WO2011158861A1 - 無線基地局、及び電源制御方法 - Google Patents
無線基地局、及び電源制御方法 Download PDFInfo
- Publication number
- WO2011158861A1 WO2011158861A1 PCT/JP2011/063693 JP2011063693W WO2011158861A1 WO 2011158861 A1 WO2011158861 A1 WO 2011158861A1 JP 2011063693 W JP2011063693 W JP 2011063693W WO 2011158861 A1 WO2011158861 A1 WO 2011158861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio
- base station
- control unit
- dsp
- resource block
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to wireless communication technology, and more particularly, to a wireless base station to which SON is applied and a power supply control method.
- Non-Patent Document 1 LTE (Long Term Evolution Evolution) standardized by 3GPP (3rd Generation Partnership Project), a standardization organization for wireless communication systems, a technology called SON (Self Organizing Network) is employed. According to the SON, it is expected that the installation and maintenance of the radio base station can be automated without requiring manual measurement and setting in the field (for example, see Non-Patent Document 1).
- eNB a technique for suppressing power consumption by controlling on / off of a power supply of a radio base station
- eNB a radio base station
- Energy Savings when the radio base station eNB is turned on, the radio base station eNB notifies the other radio base station eNB to that effect. In addition, when turning on the power of another radio base station eNB, the radio base station eNB notifies the other radio base station eNB to that effect.
- the radio base station (radio base station eNB10-1) according to the first feature connects a radio terminal (radio terminal UE30-1).
- the radio base station includes a plurality of communication processing units (DSP 114-1, DSP 114-2, DSP 114-3) that are individually turned on or off, and a control unit (power source) that controls the power of the plurality of communication processing units.
- Control unit 122 and the control unit performs control to turn on the number of communication processing units corresponding to the amount of radio resources (resource blocks) used by the connected radio terminal.
- the radio base station can limit the number of communication processing units to turn on according to the amount of radio resources used by the connected radio terminals. For this reason, compared with the case where the power supply is turned on or off in units of the entire radio base station, power consumption can be suppressed even when the radio base station is operating, and efficient power supply control is possible. Become.
- control unit decreases the number of the communication processing units to be turned on as the usage amount of the radio resource is smaller.
- the usage amount of the radio resource is indicated by a frequency bandwidth.
- the usage amount of the radio resource is indicated by a time width.
- the power control method is a method in a radio base station that includes a plurality of communication processing units that are individually turned on or off, and to which a radio terminal is connected.
- the power control method includes a step of controlling power of the plurality of communication processing units, and the step of controlling powers on the number of the communication processing units according to the amount of radio resources used by the connected radio terminals. Control to turn on.
- FIG. 1 is a diagram for explaining the outline of the LTE system.
- FIG. 2 is a schematic configuration diagram of a radio communication system according to the embodiment of the present invention.
- FIG. 3 is a block diagram showing a configuration of a radio base station according to the embodiment of the present invention.
- FIG. 4 is a diagram illustrating an example of downlink radio resources according to the embodiment of the present invention.
- FIG. 5 is a diagram illustrating an example of uplink radio resources according to the embodiment of the present invention.
- FIG. 6 is a flowchart showing an operation of the radio base station according to the embodiment of the present invention.
- FIG. 7 is a block diagram showing a configuration of a radio base station according to another embodiment of the present invention.
- FIG. 1 is a diagram for describing an overview of an LTE system.
- a plurality of radio base stations eNB constitutes an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network).
- E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
- Each of the plurality of radio base stations eNB forms a cell that is a communication area that should provide a service to the radio terminal UE.
- the radio terminal UE is a radio communication device possessed by a user and is also referred to as a user device.
- the radio terminal UE measures the quality (that is, radio quality) of the radio signal received from the radio base station eNB, and transmits a report of the radio quality measurement result (hereinafter, measurement result report) to the connection-destination radio base station eNB. To do.
- Such radio quality includes reference signal received power (RSRP), signal-to-interference noise ratio (SINR), and the like.
- RSRP reference signal received power
- SINR signal-to-interference noise ratio
- CQI Channel Quality Indicator
- the radio base station eNB to which the radio terminal UE is connected allocates a resource block, which is a radio resource allocation unit, to the radio terminal UE based on the CQI received from the radio terminal UE.
- the radio base stations eNB can communicate with each other via an X2 interface that is a logical communication path that provides inter-base station communication.
- Each of the plurality of radio base stations eNB can communicate with EPC (Evolved Packet Core), specifically, MME (Mobility Management Entity) / S-GW (Serving Gateway) via the S1 interface.
- EPC Evolved Packet Core
- MME Mobility Management Entity
- S-GW Serving Gateway
- FIG. 2 is a schematic configuration diagram of the radio communication system 1 according to the present embodiment.
- the radio communication system 1 includes a radio base station eNB10-1 that forms a cell C20-1, a radio base station eNB10-2 that forms a cell C20-2, and a radio in the cell C20-1.
- a terminal UE30-1 and a radio terminal UE30-2 in the cell C20-2 are included.
- the radio base station eNB10-1 and the radio base station eNB10-2 can perform inter-base station communication using the X2 interface described above. Further, the radio base station eNB10-1 performs radio communication with the radio terminal UE30-1 in the cell C20-1, and the radio base station eNB10-2 performs radio communication with the radio terminal UE30-2 in the cell C20-2. Do.
- FIG. 3 is a block diagram showing a configuration of the radio base station eNB10-1 according to the present embodiment. Note that the radio base station eNB10-2 also has the same configuration.
- the radio base station eNB10-1 includes an antenna 101, a radio communication unit 110, a control unit 120, a storage unit 130, and an X2 interface communication unit 140.
- the antenna 101 is used for transmitting / receiving a radio signal to / from the radio terminal UE30-1.
- the wireless communication unit 110 includes a radio frequency (RF) circuit 112, a digital signal processor (DSP) 114-1, a DSP 114-2, and a DSP 114-3.
- the DSP 114-1, DSP 114-2, and DSP 114-3 are individually turned on or off.
- the DSP 114-1, the DSP 114-2, and the DSP 114-3 correspond to the communication processing unit.
- the RF circuit 112 performs down-conversion from the radio frequency band to the baseband band and analog / digital (A / D) conversion for the signal received by the antenna 101 during reception. Further, the RF circuit 112 outputs a digital signal to a DSP whose power is turned on by power source control described later, among the DSPs 114-1, DSP 114-2, and DSP 114-3.
- the RF circuit 112 performs digital / analog (D / A) on a digital signal from the DSP 114-1, DSP 114-2, and DSP 114-3 that is powered on by power control described later. ) Conversion and up-conversion from baseband to radio frequency band. Further, the RF circuit 112 transmits a radio frequency band signal via the antenna 101.
- D / A digital / analog
- the DSP 114-1, DSP 114-2, and DSP 114-3 perform predetermined signal processing on the digital signal from the RF circuit 112 when the power supply of the DSP 114-1, DSP 114-2, and DSP 114-3 is on. Output to the control unit 120. Further, the DSP 114-1, the DSP 114-2, and the DSP 114-3 perform predetermined signal processing on the digital signal from the control unit 120 when the power of the DSP 114-1, the DSP 114-2, and the DSP 114-3 is turned on. The signal is output to the RF circuit 112.
- the control unit 120 is configured using, for example, a CPU, and controls various functions provided in the radio base station eNB10-1.
- the storage unit 130 is configured using, for example, a memory, and stores various types of information used for controlling the radio base station eNB10-1.
- the X2 interface communication unit 140 performs inter-base station communication with the radio base station eNB10-2 using the X2 interface.
- the control unit 120 includes a radio resource allocation unit 121 and a power supply control unit 122.
- the radio resource allocation unit 121 allocates a resource block as a radio resource to the radio terminal UE30-1 based on the CQI received from the radio terminal UE30-1 in the cell C20-1.
- FIG. 4 is a diagram illustrating an example of downlink radio resources that the radio resource assignment unit 121 can assign to the radio terminal UE30-1.
- the downlink frequency band is divided into 50 resource blocks (RB) 1 to 50.
- Each resource block is configured by a control information channel (PDCCH: Physical Downlink Control Channel) for downlink control information transmission and a shared data channel (PDSCH: Physical Downlink Shared Shared CHannel) for downlink user data transmission. .
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Shared CHannel
- FIG. 5 is a diagram illustrating an example of uplink radio resources that the radio resource allocation unit 121 can allocate to the radio terminal UE30-1.
- the downlink frequency band is divided into 50 resource blocks (RB) 1 to 50.
- the resource block includes a resource block for a control information channel (PUCCH: Physical-Uplink-Control-CHannel) for uplink control information transmission and a shared data channel (PUSCH: Physical-Uplink-Shared-CHannel) for uplink user data transmission. It consists of resource blocks.
- PUCCH Physical-Uplink-Control-CHannel
- PUSCH Physical-Uplink-Shared-CHannel
- the power control unit 122 controls the power of the DSP 114-1, DSP 114-2, and DSP 114-3.
- the power supply control unit 122 is a downlink resource block amount (downlink resource block usage amount) indicating the usage amount of the radio resource allocated to the radio terminal UE30-1 by the radio resource allocation unit 121. And the amount of uplink resource blocks (uplink resource block usage) indicating the usage of radio resources.
- the power supply control unit 122 calculates the usage rate of the downlink resource block by dividing the usage amount of the downlink resource block by the number of all resource blocks that can be allocated in the downlink direction. Similarly, the power supply control unit 122 calculates the usage rate of the uplink resource block by dividing the usage amount of the uplink resource block by the number of all resource blocks that can be allocated in the uplink direction.
- the power supply control unit 122 selects, as the resource block usage rate, the larger one of the downlink resource block usage rate and the uplink resource block usage rate.
- the power supply control unit 122 determines the number of DSPs that should be turned on based on the resource block usage rate.
- the power control unit 122 determines the number of DSPs that should be turned on so that the number of DSPs that should be turned on decreases as the resource block usage rate decreases.
- the power supply control unit 122 determines the number of DSPs to be turned on so that the resource block usage rate is proportional to the number of DSPs to be turned on.
- the wireless communication unit 110 is provided with three DSPs 114-1, DSP 114-2, and DSP 114-3.
- the power supply control unit 122 determines one DSP to turn on the power, and when the resource block usage rate is 33% or more and less than 66%, Two DSPs to turn on the power are determined, and when the resource block usage rate is 66% or more, three DSPs to turn on the power are determined.
- the power control unit 122 performs control to turn on the number of DSPs determined by the above-described procedure among the DSPs 114-1, DSP 114-2, and DSP 114-3 and to turn off the remaining DSPs.
- FIG. 4 is a flowchart showing the operation of the radio base station eNB10-1 according to this embodiment.
- step S101 the radio resource allocation unit 121 in the control unit 120 allocates resource blocks as radio resources to the radio terminal UE30-1 in the cell C20-1.
- step S102 the power control unit 122 in the control unit 120 acquires the amount of downlink resource blocks (downlink resource block usage amount) allocated to the radio terminal UE30-1 by the radio resource allocation unit 121. At the same time, the amount of uplink resource blocks (downlink resource block usage) is acquired.
- step S103 the power control unit 122 in the control unit 120 calculates the usage rate of the downlink resource block from the usage amount of the downlink resource block, and calculates the usage rate of the uplink resource block from the usage amount of the uplink resource block. Furthermore, the power supply control unit 122 in the control unit 120 acquires, as the resource block usage rate, the larger one of the downlink resource block usage rate and the uplink resource block usage rate.
- step S104 the power control unit 122 in the control unit 120 determines the number of DSPs to turn on based on the resource block usage rate.
- step S105 the power control unit 122 in the control unit 120 turns on the number of DSPs determined in step S104 out of the DSP 114-1, DSP 114-2, and DSP 114-3, and turns off the remaining DSPs. Control to turn on.
- the radio base station eNB10-1 assigns the downlink resource block amount (downlink resource block usage) allocated to the radio terminal UE30-1. Amount) and the amount of resource blocks in the uplink direction (downstream resource block usage amount), the resource block usage rate is calculated, and the smaller the resource block usage rate, the more DSPs to turn on. The number of DSPs that turn on the power supply is determined so as to decrease the number. Further, the radio base station eNB10-1 performs control to turn on the determined number of DSPs and turn off the remaining DSPs.
- the power consumption is suppressed as much as possible even when the radio base station eNB10-1 is operating. Power control of a typical radio base station eNB10-1 becomes possible.
- the usage amount of the radio resource is the usage amount of the resource block in the frequency direction. That is, the usage amount of the radio resource is indicated by the frequency bandwidth, but may be a time width.
- the power supply control unit 122 assigns the amount of subframes (downlink subframes) that are downlink time slots indicating the amount of radio resources used by the radio resource allocation unit 121 to the radio terminal UE30-1. Usage amount) and an uplink subframe amount (uplink subframe usage amount) indicating the usage amount of the radio resource.
- the power supply control unit 122 calculates the usage rate of the downlink subframe by dividing the usage amount of the downlink subframe by the number of all subframes that can be allocated in the downlink direction. Similarly, the power supply control unit 122 calculates the uplink subframe usage rate by dividing the uplink subframe usage amount by the number of all subframes that can be allocated in the uplink direction.
- the power supply control unit 122 selects the larger one of the downlink subframe usage rate and the uplink subframe usage rate as the subframe usage rate.
- the power control unit 122 determines the number of DSPs to turn on based on the subframe usage rate.
- the power supply control unit 122 determines the number of DSPs that turn on the power so that the number of DSPs that turn on the power decreases as the subframe usage rate decreases.
- the power supply control unit 122 selects the resource block usage rate that is larger between the downlink resource block usage rate and the uplink resource block usage rate, but the downlink resource block usage rate and the uplink resource The average value of the block usage rate may be used as the resource block usage rate. Further, the power supply control unit 122 may acquire only one of the downlink resource block usage amount and the uplink resource block usage amount, and may calculate the resource block usage rate based only on the acquired resource block usage amount.
- the power supply control unit 122 may use the average value of the downlink subframe usage rate and the uplink subframe usage rate as the subframe usage rate. Further, the power supply control unit 122 may acquire only one of the downlink subframe usage amount and the uplink subframe usage amount, and may calculate the subframe usage rate based only on the acquired subframe usage amount.
- the power control unit 122 turns on the number of DSPs according to the resource block usage rate, but the traffic amount with the radio terminal UE30-1 is the radio resource usage amount, The number of DSPs corresponding to the amount of traffic may be turned on. In this case, the power supply control unit 122 reduces the number of DSPs that turn on the power as the traffic volume with the radio terminal UE30-1 decreases.
- LTE-Advanced may employ MIMO (Multi-Input-Multi-Output) in order to improve the data rate.
- MIMO Multi-Input-Multi-Output
- the present invention can be similarly applied to a radio base station eNB employing MIMO.
- FIG. 7 is a block diagram showing a configuration of the radio base station eNB11 that employs MIMO.
- the radio base station eNB11 includes an antenna 101-1, an antenna 101-2, a radio communication unit 111, a control unit 120, a storage unit 130, and an X2 interface communication unit 140.
- the radio base station eNB11 can realize 2 streams (2 ⁇ 2 MIMO).
- the antenna 101-1 and the antenna 101-2 are used for transmission and reception of radio signals with the radio terminal UE30-1.
- S-MIMO single user MIMO
- MS-MIMO multi-user MIMO
- the antenna 101-1 and the antenna 101-2 are used for transmission and reception of radio signals between different radio terminals UE30-1.
- the wireless communication unit 111 includes a radio frequency (RF) circuit 112-1 to which the antenna 101-1 is connected and an RF circuit 112-2 to which the antenna 101-2 is connected.
- the RF circuit 112-1, the RF circuit 112-2, and the RF circuit 112-3 are individually turned on or off.
- the RF circuit 112-1 and the RF circuit 112-2 correspond to a communication processing unit.
- the wireless communication unit 111 includes a DSP 114-1 to which the RF circuit 112-1 is connected and a DSP 114-2 to which the RF circuit 112-2 is connected.
- the RF circuit 112-1 When the power is on, the RF circuit 112-1 performs down-conversion from the radio frequency band to the baseband band and analog / digital (A / D) conversion for the signal received by the antenna 101-1, at the time of reception. Do. Further, the RF circuit 112-1 outputs a digital signal to the DSP 114-1. The RF circuit 112-2 performs the same processing.
- the RF circuit 112-1 when the power is on, the RF circuit 112-1 performs digital / analog (D / A) conversion and up-conversion from the baseband band to the radio frequency band for the digital signal from the DSP 114-1 at the time of transmission. Do. Furthermore, the RF circuit 112-1 transmits a radio frequency band signal via the antenna 101-1. The RF circuit 112-2 performs the same processing.
- D / A digital / analog
- DSP 114-1 and DSP 114-2 perform the same processing as in the above-described embodiment, the description thereof is omitted.
- the control unit 120 is configured using, for example, a CPU, and controls various functions provided in the radio base station eNB11.
- the storage unit 130 stores various types of information used for controlling the radio base station eNB10-1.
- the X2 interface communication unit 140 performs inter-base station communication with the radio base station eNB10-2 using the X2 interface.
- the control unit 120 includes a radio resource allocation unit 121 and a power supply control unit 122.
- the radio resource allocation unit 121 allocates a resource block as a radio resource to the radio terminal UE30-1 based on the CQI received from the radio terminal UE30-1 in the cell C20-1.
- the power supply control unit 122 controls the power supply of the RF circuit 112-1 and the RF circuit 112-2.
- the power supply control unit 122 acquires the downlink resource block usage amount and the uplink resource block usage amount.
- the power supply control unit 122 calculates the usage rate of the downlink resource block by dividing the usage amount of the downlink resource block by the number of all resource blocks that can be allocated in the downlink direction. Similarly, the power supply control unit 122 calculates the usage rate of the uplink resource block by dividing the usage amount of the uplink resource block by the number of all resource blocks that can be allocated in the uplink direction.
- the power supply control unit 122 selects, as the resource block usage rate, the larger one of the downlink resource block usage rate and the uplink resource block usage rate.
- the power supply control unit 122 determines the number of RF circuits to be turned on based on the resource block usage rate.
- the power supply control unit 122 determines the number of DSPs to be turned on so that the number of RF circuits to be turned on decreases as the resource block usage rate decreases.
- the power supply control unit 122 performs control to turn on the power of the determined number of RF circuits of the RF circuit 112-1 and the RF circuit 112-2 and turn off the power of the remaining RF circuits.
- SISO Single-Input-Single-Output
- the power supply control unit 122 may perform control to turn on the power of the DSP connected to the RF circuit to be turned on and to turn off the power of the DSP connected to the RF circuit to be turned off.
- the power control unit 122 may determine the number of RF circuits to turn on according to the traffic amount with the radio terminal UE30-1.
- the LTE system has been described.
- the present invention may be applied to other wireless communication systems such as a wireless communication system based on WiMAX (IEEE 802.16).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線基地局eNB10-1は、無線端末UE30-1に対して割り当てた、下り方向のリソースブロックの量(下りリソースブロック使用量)と、上り方向のリソースブロックの量(下りリソースブロック使用量)とに基づいて、リソースブロックの使用率を算出し、当該リソースブロック使用率が小さいほど、電源をオンにすべきDSPの数が少なくなるように、当該電源をオンにすべきDSPの数を決定する。更に、無線基地局eNB10-1は、決定した数のDSPの電源をオンにし、残りのDSPの電源をオフにする制御を行う。
Description
本発明は、無線通信技術に関し、特にSONを適用した無線基地局、及び電源制御方法に関する。
無線通信システムの標準化団体である3GPP(3rd Generation Partnership Project)で標準化されているLTE(Long Term Evolution)では、SON(Self Organizing Network)と称される技術が採用されている。SONによれば、無線基地局の設置や保守の際に、人手によるフィールドでの測定や設定を要さずに自動化できることが期待される(例えば、非特許文献1参照)。
SONにおいては、無線基地局(3GPPにおいて「eNB」と称される)の電源のオンオフを制御することにより、消費電力を抑制する手法が提案されている。このような手法は、エナジーセービング(Energy Savings)と称される。エナジーセービングにおいて、無線基地局eNBは、自局の電源がオンになる場合には、その旨を他の無線基地局eNBに通知する。また、無線基地局eNBは、他の無線基地局eNBの電源をオンにする場合には、その旨を当該他の無線基地局eNBに通知する。
しかしながら、上述したエナジーセービングの手法では、無線基地局eNB全体を単位として電源のオン又はオフになることのみが規定されている。このため、無線基地局eNBが動作中の場合にもできるだけ消費電力を抑制する、より効率的な電源制御が要求されている。
3GPP TR 36.902 V9.1.0 March, 2010.
第1の特徴に係る無線基地局(無線基地局eNB10-1)は、無線端末(無線端末UE30-1)を接続する。無線基地局は、個別に電源がオン又はオフにされる複数の通信処理部(DSP114-1、DSP114-2、DSP114-3)と、前記複数の通信処理部の電源を制御する制御部(電源制御部122)とを備え、前記制御部は、接続される前記無線端末による無線リソース(リソースブロック)の使用量に応じた数の前記通信処理部の電源をオンにする制御を行う。
このような特徴によれば、無線基地局は、接続される無線端末による無線リソースの使用量に応じて電源をオンにする通信処理部の数を制限できる。このため、無線基地局の全体を単位として電源がオン又はオフになる場合と比較すると、無線基地局が動作中の場合にも消費電力を抑制することができ、効率的な電源制御が可能となる。
第1の特徴において、前記制御部は、前記無線リソースの使用量が少ないほど、電源をオンにする前記通信処理部の数を減少させる。
第1の特徴において、前記無線リソースの使用量は、周波数の帯域幅で示される。
第1の特徴において、前記無線リソースの使用量は、時間幅で示される。
第2の特徴に係る電源制御方法は、個別に電源がオン又はオフにされる複数の通信処理部を備え、無線端末が接続される無線基地局における方法である。電源制御方法は、前記複数の通信処理部の電源を制御するステップを備え、前記制御するステップは、接続される無線端末による無線リソースの使用量に応じた数の前記通信処理部の電源をオンにする制御を行う。
次に、図面を参照して、本発明の実施形態を説明する。具体的には、(1)LTEシステムの概要、(2)無線通信システムの構成、(3)無線基地局の構成、(4)無線基地局の動作、(5)作用・効果、(6)その他の実施形態について説明する。以下の実施形態における図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(1)LTEシステムの概要
図1は、LTEシステムの概要を説明するための図である。図1に示すように、複数の無線基地局eNBはE-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)を構成する。複数の無線基地局eNBのそれぞれは、無線端末UEにサービスを提供すべき通信エリアであるセルを形成する。
図1は、LTEシステムの概要を説明するための図である。図1に示すように、複数の無線基地局eNBはE-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)を構成する。複数の無線基地局eNBのそれぞれは、無線端末UEにサービスを提供すべき通信エリアであるセルを形成する。
無線端末UEは、ユーザが所持する無線通信装置であり、ユーザ装置とも称される。無線端末UEは、無線基地局eNBから受信する無線信号の品質(すなわち、無線品質)を測定し、無線品質の測定結果の報告(以下、測定結果報告)を接続先の無線基地局eNBに送信する。
このような無線品質としては、参照信号の受信電力(RSRP)や、信号対干渉雑音比(SINR)等がある。RSRPに係る測定結果報告はメジャメントレポートと称され、SINRのインデックスに係る測定結果報告はCQI(Channel Quality Indicator)と称される。
また、無線端末UEの接続先の無線基地局eNBは、無線端末UEから受信するCQIに基づいて、無線リソースの割り当て単位であるリソースブロックを無線端末UEに割り当てる。
各無線基地局eNBは、基地局間通信を提供する論理的な通信路であるX2インターフェースを介して互いに通信可能である。複数の無線基地局eNBのそれぞれは、S1インターフェースを介して、EPC(Evolved Packet Core)、具体的には、MME(Mobility Management Entity)/S-GW(Serving Gateway)と通信可能である。
(2)無線通信システムの構成
図2は、本実施形態に係る無線通信システム1の概略構成図である。
図2は、本実施形態に係る無線通信システム1の概略構成図である。
図2に示すように、無線通信システム1は、セルC20-1を形成する無線基地局eNB10-1と、セルC20-2を形成する無線基地局eNB10-2と、セルC20-1内の無線端末UE30-1と、セルC20-2内の無線端末UE30-2とを有する。無線基地局eNB10-1及び無線基地局eNB10-2は、上述したX2インタフェースを使用して基地局間通信を行うことができる。また、無線基地局eNB10-1は、セルC20-1内の無線端末UE30-1と無線通信を行い、無線基地局eNB10-2は、セルC20-2内の無線端末UE30-2と無線通信を行う。
(3)無線基地局の構成
次に、無線基地局eNB10-1の構成を説明する。図3は、本実施形態に係る無線基地局eNB10-1の構成を示すブロック図である。なお、無線基地局eNB10-2も、同様の構成を有する。
次に、無線基地局eNB10-1の構成を説明する。図3は、本実施形態に係る無線基地局eNB10-1の構成を示すブロック図である。なお、無線基地局eNB10-2も、同様の構成を有する。
図3に示すように、無線基地局eNB10-1は、アンテナ101、無線通信部110、制御部120、記憶部130、及びX2インタフェース通信部140を有する。
アンテナ101は、無線端末UE30-1との間の無線信号の送受信に用いられる。
無線通信部110は、無線周波数(RF)回路112、デジタル信号処理部(DSP:Digital Signal Processor)114-1、DSP114-2、DSP114-3を有する。DSP114-1、DSP114-2、DSP114-3は、それぞれ個別に電源がオン又はオフにされる。本実施形態では、DSP114-1、DSP114-2、DSP114-3が通信処理部に対応する。
RF回路112は、受信時には、アンテナ101によって受信された信号について、無線周波数帯域からベースバンド帯域へのダウンコンバートと、アナログ/デジタル(A/D)変換を行う。更に、RF回路112は、デジタル信号をDSP114-1、DSP114-2、DSP114-3のうち、後述する電源制御によって電源がオンとなっているDSPへ出力する。
また、RF回路112は、送信時には、DSP114-1、DSP114-2、DSP114-3のうち、後述する電源制御によって電源がオンとなっているDSPからのデジタル信号について、デジタル/アナログ(D/A)変換と、ベースバンド帯域から無線周波数帯域へのアップコンバートを行う。更に、RF回路112は、無線周波数帯の信号を、アンテナ101を介して送信する。
DSP114-1、DSP114-2、DSP114-3は、受信時には、自身の電源がオンである場合に、RF回路112からのデジタル信号に対して、所定の信号処理を行い、処理後のデジタル信号を制御部120へ出力する。また、DSP114-1、DSP114-2、DSP114-3は、送信時には、自身の電源がオンである場合に、制御部120からのデジタル信号に対して、所定の信号処理を行い、処理後のデジタル信号をRF回路112へ出力する。
制御部120は、例えばCPUを用いて構成され、無線基地局eNB10-1が備える各種の機能を制御する。記憶部130は、例えばメモリを用いて構成され、無線基地局eNB10-1の制御等に用いられる各種の情報を記憶する。X2インタフェース通信部140は、X2インタフェースを使用して無線基地局eNB10-2との基地局間通信を行う。
制御部120は、無線リソース割当部121及び電源制御部122を有する。
無線リソース割当部121は、セルC20-1内の無線端末UE30-1から受信するCQIに基づいて、当該無線端末UE30-1に対して、無線リソースとしてのリソースブロックを割り当てる。
図4は、無線リソース割当部121が無線端末UE30-1に対して割り当て可能な下り方向の無線リソースの一例を示す図である。例えば、割り当て可能な下り方向の周波数帯域幅が10[MHz]である場合、当該下り方向の周波数帯域は、50個のリソースブロック(RB)1乃至50に分割されている。各リソースブロックは、下り方向の制御情報伝送用の制御情報チャネル(PDCCH:Physical Downlink Control CHannel)と、下り方向のユーザデータ伝送用の共有データチャネル(PDSCH:Physical Downlink Shared CHannel)とにより構成される。
図5は、無線リソース割当部121が無線端末UE30-1に対して割り当て可能な上り方向の無線リソースの一例を示す図である。割り当て可能な下り方向の周波数帯域幅が10[MHz]である場合、当該下り方向の周波数帯域は、50個のリソースブロック(RB)1乃至50に分割されている。リソースブロックは、上り方向の制御情報伝送用の制御情報チャネル(PUCCH:Physical Uplink Control CHannel)用のリソースブロックと、上り方向のユーザデータ伝送用の共有データチャネル(PUSCH:Physical Uplink Shared CHannel)用のリソースブロックとにより構成される。
電源制御部122は、DSP114-1、DSP114-2、DSP114-3の電源を制御する。
具体的には、電源制御部122は、無線リソース割当部121によって無線端末UE30-1に対して割り当てられた無線リソースの使用量を示す、下り方向のリソースブロックの量(下りリソースブロック使用量)を取得するとともに、無線リソースの使用量を示す、上り方向のリソースブロックの量(上りリソースブロック使用量)を取得する。
電源制御部122は、下りリソースブロック使用量を、下り方向の割り当て可能な全てのリソースブロックの数で除算することにより、下りリソースブロックの使用率を算出する。同様に、電源制御部122は、上りリソースブロック使用量を、上り方向の割り当て可能な全てのリソースブロックの数で除算することにより、上りリソースブロックの使用率を算出する。
電源制御部122は、下りリソースブロック使用率と上りリソースブロック使用率のうち、値が大きい方をリソースブロック使用率として選択する。電源制御部122は、リソースブロック使用率に基づいて、電源をオンにすべきDSPの数を決定する。ここで、電源制御部122は、リソースブロック使用率が小さいほど、電源をオンにすべきDSPの数が少なくなるように、当該電源をオンにすべきDSPの数を決定する。換言すれば、電源制御部122は、リソースブロック使用率と、電源をオンにすべきDSPの数とが比例するように、当該電源をオンにすべきDSPの数を決定する。
本実施形態では、無線通信部110には、3つのDSP114-1、DSP114-2、DSP114-3が設けられている。電源制御部122は、リソースブロック使用率が33%未満である場合には、電源をオンにするDSPを1つに決定し、リソースブロック使用率が33%以上66%未満である場合には、電源をオンにするDSPを2つに決定し、リソースブロック使用率が66%以上である場合には、電源をオンにするDSPを3つに決定する。
電源制御部122は、DSP114-1、DSP114-2、DSP114-3のうち、上述した手順により決定した数のDSPの電源をオンにし、残りのDSPの電源をオフにする制御を行う。
(4)無線基地局の動作
図4は、本実施形態に係る無線基地局eNB10-1の動作を示すフローチャートである。
図4は、本実施形態に係る無線基地局eNB10-1の動作を示すフローチャートである。
ステップS101において、制御部120内の無線リソース割当部121は、セルC20-1内の無線端末UE30-1に対して、無線リソースとしてのリソースブロックを割り当てる。
ステップS102において、制御部120内の電源制御部122は、無線リソース割当部121によって無線端末UE30-1に対して割り当てられた、下り方向のリソースブロックの量(下りリソースブロック使用量)を取得するとともに、上り方向のリソースブロックの量(下りリソースブロック使用量)を取得する。
ステップS103において、制御部120内の電源制御部122は、下りリソースブロック使用量から下りリソースブロックの使用率を算出するとともに、上りリソースブロック使用量から上りリソースブロックの使用率を算出する。更に、制御部120内の電源制御部122は、下りリソースブロック使用率と上りリソースブロック使用率とのうち、値が大きい方をリソースブロック使用率として取得する。
ステップS104において、制御部120内の電源制御部122は、リソースブロック使用率に基づいて、電源をオンにするDSPの数を決定する。
ステップS105において、制御部120内の電源制御部122は、DSP114-1、DSP114-2、DSP114-3のうち、ステップS104において決定した数のDSPの電源をオンにし、残りのDSPの電源をオフにする制御を行う。
(5)作用・効果
以上説明したように、本実施形態によれば、無線基地局eNB10-1は、無線端末UE30-1に対して割り当てた、下り方向のリソースブロックの量(下りリソースブロック使用量)と、上り方向のリソースブロックの量(下りリソースブロック使用量)とに基づいて、リソースブロックの使用率を算出し、当該リソースブロック使用率が小さいほど、電源をオンにするDSPの数が少なくなるように、当該電源をオンにするDSPの数を決定する。更に、無線基地局eNB10-1は、決定した数のDSPの電源をオンにし、残りのDSPの電源をオフにする制御を行う。このため、従来のように、無線基地局の全体を単位として電源がオン又はオフになる場合と比較すると、無線基地局eNB10-1が動作中の場合にもできるだけ消費電力を抑制する、より効率的な無線基地局eNB10-1の電源制御が可能となる。
以上説明したように、本実施形態によれば、無線基地局eNB10-1は、無線端末UE30-1に対して割り当てた、下り方向のリソースブロックの量(下りリソースブロック使用量)と、上り方向のリソースブロックの量(下りリソースブロック使用量)とに基づいて、リソースブロックの使用率を算出し、当該リソースブロック使用率が小さいほど、電源をオンにするDSPの数が少なくなるように、当該電源をオンにするDSPの数を決定する。更に、無線基地局eNB10-1は、決定した数のDSPの電源をオンにし、残りのDSPの電源をオフにする制御を行う。このため、従来のように、無線基地局の全体を単位として電源がオン又はオフになる場合と比較すると、無線基地局eNB10-1が動作中の場合にもできるだけ消費電力を抑制する、より効率的な無線基地局eNB10-1の電源制御が可能となる。
(6)その他の実施形態
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
上述した実施形態では、無線リソースの使用量は、周波数方向のリソースブロックの使用量であった。すなわち、無線リソースの使用量は、周波数帯域幅によって示されたが、時間幅であってもよい。
この場合、電源制御部122は、無線リソース割当部121によって無線端末UE30-1に対して割り当てられた、無線リソースの使用量を示す、下り方向のタイムスロットであるサブフレームの量(下りサブフレーム使用量)を取得するとともに、無線リソースの使用量を示す、上り方向のサブフレームの量(上りサブフレーム使用量)を取得する。
電源制御部122は、下りサブフレーム使用量を、下り方向の割り当て可能な全てのサブフレームの数で除算することにより、下りサブフレームの使用率を算出する。同様に、電源制御部122は、上りサブフレーム使用量を、上り方向の割り当て可能な全てのサブフレームの数で除算することにより、上りサブフレームの使用率を算出する。
電源制御部122は、下りサブフレーム使用率と上りサブフレーム使用率のうち、値が大きい方をサブフレーム使用率として選択する。電源制御部122は、サブフレーム使用率に基づいて、電源をオンにするDSPの数を決定する。ここで、電源制御部122は、サブフレーム使用率が小さいほど、電源をオンにするDSPの数が少なくなるように、当該電源をオンにするDSPの数を決定する。
また、上述した実施形態では、電源制御部122は、下りリソースブロック使用率と上りリソースブロック使用率のうち、値が大きい方をリソースブロック使用率として選択したが、下りリソースブロック使用率と上りリソースブロック使用率の平均値を、リソースブロック使用率としてもよい。また、電源制御部122は、下りリソースブロック使用量と上りリソースブロック使用量の一方のみを取得し、取得したリソースブロック使用量のみに基づいて、リソースブロック使用率を算出してもよい。
無線リソースがサブフレームである場合も同様である。すなわち、電源制御部122は、下りサブフレーム使用率と上りサブフレーム使用率の平均値を、サブフレーム使用率としてもよい。また、電源制御部122は、下りサブフレーム使用量と上りサブフレーム使用量の一方のみを取得し、取得したサブフレーム使用量のみに基づいて、サブフレーム使用率を算出してもよい。
また、上述した実施形態では、電源制御部122は、リソースブロック使用率に応じた数のDSPの電源をオンにしたが、無線端末UE30-1との間のトラフィック量を無線リソース使用量とし、当該トラフィック量に応じた数のDSPの電源をオンにしてもよい。この場合、電源制御部122は、無線端末UE30-1との間のトラフィック量が少ないほど、電源をオンにするDSPの数を減らす。
また、LTE-Advancedでは、データ速度を向上させるために、MIMO(Multi Input Multi Output)が採用される場合がある。MIMOが採用される無線基地局eNBにおいても、同様に本発明を適用できる。
図7は、MIMOを採用する無線基地局eNB11の構成を示すブロック図である。
図7に示すように、無線基地局eNB11は、アンテナ101-1、アンテナ101-2、無線通信部111、制御部120、記憶部130、及びX2インタフェース通信部140を有する。無線基地局eNB11は、2ストリーム(2×2MIMO)を実現可能である。
アンテナ101-1、アンテナ101-2は、無線端末UE30-1との間の無線信号の送受信に用いられる。ここで、シングルユーザMIMO(S-MIMO)では、アンテナ101-1、アンテナ101-2は、1つの無線端末UE30-1との間の無線信号の送受信に用いられる。一方、マルチユーザMIMO(MS-MIMO)では、アンテナ101-1、アンテナ101-2は、それぞれ異なる無線端末UE30-1との間の無線信号の送受信に用いられる。
無線通信部111は、アンテナ101-1が接続される無線周波数(RF)回路112-1、アンテナ101-2が接続されるRF回路112-2を有する。RF回路112-1、RF回路112-2、RF回路112-3は、それぞれ個別に電源がオン又はオフにされる。本実施形態においては、RF回路112-1、RF回路112-2が通信処理部に対応する。
また、無線通信部111は、RF回路112-1が接続されるDSP114-1、RF回路112-2が接続されるDSP114-2を有する。
RF回路112-1は、電源がオンの場合、受信時には、アンテナ101-1によって受信された信号について、無線周波数帯域からベースバンド帯域へのダウンコンバートと、アナログ/デジタル(A/D)変換を行う。更に、RF回路112-1は、デジタル信号をDSP114-1へ出力する。RF回路112-2も同様の処理を行う。
また、RF回路112-1は、電源がオンの場合、送信時には、DSP114-1からのデジタル信号について、デジタル/アナログ(D/A)変換と、ベースバンド帯域から無線周波数帯域へのアップコンバートを行う。更に、RF回路112-1は、無線周波数帯の信号を、アンテナ101-1を介して送信する。RF回路112-2も同様の処理を行う。
DSP114-1、DSP114-2は、上述した実施形態と同様の処理を行っているので、その説明は省略する。
制御部120は、例えばCPUを用いて構成され、無線基地局eNB11が備える各種の機能を制御する。記憶部130は、無線基地局eNB10-1の制御等に用いられる各種の情報を記憶する。X2インタフェース通信部140は、X2インタフェースを使用して無線基地局eNB10-2との基地局間通信を行う。
制御部120は、無線リソース割当部121及び電源制御部122を有する。
無線リソース割当部121は、セルC20-1内の無線端末UE30-1から受信するCQIに基づいて、当該無線端末UE30-1に対して、無線リソースとしてのリソースブロックを割り当てる。
電源制御部122は、RF回路112-1、RF回路112-2の電源を制御する。
具体的には、上述した実施形態における処理と同様である。すなわち、電源制御部122は、下りリソースブロック使用量及び上りリソースブロック使用量を取得する。
電源制御部122は、下りリソースブロック使用量を、下り方向の割り当て可能な全てのリソースブロックの数で除算することにより、下りリソースブロックの使用率を算出する。同様に、電源制御部122は、上りリソースブロック使用量を、上り方向の割り当て可能な全てのリソースブロックの数で除算することにより、上りリソースブロックの使用率を算出する。
電源制御部122は、下りリソースブロック使用率と上りリソースブロック使用率のうち、値が大きい方をリソースブロック使用率として選択する。電源制御部122は、リソースブロック使用率に基づいて、電源をオンにすべきRF回路の数を決定する。ここで、電源制御部122は、リソースブロック使用率が小さいほど、電源をオンにすべきRF回路の数が少なくなるように、当該電源をオンにすべきDSPの数を決定する。電源制御部122は、RF回路112-1、RF回路112-2のうち、決定した数のRF回路の電源をオンにし、残りのRF回路の電源をオフにする制御を行う。
ここで、RF回路112-1、RF回路112-2の一方の電源がオン、他方の電源がオフになる場合には、SISO(Single Input Single Output)伝送となる。なお、電源制御部122は、オンにするRF回路に接続されているDSPについても電源をオンにし、オフにするRF回路に接続されているDSPについても電源をオフにする制御を行ってもよい。また、電源制御部122は、無線端末UE30-1との間のトラフィック量に応じて、電源をオンにするRF回路の数を決定してもよい。
また、上述した実施形態では、LTEシステムについて説明したが、WiMAX(IEEE 802.16)に基づく無線通信システム等、他の無線通信システムに対して本発明を適用してもよい。
このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な請求の範囲の発明特定事項によってのみ限定されるものである。
なお、日本国特許出願第2010-140009号(2010年6月18日出願)の全内容が、参照により、本願明細書に組み込まれている。
本発明によれば、効率的な電源制御を行う無線基地局及び電源制御方法を提供できる。
Claims (5)
- 無線端末を接続する無線基地局であって、
個別に電源がオン又はオフにされる複数の通信処理部と、
前記複数の通信処理部の電源を制御する制御部と、
を備え、
前記制御部は、接続される前記無線端末による無線リソースの使用量に応じた数の前記通信処理部の電源をオンにする制御を行う無線基地局。 - 前記制御部は、前記無線リソースの使用量が少ないほど、電源をオンにする前記通信処理部の数を減少させる請求項1に記載の無線基地局。
- 前記無線リソースの使用量は、周波数の帯域幅で示される請求項1又は2に記載の無線基地局。
- 前記無線リソースの使用量は、時間幅で示される請求項1又は2に記載の無線基地局。
- 個別に電源がオン又はオフにされる複数の通信処理部を備え、無線端末が接続される無線基地局における電源制御方法であって、
前記複数の通信処理部の電源を制御するステップを備え、
前記制御するステップは、接続される無線端末による無線リソースの使用量に応じた数の前記通信処理部の電源をオンにする制御を行う電源制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/805,280 US9191901B2 (en) | 2010-06-18 | 2011-06-15 | Radio base station and power control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-140009 | 2010-06-18 | ||
JP2010140009A JP5560111B2 (ja) | 2010-06-18 | 2010-06-18 | 無線基地局、及び電源制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011158861A1 true WO2011158861A1 (ja) | 2011-12-22 |
Family
ID=45348258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/063693 WO2011158861A1 (ja) | 2010-06-18 | 2011-06-15 | 無線基地局、及び電源制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9191901B2 (ja) |
JP (1) | JP5560111B2 (ja) |
WO (1) | WO2011158861A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102702084B1 (ko) | 2018-04-12 | 2024-09-04 | 삼성전자주식회사 | 무선 통신 시스템에서 자원 할당 방법 및 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003347985A (ja) * | 2002-05-22 | 2003-12-05 | Fujitsu Ltd | 無線基地局装置及びその省電力方法 |
JP2007134840A (ja) * | 2005-11-09 | 2007-05-31 | Nec Saitama Ltd | 移動通信システム、基地局装置及びそれらに用いる消費電力低減方法並びにそのプログラム |
JP2009049887A (ja) * | 2007-08-22 | 2009-03-05 | Nippon Telegr & Teleph Corp <Ntt> | パケット処理装置、方法、およびプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003273795A (ja) * | 2002-03-15 | 2003-09-26 | Hitachi Kokusai Electric Inc | 無線基地局装置 |
US20090052417A1 (en) * | 2007-08-24 | 2009-02-26 | Kabushiki Kaisha Toshiba | Wireless communication device, wireless communication method, and wireless communication system |
JP4850798B2 (ja) * | 2007-08-29 | 2012-01-11 | 富士通株式会社 | 複数の処理ユニットへの処理の振り分け方法および装置 |
JP5169711B2 (ja) * | 2008-10-14 | 2013-03-27 | 富士通株式会社 | 処理リソース割当方法および装置 |
US8694056B2 (en) * | 2008-11-02 | 2014-04-08 | Percello Ltd. | Scalable digital base band processor for cellular base stations |
-
2010
- 2010-06-18 JP JP2010140009A patent/JP5560111B2/ja active Active
-
2011
- 2011-06-15 WO PCT/JP2011/063693 patent/WO2011158861A1/ja active Application Filing
- 2011-06-15 US US13/805,280 patent/US9191901B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003347985A (ja) * | 2002-05-22 | 2003-12-05 | Fujitsu Ltd | 無線基地局装置及びその省電力方法 |
JP2007134840A (ja) * | 2005-11-09 | 2007-05-31 | Nec Saitama Ltd | 移動通信システム、基地局装置及びそれらに用いる消費電力低減方法並びにそのプログラム |
JP2009049887A (ja) * | 2007-08-22 | 2009-03-05 | Nippon Telegr & Teleph Corp <Ntt> | パケット処理装置、方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP5560111B2 (ja) | 2014-07-23 |
US9191901B2 (en) | 2015-11-17 |
US20130102355A1 (en) | 2013-04-25 |
JP2012005001A (ja) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9769765B2 (en) | System and method for direct mobile communications power control | |
US10374780B2 (en) | Method and device for indicating number of bits | |
JP6336596B2 (ja) | 集中仮想スケジューラ、リアルスケジューラ、スケジューリングシステム、方法、及びプログラム | |
US10932200B2 (en) | Uplink power control method and apparatus to reduce user equipment-to-user equipment cross interference | |
US8588803B2 (en) | Method and apparatus for resource scheduling for network controlled D2D communications | |
US9473286B1 (en) | Management of carrier-aggregation based on predicted intermodulation distortion | |
JP5636132B1 (ja) | 基地局、無線端末、及び方法 | |
US9642135B2 (en) | Method and apparatus for management of protected resource in a heterogeneous network | |
JP5654335B2 (ja) | 無線通信システム、基地局及びその制御方法 | |
KR20130104500A (ko) | 단말의 상향 링크 송신 전력을 제어하는 방법 및 장치 | |
JP5767738B2 (ja) | 通信制御方法、基地局、及び無線端末 | |
US10555248B2 (en) | Method, system and devices for enabling a network node to perform a radio operation task in a telecommunication network | |
WO2014112058A1 (ja) | 基地局装置、通信方法および端末装置 | |
WO2020118600A1 (en) | Method and apparatus for multiple antenna systems | |
US11382043B1 (en) | Methods and systems for selecting coordinated multipoint enhancement mode | |
JP5560111B2 (ja) | 無線基地局、及び電源制御方法 | |
US11395330B2 (en) | Method and apparatus for adaptive scheduling and transmission | |
JP5712328B2 (ja) | 無線通信システム、基地局及びその制御方法 | |
US20240031117A1 (en) | Simultaneous transmit and receive (str) multi-link operation | |
KR101502136B1 (ko) | 무선 통신 시스템 및 그 시스템에서의 무선 자원 스케줄링 방법 | |
WO2023174177A1 (en) | Multiple-input and multiple-output (mimo) antenna muting with ue assist | |
WO2011158860A1 (ja) | 無線基地局、及び電源制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11795765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13805280 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11795765 Country of ref document: EP Kind code of ref document: A1 |