WO2011158600A1 - Drive system for automobile and method for controlling drive system for automobile - Google Patents

Drive system for automobile and method for controlling drive system for automobile Download PDF

Info

Publication number
WO2011158600A1
WO2011158600A1 PCT/JP2011/061580 JP2011061580W WO2011158600A1 WO 2011158600 A1 WO2011158600 A1 WO 2011158600A1 JP 2011061580 W JP2011061580 W JP 2011061580W WO 2011158600 A1 WO2011158600 A1 WO 2011158600A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
input
way clutch
output
transmission mechanism
Prior art date
Application number
PCT/JP2011/061580
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 市川
文康 菅
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201180029378.9A priority Critical patent/CN102971167B/en
Priority to JP2012520340A priority patent/JP5586694B2/en
Publication of WO2011158600A1 publication Critical patent/WO2011158600A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/08Arrangement or mounting of internal-combustion or jet-propulsion units comprising more than one engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D25/00Controlling two or more co-operating engines
    • F02D25/04Controlling two or more co-operating engines by cutting-out engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an automobile drive system including a plurality of internal combustion engine sections and a method for controlling the automobile drive system.
  • Patent Documents 1 to 3 Various conventional drive systems for automobiles are known (for example, see Patent Documents 1 to 3).
  • the one described in Patent Document 1 is equipped with two engines, a first engine and a second engine, as power sources, and when the required torque is small, only the first engine is operated and its output is When the required torque increases, the second engine is added and operated to synthesize the outputs of both engines and input them to the transmission. Under the optimum conditions, the required torque is taken out to improve the fuel efficiency of the vehicle.
  • Patent Document 2 the power of an engine having two pistons with different strokes (substantially regarded as two engines) is input to a transmission in parallel via a one-way clutch, and an output shaft It is intended to communicate to.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a vehicle drive system and a vehicle drive system control method capable of improving fuel efficiency with higher efficiency.
  • a first internal combustion engine section for example, a first engine ENG1 in an embodiment described later
  • a second internal combustion engine section for example, a second engine ENG2 in an embodiment described later
  • a first speed change mechanism for example, a first transmission TM1 in an embodiment described later
  • a second speed change and output each rotational power generated by the first internal combustion engine part and the second internal combustion engine part, respectively.
  • a speed change mechanism for example, a second transmission TM2 in an embodiment described later
  • An input member for example, an input member 122 in an embodiment described later
  • an output member for example, an output member 121 in an embodiment described later
  • an engaging member for example, a roller 123 in an embodiment described later
  • a first one-way clutch for example, a first one-way clutch OWC1 in an embodiment described later
  • a second that transmit rotational power to the output member A one-way clutch (e.g., a second one-way clutch OWC2 in the embodiment to be described later)
  • Rotating power transmitted to the output members of the one-way clutches is connected to both output members of the first one-way clutch and the second one-way clutch in common.
  • a driven member to be rotated for example, a driven member 11 to be rotated in an embodiment described later
  • Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second via the first transmission mechanism and the second transmission mechanism.
  • An automobile drive system (for example, in an embodiment described later) that inputs the rotational power to the driven member through the first one-way clutch and the second one-way clutch.
  • a drive system 1) comprising: Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine section is input to the rotated drive member via the first one-way clutch.
  • Control means for changing the rotational speed of the second internal combustion engine section and / or the gear ratio of the second transmission mechanism so that the number exceeds the rotational speed of the output member (for example, control means in the embodiments described later) 5).
  • the invention according to claim 2 is the structure of claim 1, Both the first transmission mechanism and the second transmission mechanism are configured by continuously variable transmission mechanisms (for example, continuously variable transmission mechanisms BD1 and BD2 in embodiments described later) that can change the transmission gear ratio steplessly. It is characterized by.
  • the invention according to claim 3 is the configuration of claim 1 or 2,
  • the control means starts the second internal combustion engine section, it transmits the gear ratio of the second transmission mechanism and the power from the second internal combustion engine section to the second one-way clutch. It is possible to set the rotation speed of the input member of the second one-way clutch to a finite value that is lower than the rotation speed of the output member.
  • the invention according to claim 4 is the configuration of claim 2,
  • the continuously variable transmission mechanism is configured as an infinite and continuously variable transmission mechanism capable of setting the transmission ratio to infinity,
  • the control means starts the second internal combustion engine section, it sets the transmission ratio of the infinite / continuously variable transmission mechanism provided as the second transmission mechanism to infinity, and the second internal combustion engine After the engine unit is started, the rotational speed input to the second one-way clutch is controlled by changing the transmission ratio of the infinite / continuously variable transmission mechanism to a finite value.
  • the invention according to claim 5 is the structure of claim 4,
  • the continuously variable transmission mechanism is An input shaft (for example, an input shaft 101 in an embodiment described later) that rotates around an input center axis (for example, an input center axis O1 in an embodiment described later) by receiving rotational power;
  • the input shafts are provided at equal intervals in the circumferential direction, each of which can change the amount of eccentricity with respect to the input center axis (for example, the amount of eccentricity r1 in an embodiment described later), and the input while maintaining the amount of eccentricity.
  • a plurality of first fulcrums (for example, a first fulcrum O3 in an embodiment described later) rotating around the central axis along with the input shaft;
  • a plurality of eccentric disks (for example, the eccentric disk 104 in the embodiment described later) having the first fulcrum at the respective centers and rotating around the input center axis;
  • An output member (for example, an output member 121 in an embodiment to be described later) that rotates around an output center axis (for example, an output center axis O2 in an embodiment to be described later) separated from the input center axis, and power in the rotational direction from the outside
  • an engaging member for example, an input member 122 in the embodiment described later
  • an engaging member which locks or unlocks the input member and the output member.
  • the rotational power input to the input member is A one-way clutch that transmits to the output member, thereby converting the swinging motion of the input member into the rotational motion of the output member (e.g., implementation described below)
  • the one-way clutch 120) in the state A second fulcrum (for example, a second fulcrum O4 in an embodiment described later) provided at a position separated from the output center axis on the input member;
  • One end (for example, a ring portion 131 in an embodiment described later) is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end (for example, the other end portion 132 in an embodiment described later).
  • a plurality of connecting members (for example, connecting members 130 in the embodiments described later) that are transmitted as a swinging motion of the input member; By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed.
  • a gear ratio variable mechanism (for example, a gear ratio in an embodiment described later) that changes a gear ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member.
  • Variable ratio mechanism 112 is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
  • Output shafts of the internal combustion engine section (for example, output shafts S1 and S2 in the embodiments described later) are connected to the input shaft of the continuously variable transmission mechanism.
  • the one-way clutch which is a component of the continuously variable transmission mechanism, includes the first one-way clutch and the second one provided between the first transmission mechanism, the second transmission mechanism, and the driven member. It is also characterized by serving as a one-way clutch.
  • the invention according to claim 6 A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power; A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part; An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
  • a rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel; Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second through the first transmission mechanism and the second transmission mechanism.
  • a driving system for an automobile wherein the rotational power is input to the rotated drive member via the first one-way clutch and the second one-way clutch, Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine is input to the driven member through the first one-way clutch.
  • the number of revolutions of the second internal combustion engine section and / or the speed ratio of the second transmission mechanism is changed so that the number exceeds the number of revolutions of the output member.
  • the speed change mechanism since the speed change mechanism is individually provided for each of the first and second internal combustion engine parts, the rotational speed of the internal combustion engine part and the speed ratio of the speed change mechanism are determined.
  • the output rotation speed from the speed change mechanism (the input rotation speed of the input member of the one-way clutch) can be controlled by the combination of settings. Therefore, the number of revolutions of each internal combustion engine part can be controlled independently according to the setting of the speed ratio of the speed change mechanism, and each internal combustion engine part can be operated at an efficient operating point. Can contribute to improvement.
  • the two sets of power mechanisms are connected to the same driven drive member via a one-way clutch, so Select and switch the power mechanism used as a power source, or combine the driving force from the two power mechanisms by simply controlling the input rotation speed (rotation speed output from the power mechanism) for each one-way clutch. can do.
  • the switching operation is performed by changing the input rotational speed of the second one-way clutch. Only by controlling the rotation speed of the second internal combustion engine part and / or the gear ratio of the second transmission mechanism so that (the output rotation speed of each power mechanism) exceeds the rotation speed of the output member, without a shock, This can be easily performed without performing a special clutch operation.
  • the continuously variable transmission mechanism capable of stepless transmission is used as the first and second transmission mechanisms, the operating state is not changed without changing the rotational speed of the internal combustion engine section.
  • the power transmission from each power mechanism to the driven member can be smoothly turned ON / OFF (the one-way clutch is locked)
  • “ON / OFF” of the power transmission path depending on whether the power transmission path is set or not can be controlled. That is, it is possible to smoothly switch from running by the power of the first internal combustion engine section to running by the power of the second internal combustion engine section by simply changing the speed ratio of the transmission mechanism steplessly.
  • the rotational speed of the internal combustion engine section is set to the shift speed. It must be adjusted accordingly.
  • the output rotational speed of the power mechanism can be changed smoothly by simply adjusting the speed ratio of the transmission mechanism steplessly without changing the rotational speed of the internal combustion engine section.
  • the drive source internal combustion engine part
  • the drive source can be smoothly switched by ON / OFF of power transmission between the power mechanism and the driven member through the action of the one-way clutch. Therefore, the operation of the internal combustion engine section can be maintained in an operating state with a good BSFC (net fuel consumption rate: Brake Specific Fuel Consumption).
  • the second speed change mechanism connected to the second internal combustion engine portion is set to an appropriate speed change ratio (a slightly higher speed ratio than the target speed change ratio in advance).
  • the target gear ratio second one-way It is possible to shorten the time until the rotational speed of the input member of the clutch is set to a gear ratio in which the rotational speed of the output member exceeds the rotational speed of the output member. Therefore, the response to the request can be improved.
  • the inertia mass part on the downstream side of the second speed change mechanism is set to the second speed change mechanism. It can be separated from the internal combustion engine part. Therefore, the resistance due to the inertial mass when starting the second internal combustion engine can be reduced, and the starting energy can be reduced. Further, when starting the second internal combustion engine portion when switching the drive source from the first internal combustion engine portion to the second internal combustion engine portion, it is possible to prevent power from being transmitted from the second transmission mechanism to the downstream side.
  • the rotational speed input to the second one-way clutch is controlled by changing the speed ratio of the second transmission mechanism to a finite value, so that the input rotational speed Is increased until the rotational speed of the output member is exceeded, so that the power of the second internal combustion engine can be transmitted to the driven member.
  • the rotational motion of the input shaft is converted into the eccentric rotational motion of the eccentric disc of variable eccentricity, and the eccentric rotational motion of the eccentric disc is swung to the input member of the one-way clutch via the connecting member.
  • the gear ratio can be changed simply by changing the amount of eccentricity. Can be infinite. Therefore, by setting the transmission ratio to infinity, the downstream inertial mass portion can be substantially separated from the internal combustion engine portion when the internal combustion engine portion is started. For this reason, the inertial mass portion on the downstream side (output side) does not become a resistance at the time of starting the internal combustion engine portion, and the internal combustion engine portion can be started smoothly.
  • the internal combustion engine part can be substantially separated from the inertial mass part on the downstream side when the main motor generator is connected to the driven member to be rotated and hybridized. It can be said that it is particularly effective. That is, for example, the first internal combustion engine unit is started from EV traveling using only the driving force of the main motor generator, and the sub motor generator provided separately is driven by the driving force of the first internal combustion engine unit. When the electric power generated by the sub motor generator is supplied to the main motor generator to shift to the series traveling that travels with the driving force of the main motor generator, the first internal combustion engine section needs to be started in the EV traveling state.
  • the transition from EV traveling to series traveling can be performed smoothly and without a shock.
  • the rotational resistance during series running can be reduced, reducing energy loss during series running and improving fuel efficiency. Can contribute.
  • FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG. 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”.
  • FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • FIG. 5B is a diagram showing a state in which the swing angle ⁇ 2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle ⁇ 2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”.
  • FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. .
  • FIG. 1 is a skeleton diagram of an automobile drive system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a specific configuration of an infinite and continuously variable transmission mechanism that is a main part of the drive system. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
  • the vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2.
  • First and second transmissions (transmission mechanisms) TM1 and TM2 provided on the transmission, first and second one-way clutches OWC1 and OWC2 provided on the output portions of the transmissions TM1 and TM2, and these one-way clutches
  • TM1 and TM2 provided on the transmission
  • first and second one-way clutches OWC1 and OWC2 provided on the output portions of the transmissions TM1 and TM2, and these one-way clutches
  • a rotated drive member 11 that receives the output rotation transmitted through OWC1 and OWC2, a main motor generator MG1 connected to the rotated drive member 11, and a sub connected to the output shaft S1 of the first engine ENG1.
  • Motor generator MG2 and main and / or sub motor generators MG1 and MG2 In a battery (power storage unit
  • Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges
  • the first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other. Are connected to the driven member 11 via the clutch mechanisms CL1 and CL2.
  • the clutch mechanisms CL1 and CL2 are provided to control transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated.
  • the driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2.
  • a differential case (rotation drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown).
  • the left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different. Dynamic rotation.
  • the first and second engines ENG1 and ENG2 use different engines with high efficiency operation points.
  • the first engine ENG1 is an engine with a small displacement
  • the second engine ENG2 The engine has a larger displacement than the first engine ENG1.
  • the displacement of the first engine ENG1 is 500 cc
  • the displacement of the second engine ENG2 is 1000 cc
  • the total displacement is 1500 cc.
  • the combination of the displacements is arbitrary.
  • the main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes.
  • the main motor generator MG1 functions as a motor
  • a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated.
  • the main motor generator MG1 functions as a generator
  • power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy.
  • a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
  • the sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG1 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
  • the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way
  • the rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
  • the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used.
  • a synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided.
  • the synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2.
  • a second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
  • the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
  • the first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration.
  • I can be changed steplessly, and the maximum value of the gear ratio can be set to infinity ( ⁇ ), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft.
  • 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
  • the plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3.
  • the first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101.
  • Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
  • the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101.
  • the inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance.
  • the outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes.
  • the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
  • the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108.
  • a pinion 110 is rotatably accommodated inside the two circular holes 109.
  • the teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
  • the pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other.
  • the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101.
  • a reduction ratio is applied to the rotation difference.
  • a speed reduction mechanism for example, a planetary gear
  • the relative angle between the input shaft 101 and the pinion 110 changes by the amount.
  • the internal gear 107 with which the teeth of the pinion 110 are engaged that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
  • the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match.
  • the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
  • the one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction.
  • the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
  • the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction.
  • the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric.
  • the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction.
  • the roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
  • a protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124.
  • the pin 125 is arrange
  • the connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120.
  • the eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle ⁇ 2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed.
  • the swing angle ⁇ 2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed.
  • the speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
  • the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the one-way clutch 120 which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
  • FIGS. 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated.
  • the amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
  • FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism
  • FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2).
  • the rotational angle ( ⁇ ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”.
  • FIG. 8 is a diagram showing the relationship of the angular velocity ⁇ 2 of the input member 122.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130.
  • the input member 122 of the one-way clutch 120 swings one reciprocating motion.
  • the swing cycle of the input member 122 of the one-way clutch 120 is always constant.
  • the angular velocity ⁇ 2 of the input member 122 is determined by the rotational angular velocity ⁇ 1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
  • One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
  • transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. 3) is the positive direction of the output member 121. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
  • the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state)
  • This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
  • the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2.
  • Various driving patterns are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements.
  • typical control contents will be described.
  • the control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2.
  • EV travel, series travel, and engine travel are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
  • the series traveling is executed between EV traveling and engine traveling when the traveling mode is switched from EV traveling to engine traveling.
  • the rotational speed input to the input member 122 of the first one-way clutch OWC1 is controlled by controlling the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1. Is controlled to be lower than the rotational speed of the output member 121.
  • the rotation speed of the first engine ENG1 and / or the transmission ratio of the first transmission TM1 is controlled to be input to the input member 122 of the first one-way clutch OWC1.
  • the rotation speed is changed to a value that exceeds the rotation speed of the output member 121 to shift from series running to engine running.
  • the gear ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed (
  • the first engine ENG1 is started using the driving force of the sub motor generator MG2 mainly in a state where the gear ratio is set to infinity. Then, after the traveling mode is switched from the series traveling to the engine traveling, the power generation by the sub motor generator MG2 is stopped.
  • the sub motor generator MG2 Continue charging (charging operation of the battery 8 by power generation).
  • the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2.
  • Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ⁇ ⁇ ) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121.
  • the speed ratio of the second transmission TM2 is set to infinity ( ⁇ ), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed.
  • the speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
  • the second engine ENG2 when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1,
  • the synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission.
  • the engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
  • the second engine ENG2 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1.
  • the rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
  • both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted.
  • Synchronous control for controlling the transmission ratio of TM2 is performed.
  • both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at a high-efficiency operation point and the other engine (second engine).
  • the output request is satisfied by raising the output of ENG2).
  • the first and second engines ENG1 so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121
  • the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region.
  • the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
  • FIGS. 9 to 23 are enlarged explanatory views showing the operation patterns A to O
  • FIGS. 24 to 33 are explanatory views of a control operation executed in accordance with each driving state or a control operation at the time of traveling mode switching.
  • the symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 24 to 33 correspond to the symbols of the operation patterns A to O shown in FIGS. 9 to 23.
  • movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
  • EV traveling is performed with the driving force of the main motor generator MG1.
  • the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential.
  • the vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R.
  • the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
  • the sub motor generator MG2 In the operation pattern B shown in FIG. 10, the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is supplied to the main motor generator MG1 and the battery 8 to perform series travel. ing.
  • the first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
  • parallel running is performed using the driving power of both the main motor generator MG1 and the first engine ENG1.
  • the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated.
  • This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling.
  • the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state.
  • the driving force of the first engine ENG1 is transmitted to the driven member 11 and the second one-way clutch OWC2 is prevented from being dragged.
  • the operation pattern D shown in FIG. 12 is a start pattern when the SOC is low while the engine is running using the driving force of the first engine ENG1.
  • the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 via the driven member 11 during deceleration.
  • the mechanical energy input from the drive wheel 2 via the rotated drive member 11 is changed to electric energy.
  • regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8.
  • the clutch mechanisms CL1 and CL2 are turned off.
  • the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1.
  • the battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
  • the first power is introduced into the driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20.
  • the engine ENG2 of No. 2 is started, and the shortage of output to the driving wheel 2 due to the increase in load at the time of starting is compensated by the driving force of the main motor generator MG1.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and supplies the generated power to the main motor generator MG1 or charges the battery 8.
  • the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state).
  • the rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2.
  • the output of the second transmission TM2 is not input to the driven member 11 to be rotated.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
  • the engine is driven by the driving force of the second engine ENG2.
  • the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2.
  • the engine is running.
  • the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established).
  • the operation pattern J shown in FIG. 18 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2.
  • the first engine ENG1 in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11).
  • the rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
  • the operation pattern K shown in FIG. 19 is, for example, an operation pattern when a deceleration request is generated during medium-high speed traveling.
  • the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and a regenerative braking force is applied to the drive wheel 2.
  • the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheels 2 as a braking force.
  • the operation pattern L shown in FIG. 20 is an operation pattern at the time of switching when a further increase in the required output occurs while the vehicle is running with the driving force of the second engine ENG2.
  • the sub motor generator MG2 is driven to start the first engine ENG1.
  • the gear ratio of the first transmission TM1 is set to infinity.
  • the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and become.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state.
  • the operation pattern O shown in FIG. 23 is an operation pattern when the vehicle is stopped.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is charged in the battery 8. is doing.
  • the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity ( ⁇ ) or by disengaging the clutches CL1 and CL2.
  • Each driving situation is shown in a table format, and for convenience of explanation, a serial number corresponding to the number in parentheses below is attached to the lower left of each frame in the table.
  • the symbols A to O at the upper right of each frame correspond to the enlarged views of FIGS. 9 to 23 and should be referred to as necessary.
  • the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1.
  • the battery 8 may be charged using the sub motor generator MG2 as a generator.
  • the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
  • the parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
  • the operation proceeds to the operation pattern F, and the rotation speed of the first engine ENG1 and / or the first transmission TM1 is set so that the input rotation speed of the first one-way clutch OWC1 exceeds the output rotation speed.
  • the transmission ratio is controlled, and the power of the first engine ENG1 is transmitted to the driven member 11 for rotation.
  • the gear ratio is moved to the OD (overdrive) side, and the engine running by the first engine ENG1 is performed from the EV running by the main motor generator MG1 through the series running. Make a smooth transition to At this time, the clutch mechanism CL1 controls connection at an appropriate timing so as not to cause a delay.
  • the main motor generator MG1 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
  • SOC remaining battery capacity
  • the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started.
  • the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated.
  • the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock.
  • the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible.
  • the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
  • the synchro mechanism 20 When returning from (25) to (23), the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked. (26) At the time of deceleration, the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2.
  • the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start. (29)
  • the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11).
  • the rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
  • the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state.
  • a strong braking force is applied by the regenerative operation of the main motor generator MG1.
  • the battery 8 is charged with the regenerative power generated by the main motor generator MG1.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest (or when the direction of rotation opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 34 (b)
  • the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other)
  • the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked.
  • the drive system 1 can be used as follows. As described above, when the vehicle moves backward, the first and second transmissions TM ⁇ b> 1 and TM ⁇ b> 2 are locked due to the output member 121 attempting to reversely rotate with respect to the input member 122. Therefore, this lock function is used as a hill hold function (sliding prohibition) when starting uphill. That is, when a situation in which the vehicle is going to start on an uphill is detected by some means such as a sensor, at least one of the clutch mechanisms CL1 and CL2 is held in the connected state. By doing so, one of the transmissions TM1 and TM2 is in a locked state, so that the vehicle can be prevented from sliding down (a hill hold function can be realized). Therefore, it is not necessary to perform other hill hold control.
  • a hill hold function sliding prohibition
  • the vehicle speed is proportional to the rotational speed of the main motor generator MG1. Further, the rotation speeds of the first engine ENG1 and the sub motor generator MG2 are the same.
  • V2km / h Driving pattern in low speed range (0 ⁇ V2km / h)
  • the driving situation when traveling in the low speed range (0 to V2 km / h) will be described with reference to FIG.
  • the value of V2 is, for example, 50 km / h.
  • EV driving is performed by the main motor generator MG1. From the vehicle speed of zero to a predetermined speed ( ⁇ V2), only the main motor generator MG1 performs EV traveling. At this time, the first engine ENG1 and the sub motor generator MG2 are stopped. The ratio of the first infinite / continuously variable transmission mechanism BD1 constituting the first transmission TM1 is set to infinity.
  • the EV traveling is shifted to the series traveling.
  • the first motor ENG1 is started by the sub motor generator MG2, and the first engine ENG1 is operated at a rotational speed that enters the high efficiency operation region.
  • the ratio of the first infinite / continuously variable transmission mechanism BD1 is maintained at infinity.
  • the first engine ENG1 When the vehicle speed reaches V2 (the highest value in the low speed range), the first engine ENG1 is operated with high efficiency, and the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to a value corresponding thereto, Cruise driving with engine ENG1 (stable driving with less load) is performed.
  • V1-V3km / h driving pattern Medium speed range (V1-V3km / h) driving pattern
  • V1 ⁇ V2 ⁇ V3 the driving situation when traveling in the medium speed range (V1 to V3 km / h) will be described with reference to FIG. V1 ⁇ V2 ⁇ V3, the value of V1 is, for example, 20 km / h, and the value of V3 is, for example, 110 km / h.
  • the first stage increases the rotational speed of the main motor generator MG1, then increases the engine rotational speed of the first engine ENG1, and the first infinite and continuously variable transmission mechanism. Change the ratio of BD1. Then, the driving force of the first engine ENG1 is transmitted to the driven member 11 to switch from the series traveling by the first engine ENG1 and the main motor generator MG1 to the engine traveling by the first engine ENG1. At this stage, the main motor generator MG1 is stopped.
  • the first engine ENG1 When the vehicle speed is stabilized, the first engine ENG1 is operated with high efficiency, the ratio of the first infinite and continuously variable transmission mechanism BD1 is maintained at a value corresponding thereto, and the cruise traveling by the first engine ENG1 is performed.
  • the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity, and the driving force of the first engine ENG1 is transmitted to the driven member 11 to be rotated.
  • the engine is switched to the engine running only by the driving force of the second engine ENG2.
  • the second engine ENG2 is operated with high efficiency, the ratio of the second infinitely-continuously variable transmission mechanism BD2 is set to a value corresponding thereto, and cruise traveling by the second engine ENG2 is performed.
  • the sub motor generator MG2 is driven by the first engine ENG1, and the battery 8 is charged with the generated power.
  • the ratio of the second infinite / continuously variable transmission mechanism BD2 is set to infinity, the main motor generator MG1 is regeneratively operated, and the second engine ENG2 Use the engine brake.
  • the first engine ENG1 is started and the number of revolutions is increased and the ratio of the first infinite / continuously variable transmission mechanism BD1 is changed to rotate the driving force of the first engine ENG1. This is transmitted to the drive member 11. And it switches to engine driving
  • V2 ⁇ V4km / h Driving pattern in high speed range (V2 ⁇ V4km / h) >> The driving situation when traveling in the high speed range (V2 to V4 km / h) will be described with reference to FIG. V2 ⁇ V3 ⁇ V4, and the value of V4 is, for example, 150 km / h.
  • the engine speed of the first engine ENG1 is increased and the first infinite and continuously variable transmission mechanism BD1 is set.
  • the second infinite and continuously variable transmission mechanism BD2 is set to the infinite ratio.
  • the engine ENG2 is started, the rotational speed of the second engine ENG2 is increased, and the ratio of the second infinite and continuously variable transmission mechanism BD2 is gradually increased from the reduced state to increase the driving force of the second engine ENG2. This is transmitted to the driven member 11 to be rotated.
  • the engine running using only the driving force of the first engine ENG1 is switched to the engine running where the driving forces of both the first engine ENG1 and the second engine ENG2 are synchronized and combined and transmitted to the driven member 11 to be rotated. .
  • the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity, so that the driving force of the first engine ENG1 is not transmitted to the rotated drive member 11, and the second engine ENG2 Switch to engine running with only the driving force. Then, the second engine ENG2 is operated with high efficiency, the ratio of the second infinitely-continuously variable transmission mechanism BD2 is set to a value corresponding thereto, and cruise traveling by the second engine ENG2 is performed. In addition, during the first period of engine travel using only the second engine ENG2, the sub motor generator MG2 is driven by the first engine ENG1, and the battery 8 is charged with the generated power. At this time, the first engine ENG1 operates in the high-efficiency operation region (series), and then the first engine ENG1 stops.
  • the rotation speed of the second engine ENG2 is increased and the ratio of the second infinite / continuously variable transmission mechanism BD2 is changed.
  • the first engine ENG1 is started, the rotational speed thereof is increased and the ratio of the first infinite and continuously variable transmission mechanism BD1 is changed, and the driving force of the first engine ENG1 is
  • the driving force of the second engine ENG2 is transmitted to the rotated drive member 11 together with the driving force of the second engine ENG2, and the driving force of both the second engine ENG2 and the first engine ENG1 is synchronized from the engine running only by the driving force of the second engine ENG2. Switch to engine running that is combined and transmitted to the driven member 11.
  • the first engine ENG1 When the vehicle speed reaches V4 (the maximum value in the high speed range), the first engine ENG1 is preferentially operated with high efficiency, and the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to a value corresponding thereto,
  • the second engine ENG2 and the first infinitely variable transmission mechanism BD1 are set to values suitable for cruise travel, and cruise travel (stable travel with less load) is performed by the first and second engines ENG1 and ENG2. )I do.
  • the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity
  • the first engine ENG1 is stopped, and the main motor generator MG1 is set. Regenerative operation.
  • the engine brake by the second engine ENG2 is applied.
  • the rotational speed of the second engine ENG2 and the ratio of the second infinite / continuously variable transmission mechanism BD2 are changed, and the driving force of the second engine ENG2 is transmitted to the driven member 11 for rotation.
  • the engine is switched to engine driving using only the driving force of the engine ENG2.
  • FIG. 38 is an explanatory diagram of the engagement setting ranges of the first and second engines ENG1, ENG2.
  • the horizontal axis represents the engine speed
  • the vertical axis represents the ratio of the transmission mechanism.
  • the first engine ENG1 is started in a state where the ratio is infinite ( ⁇ )
  • the engine speed increases to a predetermined value, and in this state, the ratio is decreased from infinity ( ⁇ ), or the engine
  • the rotational speed is increased, the vehicle speed line is reached, and the engine output is transmitted to the driven member 11 (engagement is established).
  • the second engine ENG2 is operated, the ratio is gradually decreased from infinity ( ⁇ ) or a slightly larger finite value than the target ratio to be engaged. Alternatively, the engine speed is increased.
  • each engine ENG1, ENG2 and the ratio of the speed change mechanism can be set as appropriate within an engagement range corresponding to the vehicle speed, and the engine can be operated with high efficiency. Accordingly, when the first engine ENG1 is operated at a high efficiency operation point and a higher required driving force is generated, the second engine ENG2 can be operated while selecting the engine speed and ratio. It is also possible to use both engines ENG1 and ENG2 at an efficient operating point.
  • the rotational speeds of the engines ENG1 and ENG2 and the transmission ratios of the transmissions TM1 and TM2 are set.
  • the output rotation speed from the transmissions TM1 and TM2 (the input rotation speed of the input member 122 of the first and second one-way clutches OWC1 and OWC2) can be controlled. Accordingly, it is possible to independently control the rotational speeds of the engines ENG1 and ENG2 according to the transmission ratio settings of the transmissions TM1 and TM2, and each engine ENG1 and ENG2 is operated at an efficient operating point. Can contribute greatly to improving fuel efficiency.
  • the two power mechanisms are respectively Since the one-way clutches OWC1 and OWC2 are connected to the same driven member 11 for rotation, the selection of the power mechanism used as the drive source or the synthesis of the driving force from the two power mechanisms can be performed for each one-way. It can be executed only by controlling the input rotation speed (rotation speed output from the power mechanism) for the clutches OWC1 and OWC2.
  • first and second transmissions TM1 and TM2 use infinitely and continuously variable transmission mechanisms BD1 and BD2, respectively, capable of stepless shifting, the rotational speeds of the first and second engines ENG1 and ENG2 Without changing, simply changing the gear ratio of the infinite and continuously variable transmission mechanisms BD1 and BD2 steplessly while maintaining the operating state at the high-efficiency operating point, and smoothly moving from each power mechanism to the rotated drive member 11 Power transmission ON / OFF can be controlled.
  • a drive source engine ENG1 by ON / OFF of power transmission between the power mechanism and the driven member 11 via the action of the one-way clutches OWC1 and OWC2 , ENG2
  • BSFC Net fuel consumption rate: Brake Specific Fuel Consumption
  • the transmission ratio can be made infinite simply by changing the eccentric amount r1 of the eccentric disk 104. Therefore, by setting the transmission ratio to infinity, the downstream inertial mass portion can be substantially separated from the engines ENG1 and ENG2 when the engines ENG1 and ENG2 are started. Therefore, the inertial mass portion on the downstream side (output side) does not serve as a starting resistance for the engines ENG1 and ENG2, and the engines ENG1 and ENG2 can be started smoothly.
  • the number of gears used can be reduced, so that energy loss due to gear meshing friction can be reduced.
  • the main motor generator MG1 Since the main motor generator MG1 is connected to the rotated drive member 11 as a power source different from the engines ENG1 and ENG2, EV traveling using only the driving force of the main motor generator MG1 is possible. During this EV travel, in the first and second one-way clutches OWC1 and OWC2, the positive rotational speed of the output member 121 exceeds the positive rotational speed of the input member 122. (The locked state), the power mechanism is separated from the driven member 11 to be rotated, and the rotational load can be reduced.
  • the first one-way clutch OWC1 attached to the first engine ENG1 to use the driving force. Is controlled so as to exceed the rotational speed of the driven member 11 driven by the main motor generator MG1.
  • the traveling mode can be easily switched from EV traveling to engine traveling.
  • the driving force of the first engine ENG1 Parallel running using both driving forces of the main motor generator MG1 is also possible.
  • the second engine ENG2 can be started by using the driving force of the main motor generator MG1, there is an advantage that a starter device for the second engine ENG2 can be omitted separately.
  • the main motor generator MG1 to function as a generator when the vehicle is decelerated, the regenerative braking force can be applied to the drive wheels 2 and the regenerative power can be charged to the battery 8, so that the energy efficiency can be improved. You can also improve.
  • the sub motor generator MG2 Since the sub motor generator MG2 is connected to the output shaft S1 of the first engine ENG1, the sub motor generator MG2 can be used as a starter of the first engine ENG1, and therefore a starter device for the first engine ENG1 is separately provided. There is no need. Further, the series motor traveling can be performed by using the sub motor generator MG2 as a generator that generates electric power with the driving force of the first engine ENG1, and supplying the generated electric power to the main motor generator MG1.
  • main motor generator MG1 and the sub motor generator MG2 are provided as power sources different from the engines ENG1, ENG2, in addition to the engine running using only the driving force of the engines ENG1, ENG2, EV traveling using only the driving force of the main motor generator MG1, parallel traveling using the driving force of both the engines ENG1, ENG2 and the main motor generator MG1, and sub motor generator MG2 utilizing the driving force of the first engine ENG1 It is possible to select and execute various travel modes such as a series travel that travels by the driving force of the main motor generator MG1 by supplying the electric power generated by the motor to the main motor generator MG1, and the optimum travel mode according to the conditions By selecting It is possible to contribute to the cost improvement.
  • the transmission TM1, TM2 uses the infinite and continuously variable transmission mechanisms BD1, BD2, so that, for example, the driving force of the main motor generator MG1 can be used smoothly without a shock.
  • the traveling mode can be switched from the EV traveling or the series traveling to the engine traveling using the driving force of the first engine ENG1.
  • the rotational speed of the first engine ENG1 and / or the first rotational speed so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed.
  • a stage in which a series travel is realized by adjusting the transmission ratio of the transmission TM1 (that is, by not directly using the power of the first engine ENG1 as a travel driving force), and then a transition from the series travel to the engine travel
  • the first engine ENG1 and / or the gear ratio of the first transmission TM1 are controlled so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed, and the first engine TMG1 is controlled.
  • the engine Since the driving force of ENG1 is input to the driven member 11 to be rotated, the engine starts from the start of the first engine ENG1. Effective use of the engine energy until the transition to the running can be achieved. That is, since the engine energy from when the engine is started to when the driving force is transmitted to the driven member 11 is run in series, it is supplied to the main motor generator MG1 and the battery 8 as electric power for effective use. The generated energy can be used up without waste, contributing to improved fuel efficiency.
  • the first engine ENG1 when shifting from EV traveling using only the driving force of the main motor generator MG1 to series traveling, the first engine ENG1 needs to be started in the EV traveling state.
  • the first one-way clutch OWC1 By adopting the first one-way clutch OWC1 and further setting the transmission ratio of the first transmission TM1 to infinity, it can be reduced, so the transition from EV running to series running can be performed smoothly and without shock. Can do.
  • the gear ratio of the first transmission TM1 to infinity the first engine ENG1 can be substantially separated from the inertial mass portion on the downstream side thereof, so that the series traveling is executed. Since rotation resistance can be reduced, energy loss during series running can be reduced as much as possible, contributing to improved fuel efficiency.
  • the power of the first engine ENG1 is driven to rotate without adjusting the input rotation speed of the first one-way clutch OWC1 and performing any special control. Since the first engine ENG1 can be made to function as a power source dedicated to power generation by separating from the member 11, there is no need to control the engine speed according to the running load, and the engine ENG1 is stable at a high efficiency point. Driving and can greatly contribute to improving fuel efficiency.
  • the power generation by the sub motor generator MG2 is stopped, so that the burden on the first engine ENG1 can be reduced. Further, even when shifting from the series running to the engine running, when the remaining battery capacity is low, the battery 8 is appropriately charged by continuing to generate power by the sub motor generator MG2. While maintaining, the burden on the first engine ENG1 can be reduced.
  • the clutch mechanisms CL1 and CL2 are provided between the output member 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11, the clutch mechanisms CL1 and CL2 are turned off.
  • the power transmission path upstream from the clutch mechanisms CL1, CL2 (from the engines ENG1, ENG2 to the one-way clutches OWC1, OWC2) can be disconnected from the power transmission path downstream (from the driven member 11 to the drive wheel 2). it can. Accordingly, when the driven member 11 is being driven by one of the first and second engines ENG1, ENG2 via one of the first and second one-way clutches OWC1, OWC2, the other one-way clutch OWC1.
  • first and second transmissions TM1 and TM2 including the infinite and continuously variable transmission mechanisms BD1 and BD2 described above have the input member 122 and the output member 121 of the one-way clutches OWC1 and OWC2 in the forward direction (a normal vehicle moves forward).
  • the rotational drive member 11 is locked to prevent reverse rotation of the driven member 11.
  • the upstream side of the clutch mechanisms CL1 and CL2 can be disconnected from the driven member 11 and thereby the locking action (reverse drive) by the transmissions TM1 and TM2 is achieved.
  • Also referred to as a blocking action can be avoided. Accordingly, the driven member 11 can be rotated backward by the reverse rotation operation of the main motor generator MG1, and the vehicle can be moved backward.
  • the hill hold function (function that does not slide down on a hill) is achieved by holding the clutch mechanisms CL1 and CL2 in a connected state, thereby utilizing the reverse blocking action by locking the transmissions TM1 and TM2. Therefore, no other hill hold control is required.
  • the high-efficiency operating points of the engines ENG1 and ENG2 are made different from each other by making the displacements of the first and second engines ENG1 and ENG2 different. By selecting the engines ENG1 and ENG2 as drive sources, overall energy efficiency can be improved.
  • the input rotational speeds of the two one-way clutches OWC1 and OWC2 are set, it is possible to smoothly and easily switch from running with one engine to running with the other engine.
  • the driving force of the first engine ENG1 is applied to the rotational drive member 11 via the first one-way clutch OWC1.
  • the engine speed of the second engine ENG2 is set so that the engine speed is inputted to the input member 122 of the second one-way clutch OWC2 and exceeds the engine speed of the output member 121 while the engine is running.
  • the drive source for extracting the power to the driven member 11 can be easily switched from the first engine ENG1 to the second engine ENG2.
  • the switching operation only needs to control the rotation speed input to the first and second one-way clutches OWC1 and OWC2 via the infinite and continuously variable transmission mechanisms BD1 and BD2, and can be performed smoothly without a shock. Can do.
  • the inertial mass portion on the downstream side of the second transmission TM2 is set to the second mass. Can be separated from the engine ENG2. Therefore, the resistance due to the inertial mass when starting the second engine ENG2 can be reduced, and the starting energy can be reduced. Further, when starting the second engine ENG2 when switching the drive source from the first engine ENG1 to the second engine ENG2, it is possible to prevent power from being transmitted from the second transmission TM2 to the downstream side. Even when the rotational speed of the driven member 11 is lowered due to some cause (for example, sudden braking) during the start, the start shock can be reduced.
  • the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value.
  • the speed of the second engine ENG2 can be reliably transmitted to the rotated drive member 11.
  • Another control operation can be adopted as a control method at the time of starting the second engine ENG2. That is, when starting the second engine ENG2, the input member 122 of the second one-way clutch OWC2 is set in advance in the second transmission TM2 at an appropriate gear ratio (a gear ratio slightly larger than the target gear ratio).
  • the second engine ENG2 is started in a state in which the rotation speed is set to a finite value that is lower than the rotation speed of the output member 121.
  • the time from the start until the target gear ratio is set to the target gear ratio (the gear ratio at which the rotational speed of the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121) is set. Since it can be shortened, the response to the request can be improved.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 are input so that the rotational speeds input to both input members 122 exceed the rotational speed of the output member 121.
  • Large driving force that easily combines the outputs of the two engines ENG1 and ENG2 by controlling the rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2. Can be input to the driven member 11 and the engine can be driven using the driving forces of both the first engine ENG1 and the second engine ENG2.
  • the transmissions TM1 and TM2 use the infinite and continuously variable transmission mechanisms BD1 and BD2, so that the two engines ENG1, Switching to traveling using the combined driving force of ENG2 can be performed.
  • the transmission ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed. That is, since the first engine ENG1 is started without transmitting the driving force of the first engine ENG1 to the driven member 11 on the downstream side of the first transmission TM1, the engine start shock is applied to the drive wheels 2. Can be prevented from being transmitted. Moreover, the load at the time of engine start can also be reduced, and a smooth start is possible.
  • the first engine ENG1 is started by the sub motor generator MG2, it is not necessary to separately provide a starter device dedicated to the first engine ENG1.
  • the synchro mechanism 20 Since the driven member 11 and the output shaft S2 of the second engine ENG2 are connected via the synchro mechanism 20, the synchro mechanism 20 is connected in a state where power is introduced to the rotary drive member 11. Accordingly, the output shaft S2 of the second engine ENG2 can be started and rotated by the power of the driven member 11 to be rotated. Therefore, it is not necessary to provide a starter device dedicated to the second engine ENG2. Note that, at the time of starting, it is only necessary that the rotational drive member 11 has the power necessary for starting the second engine ENG2. Mainly, power from the first engine ENG1, which is a drive source, is often input to the rotated drive member 11, so that power can be used. Further, as in the so-called “push” operation, it is possible to use the power generated by coasting introduced from the driving wheel 2 side to the driven member 11 to be rotated.
  • the start of the second engine ENG2 is basically performed when power is supplied to the driven member 11 by the first engine ENG1, but the driven member 11 is rotated by the main motor generator MG1. Even when power is being supplied to the second engine ENG2, cranking of the second engine ENG2 (also referred to as motoring) is performed by the power transmitted from the main motor generator MG1 to the driven member 11 by setting the synchro mechanism 20 to the connected state. Give the engine a starter rotation). Further, when the second engine ENG2 is started in a state where power is supplied to the driven member 11 by the first engine ENG1, the driven power is divided by the cranking of the second engine ENG2.
  • the gear ratio is set so that the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121 during cranking of the second engine ENG2.
  • the inertial mass inside and downstream of the transmission mechanism BD2 is separated from the output shaft S2 of the second engine ENG2 as much as possible. Therefore, the starting resistance of the second engine ENG2 can be reduced, and the starting becomes easier.
  • the driven member 11 When the driven member 11 is driven by synthesizing the driving forces of the two engines ENG1 and ENG2 during high-speed driving, etc., at least one of the first engines ENG1 is operated in the high-efficiency operation region. As a result, fuel consumption can be improved. That is, the first engine ENG1 and / or the first transmission TM1 is controlled in a state where the operating conditions are fixed within a certain range so that the rotation speed and / or torque of the first engine ENG1 enters the high efficiency operation region. In addition, an output request exceeding the output obtained by the fixed operating condition is dealt with by controlling the second engine ENG2 and the second transmission TM2, which can contribute to an improvement in fuel consumption. .
  • the engine with a small displacement is set to the operating condition fixed side, and if the required output is less than the predetermined value, the engine with the large displacement is set to the fixed operating condition side. In such a case, the delay with respect to the request can be reduced and the fuel consumption can be improved.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1.
  • both the first and second one-way clutches OWC1 and OWC1 are connected to the driven member 11 via CL2, as in another embodiment shown in FIG.
  • the OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
  • the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120.
  • a transmission mechanism such as CVT may be used.
  • the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
  • the case where the state of traveling with the driving force of the first engine ENG1 is switched to the state of traveling with the driving force of the second engine ENG2 is described. It is also possible to switch from the state of traveling with the driving force of the engine ENG2 to the state of traveling with the driving force of the first engine ENG1.
  • the power generated by the first engine ENG1 is input to the rotated drive member 11 via the first one-way clutch OWC1 and input to the input member 122 of the second one-way clutch OWC2.
  • the rotation speed of the second engine ENG2 and / or the speed ratio of the second transmission TM2 so that the rotation speed to be exceeded exceeds the rotation speed of the output member 121, the switching can be performed smoothly. .
  • the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions.
  • the engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
  • first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally.
  • the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
  • the present invention is based on a Japanese patent application filed on June 15, 2010 (Japanese Patent Application No. 2010-136543), the contents of which are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Transmission Devices (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Disclosed is a drive system (1) for an automobile, wherein the system is provided with first and second engines (ENG1, ENG2), first and second transmissions (TM1, TM2), first and second oneway clutches (OWC1, OWC2) respectively provided in output units of the first and second transmissions (TM1, TM2), a rotated/driven member (11) commonly linked to output members (121) of the first and second oneway clutches (OWC1, OWC2), and a control means (5). Under the conditions that the power generated by the first engine (ENG1) is input through the first oneway clutch (OWC1) to the rotated/driven member, namely, driving is performed by the first engine (ENG1), the control means switches from driving by the first engine (ENG1) to driving by the second engine (ENG2) by changing the number of rotations of the second engine (ENG2) and/or by changing a change gear ratio of a second gear shift mechanism so that the number of rotations to be input to the input member of the second oneway clutch (OWC2) is greater than the number of rotations of the output member. Thereby, a drive system for an automobile and a method for controlling a drive system for an automobile achieving high efficiency and an improved fuel efficiency can be provided.

Description

自動車用駆動システムおよび自動車用駆動システムの制御方法Vehicle drive system and method for controlling vehicle drive system
 本発明は、複数の内燃機関部を備えた自動車用駆動システムおよび自動車用駆動システムの制御方法に関するものである。 The present invention relates to an automobile drive system including a plurality of internal combustion engine sections and a method for controlling the automobile drive system.
 従来の自動車用駆動システムとして、様々なものが知られている(例えば、特許文献1~3参照。)。そのうち、特許文献1に記載されたものは、第1のエンジンと第2のエンジンの2つのエンジンを動力源として装備し、必要トルクが小さいときには、第1のエンジンだけを動作させて、その出力をトランスミッションに入力し、必要トルクが大きくなったときには、第2のエンジンを追加して動作させることにより、両方のエンジンの出力を合成してトランスミッションに入力し、それにより、負荷の状況に応じた最適な条件で、必要とするトルクを取り出して、車両の燃費を向上させるようにしたものである。 Various conventional drive systems for automobiles are known (for example, see Patent Documents 1 to 3). Among them, the one described in Patent Document 1 is equipped with two engines, a first engine and a second engine, as power sources, and when the required torque is small, only the first engine is operated and its output is When the required torque increases, the second engine is added and operated to synthesize the outputs of both engines and input them to the transmission. Under the optimum conditions, the required torque is taken out to improve the fuel efficiency of the vehicle.
 また、特許文献2に記載されたものは、ストロークの異なる2つのピストンを有するエンジン(実質的に2つのエンジンとみなせる)の動力をワンウェイ・クラッチを介して並列にトランスミッションに入力させて、出力軸に伝達するようにしたものである。 In addition, in Patent Document 2, the power of an engine having two pistons with different strokes (substantially regarded as two engines) is input to a transmission in parallel via a one-way clutch, and an output shaft It is intended to communicate to.
日本国特公昭63-35822号公報Japanese Patent Publication No. Sho 63-35822 日本国特開2003-83105号公報Japanese Unexamined Patent Publication No. 2003-83105 日本国特表2005-502543号公報Japan Special Table 2005-502543
 しかし、特許文献1および特許文献2に記載された駆動装置は、2つの独立したエンジンまたは実質的に2つのエンジンの動力を合成してからトランスミッションに入力するものであるため、要求される出力に対し、各々のエンジンの回転数等を個別に変更することまではできず、そのため、エンジンの高効率ポイントを狙えずに、燃費向上に限界があった。 However, since the drive devices described in Patent Document 1 and Patent Document 2 combine two independent engines or substantially combine the power of two engines and then input them to the transmission, On the other hand, it is impossible to individually change the rotational speed of each engine, and therefore, there is a limit in improving fuel efficiency without aiming at the high efficiency point of the engine.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、より高効率で燃費向上を図り得る自動車用駆動システムおよび自動車用駆動システムの制御方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a vehicle drive system and a vehicle drive system control method capable of improving fuel efficiency with higher efficiency.
 上記目的を達成するために、請求項1に係る発明は、
 それぞれ独立して回転動力を発生する第1の内燃機関部(例えば、後述の実施形態における第1のエンジンENG1)および第2の内燃機関部(例えば、後述の実施形態における第2のエンジンENG2)と、
 前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構(例えば、後述の実施形態における第1のトランスミッションTM1)および第2の変速機構(例えば、後述の実施形態における第2のトランスミッションTM2)と、
 前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材(例えば、後述の実施形態における入力部材122)と出力部材(例えば、後述の実施形態における出力部材121)とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチ(例えば、後述の実施形態における第1のワンウェイ・クラッチOWC1)および第2のワンウェイ・クラッチ(例えば、後述の実施形態における第2のワンウェイ・クラッチOWC2)と、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪(例えば、後述の実施形態における駆動車輪2)に伝える被回転駆動部材(例えば、後述の実施形態における被回転駆動部材11)と、
 を備え、前記第1の内燃機関部および第2の内燃機関部の発生する回転動力を、前記第1の変速機構および第2の変速機構を介して、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチに入力し、該第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチを介して、前記回転動力を前記被回転駆動部材に入力する自動車用駆動システム(例えば、後述の実施形態における駆動システム1)であって、
 前記第1のワンウェイ・クラッチを介して前記第1の内燃機関部の発生する動力が前記被回転駆動部材に入力されている状態で、前記第2のワンウェイ・クラッチの入力部材に入力される回転数が出力部材の回転数を上回るように、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比の変更を行う制御手段(例えば、後述の実施形態における制御手段5)を備えていることを特徴とする。
In order to achieve the above object, the invention according to claim 1
A first internal combustion engine section (for example, a first engine ENG1 in an embodiment described later) and a second internal combustion engine section (for example, a second engine ENG2 in an embodiment described later) that independently generate rotational power. When,
A first speed change mechanism (for example, a first transmission TM1 in an embodiment described later) and a second speed change and output each rotational power generated by the first internal combustion engine part and the second internal combustion engine part, respectively. A speed change mechanism (for example, a second transmission TM2 in an embodiment described later);
An input member (for example, an input member 122 in an embodiment described later) and an output member (for example, an output member 121 in an embodiment described later) are provided at each output portion of the first transmission mechanism and the second transmission mechanism, respectively. And an engaging member (for example, a roller 123 in an embodiment described later) that locks the input member and the output member with each other, and from the first transmission mechanism and the second transmission mechanism. When the rotational speed in the positive direction of the input member that receives each rotational power exceeds the rotational speed in the positive direction of the output member, the input member and the output member are in a locked state, and are input to the input member. A first one-way clutch (for example, a first one-way clutch OWC1 in an embodiment described later) and a second that transmit rotational power to the output member A one-way clutch (e.g., a second one-way clutch OWC2 in the embodiment to be described later),
Rotating power transmitted to the output members of the one-way clutches is connected to both output members of the first one-way clutch and the second one-way clutch in common. 2) a driven member to be rotated (for example, a driven member 11 to be rotated in an embodiment described later),
Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second via the first transmission mechanism and the second transmission mechanism. An automobile drive system (for example, in an embodiment described later) that inputs the rotational power to the driven member through the first one-way clutch and the second one-way clutch. A drive system 1) comprising:
Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine section is input to the rotated drive member via the first one-way clutch. Control means for changing the rotational speed of the second internal combustion engine section and / or the gear ratio of the second transmission mechanism so that the number exceeds the rotational speed of the output member (for example, control means in the embodiments described later) 5).
 請求項2に係る発明は、請求項1の構成において、
 前記第1の変速機構および第2の変速機構が共に、変速比を無段階に変更可能な無段変速機構(例えば、後述の実施形態における無段変速機構BD1、BD2)により構成されていることを特徴とする。
The invention according to claim 2 is the structure of claim 1,
Both the first transmission mechanism and the second transmission mechanism are configured by continuously variable transmission mechanisms (for example, continuously variable transmission mechanisms BD1 and BD2 in embodiments described later) that can change the transmission gear ratio steplessly. It is characterized by.
 請求項3に係る発明は、請求項1または2の構成において、
 前記制御手段が、前記第2の内燃機関部の始動を行う際に、前記第2の変速機構の変速比を、前記第2の内燃機関部からの動力を前記第2のワンウェイ・クラッチに伝達可能であり且つ第2のワンウェイ・クラッチの入力部材の回転速度が出力部材の回転速度を下回るような有限値に設定することを特徴とする。
The invention according to claim 3 is the configuration of claim 1 or 2,
When the control means starts the second internal combustion engine section, it transmits the gear ratio of the second transmission mechanism and the power from the second internal combustion engine section to the second one-way clutch. It is possible to set the rotation speed of the input member of the second one-way clutch to a finite value that is lower than the rotation speed of the output member.
 請求項4に係る発明は、請求項2の構成において、
 前記無段変速機構は、変速比を無限大に設定することが可能な無限・無段変速機構として構成されており、
 前記制御手段が、前記第2の内燃機関部の始動を行う際に、前記第2の変速機構として設けられた無限・無段変速機構の変速比を無限大に設定すると共に、第2の内燃機関部の始動後に、前記無限・無段変速機構の変速比を有限値に変更することで、前記第2のワンウェイ・クラッチに入力される回転速度を制御することを特徴とする。
The invention according to claim 4 is the configuration of claim 2,
The continuously variable transmission mechanism is configured as an infinite and continuously variable transmission mechanism capable of setting the transmission ratio to infinity,
When the control means starts the second internal combustion engine section, it sets the transmission ratio of the infinite / continuously variable transmission mechanism provided as the second transmission mechanism to infinity, and the second internal combustion engine After the engine unit is started, the rotational speed input to the second one-way clutch is controlled by changing the transmission ratio of the infinite / continuously variable transmission mechanism to a finite value.
 請求項5に係る発明は、請求項4の構成において、
 前記無段変速機構が、
 回転動力を受けることで入力中心軸線(例えば、後述の実施形態における入力中心軸線O1)の周りを回転する入力軸(例えば、後述の実施形態における入力軸101)と、
 該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対する偏心量(例えば、後述の実施形態における偏心量r1)を変更可能で、且つ、該偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点(例えば、後述の実施形態における第1支点O3)と、
 該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスク(例えば、後述の実施形態における偏心ディスク104)と、
 前記入力中心軸線から離れた出力中心軸線(例えば、後述の実施形態における出力中心軸線O2)の周りを回転する出力部材(例えば、後述の実施形態における出力部材121)と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材(例えば、後述の実施形態における入力部材122)と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチ120)と、
 前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点(例えば、後述の実施形態における第2支点O4)と、
 それぞれ一端(例えば、後述の実施形態におけるリング部131)が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端(例えば、後述の実施形態における他端部132)が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材(例えば、後述の実施形態における連結部材130)と、
 前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構(例えば、後述の実施形態における変速比可変機構112)と、
 を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構として構成されており、
 前記内燃機関部の出力軸(例えば、後述の実施形態における出力軸S1、S2)が前記無段変速機構の入力軸に連結され、
 前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記第1の変速機構および第2の変速機構と前記被回転駆動部材との間に設けられた前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチをそれぞれに兼ねていることを特徴とする。
The invention according to claim 5 is the structure of claim 4,
The continuously variable transmission mechanism is
An input shaft (for example, an input shaft 101 in an embodiment described later) that rotates around an input center axis (for example, an input center axis O1 in an embodiment described later) by receiving rotational power;
The input shafts are provided at equal intervals in the circumferential direction, each of which can change the amount of eccentricity with respect to the input center axis (for example, the amount of eccentricity r1 in an embodiment described later), and the input while maintaining the amount of eccentricity. A plurality of first fulcrums (for example, a first fulcrum O3 in an embodiment described later) rotating around the central axis along with the input shaft;
A plurality of eccentric disks (for example, the eccentric disk 104 in the embodiment described later) having the first fulcrum at the respective centers and rotating around the input center axis;
An output member (for example, an output member 121 in an embodiment to be described later) that rotates around an output center axis (for example, an output center axis O2 in an embodiment to be described later) separated from the input center axis, and power in the rotational direction from the outside And an engaging member (for example, an input member 122 in the embodiment described later) and an engaging member (which locks or unlocks the input member and the output member). For example, when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member, the rotational power input to the input member is A one-way clutch that transmits to the output member, thereby converting the swinging motion of the input member into the rotational motion of the output member (e.g., implementation described below) The one-way clutch 120) in the state,
A second fulcrum (for example, a second fulcrum O4 in an embodiment described later) provided at a position separated from the output center axis on the input member;
One end (for example, a ring portion 131 in an embodiment described later) is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end (for example, the other end portion 132 in an embodiment described later). Is rotatably connected to the second fulcrum provided on the input member of the one-way clutch, so that the rotational movement given from the input shaft to the eccentric disk is applied to the input member of the one-way clutch. A plurality of connecting members (for example, connecting members 130 in the embodiments described later) that are transmitted as a swinging motion of the input member;
By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A gear ratio variable mechanism (for example, a gear ratio in an embodiment described later) that changes a gear ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member. Variable ratio mechanism 112);
And is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
Output shafts of the internal combustion engine section (for example, output shafts S1 and S2 in the embodiments described later) are connected to the input shaft of the continuously variable transmission mechanism,
The one-way clutch, which is a component of the continuously variable transmission mechanism, includes the first one-way clutch and the second one provided between the first transmission mechanism, the second transmission mechanism, and the driven member. It is also characterized by serving as a one-way clutch.
 請求項6に係る発明は、
 それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
 前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
 前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
 を備え、前記第1の内燃機関部および第2の内燃機関部の発生する回転動力を、前記第1の変速機構および第2の変速機構を介して、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチに入力し、該第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチを介して、前記回転動力を前記被回転駆動部材に入力する自動車用駆動システムの制御方法であって、
 前記第1のワンウェイ・クラッチを介して前記第1の内燃機関部の発生する動力が前記被回転駆動部材に入力されている状態で、前記第2のワンウェイ・クラッチの入力部材に入力される回転数が出力部材の回転数を上回るように、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比の変更を行うことを特徴とする。
The invention according to claim 6
A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second through the first transmission mechanism and the second transmission mechanism. A driving system for an automobile, wherein the rotational power is input to the rotated drive member via the first one-way clutch and the second one-way clutch,
Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine is input to the driven member through the first one-way clutch. The number of revolutions of the second internal combustion engine section and / or the speed ratio of the second transmission mechanism is changed so that the number exceeds the number of revolutions of the output member.
 請求項1および請求項6の発明によれば、第1、第2の各内燃機関部に対して変速機構が個別に装備されているため、内燃機関部の回転数と変速機構の変速比の設定の組み合わせにより、変速機構からの出力回転数(ワンウェイ・クラッチの入力部材の入力回転数)を制御することができる。従って、変速機構の変速比の設定に応じて、各内燃機関部の回転数を独立して制御可能であり、各内燃機関部をそれぞれに効率の良い動作ポイントで運転することができて、燃費向上に貢献することができる。 According to the first and sixth aspects of the present invention, since the speed change mechanism is individually provided for each of the first and second internal combustion engine parts, the rotational speed of the internal combustion engine part and the speed ratio of the speed change mechanism are determined. The output rotation speed from the speed change mechanism (the input rotation speed of the input member of the one-way clutch) can be controlled by the combination of settings. Therefore, the number of revolutions of each internal combustion engine part can be controlled independently according to the setting of the speed ratio of the speed change mechanism, and each internal combustion engine part can be operated at an efficient operating point. Can contribute to improvement.
 また、「内燃機関部と変速機構」の組を「動力機構」と称した場合、2組の動力機構が、それぞれワンウェイ・クラッチを介して同一の被回転駆動部材に連結されているため、駆動源として使用する動力機構の選択切替、あるいは、2つの動力機構からの駆動力の合成を、各ワンウェイ・クラッチに対する入力回転数(動力機構から出力される回転数)の制御を行うだけで、実行することができる。 Also, when the set of “internal combustion engine part and transmission mechanism” is called “power mechanism”, the two sets of power mechanisms are connected to the same driven drive member via a one-way clutch, so Select and switch the power mechanism used as a power source, or combine the driving force from the two power mechanisms by simply controlling the input rotation speed (rotation speed output from the power mechanism) for each one-way clutch. can do.
 例えば、駆動車輪に繋がる被回転駆動部材に動力を取り出す駆動源を第1の内燃機関部から第2の内燃機関部に切り替える際に、その切り替え操作を、第2のワンウェイ・クラッチの入力回転数(各動力機構の出力回転数)が出力部材の回転数を上回るように、第2の内燃機関部の回転数および/または第2の変速機構の変速比を制御するだけで、ショック無しに、特別なクラッチ操作を行うことなく、容易に行うことができる。 For example, when the drive source for extracting power to the driven member connected to the drive wheel is switched from the first internal combustion engine part to the second internal combustion engine part, the switching operation is performed by changing the input rotational speed of the second one-way clutch. Only by controlling the rotation speed of the second internal combustion engine part and / or the gear ratio of the second transmission mechanism so that (the output rotation speed of each power mechanism) exceeds the rotation speed of the output member, without a shock, This can be easily performed without performing a special clutch operation.
 請求項2の発明によれば、第1及び第2の変速機構として、無段階に変速可能な無段変速機構を使用しているので、内燃機関部の回転数を変更せず、運転状態を高効率運転ポイントに維持したまま、変速機構の変速比を無段階で変更するだけで、スムーズに、各動力機構から被回転駆動部材への動力伝達のON/OFF(ワンウェイ・クラッチがロック状態になるか非ロック状態になるかによる動力伝達経路の「接続と遮断」を便宜上「ON/OFF」という)を制御することができる。即ち、変速機構の変速比を無段階で変更するだけで、第1の内燃機関部の動力による走行から第2の内燃機関部の動力による走行へとスムーズに切り替えることができる。 According to the second aspect of the present invention, since the continuously variable transmission mechanism capable of stepless transmission is used as the first and second transmission mechanisms, the operating state is not changed without changing the rotational speed of the internal combustion engine section. By simply changing the gear ratio of the speed change mechanism steplessly while maintaining the high-efficiency operation point, the power transmission from each power mechanism to the driven member can be smoothly turned ON / OFF (the one-way clutch is locked) For convenience, “ON / OFF” of the power transmission path depending on whether the power transmission path is set or not can be controlled. That is, it is possible to smoothly switch from running by the power of the first internal combustion engine section to running by the power of the second internal combustion engine section by simply changing the speed ratio of the transmission mechanism steplessly.
 この点、有段変速機の場合には、動力機構からの出力回転数を変更することによりスムーズにワンウェイ・クラッチのON/OFFを制御するためには、内燃機関部の回転数を変速段に合わせて調整しなくてはならない。一方、無段変速機構の場合、内燃機関部の回転数を変更せずに、変速機構の変速比を無段階に調節するだけで、スムーズに動力機構の出力回転数を変化させることができるので、ワンウェイ・クラッチの作用を介しての動力機構と被回転駆動部材との間の動力伝達のON/OFFによる駆動源(内燃機関部)の切り替えをスムーズに行うことができる。従って、内燃機関部の運転をBSFC(正味燃料消費率: Brake Specific Fuel Consumption)の良い運転状態に維持することができる。 In this regard, in the case of a stepped transmission, in order to smoothly control ON / OFF of the one-way clutch by changing the output rotational speed from the power mechanism, the rotational speed of the internal combustion engine section is set to the shift speed. It must be adjusted accordingly. On the other hand, in the case of a continuously variable transmission mechanism, the output rotational speed of the power mechanism can be changed smoothly by simply adjusting the speed ratio of the transmission mechanism steplessly without changing the rotational speed of the internal combustion engine section. The drive source (internal combustion engine part) can be smoothly switched by ON / OFF of power transmission between the power mechanism and the driven member through the action of the one-way clutch. Therefore, the operation of the internal combustion engine section can be maintained in an operating state with a good BSFC (net fuel consumption rate: Brake Specific Fuel Consumption).
 請求項3の発明によれば、第2の内燃機関部に繋がる第2の変速機構で予め適当な変速比(目標とする変速比よりも多少大きめの変速比で、第2のワンウェイ・クラッチの入力部材の回転速度が出力部材の回転速度を下回るような有限値)に設定した状態で第2の内燃機関部の始動を行うため、始動してから目標とする変速比(第2のワンウェイ・クラッチの入力部材の回転速度が出力部材の回転速度を上回る変速比)に設定するまでの時間を短縮することができる。従って、要求に対するレスポンスの向上が図れる。 According to the third aspect of the present invention, the second speed change mechanism connected to the second internal combustion engine portion is set to an appropriate speed change ratio (a slightly higher speed ratio than the target speed change ratio in advance). In order to start the second internal combustion engine part in a state where the rotational speed of the input member is set to a finite value lower than the rotational speed of the output member, the target gear ratio (second one-way It is possible to shorten the time until the rotational speed of the input member of the clutch is set to a gear ratio in which the rotational speed of the output member exceeds the rotational speed of the output member. Therefore, the response to the request can be improved.
 請求項4の発明によれば、第2の内燃機関部の始動時に第2の変速機構の変速比を無限大に設定するので、第2の変速機構の下流側の慣性質量部を第2の内燃機関部から切り離すことができる。従って、第2の内燃機関部の始動時の慣性質量による抵抗を少なくすることができ、始動エネルギーを低減することができる。また、第1の内燃機関部から第2の内燃機関部に駆動源を切り替える際の第2の内燃機関部の始動時に、第2の変速機構から下流側に動力が伝わらないようにすることができるので、始動の途中で何らかの原因(例えば、いきなりブレーキが踏まれる等)により被回転駆動部材の回転数が急に低くなった場合でも、始動時の第2の内燃機関部のトルクが、被回転駆動部材の回転数の急低下に伴って駆動車輪側に伝達されることはなく、始動ショックを低減することができる。また、第2の内燃機関部の始動後に、第2の変速機構の変速比を有限値に変更することで、第2のワンウェイ・クラッチに入力される回転速度を制御するので、その入力回転速度を出力部材の回転速度を上回るまで上昇させることにより、第2の内燃機関部の動力を被回転駆動部材に伝達させることができる。 According to the invention of claim 4, since the speed ratio of the second speed change mechanism is set to infinity when the second internal combustion engine part is started, the inertia mass part on the downstream side of the second speed change mechanism is set to the second speed change mechanism. It can be separated from the internal combustion engine part. Therefore, the resistance due to the inertial mass when starting the second internal combustion engine can be reduced, and the starting energy can be reduced. Further, when starting the second internal combustion engine portion when switching the drive source from the first internal combustion engine portion to the second internal combustion engine portion, it is possible to prevent power from being transmitted from the second transmission mechanism to the downstream side. Therefore, even if the rotational speed of the driven member suddenly decreases due to some reason (for example, sudden braking) during the startup, the torque of the second internal combustion engine at the time of startup is reduced. A start shock can be reduced without being transmitted to the drive wheel side with a sudden decrease in the rotational speed of the rotary drive member. Further, after the second internal combustion engine section is started, the rotational speed input to the second one-way clutch is controlled by changing the speed ratio of the second transmission mechanism to a finite value, so that the input rotational speed Is increased until the rotational speed of the output member is exceeded, so that the power of the second internal combustion engine can be transmitted to the driven member.
 請求項5の発明によれば、入力軸の回転運動を偏心量可変の偏心ディスクの偏心回転運動に変換し、偏心ディスクの偏心回転運動を連結部材を介してワンウェイ・クラッチの入力部材に揺動運動として伝え、その入力部材の揺動運動をワンウェイ・クラッチの出力部材の回転運動に変換するようにした無段変速機構を採用していることにより、偏心量を変更するだけで、変速比を無限大にすることができる。従って、変速比を無限大にすることで、内燃機関部の始動時等において、下流側の慣性質量部を内燃機関部から実質的に切り離すことができる。そのため、下流側(出力側)の慣性質量部が内燃機関部の始動時等の抵抗とならず、スムーズに内燃機関部の始動ができるようになる。 According to the invention of claim 5, the rotational motion of the input shaft is converted into the eccentric rotational motion of the eccentric disc of variable eccentricity, and the eccentric rotational motion of the eccentric disc is swung to the input member of the one-way clutch via the connecting member. By adopting a continuously variable transmission mechanism that converts the swinging motion of the input member into the rotational motion of the output member of the one-way clutch, the gear ratio can be changed simply by changing the amount of eccentricity. Can be infinite. Therefore, by setting the transmission ratio to infinity, the downstream inertial mass portion can be substantially separated from the internal combustion engine portion when the internal combustion engine portion is started. For this reason, the inertial mass portion on the downstream side (output side) does not become a resistance at the time of starting the internal combustion engine portion, and the internal combustion engine portion can be started smoothly.
 また、変速比を無限大にすることによって、内燃機関部をその下流側の慣性質量部から実質的に切り離せることは、被回転駆動部材にメインモータジェネレータを接続して、ハイブリッド化した場合に特に有効であると言うことができる。即ち、例えば、メインモータジェネレータの駆動力のみを利用したEV走行から、第1の内燃機関部を始動して、第1の内燃機関部の駆動力により更に別途に設けたサブモータジェネレータを駆動し、サブモータジェネレータで発電した電力をメインモータジェネレータに供給して、メインモータジェネレータの駆動力で走行するシリーズ走行へ移行する場合には、EV走行の状態において第1の内燃機関部の始動が必要になるが、その始動時の抵抗を前述のように少なくすることができるので、EV走行からシリーズ走行への移行を、スムーズにショックなく行うことができる。また、内燃機関部をその下流側の慣性質量部から実質的に切り離せることにより、シリーズ走行を実行しているときの回転抵抗を小さくできるので、シリーズ走行時のエネルギーロスを減らして燃費向上に貢献することができる。 In addition, by making the gear ratio infinite, the internal combustion engine part can be substantially separated from the inertial mass part on the downstream side when the main motor generator is connected to the driven member to be rotated and hybridized. It can be said that it is particularly effective. That is, for example, the first internal combustion engine unit is started from EV traveling using only the driving force of the main motor generator, and the sub motor generator provided separately is driven by the driving force of the first internal combustion engine unit. When the electric power generated by the sub motor generator is supplied to the main motor generator to shift to the series traveling that travels with the driving force of the main motor generator, the first internal combustion engine section needs to be started in the EV traveling state. However, since the resistance at the time of starting can be reduced as described above, the transition from EV traveling to series traveling can be performed smoothly and without a shock. In addition, by separating the internal combustion engine part from the inertial mass part on the downstream side, the rotational resistance during series running can be reduced, reducing energy loss during series running and improving fuel efficiency. Can contribute.
 また、この形式の無段変速機構を採用した場合、使用するギヤの数を減らすことができるので、ギヤの噛み合い摩擦によるエネルギーロスも減らすことができる。 Also, when this type of continuously variable transmission mechanism is employed, the number of gears used can be reduced, so that energy loss due to gear meshing friction can also be reduced.
本発明の一実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of one embodiment of the present invention. 同システムの要部である無限・無段変速機構の具体的構成を示す断面図である。It is sectional drawing which shows the specific structure of the infinite and continuously variable transmission mechanism which is the principal part of the system. 同変速機構の一部の構成を軸線方向から見た側断面図である。It is the sectional side view which looked at the one part structure of the transmission mechanism from the axial direction. 同変速機構における変速比可変機構による変速原理の前半部分の説明図であり、(a)は偏心ディスク104の中心点である第1支点O3の回転中心である入力中心軸線O1に対する偏心量r1を「大」にして変速比iを「小」に設定した状態を示す図、(b)は偏心量r1を「中」にして変速比iを「中」に設定した状態を示す図、(c)は偏心量r1を「小」にして変速比iを「大」に設定した状態を示す図、(d)は偏心量r1を「ゼロ」にして変速比iを「無限大(∞)」に設定した状態を示す図である。It is explanatory drawing of the first half part of the speed change principle by the gear ratio variable mechanism in the same speed change mechanism. FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG. 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”. ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the transmission ratio i is set to “large”, and (d) is a state in which the eccentricity r1 is set to “zero” and the transmission ratio i is set to “infinity (∞)” It is a figure which shows the state set to. 同変速機構における変速比可変機構による変速原理の後半部分の説明図であって、偏心ディスクの偏心量r1を変更して変速比iを変えた場合のワンウェイ・クラッチ120の入力部材122の揺動角度θ2の変化を示す図であり、(a)は偏心量r1を「大」にし変速比iを「小」にすることで、入力部材122の揺動角度θ2が「大」になった状態を示す図、(b)は偏心量r1を「中」にし変速比iを「中」にすることで、入力部材122の揺動角度θ2が「中」になった状態を示す図、(c)は偏心量r1を「小」にし変速比iを「大」にすることで、入力部材122の揺動角度θ2が「小」になった状態を示す図である。FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk. FIG. 6A is a diagram showing a change in the angle θ2, and (a) shows a state in which the swing angle θ2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”. FIG. 5B is a diagram showing a state in which the swing angle θ2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle θ2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. 四節リンク機構として構成された前記無限・無段変速機構の駆動力伝達原理の説明図である。It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar linkage mechanism. 同変速機構において、入力軸と共に等速回転する偏心ディスクの偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸の回転角度θとワンウェイ・クラッチの入力部材の角速度ω2の関係を示す図である。In the same speed change mechanism, when the eccentricity r1 (speed ratio i) of the eccentric disk rotating at the same speed as the input shaft is changed to “large”, “medium”, and “small”, the rotation angle θ of the input shaft and the one-way -It is a figure which shows the relationship of angular velocity (omega) 2 of the input member of a clutch. 同変速機構において、複数の連結部材によって入力側(入力軸や偏心ディスク)から出力側(ワンウェイ・クラッチの出力部材)へ動力が伝達される際の出力の取り出し原理を説明するための図である。FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. . 本実施形態の駆動システムにおける動作パターンAの説明図である。It is explanatory drawing of the operation pattern A in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンBの説明図である。It is explanatory drawing of the operation pattern B in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンCの説明図である。It is explanatory drawing of the operation pattern C in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンDの説明図である。It is explanatory drawing of the operation pattern D in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンEの説明図である。It is explanatory drawing of the operation pattern E in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンFの説明図である。It is explanatory drawing of the operation pattern F in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンGの説明図である。It is explanatory drawing of the operation pattern G in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンHの説明図である。It is explanatory drawing of the operation pattern H in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンIの説明図である。It is explanatory drawing of the operation pattern I in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンJの説明図である。It is explanatory drawing of the operation pattern J in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンKの説明図である。It is explanatory drawing of the operation pattern K in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンLの説明図である。It is explanatory drawing of the operation pattern L in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンMの説明図である。It is explanatory drawing of the operation pattern M in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンNの説明図である。It is explanatory drawing of the operation pattern N in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンOの説明図である。It is explanatory drawing of the operation pattern O in the drive system of this embodiment. 本実施形態の駆動システムにおいて、発進時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of start. 本実施形態の駆動システムにおいて、低速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of low speed driving | running | working. 本実施形態の駆動システムにおいて、EV走行モードからエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control operation at the time of switching (switch operation) from EV driving mode to engine driving mode. 本実施形態の駆動システムにおいて、中速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium speed driving | running | working. 本実施形態の駆動システムにおいて、第1のエンジンによるエンジン走行モードから第2のエンジンによるエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of the switching (switch operation) from the engine running mode by the 1st engine to the engine running mode by the 2nd engine. 本実施形態の駆動システムにおいて、中高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium-high speed driving | running | working. 本実施形態の駆動システムにおいて、第2のエンジンによるエンジン走行モードから、第2のエンジンと第1のエンジンによるパラレルのエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of switching (switch operation) from the engine running mode by the 2nd engine to the parallel engine running mode by the 2nd engine and the 1st engine. 本実施形態の駆動システムにおいて、高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of high speed driving | running | working. 本実施形態の駆動システムにおいて、車両後退時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle reverses. 本実施形態の駆動システムにおいて、車両停止時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle stops. (a)及び(b)はトランスミッションのロックによる後進不可状態の説明図である。(A) And (b) is explanatory drawing of the reverse drive impossible state by the lock | rock of a transmission. 本実施形態の駆動システムにおいて、低速域を走行しているときの走行パターンのオペレーションの説明図である。In the drive system of this embodiment, it is explanatory drawing of operation of the driving | running | working pattern when drive | working the low speed area. 本実施形態の駆動システムにおいて、中速域を走行しているときの走行パターンのオペレーションの説明図である。In the drive system of this embodiment, it is explanatory drawing of operation | movement of the driving | running | working pattern when drive | working a medium speed range. 本実施形態の駆動システムにおいて、高速域を走行しているときの走行パターンのオペレーションの説明図である。In the drive system of this embodiment, it is explanatory drawing of operation of the driving | running | working pattern when drive | working the high speed area. 本実施形態の駆動システムにおけるエンジンのエンゲージ設定範囲の説明図である。It is explanatory drawing of the engagement setting range of the engine in the drive system of this embodiment. 本発明の別の実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of another embodiment of the present invention. 本発明の自動車用駆動システムの変形例を示す断面図である。It is sectional drawing which shows the modification of the drive system for motor vehicles of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は本発明の一実施形態の自動車用駆動システムのスケルトン図であり、図2は同駆動システムの要部である無限・無段変速機構の具体的構成を示す断面図、図3は同無限・無段変速機構の一部の構成を軸線方向から見た側断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a skeleton diagram of an automobile drive system according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a specific configuration of an infinite and continuously variable transmission mechanism that is a main part of the drive system. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
《全体構成》
 この自動車用駆動システム1は、それぞれ独立して回転動力を発生する第1、第2の内燃機関部としての2つのエンジンENG1、ENG2と、第1、第2のエンジンENG1、ENG2の各下流側に設けられた第1、第2のトランスミッション(変速機構)TM1、TM2と、各トランスミッションTM1、TM2の出力部に設けられた第1、第2のワンウェイ・クラッチOWC1、OWC2と、これらワンウェイ・クラッチOWC1、OWC2を介して伝達された出力回転を受ける被回転駆動部材11と、この被回転駆動部材11に接続されたメインモータジェネレータMG1と、第1のエンジンENG1の出力軸S1に接続されたサブモータジェネレータMG2と、メインおよび/またはサブのモータジェネレータMG1、MG2との間で電力のやりとりが可能なバッテリ(蓄電手段)8と、各種要素を制御することで走行パターンなどの制御を行う制御手段5と、を備えている。
"overall structure"
The vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2. First and second transmissions (transmission mechanisms) TM1 and TM2 provided on the transmission, first and second one-way clutches OWC1 and OWC2 provided on the output portions of the transmissions TM1 and TM2, and these one-way clutches A rotated drive member 11 that receives the output rotation transmitted through OWC1 and OWC2, a main motor generator MG1 connected to the rotated drive member 11, and a sub connected to the output shaft S1 of the first engine ENG1. Motor generator MG2 and main and / or sub motor generators MG1 and MG2 In a battery (power storage unit) 8 capable of power exchange, and control means 5 for controlling such travel pattern by controlling the various elements, and a.
 各ワンウェイ・クラッチOWC1、OWC2は、入力部材(クラッチアウタ)122と、出力部材(クラッチインナ)121と、これら入力部材122および出力部材121の間に配されて両部材122、121を互いにロック状態または非ロック状態にする複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有する。そして、第1のトランスミッションTM1および第2のトランスミッションTM2からの各回転動力を受ける入力部材122の正方向(矢印RD1方向)の回転速度が、出力部材121の正方向の回転速度を上回ったとき、入力部材122と出力部材121が互いにロック状態になることにより、入力部材122に入力された回転動力が出力部材121に伝達される。 Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges | biases the roller 123 in the direction which gives a locked state. When the rotational speed of the input member 122 that receives the rotational power from the first transmission TM1 and the second transmission TM2 in the positive direction (arrow RD1 direction) exceeds the rotational speed of the output member 121 in the positive direction, When the input member 122 and the output member 121 are locked with each other, the rotational power input to the input member 122 is transmitted to the output member 121.
 第1、第2のワンウェイ・クラッチOWC1、OWC2は、ディファレンシャル装置10を挟んで右と左に配置されており、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121は、それぞれ別のクラッチ機構CL1、CL2を介して、被回転駆動部材11に共に連結されている。クラッチ機構CL1、CL2は、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121と被回転駆動部材11との間の動力の伝達/遮断を制御するために設けられている。 The first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other. Are connected to the driven member 11 via the clutch mechanisms CL1 and CL2. The clutch mechanisms CL1 and CL2 are provided to control transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated.
 被回転駆動部材11は、ディファレンシャル装置10のデフケースにより構成されており、各ワンウェイ・クラッチOWC1、OWC2の出力部材121に伝達された回転動力は、ディファレンシャル装置10および左右のアクスルシャフト13L、13Rを介して、左右の駆動車輪2に伝達される。ディファレンシャル装置10のデフケース(被回転駆動部材11)には、図示しないデフピニオンやサイドギヤが取り付けられており、左右のサイドギヤに左右のアクスルシャフト13L、13Rが連結され、左右のアクスルシャフト13L、13Rは差動回転する。 The driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2. A differential case (rotation drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown). The left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different. Dynamic rotation.
 第1、第2の2つのエンジンENG1、ENG2には、高効率運転ポイントの互いに異なるエンジンが用いられており、第1のエンジンENG1は排気量の小さいエンジンとされ、第2のエンジンENG2は、第1のエンジンENG1よりも排気量の大きいエンジンとされている。例えば、第1のエンジンENG1の排気量は500ccとされ、第2のエンジンENG2の排気量は1000ccとされており、合計排気量が1500ccとされている。もちろん、排気量の組み合わせは任意である。 The first and second engines ENG1 and ENG2 use different engines with high efficiency operation points. The first engine ENG1 is an engine with a small displacement, and the second engine ENG2 The engine has a larger displacement than the first engine ENG1. For example, the displacement of the first engine ENG1 is 500 cc, the displacement of the second engine ENG2 is 1000 cc, and the total displacement is 1500 cc. Of course, the combination of the displacements is arbitrary.
 メインモータジェネレータMG1と被回転駆動部材11は、メインモータジェネレータMG1の出力軸に取り付けたドライブギヤ15と被回転駆動部材11に設けたドリブンギヤ12とが噛合することにより、動力伝達可能に接続されている。例えば、メインモータジェネレータMG1がモータとして機能するときは、メインモータジェネレータMG1から被回転駆動部材11に駆動力が伝達される。また、メインモータジェネレータMG1を発電機として機能させるときは、被回転駆動部材11からメインモータジェネレータMG1に動力が入力され、機械エネルギーが電気エネルギーに変換される。同時に、メインモータジェネレータMG1から被回転駆動部材11に回生制動力が作用する。 The main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes. For example, when the main motor generator MG1 functions as a motor, a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated. When the main motor generator MG1 functions as a generator, power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy. At the same time, a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
 また、サブモータジェネレータMG2は、第1のエンジンENG1の出力軸S1に直に接続されており、該出力軸S1との間で動力の相互伝達を行う。この場合も、サブモータジェネレータMG2がモータとして機能するときは、サブモータジェネレータMG1から第1のエンジンENG1の出力軸S1に駆動力が伝達される。また、サブモータジェネレータMG2が発電機として機能するときは、第1のエンジンENG1の出力軸S1からサブモータジェネレータMG2に動力が伝達される。 The sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG1 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
 以上の要素を備えたこの駆動システム1では、第1のエンジンENG1および第2のエンジンENG2の発生する回転動力が、第1のトランスミッションTM1および第2のトランスミッションTM2を介して、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2に入力され、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2を介して、回転動力が被回転駆動部材11に入力される。 In the drive system 1 having the above elements, the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way The rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
 また、この駆動システム1では、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に、第2のトランスミッションTM2を介した動力伝達と異なる当該出力軸S2と被回転駆動部材11の間での動力伝達を断接可能なシンクロ機構(スタータ・クラッチとも言われるクラッチ手段)20が設けられている。このシンクロ機構20は、被回転駆動部材11に設けたドリブンギヤ12に常時噛み合うと共に第2のエンジンENG2の出力軸S2の周りに回転自在に設けられた第1ギヤ21と、第2のエンジンENG2の出力軸S2の周りに該出力軸S2と一体に回転するように設けられた第2ギヤ22と、軸方向にスライド操作されることで第1ギヤ21と第2ギヤ22を結合または解除するスリーブ24と、を備えている。即ち、シンクロ機構20は、第2のトランスミッションTM2、クラッチ機構CL2を介した動力伝達経路と異なる動力伝達経路を構成し、この動力伝達経路での動力伝達を断接する。 Further, in this drive system 1, the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used. A synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided. The synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2. A second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
《トランスミッションの構成》
 次に、この駆動システム1に用いられている第1、第2の2つのトランスミッションTM1、TM2について説明する。
 第1、第2のトランスミッションTM1、TM2は、ほぼ同じ構成の無段変速機構により構成されている。この場合の無段変速機構は、IVT(Infinity Variable Transmission=クラッチを使用せずに変速比を無限大にして出力回転をゼロにできる方式の変速機構)と呼ばれるものの一種であり、変速比(レシオ=i)を無段階に変更できると共に、変速比の最大値を無限大(∞)に設定することのできる、無限・無段変速機構BD(BD1、BD2)により構成されている。
<Configuration of transmission>
Next, the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
The first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration. The continuously variable transmission mechanism in this case is a kind of what is called an IVT (Infinity Variable Transmission = transmission mechanism in which the transmission ratio can be made infinite without using a clutch and the output rotation can be made zero). = I) can be changed steplessly, and the maximum value of the gear ratio can be set to infinity (∞), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
 この無限・無段変速機構BDは、図2および図3に構成を示すように、エンジンENG1、ENG2からの回転動力を受けることで入力中心軸線O1の周りを回転する入力軸101と、入力軸101と一体回転する複数の偏心ディスク104と、入力側と出力側を結ぶための偏心ディスク104と同数の連結部材130と、出力側に設けられたワンウェイ・クラッチ120とを備えている。 2 and 3, the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft. 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
 複数の偏心ディスク104は、それぞれ第1支点O3を中心とした円形形状に形成されている。第1支点O3は、入力軸101の周方向に等間隔に設けられると共に、それぞれが、入力中心軸線O1に対する偏心量r1を変更可能で、且つ、該偏心量r1を保ちつつ、入力中心軸線O1の周りに入力軸101と共に回転するように設定されている。従って、複数の偏心ディスク104は、それぞれに偏心量r1を保った状態で、入力中心軸線O1の周りに入力軸101の回転に伴って偏心回転するように設けられている。 The plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3. The first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101. Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
 偏心ディスク104は、図3に示すように、外周側円板105と、入力軸101に一体形成された内周側円板108とで構成されている。内周側円板108は、入力軸101の中心軸線である入力中心軸線O1に対して一定の偏心距離だけ中心を偏倚させた肉厚円板として形成されている。外周側円板105は、第1支点O3を中心にした肉厚円板として形成されており、その中心(第1支点O3)を外れた位置に中心を持つ第1円形孔106を有している。そして、この第1円形孔106の内周に回転可能に内周側円板108の外周が嵌っている。 As shown in FIG. 3, the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101. The inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance. The outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes. And the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
 また、内周側円板108には、入力中心軸線O1を中心とすると共に周方向の一部が内周側円板108の外周に開口した第2円形孔109が設けられており、その第2円形孔109の内部にピニオン110が回転自在に収容されている。ピニオン110の歯は、第2円形孔109の外周の開口を通して、外周側円板105の第1円形孔106の内周に形成した内歯歯車107に噛み合っている。 Further, the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108. A pinion 110 is rotatably accommodated inside the two circular holes 109. The teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
 このピニオン110は、入力軸101の中心軸線である入力中心軸線O1と同軸に回転するように設けられている。即ち、ピニオン110の回転中心と入力軸101の中心軸線である入力中心軸線O1とが一致している。ピニオン110は、図2に示すように、直流モータ及び減速機構によって構成されるアクチュエータ180により、第2円形孔109の内部で回転させられる。通常時は、入力軸101の回転と同期させてピニオン110を回転させ、同期する回転数を基準として、ピニオン110に入力軸101の回転数を上回るか下回るかする回転数を与えることにより、ピニオン110を入力軸101に対して相対回転させる。例えば、ピニオン110およびアクチュエータ180の出力軸が互いに連結されるように配置し、アクチュエータ180の回転が入力軸101の回転に対して回転差が生じる場合には、その回転差に減速比をかけた分だけ入力軸101とピニオン110の相対角度が変化する減速機構(例えば遊星歯車)を用いることで実現できる。この際、アクチュエータ180と入力軸101の回転差がなく同期している場合には偏心量r1は変化しない。 The pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other. As shown in FIG. 2, the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101. For example, when the pinion 110 and the output shaft of the actuator 180 are arranged so as to be connected to each other and the rotation of the actuator 180 causes a rotation difference with respect to the rotation of the input shaft 101, a reduction ratio is applied to the rotation difference. This can be realized by using a speed reduction mechanism (for example, a planetary gear) in which the relative angle between the input shaft 101 and the pinion 110 changes by the amount. At this time, if there is no rotational difference between the actuator 180 and the input shaft 101 and they are synchronized, the eccentricity r1 does not change.
 従って、ピニオン110を回すことにより、ピニオン110の歯が噛合している内歯歯車107つまり外周側円板105が内周側円板108に対して相対回転し、それにより、ピニオン110の中心(入力中心軸線O1)と外周側円板105の中心(第1支点O3)との間の距離(つまり偏心ディスク104の偏心量r1)が変化する。 Therefore, when the pinion 110 is turned, the internal gear 107 with which the teeth of the pinion 110 are engaged, that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
 この場合、ピニオン110の回転によって、ピニオン110の中心(入力中心軸線O1)に外周側円板105の中心(第1支点O3)を一致させることができるように設定されており、両中心を一致させることにより、偏心ディスク104の偏心量r1を「ゼロ」に設定できる。 In this case, the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match. By doing so, the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
 また、ワンウェイ・クラッチ120は、入力中心軸線O1から離れた出力中心軸線O2の周りを回転する出力部材(クラッチインナ)121と、外部から回転方向の動力を受けることで出力中心軸線O2の周りを揺動するリング状の入力部材(クラッチアウタ)122と、これら入力部材122および出力部材121を互いにロック状態または非ロック状態にするために入力部材122と出力部材121の間に挿入された複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有し、入力部材122の正方向(例えば、図3中の矢印RD1で示す方向)の回転速度が出力部材121の正方向の回転速度を上回ったとき、入力部材122に入力された回転動力を出力部材121に伝達し、それにより、入力部材122の揺動運動を出力部材121の回転運動に変換することができるようになっている。 The one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction. A swinging ring-shaped input member (clutch outer) 122 and a plurality of members inserted between the input member 122 and the output member 121 to lock the input member 122 and the output member 121 with each other. It has a roller (engagement member) 123 and a biasing member 126 that biases the roller 123 in a direction to give a locked state, and is in the positive direction of the input member 122 (for example, the direction indicated by the arrow RD1 in FIG. 3). When the rotational speed exceeds the positive rotational speed of the output member 121, the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
 図2に示すように、ワンウェイ・クラッチ120の出力部材121は、軸方向に一体に連続した部材として構成されたものであるが、入力部材122は、軸方向に複数に分割されており、偏心ディスク104および連結部材130の数だけ、軸方向に各々独立して揺動できるように配列されている。そして、ローラ123は、入力部材122毎に、入力部材122と出力部材121との間に挿入されている。 As shown in FIG. 2, the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction. However, the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric. As many as the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction. The roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
 リング状の各入力部材122上の周方向の1箇所には張り出し部124が設けられており、その張り出し部124に、出力中心軸線O2から離間した第2支点O4が設けられている。そして、各入力部材122の第2支点O4上にピン125が配置され、このピン125によって、連結部材130の先端(他端部)132が入力部材122に回転自在に連結されている。 A protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124. And the pin 125 is arrange | positioned on the 2nd fulcrum O4 of each input member 122, and the front-end | tip (other end part) 132 of the connection member 130 is rotatably connected with the input member 122 by this pin 125. FIG.
 連結部材130は、一端側にリング部131を有し、そのリング部131の円形開口133の内周が、ベアリング140を介して、偏心ディスク104の外周に回転自在に嵌合されている。従って、このように連結部材130の一端が偏心ディスク104の外周に回転自在に連結されると共に、連結部材130の他端が、ワンウェイ・クラッチ120の入力部材122上に設けられた第2支点O4に回動自在に連結されることにより、入力中心軸線O1、第1支点O3、出力中心軸線O2、第2支点O4の4つの節を回動点とする四節リンク機構が構成されており、入力軸101から偏心ディスク104に与えられる回転運動が、ワンウェイ・クラッチ120の入力部材122に対して該入力部材122の揺動運動として伝えられ、その入力部材122の揺動運動が出力部材121の回転運動に変換される。 The connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120. Are connected to each other in such a manner that a four-joint link mechanism having four joints of an input center axis O1, a first fulcrum O3, an output center axis O2, and a second fulcrum O4 as pivot points is configured. The rotational motion given from the input shaft 101 to the eccentric disk 104 is transmitted to the input member 122 of the one-way clutch 120 as the swing motion of the input member 122, and the swing motion of the input member 122 is transmitted to the output member 121. Converted to rotational motion.
 その際、ピニオン110、ピニオン110を収容する第2円形孔109を備えた内周側円板108、内周側円板108を回転可能に収容する第1円形孔106を備えた外周側円板105、アクチュエータ180などにより構成された変速比可変機構112の前記ピニオン110をアクチュエータ180で動かすことにより、偏心ディスク104の偏心量r1を変化させることができる。そして、偏心量r1を変更することで、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を変更することができ、それにより、入力軸101の回転数に対する出力部材121の回転数の比(変速比:レシオi)を変えることができる。即ち、入力中心軸線O1に対する第1支点O3の偏心量r1を調節することで、偏心ディスク104からワンウェイ・クラッチ120の入力部材122に伝えられる揺動運動の揺動角度θ2を変更し、それにより、入力軸101に入力される回転動力が、偏心ディスク104および連結部材130を介してワンウェイ・クラッチ120の出力部材121に回転動力として伝達される際の変速比を変更することができる。 In that case, the outer peripheral side disk provided with the pinion 110, the inner periphery side disk 108 provided with the 2nd circular hole 109 which accommodates the pinion 110, and the 1st circular hole 106 which accommodates the inner periphery side disk 108 rotatably. The eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed. That is, by adjusting the eccentric amount r1 of the first fulcrum O3 with respect to the input center axis O1, the swing angle θ2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed. The speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
 この場合、第1、第2のエンジンENG1、ENG2の出力軸S1、S2が、この無限・無段変速機構BD(BD1、BD2)の入力軸101に一体に連結されている。また、無限・無段変速機構BD(BD1、BD2)の構成要素であるワンウェイ・クラッチ120が、第1のトランスミッションTM1および第2のトランスミッションTM2と被回転駆動部材11との間に設けられた前記第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2をそれぞれに兼ねている。 In this case, the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2). Further, the one-way clutch 120, which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated. The first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
 図4及び図5は、無限・無段変速機構BD(BD1、BD2)における変速比可変機構112による変速原理の説明図である。これら図4および図5に示すように、変速比可変機構112のピニオン110を回転させて、内周側円板108に対して外周側円板105を回転させることにより、偏心ディスク104の入力中心軸線O1(ピニオン110の回転中心)に対する偏心量r1を調節することができる。 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2). As shown in FIGS. 4 and 5, the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated. The amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
 例えば、図4(a)、図5(a)に示すように、偏心ディスク104の偏心量r1を「大」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を大きくすることができるので、小さな変速比iを実現することができる。また、図4(b)、図5(b)に示すように、偏心ディスク104の偏心量r1を「中」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「中」にすることができるので、中くらいの変速比iを実現することができる。また、図4(c)、図5(c)に示すように、偏心ディスク104の偏心量r1を「小」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を小さくすることができるので、大きな変速比iを実現することができる。また、図4(d)に示すように、偏心ディスク104の偏心量r1を「ゼロ」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「ゼロ」にすることができるので、変速比iを「無限大(∞)」にすることができる。 For example, as shown in FIGS. 4A and 5A, when the eccentric amount r1 of the eccentric disk 104 is set to “large”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is increased. Therefore, a small gear ratio i can be realized. Further, as shown in FIGS. 4B and 5B, when the eccentric amount r1 of the eccentric disk 104 is set to “medium”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is set to “medium”. Therefore, a medium speed ratio i can be realized. Further, as shown in FIGS. 4C and 5C, when the eccentric amount r1 of the eccentric disk 104 is set to “small”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is decreased. Therefore, a large gear ratio i can be realized. Further, as shown in FIG. 4D, when the eccentric amount r1 of the eccentric disk 104 is set to “zero”, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be set to “zero”. Therefore, the gear ratio i can be set to “infinity (∞)”.
 図6は四節リンク機構として構成された前記無限・無段変速機構BD(BD1、BD2)の駆動力伝達原理の説明図、図7は同変速機構BD(BD1、BD2)において、入力軸101と共に等速回転する偏心ディスク104の偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸101の回転角度(θ)とワンウェイ・クラッチ120の入力部材122の角速度ω2の関係を示す図、図8は同変速機構BD(BD1、BD2)において、複数の連結部材130によって入力側(入力軸101や偏心ディスク104)から出力側(ワンウェイ・クラッチ120の出力部材121)へ動力が伝達される際の出力の取り出し原理を説明するための図である。 FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism, and FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2). The rotational angle (θ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”. FIG. 8 is a diagram showing the relationship of the angular velocity ω2 of the input member 122. FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120. FIG.
 そして、図6に示すように、ワンウェイ・クラッチ120の入力部材122は、連結部材130を介して偏心ディスク104から与えられる動力により揺動運動する。偏心ディスク104を回転させる入力軸101が1回転すると、ワンウェイ・クラッチ120の入力部材122は1往復揺動する。図7に示すように、偏心ディスク104の偏心量r1の値に関係なく、ワンウェイ・クラッチ120の入力部材122の揺動周期は常に一定である。入力部材122の角速度ω2は、偏心ディスク104(入力軸101)の回転角速度ω1と偏心量r1によって決まる。 Then, as shown in FIG. 6, the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130. When the input shaft 101 that rotates the eccentric disk 104 makes one rotation, the input member 122 of the one-way clutch 120 swings one reciprocating motion. As shown in FIG. 7, irrespective of the value of the eccentricity r1 of the eccentric disk 104, the swing cycle of the input member 122 of the one-way clutch 120 is always constant. The angular velocity ω2 of the input member 122 is determined by the rotational angular velocity ω1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
 入力軸101とワンウェイ・クラッチ120を繋ぐ複数の連結部材130の一端(リング部131)は、入力中心軸線O1の周りに周方向等間隔で設けられた偏心ディスク104に回転自在に連結されているので、各偏心ディスク104の回転運動によりワンウェイ・クラッチ120の入力部材122にもたらされる揺動運動は、図8に示すように、一定の位相で順番に起こることになる。 One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
 その際、ワンウェイ・クラッチ120の入力部材122から出力部材121への動力(トルク)の伝達は、入力部材122の正方向(図3中矢印RD1方向)の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ行われる。つまり、ワンウェイ・クラッチ120では、入力部材122の回転速度が出力部材121の回転速度より高くなったときに初めてローラ123を介しての噛み合い(ロック)が発生し、連結部材130により、入力部材122の動力が出力部材121に伝達され、駆動力が発生する。 At this time, transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. 3) is the positive direction of the output member 121. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
 1つの連結部材130による駆動が終了した後は、入力部材122の回転速度が出力部材121の回転速度より低下すると共に、他の連結部材130の駆動力によってローラ123によるロックが解除されて、フリーな状態(空転状態)に戻る。これが、連結部材130の数だけ順番に行われることで、揺動運動が一方向の回転運動に変換される。そのため、出力部材121の回転速度を超えたタイミングの入力部材122の動力のみが出力部材121に順番に伝えられ、ほぼ平滑に均された回転動力が出力部材121に与えられることになる。 After the driving by one connecting member 130 is finished, the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state) This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
 また、この四節リンク機構式の無限・無段変速機構BD(BD1、BD2)では、偏心ディスク104の偏心量r1を変更することで、変速比(レシオ=エンジンのクランク軸の1回転でどれだけ被回転駆動部材を回転させるか)を決めることができる。この場合、偏心量r1をゼロに設定することで、変速比iを無限大に設定することができ、エンジンの回転中にも拘わらず、入力部材122に伝達される揺動角度θ2をゼロにすることができる。 Further, in this infinite / continuously variable transmission mechanism BD (BD1, BD2) of the four-bar linkage mechanism, by changing the eccentric amount r1 of the eccentric disc 104, the transmission ratio (ratio = one revolution of the crankshaft of the engine) It is possible to determine whether to rotate the driven member only. In this case, by setting the eccentricity r1 to zero, the speed ratio i can be set to infinity, and the swing angle θ2 transmitted to the input member 122 is set to zero despite the engine rotating. can do.
《制御手段の主な働き》
 次に、この駆動システム1において実行する制御内容について説明する。
 図1に示すように、制御手段5は、第1、第2のエンジンENG1、ENG2、メインモータジェネレータMG1、サブモータジェネレータMG2、第1、第2のトランスミッションTM1、TM2を構成する無限・無段変速機構BD1、BD2のアクチュエータ180、クラッチ機構CL1、CL2、シンクロ機構20などに制御信号を送って、これらの要素を制御することにより、様々な走行パターン(動作パターンとも言う)制御を行う。以下、代表的な制御の内容を説明する。
<Main functions of control means>
Next, the control contents executed in the drive system 1 will be described.
As shown in FIG. 1, the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2. Various driving patterns (also referred to as operation patterns) are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements. Hereinafter, typical control contents will be described.
 制御手段5は、メインモータジェネレータMG1の駆動力のみによるEV走行を制御するEV走行制御モードと、第1のエンジンENG1および/または第2のエンジンENG2の駆動力のみによるエンジン走行を制御するエンジン走行制御モードと、第1のエンジンENG1によりサブモータジェネレータMG2を発電機として駆動させ、それにより生成した電力をメインモータジェネレータMG1および/またはバッテリ8に供給しながら、メインモータジェネレータMG1の駆動力によるモータ走行を行うシリーズ走行を制御するシリーズ走行制御モードと、を選択して実行する機能を有する。また、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の両方を利用して走行するパラレル走行モードを実行する機能も有する。また、EV走行、シリーズ走行、エンジン走行は、要求駆動力およびバッテリ8の残容量(SOC)に応じて、選択して実行される。 The control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2. A motor driven by the driving force of the main motor generator MG1 while driving the sub motor generator MG2 as a generator by the control mode and the first engine ENG1 and supplying the electric power generated thereby to the main motor generator MG1 and / or the battery 8 And a function of selecting and executing a series traveling control mode for controlling series traveling in which traveling is performed. Further, it also has a function of executing a parallel traveling mode in which traveling is performed using both the driving force of the main motor generator MG1 and the driving force of the first engine ENG1. Further, EV travel, series travel, and engine travel are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
 ここで、シリーズ走行は、EV走行からエンジン走行へと走行モードを切り替える際に、EV走行とエンジン走行との間で実行される。そのシリーズ走行の際には、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御することにより、第1のワンウェイ・クラッチOWC1の入力部材122に入力される回転速度が出力部材121の回転速度を下回るように制御する。 Here, the series traveling is executed between EV traveling and engine traveling when the traveling mode is switched from EV traveling to engine traveling. During the series travel, the rotational speed input to the input member 122 of the first one-way clutch OWC1 is controlled by controlling the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1. Is controlled to be lower than the rotational speed of the output member 121.
 また、シリーズ走行からエンジン走行に切り替える場合、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御することにより、第1のワンウェイ・クラッチOWC1の入力部材122に入力される回転速度を出力部材121の回転速度を上回る値に変更して、シリーズ走行からエンジン走行へと移行させる。 Further, when switching from the series running to the engine running, the rotation speed of the first engine ENG1 and / or the transmission ratio of the first transmission TM1 is controlled to be input to the input member 122 of the first one-way clutch OWC1. The rotation speed is changed to a value that exceeds the rotation speed of the output member 121 to shift from series running to engine running.
 EV走行中に第1のエンジンENG1を始動する際には、第1のトランスミッションTM1の変速比を、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回らないように設定した状態(回転負荷を最小にするため、主に変速比を無限大に設定した状態)で、第1のエンジンENG1をサブモータジェネレータMG2の駆動力を用いて始動する。そして、走行モードをシリーズ走行からエンジン走行へと切り替えた後に、サブモータジェネレータMG2による発電を停止する。但し、走行モードをシリーズ走行からエンジン走行へ切り替えた後に、バッテリ8の残容量(SOC)が第1所定値(基準値:例えば基準SOCt=35%)以下である場合には、サブモータジェネレータMG2によるチャージ(発電によるバッテリ8の充電動作)を継続する。 When starting the first engine ENG1 during EV traveling, the gear ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed ( In order to minimize the rotational load, the first engine ENG1 is started using the driving force of the sub motor generator MG2 mainly in a state where the gear ratio is set to infinity. Then, after the traveling mode is switched from the series traveling to the engine traveling, the power generation by the sub motor generator MG2 is stopped. However, if the remaining capacity (SOC) of the battery 8 is equal to or lower than a first predetermined value (reference value: for example, reference SOCt = 35%) after the traveling mode is switched from the series traveling to the engine traveling, the sub motor generator MG2 Continue charging (charging operation of the battery 8 by power generation).
 次に、第2のエンジンENG2の始動を行う際には、例えば、1つの方法として、第2のトランスミッションTM2の変速比を、第2のエンジンENG2からの動力を第2のワンウェイ・クラッチOWC2に伝達可能であり(i≠∞)且つ第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るような有限値(目標値にできるだけ近い値)に制御する。あるいは、別の方法として、第2のエンジンENG2の始動を行う際に、第2のトランスミッションTM2の変速比を無限大(∞)に設定し、第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るように制御する。そして、第2のエンジンENG2の始動後に、第2のトランスミッションTM2の変速比を有限値(目標値)に変更することで、第2のワンウェイ・クラッチOWC2に入力される回転速度を制御する。 Next, when starting the second engine ENG2, for example, as one method, the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2. Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ≠ ∞) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121. Alternatively, as another method, when the second engine ENG2 is started, the speed ratio of the second transmission TM2 is set to infinity (∞), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed. The speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
 ここで、第1のエンジンENG1やメインモータジェネレータMG1の駆動力を利用して走行している状態で、被回転駆動部材11の動力を用いて第2のエンジンENG2を始動する場合には、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に設けられたシンクロ機構20を動力伝達可能な接続状態とすることにより、被回転駆動部材11の動力を用いて、第2のエンジンENG2のクランキング(スタート回転)を行い、第2のエンジンENG2を始動する。 Here, when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1, The synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission. The engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
 第2のエンジンENG2を始動させて、駆動源を第1のエンジンENG1から第2のエンジンENG2に切り替える場合は、第1のワンウェイ・クラッチOWC1を介して第1のエンジンENG1の発生する動力が被回転駆動部材11に入力されている状態で、第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転数が出力部材121の回転数を上回るように、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比の変更を行う。こうすることにより、駆動源として用いるエンジンを、第1のエンジンENG1から第2のエンジンENG2にスムーズに切り替えることができる。 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1. The rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
 また、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を合成して被回転駆動部材11に伝達させる場合は、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の両入力部材122に入力される回転速度が共に同期して出力部材121の回転速度を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御する同期制御を行う。 Further, when the driving forces of both the first engine ENG1 and the second engine ENG2 are combined and transmitted to the driven member 11, both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted. The rotational speeds of the first and second engines ENG1, ENG2 and / or the first and second transmissions TM1, so that the rotational speeds input to the input member 122 are both synchronized and exceed the rotational speed of the output member 121. Synchronous control for controlling the transmission ratio of TM2 is performed.
 この場合、加速のときに、両方のエンジンENG1、ENG2を無条件に動かすのではなく、一方(第1のエンジンENG1)を高効率運転ポイントに固定した状態で、他方のエンジン(第2のエンジンENG2)の出力を上げることで、出力要求に応えるようにする。 In this case, at the time of acceleration, both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at a high-efficiency operation point and the other engine (second engine). The output request is satisfied by raising the output of ENG2).
 具体的には、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転速度が出力部材121の回転速度を上回るように第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御しているとき、第1のエンジンENG1の回転数および/またはトルクが高効率運転領域に入るように、運転条件を一定範囲に固定した状態で、第1のエンジンENG1および/または第1のトランスミッションTM1を制御し、且つ、その固定した運転条件によって得られる出力を超える出力要求に対しては、第2のエンジンENG2および第2のトランスミッションTM2を制御することで対応する。 Specifically, the first and second engines ENG1, so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121, When controlling the rotational speed of the ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2, the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region. For an output request that controls the first engine ENG1 and / or the first transmission TM1 with the condition fixed in a certain range and exceeds the output obtained by the fixed operation condition, This is dealt with by controlling the engine ENG2 and the second transmission TM2.
 あるいは、上記とは別の制御方法として、要求出力に応じて、排気量大の第2のエンジンENG2を運転条件の固定側に設定するようにしてもよく、例えば、要求出力が所定以上の場合は、第1のエンジンENG1を運転条件の固定側に設定し、要求出力が所定以下の場合は、第2のエンジンENG2を運転条件の固定側に設定するようにしてもよい。 Alternatively, as a control method different from the above, the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
 また、車両の後進時には、クラッチ機構CL1、CL2を遮断状態にして、第1、第2のトランスミッションTM1、TM2のロックによる後進不可状態を解除する。一方、登坂発進時には、少なくとも一方のクラッチ機構CL1、CL2を接続状態とする。 Also, when the vehicle is moving backward, the clutch mechanisms CL1 and CL2 are disengaged, and the reverse rotation impossible state due to the lock of the first and second transmissions TM1 and TM2 is released. On the other hand, at the time of starting uphill, at least one of the clutch mechanisms CL1 and CL2 is brought into a connected state.
《動作パターンについて》
 次に、本実施形態の駆動システムにおいて実行する動作パターンについて説明する。
 図9~図23は動作パターンA~Oを取り出して示す拡大説明図、図24~図33は各運転状態に応じて実行する制御動作、または走行モード切り替え時の制御動作の説明図である。なお、図24~図33の各動作パターンを示す枠の中の右上のA~Oの符号は、図9~図23に取り出して示す動作パターンA~Oの符号と対応している。また、動作パターンを示す図の中で、動作中の駆動源を網掛けにより区別して示し、動力の伝達経路や電力の流れを実線や点線などの矢印で示す。
<About operation pattern>
Next, an operation pattern executed in the drive system of this embodiment will be described.
FIGS. 9 to 23 are enlarged explanatory views showing the operation patterns A to O, and FIGS. 24 to 33 are explanatory views of a control operation executed in accordance with each driving state or a control operation at the time of traveling mode switching. The symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 24 to 33 correspond to the symbols of the operation patterns A to O shown in FIGS. 9 to 23. Moreover, in the figure which shows an operation pattern, the drive source in operation | movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
 図9に示す動作パターンAでは、メインモータジェネレータMG1の駆動力でEV走行を行っている。即ち、バッテリ8からメインモータジェネレータMG1に通電することでメインモータジェネレータMG1を駆動し、メインモータジェネレータMG1の駆動力を、ドライブギヤ15、ドリブンギヤ12を介して被回転駆動部材11に伝達し、ディファレンシャル装置10および左右アクスルシャフト13L、13Rを介して駆動車輪2に伝えることで走行する。このとき、クラッチ機構CL1、CL2は遮断状態(OFF状態)にしておく。 In the operation pattern A shown in FIG. 9, EV traveling is performed with the driving force of the main motor generator MG1. In other words, the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential. The vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R. At this time, the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
 図10に示す動作パターンBでは、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、その発電した電力をメインモータジェネレータMG1およびバッテリ8に供給して、シリーズ走行を行っている。第1のエンジンENG1の始動は、サブモータジェネレータMG2により行う。このとき、第1のトランスミッションTM1の変速比は無限大に設定しておく。 In the operation pattern B shown in FIG. 10, the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is supplied to the main motor generator MG1 and the battery 8 to perform series travel. ing. The first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
 図11に示す動作パターンCでは、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用してパラレル走行を行っている。第1のエンジンENG1の駆動力を被回転駆動部材11に伝達させるには、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。そうすることにより、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の合成力を被回転駆動部材11に伝達させることができる。この動作パターンCは、低速走行や中速走行において、加速時などの要求駆動力が大きくなった場合に実行される。この際、クラッチ機構CL1は接続状態に維持され、クラッチ機構CL2は遮断状態に維持される。これにより、第1のエンジンENG1の駆動力が被回転駆動部材11に伝達されるとともに、第2のワンウェイ・クラッチOWC2の引きずりが防止される。 In the operation pattern C shown in FIG. 11, parallel running is performed using the driving power of both the main motor generator MG1 and the first engine ENG1. In order to transmit the driving force of the first engine ENG1 to the driven member 11 to be rotated, the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. Alternatively, the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated. This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling. At this time, the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state. As a result, the driving force of the first engine ENG1 is transmitted to the driven member 11 and the second one-way clutch OWC2 is prevented from being dragged.
 図12に示す動作パターンDでは、第1のエンジンENG1の駆動力を利用したエンジン走行を行っている状態で、SOCが低い場合における発進パターンである。 The operation pattern D shown in FIG. 12 is a start pattern when the SOC is low while the engine is running using the driving force of the first engine ENG1.
 図13に示す動作パターンEでは、減速時に駆動車輪2から被回転駆動部材11を介して伝達される動力を用いたメインモータジェネレータMG1の回生動作によって、メインモータジェネレータMG1が発電機として作用し、駆動車輪2から被回転駆動部材11を介して入力される機械エネルギーが電気エネルギーに変化される。そして、駆動車輪2に回生制動力が伝達されると共に、回生電力がバッテリ8に充電される。このとき、クラッチ機構CL1、CL2は切っておく。 In the operation pattern E shown in FIG. 13, the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 via the driven member 11 during deceleration. The mechanical energy input from the drive wheel 2 via the rotated drive member 11 is changed to electric energy. Then, regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8. At this time, the clutch mechanisms CL1 and CL2 are turned off.
 図14に示す動作パターンFでは、第1のエンジンENG1の駆動力のみを利用してエンジン走行を行っており、同時に、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。なお、SOCに応じて、サブモータジェネレータMG2の発電を停止させてもよい。 In the operation pattern F shown in FIG. 14, the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1. The battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
 図15に示す動作パターンGでは、第1のエンジンENG1の駆動力で走行しながら、シンクロ機構(スタータ・クラッチ手段)20を介して、被回転駆動部材11(デフケース)に導入された動力により第2のエンジンENG2の始動を行っており、その始動時の負荷の増大による駆動車輪2への出力の不足分をメインモータジェネレータMG1の駆動力で補っている。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力をメインモータジェネレータMG1に供給またはバッテリ8に充電している。 In the operation pattern G shown in FIG. 15, while traveling with the driving force of the first engine ENG1, the first power is introduced into the driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20. The engine ENG2 of No. 2 is started, and the shortage of output to the driving wheel 2 due to the increase in load at the time of starting is compensated by the driving force of the main motor generator MG1. The sub motor generator MG2 generates power using the driving force of the first engine ENG1, and supplies the generated power to the main motor generator MG1 or charges the battery 8.
 図16に示す動作パターンHでは、第1のエンジンENG1の駆動力を利用してエンジン走行を行っており、動作パターンGにおいて接続されたシンクロ機構20を遮断(噛み合い状態を解除)することで、被回転駆動部材11(デフケース)と第2のエンジンENG2の出力軸S2を切り離した状態にし、その状態で、始動後の第2のエンジンENG2の動力を第2のトランスミッションTM2に入力させている。ただし、この段階ではまだ、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回っていないので、第2のトランスミッションTM2の出力は、被回転駆動部材11に入力されていない。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力をバッテリ8に充電している。 In the operation pattern H shown in FIG. 16, the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state). The rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2. However, at this stage, since the input rotational speed of the second one-way clutch OWC2 does not exceed the output rotational speed, the output of the second transmission TM2 is not input to the driven member 11 to be rotated. The sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
 図17に示す動作パターンIでは、第2のエンジンENG2の駆動力によるエンジン走行を行っている。この動作パターンIは、動作パターンHの状態から第2のトランスミッションTM2の変速比をOD(オーバードライブ)側に変更して、第2のワンウェイ・クラッチOWC2の入力部材122の回転数が出力部材121の回転数を上回るように制御し、それにより、第2のエンジンENG2の動力を第2のトランスミッションTM2を介して被回転駆動部材11(デフケース)に伝達させ、第2のエンジンENG2の駆動力によるエンジン走行を実現している。この動作パターンIでは、第2のエンジンENG2によるエンゲージが成立(被回転駆動部材11への動力伝達が成立)した段階で、第1のエンジンENG1を停止させている。この際、クラッチ機構CL2は接続状態に維持され、クラッチ機構CL1は遮断状態に維持される。これにより、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達されるとともに、ワンウェイ・クラッチOWC1の引きずりが防止される。 In the operation pattern I shown in FIG. 17, the engine is driven by the driving force of the second engine ENG2. In this operation pattern I, the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2. The engine is running. In this operation pattern I, the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established). At this time, the clutch mechanism CL2 is maintained in the connected state, and the clutch mechanism CL1 is maintained in the disconnected state. As a result, the driving force of the second engine ENG2 is transmitted to the driven member 11 and the one-way clutch OWC1 is prevented from being dragged.
 図18に示す動作パターンJは、第2のエンジンENG2の駆動力を利用したエンジン走行を行っている状態で、更に要求出力が上昇した場合の動作パターンである。この動作パターンJでは、第2のエンジンENG2による走行状態において、更に第1のエンジンENG1を始動させて、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を合成して、被回転駆動部材11(デフケース)に伝達させている。即ち、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御している。 The operation pattern J shown in FIG. 18 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2. In this operation pattern J, in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11). The rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
 図19に示す動作パターンKは、例えば、中高速走行時に減速要求が発生した場合の動作パターンである。この動作パターンKでは、第1のエンジンENG1および第2のエンジンENG2を停止させ、減速に伴って駆動車輪2から被回転駆動部材11を介して伝達される動力によりメインモータジェネレータMG1で発電し、それにより生成される回生電力をバッテリ8に充電すると共に、回生制動力を駆動車輪2に作用させている。また同時に、シンクロ機構20を接続状態にして、第2のエンジンENG2のエンジンブレーキを制動力として駆動車輪2に作用させている。 The operation pattern K shown in FIG. 19 is, for example, an operation pattern when a deceleration request is generated during medium-high speed traveling. In this operation pattern K, the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and a regenerative braking force is applied to the drive wheel 2. At the same time, the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheels 2 as a braking force.
 図20に示す動作パターンLは、第2のエンジンENG2の駆動力により走行している状態で、更なる要求出力の上昇が生じた場合の切り替え時の動作パターンである。この動作パターンLでは、第1のエンジンENG1を始動するために、サブモータジェネレータMG2を駆動している。このときは、第1のトランスミッションTM1の変速比を無限大に設定する。また、この動作パターンによって、第1のエンジンENG1が始動した後は、第1、第2の両方のエンジンENG1、ENG2の両方の駆動力が、被回転駆動部材11に伝達される動作パターンJとなる。 The operation pattern L shown in FIG. 20 is an operation pattern at the time of switching when a further increase in the required output occurs while the vehicle is running with the driving force of the second engine ENG2. In this operation pattern L, the sub motor generator MG2 is driven to start the first engine ENG1. At this time, the gear ratio of the first transmission TM1 is set to infinity. In addition, after the first engine ENG1 is started by this operation pattern, the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and Become.
 図21に示す動作パターンMでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。 In the operation pattern M shown in FIG. 21, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
 図22に示す動作パターンNでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、メインモータジェネレータMG1で回生電力を生成してバッテリ8に充電し、同時に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。また、シンクロ機構20を接続状態に保つことで、第2のエンジンENG2はクランキング待機の状態にある。 In the operation pattern N shown in FIG. 22, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state.
 図23に示す動作パターンOは、停車中の動作パターンであり、この動作パターンOでは、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。この際、第1、第2のトランスミッションTM1、TM2の変速比を無限大(∞)にするか、クラッチCL1、CL2を切ることで、引き摺りトルクロスを抑制している。 The operation pattern O shown in FIG. 23 is an operation pattern when the vehicle is stopped. In this operation pattern O, the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is charged in the battery 8. is doing. At this time, the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity (∞) or by disengaging the clutches CL1 and CL2.
《運転状況に応じた制御動作について》
 次に図24~図33を用いて、様々な運転状況における制御動作について説明する。各運転状況は表形式で示してあり、表中の各枠の左下には説明の便宜上、以下の括弧内の数字対応する通し番号を付してある。また、各枠の右上の符号A~Oは、図9~図23の拡大図に対応しており、必要に応じて参照されたい。
《Control action according to the driving situation》
Next, control operations in various driving situations will be described with reference to FIGS. Each driving situation is shown in a table format, and for convenience of explanation, a serial number corresponding to the number in parentheses below is attached to the lower left of each frame in the table. The symbols A to O at the upper right of each frame correspond to the enlarged views of FIGS. 9 to 23 and should be referred to as necessary.
《発進時》
 まず、発進時の制御動作について図24を参照して説明する。
(1) 発進時の緩加速クルーズの際には、基本的に動作パターンAによるEV走行を行う。EV走行では、バッテリ8から供給される電力によりメインモータジェネレータMG1を駆動し、その駆動力のみによって走行する。
<When starting>
First, the control operation at the start will be described with reference to FIG.
(1) During slow acceleration cruise at the time of departure, basically, EV traveling by the operation pattern A is performed. In EV traveling, the main motor generator MG1 is driven by the electric power supplied from the battery 8, and the vehicle travels only by the driving force.
(2) また、加速時には、動作パターンBによるシリーズ走行を行う。シリーズ走行では、まず、サブモータジェネレータMG2により第1のエンジンENG1を始動する。第2のエンジンENG1が始動したら、サブモータジェネレータMG2を発電機として機能させて発電し、生成した電力をバッテリ8とメインモータジェネレータMG1に供給することで、EV走行を継続しながら、第1のエンジンENG1の動力によりサブモータジェネレータMG2で発電した電力を有効利用する。この際、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を下回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。 (2) In addition, during acceleration, series travel is performed with operation pattern B. In the series running, first, the first engine ENG1 is started by the sub motor generator MG2. When the second engine ENG1 is started, the sub motor generator MG2 functions as a generator to generate electric power, and the generated electric power is supplied to the battery 8 and the main motor generator MG1, thereby continuing the EV traveling, The electric power generated by the sub motor generator MG2 by the power of the engine ENG1 is effectively used. At this time, the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 is controlled so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed.
(3) また、加速要求に応じた制御により第1のエンジンENG1の回転数が上がったら、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように第1のトランスミッションTM1の変速比を変更し、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を合成したパラレル走行を行う。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(4) さらに、SOCが低い場合には、動作パターンDに示す第1のエンジンENG1よるエンジン走行によって発進する。この場合にも、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(3) When the rotational speed of the first engine ENG1 is increased by the control according to the acceleration request, the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. The ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(4) Further, when the SOC is low, the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
 このように、車両発進時には、メインモータジェネレータMG1の駆動力を利用したEV走行モードと、第1のエンジンENG1とサブモータジェネレータMG2とメインモータジェネレータMG1を利用したシリーズ走行モードと、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用したパラレル走行モードと、第1のエンジンENG1によるエンジン走行モードとを、運転状況に応じて選択して実行する。 Thus, when the vehicle starts, the EV travel mode using the driving force of the main motor generator MG1, the series travel mode using the first engine ENG1, the sub motor generator MG2, and the main motor generator MG1, and the main motor generator MG1. The parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
《低速走行(例えば、0~30km/h)時》
 次に低速走行時の制御動作について図25を参照して説明する。
(5)、(6) 緩加速クルーズ時や、例えばアクセルを離した緩減速クルーズ時は、動作パターンAによるEV走行を行う。
(7) また、ブレーキを踏むなどした減速時には、動作パターンEによる回生運転を行う。
(8)、(9) 緩加速クルーズ時および緩減速クルーズ時でも、バッテリ8の残容量(SOC)が35%以下の場合は、動作パターンBによるシリーズ運転を行う。
(10) また、加速の場合にも、動作パターンBによるシリーズ運転を行う。
(11) 更に加速要求が高い場合は、動作パターンCに切り替えることで、メインモータジェネレータMG1と第1のエンジンENG1の駆動力を用いたパラレル走行を行う。
<< When traveling at low speed (for example, 0-30 km / h) >>
Next, the control operation during low-speed traveling will be described with reference to FIG.
(5), (6) EV travel by the operation pattern A is performed during slow acceleration cruise, for example, during slow deceleration cruise with the accelerator released.
(7) When the vehicle is decelerated such as by depressing the brake, the regenerative operation by the operation pattern E is performed.
(8), (9) Even during the slow acceleration cruise and the slow deceleration cruise, if the remaining capacity (SOC) of the battery 8 is 35% or less, the series operation by the operation pattern B is performed.
(10) Also, in the case of acceleration, the series operation by the operation pattern B is performed.
(11) When the acceleration request is higher, the operation is switched to the operation pattern C to perform parallel traveling using the driving force of the main motor generator MG1 and the first engine ENG1.
《メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え》
 メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え時には、図26に示すように動作制御する。
(12)、(13) まず、動作パターンAによるEV走行を行っている状況から、サブモータジェネレータMG2により第1のエンジンENG1を始動する。その際、第1のトランスミッションTM1の変速比を無限大にして、第1のエンジンENG1の出力が被回転駆動部材11に入らない状態にする。始動後には、動作パターンBに切り替えて、サブモータジェネレータMG2の発電によるシリーズ走行を行う。
<< Switching of drive source from main motor generator MG1 to first engine ENG1 >>
When the drive source is switched from the main motor generator MG1 to the first engine ENG1, the operation is controlled as shown in FIG.
(12), (13) First, from the situation where EV traveling is performed according to the operation pattern A, the first engine ENG1 is started by the sub motor generator MG2. At that time, the transmission ratio of the first transmission TM1 is set to infinity, so that the output of the first engine ENG1 does not enter the driven member 11 to be rotated. After the start, the operation mode is switched to the operation pattern B and the series running is performed by the power generation of the sub motor generator MG2.
(14) 次いで、動作パターンFに移行して、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御し、第1のエンジンENG1の動力を被回転駆動部材11に伝達する。例えば、変速比を無限大にして一旦充電モードに入れた後に、変速比をOD(オーバードライブ)側に動かし、メインモータジェネレータMG1によるEV走行からシリーズ走行を介して第1のエンジンENG1によるエンジン走行へとスムーズに移行させる。この際、クラッチ機構CL1は、遅れが生じないように適当なタイミングで接続制御する。 (14) Next, the operation proceeds to the operation pattern F, and the rotation speed of the first engine ENG1 and / or the first transmission TM1 is set so that the input rotation speed of the first one-way clutch OWC1 exceeds the output rotation speed. The transmission ratio is controlled, and the power of the first engine ENG1 is transmitted to the driven member 11 for rotation. For example, after setting the gear ratio to infinity and once entering the charging mode, the gear ratio is moved to the OD (overdrive) side, and the engine running by the first engine ENG1 is performed from the EV running by the main motor generator MG1 through the series running. Make a smooth transition to At this time, the clutch mechanism CL1 controls connection at an appropriate timing so as not to cause a delay.
 第1のエンジンENG1による被回転駆動部材11への動力伝達(駆動源の切り替え)が成立したら、メインモータジェネレータMG1を停止する。但し、バッテリ残容量(SOC)が少ない場合は、サブモータジェネレータMG2による発電および充電を継続し、バッテリ残容量(SOC)が十分にある場合は、サブモータジェネレータMG2を停止させる。 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
《中速走行(例えば20~70km/h)時》
 次に中速走行時の制御動作について図27を参照して説明する。
(15) 緩加速クルーズ時は、動作パターンFにより、第1のエンジンENG1の駆動力のみを利用した単独エンジン走行を行う。その際、サブモータジェネレータMG2で発電した電力でバッテリ8を充電する。第1のエンジンENG1は高効率運転ポイントで運転し、第1のトランスミッションTM1の変速比を制御することで、運転状況に対応する。
<< When driving at medium speed (for example, 20 to 70 km / h) >>
Next, the control operation during medium speed running will be described with reference to FIG.
(15) During the slow acceleration cruise, the single engine running using only the driving force of the first engine ENG1 is performed according to the operation pattern F. At that time, the battery 8 is charged with the electric power generated by the sub motor generator MG2. The first engine ENG1 is operated at a high-efficiency operating point, and responds to the driving situation by controlling the gear ratio of the first transmission TM1.
(16)、(17) 緩減速クルーズ時および減速時には、動作パターンEにより、第1のエンジンENG1を停止し、クラッチ機構CL1,CL2を切って、メインモータジェネレータMG1による回生運転を行う。
(18) 一方、加速時には、動作パターンCに切り替えて、第1のエンジンENG1とメインモータジェネレータMG1の両方の駆動力を利用したパラレル運転を行う。この際、基本は第1のエンジンENG1によるエンジン走行であり、加速要求に対してメインモータジェネレータMG1でアシストする。この制御動作は、中速走行時の加速要求に対して第1のトランスミッションTM1の変速比の変化で対応できないときに選択される。
(16), (17) During slow deceleration cruise and deceleration, the first engine ENG1 is stopped by the operation pattern E, the clutch mechanisms CL1 and CL2 are turned off, and the regenerative operation by the main motor generator MG1 is performed.
(18) On the other hand, at the time of acceleration, the operation pattern C is switched to perform parallel operation using the driving forces of both the first engine ENG1 and the main motor generator MG1. At this time, the basic is engine running by the first engine ENG1, and the main motor generator MG1 assists the acceleration request. This control operation is selected when it is not possible to respond to an acceleration request during medium speed traveling by a change in the gear ratio of the first transmission TM1.
《第1のエンジンENG1から第2のエンジンENG2への駆動源の切り替え》
 第1のエンジンENG1の駆動力を利用したエンジン走行から第2のエンジンENG2を利用したエンジン走行への切り替え時には、図28に示すように動作制御する。
<< Switching of drive source from first engine ENG1 to second engine ENG2 >>
When switching from engine travel using the driving force of the first engine ENG1 to engine travel using the second engine ENG2, operation control is performed as shown in FIG.
(19)、(20) まず、動作パターンFにより、第1のエンジンENG1でエンジン走行している状態で、動作パターンGに切り替え、第2のエンジンENG2を始動する。この場合、シンクロ機構20を接続状態にして、被回転駆動部材11の動力で第2のエンジンENG2の出力軸S2をクランキングすることにより、第2のエンジンENG2を始動する。その際、始動ショックによる被回転駆動部材11の回転低下をメインモータジェネレータMG1で補う。即ち、第2のエンジンENG2の始動は、被回転駆動部材11に導入されている第1のエンジンENG1からの動力のみでも可能であるが、メインモータジェネレータMG1の駆動力を利用して行うことも可能である。なお、このときは、第2のトランスミッションTM2の変速比は、ワンウェイ・クラッチの入力回転数が出力回転数を下回るように設定されればよく、無限大に設定されてもよいし、目標とする変速比より僅かに小さい値に設定されてもよい。また、第1のエンジンENG1の駆動力に余裕がある場合には、サブモータジェネレータMG2で発電しバッテリ8の充電を行ってもよい。 (19), (20) First, the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started. In this case, the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated. At that time, the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock. In other words, the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible. At this time, the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
(21) その後、第2のエンジンENG2が始動したら、動作パターンHに切り替え、シンクロ機構20を接続遮断状態にして、メインモータジェネレータMG1を停止する。この段階では、まだ第2のエンジンENG2の動力は被回転駆動部材11まで入らない状態にある。そこで、徐々に第2のトランスミッションTM2の変速比をOD側に変更していく。このとき、第1のエンジンENG1を利用してサブモータジェネレータMG2で発電しバッテリ8の充電を行う。 (21) Thereafter, when the second engine ENG2 is started, the operation pattern H is switched to, the synchro mechanism 20 is disconnected, and the main motor generator MG1 is stopped. At this stage, the power of the second engine ENG2 has not yet entered the rotated drive member 11. Therefore, the gear ratio of the second transmission TM2 is gradually changed to the OD side. At this time, the first engine ENG1 is used to generate power with the sub motor generator MG2 to charge the battery 8.
(22) 第2のトランスミッションTM2の変速比をOD側に変更していき、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回ることで、動作パターンIに切り替わり、第2のワンウェイ・クラッチOWC2を介して、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達される。 (22) The gear ratio of the second transmission TM2 is changed to the OD side, and when the input rotational speed of the second one-way clutch OWC2 exceeds the output rotational speed, the operation mode is switched to I, and the second one-way The driving force of the second engine ENG2 is transmitted to the rotated drive member 11 via the clutch OWC2.
《中高速走行(50~110km/h)時》
 次に中高速走行時の制御動作について図29を参照して説明する。
(23) 緩加速クルーズ時は、動作パターンIにより、第2のエンジンENG2の駆動力を利用した単体エンジン走行を実施する。
(24) 加速時には、後述する動作パターンJへの切り替えにより、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を利用して走行する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(25) 緩減速クルーズ時には、動作パターンEにより、メインモータジェネレータMG1による回生運転を行い、両エンジンENG1、ENG2は停止する。また、(25)から(23)に戻るときには、シンクロ機構20を接続状態にして、第2のエンジンENG2をクランキングする。
(26) 減速時には、動作パターンKにより、メインモータジェネレータMG1を回生運転させ、同時に、シンクロ機構20を接続状態にすることで、第2のエンジンENG2によるエンジンブレーキを利かせる。
《Medium and high speed driving (50-110 km / h)》
Next, the control operation at the time of medium to high speed traveling will be described with reference to FIG.
(23) During slow acceleration cruise, the single engine running using the driving force of the second engine ENG2 is performed according to the operation pattern I.
(24) During acceleration, the vehicle travels by using the driving forces of both the second engine ENG2 and the first engine ENG1 by switching to an operation pattern J described later. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(25) During slow deceleration cruise, the regenerative operation is performed by the main motor generator MG1 according to the operation pattern E, and both the engines ENG1 and ENG2 are stopped. When returning from (25) to (23), the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked.
(26) At the time of deceleration, the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2.
《第2のエンジンENG2によるエンジン走行から第2のエンジンENG2と第1のエンジンENG1によるエンジン走行への切り替え》
 第2のエンジンENG2の駆動力を利用したエンジン走行から、第2のエンジンENG2に加えて第1のエンジンENG1の両方の駆動力を利用したエンジン走行への切り替え時には、図30に示すように動作制御する。
<< Switching from Engine Driving by Second Engine ENG2 to Engine Driving by Second Engine ENG2 and First Engine ENG1 >>
When switching from engine running using the driving force of the second engine ENG2 to engine running using both the driving forces of the first engine ENG1 in addition to the second engine ENG2, the operation as shown in FIG. Control.
(27)、(28) まず、動作パターンIにより、第2のエンジンENG2で単独エンジン走行している状態で、動作パターンLに示すように、サブモータジェネレータMG2を利用して第1のエンジンENG1を始動する。
(29) その後、動作パターンJに示すように、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御し、第2のエンジンENG2と第1のENG1の両駆動力を合成したエンジン走行へ移行する。
(27), (28) First, as shown in the operation pattern L, the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start.
(29) After that, as shown in the operation pattern J, the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11). The rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
《高速走行(100~Vmaxkm/h)時》
 次に、高速走行時の制御動作について図31を参照して説明する。
(30)、(31) 緩加速クルーズ時および加速時は、動作パターンJにより、第2のエンジンENG2の駆動力と第1のエンジンENG1の駆動力の合成力を利用したエンジン走行を実施する。この際、小排気量の第1のエンジンENG1は、回転数やトルクが高効率運転領域に入るように第1のエンジンENG1および/または第1のトランスミッションTM1を制御する固定した運転条件で運転し、それ以上の要求出力に対しては、大排気量の第2のエンジンENG2および/または第2のトランスミッションTM2を制御する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
<< At high speed (100 to Vmaxkm / h) >>
Next, a control operation during high speed traveling will be described with reference to FIG.
(30), (31) During slow acceleration cruise and acceleration, engine running is performed using the combined force of the driving force of the second engine ENG2 and the driving force of the first engine ENG1 according to the operation pattern J. At this time, the first engine ENG1 with a small displacement is operated under a fixed operating condition for controlling the first engine ENG1 and / or the first transmission TM1 so that the rotation speed and torque are in the high efficiency operation region. For more demanded output, the second engine ENG2 and / or the second transmission TM2 having a large displacement is controlled. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(32) また、緩減速クルーズ時は、動作パターンMにより、シンクロ機構20を接続状態にして第2のエンジンENG2のエンジンブレーキを利かせる。このとき、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。
(33) また、ブレーキを踏むなどした減速時には、動作パターンNに切り替え、シンクロ機構20を接続状態にすることにより、第2のエンジンENG2のエンジンブレーキを利かせる。同時に、メインモータジェネレータMG1の回生運転により、強い制動力が働くようにする。そして、メインモータジェネレータMG1で生成した回生電力をバッテリ8に充電する。また、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。
(32) Further, during slow deceleration cruise, the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2. At this time, the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
(33) Further, at the time of deceleration such as stepping on the brake, the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state. At the same time, a strong braking force is applied by the regenerative operation of the main motor generator MG1. Then, the battery 8 is charged with the regenerative power generated by the main motor generator MG1. The first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
《後進時》
 次に後進(後退)時の制御動作について図32を参照して説明する。
(34) 後進時は緩加速クルーズとして、動作パターンAによりEV走行を行う。後進しようとする時には、第1、第2のワンウェイ・クラッチOWC1、OWC2において、被回転駆動部材11に繋がる出力部材121が、正方向に対して逆方向(図3中の矢印RD2方向)に回転することになるので、入力部材122と出力部材121が互いにローラ123を介して噛み合う。入力部材122と出力部材121が噛み合うと、出力部材121の逆方向の回転力が入力部材122に作用することになるが、図34(a)に示す連結部材130の延長線上に入力中心軸線O1が位置する、入力中心軸線O1と第2支点O4とが最も離れた位置(または、正方向に対して逆方向の回転方向が図3中の矢印RD1方向の場合には、図34(b)に示す連結部材130が入力中心軸線O1を通り入力中心軸線O1と第2支点O4とが最も近接した位置)に至ると、入力部材122は連結部材130に連結されていることにより、入力部材122の揺動運動が規制されるので、それ以上逆方向の運動の伝達はロックされる。従って、出力部材121が逆回転しようとしても、無限・無段変速機構BD1、BD2よりなる第1、第2のトランスミッションTM1、TM2がロックすることにより、後進できない状態(後進不可状態)が発生する。そこで、予めクラッチ機構CL1、CL2を解放状態にしてロックを回避しておき、その状態でメインモータジェネレータMG1を逆回転させて、車両を後進させる。
(35) EV走行で後退している場合も、バッテリ8の残容量SOCが35%以下の場合は、動作パターンBのシリーズ走行に切り替えて、バッテリ8を充電しながら、メインモータジェネレータMG1を逆回転させる。
<Backward>
Next, the control operation during reverse (reverse) will be described with reference to FIG.
(34) When traveling backward, EV travel is performed by operation pattern A as a slow acceleration cruise. When going backward, in the first and second one-way clutches OWC1 and OWC2, the output member 121 connected to the driven member 11 rotates in the reverse direction (the direction of the arrow RD2 in FIG. 3) with respect to the forward direction. Therefore, the input member 122 and the output member 121 are engaged with each other via the roller 123. When the input member 122 and the output member 121 mesh with each other, the rotational force in the reverse direction of the output member 121 acts on the input member 122. However, the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest (or when the direction of rotation opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 34 (b) When the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other), the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked. Therefore, even if the output member 121 tries to reversely rotate, the first and second transmissions TM1 and TM2 including the infinite and continuously variable transmission mechanisms BD1 and BD2 are locked, so that a state in which the vehicle cannot reverse (non-reverse) is generated. . Therefore, the clutch mechanisms CL1 and CL2 are released in advance to avoid the lock, and the main motor generator MG1 is reversely rotated in this state to reverse the vehicle.
(35) If the remaining capacity SOC of the battery 8 is 35% or less even when reversing in EV traveling, the main motor generator MG1 is reversed while charging the battery 8 by switching to the operation pattern B series traveling. Rotate.
《停止時》
 次に停止時の制御動作について図33を参照して説明する。
(36) 車両停止の際のアイドリング時には、動作パターンOに切り替え、第1のエンジンENG1のみ駆動し、駆動力が被回転駆動部材11に伝わらないように、例えば、第1のトランスミッションTM1の変速比を無限大にして、サブモータジェネレータMG2により発電し、生成した電力をバッテリ8に充電する。
(37) また、アイドリングストップの場合は、全ての動力源を停止する。
<When stopped>
Next, the control operation at the time of stop will be described with reference to FIG.
(36) At the time of idling when the vehicle is stopped, the operation mode is switched to O, and only the first engine ENG1 is driven, so that the driving force is not transmitted to the rotated drive member 11, for example, the gear ratio of the first transmission TM1 Is set to infinity, power is generated by the sub motor generator MG2, and the generated power is charged in the battery 8.
(37) In the case of idling stop, all power sources are stopped.
 以上で、通常の走行時の制御動作について述べたが、この駆動システム1によれば、次のような使い方もできる。
 前述したように、車両が後進するとき、第1、第2のトランスミッションTM1、TM2は、出力部材121が入力部材122に対して逆回転しようとすることで、ロック状態になる。そこで、このロック状態になる機能を、登坂発進時のヒルホールド機能(ずり下がり禁止)として利用する。即ち、センサ等の何らかの手段により登り坂で発進しようとする状況を検出した場合には、どちらかのクラッチ機構CL1、CL2の少なくとも一方を接続状態に保持する。そうすることで、どちらかのトランスミッションTM1、TM2がロック状態になるので、車両のずり下がりを防止(ヒルホールド機能を実現)することができる。従って、その他のヒルホールド制御を行う必要はない。
Although the control operation during normal traveling has been described above, the drive system 1 can be used as follows.
As described above, when the vehicle moves backward, the first and second transmissions TM <b> 1 and TM <b> 2 are locked due to the output member 121 attempting to reversely rotate with respect to the input member 122. Therefore, this lock function is used as a hill hold function (sliding prohibition) when starting uphill. That is, when a situation in which the vehicle is going to start on an uphill is detected by some means such as a sensor, at least one of the clutch mechanisms CL1 and CL2 is held in the connected state. By doing so, one of the transmissions TM1 and TM2 is in a locked state, so that the vehicle can be prevented from sliding down (a hill hold function can be realized). Therefore, it is not necessary to perform other hill hold control.
 次に、実際に走行しているときの車速やエンジンやモータジェネレータの回転数、トランスミッションの変速比、バッテリ残容量(SOC)の関係を図35~図37を用いて説明する。なお、図中、車速はメインモータジェネレータMG1の回転数に比例している。また、第1のエンジンENG1とサブモータジェネレータMG2の回転数は一致している。 Next, the relationship among the vehicle speed, the number of revolutions of the engine and motor generator, the transmission gear ratio, and the remaining battery capacity (SOC) when actually running will be described with reference to FIGS. In the figure, the vehicle speed is proportional to the rotational speed of the main motor generator MG1. Further, the rotation speeds of the first engine ENG1 and the sub motor generator MG2 are the same.
《低速域(0~V2km/h)の走行パターン》
 図35を用いて低速域(0~V2km/h)で走行するときの運転状況を説明する。V2の値は、例えば50km/hである。
<< Driving pattern in low speed range (0 ~ V2km / h) >>
The driving situation when traveling in the low speed range (0 to V2 km / h) will be described with reference to FIG. The value of V2 is, for example, 50 km / h.
 まず、発進するときは、メインモータジェネレータMG1によるEV走行を行う。車速ゼロから所定速度(<V2)まではメインモータジェネレータMG1のみのEV走行を行う。このとき、第1のエンジンENG1およびサブモータジェネレータMG2は停止している。また、第1のトランスミッションTM1を構成する第1の無限・無段変速機構BD1のレシオは無限大に設定している。 First, when starting the vehicle, EV driving is performed by the main motor generator MG1. From the vehicle speed of zero to a predetermined speed (<V2), only the main motor generator MG1 performs EV traveling. At this time, the first engine ENG1 and the sub motor generator MG2 are stopped. The ratio of the first infinite / continuously variable transmission mechanism BD1 constituting the first transmission TM1 is set to infinity.
 次に、EV走行中、バッテリ残容量(SOC)が減少し基準値(SOCt=例えば35%程度)まで下がると、EV走行からシリーズ走行に移行する。その段階では、まず、サブモータジェネレータMG2により第1のエンジンENG1を始動し、高効率運転領域に入る回転数で第1のエンジンENG1を運転する。このとき、第1の無限・無段変速機構BD1のレシオは無限大に維持する。 Next, during EV traveling, when the remaining battery capacity (SOC) decreases to a reference value (SOCt = about 35%, for example), the EV traveling is shifted to the series traveling. At that stage, first, the first motor ENG1 is started by the sub motor generator MG2, and the first engine ENG1 is operated at a rotational speed that enters the high efficiency operation region. At this time, the ratio of the first infinite / continuously variable transmission mechanism BD1 is maintained at infinity.
 次に、シリーズ運転中に加速要求が発生した場合には、メインモータジェネレータMG1の回転数をアップし始め、その状況で更に第1の無限・無段変速機構BD1のレシオを小さくした後、徐々にエンジン回転数を上げると共にレシオを変更することで、第1のエンジンENG1の駆動力を被回転駆動部材11に伝達させ、第1のエンジンENG1によるエンジン走行に切り替える。この段階で、メインモータジェネレータMG1は停止する。 Next, when an acceleration request is generated during series operation, the rotational speed of the main motor generator MG1 starts to increase, and after further reducing the ratio of the first infinite / continuously variable transmission mechanism BD1, By increasing the engine speed and changing the ratio, the driving force of the first engine ENG1 is transmitted to the driven member 11 to be switched to the engine running by the first engine ENG1. At this stage, main motor generator MG1 stops.
 車速がV2(低速域の最高値)になったら、第1のエンジンENG1を高効率運転し、第1の無限・無段変速機構BD1のレシオをそれに対応する値に設定して、第1のエンジンENG1によるクルーズ走行(負荷の少ない安定走行)を行う。 When the vehicle speed reaches V2 (the highest value in the low speed range), the first engine ENG1 is operated with high efficiency, and the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to a value corresponding thereto, Cruise driving with engine ENG1 (stable driving with less load) is performed.
 次に、ブレーキが踏まれるなどして減速要求が発生したら、第1のエンジンENG1を停止すると共に、第1の無限・無段変速機構BD1のレシオを無限大に向けて変更していき、車両停止までメインモータジェネレータMG1を回生運転する。 Next, when a deceleration request is generated, for example, when the brake is stepped on, the first engine ENG1 is stopped and the ratio of the first infinite / continuously variable transmission mechanism BD1 is changed to infinity. The main motor generator MG1 is regenerated until it stops.
《中速域(V1~V3km/h)の走行パターン》
 図36を用いて中速域(V1~V3km/h)で走行するときの運転状況を説明する。V1<V2<V3であり、V1の値は例えば20km/h、V3の値は例えば110km/hである。
<< Medium speed range (V1-V3km / h) driving pattern >>
The driving situation when traveling in the medium speed range (V1 to V3 km / h) will be described with reference to FIG. V1 <V2 <V3, the value of V1 is, for example, 20 km / h, and the value of V3 is, for example, 110 km / h.
 まず、車速V1から加速要求があった場合、最初の段階はメインモータジェネレータMG1の回転数をアップし、次に第1のエンジンENG1のエンジン回転数を上げると共に第1の無限・無段変速機構BD1のレシオを変更する。そして、第1のエンジンENG1の駆動力を被回転駆動部材11に伝達して、第1のエンジンENG1とメインモータジェネレータMG1によるシリーズ走行から、第1のエンジンENG1によるエンジン走行に切り替える。この段階で、メインモータジェネレータMG1は停止しておく。 First, when there is a request for acceleration from the vehicle speed V1, the first stage increases the rotational speed of the main motor generator MG1, then increases the engine rotational speed of the first engine ENG1, and the first infinite and continuously variable transmission mechanism. Change the ratio of BD1. Then, the driving force of the first engine ENG1 is transmitted to the driven member 11 to switch from the series traveling by the first engine ENG1 and the main motor generator MG1 to the engine traveling by the first engine ENG1. At this stage, the main motor generator MG1 is stopped.
 車速が安定したら、第1のエンジンENG1を高効率運転し、第1の無限・無段変速機構BD1のレシオをそれに対応する値に維持して、第1のエンジンENG1によるクルーズ走行を行う。 When the vehicle speed is stabilized, the first engine ENG1 is operated with high efficiency, the ratio of the first infinite and continuously variable transmission mechanism BD1 is maintained at a value corresponding thereto, and the cruise traveling by the first engine ENG1 is performed.
 次に、第1のエンジンENG1によるクルーズ走行を行っている状況で更なる加速要求が発生したら、第1のエンジンENG1の回転数を上げると共に第1の無限・無段変速機構BD1のレシオを大きくして、継続して第1のエンジンENG1の駆動力を被回転駆動部材11に伝達すると同時に、第2の無限・無段変速機構BD2のレシオを無限大にした状態で第2のエンジンENG2を始動し、第2のエンジンENG2の回転数を上げると共に第2の無限・無段変速機構BD2のレシオを小さくした状態でエンゲージを行い、レシオを徐々に大きくしていき、第2のエンジンENG2の駆動力を被回転駆動部材11に伝達する。そして、第1のエンジンENG1の駆動力のみによるエンジン走行から、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を同期・合成させて被回転駆動部材11に伝達するエンジン走行に切り替える。 Next, when a further acceleration request is generated in a situation where the cruise traveling by the first engine ENG1 is being performed, the rotational speed of the first engine ENG1 is increased and the ratio of the first infinite / continuously variable transmission mechanism BD1 is increased. Then, the driving force of the first engine ENG1 is continuously transmitted to the driven member 11 and, at the same time, the second engine ENG2 is operated with the ratio of the second infinite / continuously variable transmission mechanism BD2 being infinite. Start, increase the rotation speed of the second engine ENG2, and engage with the ratio of the second infinite and continuously variable transmission mechanism BD2 decreased, gradually increasing the ratio of the second engine ENG2 A driving force is transmitted to the driven member 11 to be rotated. Then, the engine running using only the driving force of the first engine ENG1 is switched to the engine running where the driving forces of both the first engine ENG1 and the second engine ENG2 are synchronized and combined and transmitted to the driven member 11 to be rotated. .
 車速がV3(中速域の最高値)になったら、第1の無限・無段変速機構BD1のレシオを無限大に設定し、第1のエンジンENG1の駆動力が被回転駆動部材11に伝わらないようにして、第2のエンジンENG2の駆動力のみによるエンジン走行に切り替える。そして、第2のエンジンENG2を高効率運転し、第2の無限・無段変速機構BD2のレシオをそれに対応する値に設定して、第2のエンジンENG2によるクルーズ走行を行う。また、この第2のエンジンENG2のみによるエンジン走行の最初の期間に、第1のエンジンENG1でサブモータジェネレータMG2を駆動し、発電した電力をバッテリ8に充電する。このとき、第1のエンジンENG1は、高効率運転領域で運転し(シリーズ)、その後、バッテリ8が第2所定値(例えば、SOCu=80%)まで充電されたら、第1のエンジンENG1は停止する。 When the vehicle speed reaches V3 (maximum value in the medium speed range), the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity, and the driving force of the first engine ENG1 is transmitted to the driven member 11 to be rotated. In such a manner, the engine is switched to the engine running only by the driving force of the second engine ENG2. Then, the second engine ENG2 is operated with high efficiency, the ratio of the second infinitely-continuously variable transmission mechanism BD2 is set to a value corresponding thereto, and cruise traveling by the second engine ENG2 is performed. In addition, during the first period of engine travel using only the second engine ENG2, the sub motor generator MG2 is driven by the first engine ENG1, and the battery 8 is charged with the generated power. At this time, the first engine ENG1 operates in the high-efficiency operation region (series). After that, when the battery 8 is charged to a second predetermined value (for example, SOCu = 80%), the first engine ENG1 is stopped. To do.
 次に、ブレーキが踏まれるなどして減速要求が発生したら、第2の無限・無段変速機構BD2のレシオを無限大に設定し、メインモータジェネレータMG1を回生運転すると共に、第2のエンジンENG2によるエンジンブレーキを利かせる。車速が落ちたら、第1のエンジンENG1を始動して、その回転数を上げて行くと共に第1の無限・無段変速機構BD1のレシオを変更し、第1のエンジンENG1の駆動力を被回転駆動部材11に伝達する。そして、第1のエンジンENG1の駆動力を利用したエンジン走行に切り替える。 Next, when a deceleration request is generated, for example, when the brake is depressed, the ratio of the second infinite / continuously variable transmission mechanism BD2 is set to infinity, the main motor generator MG1 is regeneratively operated, and the second engine ENG2 Use the engine brake. When the vehicle speed drops, the first engine ENG1 is started and the number of revolutions is increased and the ratio of the first infinite / continuously variable transmission mechanism BD1 is changed to rotate the driving force of the first engine ENG1. This is transmitted to the drive member 11. And it switches to engine driving | running | working using the driving force of 1st engine ENG1.
《高速域(V2~V4km/h)の走行パターン》
 図37を用いて高速域(V2~V4km/h)で走行するときの運転状況を説明する。V2<V3<V4であり、V4の値は例えば、150km/hである。
<< Driving pattern in high speed range (V2 ~ V4km / h) >>
The driving situation when traveling in the high speed range (V2 to V4 km / h) will be described with reference to FIG. V2 <V3 <V4, and the value of V4 is, for example, 150 km / h.
 まず、第1のエンジンENG1の駆動力のみでエンジン走行している状況で、加速要求があった場合、第1のエンジンENG1のエンジン回転数を上げると共に第1の無限・無段変速機構BD1のレシオを変更して、継続して第1のエンジンENG1の駆動力を被回転駆動部材11に伝達すると同時に、第2の無限・無段変速機構BD2のレシオを無限大にした状態で第2のエンジンENG2を始動し、第2のエンジンENG2の回転数を上げると共に第2の無限・無段変速機構BD2のレシオを小さくした状態から徐々に大きくしていき、第2のエンジンENG2の駆動力を被回転駆動部材11に伝達する。そして、第1のエンジンENG1の駆動力のみによるエンジン走行から、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を同期・合成させて被回転駆動部材11に伝達するエンジン走行に切り替える。 First, in the situation where the engine is running only with the driving force of the first engine ENG1, when there is a request for acceleration, the engine speed of the first engine ENG1 is increased and the first infinite and continuously variable transmission mechanism BD1 is set. By changing the ratio and continuously transmitting the driving force of the first engine ENG1 to the driven member 11, the second infinite and continuously variable transmission mechanism BD2 is set to the infinite ratio. The engine ENG2 is started, the rotational speed of the second engine ENG2 is increased, and the ratio of the second infinite and continuously variable transmission mechanism BD2 is gradually increased from the reduced state to increase the driving force of the second engine ENG2. This is transmitted to the driven member 11 to be rotated. Then, the engine running using only the driving force of the first engine ENG1 is switched to the engine running where the driving forces of both the first engine ENG1 and the second engine ENG2 are synchronized and combined and transmitted to the driven member 11 to be rotated. .
 車速が安定したら、第1の無限・無段変速機構BD1のレシオを無限大に設定し、第1のエンジンENG1の駆動力が被回転駆動部材11に伝わらないようにして、第2のエンジンENG2の駆動力のみによるエンジン走行に切り替える。そして、第2のエンジンENG2を高効率運転し、第2の無限・無段変速機構BD2のレシオをそれに対応する値に設定して、第2のエンジンENG2によるクルーズ走行を行う。また、この第2のエンジンENG2のみによるエンジン走行の最初の期間に、第1のエンジンENG1でサブモータジェネレータMG2を駆動し、発電した電力をバッテリ8に充電する。このとき、第1のエンジンENG1は、高効率運転領域で運転し(シリーズ)、その後、第1のエンジンENG1は停止する。 When the vehicle speed stabilizes, the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity, so that the driving force of the first engine ENG1 is not transmitted to the rotated drive member 11, and the second engine ENG2 Switch to engine running with only the driving force. Then, the second engine ENG2 is operated with high efficiency, the ratio of the second infinitely-continuously variable transmission mechanism BD2 is set to a value corresponding thereto, and cruise traveling by the second engine ENG2 is performed. In addition, during the first period of engine travel using only the second engine ENG2, the sub motor generator MG2 is driven by the first engine ENG1, and the battery 8 is charged with the generated power. At this time, the first engine ENG1 operates in the high-efficiency operation region (series), and then the first engine ENG1 stops.
 次に、第2のエンジンENG2によるクルーズ走行を行っている状況で更なる加速要求が発生したら、第2のエンジンENG2の回転数を上げると共に第2の無限・無段変速機構BD2のレシオを変更していき、同時に、第1のエンジンENG1を始動して、その回転数を上げると共に第1の無限・無段変速機構BD1のレシオを変更していき、第1のエンジンENG1の駆動力を、第2のエンジンENG2の駆動力と共に被回転駆動部材11に伝達し、第2のエンジンENG2の駆動力のみによるエンジン走行から、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を同期・合成させて被回転駆動部材11に伝達するエンジン走行に切り替える。 Next, if a further acceleration request is generated while cruise driving is being performed by the second engine ENG2, the rotation speed of the second engine ENG2 is increased and the ratio of the second infinite / continuously variable transmission mechanism BD2 is changed. At the same time, the first engine ENG1 is started, the rotational speed thereof is increased and the ratio of the first infinite and continuously variable transmission mechanism BD1 is changed, and the driving force of the first engine ENG1 is The driving force of the second engine ENG2 is transmitted to the rotated drive member 11 together with the driving force of the second engine ENG2, and the driving force of both the second engine ENG2 and the first engine ENG1 is synchronized from the engine running only by the driving force of the second engine ENG2. Switch to engine running that is combined and transmitted to the driven member 11.
 車速がV4(高速域の最高値)になったら、優先的に第1のエンジンENG1を高効率運転し、第1の無限・無段変速機構BD1のレシオをそれに対応する値に設定すると共に、第2のエンジンENG2と第1の無限・無段変速機構BD1を、クルーズ走行に適した値に設定して、第1、第2の2つのエンジンENG1、ENG2によるクルーズ走行(負荷の少ない安定走行)を行う。 When the vehicle speed reaches V4 (the maximum value in the high speed range), the first engine ENG1 is preferentially operated with high efficiency, and the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to a value corresponding thereto, The second engine ENG2 and the first infinitely variable transmission mechanism BD1 are set to values suitable for cruise travel, and cruise travel (stable travel with less load) is performed by the first and second engines ENG1 and ENG2. )I do.
 次に、ブレーキが踏まれるなどして減速要求が発生したら、第1の無限・無段変速機構BD1のレシオを無限大に設定して、第1のエンジンENG1を停止すると共に、メインモータジェネレータMG1を回生運転する。また、同時に、第2のエンジンENG2によるエンジンブレーキを利かせる。車速が落ちたら、第2のエンジンENG2の回転数および第2の無限・無段変速機構BD2のレシオを変更し、第2のエンジンENG2の駆動力を被回転駆動部材11に伝達し、第2のエンジンENG2の駆動力のみを利用したエンジン走行に切り替える。 Next, when a deceleration request is generated, for example, when the brake is depressed, the ratio of the first infinite / continuously variable transmission mechanism BD1 is set to infinity, the first engine ENG1 is stopped, and the main motor generator MG1 is set. Regenerative operation. At the same time, the engine brake by the second engine ENG2 is applied. When the vehicle speed decreases, the rotational speed of the second engine ENG2 and the ratio of the second infinite / continuously variable transmission mechanism BD2 are changed, and the driving force of the second engine ENG2 is transmitted to the driven member 11 for rotation. The engine is switched to engine driving using only the driving force of the engine ENG2.
 図38は、第1、第2のエンジンENG1、ENG2のエンゲージ設定範囲の説明図である。横軸はエンジン回転数、縦軸は変速機構のレシオを示している。
 例えば、レシオが無限大(∞)の状態で第1のエンジンENG1を始動すると、エンジン回転数が所定値に上がり、この状態で、レシオを無限大(∞)から小さくしていく、あるいは、エンジン回転数を大きくしていくと車速線に達し、エンジン出力が被回転駆動部材11に伝達される(エンゲージが成立)。また、第2のエンジンENG2を運転する際にも、レシオを無限大(∞)またはエンゲージする目標のレシオより多少大きめの有限値から徐々に小さくしていく。あるいは、エンジン回転数を大きくしていく。そうすると、車速線に達することで、エンジン出力が被回転駆動部材11に伝達される(エンゲージが成立)。このため、各エンジンENG1、ENG2の回転数と変速機構のレシオを車速に応じたエンゲージ範囲の中で適宜設定することができ、エンジンの高効率な運転が可能となる。従って、第1のエンジンENG1を高効率運転ポイントで運転しておいて、さらに高い要求駆動力が生じた場合には、第2のエンジンENG2をエンジン回転数、レシオを選択しながら運転することができ、両方のエンジンENG1、ENG2を効率の良い運転ポイントで使い分けることも可能である。
FIG. 38 is an explanatory diagram of the engagement setting ranges of the first and second engines ENG1, ENG2. The horizontal axis represents the engine speed, and the vertical axis represents the ratio of the transmission mechanism.
For example, when the first engine ENG1 is started in a state where the ratio is infinite (∞), the engine speed increases to a predetermined value, and in this state, the ratio is decreased from infinity (∞), or the engine As the rotational speed is increased, the vehicle speed line is reached, and the engine output is transmitted to the driven member 11 (engagement is established). Also, when the second engine ENG2 is operated, the ratio is gradually decreased from infinity (∞) or a slightly larger finite value than the target ratio to be engaged. Alternatively, the engine speed is increased. Then, when the vehicle speed line is reached, the engine output is transmitted to the driven member 11 (engagement is established). Therefore, the rotational speed of each engine ENG1, ENG2 and the ratio of the speed change mechanism can be set as appropriate within an engagement range corresponding to the vehicle speed, and the engine can be operated with high efficiency. Accordingly, when the first engine ENG1 is operated at a high efficiency operation point and a higher required driving force is generated, the second engine ENG2 can be operated while selecting the engine speed and ratio. It is also possible to use both engines ENG1 and ENG2 at an efficient operating point.
 次に、以上において説明した駆動システム1の全般的な作用効果について述べる。本実施形態の駆動システム1によれば、次のような作用効果が得られる。 Next, general operational effects of the drive system 1 described above will be described. According to the drive system 1 of the present embodiment, the following operational effects can be obtained.
 第1、第2の各エンジンENG1、ENG2に対して、変速機構であるトランスミッションTM1、TM2が個別に装備されているため、エンジンENG1、ENG2の回転数とトランスミッションTM1、TM2の変速比の設定の組み合わせにより、トランスミッションTM1、TM2からの出力回転数(第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の入力回転数)を制御することができる。従って、トランスミッションTM1、TM2の変速比の設定に応じて、各エンジンENG1、ENG2の回転数を独立して制御することが可能であり、各エンジンENG1、ENG2をそれぞれに効率の良い動作ポイントで運転することができて、燃費向上に大きく貢献することができる。 Since the transmissions TM1 and TM2 that are transmission mechanisms are individually provided for the first and second engines ENG1 and ENG2, the rotational speeds of the engines ENG1 and ENG2 and the transmission ratios of the transmissions TM1 and TM2 are set. By the combination, the output rotation speed from the transmissions TM1 and TM2 (the input rotation speed of the input member 122 of the first and second one-way clutches OWC1 and OWC2) can be controlled. Accordingly, it is possible to independently control the rotational speeds of the engines ENG1 and ENG2 according to the transmission ratio settings of the transmissions TM1 and TM2, and each engine ENG1 and ENG2 is operated at an efficient operating point. Can contribute greatly to improving fuel efficiency.
 「第1のエンジンENG1と第1のトランスミッションTM1」の組、及び「第2のエンジンENG2と第2のトランスミッションTM2」の組を「動力機構」と称した場合、2組の動力機構が、それぞれワンウェイ・クラッチOWC1、OWC2を介して同一の被回転駆動部材11に連結されているため、駆動源として使用する動力機構の選択切替、あるいは、2つの動力機構からの駆動力の合成を、各ワンウェイ・クラッチOWC1、OWC2に対する入力回転数(動力機構から出力される回転数)の制御を行うだけで、実行することができる。 When the group of “first engine ENG1 and first transmission TM1” and the group of “second engine ENG2 and second transmission TM2” are referred to as “power mechanism”, the two power mechanisms are respectively Since the one-way clutches OWC1 and OWC2 are connected to the same driven member 11 for rotation, the selection of the power mechanism used as the drive source or the synthesis of the driving force from the two power mechanisms can be performed for each one-way. It can be executed only by controlling the input rotation speed (rotation speed output from the power mechanism) for the clutches OWC1 and OWC2.
 第1及び第2のトランスミッションTM1、TM2として、それぞれに無段階に変速可能な無限・無段変速機構BD1、BD2を使用しているので、第1、第2のエンジンENG1、ENG2の回転数を変更せず、運転状態を高効率運転ポイントに維持したまま、無限・無段変速機構BD1、BD2の変速比を無段階で変更するだけで、スムーズに各動力機構から被回転駆動部材11への動力伝達のON/OFFを制御することができる。 Since the first and second transmissions TM1 and TM2 use infinitely and continuously variable transmission mechanisms BD1 and BD2, respectively, capable of stepless shifting, the rotational speeds of the first and second engines ENG1 and ENG2 Without changing, simply changing the gear ratio of the infinite and continuously variable transmission mechanisms BD1 and BD2 steplessly while maintaining the operating state at the high-efficiency operating point, and smoothly moving from each power mechanism to the rotated drive member 11 Power transmission ON / OFF can be controlled.
 この点、有段変速機の場合には、動力機構の出力回転数を変更することによりスムーズにワンウェイ・クラッチOWC1、OWC2のON/OFFを制御するためには、エンジンEMG1、ENG2の回転数を変速段に合わせて調整しなくてはならない。一方、無限・無段変速機構BD1、BD2の場合、エンジンENG1、ENG2の回転数を変更せずに、無限・無段変速機構BD1、BD2の変速比を無段階に調節するだけで、スムーズに動力機構の出力回転数を変化させることができるので、ワンウェイ・クラッチOWC1、OWC2の作用を介しての動力機構と被回転駆動部材11との間の動力伝達のON/OFFによる駆動源(エンジンENG1、ENG2)の切り替えをスムーズに行うことができる。従って、エンジンENG1、ENG2の運転をBSFC(正味燃料消費率:Brake Specific Fuel Consumption)の良い運転状態に維持することができる。 In this regard, in the case of a stepped transmission, in order to smoothly control the ON / OFF of the one-way clutches OWC1 and OWC2 by changing the output rotational speed of the power mechanism, the rotational speeds of the engines EMG1 and ENG2 are set. It must be adjusted to the gear position. On the other hand, in the case of the infinite and continuously variable transmission mechanisms BD1 and BD2, it is possible to smoothly adjust the speed ratio of the infinite and continuously variable transmission mechanisms BD1 and BD2 steplessly without changing the rotational speed of the engines ENG1 and ENG2. Since the output rotational speed of the power mechanism can be changed, a drive source (engine ENG1) by ON / OFF of power transmission between the power mechanism and the driven member 11 via the action of the one-way clutches OWC1 and OWC2 , ENG2) can be smoothly switched. Therefore, the operation of the engines ENG1 and ENG2 can be maintained in an operating state with a good BSFC (Net fuel consumption rate: Brake Specific Fuel Consumption).
 特に、本実施形態の無限・無段変速機構BD1、BD2の採用により、偏心ディスク104の偏心量r1を変更するだけで、変速比を無限大にすることができる。従って、変速比を無限大にすることで、エンジンENG1、ENG2の始動時等において、下流側の慣性質量部をエンジンENG1、ENG2から実質的に切り離すことができる。そのため、下流側(出力側)の慣性質量部がエンジンENG1、ENG2の始動の抵抗とならず、スムーズにエンジンENG1、ENG2の始動ができるようになる。また、この形式の無限・無段変速機構BD1、BD2の場合、使用するギヤの数を減らすことができるので、ギヤの噛み合い摩擦によるエネルギーロスを減らすことができる。 In particular, by employing the infinite and continuously variable transmission mechanisms BD1 and BD2 of this embodiment, the transmission ratio can be made infinite simply by changing the eccentric amount r1 of the eccentric disk 104. Therefore, by setting the transmission ratio to infinity, the downstream inertial mass portion can be substantially separated from the engines ENG1 and ENG2 when the engines ENG1 and ENG2 are started. Therefore, the inertial mass portion on the downstream side (output side) does not serve as a starting resistance for the engines ENG1 and ENG2, and the engines ENG1 and ENG2 can be started smoothly. In addition, in the case of this type of infinite and continuously variable transmission mechanisms BD1 and BD2, the number of gears used can be reduced, so that energy loss due to gear meshing friction can be reduced.
 エンジンENG1、ENG2とは別の動力源として、メインモータジェネレータMG1を被回転駆動部材11に接続しているので、メインモータジェネレータMG1の駆動力だけを利用したEV走行が可能となる。このEV走行の際に、第1および第2のワンウェイ・クラッチOWC1、OWC2では、出力部材121の正方向の回転速度が入力部材122の正方向の回転速度を上回るので、クラッチOFFの状態(非ロック状態)になっており、動力機構が被回転駆動部材11から切り離され、回転負荷を減らすことができる。 Since the main motor generator MG1 is connected to the rotated drive member 11 as a power source different from the engines ENG1 and ENG2, EV traveling using only the driving force of the main motor generator MG1 is possible. During this EV travel, in the first and second one-way clutches OWC1 and OWC2, the positive rotational speed of the output member 121 exceeds the positive rotational speed of the input member 122. (The locked state), the power mechanism is separated from the driven member 11 to be rotated, and the rotational load can be reduced.
 また、このEV走行から、第1のエンジンENG1の駆動力を利用したエンジン走行に移行する場合には、駆動力を利用しようとする第1のエンジンENG1に付設された第1のワンウェイ・クラッチOWC1の入力回転数を、メインモータジェネレータMG1により駆動される被回転駆動部材11の回転数を上回るように制御する。これにより、EV走行からエンジン走行に走行モードを容易に切り替えられる。 Further, when the EV traveling is shifted to the engine traveling using the driving force of the first engine ENG1, the first one-way clutch OWC1 attached to the first engine ENG1 to use the driving force. Is controlled so as to exceed the rotational speed of the driven member 11 driven by the main motor generator MG1. As a result, the traveling mode can be easily switched from EV traveling to engine traveling.
 また、第1のエンジンENG1から第1のワンウェイ・クラッチOWC1へ入力する回転数とメインモータジェネレータMG1から被回転駆動部材11に与える回転数を同期させることにより、第1のエンジンENG1の駆動力とメインモータジェネレータMG1の駆動力の両方を利用したパラレル走行も可能になる。また、メインモータジェネレータMG1の駆動力を利用することによって第2のエンジンENG2を始動させることも可能であるので、別途第2のエンジンENG2用のスタータ装置を省略できるメリットもある。更に、車両の減速時にメインモータジェネレータMG1を発電機として機能させることにより、回生制動力を駆動車輪2に作用させることができると共に、回生電力をバッテリ8に充電することができるので、エネルギー効率の向上も図れる。 Further, by synchronizing the rotational speed input from the first engine ENG1 to the first one-way clutch OWC1 and the rotational speed applied from the main motor generator MG1 to the driven member 11 to be driven, the driving force of the first engine ENG1 Parallel running using both driving forces of the main motor generator MG1 is also possible. Further, since the second engine ENG2 can be started by using the driving force of the main motor generator MG1, there is an advantage that a starter device for the second engine ENG2 can be omitted separately. Further, by causing the main motor generator MG1 to function as a generator when the vehicle is decelerated, the regenerative braking force can be applied to the drive wheels 2 and the regenerative power can be charged to the battery 8, so that the energy efficiency can be improved. You can also improve.
 第1のエンジンENG1の出力軸S1にサブモータジェネレータMG2が接続されているので、サブモータジェネレータMG2は第1のエンジンENG1のスタータとして利用できるので、別途第1のエンジンENG1用のスタータ装置を設ける必要が無い。また、このサブモータジェネレータMG2を第1のエンジンENG1の駆動力で発電する発電機として利用し、発電した電力をメインモータジェネレータMG1に供給することにより、シリーズ走行を行うこともできる。 Since the sub motor generator MG2 is connected to the output shaft S1 of the first engine ENG1, the sub motor generator MG2 can be used as a starter of the first engine ENG1, and therefore a starter device for the first engine ENG1 is separately provided. There is no need. Further, the series motor traveling can be performed by using the sub motor generator MG2 as a generator that generates electric power with the driving force of the first engine ENG1, and supplying the generated electric power to the main motor generator MG1.
 このように、エンジンENG1、ENG2とは別の動力源として、メインモータジェネレータMG1とサブモータジェネレータMG2を装備していることにより、エンジンENG1、ENG2の駆動力だけを利用したエンジン走行の他に、メインモータジェネレータMG1の駆動力だけを利用したEV走行、エンジンENG1、ENG2とメインモータジェネレータMG1の両方の駆動力を利用したパラレル走行、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電した電力をメインモータジェネレータMG1に供給して、メインモータジェネレータMG1の駆動力により走行するシリーズ走行などの各種の走行モードを選択して実行することができ、条件に応じた最適な走行モードを選択することにより、燃費向上に貢献することができる。 As described above, since the main motor generator MG1 and the sub motor generator MG2 are provided as power sources different from the engines ENG1, ENG2, in addition to the engine running using only the driving force of the engines ENG1, ENG2, EV traveling using only the driving force of the main motor generator MG1, parallel traveling using the driving force of both the engines ENG1, ENG2 and the main motor generator MG1, and sub motor generator MG2 utilizing the driving force of the first engine ENG1 It is possible to select and execute various travel modes such as a series travel that travels by the driving force of the main motor generator MG1 by supplying the electric power generated by the motor to the main motor generator MG1, and the optimum travel mode according to the conditions By selecting It is possible to contribute to the cost improvement.
 また、これら走行モードの切り替えの際に、トランスミッションTM1、TM2に無限・無段変速機構BD1、BD2を使用していることにより、ショック無しにスムーズに、例えば、メインモータジェネレータMG1の駆動力を利用したEV走行またはシリーズ走行から第1のエンジンENG1の駆動力を利用したエンジン走行に走行モードを切り替えることができる。 In addition, when the driving modes are switched, the transmission TM1, TM2 uses the infinite and continuously variable transmission mechanisms BD1, BD2, so that, for example, the driving force of the main motor generator MG1 can be used smoothly without a shock. The traveling mode can be switched from the EV traveling or the series traveling to the engine traveling using the driving force of the first engine ENG1.
 ここで、EV走行とエンジン走行との間に実行するシリーズ走行中は、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を下回るように第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を調整して(つまり、第1のエンジンENG1による動力を走行駆動力として直接利用しないようにして)シリーズ走行を実現し、その後、シリーズ走行からエンジン走行に移行する段階で、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御して、第1のエンジンENG1の駆動力を被回転駆動部材11に入力させるので、第1のエンジンENG1の始動からエンジン走行に移行するまでの間のエンジンエネルギーの有効活用を図ることができる。つまり、エンジンが始動してから駆動力が被回転駆動部材11に伝わるまでの間のエンジンエネルギーを、シリーズ走行させることにより、メインモータジェネレータMG1やバッテリ8に電力として供給して有効活用するので、発生したエネルギーを無駄なく使い切ることができ、燃費向上に貢献することができる。 Here, during the series traveling executed between the EV traveling and the engine traveling, the rotational speed of the first engine ENG1 and / or the first rotational speed so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed. A stage in which a series travel is realized by adjusting the transmission ratio of the transmission TM1 (that is, by not directly using the power of the first engine ENG1 as a travel driving force), and then a transition from the series travel to the engine travel Thus, the first engine ENG1 and / or the gear ratio of the first transmission TM1 are controlled so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed, and the first engine TMG1 is controlled. Since the driving force of ENG1 is input to the driven member 11 to be rotated, the engine starts from the start of the first engine ENG1. Effective use of the engine energy until the transition to the running can be achieved. That is, since the engine energy from when the engine is started to when the driving force is transmitted to the driven member 11 is run in series, it is supplied to the main motor generator MG1 and the battery 8 as electric power for effective use. The generated energy can be used up without waste, contributing to improved fuel efficiency.
 特に、メインモータジェネレータMG1の駆動力のみを利用したEV走行からシリーズ走行へ移行する場合には、EV走行の状態において第1のエンジンENG1の始動が必要になるが、その始動時の抵抗を、第1のワンウェイ・クラッチOWC1の採用、更に第1のトランスミッションTM1の変速比を無限大に設定することによって、少なくすることができるので、EV走行からシリーズ走行への移行をスムーズにショックなく行うことができる。また、第1のトランスミッションTM1の変速比を無限大に設定することによって、第1のエンジンENG1をその下流側の慣性質量部から実質的に切り離せることにより、シリーズ走行を実行しているときの回転抵抗を小さくできるので、シリーズ走行時のエネルギーロスを極力減らして燃費向上に貢献することができる。 In particular, when shifting from EV traveling using only the driving force of the main motor generator MG1 to series traveling, the first engine ENG1 needs to be started in the EV traveling state. By adopting the first one-way clutch OWC1 and further setting the transmission ratio of the first transmission TM1 to infinity, it can be reduced, so the transition from EV running to series running can be performed smoothly and without shock. Can do. Further, by setting the gear ratio of the first transmission TM1 to infinity, the first engine ENG1 can be substantially separated from the inertial mass portion on the downstream side thereof, so that the series traveling is executed. Since rotation resistance can be reduced, energy loss during series running can be reduced as much as possible, contributing to improved fuel efficiency.
 また、変速比を無限大に設定しておけば、第1のエンジンENG1の回転数がどんなに上がっても、エンジンENG1の動力がワンウェイ・クラッチOWC1を介して被回転駆動部材11まで伝わることはないので、シリーズ走行を安定的に維持することができる。 If the speed ratio is set to infinity, the power of the engine ENG1 is not transmitted to the driven member 11 via the one-way clutch OWC1 no matter how much the rotational speed of the first engine ENG1 increases. Therefore, series running can be stably maintained.
 また、シリーズ走行中は、第1のワンウェイ・クラッチOWC1の入力回転数を調節するだけで、クラッチを設けたり特別な制御を行ったりしなくても、第1のエンジンENG1の動力を被回転駆動部材11から切り離して、第1のエンジンENG1を発電専用の動力源として機能させることができるので、走行負荷に応じてエンジン回転数などを制御する必要がなく、エンジンENG1を高効率ポイントで安定的に運転することができて、燃費向上に大きく貢献することができる。 During series running, the power of the first engine ENG1 is driven to rotate without adjusting the input rotation speed of the first one-way clutch OWC1 and performing any special control. Since the first engine ENG1 can be made to function as a power source dedicated to power generation by separating from the member 11, there is no need to control the engine speed according to the running load, and the engine ENG1 is stable at a high efficiency point. Driving and can greatly contribute to improving fuel efficiency.
 また、シリーズ走行からエンジン走行に移行した場合には、サブモータジェネレータMG2による発電を停止するので、第1のエンジンENG1の負担を軽減することができる。また、シリーズ走行からエンジン走行に移行した場合であっても、バッテリ残容量が少ないときには、サブモータジェネレータMG2による発電を継続して充電を行うようにすることで、バッテリ8の充電状態を適正に保ちながら、第1のエンジンENG1の負担軽減を図ることができる。 Further, when the shift from the series running to the engine running is performed, the power generation by the sub motor generator MG2 is stopped, so that the burden on the first engine ENG1 can be reduced. Further, even when shifting from the series running to the engine running, when the remaining battery capacity is low, the battery 8 is appropriately charged by continuing to generate power by the sub motor generator MG2. While maintaining, the burden on the first engine ENG1 can be reduced.
 第1、第2のワンウェイ・クラッチOWC1、OWC2の出力部材121と被回転駆動部材11の間にクラッチ機構CL1、CL2を設けているので、これらのクラッチ機構CL1、CL2を遮断状態にすることにより、クラッチ機構CL1、CL2より上流側の動力伝達経路(エンジンENG1、ENG2からワンウェイ・クラッチOWC1、OWC2まで)を下流側の動力伝達経路(被回転駆動部材11から駆動車輪2まで)から切り離すことができる。従って、第1および第2のエンジンENG1,ENG2の一方によって第1および第2のワンウェイ・クラッチOWC1、OWC2の一方を介して被回転駆動部材11を駆動している際、他方のワンウェイ・クラッチOWC1、OWC2と被回転駆動部材11との間に設けられた一方のクラッチ機構CL1,CL2を遮断するので、車輪駆動に用いられていないワンウェイ・クラッチOWC1、OWC2の引きずりを防止することが可能で、無駄なエネルギーギロスを減らすことができる。 Since the clutch mechanisms CL1 and CL2 are provided between the output member 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11, the clutch mechanisms CL1 and CL2 are turned off. The power transmission path upstream from the clutch mechanisms CL1, CL2 (from the engines ENG1, ENG2 to the one-way clutches OWC1, OWC2) can be disconnected from the power transmission path downstream (from the driven member 11 to the drive wheel 2). it can. Accordingly, when the driven member 11 is being driven by one of the first and second engines ENG1, ENG2 via one of the first and second one-way clutches OWC1, OWC2, the other one-way clutch OWC1. Since one of the clutch mechanisms CL1 and CL2 provided between the OWC 2 and the driven member 11 is cut off, it is possible to prevent the one-way clutches OWC1 and OWC2 that are not used for driving the wheels from being dragged. Useless energy loss can be reduced.
 また、上述した無限・無段変速機構BD1、BD2よりなる第1、第2のトランスミッションTM1、TM2は、ワンウェイ・クラッチOWC1、OWC2の入力部材122と出力部材121が正方向(通常の車両が前進する場合の回転方向)に対し逆方向(後進時の回転方向)に回転しようとした場合に、ロックして被回転駆動部材11の逆回転を阻止する作用をなす。このため、このクラッチ機構CL1、CL2を解放状態に保持することにより、クラッチ機構CL1、CL2の上流側を被回転駆動部材11から切り離すことができ、それにより、トランスミッションTM1、TM2によるロック作用(後進阻止作用とも言う)を回避することができるようになる。従って、被回転駆動部材11をメインモータジェネレータMG1の逆回転操作によって後進回転させることができ、車両を後進させることができる。 Further, the first and second transmissions TM1 and TM2 including the infinite and continuously variable transmission mechanisms BD1 and BD2 described above have the input member 122 and the output member 121 of the one-way clutches OWC1 and OWC2 in the forward direction (a normal vehicle moves forward). In the case of attempting to rotate in the reverse direction (rotational direction at the time of reverse travel) with respect to the rotational direction in the case where the rotation is performed, the rotational drive member 11 is locked to prevent reverse rotation of the driven member 11. For this reason, by holding the clutch mechanisms CL1 and CL2 in the released state, the upstream side of the clutch mechanisms CL1 and CL2 can be disconnected from the driven member 11 and thereby the locking action (reverse drive) by the transmissions TM1 and TM2 is achieved. (Also referred to as a blocking action) can be avoided. Accordingly, the driven member 11 can be rotated backward by the reverse rotation operation of the main motor generator MG1, and the vehicle can be moved backward.
 また、登坂路を発進するときには、敢えてクラッチ機構CL1、CL2を接続状態に保持することにより、トランスミッションTM1、TM2のロックによる後進阻止作用を利用してヒルホールド機能(坂道でずり下がらない機能)を得ることができるので、その他のヒルホールド制御が不要になる。 In addition, when starting an uphill road, the hill hold function (function that does not slide down on a hill) is achieved by holding the clutch mechanisms CL1 and CL2 in a connected state, thereby utilizing the reverse blocking action by locking the transmissions TM1 and TM2. Therefore, no other hill hold control is required.
 第1、第2のエンジンENG1、ENG2の排気量の大きさを異ならせることで、両エンジンENG1、ENG2の高効率運転ポイントを互いに異ならせているので、走行状態に応じて、効率の高い方のエンジンENG1、ENG2を駆動源として選択することにより、総合的なエネルギー効率のアップを図ることができる。 The high-efficiency operating points of the engines ENG1 and ENG2 are made different from each other by making the displacements of the first and second engines ENG1 and ENG2 different. By selecting the engines ENG1 and ENG2 as drive sources, overall energy efficiency can be improved.
 2つのワンウェイ・クラッチOWC1、OWC2の入力回転数の設定の仕方により、一方のエンジンによる走行から他方のエンジンによる走行にスムーズ且つ容易に切り替えることができる。例えば、図28に示す制御動作時(中速走行から中高速走行への切り替え時)には、第1のワンウェイ・クラッチOWC1を介して第1のエンジンENG1の駆動力を被回転駆動部材11に入力させることでエンジン走行を行っている状態で、第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転数が出力部材121の回転数を上回るように、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比の変更することにより、容易に、被回転駆動部材11に動力を取り出す駆動源を、第1のエンジンENG1から第2のエンジンENG2に切り替えることができる。しかも、その切り替え操作は、無限・無段変速機構BD1、BD2を介して第1、第2のワンウェイ・クラッチOWC1、OWC2へ入力させる回転数を制御するだけであり、ショック無しにスムーズに行うことができる。 Depending on how the input rotational speeds of the two one-way clutches OWC1 and OWC2 are set, it is possible to smoothly and easily switch from running with one engine to running with the other engine. For example, during the control operation shown in FIG. 28 (when switching from medium speed traveling to medium high speed traveling), the driving force of the first engine ENG1 is applied to the rotational drive member 11 via the first one-way clutch OWC1. The engine speed of the second engine ENG2 is set so that the engine speed is inputted to the input member 122 of the second one-way clutch OWC2 and exceeds the engine speed of the output member 121 while the engine is running. And / or by changing the speed ratio of the second transmission TM2, the drive source for extracting the power to the driven member 11 can be easily switched from the first engine ENG1 to the second engine ENG2. In addition, the switching operation only needs to control the rotation speed input to the first and second one-way clutches OWC1 and OWC2 via the infinite and continuously variable transmission mechanisms BD1 and BD2, and can be performed smoothly without a shock. Can do.
 図28に示す制御動作のように、第2のエンジンENG2の始動時に第2のトランスミッションTM2の変速比を無限大に設定することにより、第2のトランスミッションTM2の下流側の慣性質量部を第2のエンジンENG2から切り離すことができる。従って、第2のエンジンENG2の始動時の慣性質量による抵抗を少なくすることができ、始動エネルギーを低減することができる。また、第1のエンジンENG1から第2のエンジンENG2に駆動源を切り替える際の第2のエンジンENG2の始動時に、第2のトランスミッションTM2から下流側に動力が伝わらないようにすることができるので、始動の途中で何らかの原因(例えば、いきなりブレーキが踏まれる等)により被回転駆動部材11の回転数が低くなった場合でも、始動ショックを低減することができる。また、第2のエンジンENG2の始動後は、第2のトランスミッションTM2の変速比を有限値に変更することにより、第2のワンウェイ・クラッチOWC2に入力される回転速度を制御するので、その入力回転速度を出力部材121の回転速度を上回るまで上昇させることにより、第2のエンジンENG2の動力を被回転駆動部材11に確実に伝達させることができる。 As in the control operation shown in FIG. 28, by setting the transmission ratio of the second transmission TM2 to infinity when the second engine ENG2 is started, the inertial mass portion on the downstream side of the second transmission TM2 is set to the second mass. Can be separated from the engine ENG2. Therefore, the resistance due to the inertial mass when starting the second engine ENG2 can be reduced, and the starting energy can be reduced. Further, when starting the second engine ENG2 when switching the drive source from the first engine ENG1 to the second engine ENG2, it is possible to prevent power from being transmitted from the second transmission TM2 to the downstream side. Even when the rotational speed of the driven member 11 is lowered due to some cause (for example, sudden braking) during the start, the start shock can be reduced. In addition, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value. By increasing the speed until it exceeds the rotational speed of the output member 121, the power of the second engine ENG2 can be reliably transmitted to the rotated drive member 11.
 また、第2のエンジンENG2の始動時の制御の仕方として、別の制御動作を採用することもできる。即ち、第2のエンジンENG2の始動の際に、第2のトランスミッションTM2で予め適当な変速比(目標とする変速比よりも多少大きめの変速比で、第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るような有限値)に設定した状態で、第2のエンジンENG2の始動を行う。そのようにした場合は、始動してから目標とする変速比(第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を上回る変速比)に設定するまでの時間を短縮することができるので、要求に対するレスポンスの向上が図れる。 Further, another control operation can be adopted as a control method at the time of starting the second engine ENG2. That is, when starting the second engine ENG2, the input member 122 of the second one-way clutch OWC2 is set in advance in the second transmission TM2 at an appropriate gear ratio (a gear ratio slightly larger than the target gear ratio). The second engine ENG2 is started in a state in which the rotation speed is set to a finite value that is lower than the rotation speed of the output member 121. In such a case, the time from the start until the target gear ratio is set to the target gear ratio (the gear ratio at which the rotational speed of the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121) is set. Since it can be shortened, the response to the request can be improved.
 図30に示す制御動作のように、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の両入力部材122に入力される回転速度が共に出力部材121の回転速度を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御することにより、容易に2つのエンジンENG1、ENG2の出力を合成した大きな駆動力を被回転駆動部材11に入力させることができ、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を利用したエンジン走行を行うことができる。その際、トランスミッションTM1、TM2には、無限・無段変速機構BD1、BD2を使用しているので、ショック無しにスムーズに、1つのエンジンENG2の駆動力を利用した走行から、2つのエンジンENG1、ENG2の合成駆動力を利用した走行への切り替えを行うことができる。 As in the control operation shown in FIG. 30, the first one-way clutch OWC1 and the second one-way clutch OWC2 are input so that the rotational speeds input to both input members 122 exceed the rotational speed of the output member 121. 1. Large driving force that easily combines the outputs of the two engines ENG1 and ENG2 by controlling the rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2. Can be input to the driven member 11 and the engine can be driven using the driving forces of both the first engine ENG1 and the second engine ENG2. At that time, the transmissions TM1 and TM2 use the infinite and continuously variable transmission mechanisms BD1 and BD2, so that the two engines ENG1, Switching to traveling using the combined driving force of ENG2 can be performed.
 EV走行中に第1のエンジンENG1を始動する際に、第1のトランスミッションTM1の変速比を、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回らないように設定した状態で、つまり、第1のトランスミッションTM1の下流側の被回転駆動部材11に第1のエンジンENG1の駆動力が伝わらないようにして、第1のエンジンENG1を始動するので、駆動車輪2へエンジン始動のショックが伝わるのを防止することができる。また、エンジン始動時の負荷も減らすことができ、スムーズな始動が可能になる。 When starting the first engine ENG1 during EV traveling, the transmission ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed. That is, since the first engine ENG1 is started without transmitting the driving force of the first engine ENG1 to the driven member 11 on the downstream side of the first transmission TM1, the engine start shock is applied to the drive wheels 2. Can be prevented from being transmitted. Moreover, the load at the time of engine start can also be reduced, and a smooth start is possible.
 サブモータジェネレータMG2により第1のエンジンENG1を始動させるので、別途第1のエンジンENG1専用のスタータ装置を設ける必要がない。 Since the first engine ENG1 is started by the sub motor generator MG2, it is not necessary to separately provide a starter device dedicated to the first engine ENG1.
 被回転駆動部材11と第2のエンジンENG2の出力軸S2とをシンクロ機構20を介して接続しているので、被回転駆動部材11に動力が導入されている状態で、シンクロ機構20を接続状態にすることにより、被回転駆動部材11の動力で第2のエンジンENG2の出力軸S2をスタート回転させることができる。従って、第2のエンジンENG2専用のスタータ装置を設ける必要がない。なお、この始動の際、被回転駆動部材11には第2のエンジンENG2の始動に必要な動力が導入されていればよい。主には、駆動源である第1のエンジンENG1からの動力が被回転駆動部材11に入力されている場合が多いので、その動力を利用することができる。また、いわゆる「押し掛け」と呼ばれる操作のように、駆動車輪2側から被回転駆動部材11に導入された惰走による動力を利用することもできる。 Since the driven member 11 and the output shaft S2 of the second engine ENG2 are connected via the synchro mechanism 20, the synchro mechanism 20 is connected in a state where power is introduced to the rotary drive member 11. Accordingly, the output shaft S2 of the second engine ENG2 can be started and rotated by the power of the driven member 11 to be rotated. Therefore, it is not necessary to provide a starter device dedicated to the second engine ENG2. Note that, at the time of starting, it is only necessary that the rotational drive member 11 has the power necessary for starting the second engine ENG2. Mainly, power from the first engine ENG1, which is a drive source, is often input to the rotated drive member 11, so that power can be used. Further, as in the so-called “push” operation, it is possible to use the power generated by coasting introduced from the driving wheel 2 side to the driven member 11 to be rotated.
 また、第2のエンジンENG2の始動は、基本的には、第1のエンジンENG1によって被回転駆動部材11に動力を供給しているときに行われるが、メインモータジェネレータMG1によって被回転駆動部材11に動力を供給しているときにも、シンクロ機構20を接続状態にすることによって、メインモータジェネレータMG1から被回転駆動部材11に伝達される動力によって第2のエンジンENG2のクランキング(モータリングとも呼ばれるエンジンにスタータ回転を与えること)を行うことができる。また、第1のエンジンENG1によって被回転駆動部材11に動力を供給している状態で第2のエンジンENG2を始動する場合、第2のエンジンENG2のクランキングに動力が割かれることによって被回転駆動部材11の動力が不足する(回転数が低下する)可能性があるが、その分をメインモータジェネレータMG1の駆動力で補うことができる。そうすることにより、被回転駆動部材11の動力の変動を抑制することができ、第2のエンジンENG2の始動時の駆動車輪へのショックの低減を図ることができる。つまり、ショック無しのスムーズな第2のエンジンENG2の始動が可能になる。 The start of the second engine ENG2 is basically performed when power is supplied to the driven member 11 by the first engine ENG1, but the driven member 11 is rotated by the main motor generator MG1. Even when power is being supplied to the second engine ENG2, cranking of the second engine ENG2 (also referred to as motoring) is performed by the power transmitted from the main motor generator MG1 to the driven member 11 by setting the synchro mechanism 20 to the connected state. Give the engine a starter rotation). Further, when the second engine ENG2 is started in a state where power is supplied to the driven member 11 by the first engine ENG1, the driven power is divided by the cranking of the second engine ENG2. There is a possibility that the power of the member 11 will be insufficient (the rotational speed will be reduced), but this can be compensated by the driving force of the main motor generator MG1. By doing so, the fluctuation | variation of the motive power of the to-be-rotated drive member 11 can be suppressed, and the reduction to the shock to the drive wheel at the time of starting of the 2nd engine ENG2 can be aimed at. That is, it is possible to start the second engine ENG2 smoothly without a shock.
 第2のエンジンENG2の始動直後に即座に、第2のエンジンENG2の駆動力が第2のトランスミッションTM2および第2のワンウェイ・クラッチOWC2を介して被回転駆動部材11に伝わると、駆動車輪2にショックが生じるおそれがあるが、第2のエンジンENG2のクランキングの際に、第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るように変速比を設定することによって、始動直後に、第2のエンジンENG2からの動力が被回転駆動部材11に伝わらないようにしているので、駆動車輪2に生じるショックを抑制することができる。特に、第2の無限・無段変速機構BD2で変速比を無限大に設定することにより、変速機構BD2の内部やその下流側の慣性質量をできるだけ第2のエンジンENG2の出力軸S2から切り離すことができるので、第2のエンジンENG2の始動抵抗を低減することができて、始動しやすくなる。 Immediately after starting the second engine ENG2, when the driving force of the second engine ENG2 is transmitted to the driven member 11 via the second transmission TM2 and the second one-way clutch OWC2, Although a shock may occur, the gear ratio is set so that the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121 during cranking of the second engine ENG2. Thus, immediately after starting, the power from the second engine ENG2 is prevented from being transmitted to the rotated drive member 11, so that the shock generated on the drive wheel 2 can be suppressed. In particular, by setting the transmission ratio to infinity with the second infinite / continuously variable transmission mechanism BD2, the inertial mass inside and downstream of the transmission mechanism BD2 is separated from the output shaft S2 of the second engine ENG2 as much as possible. Therefore, the starting resistance of the second engine ENG2 can be reduced, and the starting becomes easier.
 高速走行時などの2つのエンジンENG1、ENG2の駆動力を合成して被回転駆動部材11を駆動している際に、少なくとも一方の第1のエンジンENG1については、高効率運転領域で運転しているので、燃費向上に貢献することができる。つまり、第1のエンジンENG1の回転数および/またはトルクが高効率運転領域に入るように、運転条件を一定範囲に固定した状態で、第1のエンジンENG1および/または第1のトランスミッションTM1を制御し、且つ、その固定した運転条件によって得られる出力を超える出力要求に対しては、第2のエンジンENG2および第2のトランスミッションTM2を制御することで対応するので、燃費向上に貢献することができる。 When the driven member 11 is driven by synthesizing the driving forces of the two engines ENG1 and ENG2 during high-speed driving, etc., at least one of the first engines ENG1 is operated in the high-efficiency operation region. As a result, fuel consumption can be improved. That is, the first engine ENG1 and / or the first transmission TM1 is controlled in a state where the operating conditions are fixed within a certain range so that the rotation speed and / or torque of the first engine ENG1 enters the high efficiency operation region. In addition, an output request exceeding the output obtained by the fixed operating condition is dealt with by controlling the second engine ENG2 and the second transmission TM2, which can contribute to an improvement in fuel consumption. .
 特に、運転条件が固定される第1のエンジンENG1の排気量が第2のエンジンENG2の排気量より小さくなっており、要求出力の変動が大きい場合でも、その要求変動に対し排気量が大きい方のエンジンで対応するため、要求に対する遅れを少なくできる。因みに、運転条件が固定される第1のエンジンENG1の排気量の方が第2のエンジンENG2の排気量より大きい場合は、排気量の大きいエンジンの方を高効率運転範囲で運転することになるので、より燃費向上に貢献することができる。 In particular, even if the displacement of the first engine ENG1 to which the operating conditions are fixed is smaller than the displacement of the second engine ENG2, and the required output fluctuates greatly, the one with the larger displacement relative to the required variation Because it is handled by this engine, the delay to the request can be reduced. Incidentally, when the displacement of the first engine ENG1 whose operating conditions are fixed is larger than the displacement of the second engine ENG2, the engine with the larger displacement is operated in the high-efficiency operation range. Therefore, it can contribute to fuel efficiency improvement.
 また、要求出力が所定以上の場合は、排気量小のエンジンを運転条件固定側に設定し、要求出力が所定以下の場合は、排気量大のエンジンを運転条件固定側に設定するように制御することもでき、そのようにした場合は、要求に対する遅れを少なくできると共に、燃費向上を図ることができる。 Also, if the required output is greater than or equal to a predetermined value, the engine with a small displacement is set to the operating condition fixed side, and if the required output is less than the predetermined value, the engine with the large displacement is set to the fixed operating condition side. In such a case, the delay with respect to the request can be reduced and the fuel consumption can be improved.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. can be made as appropriate. In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 例えば、上記実施形態では、ディファレンシャル装置10の左右両側に第1のワンウェイ・クラッチOWC1と第2のワンウェイ・クラッチOWC2をそれぞれ配置し、各ワンウェイ・クラッチOWC1、OWC2の出力部材121をそれぞれクラッチ機構CL1、CL2を介して被回転駆動部材11に接続した場合を示したが、図39に示す別の実施形態のように、ディファレンシャル装置10の片側に第1と第2の両方のワンウェイ・クラッチOWC1、OWC2を配置し、これら両方のワンウェイ・クラッチOWC1、OWC2の出力部材を連結した上で、1つのクラッチ機構CLを介して被回転駆動部材11に接続してもよい。 For example, in the above-described embodiment, the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1. As shown in FIG. 39, both the first and second one-way clutches OWC1 and OWC1 are connected to the driven member 11 via CL2, as in another embodiment shown in FIG. The OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
 また、上記実施形態では、第1、第2のトランスミッションTM1、TM2が、偏心ディスク104や連結部材130、ワンウェイ・クラッチ120を使用した形式のもので構成されている場合を示したが、その他のCVTなどの変速機構を用いてもよい。その他の形式の変速機構を用いた場合は、ワンウェイ・クラッチOWC1、OWC2を変速機構の外側(下流側)に装備してもよい。 In the above-described embodiment, the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120. A transmission mechanism such as CVT may be used. When another type of speed change mechanism is used, the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
 また、上記実施形態では、第1のエンジンENG1の駆動力で走行している状態から、第2のエンジンENG2の駆動力で走行する状態に切り替える場合について述べたが、それとは逆に、第2のエンジンENG2の駆動力で走行している状態から、第1のエンジンENG1の駆動力で走行する状態に切り替えることもできる。その場合は、第1のワンウェイ・クラッチOWC1を介して第1のエンジンENG1の発生する動力が被回転駆動部材11に入力されている状態で、第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転数が出力部材121の回転数を上回るように、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比の変更を行うことにより、スムーズに切り替えを行うことができる。 In the above-described embodiment, the case where the state of traveling with the driving force of the first engine ENG1 is switched to the state of traveling with the driving force of the second engine ENG2 is described. It is also possible to switch from the state of traveling with the driving force of the engine ENG2 to the state of traveling with the driving force of the first engine ENG1. In this case, the power generated by the first engine ENG1 is input to the rotated drive member 11 via the first one-way clutch OWC1 and input to the input member 122 of the second one-way clutch OWC2. By changing the rotation speed of the second engine ENG2 and / or the speed ratio of the second transmission TM2 so that the rotation speed to be exceeded exceeds the rotation speed of the output member 121, the switching can be performed smoothly. .
 さらに、上記実施形態では、2つのエンジン及び2つのトランスミッションを有する構成としたが、3つ以上のエンジン及び3つ以上のトランスミッションを有する構成であってもよい。また、エンジンは、ディーゼルエンジンや水素エンジンとガソリンエンジンとを組み合わせて用いてもよい。 Furthermore, in the above embodiment, the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions. The engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
 加えて、上記実施形態の第1のエンジンENG1と第2のエンジンENG2は、別体に構成されていてもよいし、あるいは、一体に構成されていてもよい。例えば、図40に示すように、第1のエンジンENG1と第2のエンジンENG2が、それぞれ本発明の第1の内燃機関部及び第2の内燃機関部として、共通のブロックBL内に配置されるようにしてもよい。 In addition, the first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally. For example, as shown in FIG. 40, the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
 なお、本発明は、2010年6月15日出願の日本特許出願(特願2010-136543)に基づくものであり、その内容はここに参照として取り込まれる。 The present invention is based on a Japanese patent application filed on June 15, 2010 (Japanese Patent Application No. 2010-136543), the contents of which are incorporated herein by reference.
 1 駆動システム
 2 駆動車輪
 5 制御手段
 8 バッテリ(蓄電手段)
 11 被回転駆動部材(デフケース)
 12 ドリブンギヤ
 13L 左アクスルシャフト
 13R 右アクスルシャフト
 15 ドライブギヤ
 20 シンクロ機構(クラッチ手段)
 101 入力軸
 104 偏心ディスク
 112 変速比可変機構
 120 ワンウェイ・クラッチ
 121 出力部材
 122 入力部材
 123 ローラ(係合部材)
 130 連結部材
 131 一端部(リング部)
 132 他端部
 133 円形開口
 140 ベアリング
 180 アクチュエータ
 BD1 第1の無限・無段変速機構
 BD2 第2の無限・無段変速機構
 CL1 クラッチ機構
 CL2 クラッチ機構
 ENG1 第1のエンジン(第1の内燃機関部)
 ENG2 第2のエンジン(第2の内燃機関部)
 MG1 メインモータジェネレータ
 MG2 サブモータジェネレータ
 OWC1 第1のワンウェイ・クラッチ
 OWC2 第2のワンウェイ・クラッチ
 S1 出力軸
 S2 出力軸
 TM1 第1のトランスミッション(第1の変速機構)
 TM2 第2のトランスミッション(第2の変速機構)
 O1 入力中心軸線
 O2 出力中心軸線
 O3 第1支点
 O4 第2支点
 RD1 正回転方向
 RD2 逆回転方向
 r1 偏心量
 θ2 揺動角度
 ω1 入力軸の回転角速度
 ω2 出力部材の角速度
DESCRIPTION OF SYMBOLS 1 Drive system 2 Drive wheel 5 Control means 8 Battery (electric storage means)
11 Rotated drive member (Differential case)
12 Driven gear 13L Left axle shaft 13R Right axle shaft 15 Drive gear 20 Synchro mechanism (clutch means)
DESCRIPTION OF SYMBOLS 101 Input shaft 104 Eccentric disk 112 Gear ratio variable mechanism 120 One-way clutch 121 Output member 122 Input member 123 Roller (engagement member)
130 Connecting member 131 One end (ring part)
132 Other end portion 133 Circular opening 140 Bearing 180 Actuator BD1 First infinite and continuously variable transmission mechanism BD2 Second infinite and continuously variable transmission mechanism CL1 Clutch mechanism CL2 Clutch mechanism ENG1 First engine (first internal combustion engine section)
ENG2 Second engine (second internal combustion engine section)
MG1 main motor generator MG2 sub motor generator OWC1 first one-way clutch OWC2 second one-way clutch S1 output shaft S2 output shaft TM1 first transmission (first transmission mechanism)
TM2 Second transmission (second transmission mechanism)
O1 Input center axis O2 Output center axis O3 First fulcrum O4 Second fulcrum RD1 Forward rotation direction RD2 Reverse rotation direction r1 Eccentricity θ2 Swing angle ω1 Input shaft rotation angular velocity ω2 Angular velocity of output member

Claims (6)

  1.  それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
     前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
     前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
     を備え、前記第1の内燃機関部および第2の内燃機関部の発生する回転動力を、前記第1の変速機構および第2の変速機構を介して、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチに入力し、該第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチを介して、前記回転動力を前記被回転駆動部材に入力する自動車用駆動システムであって、
     前記第1のワンウェイ・クラッチを介して前記第1の内燃機関部の発生する動力が前記被回転駆動部材に入力されている状態で、前記第2のワンウェイ・クラッチの入力部材に入力される回転数が出力部材の回転数を上回るように、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比の変更を行う制御手段を備えていることを特徴とする自動車用駆動システム。
    A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
    A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
    An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
    A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
    Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second through the first transmission mechanism and the second transmission mechanism. An automobile drive system for inputting the rotational power into the driven member through the first one-way clutch and the second one-way clutch,
    Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine is input to the driven member through the first one-way clutch. A vehicle having control means for changing the rotation speed of the second internal combustion engine and / or the speed ratio of the second transmission mechanism so that the number exceeds the rotation speed of the output member. Drive system.
  2.  請求項1に記載の自動車用駆動システムであって、
     前記第1の変速機構および第2の変速機構が共に、変速比を無段階に変更可能な無段変速機構により構成されていることを特徴とする自動車用駆動システム。
    The vehicle drive system according to claim 1,
    An automotive drive system, wherein both the first transmission mechanism and the second transmission mechanism are constituted by a continuously variable transmission mechanism capable of changing a transmission gear ratio steplessly.
  3.  請求項1または2に記載の自動車用駆動システムであって、
     前記制御手段が、前記第2の内燃機関部の始動を行う際に、前記第2の変速機構の変速比を、前記第2の内燃機関部からの動力を前記第2のワンウェイ・クラッチに伝達可能であり且つ第2のワンウェイ・クラッチの入力部材の回転速度が出力部材の回転速度を下回るような有限値に設定することを特徴とする自動車用駆動システム。
    The vehicle drive system according to claim 1 or 2,
    When the control means starts the second internal combustion engine section, it transmits the gear ratio of the second transmission mechanism and the power from the second internal combustion engine section to the second one-way clutch. A driving system for an automobile, which is possible and is set to a finite value such that the rotational speed of the input member of the second one-way clutch is lower than the rotational speed of the output member.
  4.  請求項2に記載の自動車用駆動システムであって、
     前記無段変速機構は、変速比を無限大に設定することが可能な無限・無段変速機構として構成されており、
     前記制御手段が、前記第2の内燃機関部の始動を行う際に、前記第2の変速機構として設けられた無限・無段変速機構の変速比を無限大に設定すると共に、第2の内燃機関部の始動後に、前記無限・無段変速機構の変速比を有限値に変更することで、前記第2のワンウェイ・クラッチに入力される回転速度を制御することを特徴とする自動車用駆動システム。
    The automobile drive system according to claim 2,
    The continuously variable transmission mechanism is configured as an infinite and continuously variable transmission mechanism capable of setting the transmission ratio to infinity,
    When the control means starts the second internal combustion engine section, it sets the transmission ratio of the infinite / continuously variable transmission mechanism provided as the second transmission mechanism to infinity, and the second internal combustion engine An automotive drive system that controls a rotational speed input to the second one-way clutch by changing a speed ratio of the infinite / continuously variable transmission mechanism to a finite value after the engine unit is started. .
  5.  請求項4に記載の自動車用駆動システムであって、
     前記無段変速機構が、
     回転動力を受けることで入力中心軸線の周りを回転する入力軸と、
     該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対する偏心量を変更可能で、且つ、該偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点と、
     該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスクと、
     前記入力中心軸線から離れた出力中心軸線の周りを回転する出力部材と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチと、
     前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点と、
     それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材と、
     前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構と、
    を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構として構成されており、
     前記内燃機関部の出力軸が前記無段変速機構の入力軸に連結され、
     前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記第1の変速機構および第2の変速機構と前記被回転駆動部材との間に設けられた前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチをそれぞれに兼ねていることを特徴とする自動車用駆動システム。
    The automobile drive system according to claim 4,
    The continuously variable transmission mechanism is
    An input shaft that rotates around the input center axis by receiving rotational power; and
    A plurality of rotations are provided at equal intervals in the circumferential direction of the input shaft, each of which can change the amount of eccentricity with respect to the input center axis, and rotates together with the input shaft around the input center axis while maintaining the amount of eccentricity. The first fulcrum of
    A plurality of eccentric disks each having the first fulcrum at its center and rotating about the input center axis;
    An output member that rotates around an output center axis that is distant from the input center axis, an input member that swings around the output center axis by receiving power in the rotational direction from the outside, and the input member and the output member An engaging member that is locked or unlocked, and the rotational power input to the input member when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member. A one-way clutch that converts the swinging motion of the input member into the rotational motion of the output member;
    A second fulcrum provided at a position spaced from the output center axis on the input member;
    One end is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end is rotatably connected to the second fulcrum provided on the input member of the one-way clutch. Thus, a plurality of connecting members that transmit the rotational motion given from the input shaft to the eccentric disc as the swinging motion of the input member to the input member of the one-way clutch,
    By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A speed ratio variable mechanism for changing a speed ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member;
    And is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
    An output shaft of the internal combustion engine section is connected to an input shaft of the continuously variable transmission mechanism;
    The one-way clutch, which is a component of the continuously variable transmission mechanism, includes the first one-way clutch and the second one provided between the first transmission mechanism, the second transmission mechanism, and the driven member. Drive system for automobiles, which also serves as a one-way clutch.
  6.  それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
     前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
     前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
     を備え、前記第1の内燃機関部および第2の内燃機関部の発生する回転動力を、前記第1の変速機構および第2の変速機構を介して、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチに入力し、該第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチを介して、前記回転動力を前記被回転駆動部材に入力する自動車用駆動システムの制御方法であって、
     前記第1のワンウェイ・クラッチを介して前記第1の内燃機関部の発生する動力が前記被回転駆動部材に入力されている状態で、前記第2のワンウェイ・クラッチの入力部材に入力される回転数が出力部材の回転数を上回るように、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比の変更を行うことを特徴とする自動車用駆動システムの制御方法。
    A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
    A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
    An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
    A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
    Rotational power generated by the first internal combustion engine section and the second internal combustion engine section is transmitted to the first one-way clutch and the second through the first transmission mechanism and the second transmission mechanism. A driving system for an automobile, wherein the rotational power is input to the rotated drive member via the first one-way clutch and the second one-way clutch,
    Rotation input to the input member of the second one-way clutch in a state where the power generated by the first internal combustion engine is input to the driven member through the first one-way clutch. A method for controlling an automotive drive system, wherein the rotational speed of the second internal combustion engine section and / or the speed ratio of the second transmission mechanism is changed so that the number exceeds the rotational speed of the output member. .
PCT/JP2011/061580 2010-06-15 2011-05-19 Drive system for automobile and method for controlling drive system for automobile WO2011158600A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180029378.9A CN102971167B (en) 2010-06-15 2011-05-19 The control method of system and system
JP2012520340A JP5586694B2 (en) 2010-06-15 2011-05-19 Vehicle drive system and method for controlling vehicle drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010136543 2010-06-15
JP2010-136543 2010-06-15

Publications (1)

Publication Number Publication Date
WO2011158600A1 true WO2011158600A1 (en) 2011-12-22

Family

ID=45348009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061580 WO2011158600A1 (en) 2010-06-15 2011-05-19 Drive system for automobile and method for controlling drive system for automobile

Country Status (3)

Country Link
JP (1) JP5586694B2 (en)
CN (1) CN102971167B (en)
WO (1) WO2011158600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797857A (en) * 2012-12-05 2015-07-22 本田技研工业株式会社 Vehicle power transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335822B2 (en) * 1980-12-25 1988-07-18 Fuji Heavy Ind Ltd
JPH1035301A (en) * 1996-07-25 1998-02-10 Motor Jidosha Kk Compound prime mover and its control device
JP2003083105A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Engine equipped with biaxial crankshaft and vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101148145A (en) * 2007-11-13 2008-03-26 上海汽车集团股份有限公司 Automobile power system with double-engine and its control method
JP4929207B2 (en) * 2008-02-25 2012-05-09 本田技研工業株式会社 transmission
CN101480912B (en) * 2008-12-16 2011-12-07 任树华 Bi-motor vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335822B2 (en) * 1980-12-25 1988-07-18 Fuji Heavy Ind Ltd
JPH1035301A (en) * 1996-07-25 1998-02-10 Motor Jidosha Kk Compound prime mover and its control device
JP2003083105A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Engine equipped with biaxial crankshaft and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797857A (en) * 2012-12-05 2015-07-22 本田技研工业株式会社 Vehicle power transmission

Also Published As

Publication number Publication date
CN102971167B (en) 2015-11-25
JPWO2011158600A1 (en) 2013-08-19
JP5586694B2 (en) 2014-09-10
CN102971167A (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5501461B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5492990B2 (en) Car drive system
JP5638075B2 (en) Driving system for automobile and control method thereof
JP5589076B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5019080B2 (en) Driving system for automobile and control method thereof
US8512202B2 (en) Shift controller and shift controlling method
JP2013049384A (en) Drive system for motor vehicle
JP5542204B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5747081B2 (en) Car drive system
WO2012002062A1 (en) Driving system for automobile and method for controlling same
JP5586694B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5589075B2 (en) Vehicle drive system and method for controlling vehicle drive system
WO2011162056A1 (en) Drive system for a motor vehicle and control method of same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029378.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795508

Country of ref document: EP

Kind code of ref document: A1