WO2011158711A1 - 欠陥判別装置 - Google Patents

欠陥判別装置 Download PDF

Info

Publication number
WO2011158711A1
WO2011158711A1 PCT/JP2011/063119 JP2011063119W WO2011158711A1 WO 2011158711 A1 WO2011158711 A1 WO 2011158711A1 JP 2011063119 W JP2011063119 W JP 2011063119W WO 2011158711 A1 WO2011158711 A1 WO 2011158711A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
defect type
value
function
feature
Prior art date
Application number
PCT/JP2011/063119
Other languages
English (en)
French (fr)
Inventor
和孝 穴山
哲也 宿口
俊之 鈴間
英二 本田
貴洋 岡田
真矢 吉川
保 西峯
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2012520387A priority Critical patent/JP5505818B2/ja
Priority to US13/703,536 priority patent/US8977580B2/en
Publication of WO2011158711A1 publication Critical patent/WO2011158711A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal

Definitions

  • the present invention relates to a defect discriminating apparatus that discriminates defect types of defects.
  • the present invention relates to a defect discriminating apparatus suitably used for discriminating defect types of defects generated in a material to be rolled (wire material, pipe material, plate material, etc.) made of a metal material (for example, steel material).
  • a defect discriminating apparatus that performs image processing on a captured image of a wire taken by a camera arranged in the production line and discriminates a defect type of a defect such as a flaw generated in the wire is used. ing.
  • the defect discriminating apparatus identifies a defect area corresponding to the defect generated in the wire from the captured image, and discriminates the defect type of the defect from the feature amount (for example, size / area) of the defect area.
  • the defect discriminating apparatus disclosed in Patent Document 1 includes the number of feature amounts constituting feature information (vector) having a plurality of feature amounts (for example, defect dimensions and areas) indicating attributes of a discrimination target defect whose defect type is unknown.
  • a mapping space having a higher number of dimensions is divided into two defect species regions by the discrimination boundary.
  • This discrimination boundary is created in advance by the defect discriminating apparatus of Patent Document 1 using the feature information of the learning defect of the two defect types whose defect types have been discriminated by the user.
  • the defect discriminating apparatus of Patent Document 1 maps data points (points at the tip of a vector) indicating feature information of a discrimination target defect to the mapping space, and maps the defect type of the discrimination target defect (hereinafter, referred to as a data point). It is determined that the defect type corresponds to the region where the “mapped point” is located.
  • the defect discriminating apparatus disclosed in Patent Document 1 is a method similar to the method of discriminating the defect type of a defect to be discriminated (a method of mapping a data point indicating feature information into a mapping space and discriminating the defect type according to an area where the mapping point is located.
  • a determination boundary is created so that the defect type of each learning defect is correctly determined (as determined by the user).
  • Some of the learning defects used to create the discriminant boundary may have a characteristic value that is a unique value, and the same kind of learning defect that has a characteristic value that is not a unique value. is there.
  • the defect determination apparatus of Patent Document 1 creates a determination boundary so that the defect type of each learning defect is correctly determined.
  • a discriminant boundary that is excessively adapted to the feature information of the learning defect used to create the discriminant boundary is created, and overlearning, a phenomenon in which the ability to deal with discriminating target defects whose defect type is unknown, occurs.
  • over-learning occurs when there is a learning defect with a unique feature value, the dimension is excessively high so that the defect type can be accurately determined even for a learning defect with a unique feature value.
  • the discriminant boundary is created. When such overlearning occurs, the defect type of the determination target defect whose defect type is unknown may not be accurately determined.
  • an object of the present invention is to provide a defect discriminating apparatus that suppresses overlearning and accurately discriminates defect types of defects.
  • the present invention provides a mapping space having a higher number of dimensions than the number of feature quantities constituting the feature information, by representing data points indicating feature information including a plurality of feature quantities indicating the attributes of the discrimination target defect whose defect type is unknown. It is determined in which of the two defect type areas formed by bisecting the mapping space the mapping point mapped to is, and the defect type of the defect to be determined is determined to be the mapping point
  • a defect discriminating apparatus that discriminates a defect type corresponding to a region, an acquisition unit for acquiring the feature information, a determination unit that determines a discrimination function that divides the mapping space into two, and the determination unit
  • the discriminant function is a kernel
  • the kernel function k (x, x ′) Is a kernel function in which the matrix K given by the element k (x, x') is a semi-definite value, x is feature information of the defect for learning of the one defect type, and x ' , Feature information of the defect for learning of the other defect type, and the determination unit
  • Each of the characteristic information has a positive correlation with the discriminant error that
  • the feature information is configured with respect to a predetermined regularization parameter so as to minimize the value of an error function that is variable according to the weight of the feature amount and is a sum of the regularization term multiplied by the regularization parameter.
  • the weight of each feature is specified and the error function is When the weight of each feature amount constituting the feature information specified so as to minimize the value of the number is temporarily adopted as the weight of each feature amount constituting the discriminant function, for learning of the one defect type
  • the one defect type is greater than the absolute value of the difference between the output value of the discriminant function when the defect feature information is input to the kernel function k (x, x ′) and the value corresponding to the one defect type.
  • the absolute value of the difference between the output value of the discriminant function and the value corresponding to the other defect type when the learning defect feature information is input to the kernel function k (x, x ′) is smaller.
  • the output value of the discriminant function and the other when the number of learning defects of the one defect type and the feature information of the learning defect of the other defect type are input to the kernel function k (x, x ′).
  • the absolute value of the difference from the value corresponding to the defect type of the other The absolute value of the difference between the output value of the discriminant function and the value corresponding to the one defect type when the characteristic information of the defect for learning of the defect type is input to the kernel function k (x, x ′).
  • the regularization parameter is adjusted so that the value of the error function is minimized again.
  • the weight of each feature amount constituting the feature information is specified, and when the misclassification number is less than a predetermined value, each feature constituting the feature information specified so as to minimize the value of the error function.
  • the defect discriminating apparatus is such that a mapping point to a high-dimensional number mapping space of a defect to be discriminated whose defect type is unknown is located in any of the two defect type regions formed by bisecting the mapping space. Determine whether to do.
  • the defect discriminating apparatus discriminates the defect type of the defect to be discriminated to be a defect type corresponding to an area in which the mapping point of the discriminating target defect is located in the area of the two defect types. To do.
  • the defect discriminating apparatus determines a discriminant function indicating a discriminant boundary that bisects the mapping space as follows.
  • the defect discriminating apparatus first provides feature information on a predetermined regularization parameter so as to minimize the value of an error function consisting of a sum of a discrimination error and a regularization term multiplied by the regularization parameter.
  • the weight of each feature quantity constituting is specified.
  • the defect discriminating apparatus tentatively adopts the weight of each feature amount constituting the feature information specified to minimize the value of the error function as the weight of each feature amount constituting the discriminant function.
  • the number of misclassifications is less than a predetermined value, it is determined that the specified weight is adopted as the weight of each feature quantity constituting the discrimination function, and the discrimination function is determined.
  • the regularization term In order to reduce the value of the error function consisting of the sum of the discrimination error and the regularization term multiplied by the regularization parameter, at least one of the discrimination error and the regularization term needs to be reduced.
  • the regularization term when the regularization parameter is large, the regularization term has a large influence on the value of the error function.
  • the regularization term varies according to the weight of each feature quantity constituting the feature information. For this reason, when the regularization parameter is large, the weight that makes the regularization term sufficiently small is specified as the weight that minimizes the value of the error function.
  • the number of dimensions of the discriminant function and the regularization term have a positive correlation.
  • a weight that makes the regularization term sufficiently small is specified as a weight that minimizes the value of the error function, and that the weight is adopted as the weight of each feature quantity constituting the discriminant function.
  • the defect according to the present invention adjusts the regularization parameter and again specifies the weight that minimizes the value of the error function. If the regularization parameter is reduced by adjusting the regularization parameter described above, the influence of the regularization term on the value of the error function is reduced, while the influence of the discrimination error on the value of the error function is increased. For this reason, when the regularization parameter is adjusted to be small, the weight that makes the discrimination error smaller than before the adjustment can be specified as the weight that minimizes the value of the error function.
  • the discriminant error is an output value of the discriminant function when the feature information of the defect for learning of one defect type is input to the kernel function k (x, x ′) (hereinafter, “output of discriminant function corresponding to one defect type”).
  • Discriminant function output when the difference between the value corresponding to one defect type and the feature information of the defect for learning of the other defect type are input to the kernel function k (x, x ′). It is defined by the difference between the value (hereinafter referred to as “the output value of the discriminant function corresponding to the other defect type”) and the value corresponding to the other defect type.
  • the discrimination error includes the difference between the output value of the discriminant function corresponding to one defect type and the value corresponding to the one defect type, and the output value of the discriminant function corresponding to the other defect type and the other defect.
  • the absolute value of any of the differences from the value corresponding to the seed decreases, it decreases, and when it increases, it increases.
  • the discriminant error becomes small, the absolute value of the difference between the output value of the discriminant function corresponding to one defect type and the value corresponding to one defect type, or the output value of the discriminant function corresponding to the other defect type And the absolute value of the difference between the value corresponding to the other defect type becomes small.
  • the output value of the discriminant function corresponding to one defect type is smaller than the absolute value.
  • the absolute value of the difference from the value corresponding to the other defect type increases, and the number of learning defects of one defect type decreases.
  • the discriminant function corresponding to the other defect type is more than the absolute value.
  • the number of learning defects of the other defect type decreases, where the absolute value of the difference between the output value and the value corresponding to one defect type increases.
  • the determination error when the determination error is reduced, the number of erroneous determinations is reduced. Therefore, even if the number of misclassifications when the weight specified before adjusting the regularization parameter is adopted as the weight of each feature quantity constituting the discrimination function is a predetermined value or more, the regularization parameter is small. By adjusting so that the weight that the misclassification number is less than the predetermined value can be identified, it is determined that the identified weight is adopted as the weight of each feature quantity constituting the discriminant function, and the discriminant function is determined. it can.
  • the defect discriminating apparatus determines that the specified weight is adopted as the weight of each feature quantity constituting the discriminant function, and determines the discriminant function. For this reason, the defect determination apparatus according to the present invention can accurately determine the defect type.
  • the possibility of overlearning increases as the regularization term increases.
  • the regularization parameter is increased in the initial stage, and when the weight at which the number of misclassifications is less than a predetermined value cannot be specified, the number of misclassifications can be reduced by adjusting the regularization parameter to be gradually reduced. It is preferable to specify a weight that is less than a predetermined value.
  • the discriminant error described above is, for example, the difference between the output value of the discriminant function corresponding to one defect type and the value corresponding to one defect type, and the output value of the discriminant function corresponding to the other defect type. It is a value having a positive correlation with the square sum of the difference from the value corresponding to the other defect type.
  • the value having a positive correlation with the square sum is, for example, the square root of the square sum.
  • the discriminant function is composed of a kernel function k (x, x ') and the weight of each feature quantity, and has no mapping function. For this reason, it is not necessary to calculate a mapping function in order to determine a discriminant function. The calculation amount of the mapping function is enormous. Therefore, the defect discriminating apparatus according to the present invention that does not need to calculate the mapping function for determining the discriminant function can determine the discriminant function with a small amount of calculation.
  • the concept of “defects” in the present invention includes fake patterns such as dirt attached to the material to be rolled in addition to flaws.
  • the “value corresponding to the defect type” in the present invention is a value determined in advance so that one defect type and the other defect type can be distinguished, and one defect type and the other defect type. And different values.
  • the defect discriminating apparatus is configured such that at least the acquisition unit is arranged on a rolling line of the material to be rolled and discriminates the defect type of the defect to be discriminated that occurs in the material to be rolled.
  • a hot rolling line for example, hot rolling of a wire rod or steel bar
  • a hot rolling line can be performed quickly.
  • Line and cold rolling line rolling mill setting adjustment and the like.
  • a continuous hot rolling line is normally comprised from a rough rolling mill row
  • the defect discriminating apparatus having the preferred configuration can be arranged between two rolling mill rows, but in order to efficiently discriminate on-line the defect type of the discrimination target defect generated in the material to be rolled, a finish rolling mill row It is most preferable to arrange it on the downstream side (downstream in the rolling direction of the material to be rolled).
  • a cooling device for cooling the material to be rolled is usually installed on the downstream side of the finishing rolling mill row.
  • the defect discriminating device is arranged on the downstream side of the cooling device, the difference in luminance value between the defect area corresponding to the defect to be discriminated in the captured image and the other area is increased by cooling the material to be rolled. In terms of ease, it can be expected that the feature quantity of the defect to be determined is obtained with high accuracy.
  • the defect discriminating device is arranged on the downstream side of the cooling device, the guide, which is normally arranged on the downstream side of the cooling device, and the material to be rolled come into contact with each other to simulate the dirt attached to the material to be rolled. There is a risk that the pattern will appear in the captured image and the accuracy of discrimination between the flaw and the pseudo pattern will be reduced.
  • the defect determination device upstream of the cooling device. Actually, it is only necessary to evaluate in advance a test or the like whether the defect discriminating device is arranged on the upstream side or the downstream side of the cooling device, and determine the arrangement position of the defect discriminating device.
  • the defect determination device at least an imaging device for the material to be rolled as the acquisition unit is arranged along with the eddy current flaw detection device in the rolling line, and image processing is performed on the captured image of the material to be rolled imaged by the imaging device. It is set as the structure which discriminate
  • a minute defect is detected by an eddy current flaw detector (for example, a differential type penetrating eddy current flaw detector), and a defect extending in the longitudinal direction of the material to be rolled is detected by a defect discriminating device (defect).
  • a defect discriminating device defect discriminating device It is possible to increase the defect detection accuracy of the material to be rolled by performing the role sharing of two defect types determined by the determination device as defects extending in the longitudinal direction on the same rolling line.
  • the defect discriminating apparatus having such a preferable configuration is also applied to the downstream side of the finish rolling mill row of the hot rolling line, it can be provided on either the upstream side or the downstream side of the cooling apparatus. It is also possible to arrange.
  • the defect discriminating apparatus it is also possible to discriminate flaws and pseudo patterns such as dirt adhering to the material to be rolled, which are difficult to discriminate by a known discrimination method. That is, in the defect discriminating apparatus, the two defect types can be made into a fake pattern such as a flaw and a dirt adhering to the material to be rolled. In addition, even if it uses a well-known discrimination
  • the defect discriminating apparatus is applied only to the defect discriminated (extracted) by this known discriminating method, it is possible to discriminate flaws and pseudo patterns efficiently.
  • the feature amount used in the defect determination apparatus is not particularly limited.
  • the acquisition unit includes an imaging device for the material to be rolled, an eddy current flaw detection device that performs eddy current flaw detection on the material to be rolled, and ultrasonic flaw detection that performs ultrasonic flaw detection on the material to be rolled.
  • the present invention can provide a defect discriminating apparatus that suppresses overlearning and accurately discriminates defect types of defects.
  • a target for which a discrimination target defect occurs is a wire that is a material to be rolled, and a feature amount obtained by performing image processing on a captured image of the wire is used.
  • a case will be described as an example.
  • a parameter shown in bold italics means a vector.
  • FIG. 1A is a schematic configuration diagram illustrating an example of the defect determination apparatus 1 according to the present embodiment.
  • the defect determination device 1 includes an imaging device (camera 2 and a light source (not shown)) as an acquisition unit for acquiring a feature value, a determination unit 3, and a determination unit 4.
  • a plurality of (for example, four) cameras 2 are arranged in the circumferential direction of the wire 21 conveyed along the hot rolling line, and images the wire 21.
  • a light source (not shown) for illuminating the wire 21 is disposed around the camera 2.
  • the camera 2 and the light source are arranged on the downstream side of the finishing rolling mill row 5 installed in the hot rolling line (downstream side in the rolling direction (conveying direction) of the wire 21).
  • FIG.1 (b) is a schematic block diagram which shows the other example of the defect determination apparatus 1 of this embodiment.
  • a differential type penetrating eddy current flaw detector 6 is disposed downstream of the finishing rolling mill row 5, and the camera 2 and the light source are disposed downstream of the eddy current flaw detector 6. Is different from the example shown in FIG.
  • the determination unit 3 determines a discriminant function indicating a discrimination boundary for discriminating the defect type of the discrimination target defect whose defect type is unknown.
  • This discrimination boundary is obtained by mapping a mapping space having a number of dimensions higher than the number of feature amounts constituting feature information (vector) having a plurality of feature amounts indicating the attributes of the defect to be identified as two defect types (hereinafter, 2 One of the two defect types is divided into two regions, ie, “defect type A” and the other defect type is called “defect type B”.
  • the defect type A and the defect type B are different defect types set in advance by a user of the defect determination device 1 or the like.
  • the defect type A and the defect type B may be defect types having different degrees of seriousness (influence on the quality of the wire 21).
  • the defect type A and the defect type B can be, for example, defect types with different causes of occurrence.
  • the feature amount a dimension, an area, a luminance value, and the like of a defect area corresponding to a defect obtained by performing image processing on a captured image captured by the camera 2 can be used.
  • the number of feature amounts constituting the feature information is not limited as long as it is plural.
  • the determination unit 3 determines the discriminant function using the feature information of the learning defect that is known to be the defect type A or the defect type B.
  • the feature information of the learning defect input to the determination unit 3 is obtained by using, for example, an image processing function of the determination unit 4 described later. That is, the learning defect feature information is obtained by inputting the captured image of the learning defect captured by the camera 2 to the determination unit 4 and performing image processing by the determination unit 4. Then, the obtained feature information of the learning defect is input to the determination unit 3.
  • the determination unit 3 itself has an image processing function
  • a captured image of the learning defect captured by the camera 2 is input to the determination unit 3, and image processing is performed by the determination unit 3. It is also possible to obtain feature information.
  • the feature information of the defect for learning of the defect type A, the feature information of the defect for learning of the defect type B, and the feature information of the aforementioned defect to be discriminated are composed of the same type of feature quantity.
  • the learning defect is a defect whose defect type is known (the defect type is identified by the user).
  • each feature amount constituting the feature information of each learning defect of the defect type A and each feature amount constituting the feature information of each learning defect of the defect type B are the learning defects.
  • the identifier and the defect type of the learning defect are associated with each other and stored in the determination unit 3.
  • the value of each feature amount constituting the feature information of each learning defect is normalized so as to be within a range of 0 to 1.
  • the discriminant function f (x) determined by the determining unit 3 is expressed by the following formula (1).
  • “w” indicates weight information (vector) whose component is the weight of each feature quantity constituting the feature information.
  • X in the equation (1) indicates feature information (vector) of the defect for learning of the defect type A or the defect type B.
  • ⁇ ( ⁇ ) represents a mapping function that maps data points (points at the tips of vectors) indicating feature information in the mapping space and has positive definiteness.
  • a mapping function having positive definiteness includes a Gaussian distribution function.
  • the discriminant function f (x) expressed by the following equation (2) is used as the discriminant function so that the discriminant function f (x) can be determined with a small amount of calculation.
  • the discriminant function f (x) means the discriminant function f (x) expressed by the following formula (2).
  • indicates the weight of each feature amount constituting the feature information.
  • k (x, x ′) represents a kernel function in which a matrix K whose elements are given by k (x, x ′) is a semi-definite value.
  • X described in the equation (2) and after indicates the feature information (vector) of the defect for learning of the defect type A.
  • x ′ indicates feature information (vector) of the defect for learning of the defect type B.
  • the matrix K whose elements are given by k (x, x ′) is the output value of the kernel function obtained when the feature information x of the defect for learning of the defect type A is input to the kernel function k (x, x ′).
  • the kernel function k (x, x ′) is a matrix whose elements are output values of the kernel function obtained when the learning defect feature information x ′ of the defect type B is input.
  • kernel functions k (x, x ′) are examples of kernel functions k (x, x ′) whose elements are given by kernel functions k (x, x ′) and are positive semidefinite. . Further, as other examples of the kernel function k (x, x ′) in which the matrix K given by the kernel function k (x, x ′) is a semi-definite value, there are a sigmoid function and a Gaussian function represented by the following equations. .
  • f (•) indicates an arbitrary function
  • q (•) indicates a non-negative coefficient polynomial
  • k a (•, •) and k b (•, •) denote arbitrary kernel functions
  • subscripts a and b denote identifiers for learning defects
  • denotes sigmoid function gain
  • indicates dispersion.
  • the above equation (2) is derived as follows.
  • the following formula (4) is derived.
  • d indicates the number of feature quantities constituting the feature information. If the number of feature amounts constituting the feature information is sufficiently increased, the following equation (5) is derived from the above equation (1).
  • the weight information w is expressed by the following equation (6).
  • the above formula (2) is derived from the above formula (1) using the above formula (6).
  • the discriminant function f (x) in the above equation (2) is a function in which the number of dimensions is influenced by the number of feature amounts constituting the feature information of the learning defect.
  • the determination unit 3 first determines whether or not the number of erroneous determinations is less than a predetermined value (step S1 in FIG. 3).
  • the number of misidentifications is the output value of the discriminant function f (x) when the learning defect feature information x of the defect type A is input to the kernel function k (x, x ′) of the discriminant function f (x) (
  • the output value of the discriminant function corresponding to the defect type A and the defect type B rather than the absolute value of the difference between “the output value of the discriminant function corresponding to the defect type A”
  • the difference between the output value of the discriminant function f (x) (hereinafter referred to as “the output value of the discriminant function corresponding to the defect type B”) when input to x, x ′) and the value corresponding to the defect type B
  • the defect type B having a smaller absolute value of the difference between the output value of the discriminant function corresponding to the defect type B and the value corresponding to the defect type A than the absolute value of Is a number obtained by adding the number of the learning defect.
  • the weight ⁇ of each feature amount constituting the feature information of the discriminant function f (x) is set to an arbitrary value (for example, 1).
  • the value corresponding to the defect type A is 1 and the value corresponding to the defect type B is -1.
  • the value corresponding to the defect type A and the value corresponding to the defect type B are determined in advance by the user of the defect determination apparatus 1 or the like, and are different from each other so that the defect type A and the defect type B can be determined. .
  • the determination unit 3 determines that the number of misclassifications is equal to or greater than a predetermined value, the determination unit 3 minimizes the value of an error function that is the sum of the determination error and the regularization term ⁇ T K ⁇ multiplied by the regularization parameter ⁇ .
  • the weight ⁇ of each feature amount constituting the feature information to be specified is specified (step S2 in FIG. 3).
  • the minimum value of the error function is expressed by the following formula (7).
  • Superscript (i) indicates an identifier of a learning defect.
  • the regularization parameter ⁇ takes a value in the range of 0 to 1.
  • the discriminant error is the difference between the output value of the discriminant function f (x) when the feature information of the defect for learning of the defect type A is input to the kernel function k (x, x ′) and the value corresponding to the defect type A.
  • the difference between the output value of the discriminant function f (x) when the feature information of the defect for learning of the defect type B is input to the kernel function k (x, x ′) and the value corresponding to the defect type B It is defined and becomes smaller when the absolute value of one of the two differences becomes smaller, and becomes larger when it becomes larger.
  • the ⁇ cost of the equation (7) is expressed by the following equation (8).
  • the above equation (8) is a convex function approximating the following equation (9).
  • y represents a vector whose component is the weight of each feature amount.
  • the regularization term ⁇ T K ⁇ is expressed by the following equation (11).
  • the subscript i indicates an identifier representing the type of feature quantity constituting the feature information of the defect for learning of the defect type A.
  • the subscript j indicates an identifier indicating the type of feature quantity constituting the feature information of the defect for learning of the defect type B.
  • the regularization term ⁇ T K ⁇ has a positive correlation with the weight ⁇ of each feature quantity.
  • the regularization term ⁇ T K ⁇ is derived as follows.
  • the linear sum w 0 of each feature quantity of the defect for learning of the defect type A is expressed by the following equation (12). Since the weight information w is obtained by adding a ⁇ component orthogonal to the mapping point ⁇ (x (i) ) obtained by mapping the data point indicating the feature information of the learning defect to the linear sum w 0 , It is expressed by (13).
  • Equation (5) f (x) in the above-described equation (5) is It is expressed by the following formula (14). That is, it can be seen that ⁇ cost on the left side of Equation (8) does not depend on the value of the ⁇ component. Further, the following equation (15) can be derived from the orthogonality between the linear sum w 0 and the ⁇ component. From equation (15), it is clear that ⁇
  • the equation (11) can be derived from the equation (15).
  • the determination unit 3 inputs arbitrary values (for example, 1) to the weight ⁇ i and the weight ⁇ j of the above equation (11), and the learning type of the defect type A is input to x (i) of the above equation (11).
  • the feature information of the defect is input, the feature information of the defect for learning of the defect type B is input to x (j) , and the regularization term ⁇ T K ⁇ is calculated (step S21 in FIG. 3).
  • ⁇ cost of the left side of the above equation (8) is input to y (i) of the above equation (7), and each defect type A or defect type B is used for x (i) of the above equation (7). enter the characteristic information of the defect, and inputs a value of the regularization term alpha T K [alpha calculated at step S21 to the regularization term alpha T K [alpha in the formula (7) (step S22 in FIG. 3).
  • the regularization parameter of the above equation (7) at this time is an initial value, and the initial value is 1 here.
  • Characteristic information x (i) if the output of the determination error for the values y (i) xi] i, the minimum value of the output xi] i is two inequalities (17), the minimum value defined by (18) Become.
  • the output ⁇ i at the time of the minimum value is called a slack variable, and by introducing the output ⁇ i at the time of the minimum value into the above equation (7), the above equations (17) and (18) are used as constraints.
  • the above equation (7) is converted into the above equation (16).
  • the above equation (16) is in the form of a convex quadratic programming problem relating to the output ⁇ and the weight ⁇ of each feature quantity constituting the feature information.
  • the solution of the convex quadratic programming problem of the above equation (16) will be shown.
  • Equation (16) is solved using Lagrange's undetermined multiplier method.
  • the following formula (19) is defined as Lagrangian. Domain: ⁇ R n R n represents the entire real number.
  • the quadratic programming problem can be converted into a dual problem with simpler constraints.
  • the determination unit 3 sets the weight ⁇ of each feature amount constituting the feature information of the learning defect identified as described above to the weight ⁇ of each feature amount constituting the feature information of the learning defect of the discriminant function f (x). Temporarily adopted. Then, in the same manner as in step S1 of FIG. 3, the determination unit 3 tentatively adopts the weight ⁇ of each identified feature quantity as the weight ⁇ of each feature quantity constituting the discrimination function f (x). Is calculated. If the calculated misclassification number is equal to or greater than the predetermined value, the determination unit 3 adjusts the regularization parameter ⁇ to be small, and again, as described above, each feature constituting the feature information that minimizes the error function. The quantity weight ⁇ is specified (step S2 in FIG. 3).
  • the weight ⁇ i and the weight ⁇ j in the above-described equation (11) are set to the respective values specified in the previous step S25.
  • the feature amount weight ⁇ is input.
  • the weight ⁇ of each specified feature quantity is adopted as the weight ⁇ of each feature quantity constituting the discrimination function f (x).
  • the function f (x) is determined (step S3 in FIG. 3).
  • the determination unit 3 of the present embodiment sets the initial value of the regularization parameter ⁇ as the maximum value of the regularization parameter ⁇ , and reduces the regularization parameter ⁇ when the number of misclassifications is less than a predetermined value. adjust.
  • the regularization parameter ⁇ is large, the regularization term ⁇ T K ⁇ has a large influence on the value of the error function. Therefore, when the regularization parameter ⁇ is large, the weight ⁇ of each feature amount that makes the regularization term ⁇ T K ⁇ sufficiently small is specified as the weight ⁇ of each feature amount that minimizes the value of the error function.
  • the number of dimensions of the discriminant function f (x) and the regularization term ⁇ T K ⁇ have a positive correlation.
  • the weight ⁇ of each feature amount that makes the regularization term ⁇ T K ⁇ sufficiently small is specified as the weight ⁇ of each feature amount that minimizes the value of the error function, and the weight ⁇ of each feature amount is discriminated.
  • the discriminant function is determined by determining that it is adopted as the weight ⁇ of each feature quantity constituting the function f (x)
  • the higher-order discriminant function discriminant boundary
  • the weight ⁇ of each feature amount is used as the weight ⁇ of each feature amount constituting the discriminant function f (x).
  • the regularization parameter ⁇ is adjusted to be small, and the weight ⁇ of each feature amount that minimizes the value of the error function is specified again.
  • the regularization parameter ⁇ is reduced, the influence of the regularization term ⁇ T K ⁇ on the value of the error function is reduced, while the influence of the discrimination error on the value of the error function is increased.
  • the discriminant error is the difference between the output value of the discriminant function corresponding to the defect type A and the value corresponding to the defect type A, and the output value of the discriminant function corresponding to the defect type B and the value corresponding to the defect type B. It is defined by the difference. Further, the discriminant error corresponds to the difference between the output value of the discriminant function corresponding to the defect type A and the value corresponding to the defect type A, and the output value of the discriminant function corresponding to the defect type B and the defect type B.
  • the absolute value of any of the differences from the value becomes smaller, it becomes smaller, and when any of the differences becomes larger, it becomes larger. That is, when the discrimination error is reduced, the absolute value of the difference between the output value of the discriminant function corresponding to the defect type A and the value corresponding to the defect type A, or the output value of the discriminant function corresponding to the defect type B and the defect type
  • the absolute value of the difference from the value corresponding to B becomes smaller.
  • the absolute value of the difference between the output value of the discriminant function corresponding to the defect type A and the value corresponding to the defect type A becomes smaller, the output value of the discriminant function corresponding to the defect type A and the defect type B are smaller than the absolute value.
  • the number of defects for learning of the defect type A in which the absolute value of the difference from the value corresponding to is increased is reduced.
  • the output value of the discriminant function corresponding to the defect type B becomes smaller than the absolute value.
  • the number of defects for learning of the defect type B in which the absolute value of the difference from the value corresponding to the defect type B is large is reduced. Therefore, when the determination error is reduced, the number of erroneous determinations is reduced.
  • the discriminant function f (x) expressed by the above-described equation (2) has a kernel function k (x, x ′) and a weight ⁇ of each feature quantity constituting the feature information, and has a mapping function. Not done. For this reason, it is not necessary to calculate a mapping function when calculating the number of misclassifications. In other words, it is not necessary to calculate a mapping function to determine the discriminant function. The calculation amount of the mapping function is enormous. Therefore, the defect discriminating apparatus 1 that does not need to calculate the mapping function for determining the discriminant function f (x) can determine the discriminant function f (x) with a small amount of calculation.
  • the discriminating unit 4 discriminates whether the defect type of the discrimination target defect generated in the wire 21 imaged by the camera 2 is the defect type A or the defect type B.
  • the determination unit 4 has an image processing function, specifies a defect area corresponding to a determination target defect of the wire 21 from a captured image of the wire 21 captured by the camera 2 by a known image processing method, and determines the determination target.
  • the feature amount of the defect is calculated.
  • the discriminating unit 4 inputs the feature information composed of the calculated feature quantities into the kernel function k (x, x ′) of the discriminant function f (x) determined by the determining unit 3, and the discriminant function f (x) , That is, a mapping point obtained by mapping a data point indicating the feature information in the mapping space.
  • the determination unit 4 determines that the defect type of the defect to be determined is a defect type corresponding to an area determined to have a mapping point located in one of the two areas. Specifically, the discriminating unit 4 determines the absolute value of the difference between the output value of the discriminant function f (x) when the feature information of the discrimination target defect is input and the value corresponding to the defect type A, and the discrimination. The absolute value of the difference between the output value of the function f (x) and the value corresponding to the defect type B is compared. If the former is smaller, it is determined that the defect to be determined is the defect type A, and the latter is If it is smaller, it is determined that the determination target defect is the defect type B.
  • the determination unit 3 specifies the weight ⁇ of each feature amount constituting the feature information that minimizes the error function.
  • the error function is a function composed of the sum of the discrimination error and the regularization term ⁇ T K ⁇ .
  • the discriminant error is the difference between the output value of the discriminant function corresponding to the defect type A and the value corresponding to the defect type A, and the output value of the discriminant function corresponding to the defect type B and the value corresponding to the defect type B.
  • the discrimination error varies depending on the output value of the discrimination function f (x).
  • the discriminant function f (x) varies according to the weight of the feature amount from the above-described equation (2). For this reason, the variation amount of the discrimination error when the weight of the feature amount that hardly affects the output value of the discrimination function f (x) or does not affect the output value is small.
  • the regularization term ⁇ T K ⁇ has a positive correlation with the weight ⁇ of each feature quantity.
  • the value of the error function consisting of the sum of the discrimination error and the regularization term is likely to be reduced by minimizing the weight of the feature quantity having a small change amount of the discrimination error (that is, 0). Therefore, the weight of the feature quantity that hardly affects the output value of the discriminant function f (x) or does not affect the output value is highly likely to be specified as 0 by the determination unit 3.
  • the feature information input to the kernel function k (x, x ′) of the discriminant function f (x) determined by the determining unit 3 in order for the discriminating unit 4 to discriminate the defect type of the discrimination target defect is as described above. It is good also as feature information comprised from the feature-values other than the feature-value specified as the weight 0.
  • feature information comprised from the feature-values other than the feature-value specified as the weight 0.
  • the feature amount identified as having a weight of 0 is the discriminant function. It is not input to the kernel function k (x, x ′) of f (x), and the amount of calculation required for determining the defect type of the determination target defect is reduced accordingly.
  • the defect type of the determination target defect can be determined at high speed.
  • the weight of the feature amount that hardly affects the output value of the discriminant function f (x) or does not affect it at all is specified as 0. Therefore, even if the feature quantity identified as having a weight of 0 is not input to the kernel function k (x, x ′) of the discriminant function f (x), the discrimination target to be performed using the output value of the discriminant function f (x)
  • the defect type of the defect can be determined with a certain accuracy or higher.
  • the defect discriminating apparatus 1 has been described for discriminating defects that have occurred in the wire.
  • the defects that the defect discriminating apparatus 1 discriminates are not limited to those that have occurred in the wire. It can be a defect generated in the rolled material.
  • the discrimination error is expressed using ⁇ cost of the above-described equation (8) that is a convex function. Since ⁇ cost in Equation (8) described above is a convex function, the weight ⁇ that minimizes the value of the discrimination error can be obtained without falling into a local solution. Therefore, it is possible to efficiently specify the weight ⁇ that makes the discrimination error less than a predetermined value.
  • defect type A and defect type B the defect type of the defect to be determined.
  • the determination unit 3 and the determination unit 4 described above. By repeating this operation, it is also possible to determine which of the three or more defect types is the defect type of the determination target defect. For example, consider a case where the defect type A can be further classified into either the defect type A1 or the defect type A2. That is, consider a case where the defect type can be classified into one of the defect type A1, the defect type A2, and the defect type B.
  • the determination unit 3 first determines a discriminant function indicating a discriminant boundary for discriminating whether the defect type of the defect to be discriminated is the defect type A or the defect type B by the procedure described above.
  • the discriminating unit 4 discriminates whether the defect type of the defect to be discriminated is the defect type A or the defect type B using the discriminant function determined by the determining unit 3.
  • a discriminant function indicating a discriminant boundary for discriminating whether the defect type of the discrimination target defect that has been discriminated to be the defect type A is the defect type A1 or the defect type A2. This is determined by the same procedure as described above.
  • the discriminating unit 4 discriminates whether the defect type of the discriminating target discriminated to be the defect type A is the defect type A1 or the defect type A2 by using the discriminant function determined by the determining unit 3. As a result, it is determined which of the three defect types A1, A2, and B is the defect to be determined. By repeating a procedure similar to the procedure described above, it is possible to determine which of the four or more defect types is the defect type of the defect to be determined.
  • the defect discrimination device 1 of this embodiment was arrange
  • the surface temperature of the material to be rolled picked up by the camera 2 was approximately 1000 ° C.
  • the defect type A is a stain on the surface of the wire
  • the defect type B is a flaw generated on the surface of the wire.
  • the defect discriminating apparatus 1 of the present embodiment discriminates 45 defects from the defect type B, that is, a flaw among the defects generated in the wire having a wire diameter of 20 mm, and among the defects generated in the wire having a wire diameter of 13 mm, Twenty-three defects were identified as defect type B, that is, flaws.
  • defect discriminating apparatus 1 of the present embodiment one overdetection occurred in both of the two wire rods having the wire diameters of 20 mm and 13 mm, but all of them online including the flaws that could not be detected by the penetrating eddy current flaw detector 6.
  • the flaws could be determined as defect type B. From the above, it has become clear that the defect determination apparatus 1 of the present embodiment can accurately determine the defect type of a defect.
  • an imaging device (camera 2 and a light source) is provided as an acquisition unit for acquiring a feature quantity, and a defect type is obtained using a feature quantity obtained by performing image processing on a captured image of a material to be rolled.
  • the defect discriminating apparatus is not limited to this, and may be configured as shown in FIG.
  • FIG. 5 is a schematic configuration diagram showing a defect determination apparatus 1A according to another embodiment of the present invention. As illustrated in FIG. 5, the defect determination device 1 ⁇ / b> A according to the present embodiment includes an acquisition unit 7, a determination unit 3, and a determination unit 4.
  • the acquisition unit 7 includes at least one of an imaging device for a material to be rolled, an eddy current flaw detection device that performs eddy current flaw detection on the material to be rolled, and an ultrasonic flaw detection device that performs ultrasonic flaw detection on the material to be rolled.
  • the determination unit 4 is a feature amount obtained by performing image processing on a captured image of a material to be rolled imaged by the imaging device, a feature amount obtained by performing eddy current flaw detection on the material to be rolled by the eddy current flaw detection device, and the It is configured to discriminate the defect type of the discrimination target defect generated in the material to be rolled using at least one type of feature value among the feature values obtained by performing ultrasonic flaw detection on the material to be rolled by the ultrasonic flaw detector. ing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Textile Engineering (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】本発明は、過学習を抑制し、精度良く欠陥の欠陥種を判別する欠陥判別装置を提供することを目的とする。 【解決手段】欠陥種が未知の判別対象欠陥の特徴情報を示すデータ点を、特徴情報を構成する特徴量の数よりも高い次元数の写像空間に写像した写像点が、判別境界により写像空間を二分することによって形成された2つの欠陥種の領域の何れに位置するかに基づいて判別対象欠陥の欠陥種を判別する欠陥判別装置において、判別境界を示す判別関数を構成する各特徴量の重みとして、学習用欠陥の判別精度に対応する判別誤差と、識別境界の次元数と正の相関を有する正則化項との和が最小となる重みを採用して、前記判別関数を決定する欠陥判別装置を提供する。

Description

欠陥判別装置
 本発明は、欠陥の欠陥種を判別する欠陥判別装置に関する。特に、本発明は、金属材料(例えば鉄鋼材料)からなる被圧延材(線材、管材、板材等)に生じる欠陥の欠陥種を判別するのに好適に用いられる欠陥判別装置に関する。
 例えば、線材の製造ラインでは、該製造ラインに配置されたカメラが撮像した線材の撮像画像に画像処理を施して、線材に生じたきず等の欠陥の欠陥種を判別する欠陥判別装置が使用されている。欠陥判別装置は、撮像画像の中から線材に生じた欠陥に対応する欠陥領域を特定し、欠陥領域の特徴量(例えば、寸法・面積)から、欠陥の欠陥種を判別する。
 特許文献1の欠陥判別装置は、欠陥種が未知の判別対象欠陥の属性を示す複数の特徴量(例えば、欠陥の寸法や面積)を成分とする特徴情報(ベクトル)を構成する特徴量の数よりも高い次元数の写像空間を、判別境界によって2つの欠陥種の領域に二分する。この判別境界は、欠陥種がユーザによって判別された前記2つの欠陥種の学習用欠陥の特徴情報を用いて、特許文献1の欠陥判別装置が予め作成したものである。特許文献1の欠陥判別装置は、判別対象欠陥の特徴情報を示すデータ点(ベクトルの先端の点)を前記の写像空間に写像し、判別対象欠陥の欠陥種を、写像したデータ点(以下、「写像点」という。)が位置する領域に対応する欠陥種であると判別する。
 特許文献1の欠陥判別装置は、判別対象欠陥の欠陥種の判別と同様の手法(特徴情報を示すデータ点を写像空間に写像し、写像点が位置する領域に応じて欠陥種を判別する手法)により、各学習用欠陥の欠陥種を判別した場合に、各学習用欠陥の欠陥種が正しく(ユーザが判別した通りに)判別されるように、判別境界を作成する。判別境界の作成に用いる学習用欠陥の中には、特徴量が特異な値であり、特徴量が特異な値でない同種の学習用欠陥と、写像点の位置が大きく異なるものが存在する場合がある。特許文献1の欠陥判別装置は、各学習用欠陥の欠陥種が正しく判別されるように、判別境界を作成する。このため、判別境界の作成に用いる学習用欠陥の特徴情報に過度に適合した判別境界が作成されてしまい、欠陥種が未知の判別対象欠陥への対応力が低下する現象である過学習が発生する。特徴量が特異な値である学習用欠陥が存在するときに過学習が発生すると、特徴量が特異な値である学習用欠陥についても正確に欠陥種を判定できるように、過度に高次元化した判別境界が作成される。このような過学習が発生すると、欠陥種が未知の判別対象欠陥の欠陥種を精度良く判定できない場合がある。
日本国特開2009-186243号公報
 そこで、本発明は、過学習を抑制し、精度良く欠陥の欠陥種を判別する欠陥判別装置を提供することを目的とする。
 本発明は、欠陥種が未知の判別対象欠陥の属性を示す複数の特徴量を成分とする特徴情報を示すデータ点を、前記特徴情報を構成する特徴量の数よりも高い次元数の写像空間に写像した写像点が、前記写像空間を二分することによって形成された2つの欠陥種の領域の何れに位置するかを判別し、前記判別対象欠陥の欠陥種を前記写像点が位置すると判別した領域に対応する欠陥種であると判別する欠陥判別装置において、前記特徴情報を取得するための取得部と、前記写像空間を二分する判別境界を示す判別関数を決定する決定部と、該決定部によって決定された判別関数に前記判別対象欠陥の特徴情報を入力したときの該判別関数の出力値に基づいて、前記判別対象欠陥の欠陥種を判別する判別部とを備え、前記2つの欠陥種のそれぞれは、予め設定された互いに異なる欠陥種であり、前記決定部は、前記2つの欠陥種の何れであるかが既知である学習用欠陥の前記特徴情報を用いて前記判別関数を決定し、前記判別関数は、前記2つの欠陥種のうち一方又は他方の欠陥種の前記学習用欠陥の特徴情報が入力されると、前記特徴情報が入力された学習用欠陥の写像点を出力するカーネル関数k(x,x’)と、前記カーネル関数k(x,x’)に付され、前記特徴情報を構成する各特徴量の重みとから構成された関数であり、前記カーネル関数k(x,x’)は、要素がk(x,x’)で与えられる行列Kが半正定値であるカーネル関数であり、xは、前記一方の欠陥種の学習用欠陥の特徴情報であり、x’は、前記他方の欠陥種の学習用欠陥の特徴情報であり、前記決定部は、前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差、及び、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差で規定され、前記2つの差の何れかの絶対値が小さくなれば小さくなり、大きくなれば大きくなる判別誤差と、前記判別関数の次元数に対し正の相関を有し、前記特徴情報を構成する各特徴量の重みに応じて変動すると共に、正則化パラメータが乗じられた正則化項との和からなる誤差関数の値を最小にするように、所定の正則化パラメータについて、前記特徴情報を構成する各特徴量の重みを特定し、前記誤差関数の値を最小にするように特定した前記特徴情報を構成する各特徴量の重みを、前記判別関数を構成する各特徴量の重みとして仮に採用したときにおいて、前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差の絶対値よりも、前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差の絶対値の方が小さくなる前記一方の欠陥種の学習用欠陥の数と、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差の絶対値よりも、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差の絶対値の方が小さくなる前記他方の欠陥種の学習用欠陥の数とを加算した誤判別個数が、所定値以上の場合は、前記正則化パラメータを調整して、再度、前記誤差関数の値を最小にするように、前記特徴情報を構成する各特徴量の重みを特定し、前記誤判別個数が所定値未満の場合は、前記誤差関数の値を最小にするように特定した前記特徴情報を構成する各特徴量の重みを、前記判別関数を構成する各特徴量の重みとして採用することを確定して、前記判別関数を決定することを特徴とする欠陥判別装置を提供する。
 本発明に係る欠陥判別装置は、欠陥種が未知の判別対象欠陥の高次元数の写像空間への写像点が、写像空間を二分することによって形成された2つの欠陥種の領域の何れに位置するかを判別する。そして、本発明に係る欠陥判別装置は、判別対象欠陥の欠陥種を、前記2つの欠陥種の領域のうち、判別対象欠陥の写像点が位置すると判別した領域に対応する欠陥種であると判別する。本発明に係る欠陥判別装置は、写像空間を二分する判別境界を示す判別関数を以下のように決定する。
 本発明に係る欠陥判別装置は、まず、判別誤差と正則化パラメータが乗じられた正則化項との和からなる誤差関数の値を最小にするように、所定の正則化パラメータについて、特徴情報を構成する各特徴量の重みを特定する。そして、本発明に係る欠陥判別装置は、誤差関数の値を最小にするように特定した特徴情報を構成する各特徴量の重みを、判別関数を構成する各特徴量の重みに仮に採用したときの誤判別個数が所定値未満の場合には、該特定した重みを、判別関数を構成する各特徴量の重みに採用することを確定して、判別関数を決定する。
 判別誤差と正則化パラメータが乗じられた正則化項との和からなる誤差関数の値を小さくするには、少なくとも判別誤差と正則化項との何れかを小さくする必要がある。例えば、正則化パラメータが大きい場合、正則化項が誤差関数の値に与える影響が大きい。正則化項は特徴情報を構成する各特徴量の重みに応じて変動する。このため、正則化パラメータが大きい場合は、正則化項を十分に小さくする重みが誤差関数の値を最小にする重みとして特定される。判別関数の次元数と正則化項とは正の相関を有する。このため、正則化項を十分に小さくする重みが誤差関数の値を最小にする重みとして特定され、且つ、該重みが判別関数を構成する各特徴量の重みに採用されることが確定されて、判別関数が決定されることにより、判別関数の過度の高次元化が抑制されて、過学習(判別境界(判別関数)の作成に用いる学習用欠陥の特徴情報に過度に適合した判別関数が作成されてしまい、欠陥種が未知の判別対象欠陥への対応力が低下する現象である。特徴量が特異な値である学習用欠陥が存在するときに過学習が発生すると、特徴量が特異な値である学習用欠陥についても正確に欠陥種を判別できるように、過度に高次元化した判別境界(判別関数)が作成される)が抑制される。よって、本発明に係る欠陥判別装置では、過学習を抑制できる。
 また、誤差関数の値を最小にするように特定した重みを、判別関数を構成する各特徴量の重みに仮に採用したときの誤判別個数が所定値以上の場合には、本発明に係る欠陥判別装置は、正則化パラメータを調整して、再度、誤差関数の値を最小にする重みを特定する。上述の正則化パラメータの調整により、正則化パラメータを小さくすると、正則化項が誤差関数の値に与える影響が小さくなる一方で、判別誤差が誤差関数の値に与える影響が大きくなる。このため、正則化パラメータが小さくなるように調整すると、調整前よりも、判別誤差を小さくする重みが誤差関数の値を最小にする重みとして特定されることが可能となる。判別誤差は、一方の欠陥種の学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力したときの判別関数の出力値(以下、「一方の欠陥種に対応する判別関数の出力値」という。)と一方の欠陥種に対応する値との差、及び、他方の欠陥種の学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力したときの判別関数の出力値(以下、「他方の欠陥種に対応する判別関数の出力値」という。)と他方の欠陥種に対応する値との差で規定されるものである。さらに、該判別誤差は、一方の欠陥種に対応する判別関数の出力値と一方の欠陥種に対応する値との差、及び、他方の欠陥種に対応する判別関数の出力値と他方の欠陥種に対応する値との差の何れかの絶対値が小さくなると、小さくなり、大きくなると、大きくなる。つまり、判別誤差が小さくなると、一方の欠陥種に対応する判別関数の出力値と一方の欠陥種に対応する値との差の絶対値、又は、他方の欠陥種に対応する判別関数の出力値と他方の欠陥種に対応する値との差の絶対値が小さくなる。一方の欠陥種に対応する判別関数の出力値と一方の欠陥種に対応する値との差の絶対値が小さくなると、該絶対値よりも、一方の欠陥種に対応する判別関数の出力値と他方の欠陥種に対応する値との差の絶対値が大きくなる一方の欠陥種の学習用欠陥の数が減少する。同様に、他方の欠陥種に対応する判別関数の出力値が他方の欠陥種に対応する値との差の絶対値が小さくなると、該絶対値よりも、他方の欠陥種に対応する判別関数の出力値と一方の欠陥種に対応する値との差の絶対値が大きくなる他方の欠陥種の学習用欠陥の数が減少する。従って、判別誤差が小さくなると、誤判別個数が小さくなる。従って、正則化パラメータを調整する前において特定した重みを、判別関数を構成する各特徴量の重みに仮に採用したときの誤判別個数が所定値以上の場合であっても、正則化パラメータが小さくなるように調整することで、誤判別個数が所定値未満となる重みを特定でき、特定した重みを、判別関数を構成する各特徴量の重みに採用することを確定して、判別関数を決定できる。
 以上のように、誤差関数の値を最小にするように特定した重みのうち、判別関数を構成する各特徴量の重みに仮に採用したときの誤判別個数が所定値未満となる重みを特定した場合にのみ、本発明に係る欠陥判別装置は、特定した重みを判別関数を構成する各特徴量の重みに採用することを確定して、判別関数を決定する。このため、本発明に係る欠陥判別装置は、欠陥種を精度良く判別できる。ただし、正則化項が増加するにつれて過学習が発生する可能性が高まる。このため、例えば、正則化パラメータは初期段階で大きくし、誤判別個数が所定値未満となる重みが特定できない場合に、正則化パラメータを少しずつ小さくなるように調整することで、誤判別個数が所定値未満となる重みを特定することが好ましい。尚、上述の判別誤差は、例えば、一方の欠陥種に対応する判別関数の出力値と一方の欠陥種に対応する値との差、及び、他方の欠陥種に対応する判別関数の出力値と他方の欠陥種に対応する値との差の2乗和と正の相関を有する値とされる。前記の2乗和と正の相関を有する値は、例えば、前記の2乗和の平方根とされる。
 また、判別関数は、カーネル関数k(x,x’)と各特徴量の重みとから構成され、写像関数を有していない。このため、判別関数の決定のために、写像関数を計算する必要がない。写像関数の計算量は膨大である。このため、判別関数の決定のために、写像関数を計算する必要がない本発明に係る欠陥判別装置は、判別関数を少ない計算量で決定できる。
 なお、本発明における「欠陥」の概念には、きずの他、被圧延材に付着した汚れ等の疑似模様も含まれる。
 また、本発明における「欠陥種に対応する値」とは、一方の欠陥種と他方の欠陥種とを判別し得るように予め決定された値であって、一方の欠陥種と他方の欠陥種とで異なる値とされている。
 好ましくは、前記欠陥判別装置は、少なくとも前記取得部が被圧延材の圧延ラインに配置され、前記被圧延材に生じる判別対象欠陥の欠陥種を判別する構成とされる。
 斯かる好ましい構成によれば、被圧延材に生じる判別対象欠陥の欠陥種をオンラインで判別できるため、判別された欠陥種に応じて、迅速に熱間圧延ライン(例えば線材、棒鋼の熱間圧延ライン)や冷間圧延ラインの圧延機の設定調整等を行うことが可能である。
 なお、連続式の熱間圧延ラインは、通常、粗圧延機列及び仕上圧延機列から構成されるか、或いは、粗圧延機列、中間圧延機列及び仕上圧延機列から構成される。前記好ましい構成の欠陥判別装置は、二つの圧延機列間に配置することも可能であるが、被圧延材に生じる判別対象欠陥の欠陥種をオンラインで効率よく判別するには、仕上圧延機列の下流側(被圧延材の圧延方向下流側)に配置することが最も好ましい。
 また、仕上圧延機列の下流側には、通常、被圧延材を冷却するための冷却装置が設置されている。前記好ましい構成の欠陥判別装置が、被圧延材の撮像画像に画像処理を施すことによって得られる特徴量を用いる場合、前記欠陥判別装置は、前記冷却装置の上流側(被圧延材の圧延方向上流側)及び下流側の何れに配置することも可能である。前記欠陥判別装置を前記冷却装置の下流側に配置すれば、被圧延材が冷却されることにより、撮像画像における判別対象欠陥に対応する欠陥領域とその他の領域との輝度値の差が大きくなり易い点で、判別対象欠陥の特徴量を精度良く得ることが期待できる。この反面、前記欠陥判別装置を前記冷却装置の下流側に配置すれば、冷却装置の下流側に通常配置されるガイドと被圧延材とが接触することによって被圧延材に付着した汚れ等の疑似模様が撮像画像に写り込んでしまい、きずと疑似模様との判別の精度が低下してしまうおそれがある。このおそれを低減する点では、前記欠陥判別装置を前記冷却装置の上流側に配置することが好ましい。実際には、前記欠陥判別装置を前記冷却装置の上流側に配置する場合と下流側に配置する場合との得失を予め試験等によって評価し、前記欠陥判別装置の配置位置を確定すればよい。
 好ましくは、前記欠陥判別装置は、少なくとも前記取得部としての被圧延材の撮像装置が前記圧延ラインに渦流探傷装置と共に配置され、前記撮像装置で撮像した前記被圧延材の撮像画像に画像処理を施すことによって得られる特徴量を用いて、前記被圧延材に生じる判別対象欠陥の欠陥種を判別する構成とされる。
 斯かる好ましい構成によれば、渦流探傷装置(例えば、差動方式の貫通型渦流探傷装置)で微小な欠陥を検出し、欠陥判別装置で被圧延材の長手方向に延びる欠陥を検出する(欠陥判別装置で判別する2つの欠陥種を長手方向に延びる欠陥とする)という役割分担を同一の圧延ラインで行わせて、被圧延材の欠陥検出精度を高めることが可能である。なお、前述したのと同様に、斯かる好ましい構成の欠陥判別装置も、熱間圧延ラインの仕上圧延機列の下流側に適用する場合には、前記冷却装置の上流側及び下流側の何れに配置することも可能である。
 前記欠陥判別装置によれば、公知の判別方法では判別することが難しい、きずと被圧延材に付着した汚れ等の疑似模様とを判別することも可能である。すなわち、前記欠陥判別装置において、前記2つの欠陥種を、きずと、前記被圧延材に付着した汚れ等の疑似模様とすることが可能である。
 なお、公知の判別手法を用いても、被圧延材におけるきず及び疑似模様が混合した欠陥と、被圧延材の健全部位とを判別することは可能である。例えば、被圧延材の撮像画像に公知の画像処理を施すことにより、上記の健全部位に対応する領域を除外して上記の欠陥に対応する領域のみを抽出することが可能である。そして、この公知の判別手法によって判別(抽出)された欠陥に対してのみ、前記欠陥判別装置を適用することにすれば、きずと疑似模様とを効率良く判別することが可能である。
 なお、本発明に係る欠陥判別装置で用いる特徴量は特に限定されるものではない。例えば、本発明に係る欠陥判別装置は、前記取得部が、前記被圧延材の撮像装置、前記被圧延材に渦流探傷を施す渦流探傷装置及び前記被圧延材に超音波探傷を施す超音波探傷装置のうちの少なくとも一つの装置から構成され、前記撮像装置で撮像した前記被圧延材の撮像画像に画像処理を施すことによって得られる特徴量、前記渦流探傷装置で前記被圧延材に渦流探傷を施すことによって得られる特徴量及び前記超音波探傷装置で前記被圧延材に超音波探傷を施すことによって得られる特徴量のうち、少なくとも一種の特徴量を用いて、前記被圧延材に生じる判別対象欠陥の欠陥種を判別することが可能である。
 本発明は、過学習を抑制し、精度良く欠陥の欠陥種を判別する欠陥判別装置を提供できる。
本発明の一実施形態に係る欠陥判別装置の概略構成図である。 学習用欠陥に関する情報を示す模式図である。 判別関数を決定する手順を示すフロー図である。 欠陥種の判別試験に用いたビレットを示す図である。 本発明の他の実施形態に係る欠陥判別装置の概略構成図である。
 以下、添付図面を参照しつつ、本発明の一実施形態について、判別対象欠陥の生じる対象が被圧延材である線材であり、線材の撮像画像に画像処理を施すことによって得られる特徴量を用いる場合を例に挙げて説明する。尚、本明細書中に記載の各式において、太字斜体で示すパラメータはベクトルを意味する。
 図1(a)は、本実施形態の欠陥判別装置1の一例を示す概略構成図である。図1(a)に示すように、欠陥判別装置1は、特徴量を取得するための取得部としての撮像装置(カメラ2及び光源(図示せず))と、決定部3と、判別部4とを備える。カメラ2は、熱間圧延ラインに沿って搬送される線材21の周方向に複数(例えば4つ)配置され、線材21を撮像する。また、カメラ2の周辺には、線材21を照明するための光源(図示せず)が配置されている。カメラ2及び前記光源は、熱間圧延ラインに設置された仕上圧延機列5の下流側(線材21の圧延方向(搬送方向)下流側)に配置される。
 図1(b)は、本実施形態の欠陥判別装置1の他の例を示す概略構成図である。図1(b)に示す例では、仕上圧延機列5の下流側に差動方式の貫通型渦流探傷装置6が配置されており、この渦流探傷装置6よりも下流側にカメラ2及び前記光源が配置されている点が、図1(a)に示す例と異なる。
 決定部3は、欠陥種が未知の判別対象欠陥の欠陥種を判別するための判別境界を示す判別関数を決定する。この判別境界は、判別対象欠陥の属性を示す複数の特徴量を成分とする特徴情報(ベクトル)を構成する特徴量の数よりも高い次元数の写像空間を、2つの欠陥種(以下、2つの欠陥種の一方を「欠陥種A」と、他方の欠陥種を「欠陥種B」という)の領域に二分するものである。欠陥種Aと欠陥種Bとは、欠陥判別装置1のユーザ等により予め設定された互いに異なる欠陥種である。欠陥種Aと欠陥種Bとは、例えば、深刻度(線材21の品質に与える影響度)が互いに異なる欠陥種とすることができる。また、欠陥種Aと欠陥種Bとは、例えば、発生原因が互いに異なる欠陥種とすることができる。
 特徴量としては、カメラ2が撮像した撮像画像に画像処理を施すことによって得られる欠陥に対応する欠陥領域の寸法、面積、輝度値などを用いることができる。特徴情報を構成する特徴量の数は、複数であれば限定されるものでない。
 決定部3は、欠陥種Aと欠陥種Bの何れであるかが既知である学習用欠陥の特徴情報を用いて、判別関数を決定する。決定部3に入力される学習用欠陥の特徴情報は、例えば、後述する判別部4の画像処理機能を用いることによって得られる。つまり、カメラ2で撮像した学習用欠陥の撮像画像を判別部4に入力し、判別部4で画像処理を施すことによって学習用欠陥の特徴情報が得られる。そして、得られた学習用欠陥の特徴情報が決定部3に入力される。或いは、決定部3自体が画像処理機能を有するものとすれば、カメラ2で撮像した学習用欠陥の撮像画像を決定部3に入力し、決定部3で画像処理を施すことによって学習用欠陥の特徴情報を得ることも可能である。欠陥種Aの学習用欠陥の特徴情報、欠陥種Bの学習用欠陥の特徴情報、及び、前述の判別対象欠陥の特徴情報は、同一種の特徴量から構成されている。学習用欠陥とは、欠陥種が既知である(ユーザによって欠陥種が判別された)欠陥である。図2に示すように、欠陥種Aの各学習用欠陥の特徴情報を構成する各特徴量と、欠陥種Bの各学習用欠陥の特徴情報を構成する各特徴量とは、学習用欠陥の識別子と、学習用欠陥の欠陥種とに紐付けられて決定部3に記憶されている。尚、図2に示すように、各学習用欠陥の特徴情報を構成する各特徴量の値は、0~1の範囲内の値に収まるように、正規化されている。
 決定部3が決定する判別関数f(x)は、下記式(1)で表現される。
Figure JPOXMLDOC01-appb-M000001
 wは、特徴情報を構成する各特徴量の重みを成分とする重み情報(ベクトル)を示す。式(1)に記載のxは、欠陥種A又は欠陥種Bの学習用欠陥の特徴情報(ベクトル)を示す。φ(・)は、前記の写像空間に特徴情報を示すデータ点(ベクトルの先端の点)を写像する写像関数であって、正定値性を有するものを示す。正定値性のある写像関数としては、ガウス分布の関数などがある。
 写像関数φ(・)の計算量は膨大である。少ない計算量で判別関数f(x)を決定できるように、本実施形態では、判別関数として、下記式(2)で表現された判別関数f(x)を用いる。以下の記載において、判別関数f(x)とは、下記式(2)で表現された判別関数f(x)を意味する。
Figure JPOXMLDOC01-appb-M000002
 αは、特徴情報を構成する各特徴量の重みを示す。k(x,x’)は、要素がk(x,x’)で与えられる行列Kが半正定値であるカーネル関数を示す。式(2)以降に記載のxは、欠陥種Aの学習用欠陥の特徴情報(ベクトル)を示す。x’は、欠陥種Bの学習用欠陥の特徴情報(ベクトル)を示す。要素がk(x,x’)で与えられる行列Kとは、カーネル関数k(x,x’)に欠陥種Aの学習用欠陥の特徴情報xを入力したときに得られるカーネル関数の出力値、及び、カーネル関数k(x,x’)に欠陥種Bの学習用欠陥の特徴情報x’を入力したときに得られるカーネル関数の出力値を要素とする行列である。
 要素がカーネル関数k(x,x’)で与えられる行列Kが半正定値であるカーネル関数k(x,x’)の例として、下記の5つのカーネル関数k(x,x’)がある。
Figure JPOXMLDOC01-appb-M000003
 また、要素がカーネル関数k(x,x’)で与えられる行列Kが半正定値であるカーネル関数k(x,x’)の他の例として、下記式のシグモイド関数とガウス関数とがある。
Figure JPOXMLDOC01-appb-M000004
 尚、上記に例示した7つのカーネル関数k(x,x’)において、f(・)は任意の関数を示し、q(・)は非負係数の多項式を示し、k(・,・)、k(・,・)、及び、k(・,・)は任意のカーネル関数を示し、下付き文字a及びbは、学習用欠陥の識別子を示し、βはシグモイド関数のゲインを示し、σは分散を示す。
 上記式(2)は、以下のように導出される。
Figure JPOXMLDOC01-appb-M000005
と定義すれば、下記式(4)が導出される。
Figure JPOXMLDOC01-appb-M000006
 dは、特徴情報を構成する特徴量の数を示す。特徴情報を構成する特徴量の数を十分に多くすれば、上記式(1)から下記式(5)が導出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、重み情報wは、下記式(6)で表現される。
Figure JPOXMLDOC01-appb-M000008
 カーネル関数k(x,x’)の定義(上記式(3))によれば、上記式(6)を用いて、上記式(1)から上記式(2)が導出される。上記式(2)の判別関数f(x)は、学習用欠陥の特徴情報を構成する特徴量の数に、その次元数が影響される関数となっている。
 以下、判別関数f(x)の決定の手順について、適宜図3を参照しつつ説明する。決定部3は、まず、誤判別個数が所定値未満か否かを判別する(図3のステップS1)。誤判別個数とは、欠陥種Aの学習用欠陥の特徴情報xを判別関数f(x)のカーネル関数k(x,x’)に入力したときの該判別関数f(x)の出力値(以下、「欠陥種Aに対応する判別関数の出力値」という。)と欠陥種Aに対応する値との差の絶対値よりも、欠陥種Aに対応する判別関数の出力値と欠陥種Bに対応する値との差の絶対値の方が小さくなる欠陥種Aの学習用欠陥の数と、欠陥種Bの学習用欠陥の特徴情報x’を判別関数f(x)のカーネル関数k(x,x’)に入力したときの該判別関数f(x)の出力値(以下、「欠陥種Bに対応する判別関数の出力値」という。)と欠陥種Bに対応する値との差の絶対値よりも、欠陥種Bに対応する判別関数の出力値と欠陥種Aに対応する値との差の絶対値の方が小さくなる欠陥種Bの学習用欠陥の数とを加算した数である。尚、欠陥種Aの学習用欠陥の特徴情報x、又は、欠陥種Bの学習用欠陥の特徴情報x’を判別関数f(x)のカーネル関数k(x,x’)に入力するときは、判別関数f(x)の特徴情報を構成する各特徴量の重みαを任意の値(例えば1)とする。また、本実施形態では、欠陥種Aに対応する値は1とされ、欠陥種Bに対応する値は-1とされている。欠陥種Aに対応する値と欠陥種Bに対応する値とは欠陥判別装置1のユーザ等により予め決定され、欠陥種Aと欠陥種Bとを判別し得るように、互いに異なる値とされる。
 決定部3は、誤判別個数が所定値以上であると判別した場合は、判別誤差と、正則化パラメータλが乗じられた正則化項αKαとの和からなる誤差関数の値を最小にする特徴情報を構成する各特徴量の重みαを特定する(図3のステップS2)。誤差関数の最小値は、下記式(7)で表現される。
Figure JPOXMLDOC01-appb-M000009
 上付き文字の(i)は、学習用欠陥の識別子を示す。尚、正則化パラメータλは0~1の範囲の値を採る。判別誤差は、欠陥種Aの学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力したときの判別関数f(x)の出力値と、欠陥種Aに対応する値との差、及び、欠陥種Bの学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力したときの判別関数f(x)の出力値と、欠陥種Bに対応する値との差で規定され、前記2つの差の何れかの絶対値が小さくなれば小さくなり、大きくなれば大きくなるものである。
 式(7)のγcostは、下記式(8)で表現される。
Figure JPOXMLDOC01-appb-M000010
 上記式(8)は下記式(9)を近似した凸関数である。
Figure JPOXMLDOC01-appb-M000011
 上記式(9)のyは、各特徴量の重みを成分とするベクトルを示す。判別誤差を求めるために、欠陥種Aの学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力する場合は、ベクトルyの各成分を1とし、欠陥種Bの学習用欠陥の特徴情報をカーネル関数k(x,x’)に入力する場合は、ベクトルyの各成分を-1とする。上記式(9)のsgn[f(x)]は、下記式(10)で表現される。
Figure JPOXMLDOC01-appb-M000012
 正則化項αKαは、下記式(11)で表現される。
Figure JPOXMLDOC01-appb-M000013
 下付き文字のiは、欠陥種Aの学習用欠陥の特徴情報を構成する特徴量の種類を表わす識別子を示す。下付き文字のjは、欠陥種Bの学習用欠陥の特徴情報を構成する特徴量の種類を表わす識別子を示す。
 上記式(11)より、正則化項αKαは、各特徴量の重みαと正の相関を有することが分かる。正則化項αKαは、以下のように導出される。欠陥種Aの学習用欠陥の各特徴量の線形和wは、下記式(12)で表現される。
Figure JPOXMLDOC01-appb-M000014
 また、重み情報wは、線形和wに、学習用欠陥の特徴情報を示すデータ点を写像した写像点φ(x(i))に直交するξ成分を加えたものであるので、下記式(13)で表現される。
Figure JPOXMLDOC01-appb-M000015
 ここで、重み情報wと写像点φ(x(j))との内積φ(x(j)・ξは0であるという条件から、前述した式(5)のf(x)は、下記式(14)で表現される。
Figure JPOXMLDOC01-appb-M000016
 即ち、式(8)の左辺のγcostは、ξ成分の値に依存しないことが分かる。また、線形和wとξ成分との直交性から、下記式(15)を導出できる。
Figure JPOXMLDOC01-appb-M000017
 式(15)から、λ||w||はξ=0のときに最小値になることは明らかである。ゆえに、誤差関数が最小となるのは、w=wのときである。ここで、上記式(12)を利用すると、式(15)から式(11)を導出できる。
 上記式(11)と上記式(2)とにより、正則化項αKαは、上記式(2)の判別関数f(x)の次元数と正の相関を有することが分かる。
 以下、誤差関数の値を最小にする特徴情報を構成する各特徴量の重みαを特定する手順(図2、ステップS2)の詳細について説明する。まず、決定部3は、上記式(11)の重みα及び重みαに任意の値(例えば1)を入力し、上記式(11)のx(i)に、欠陥種Aの学習用欠陥の特徴情報を入力し、x(j)に欠陥種Bの学習用欠陥の特徴情報を入力し、正則化項αKαを算出する(図3のステップS21)。
 次に、上記式(7)のy(i)に上記式(8)の左辺のγcostを入力し、上記式(7)のx(i)に欠陥種A又は欠陥種Bの各学習用欠陥の特徴情報を入力し、上記式(7)の正則化項αKαにステップS21で算出した正則化項αKαの値を入力する(図3のステップS22)。尚、このときの上記式(7)の正則化パラメータは初期値であり、ここでは、初期値を1とする。
 次に、上記式(7)を下記式(16)に変換する(図3のステップS23)。
Figure JPOXMLDOC01-appb-M000018
 上記式(7)から下記式(16)への変換について説明する。特徴情報x(i)、値y(i)に対する判別誤差の出力をξとすれば、出力ξの最小値は、2つの不等式(17)、(18)にて定義される最小値となる。
Figure JPOXMLDOC01-appb-M000019
 最小値となるときの出力ξをスラック変数と呼び、最小値となるときの出力ξを上記式(7)に導入することによって、上記式(17)、(18)を制約条件として、上記式(7)は、上記式(16)に変換される。
 上記式(16)は、出力ξと特徴情報を構成する各特徴量の重みαとに関する凸二次計画問題の形式になっている。以下、上記式(16)の凸二次計画問題の解法を示す。
 上記式(16)は、ラグランジュの未定乗数法を用いて解く。下記式(19)をラグラジアンと定義する。
定義域:Ω⊆R
 尚、Rは、実数全体を示す。
Figure JPOXMLDOC01-appb-M000020
 下記の凸二次計画問題をラグラジアンL(w,α,β)を用いて解くための必要十分条件は、KKT(karush-kuhn-Tucker)により、下記式(20)~(24)を満たすα、βが存在することである。
凸二次計画問題
定義域:Ω⊆R
Figure JPOXMLDOC01-appb-M000021
 式(19)~式(24)においては、α及びβはラグランジュ乗数を示す。wは最適化されたときの重み情報を示す。α及びβは、wが得られたときのラグランジュ乗数α及びβを示す。
 上記式(19)を用いて、上記式(16)から、下記式(25)を導出できる。
Figure JPOXMLDOC01-appb-M000022
制約条件:β≧0,γ≧0
γは、ラグランジュ乗数を示す。
 下記の制約条件の下で、下記式(26)で表現される凸関数である目的関数を最小化する一般的な凸二次計画問題において、最適解が探索される実行可能領域が、φ(空集合)でないと仮定すると、下記式(26)は、下記式(27)に変換される。
Figure JPOXMLDOC01-appb-M000023
 上記式(26)から下記式(29)においては、Qはn×n正定値行列を示し、kはn-ベクトルを示し、cはm-ベクトルを示し、wは最適化対象のベクトルを示し、Xはm×n行列を示す。
Figure JPOXMLDOC01-appb-M000024
 ここで、上記式(27)のwの最小値を求める問題は非制約最適化問題となっており、最適解は下記式(28)で表現される。
Figure JPOXMLDOC01-appb-M000025
 上記式(28)の右辺を上記式(26)の最適化対象のベクトルwに代入すると、下記の制約条件の下で、下記式(29)で表現される目的関数を最大化する双対問題が得られる。
Figure JPOXMLDOC01-appb-M000026
 よって、二次計画問題は、より単純な制約条件を持つ双対問題へと変換できる。この性質を利用することによって、最適解の探索に必要な計算量の大幅な低減を実現できる。
 以上の流れと同様に、上記式(25)で表現された二次計画問題を双対問題に導く。まず、上記式(25)を重みα及び出力ξについて微分したラグラシアンL(ξ,α,β,γ)を0とおく(下記式(30)参照)。
Figure JPOXMLDOC01-appb-M000027
 ここで、Kは対称行列だからK=Kなので、上記式(30)から下記式(31)を導出できる。
Figure JPOXMLDOC01-appb-M000028
 行列Kが正則であると仮定すると、下記式(33)が得られる。
Figure JPOXMLDOC01-appb-M000029
 下記式(34)が満たされるとき、出力ξに関してはいくらでも小さくできる。すなわち、双対問題のラグランジュ関数(上記式(25)参照)は、-∞となるため、双対問題を考える際には、下記式(35)の制約が入った場合のみを考慮すればよいことになる。
1-β-γ≠0…(34)
1-β-γ=0…(35)
 このように、ラグランジュ関数が1次式となっている変数はその係数は0なので、双対問題は出力ξと無関係である。ゆえに、重みαを上記式(33)で置換し、上記式(35)の制約条件のもとで、下記式(36)のラグランジュ関数を最大化する。
Figure JPOXMLDOC01-appb-M000030
 また、β≧0、及び、γ≧0の条件から、上記式(35)の制約条件は、下記式(37)のようになる。
0≦γ≦1…(37)
 最急降下法や内点法といった公知の最適解探索手法を用いて、上記式(36)からγを算出し(図3のステップS24)、該算出したγを式(33)に代入すれば、誤差関数を最小とする特徴情報を構成する各特徴量の重みαが特定される(図3のステップS25)。
 決定部3は、上記のように特定した学習用欠陥の特徴情報を構成する各特徴量の重みαを判別関数f(x)の学習用欠陥の特徴情報を構成する各特徴量の重みαに仮に採用する。そして、図3のステップS1と同様にして、決定部3は、特定した各特徴量の重みαを判別関数f(x)を構成する各特徴量の重みαに仮に採用した場合の誤判別個数を算出する。算出した誤判別個数が所定値以上であれば、決定部3は、正則化パラメータλを小さくなるように調整し、再度、上記のように、誤差関数を最小とする特徴情報を構成する各特徴量の重みαを特定する(図3のステップS2)。尚、正則化パラメータλを小さくなるように調整した後のステップS21における正則化項の算出においては、前述した式(11)の重みα及び重みαに、前回のステップS25において特定した各特徴量の重みαを入力する。一方、算出した誤判別個数が所定値未満であれば、特定した各特徴量の重みαを、判別関数f(x)を構成する各特徴量の重みαに採用することを確定して、判別関数f(x)を決定する(図3のステップS3)。
 本実施形態の決定部3は、上述のように正則化パラメータλの初期値を正則化パラメータλの最大値とし、誤判別個数が所定値未満である場合、正則化パラメータλを小さくするように調整する。正則化パラメータλが大きい場合、正則化項αKαが誤差関数の値に与える影響が大きい。このため、正則化パラメータλが大きい場合は、正則化項αKαを十分に小さくする各特徴量の重みαが誤差関数の値を最小にする各特徴量の重みαとして特定される。判別関数f(x)の次元数と正則化項αKαとは正の相関を有する。このため、正則化項αKαを十分に小さくする各特徴量の重みαが誤差関数の値を最小にする各特徴量の重みαとして特定され、且つ、該各特徴量の重みαが判別関数f(x)を構成する各特徴量の重みαに採用されることが確定して判別関数を決定すると、判別関数(判別境界)の高次元化を抑制して、過学習を抑制できる。また、正則化項を十分に小さくする各特徴量の重みαが特定された場合であっても、該各特徴量の重みαを、判別関数f(x)を構成する各特徴量の重みαに仮に採用したときの誤判別個数が所定値以上の場合、該各特徴量の重みαを判別関数f(x)を構成する各特徴量の重みαに採用することが確定されない。この場合、正則化パラメータλが小さくなるように調整されて、再度、誤差関数の値を最小にする各特徴量の重みαが特定される。正則化パラメータλを小さくすると、正則化項αKαが誤差関数の値に与える影響が小さくなる一方で、判別誤差が誤差関数の値に与える影響が大きくなる。このため、正則化パラメータλが小さくなるように調整すると、調整前よりも、判別誤差を小さくする各特徴量の重みαが誤差関数の値を最小にする各特徴量の重みαとして特定されることが可能となる。判別誤差は、欠陥種Aに対応する判別関数の出力値と欠陥種Aに対応する値との差、及び、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差で規定されるものである。さらに、該判別誤差は、欠陥種Aに対応する判別関数の出力値と欠陥種Aに対応する値との差、及び、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差の何れかの絶対値が小さくなると、小さくなり、何れかが大きくなると、大きくなる。つまり、判別誤差が小さくなると、欠陥種Aに対応する判別関数の出力値と欠陥種Aに対応する値との差の絶対値、又は、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差の絶対値が小さくなる。欠陥種Aに対応する判別関数の出力値と欠陥種Aに対応する値との差の絶対値が小さくなると、該絶対値よりも、欠陥種Aに対応する判別関数の出力値と欠陥種Bに対応する値との差の絶対値が大きくなる欠陥種Aの学習用欠陥の数が減少する。同様に、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差の絶対値が小さくなると、該絶対値よりも、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差の絶対値が大きくなる欠陥種Bの学習用欠陥の数が減少する。従って、判別誤差が小さくなると、誤判別個数が小さくなる。従って、正則化パラメータを調整する前において特定した各特徴量の重みαを、判別関数f(x)を構成する各特徴量の重みαに仮に採用したときの誤判別個数が所定値以上の場合であっても、正則化パラメータλが小さくなるように調整することで、誤判別個数が所定値未満となる各特徴量の重みαを特定でき、特定した各特徴量の重みαを、判別関数を構成する各特徴量の重みαに採用することを確定して、判別関数f(x)を決定できる。
 また、前述した式(2)で表現された判別関数f(x)は、カーネル関数k(x,x’)と特徴情報を構成する各特徴量の重みαとを有し、写像関数を有していない。このため、誤判別個数を算出する際に、写像関数を計算する必要がない。換言すれば、判別関数を決定するために、写像関数を計算する必要がない。写像関数の計算量は膨大である。このため、判別関数f(x)の決定のために、写像関数を計算する必要がない欠陥判別装置1は、判別関数f(x)を少ない計算量で決定できる。
 判別部4は、カメラ2によって撮像された線材21に生じた判別対象欠陥の欠陥種が欠陥種Aであるか欠陥種Bであるかを判別する。判別部4は、画像処理機能を有し、カメラ2が撮像した線材21の撮像画像の中から、公知の画像処理手法により、線材21の判別対象欠陥に対応する欠陥領域を特定し、判別対象欠陥の特徴量を算出する。判別部4は、算出した特徴量から構成される特徴情報を、決定部3が決定した判別関数f(x)のカーネル関数k(x,x’)に入力して、判別関数f(x)の出力値、即ち、該特徴情報を示すデータ点を写像空間に写像した写像点を算出する。そして、判別部4は、判別対象欠陥の欠陥種を、前記の2つの領域の何れかの領域のうち、写像点が位置すると判別した領域に対応する欠陥種であると判別する。具体的に説明すれば、判別部4は、判別対象欠陥の特徴情報を入力したときの判別関数f(x)の出力値と欠陥種Aに対応する値との差の絶対値と、前記判別関数f(x)の出力値と欠陥種Bに対応する値との差の絶対値とを比較し、前者の方が小さければ判別対象欠陥は欠陥種Aであると判別し、後者の方が小さければ判別対象欠陥は欠陥種Bであると判別する。本実施形態では、前述のように、欠陥種Aに対応する値は1とされ、欠陥種Bに対応する値は-1とされているため、判別関数f(x)が両者の中間の値となるとき、すなわち、f(x)=0が、前記写像空間を二分する判別境界に相当することになる。
 尚、判別関数f(x)の出力値に殆ど影響を与えない又は全く影響を与えない特徴量の重みは、決定部3によって0と特定される可能性が高い。上述のように、決定部3は、誤差関数を最小とする特徴情報を構成する各特徴量の重みαを特定する。誤差関数は、判別誤差と正則化項αKαとの和からなる関数である。判別誤差は、欠陥種Aに対応する判別関数の出力値と欠陥種Aに対応する値との差、及び、欠陥種Bに対応する判別関数の出力値と欠陥種Bに対応する値との差で規定され、前記2つの差の何れかの絶対値が小さくなれば小さくなり、大きくなれば大きくなるものである。すなわち、判別誤差は、判別関数f(x)の出力値に応じて変動する。判別関数f(x)は、前述した式(2)より、特徴量の重みに応じて変動する。このため、判別関数f(x)の出力値に殆ど影響を与えない又は全く影響を与えない特徴量の重みを変動させた場合における判別誤差の変動量は小さい。正則化項αKαは、各特徴量の重みαと正の相関を有する。このため、判別誤差と正則化項との和からなる誤差関数の値は、判別誤差の変動量が小さい特徴量の重みを最小(即ち、0)にすることで、小さくなる可能性が高い。従って、判別関数f(x)の出力値に殆ど影響を与えない又は全く影響を与えない特徴量の重みは、決定部3によって0と特定される可能性が高い。
 判別部4が判別対象欠陥の欠陥種を判別するために、決定部3が決定した判別関数f(x)のカーネル関数k(x,x’)に入力される特徴情報を、上記のように重みが0と特定された特徴量以外の特徴量から構成される特徴情報としてもよい。このような特徴情報を決定部3が決定した判別関数f(x)のカーネル関数k(x,x’)に入力される特徴情報とする場合、重みが0と特定された特徴量が判別関数f(x)のカーネル関数k(x,x’)に入力されず、その分、判別対象欠陥の欠陥種の判別に必要な計算量が低減される。判別対象欠陥の欠陥種の判別に必要な計算量が低減されることで、判別対象欠陥の欠陥種を高速に判別できる。また、上述のように、判別関数f(x)の出力値に殆ど影響を与えない又は全く影響を与えない特徴量の重みが0と特定される可能性が高い。従って、重みが0と特定された特徴量が判別関数f(x)のカーネル関数k(x,x’)に入力されなくても、判別関数f(x)の出力値を用いて行う判別対象欠陥の欠陥種の判別は、一定の精度以上で行うことができる。
 以上においては、欠陥判別装置1が線材に生じた欠陥を判別することについて説明したが、欠陥判別装置1が判別する欠陥は、線材に生じたものに限定されず、例えば管材や板材等の被圧延材に生じた欠陥とすることができる。
 また、本実施形態では、判別誤差が、凸関数である前述した式(8)のγcostを用いて表現される。前述した式(8)のγcostは凸関数であるので、局所解に陥ることなく、判別誤差の値を最小にする重みαを求めることができる。このため、判別誤差を所定値未満にする重みαを効率的に特定できる。
 さらに、本実施形態では、判別対象欠陥の欠陥種が2つの欠陥種(欠陥種A及び欠陥種B)の何れであるかを判別する例について説明したが、前述した決定部3及び判別部4の動作を繰り返すことにより、判別対象欠陥の欠陥種が3つ以上の欠陥種の何れであるかを判別することも可能である。例えば、欠陥種Aが更に欠陥種A1及び欠陥種A2の何れかに区分できる場合を考える。すなわち、欠陥種が、欠陥種A1、欠陥種A2及び欠陥種Bの何れかに区分できる場合を考える。この場合、先ず決定部3においては、判別対象欠陥の欠陥種が欠陥種A及び欠陥種Bの何れであるかを判別するための判別境界を示す判別関数を、前述した手順で決定する。判別部4は、決定部3で決定したこの判別関数を用いて、判別対象欠陥の欠陥種が欠陥種A及び欠陥種Bの何れであるかを判別する。次に、決定部3においては、欠陥種Aであると判別された判別対象欠陥の欠陥種が、欠陥種A1及び欠陥種A2の何れであるかを判別するための判別境界を示す判別関数を、前述したのと同様の手順で決定する。判別部4は、決定部3で決定したこの判別関数を用いて、欠陥種Aであると判別された判別対象欠陥の欠陥種が欠陥種A1及び欠陥種A2の何れであるかを判別する。これにより、判別対象欠陥は、3つの欠陥種A1、A2、Bの何れであるか判別されることになる。以上に述べた手順と同様の手順を繰り返せば、判別対象欠陥の欠陥種が4つ以上の欠陥種の何れであるかを判別することが可能である。
 図1(b)に示すように、熱間圧延ラインの仕上圧延機列5の下流側に本実施形態の欠陥判別装置1を配置し、欠陥種の判別試験を行った。具体的には、図4に示すように、ドリルとグラインダによって事前に人工きずを付けたビレット(単重2トン)2本を、それぞれ線径が20mm及び13mmの2本の線材に圧延した時に生じた欠陥が欠陥種Aであるか欠陥種Bであるかをオンラインで判別した。また、図1(b)に示すように、差動方式の貫通型渦流探傷装置6も、熱間圧延ラインの仕上圧延機列の下流側で、かつ本実施形態の欠陥判別装置1の上流側に配置した。なお、カメラ2で撮像した被圧延材の表面温度は、ほぼ1000℃であった。
 欠陥種Aは、線材の表面の汚れであり、欠陥種Bは、線材の表面に生じたきずである。本実施形態の欠陥判別装置1は、線径が20mmの線材に生じた欠陥のうち、45個の欠陥を欠陥種Bすなわちきずと判別し、線径が13mmの線材に生じた欠陥のうち、23個の欠陥を欠陥種Bすなわちきずと判別した。一方、貫通型渦流探傷装置6では、線径が20mmの線材では31個のきず、線径が13mmの線材では15個のきずしか検出できなかった。
 圧延後に巻き取られた線径が20mm及び13mmの2本の線材コイルを、各々50mmの長さに切断し、オフラインで磁粉探傷によりきずの確認を行った。その結果、線径が20mmの線材にはきずが44個存在しており、線径が13mmの線材にはきずが22個存在していた。
 本実施形態の欠陥判別装置1では、線径が20mm及び13mmの2本の線材とも、過検出が1個発生したが、貫通型渦流探傷装置6では検出できなかったきずを含め、オンラインにおいて全てのきずを欠陥種Bと判定することができた。
 以上のことから、本実施形態の欠陥判別装置1は、精度良く欠陥の欠陥種を判別できることが明らかとなった。
 なお、本実施形態では、特徴量を取得するための取得部として撮像装置(カメラ2及び光源)を備え、被圧延材の撮像画像に画像処理を施すことによって得られる特徴量を用いて欠陥種を判別する場合を例に挙げて説明したが、本発明に係る欠陥判別装置はこれに限るものではなく、図5に示すような構成とすることも可能である。
 図5は、本発明の他の実施形態に係る欠陥判別装置1Aを示す概略構成図である。図5に示すように、本実施形態に係る欠陥判別装置1Aは、取得部7と、決定部3と、判別部4とを備える。取得部7は、被圧延材の撮像装置、被圧延材に渦流探傷を施す渦流探傷装置及び被圧延材に超音波探傷を施す超音波探傷装置のうちの少なくとも一つの装置から構成されている。判別部4は、前記撮像装置で撮像した被圧延材の撮像画像に画像処理を施すことによって得られる特徴量、前記渦流探傷装置で被圧延材に渦流探傷を施すことによって得られる特徴量及び前記超音波探傷装置で被圧延材に超音波探傷を施すことによって得られる特徴量のうち、少なくとも一種の特徴量を用いて、被圧延材に生じる判別対象欠陥の欠陥種を判別するように構成されている。 
1…欠陥判別装置、2…カメラ、3…決定部、4…判別部、7…取得部

Claims (4)

  1. 欠陥種が未知の判別対象欠陥の属性を示す複数の特徴量を成分とする特徴情報を示すデータ点を、前記特徴情報を構成する特徴量の数よりも高い次元数の写像空間に写像した写像点が、前記写像空間を二分することによって形成された2つの欠陥種の領域の何れに位置するかを判別し、前記判別対象欠陥の欠陥種を前記写像点が位置すると判別した領域に対応する欠陥種であると判別する欠陥判別装置において、
     前記特徴量を取得するための取得部と、前記写像空間を二分する判別境界を示す判別関数を決定する決定部と、該決定部によって決定された判別関数に前記判別対象欠陥の特徴情報を入力したときの該判別関数の出力値に基づいて、前記判別対象欠陥の欠陥種を判別する判別部とを備え、
     前記2つの欠陥種のそれぞれは、予め設定された互いに異なる欠陥種であり、
     前記決定部は、前記2つの欠陥種の何れであるかが既知である学習用欠陥の前記特徴情報を用いて前記判別関数を決定し、
     前記判別関数は、前記2つの欠陥種のうち一方又は他方の欠陥種の前記学習用欠陥の特徴情報が入力されると、前記特徴情報が入力された学習用欠陥の写像点を出力するカーネル関数k(x,x’)と、前記カーネル関数k(x,x’)に付され、前記特徴情報を構成する各特徴量の重みとから構成された関数であり、
     前記カーネル関数k(x,x’)は、要素がk(x,x’)で与えられる行列Kが半正定値であるカーネル関数であり、xは、前記一方の欠陥種の学習用欠陥の特徴情報であり、x’は、前記他方の欠陥種の学習用欠陥の特徴情報であり、
     前記決定部は、
     前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差、及び、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差で規定され、前記2つの差の何れかの絶対値が小さくなれば小さくなり、大きくなれば大きくなる判別誤差と、前記判別関数の次元数に対し正の相関を有し、前記特徴情報を構成する各特徴量の重みに応じて変動すると共に、正則化パラメータが乗じられた正則化項との和からなる誤差関数の値を最小にするように、所定の正則化パラメータについて、前記特徴情報を構成する各特徴量の重みを特定し、
     前記誤差関数の値を最小にするように特定した前記特徴情報を構成する各特徴量の重みを、前記判別関数を構成する各特徴量の重みとして仮に採用したときにおいて、前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差の絶対値よりも、前記一方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差の絶対値の方が小さくなる前記一方の欠陥種の学習用欠陥の数と、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記他方の欠陥種に対応する値との差の絶対値よりも、前記他方の欠陥種の学習用欠陥の特徴情報を前記カーネル関数k(x,x’)に入力したときの前記判別関数の出力値と前記一方の欠陥種に対応する値との差の絶対値の方が小さくなる前記他方の欠陥種の学習用欠陥の数とを加算した誤判別個数が、所定値以上の場合は、前記正則化パラメータを調整して、再度、前記誤差関数の値を最小にするように、前記特徴情報を構成する各特徴量の重みを特定し、
     前記誤判別個数が所定値未満の場合は、前記誤差関数の値を最小にするように特定した前記特徴情報を構成する各特徴量の重みを、前記判別関数を構成する各特徴量の重みとして採用することを確定して、前記判別関数を決定することを特徴とする欠陥判別装置。
  2.  少なくとも前記取得部が被圧延材の圧延ラインに配置され、前記被圧延材に生じる判別対象欠陥の欠陥種を判別することを特徴とする請求項1に記載の欠陥判別装置。
  3.  少なくとも前記取得部としての被圧延材の撮像装置が前記圧延ラインに渦流探傷装置と共に配置され、
     前記撮像装置で撮像した前記被圧延材の撮像画像に画像処理を施すことによって得られる特徴量を用いて、前記被圧延材に生じる判別対象欠陥の欠陥種を判別することを特徴とする請求項2に記載の欠陥判別装置。
  4.  前記取得部が、前記被圧延材の撮像装置、前記被圧延材に渦流探傷を施す渦流探傷装置及び前記被圧延材に超音波探傷を施す超音波探傷装置のうちの少なくとも一つの装置から構成され、
     前記撮像装置で撮像した前記被圧延材の撮像画像に画像処理を施すことによって得られる特徴量、前記渦流探傷装置で前記被圧延材に渦流探傷を施すことによって得られる特徴量及び前記超音波探傷装置で前記被圧延材に超音波探傷を施すことによって得られる特徴量のうち、少なくとも一種の特徴量を用いて、前記被圧延材に生じる判別対象欠陥の欠陥種を判別することを特徴とする請求項2に記載の欠陥判別装置。
PCT/JP2011/063119 2010-06-14 2011-06-08 欠陥判別装置 WO2011158711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012520387A JP5505818B2 (ja) 2010-06-14 2011-06-08 欠陥判別装置
US13/703,536 US8977580B2 (en) 2010-06-14 2011-06-08 Defect classification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-135218 2010-06-14
JP2010135218 2010-06-14

Publications (1)

Publication Number Publication Date
WO2011158711A1 true WO2011158711A1 (ja) 2011-12-22

Family

ID=45348113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063119 WO2011158711A1 (ja) 2010-06-14 2011-06-08 欠陥判別装置

Country Status (3)

Country Link
US (1) US8977580B2 (ja)
JP (1) JP5505818B2 (ja)
WO (1) WO2011158711A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147325A (zh) * 2019-05-22 2019-08-20 电信科学技术第十研究所有限公司 一种基于自动化测试的数据生成方法及装置
JP2021004738A (ja) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 超音波探傷用機械学習装置、該方法および該プログラムならびに超音波探傷装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9589246B2 (en) * 2014-06-26 2017-03-07 Ford Global Technologies, Llc Marking the surface of metal coils with material property data
CN108431584B (zh) * 2015-12-25 2021-04-27 富士胶片株式会社 损伤信息处理装置及损伤信息处理方法
KR102021944B1 (ko) * 2017-09-20 2019-09-17 주식회사 에이치엔에스휴먼시스템 제철소 철강제품 품질관리를 위한 지능형 결함 제어 방법 및 시스템
WO2020254259A1 (en) * 2019-06-18 2020-12-24 Tetra Laval Holdings & Finance S.A. Detection of deviations in packaging containers for liquid food
CN110766628B (zh) * 2019-10-16 2020-12-11 哈尔滨工程大学 一种基于多波段自适应正则化迭代的目标边缘反演方法
CN111060520B (zh) * 2019-12-30 2021-10-29 歌尔股份有限公司 一种产品缺陷检测方法、装置与系统
CN111239263B (zh) * 2020-01-19 2022-10-28 国网宁夏电力有限公司电力科学研究院 一种gis设备内部的异物缺陷的检测方法及系统
CN111754505B (zh) * 2020-06-30 2024-03-15 创新奇智(成都)科技有限公司 辅料检测方法、装置、电子设备及存储介质
CN112485325B (zh) * 2020-11-20 2024-04-09 浙江树人学院(浙江树人大学) 一种基于pec/ut数据融合的亚表面缺陷深度检测方法及系统
US20220318667A1 (en) * 2021-03-30 2022-10-06 Accenture Global Solutions Limited Intelligent real-time defect prediction, detection, and ai driven automated correction solution
CN113219053B (zh) * 2021-04-21 2022-05-13 大连理工大学 一种涂层表界面完整性参数的灵敏度矩阵超声反演方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186243A (ja) * 2008-02-04 2009-08-20 Nippon Steel Corp 判別装置、判別方法及びプログラム
JP2009281742A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 判別方法、判別装置及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246787B1 (en) * 1996-05-31 2001-06-12 Texas Instruments Incorporated System and method for knowledgebase generation and management
JP4253522B2 (ja) * 2003-03-28 2009-04-15 株式会社日立ハイテクノロジーズ 欠陥分類方法及び装置
US20050177040A1 (en) * 2004-02-06 2005-08-11 Glenn Fung System and method for an iterative technique to determine fisher discriminant using heterogenous kernels
US7521917B2 (en) * 2004-06-25 2009-04-21 General Electric Company Method and apparatus for testing material integrity
GB0601982D0 (en) * 2006-02-01 2006-03-15 Rolls Royce Plc Method and apparatus for examination of objects and structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186243A (ja) * 2008-02-04 2009-08-20 Nippon Steel Corp 判別装置、判別方法及びプログラム
JP2009281742A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 判別方法、判別装置及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147325A (zh) * 2019-05-22 2019-08-20 电信科学技术第十研究所有限公司 一种基于自动化测试的数据生成方法及装置
CN110147325B (zh) * 2019-05-22 2023-04-07 电信科学技术第十研究所有限公司 一种基于自动化测试的数据生成方法及装置
JP2021004738A (ja) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 超音波探傷用機械学習装置、該方法および該プログラムならびに超音波探傷装置

Also Published As

Publication number Publication date
US8977580B2 (en) 2015-03-10
JP5505818B2 (ja) 2014-05-28
JPWO2011158711A1 (ja) 2013-08-19
US20130173508A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5505818B2 (ja) 欠陥判別装置
Rifai et al. Evaluation of turned and milled surfaces roughness using convolutional neural network
CN102292187B (zh) 用于监控要在工件上实施的激光加工过程的方法和装置以及具有这种装置的激光加工头
TW201921542A (zh) 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷
EP4027300B1 (en) Apparatus, program, and method for anomaly detection and classification
CN105719291A (zh) 品种可选择的表面缺陷图像分类系统
Kunkel et al. Quality assurance in metal powder bed fusion via deep-learning-based image classification
US20220044383A1 (en) Learned model generation method, learned model, surface defect inspection method, steel manufacturing method, pass/fail determination method, grade determination method, surface defect determination program, pass/fail determination program, determination system, and steel manufacturing equipment
Shen et al. Automatic classification of weld defects in radiographic images
JP5218084B2 (ja) 検査方法
Schmitt et al. Machine vision system for inspecting flank wear on cutting tools
CN110427019B (zh) 一种基于多变量判别分析的工业过程故障分类方法及控制装置
Banda et al. Machine vision and convolutional neural networks for tool wear identification and classification
TWI763451B (zh) 利用自動地選擇演算法模組來檢驗樣本的系統、方法、和非暫時性電腦可讀媒體
Tian et al. Signal processing schemes for Eddy Current Testing of steam generator tubes of nuclear power plants
Kerscher et al. Steel type determination by spark test image processing with machine learning
Jakubowski et al. Roll wear prediction in strip cold rolling with physics-informed autoencoder and counterfactual explanations
Liu et al. Deep learning for coating condition assessment with active perception
Guldur et al. Automated classification of detected surface damage from point clouds with supervised learning
Agarwal et al. Knowledge discovery in steel bar rolling mills using scheduling data and automated inspection
Jin et al. Quality prediction and control in rolling processes using logistic regression
CN111695582A (zh) 一种颤振纹理的检测方法及其装置
Liu et al. A deep learning approach to defect detection in additive manufacturing of titanium alloys
Elanangai et al. Automated system for defect identification and character recognition using IR images of SS-plates
Karthikeyan et al. DWT based LCP features for the classification of steel surface defects in SEM images with KNN classifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520387

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703536

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11795618

Country of ref document: EP

Kind code of ref document: A1