是设置成通过如下方式确定出处于空闲状态的检测频 段: 根据所述工作频段以及基站接收到的混合信号中各载波信号的频点确定 所述工作频段内处于空闲状态的频段, 并从处于空闲状态的频段中确定设定 带宽的连续频段作为检测频段。
10、 如权利要求 8所述的设备, 还包括本振频点确定模块;
所述本振频点确定模块设置成根据所述混合信号所占用的工作频段的中 心频点和检测频段的中心频点确定所述基带处理链路上的数字混频器电路的 本振频点数据; 所述变频模块是设置成利用所述本振频点数据将混合信号所占用的工作 频段的中心频点相对于所述检测频段的中心频点进行变频。
11、 如权利要求 7所述的设备, 其中,
所述检测模块还设置成根据所述检测频段内空间热噪声的信号强度确定 在所述工作频段内空间热噪声的信号强度。
PCT/CN2010/079662 2010-06-22 2010-12-10 检测基站天线所在位置的空间热噪声的方法及设备 WO2011160399A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN1919DEN2012 IN2012DN01919A (zh) 2010-06-22 2010-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010209851.9 2010-06-22
CN201010209851.9A CN101867423B (zh) 2010-06-22 2010-06-22 检测基站天线所在位置的空间热噪声的方法及设备

Publications (1)

Publication Number Publication Date
WO2011160399A1 true WO2011160399A1 (zh) 2011-12-29

Family

ID=42959002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079662 WO2011160399A1 (zh) 2010-06-22 2010-12-10 检测基站天线所在位置的空间热噪声的方法及设备

Country Status (3)

Country Link
CN (1) CN101867423B (zh)
IN (1) IN2012DN01919A (zh)
WO (1) WO2011160399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867423B (zh) * 2010-06-22 2014-04-09 中兴通讯股份有限公司 检测基站天线所在位置的空间热噪声的方法及设备
CN110601704B (zh) * 2019-09-17 2021-12-14 三维通信股份有限公司 减小接收底噪的方法、装置、计算机设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007030972A1 (fr) * 2005-09-15 2007-03-22 Zte Corporation Procede de traitement de bande de base pour ameliorer un rapport signal sur bruit selon un echantillonnage multiple
CN1992564A (zh) * 2005-12-28 2007-07-04 北京信威通信技术股份有限公司 一种在无线通信系统中进行干扰抑制的设备及方法
CN101150837A (zh) * 2007-10-23 2008-03-26 中兴通讯股份有限公司 多载波基站站点确定方法和装置
CN101615958A (zh) * 2008-06-27 2009-12-30 京信通信系统(中国)有限公司 数字无线直放站系统的天线隔离度检测方法
CN101867423A (zh) * 2010-06-22 2010-10-20 中兴通讯股份有限公司 检测基站天线所在位置的空间热噪声的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080039142A1 (en) * 2006-08-11 2008-02-14 Donal Martin Curtis Method for determining characteristics of an antenna path in a base station in a wireless communications network, a base station and a network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007030972A1 (fr) * 2005-09-15 2007-03-22 Zte Corporation Procede de traitement de bande de base pour ameliorer un rapport signal sur bruit selon un echantillonnage multiple
CN1992564A (zh) * 2005-12-28 2007-07-04 北京信威通信技术股份有限公司 一种在无线通信系统中进行干扰抑制的设备及方法
CN101150837A (zh) * 2007-10-23 2008-03-26 中兴通讯股份有限公司 多载波基站站点确定方法和装置
CN101615958A (zh) * 2008-06-27 2009-12-30 京信通信系统(中国)有限公司 数字无线直放站系统的天线隔离度检测方法
CN101867423A (zh) * 2010-06-22 2010-10-20 中兴通讯股份有限公司 检测基站天线所在位置的空间热噪声的方法及设备

Also Published As

Publication number Publication date
CN101867423A (zh) 2010-10-20
IN2012DN01919A (zh) 2015-07-24
CN101867423B (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
US9877330B2 (en) WLAN device with auxiliary receiver chain
JP5399531B2 (ja) 無線チャネル内の伝送信号の存在を検知するためのシステム及び方法
US9304189B2 (en) Systems and methods for detecting radar signals
CN102377441B (zh) 通讯装置与动态调整一或多个信号处理参数的方法
US9350404B2 (en) Dual mode radio frequency receivers for wideband signal processing
US20050266808A1 (en) Method and system for interference detection
US20150110058A1 (en) Coexistence between primary chains and auxiliary receiver chain in a wlan device
US8417204B2 (en) Method and system for on-demand signal notching in a receiver
US20160330640A1 (en) Systems and methods for wireless scanning
US9712224B2 (en) Antenna switching for dual radio devices
US20140119421A1 (en) Testing Radio-Frequency Performance of Wireless Communications Circuitry Using Fast Fourier Transforms
US20150035701A1 (en) Gnss receiver dynamic spur mitigation techniques
WO2011160395A1 (zh) 基站天线口底噪的测量方法、装置及系统
EP1696682B1 (en) Method of using the signal-to-noise ratio (SNR) to reduce factory test time
US9118406B2 (en) Measurement apparatus and measurement method
CN106550395B (zh) 一种检测信号强度的方法及装置
WO2011160399A1 (zh) 检测基站天线所在位置的空间热噪声的方法及设备
WO2010053196A1 (ja) 無線基地局、無線装置及び無線装置制御装置
KR20130020307A (ko) 스펙트럼 센싱 방법 및 장치
Gonçalves et al. A Low-Cost Spectrum Qualifier for New IoT Technologies
US20230417799A1 (en) Multi-channel spectrum analyzer with multi-channel analog-digital-converters (adcs)
JP2015139156A (ja) 無線装置及びその故障診断方法
EP3038265A1 (en) A method for wireless communication and a wireless local area network device
WO2024025931A1 (en) Radio frequency (rf) blocker detection in an rf frontend circuit
Gonçalves Development of low cost spectrum qualifier for new iot technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1919/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853538

Country of ref document: EP

Kind code of ref document: A1