WO2011160270A1 - 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统 - Google Patents

用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统 Download PDF

Info

Publication number
WO2011160270A1
WO2011160270A1 PCT/CN2010/002159 CN2010002159W WO2011160270A1 WO 2011160270 A1 WO2011160270 A1 WO 2011160270A1 CN 2010002159 W CN2010002159 W CN 2010002159W WO 2011160270 A1 WO2011160270 A1 WO 2011160270A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
raman
detection system
raman spectroscopy
spectroscopy detection
Prior art date
Application number
PCT/CN2010/002159
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
刘以农
赵自然
王红球
俞冬梅
盖洪峰
李明亮
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to EP10853414.0A priority Critical patent/EP2587237B1/en
Priority to US13/806,168 priority patent/US8873042B2/en
Publication of WO2011160270A1 publication Critical patent/WO2011160270A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a Raman spectroscopy detection system and a method of automatically calibrating a Raman pupil detection system.
  • the invention further relates to a method of measuring an object using a self-calibrating Raman spectroscopy detection system. Background technique
  • Raman spectroscopy belongs to the vibrational light of a molecule. By detecting the Raman spectrum of a substance, it is possible to know which substance or component is contained in the object. Therefore, Raman spectroscopy can be used as a "fingerprint" for identifying a substance. Therefore, Raman spectroscopy can be used in medicine, food safety, gem identification, safety inspection and other fields. At the same time, with the increasing use of Raman spectroscopy in these fields, there is a need for a Raman optical remote meter capable of rapid field detection to adapt to different environments in various applications.
  • the characteristics of the laser used to excite the material to produce Raman scattering such as frequency and power
  • change with the change of the ambient temperature and the use time so that the measured Raman spectrum also changes.
  • the optical path structure of the system may change due to vibration or the like during transportation and use, so that the excitation efficiency and signal collection efficiency of the excited Raman light are changed, so that This causes the system to change the Raman spectrum when measuring the same sample at different times and environments.
  • Raman spectrometers for scientific research mostly use lasers with stable frequency and power as excitation sources, and have strict requirements on the use environment.
  • the frequency and power stable lasers are expensive, which is not conducive to the promotion and popularization of Raman spectrometers.
  • a Raman spectroscopy detection system including: a light source for emitting excitation light for exciting a test object to emit Raman light; and an external light path system for illuminating light emitted by the light source to be Detecting and collecting Raman light emitted by the object; the light detecting device is configured to receive Raman light collected by the external light path system, and detect the Raman light to obtain spectral data of the Raman light; Providing the excitation light source to provide the excitation light, controlling the detection of the Raman light by the light detecting device, receiving the spectral data outputted from the light detecting device, and analyzing the pupil data to identify the object to be inspected; A calibration device for automatically calibrating the Raman spectroscopy detection system.
  • the automatic calibration device comprises a standard sample and a reset fixture of the standard sample.
  • the reset fixture is a spring.
  • control device further includes a calibration unit for determining a current characteristic of the system by analyzing Raman spectral data of the standard sample received from the light detecting device, and calibrating the detected based on the current characteristic Raman spectral data of the object.
  • the external light path system includes: a mirror that reflects excitation light from the light source; a filter that reflects the excitation light reflected by the mirror and transmits the wavelength Longer than the Raman light of the excitation light; collecting the lens, the collecting lens focuses the excitation light from the filter onto the object and collecting the Raman light emitted by the object; the converging lens, the converging lens will The Raman light collected by the collecting lens is focused into the photodetecting device.
  • the filter is a dichroic mirror or a notch filter.
  • an alarm device is further included for receiving the recognition result of the control device and outputting a prompt or an alarm.
  • the characteristics include the frequency and power of the light source and the excitation efficiency and signal collection efficiency of the external light path system.
  • a method of inspecting an object using a Raman optical detection system comprising the steps of: automatically calibrating a system using a standard sample Controlling the excitation light to illuminate the object to excite the object to emit Raman light; detecting the Raman light to obtain spectral data of the Raman light; analyzing the spectral data to identify the object.
  • a method of automatically calibrating a Raman spectroscopy detection system comprising the steps of: controlling excitation light to illuminate a standard sample to excite the standard sample emission before detecting the object to be inspected Raman light; receiving the Raman light and obtaining spectral data of the Raman light; analyzing the spectral data to determine current characteristics of the system; obtaining the automatic calibration system by comparing the current characteristics of the system with the pre-stored data Calibration value.
  • FIG. 1 is a schematic view showing a Raman spectroscopy detecting system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing an exemplary control device of a Raman spectroscopy detecting system according to an embodiment of the present invention
  • Figure 3a is a schematic diagram showing an exemplary configuration of an external light path system of a Raman spectroscopy detection system in accordance with an embodiment of the present invention
  • Figure 3b is a schematic diagram showing another example configuration of an external light path system of a Raman spectroscopy detection system in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic illustration of an exemplary automatic calibration apparatus for a Raman spectroscopy detection system in accordance with an embodiment of the present invention. detailed description
  • FIG. 1 shows a Raman spectroscopy detection system in accordance with an embodiment of the present invention, which is generally indicated by reference numeral 10 in FIG.
  • the Raman spectroscopy detection system 10 includes a control device 1, a light source 12, an external light path system 14, a light detecting device 13 and a calibration device 15 with a standard sample.
  • the light source 1 2 emits excitation light for exciting the object to emit Raman light under the control of the control device 1 1 .
  • any light source that can provide excitation light with narrow linewidth, frequency and power stability can be used in the present invention.
  • source 1 2 employs a laser having a center wavelength of 785 nm that outputs collimated parallel light. It is of course also possible to use lasers of other wavelengths, such as lasers having a center wavelength of 532 nm. In this case, the external optical path system 14 and the photodetecting device 13 are adjusted accordingly according to the excitation wavelength.
  • the excitation light emitted by the light source 12 is irradiated onto the object through the external light path system 14, thereby The test object is excited to emit Raman light.
  • This Raman light is collected by the external light path system 14 and transmitted to the light detecting device 13.
  • the outer optical path system 14 is a fiber optic probe.
  • the light source 12 and the light detecting device 13 may have a fiber optic interface.
  • the external light path system 14 takes the form of a free space coupling, in which case the light source 12 collimates to output parallel light and the light detecting device may have no fiber optic interface.
  • the light detecting device 13 receives the Raman light of the object collected by the external light path system 14, and detects the Raman light under the control of the control device 1.
  • the photodetecting device 13 is a spectrometer that separates Raman light of different frequencies and acquires signal intensities of Raman light of different frequencies to obtain Raman spectral data of the object.
  • the spectrometer has a photodetector. This will be described in detail below.
  • control device 1 1 may be a single chip microcomputer. In another embodiment, control device 1 1 may be a general purpose computer or an industrial computer. Control device 1 1 The operating system and software and the standard Raman spectrum database are installed to analyze and process the Raman spectral data transmitted from the light detecting device 13. Specifically, the control device 1 1 uses the standard Raman spectral database and a pre-installed pattern recognition algorithm to determine whether the received Raman spectral data is identical or similar to the Raman spectral data of contraband such as drugs, explosives, and the like. If yes, it is determined that the test object is a contraband or contains contraband.
  • contraband such as drugs, explosives, and the like.
  • control device can display the recognition result through a display connected to the control device 1 1 and can send an alarm signal through an alarm device also connected to the control device 1 1 , for example, sound, light Or a form of vibration exists.
  • the control device 1 can also display the recognition result through the display and give a safety signal through the cue light also connected to the control device 1.
  • the display can be a touch screen.
  • control unit 11 also has a calibration unit shown at 110 in Figure 2.
  • the calibration unit 1 10 can automatically calculate the calibration parameters of the system based on the standard sample, so that the control device 1 1 can take this calibration parameter into account when analyzing and processing the Raman spectral data of the object. This will be described in detail below.
  • the Raman spectroscopy detection system 10 may further include a sample chamber for placing a test object to eliminate the influence of ambient stray light. It may also include a replaceable rechargeable battery for powering the Raman light detection system 10 without an external power source and charging with an external power source.
  • Fig. 2 shows a detailed schematic view of the control device 1 1 of the embodiment of the invention.
  • the control device 11 employs, for example, a control circuit board with an arm9 chip, preloaded with the winCE operating system.
  • the control device 11 receives commands and parameters from the input peripheral, transmits control signals to the light source 12 and the light detecting device 13, and receives spectral data from the light detecting device. After the spectral data is identified, the recognition result is transmitted to the display, and an alarm signal is issued if necessary.
  • the input peripheral can be a button, switch or keyboard for setting parameters of the various components of the Raman spectroscopy detection system 10 by inputting instructions to the control device 11, and transmitting to the Raman spectroscopy detection system 10 Operation instructions.
  • control device 11 can also have a power supply unit 111 and a data transmission unit 112 as needed.
  • the power supply unit 111 is used to convert an external power supply into a power supply required for the Raman spectroscopy detection system.
  • the power unit 111 can also charge an optional battery through which the Raman spectroscopy detection system 10 is powered when no external power source is available.
  • the data transmission unit 112 is for receiving data externally input to the Raman spectrum detecting system 10, and can transmit the data.
  • the data transfer unit 112 can be a serial interface, a parallel interface, a USB interface, a network interface, or a wireless network interface such as Bluetooth.
  • a plurality of Raman optical speech detection systems 10 and control centers of the embodiments of the present invention can constitute a detected network system.
  • the control center uses the network communication function of the Raman spectroscopy detection system 10 to update the system database, parameter settings, and the like.
  • the Raman spectroscopy detection system 10 of the embodiment of the present invention can transmit the detection data and the result to the control center through the network, or export the data to the U disk or other storage device through the data transmission unit 112, or connect the printer through the data transmission unit 112. Print the test results.
  • Figure 3a is a schematic illustration of an exemplary configuration of an external light path system 14 of a Raman spectroscopy detection system 11 in accordance with an embodiment of the present invention.
  • the external light path system 14 is in a free space coupling manner.
  • the external light path system 14 includes a mirror 140, an excitation light narrow band filter 141, a dichroic mirror 142, a long pass filter 143, a collecting lens 144, and a converging lens 145.
  • the excitation light emitted from the light source 12 of the laser according to Fig. 1 is reflected by the mirror 140, passes through the excitation light narrow band filter 141, and is reflected by the dichroic mirror 142.
  • the reflected light is focused by the collecting lens 144 onto, for example, a test object placed in the sample chamber.
  • the signal light from which the object is excited is collected by the same collecting lens 144, passes through the dichroic mirror 142 and the long pass filter 143, and is focused by the converging lens 145 onto the photodetecting device 13, for example, focusing on the spectrometer.
  • the light detecting device 13 is entered.
  • the excitation light narrow band filter 141 is used to filter out stray light in the laser other than the excitation wavelength, which is mainly from the spontaneous emission of the laser.
  • the center wavelength of the filter 141 is identical to the selected laser. If the stray light of the selected laser does not affect the detection of the Raman spectrum, the excitation narrow band filter 141 may not be used.
  • the dichroic mirror 142 reflects the excitation light, filters out Rayleigh scattered light having the same wavelength as the excitation light in the signal light, and transmits Raman light having a longer wavelength than the excitation light.
  • the dichroic mirror 142 is preferably a filter having an incident angle of 45 degrees.
  • the dichroic mirror 1 42 can also select a filter having an incident angle of other angles, for example, about 5 degrees. When incident at this angle, it is necessary to reflect the wavelength of the excitation light and to transmit light having a longer wavelength than the excitation light.
  • long pass filter 1 43 is preferably employed to further filter out Rayleigh scattered light in the signal light.
  • the long pass filter 143 has a higher reflectance for the wavelength of the excitation light and a higher transmittance for the light having a longer wavelength than the excitation light.
  • the long pass filter can also be replaced by a notch filter.
  • the notch filter has a higher reflectance only for the light of the excitation wavelength, and a higher transmittance for the other wavelengths, and the incident angle. According to the use requirements.
  • the collecting lens 144 preferably employs a quartz convex lens that focuses the excitation light onto the object and collects the signal light emitted from the object.
  • the quartz convex lens has a small fluorescence effect to avoid interference with the signal light of the object to be inspected.
  • the concentrating lens 145 preferably employs an achromatic lens.
  • the converging lens focuses the signal light onto the photodetecting device 13, for example, into a slit of the photometer, and the ratio of the focal length to the clear aperture (f/D) preferably matches the numerical aperture (F#) of the spectrometer. To achieve the best signal light utilization.
  • Figure 3b is a schematic diagram showing another example configuration of an external light path system of a Raman spectroscopy detection system in accordance with an embodiment of the present invention.
  • This example configuration differs from the example configuration shown in Figure 3a in that Figure 3b uses a notch filter 1 46 instead of the dichroic mirror 142 and the long pass filter 1 43 of Figure 3a.
  • the notch filter 146 is preferably a filter having an incident angle of about 10 degrees.
  • the light detecting device 13 employs a light meter.
  • the optical range of the spectrometer must match the wavelength of the selected excitation light and cover the Raman spectral range of the analyte. For example, if the excitation light of 785 nm is selected and the Raman peak in a sample SOO ⁇ OOOcnf 1 is detected, the spectrometer can measure the spectral range from 797 nm to 932 nm. If the excitation light of 532 nm is selected, the same object is measured 200 ⁇ For the Raman peak in 2000cm", the optical range of the spectrometer must cover 537nm ⁇ 596nm.
  • the spectrometer has a photodetector.
  • the photodetector is preferably a line array or an area array detector such as a CCD, and the width of the grating and the slit are selected so that the Raman peak of the object can be resolved and the signal intensity is strong.
  • Figure 4 shows, in schematic form, an exemplary automatic calibration device 15 of a Raman spectroscopy detection system 10 in accordance with an embodiment of the present invention.
  • the automatic calibration device 15 is, for example, a movable baffle coated with a standard sample.
  • the movable barrier is attached to one end of the spring and the other end of the spring is attached to the outer casing of, for example, the Raman spectroscopic detection system 10.
  • the Raman spectroscopy detection system 10 is in an idle state prior to detection.
  • the movable baffle 15 coated with the standard sample at this time is located at the light exit of the system, and the spring is in an equilibrium position.
  • the control device 1 1 of the Raman spectroscopy detection system 10 controls the light source 12 to emit light, and the emitted excitation light is irradiated onto the standard sample through the external optical path system 14.
  • the Raman signal light emitted from the standard sample is then collected by the external light path system 14 and transmitted to a photodetecting device 13 constructed as a spectrometer.
  • the light detecting means 13 detects the signal light, obtains Raman spectrum data, and transmits the data to the control means 1 1.
  • the control unit 1 1 analyzes the data and obtains calibration parameters to complete calibration of other components of the Raman spectroscopy system 10 .
  • the light detecting device 13 detects the Raman ray of the standard sample and transmits it to the calibration unit 110 of the control device 1 1 .
  • the calibration unit 1 1 0 automatically recognizes the peak position and peak intensity of the Raman peak of the standard sample, and calculates the difference between the detected peak position and the peak position of the pre-stored standard sample Raman peak, which is the detected object at this time.
  • the frequency difference between the Raman peak and the true peak is referred to herein as the frequency calibration value.
  • the calibration unit 1 10 also calculates a ratio of the measured peak intensity value to the pre-stored peak intensity value, which is the ratio between the Raman peak intensity of the detected object and the true peak intensity detected at this time, which is referred to herein. Calibrate the value for intensity. By dividing the peak intensity of the Raman peak of the test object by the intensity calibration value, the true peak intensity of the Raman peak of the test object can be obtained, thereby realizing the calibration of the intensity of the Raman peak.
  • the object to be detected is placed in the light exit of the system, for example, in the sample chamber.
  • the test object to be tested pushes the standard sample open and the spring is compressed.
  • the Raman spectrum detecting system 10 is in the detection state, and the object to be inspected is detected in accordance with the detection flow of a generally known Raman spectrometer.
  • the sample to be tested is taken out from the system light exit. Compressed bomb at this time The spring is restored to its original shape and the baffle coated with the standard sample is turned back, and the Raman photodetection system 10 returns to the idle state.
  • the disclosed Raman pupil detection system 10 has a fast automatic calibration function, which reduces the Raman spectrometer, especially the portable Raman spectrometer, to the laser as a light source. Requirements, effectively reducing the cost of equipment.
  • This automatic calibration function improves the accuracy of the detection, improves the environmental adaptability of the Raman spectrometer, and expands the range of application of the Raman spectrometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统 技术领域
本发明涉及一种拉曼光谱检测系统以及一种对拉曼光诲检测系统 进行自动校准的方法。 本发明还涉及一种利用自校准拉曼光谱检测系 统对物体进行 测的方法。 背景技术
光照射到物质上时会发生散射。 在发生散射时, 大部分散射光的 波长并不发生变化, 这种波长不发生变化的散射称为瑞利散射; 少部 分散射光的波长会增大或减小, 这种波长发生变化的散射称作拉曼散 射, 其对应的光谱称为拉曼光谱。 拉曼光谱属于分子的振动光讲, 通 过检测物质的拉曼光谱可以知道被检物是哪种物质或者含有哪种成 分, 因此, 拉曼光谱可以作为识别物质的 "指纹" 。 由此拉曼光谱可 以在医药、 食品安全、 文物宝石鉴定、 安全检查等领域都有重要应用。 同时, 随着拉曼光谱在这些领域的应用日益广泛, 亟需一种能进行现 场快速检测的拉曼光遥仪, 以适应各种应用场合的不同环境。
但是, 用于激发物质产生拉曼散射的激光的特性如频率和功率等 会随着环境温度的变化以及使用时间的增加而发生变化, 从而使得测 得的拉曼光谱也会随之变化。 此外, 对于经常移动的拉曼光谱仪, 在 运输和使用的过程中可能因为震动等原因导致系统的光路结构等发生 变化, 从而使得激发拉曼光的激发效率和信号收集效率都发生变化, 从而可能导致系统在不同时间和环境下测量同一个样品时的拉曼光谱 发生变化。 科研用的拉曼光谱仪大多采用频率和功率稳定的激光器作 为激发光源, 并对使用环境等要求较为严格。 但频率和功率稳定的激 光器价格昂贵, 不利于拉曼光谱仪的推广和普及。 即使频率和功率稳 定的激光器, 经过一段时间的使用后, 其功率也会有所衰减, 从而导 致测量结果不确定。 发明内容 因此本公开的目的在于, 提供一种拉曼光谱检测系统和方法, 该 拉曼光谱检测系统和方法用于消除由于环境因素、 关键器件变化导致 的系统性能的变化对测得的拉曼光谱产生的影响, 从而提高物质识别 的准确率。
根据本公开的一个方面, 提供了一种拉曼光谱检测系统, 包括: 光源, 用于发射激发被检物发出拉曼光的激发光; 外光路系统, 用于 将光源发射的光照射到被检物上并收集被检物发出的拉曼光; 光检测 装置, 用于接收外光路系统收集的拉曼光, 并检测该拉曼光以获得该 拉曼光的光谱数据; 控制装置, 用于控制所述激发光源提供所述激发 光, 控制光检测装置对拉曼光的检测, 接收从光检测装置输出的光谱 数据并对该光谙数据进行分析以识别所述被检物; 以及自动校准装置, 用于对所述拉曼光谱检测系统进行自动校准。
根据本公开该方面的优选实施方式, 自动校准装置包括标准样品 以及该标准样品的复位固定装置。
根据本公开该方面的优选实施方式, 复位固定装置是弹簧。
根据本公开该方面的优选实施方式, 控制装置进一步包括校准单 元, 用于通过分析从光检测装置接收的标准样品的拉曼光谱数据来确 定系统当前的特性, 并基于该当前的特性校准被检物的拉曼光谱数据。
根据本公开该方面的优选实施方式, 外光路系统包括: 反射镜, 该反射镜反射来自光源的激发光; 滤光镜, 所述滤光镜反射由反射镜 反射的激发光, 并透过波长长于该激发光的拉曼光; 收集透镜, 所迷 收集透镜将来自滤光镜的激发光聚焦到被检物上并收集被检物发出的 拉曼光; 汇聚透镜, 所述汇聚透镜将所述收集透镜收集的拉曼光聚焦 到光检测装置中。
根据本公开该方面的优选实施方式, 滤光镜是二向色镜, 或者是 陷波滤光片。
根据本公开该方面的优选实施方式, 还包括报警装置, 用于接收 控制装置的识别结果并输出提示或警报。
根据本公开该方面的优选实施方式, 所述特性包括光源的频率和 功率以及外光路系统的激发效率和信号收集效率。
根据本公开的另一方面, 提供了一种利用如上所述的拉曼光语检 测系统检查物体的方法, 包括步骤: 利用标准样品对系统进行自动校 准; 控制激发光照射物体以激发该物体发射拉曼光; 检测该拉曼光以 获得该拉曼光的光谱数据; 分析该光谱数据以识别所述物体。
根据本公开的再一方面, 提供了一种对如上所述的拉曼光谱检测 系统进行自动校准的方法, 包括步骤: 在检测被检物前, 控制激发光 照射标准样品以激发该标准样品发射拉曼光; 接收该拉曼光并获得该 拉曼光的光谱数据; 分析该光谱数据以确定系统当前的特性; 通过将 系统当前的特性与预存的数据相比较, 获得用于自动校准系统的校准 值。 附图说明
图 1 以示意图示出按照本发明实施例的拉曼光谱检测系统; 图 2 以示意图示出按照本发明实施例的拉曼光谱检测系统的示例 性控制装置;
图 3a以示意图示出按照本发明实施例的拉曼光谱检测系统的外光 路系统的示例配置;
图 3b以示意图示出按照本发明实施例的拉曼光谱检测系统的外光 路系统的另一种示例配置;
图 4 以示意图形式示出按照本发明实施例的拉曼光谱检测系统的 示例性自动校准装置。 具体实施方式
图 1 示出按照本发明的实施例的拉曼光谱检测系统, 其在图 1 中 整体上用附图标记 1 0表示。
在一个实施例中, 拉曼光谱检测系统 1 0 .包括控制装置 1 1、 光源 12、 外光路系统 14、 光检测装置 1 3以及带有标准样品的校准装置 1 5。
光源 1 2在控制装置 1 1 的控制下发射用于激发被检物发射拉曼光 的激发光。 原则上, 任何可以提供线宽窄、 频率和功率稳定的激发光 的光源都可以在本发明中使用。 在一个实施例中, 光源 1 2采用中心波 长 785nm , 输出准直平行光的激光器。 当然也可采用其他波长的激光 器, 例如中心波长为 532nm的激光器, 在这种情况下, 外光路系统 14 及光检测装置 1 3根据激发波长作相应的调整。
光源 1 2发射的激发光经过外光路系统 14照射到被检物上, 由此 激发被检物发射拉曼光。 该拉曼光被外光路系统 14收集并传送到光检 测装置 13。 在一个实施例中, 所述外光路系统 14是光纤探头。 在这种 情况下光源 12和光检测装置 13 可以具有光纤接口。 在另一个实施例 中, 外光路系统 14采用自由空间耦合的形式, 在这种情况下, 光源 12 准直输出平行光, 而光检测装置可以没有光纤接口。
光检测装置 13接收由外光路系统 14收集的被检物的拉曼光, 并 在控制装置 1 1 的控制下检测该拉曼光。 在一个实施例中, 光检测装置 13 是光谱仪, 该光谱仪将不同频率的拉曼光分开, 并获取不同频率的 拉曼光的信号强度, 从而获得被检物的拉曼光谱数据。 在另一个实施 例中, 该光谱仪具有光电检测器。 下面对此还要详细描迷。
光检测装置 13 将获得的被检物的拉曼光谱数据传送到控制装置 1 1。 在一个实施例中, 控制装置 1 1可以是单片机, 在另一个实施例中, 控制装置 1 1 可以是通用计算机或者工业用计算机。 控制装置 1 1 安装 操作系统及软件以及标准拉曼光谱数据库, 对从光检测装置 13传送的 拉曼光谱数据进行分析和处理。 具体地说, 控制装置 1 1 利用该标准拉 曼光谱数据库以及预装的模式识别算法, 确定接收的拉曼光谱数据是 否与违禁品如毒品、 爆炸物等的拉曼光谱数据相同或相似。 如果是, 则确定被检物是违禁品或含有违禁品。 在这种情况下, 控制装置 】】 可 以将识别结果通过连接到控制装置 1 1的显示器显示, 并且可以通过同 样连接到控制装置 1 1的报警器发出报警信号,该报警信号以例如声音、 光或震动形式存在。 相反, 如果确定被检物不是违禁品或不含有违禁 品, 控制装置 1 1也可以将识别结果通过所述显示器显示, 并通过同样 连接到控制装置 1 1的提示灯给出安全信号。所述显示器可以是触摸屏。
在本发明的一个实施例中, 控制装置 1 1还具有在图 2中以 1 10示 出的校准单元。 校准单元 1 10 可以基于标准样品自动计算出系统的校 准参数, 从而控制装置 1 1在分析和处理被检物的拉曼光谱数据时可以 考虑该校准参数。 下面将对此详细描述。
除此之外, 拉曼光谱检测系统 10还可以包括样品室, 用于放置被 检物以消除环境杂散光的影响。 还可以包括可更换的可充电的电池, 用于在没有外接电源的情况下对拉曼光讲检测系统 10进行供电, 并在 有外接电源的情况下充电。
图 2示出本发明实施例的控制装置 1 1 的详细示意图。 在该实施例中, 控制装置 11采用例如带 arm9芯片的控制电路板, 预装有 winCE操作系统。 控制装置 11从输入外设接收指令和参数, 向 光源 12和光检测装置 13发送控制信号, 并从光检测装置 】3接收光谱 数据。 在对该光谱数据进行识别之后, 将识别结果传送给显示器, 必 要时发出报警信号。 在一个实施例中, 输入外设可以是按键、 开关或 键盘, 用于通过向控制装置 11 输入指令来设定拉曼光谱检测系统 10 各组成部分的参数, 以及向拉曼光谱检测系统 10传送操作指令。
在一个实施例中, 控制装置 11还可以根据需要具有电源单元 111 和数据传输单元 112。该电源单元 111用来将外接电源转换成拉曼光谱 检测系统】 0所需的电源。 电源单元 111 还可以对可选的电池充电, 在 没有外接电源时就通过该电池对拉曼光谱检测系统 10供电。 数据传输 单元 112用于接收外部输入拉曼光谱检测系统 10的数据, 并且可以将 数据传输出去。 该数据传输单元 112可以是串行接口、 并行接口、 USB 接口、 网络接口或者无线网络接口, 例如蓝牙。
通过该数据传输单元 112, 可以将多个本发明实施例的拉曼光语检 测系统 10及控制中心构成一个检测的网络系统。 该控制中心利用拉曼 光谱检测系统 10的网络通讯功能实现对该系统数据库的更新、 参数设 定等。 本发明实施例的拉曼光谱检测系统 10可以将检测数据及结果通 过网络传输至控制中心, 或者将数据通过数据传输单元 112 导出至 U 盘或其他存储设备中, 或通过数据传输单元 112 连接打印机打印检测 结果。
图 3a以示意图示出按照本发明实施例的拉曼光谱检测系统 11 的 外光路系统 14的一种示例配置。
在该示例配置中, 外光路系统 14采用自由空间耦合的方式。 该外 光路系统 14包括反射镜 140、 激发光窄带滤光片 141、 二向色镜 142、 长通滤光片 143、 收集透镜 144及汇聚透镜 145。 构成为按照图 1所述 的激光器的光源 12发出的激发光由反射镜 140反射后, 经过激发光窄 带滤光片 141, 由二向色镜 142反射。 反射光由收集透镜 144聚焦到例 如放置在样品室中的被检物上。 被检物由此被激发出的信号光被同一 收集透镜 144收集, 并经过二向色镜 142和长通滤光片 143, 由汇聚透 镜 145聚焦到光检测装置 13上, 例如聚焦到光谱仪的狭缝处, 从而进 入光检测装置 13。 在该示例中, 采用激发光窄带滤光片 141 来滤掉激光中除激发波 长以外的杂散光, 这些杂散光主要来自于激光器的自发辐射。 该滤光 片 1 41 的中心波长与所选激光器一致。 如果所选用的激光器的杂散光 对拉曼光谱的检测不产生影响, 也可以不用激发光窄带滤光片 141。
在该示例中, 二向色镜 142 反射激发光, 滤掉信号光中波长与激 发光相同的瑞利散射光, 并使得波长比激发光长的拉曼光透过。 二向 色镜 142优选入射角为 45度的滤光片。 当然二向色镜 1 42也可以选择 入射角为其他角度的滤光片, 例如 5 度左右, 在以该角度入射时, 要 能反射激发光波长而且能透过波长比激发光长的光。
在该示例中, 优选采用长通滤光片 1 43 来进一步滤掉信号光中的 瑞利散射光。 长通滤光片 143 对于激发光波长有较高的反射率, 而对 波长比激发光长的光有较高的透过率。 长通滤光片还可以用陷波滤光 片代替, 陷波滤光片只对激发光波长的光有较高反射率, 而对其他波 长的光 有较高的透过率, 其入射角度根据使用要求而定。
在该示例中, 收集透镜 144 优选采用石英凸透镜, 其将激发光聚 焦到被检物上, 并收集被检物发出的信号光。 石英凸透镜的荧光效应 较小, 避免对被检物的信号光产生干扰。
在该示例中, 汇聚透镜 145 优选采用消色差的透镜。 汇聚透镜将 信号光聚焦到光检测装置 13上, 例如聚焦到光 i普仪的狭缝中, 其焦距 与通光孔径的比值 (f/D ) 优选与光谱仪的数值孔径 (F# ) 相匹配, 以 达到最佳的信号光利用率。
图 3b以示意图示出按照本发明实施例的拉曼光谱检测系统的外光 路系统的另一种示例配置。
该示例配置与图 3a所示出的示例配置的不同之处在于图 3b选用 一片陷波滤光片 1 46代替图 3a中的二向色镜 142和长通滤光片 1 43。 陷波滤光片 146优选入射角为 1 0度左右的滤光片。
在本发明的实施例中, 光检测装置 1 3采用光普仪。 在图 3a和 3b 的示例配置中, 光谱仪的光语范围须与所选的激发光波长相匹配, 并 能覆盖被检物的拉曼光谱范围。 例如如果选择 785nm的激发光, 检测 某被检物 SOO^OOOcnf1 内的拉曼峰, 则光谱仪可测量的光谱范围须覆 盖 797nm〜932nm ; 如果选择 532nm 的激发光, 测量同一被检物 200~2000cm"'内的拉曼峰,则光谱仪的光语范围须覆盖 537nm~596nm。 在该实施例中, 光谱仪具有光电检测器。 该光电检测器优选线阵或面 阵的检测器如 CCD , 而且选择光栅及狭缝的宽度, 使得能分辨被检物 的拉曼峰且信号强度较强。
图 4以示意图形式示出按照本发明实施例的拉曼光谱检测系统 1 0 的示例性自动校准装置 1 5。
该自动校准装置 1 5例如是可移动挡板, 上面涂覆有标准样品。 该 可移动挡板连接到弹簧的一端, 而该弹簧的另一端固定在例如拉曼光 谱检测系统 10的外壳上。
在检测前, 拉曼光谱检测系统 10处于空闲状态。 此时涂覆有标准 样品的可移动挡板 1 5位于系统的出光口, 弹簧处于平衡位置。 如杲通 过输入外设输入校准的指令, 则拉曼光谱检测系统 10 的控制装置 1 1 控制光源 1 2发光, 发出的激发光经过外光路系统 14照射至标准样品 上。 然后由外光路系统 14收集标准样品发出的拉曼信号光, 并传送至 构成为光谱仪的光检测装置 1 3。 光检测装置 13检测该信号光, 获得拉 曼光谱数据, 并将该数据传送给控制装置 1 1。 控制装置 1 1对该数据进 行分析, 获取校准参数, 以完成对拉曼光谱检测系统 1 0中其它部件的 校准。
在一个实施例中, 光检测装置 13检测标准样品的拉曼光语并传送 给控制装置 1 1 的校准单元 1 1 0。 该校准单元 1 1 0 自动识别标准样品的 拉曼峰的峰位和峰强, 计算检测出的峰位与预存的标准样品拉曼峰的 峰位之差, 即为此时检测的被检物的拉曼峰与真实峰之间的频率差, 在此称为频率校准值。 将被检物的拉曼峰的频率减去该频率校准值, 就可以得到被检物的拉曼峰的真实频率, 从而实现对拉曼峰频率的校 准。 校准单元 1 10 还计算出测得的峰强值与预存的峰强值之比, 此比 值即为此时检测的被检物的拉曼峰强与真实峰强之间的比例, 在此称 为强度校准值。 将被检物拉曼峰的峰强除以该强度校准值, 就可以得 到被检物拉曼峰的真实峰强, 从而实现对拉曼峰强度的校准。
在实际检测时, 将待检测的被检物放置于系统的出光口, 例如放 置在样品室中。 待检测的被检物将标准样品顶开, 弹簧被压缩。 此时, 拉曼光谱检测系统 1 0处于检测状态, 并按照一般公知的拉曼光谱仪的 检测流程检测被检物。
检测完成后, 待检测样品被从系统出光口取出。 此时被压缩的弹 簧恢复原状, 并将涂覆有标准样品的挡板顶回, 拉曼光普检测系统 10 回到空闲状态。
通过对本发明实施例的描迷, 本领域技术人可以了解, 所公开的 拉曼光谙检测系统 10具有快速自动校准功能, 降低了拉曼光谱仪、 尤 其是便携式拉曼光谱仪对作为光源的激光器的要求, 有效降低了设备 的成本。 该自动校准功能提高了检测的准确度, 提高了拉曼光谱仪对 环境的适应能力, 扩大了拉曼光谱仪的适用范围。
上述详细描述应当理解为在各个方面都是说明性的和示例性的, 但非限制性的, 在此公开的发明范围不应当由具体实施方式来确定, 而应当由根据专利法允许的全部宽度来解释的权利要求确定。 应当理 解在此示出和描述的实施例只是说明本发明的原理, 本领域技术人员 在不脱离本发明精神和范围的情况下可以实施各种修改。

Claims

权 利 要 求
1 . 一种拉曼光谱检测系统, 包括:
光源, 用于发射激发被检物发出拉曼光的激发光;
外光路系统, 用于将光源发射的光照射到被检物上并收集被检物 发出的拉曼光;
光检测装置, 用于接收外光路系统收集的拉曼光, 并检测该拉曼 光以获得该拉曼光的光谱数据;
控制装置, 用于控制所述激发光源提供所述激发光, 控制光检测 装置对拉曼光的检测, 接收从光检测装置输出的光谱数据并对该光谱 数据进行分析以识别所述被检物;
自动校准装置, 用于对所述拉曼光谱检测系统进行自动校准。
2. 根据权利要求 1 所述的拉曼光谱检测系统, 其特征在于, 所述 自动校准装置包括标准样品以及该标准样品的复位固定装置。
3. 根据权利要求 2所述的拉曼光语检测系统, 其特征在于, 所述 复位固定装置是弹簧。
4. 根据权利要求 2所述的拉曼光谱检测系统, 其特征在于, 所述 控制装置进一步包括校准单元, 用于通过分析从光检测装置接收的标 准样品的拉曼光语数据来确定系统当前的特性, 并基于该当前的特性 校准被检物的拉曼光谱数据。
5. 根据权利要求 1 所述的拉曼光谱检测系统, 其特征在于, 所述 外光路系统包括:
反射镜, 该反射镜反射来自光源的激发光;
滤光镜, 所述滤光镜反射由反射镜反射的激发光, 并透过波长长 于该激发光的拉曼光;
收集透镜, 所述收集透镜将来自滤光镜的激发光聚焦到被检物上 并收集被检物发出的拉曼光;
汇聚透镜, 所述汇聚透镜将所述收集透镜收集的拉曼光聚焦到光 检测装置中。
6. 根据权利要求 5所述的拉曼光语检测系统, 其特征在于, 所述 滤光镜是二向色镜, 或者是陷波滤光片。
7. 根据权利要求 1 至 6中任一项所述的拉曼光谱检测系统, 其特 征在于, 还包括报警装置, 用于接收控制装置的识别结果并输出提示 或警报。
8. 根据权利要求 4所述的拉曼光谱检测系统, 其特征在于, 所迷 特性包括光源的频率和功率以及外光路系统的激发效率和信号收集效 率。
9. 一种利用如权利要求 1 所述的拉曼光谱检测系统检查物体的方 法, 包括步骤:
^ 'J用标准样品对激发光进行自动校准;
控制激发光照射物体以激发该物体发射拉曼光;
检测该拉曼光以获得该拉曼光的光谱数据;
分析该光谱数据以识别所述物体。
1 0. 一种对如权利要求 1 所述的拉曼光谱检测系统进行自动校准 的方法, 包括步骤:
在检测被检物前, 控制激发光照射标准样品以激发该标准样品发 射拉曼光;
接收该拉曼光并获得该拉曼光的光语数据;
分析该光谱数据以确定系统当前的特性;
通过将系统当前的特性与预存的数据相比较, 获得用于自动校准 系统的校准值。
1 1 . 根据权利要求 1 0所述的方法, 其特征在于, 所述特性包括光 源的频率和功率以及外光路系统的激发效率和信号收集效率。
PCT/CN2010/002159 2010-06-25 2010-12-24 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统 WO2011160270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10853414.0A EP2587237B1 (en) 2010-06-25 2010-12-24 Raman spectrum detection system with automatic calibration device
US13/806,168 US8873042B2 (en) 2010-06-25 2010-12-24 Method for automatically calibrating a Raman spectrum detection system and Raman spectrum detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010219542.X 2010-06-25
CN201010219542.XA CN102297856B (zh) 2010-06-25 2010-06-25 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统

Publications (1)

Publication Number Publication Date
WO2011160270A1 true WO2011160270A1 (zh) 2011-12-29

Family

ID=45358420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002159 WO2011160270A1 (zh) 2010-06-25 2010-12-24 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统

Country Status (5)

Country Link
US (1) US8873042B2 (zh)
EP (1) EP2587237B1 (zh)
CN (1) CN102297856B (zh)
HK (1) HK1160931A1 (zh)
WO (1) WO2011160270A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834619A1 (en) * 2012-04-05 2015-02-11 Renishaw Diagnostics Limited A method for calibrating spectroscopy apparatus and equipment for use in the method
CN113109318A (zh) * 2021-03-26 2021-07-13 中国科学院西安光学精密机械研究所 基于光谱峰高直接提取的拉曼光谱定量分析方法及系统

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057856A1 (en) * 2011-09-01 2013-03-07 Mitsubishi Heavy Industries, Ltd. Fluid composition analysis mechanism, calorific value measurement device, power plant and fluid composition analysis method
GB2513343A (en) * 2013-04-23 2014-10-29 Univ Singapore Methods related to instrument-independent measurements for quantitative analysis of fiber-optic Raman spectroscopy
CN102998824B (zh) * 2012-12-10 2016-01-13 深圳市华星光电技术有限公司 彩色滤光片穿透频谱量测偏差补正系统和方法
CN103969239B (zh) * 2013-09-06 2016-04-13 北京理工大学 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103645141B (zh) * 2013-11-16 2016-04-27 中山欧麦克仪器设备有限公司 一种光纤ph计
CN104807799B (zh) * 2014-01-23 2017-07-07 清华大学 拉曼检测系统
CN103884703B (zh) * 2014-03-10 2016-10-05 北京理工大学 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN103884706B (zh) * 2014-04-08 2017-01-18 苏州优谱德精密仪器科技有限公司 原浆酒在线检测分级系统
CN104237199A (zh) * 2014-08-28 2014-12-24 中国农业大学 一种基于扩散方式的拉曼检测系统和方法
CN104359555B (zh) * 2014-10-16 2016-03-30 中国科学院上海技术物理研究所 一种基于数字微反射镜的便携式高光谱重构器
CN104458701B (zh) * 2014-12-11 2016-06-01 青岛橡胶谷知识产权有限公司 拉曼光谱爆炸物识别仪自动校准方法
CN104597026A (zh) * 2014-12-31 2015-05-06 苏州优谱德精密仪器科技有限公司 一种增强拉曼光谱的装置
CN106290300A (zh) * 2016-08-04 2017-01-04 同方威视技术股份有限公司 便携式拉曼光谱仪
CN107643275A (zh) * 2016-08-19 2018-01-30 北京杏林睿光科技有限公司 一种一体式拉曼光机系统
CN108088833A (zh) * 2016-11-22 2018-05-29 山东格物光电科技有限公司 使用单模激光的手持式拉曼检测仪
CN106770176A (zh) * 2016-12-26 2017-05-31 同方威视技术股份有限公司 拉曼光谱检测设备和拉曼光谱检测设备的安全监控方法
WO2018129435A1 (en) 2017-01-09 2018-07-12 Mks Technology, Inc. Method of measuring raman scattering and related spectrometers and laser sources
CN107064108A (zh) * 2017-04-18 2017-08-18 北京无线电计量测试研究所 一种低频移拉曼光谱的测量方法
FR3076352A1 (fr) * 2017-12-28 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination d'un degre de polymerisation d'un polymere
CN110398486B (zh) * 2018-04-24 2024-01-30 南京简智仪器设备有限公司 一种光斑可移动的差分拉曼光谱检测装置及检测方法
US10809199B2 (en) * 2018-08-07 2020-10-20 Synaptive Medical (Barbados) Inc. Dynamic raman signal acquisition system, method and apparatus
CN108982389B (zh) * 2018-08-31 2021-06-22 中国科学院合肥物质科学研究院 一种可见和近红外光谱的背景和参考自动校正系统及校正方法
CN109799221B (zh) * 2019-01-07 2021-04-27 北京青木子科技发展有限公司 一种可拆装的教学用拉曼光谱仪系统及其控制方法
CN112362635A (zh) * 2020-11-02 2021-02-12 公安部第三研究所 一种基于紫外拉曼光谱分析的远距离物质检测装置
CN113640272A (zh) * 2021-07-13 2021-11-12 黄埔海关技术中心 一种基于便携式拉曼光谱仪的谱库建立和检测方法及应用
CN114371160A (zh) * 2021-12-31 2022-04-19 中国工程物理研究院激光聚变研究中心 一种用于新型冠状病毒拉曼检测的装置
CN114720392B (zh) * 2022-04-06 2024-05-07 河南科技大学 一种双孢菇白度检测装置
CN115308173A (zh) * 2022-05-23 2022-11-08 中国海洋大学 一种海水溢油分类检测装置
CN114975689B (zh) * 2022-06-02 2024-06-04 深圳市韵腾激光科技有限公司 N型Topcon电池的同轴激光加工温控系统
WO2023249962A1 (en) * 2022-06-20 2023-12-28 Vanderbilt University Non-contact clinical raman spectroscopy guided probe and applications of same
CN117643452A (zh) * 2023-11-27 2024-03-05 元珵科技(北京)有限公司 一种自动化拉曼光纤探头测试仪及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621574B1 (en) * 2000-05-25 2003-09-16 Inphotonics, Inc. Dual function safety and calibration accessory for raman and other spectroscopic sampling
US20060038980A1 (en) * 2004-08-04 2006-02-23 Nobuyuki Naka Substrate inspection apparatus and method
JP2009103651A (ja) * 2007-10-25 2009-05-14 Fujifilm Corp 光電場増強デバイス、表面増強ラマン分光方法および表面増強ラマン分光装置
CN101614667A (zh) * 2008-06-27 2009-12-30 同方威视技术股份有限公司 拉曼光谱系统及拉曼光谱测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414258A (en) 1993-11-22 1995-05-09 Angstrom Technologies, Inc. Apparatus and method for calibration of fluorescence detectors
US6897951B2 (en) * 2003-02-14 2005-05-24 Raman Systems, Inc. Probe assemblies for Raman spectroscopy
US7414723B2 (en) * 2004-02-23 2008-08-19 Malvern Instruments Incorporated Automated interleaved spectral imaging calibration
US7993585B2 (en) * 2005-07-14 2011-08-09 Battelle Memorial Institute Biological and chemical monitoring
CN201819884U (zh) * 2010-06-25 2011-05-04 清华大学 拉曼光谱检测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621574B1 (en) * 2000-05-25 2003-09-16 Inphotonics, Inc. Dual function safety and calibration accessory for raman and other spectroscopic sampling
US20060038980A1 (en) * 2004-08-04 2006-02-23 Nobuyuki Naka Substrate inspection apparatus and method
JP2009103651A (ja) * 2007-10-25 2009-05-14 Fujifilm Corp 光電場増強デバイス、表面増強ラマン分光方法および表面増強ラマン分光装置
CN101614667A (zh) * 2008-06-27 2009-12-30 同方威视技术股份有限公司 拉曼光谱系统及拉曼光谱测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587237A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834619A1 (en) * 2012-04-05 2015-02-11 Renishaw Diagnostics Limited A method for calibrating spectroscopy apparatus and equipment for use in the method
CN113109318A (zh) * 2021-03-26 2021-07-13 中国科学院西安光学精密机械研究所 基于光谱峰高直接提取的拉曼光谱定量分析方法及系统

Also Published As

Publication number Publication date
EP2587237A1 (en) 2013-05-01
CN102297856B (zh) 2015-09-30
EP2587237A4 (en) 2014-07-02
US20130162989A1 (en) 2013-06-27
EP2587237B1 (en) 2019-11-27
CN102297856A (zh) 2011-12-28
HK1160931A1 (zh) 2012-08-17
US8873042B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
WO2011160270A1 (zh) 用于自动校准拉曼光谱检测系统的方法及拉曼光谱检测系统
CN201819884U (zh) 拉曼光谱检测系统
US11519855B2 (en) Close-coupled analyser
CN105829872B (zh) 通过拉曼光谱分析来检测爆炸材料
KR20150037977A (ko) 이중 분광계
US20090213371A1 (en) Spectrophotometer Comprising Two Detectors for Overlapping Wavelength Ranges
US20170045450A1 (en) Method and Apparatus for Nondestructive Quantification of Cannabinoids
JP2006507503A (ja) 紫外蛍光を使用して、分子種を検出し、検査し、分類するための方法および装置
CN106198449A (zh) 一种具有防爆外壳的气体光学感测装置
CN102608095A (zh) 利用标准样品对拉曼光谱检测系统进行自动校准的方法
US20100265499A1 (en) Programmable raman transducer
US11359963B2 (en) Variable laser energy multi-spectrometer for gas and particulate chemicals in air
US8111392B1 (en) Raman spectrometer with display of laser power at the sample
EP3497617A1 (en) Skinprint analysis method and apparatus
US20130188182A1 (en) Raman Apparatus and Method for Real Time Calibration Thereof
CN114384059B (zh) 一种气体检测装置和方法
EP4206654A1 (en) Method and system for raman spectroscopy
JP7356498B2 (ja) プラズマスペクトル分析を介してサンプルの材料組成を分析するための装置
US20220236172A1 (en) Spectrometer device for optical analysis of at least one sample
RU2567119C1 (ru) Способ дистанционного беспробоотборного обнаружения и идентификации химических веществ и объектов органического происхождения и устройство для его осуществления
WO2023144161A1 (en) Portable spectrometer device
CN115885167A (zh) 用于样本的光谱分析的设备以及用于借助于这样的设备来分析样本的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010853414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806168

Country of ref document: US