WO2011162056A1 - Drive system for a motor vehicle and control method of same - Google Patents

Drive system for a motor vehicle and control method of same Download PDF

Info

Publication number
WO2011162056A1
WO2011162056A1 PCT/JP2011/061582 JP2011061582W WO2011162056A1 WO 2011162056 A1 WO2011162056 A1 WO 2011162056A1 JP 2011061582 W JP2011061582 W JP 2011061582W WO 2011162056 A1 WO2011162056 A1 WO 2011162056A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
way clutch
output
engine
input
Prior art date
Application number
PCT/JP2011/061582
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 市川
文康 菅
康浩 森本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2011162056A1 publication Critical patent/WO2011162056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/08Arrangement or mounting of internal-combustion or jet-propulsion units comprising more than one engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a hybrid automobile drive system including an internal combustion engine section and a motor generator as a driving source for traveling, and a control method thereof.
  • Patent Document 1 As a conventional vehicle drive system of this type, as disclosed in Patent Document 1, an engine, a transmission, and a motor generator are combined, and a drive shaft and a driven shaft of the transmission are provided on the drive shaft. And the one-way clutch provided on the driven shaft to introduce the engine output to the transmission drive shaft, and the motor generator via the clutch to the transmission input side or the one-way clutch output side.
  • a hybrid drive system that can be selectively connected to each other, or can be connected simultaneously to both the input side of the transmission and the output side of the one-way clutch.
  • the clutch is provided not on the power transmission path connecting the engine and the axle, but on the power transmission path connecting the motor generator and the axle.
  • a one-way clutch that engages when the rotational speed on the input side (upstream side) exceeds the rotational speed on the output side (downstream side) is provided on the power transmission path that connects the engine and the axle.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an automobile drive system and a control method thereof that can improve energy recovery efficiency during deceleration.
  • an invention according to claim 1 is an automobile drive system (for example, drive system 1 in an embodiment described later).
  • An internal combustion engine that generates rotational power for example, a first engine ENG1 and a second engine ENG2 in an embodiment described later
  • a transmission mechanism for example, a first transmission TM1 and a second transmission TM2 in an embodiment described later for shifting and outputting the rotational power generated by the internal combustion engine section, and an output section of the transmission mechanism.
  • a member for example, an input member 122 in an embodiment described later
  • an output member for example, an output member 121 in an embodiment described later
  • an engagement member for example, an input member and an output member that lock or unlock the input member
  • a roller 123 in an embodiment described later, and when the rotational speed in the positive direction of the input member that receives rotational power from the transmission mechanism exceeds the rotational speed in the positive direction of the output member, A one-way clutch that transmits rotational power input to the input member to the output member when the output member is locked.
  • the rotational power transmitted to the output member is transmitted to a drive wheel (for example, a drive wheel 2 in an embodiment described later) and rotates together with the drive wheel.
  • a drive wheel for example, a drive wheel 2 in an embodiment described later
  • a rotated drive member for example, a rotated drive member 11 in an embodiment described later
  • a motor generator for example, a regenerative operation function that generates rotational power for traveling to the drive wheel or another drive wheel and a regenerative braking force that simultaneously generates power from the drive wheel side and applies a regenerative braking force to the drive wheel
  • a main motor generator MG1 in an embodiment described later
  • a clutch mechanism that is interposed between the output member of the one-way clutch and the driven drive member and is capable of transmitting / cutting power between the two members (for example, a first clutch mechanism CL1 and a clutch mechanism in a later-described embodiment)
  • a second clutch mechanism CL2 Control means (for example, control means 5 in an embodiment described later) for cutting off the clutch mechanism and causing the motor generator to perform a regenerative operation when the vehicle decelerates; It is characterized by providing.
  • the invention according to claim 2 is the structure of claim 1, The rotational speed of the input member and output member of the one-way clutch is detected, and the clutch mechanism is shut off when the rotational speed of the input member of the one-way clutch is lower than the rotational speed of the output member. .
  • the invention according to claim 3 is the configuration of claim 1,
  • the control means judges the degree of deceleration request of the vehicle, and shuts off the clutch mechanism when sudden deceleration is requested, and stops breaking the clutch mechanism when slow deceleration is requested.
  • the invention according to claim 4 is the configuration of claim 1,
  • the control means changes the rotational speed of the internal combustion engine section and / or the speed ratio of the transmission mechanism to reduce the rotational speed of the input member of the one-way clutch when a vehicle deceleration request is made
  • the clutch mechanism is shut off.
  • the invention according to claim 5 is the structure according to any one of claims 1 to 4,
  • As the internal combustion engine portion a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
  • As the speed change mechanism a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
  • As the one-way clutch a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
  • the rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
  • a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively.
  • the control means causes the first clutch mechanism and the second clutch mechanism to switch the input members and the output members of the first one-way clutch and the second one-way clutch on the upstream side, respectively. It is characterized by being individually cut off according to the number of rotations.
  • the invention according to claim 6 is the structure according to any one of claims 1 to 4,
  • the internal combustion engine portion a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
  • the speed change mechanism a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
  • the one-way clutch a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
  • the rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
  • a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively.
  • the control means simultaneously shuts off the first clutch mechanism and the second clutch mechanism when the vehicle is decelerated.
  • the invention according to claim 7 provides: An internal combustion engine that generates rotational power; A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
  • the input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member.
  • One-way clutch to By being connected to the output member of the one-way clutch, the rotational drive force transmitted to the output member is transmitted to the drive wheel, and the driven drive member that rotates integrally with the drive wheel;
  • a motor generator having a motor operation function for providing rotational power for traveling to the drive wheel or another drive wheel and a regenerative operation function for generating power by the power from the drive wheel side and simultaneously applying a regenerative braking force to the drive wheel;
  • a clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
  • a method for controlling an automotive drive system comprising: When the vehicle is decelerated, the clutch mechanism is disconnected and the motor generator is caused to perform a regenerative operation.
  • the upstream side of the clutch mechanism can be disconnected from the downstream side. Accordingly, it is possible to reduce friction loss due to the accompanying power transmission member between the one-way clutch and the clutch mechanism, and to improve energy recovery efficiency.
  • the clutch mechanism since the clutch mechanism is not always shut off when there is a deceleration request, but the clutch mechanism is stopped in the case of slow deceleration in which the accelerator may be stepped on again immediately.
  • the time required to connect the clutch mechanism can be reduced in accordance with the re-depression of the accelerator, and the response can be improved.
  • the clutch mechanism can be disconnected early when the vehicle decelerates, which can contribute to the improvement of energy recovery efficiency.
  • each clutch mechanism can be smoothly operated under the optimum conditions. Can be blocked.
  • FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG.
  • 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”.
  • ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the gear ratio i is set to “large”
  • (d) is a diagram in which the eccentricity r1 is set to “zero” and the gear ratio i is set to “infinity ( ⁇ )”. It is a figure which shows the state set to.
  • FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • 5B is a diagram showing a state in which the swing angle ⁇ 2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle ⁇ 2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar linkage mechanism.
  • FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. . It is a flowchart which shows the content of the interruption
  • (A) And (b) is explanatory drawing of the reverse drive impossible state by the lock
  • FIG. 1 is a skeleton diagram of an automobile drive system according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a specific configuration of an infinite / continuously variable transmission mechanism that is a main part of the drive system
  • FIG. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
  • the vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2.
  • First and second transmissions (transmission mechanisms) TM1 and TM2 provided in the transmission, first and second one-way clutches OWC1 and OWC2 provided at output portions of the transmissions TM1 and TM2, and these one-way clutches
  • a rotation driven member 11 that receives the output rotation transmitted via OWC1 and OWC2, a main motor generator (electric motor) MG1 connected to the rotation driven member 11, and an output shaft S1 of the first engine ENG1
  • Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges
  • the first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other.
  • the first and second clutch mechanisms CL1 and CL2 are connected to the rotation driven member 11 together.
  • the first and second clutch mechanisms CL1 and CL2 control the transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated. Is provided.
  • these clutch mechanisms CL1 and CL2 other types of clutches (friction clutches and the like) can be used, but dog clutches are used because of low transmission loss.
  • the driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2.
  • a differential case (rotation drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown).
  • the left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different. Dynamic rotation.
  • the first and second engines ENG1 and ENG2 use different engines with high efficiency operation points.
  • the first engine ENG1 is an engine with a small displacement
  • the second engine ENG2 The engine has a larger displacement than the first engine ENG1.
  • the displacement of the first engine ENG1 is 500 cc
  • the displacement of the second engine ENG2 is 1000 cc
  • the total displacement is 1500 cc.
  • the combination of the displacements is arbitrary.
  • the main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes.
  • the main motor generator MG1 functions as a motor
  • a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated.
  • the main motor generator MG1 functions as a generator
  • power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy.
  • a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
  • the sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG2 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
  • the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way
  • the rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
  • the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used.
  • a synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided.
  • the synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2.
  • a second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
  • the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
  • the first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration.
  • I can be changed steplessly, and the maximum value of the gear ratio can be set to infinity ( ⁇ ), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft.
  • 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
  • the plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3.
  • the first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101.
  • Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
  • the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101.
  • the inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance.
  • the outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes.
  • the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
  • the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108.
  • a pinion 110 is rotatably accommodated inside the two circular holes 109.
  • the teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
  • the pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other.
  • the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101.
  • a reduction ratio is applied to the rotation difference.
  • a speed reduction mechanism for example, a planetary gear
  • the relative angle between the input shaft 101 and the pinion 110 changes by the amount.
  • the internal gear 107 with which the teeth of the pinion 110 are engaged that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
  • the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match.
  • the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
  • the one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction.
  • the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
  • the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction.
  • the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric.
  • the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction.
  • the roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
  • a protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124.
  • the pin 125 is arrange
  • the connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120.
  • the eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle ⁇ 2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed.
  • the swing angle ⁇ 2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed.
  • the speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
  • the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the one-way clutch 120 which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
  • FIGS. 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated.
  • the amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
  • FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism
  • FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2).
  • the rotational angle ( ⁇ ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”.
  • FIG. 8 is a diagram showing the relationship of the angular velocity ⁇ 2 of the input member 122.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130.
  • the input member 122 of the one-way clutch 120 swings one reciprocating motion.
  • the swing cycle of the input member 122 of the one-way clutch 120 is always constant.
  • the angular velocity ⁇ 2 of the input member 122 is determined by the rotational angular velocity ⁇ 1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
  • One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
  • transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. 3) is the positive direction of the output member 121. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
  • the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state)
  • This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
  • Rotation detecting means (not shown) is provided.
  • the rotational speed of the input member 122 of the first and second one-way clutches OWC1 and OWC2 (also referred to as the upstream rotational speed or the input rotational speed of the first and second one-way clutches OWC1 and OWC2) is R1.
  • the rotational speed of the output member 121 of the first and second one-way clutches OWC1 and OWC2 (also referred to as the downstream rotational speed or output rotational speed of the first and second one-way clutches OWC1 and OWC2)
  • the rotational speed of the rotation drive member 11 is R3.
  • the rotation speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotation speed R3 of the driven member 11 are the rotation speeds before and after (upstream and downstream) of the clutch mechanisms CL1 and CL2.
  • the rotational speed R3 of the rotation drive member 11 is regarded as equivalent to the rotational speed of the axle (foot shaft) 13 and the main motor generator MG1.
  • the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2.
  • Various driving patterns are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements.
  • the control means 5 is supplied with signals from various element rotation detection means and other detection means, including a later-described request output detection means.
  • typical control contents will be described.
  • the control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2.
  • EV traveling, series traveling, engine traveling, and parallel traveling are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
  • the series traveling is executed between EV traveling and engine traveling when the traveling mode is switched from EV traveling to engine traveling.
  • the rotational speed input to the input member 122 of the first one-way clutch OWC1 is controlled by controlling the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1. Is controlled to be lower than the rotational speed of the output member 121.
  • the rotation speed of the first engine ENG1 and / or the transmission ratio of the first transmission TM1 is controlled to be input to the input member 122 of the first one-way clutch OWC1.
  • the rotation speed is changed to a value that exceeds the rotation speed of the output member 121 to shift from series running to engine running.
  • the gear ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed (
  • the first engine ENG1 is started using the driving force of the sub motor generator MG2 mainly in a state where the gear ratio is set to infinity. Then, after the traveling mode is switched from the series traveling to the engine traveling, the power generation by the sub motor generator MG2 is stopped.
  • the sub motor generator MG2 Continue charging (charging operation of the battery 8 by power generation).
  • the clutch mechanisms CL1 and CL2 are held in the disconnected state. Thereby, the dragging torque cross of the one-way clutches OWC1 and OWC2 can be eliminated, and energy efficiency can be improved.
  • the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2.
  • Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ⁇ ⁇ ) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121.
  • the speed ratio of the second transmission TM2 is set to infinity ( ⁇ ), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed.
  • the speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
  • the second engine ENG2 when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1,
  • the synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission.
  • the engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
  • the second engine ENG2 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1.
  • the rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
  • both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted.
  • Synchronous control for controlling the transmission ratio of TM2 is performed.
  • both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at a high-efficiency operation point and the other engine (second engine).
  • the output request is satisfied by raising the output of ENG2).
  • the first and second engines ENG1 so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121
  • the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region.
  • the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
  • the clutch mechanisms CL1 and CL2 are shut off when the rotational speed is lower than the rotational speed R2 of 121.
  • step S101 it is first determined whether or not the vehicle is decelerating. Whether or not the vehicle is decelerating, that is, whether or not a deceleration request is made, is determined by, for example, the accelerator opening, the brake depression ON / OFF, or the like.
  • the upstream side rotational speed R1 (the rotational speed of the input member 122) of the one-way clutch OWC1 (or OWC2) is controlled to decrease (step S102).
  • the reduction control of the rotational speed R1 is performed by changing the rotational speed of the engine ENG1 (or ENG2) and / or the transmission ratio of the transmission TM1 (or TM2).
  • step S103 the degree of vehicle deceleration request is determined in step S103, and when slow deceleration is requested, the process is terminated without proceeding to the step of disconnecting the clutch mechanism CL (CL1 or CL2).
  • step S104 the upstream rotational speed R1 (the rotational speed of the input member 122) and the downstream rotational speed of the one-way clutch OWC1 (or OWC2).
  • the number R2 the number of rotations of the output member 121) is monitored, and it waits for the upstream rotation number R1 of the one-way clutch OWC1 (or OWC2) to be lower than the downstream rotation number R2.
  • the clutch mechanism CL (CL1 or CL2) is turned off (step S106), and the process is terminated.
  • step S201 it is first determined whether or not the vehicle is decelerating. If the vehicle is not decelerating, the process is finished as it is, and if the vehicle is decelerating, control is performed to reduce the upstream rotational speed R1 (the rotational speed of the input member 122) of the first and second one-way clutches OWC1 and OWC2 (step). S202).
  • step S203 the degree of vehicle deceleration request is determined in step S203, and when slow deceleration is requested, the process is terminated without proceeding to the step of disconnecting the clutch mechanism CL (CL1 or CL2). On the other hand, when the deceleration is more rapid than the slow deceleration, the process proceeds to step S204 and subsequent steps. After step S204, the first and second clutch mechanisms CL1 and CL2 are individually disconnected according to the rotational speed conditions of the input member 122 and the output member 121 of each one-way clutch OWC1 and OWC2.
  • step S204 it is confirmed whether or not the first clutch mechanism CL1 is OFF. If it is OFF, the process proceeds to step S208. If it is not OFF, after waiting for the upstream rotational speed R1 (the rotational speed of the input member 122) of the first one-way clutch OWC1 to become lower than the downstream rotational speed R2 (the rotational speed of the output member 121), The first clutch mechanism CL1 is turned off (steps S205 to S207).
  • step S208 If the first clutch mechanism CL1 is turned off, it is next checked in step S208 whether the second clutch mechanism CL2 is turned off. If it is turned off, the process proceeds to step S212. If it is not OFF, after waiting for the upstream rotational speed R1 (the rotational speed of the input member 122) of the second one-way clutch OWC2 to become lower than the downstream rotational speed R2 (the rotational speed of the output member 121), The second clutch mechanism CL2 is turned off (steps S209 to 211).
  • step S212 After confirming that both clutch mechanisms CL1 and CL2 are OFF in step S212, the process is terminated.
  • the upstream side of the clutch mechanism CL (CL1 or CL2) can be disconnected from the downstream side. Accordingly, it is possible to reduce the friction loss due to the accompanying power transmission member (for example, the output member 121 of the one-way clutch) from the one-way clutch OWC1 (or OWC2) to the clutch mechanism CL (CL1 or CL2). The energy recovery efficiency can be improved.
  • the clutch mechanisms CL1 and CL2 are disconnected only when they can freely rotate without being constrained by the member 122. Therefore, even when a dog clutch is used for the clutch mechanisms CL1 and CL2, the clutch mechanisms CL1 and CL2 can be operated without difficulty. It can be shut off smoothly and can contribute to the improvement of energy recovery efficiency.
  • the clutch mechanisms CL1 and CL2 are not completely shut off when there is a deceleration request, but the clutch mechanisms CL1 and CL2 are shut off in the case of a slow deceleration that may cause the accelerator to be depressed immediately.
  • the time required to connect the clutch mechanisms CL1 and CL2 can be reduced according to the depression of the accelerator, and the response can be enhanced.
  • FIGS. 11 to 25 are enlarged explanatory diagrams showing the operation patterns A to O
  • FIGS. 26 to 35 are explanatory diagrams of a control operation executed according to each operation state or a control operation at the time of traveling mode switching.
  • the symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 26 to 35 correspond to the symbols of the operation patterns A to O shown in FIGS.
  • movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
  • EV traveling is performed with the driving force of the main motor generator MG1.
  • the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential.
  • the vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R.
  • the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
  • the sub motor generator MG2 In the operation pattern B shown in FIG. 12, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is supplied to the main motor generator MG1 and the battery 8 to perform series running. ing.
  • the first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
  • parallel running is performed by using the driving forces of both the main motor generator MG1 and the first engine ENG1.
  • the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated.
  • This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling.
  • the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state.
  • the driving force of the first engine ENG1 is transmitted to the driven member 11 and the second one-way clutch OWC2 is prevented from being dragged.
  • the engine travels using the driving force of the first engine ENG1.
  • This operation pattern D is used, for example, to reduce the power consumption of the battery 8 when the SOC is low at the start.
  • the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 through the driven member 11 during deceleration. Mechanical energy input from the drive wheel 2 through the driven member for rotation 11 is converted into electric energy. Then, regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8.
  • the clutch mechanisms CL1 and CL2 are disconnected at a predetermined timing as shown in the flowchart of FIG. 9 or FIG.
  • the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1.
  • the battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
  • the vehicle is driven by the driving force of the first engine ENG1 and is driven by the power introduced into the driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20.
  • the engine ENG2 of No. 2 is started, and the shortage of output to the drive wheel 2 due to the increase in load at the time of startup is compensated by the driving force of the first motor generator MG1.
  • the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and supplies the generated electric power to the first motor generator MG1 or charges the battery 8.
  • the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state).
  • the rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2.
  • the output of the second transmission TM2 is not input to the driven member 11 to be rotated.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
  • the engine travels by the driving force of the second engine ENG2.
  • the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2.
  • the engine is running.
  • the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established).
  • the operation pattern J shown in FIG. 20 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2.
  • the first engine ENG1 in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11).
  • the rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
  • the operation pattern K shown in FIG. 21 is an operation pattern in the case where a deceleration request is generated, for example, during medium to high speed traveling.
  • the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and a regenerative braking force is applied to the drive wheel 2.
  • the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheels 2 as a braking force.
  • the first and second clutch mechanisms CL1 and CL2 are turned off at a predetermined timing.
  • the operation pattern L shown in FIG. 22 is an operation pattern at the time of switching when a further increase in the required output occurs while the vehicle is running with the driving force of the second engine ENG2.
  • the sub motor generator MG2 is driven to start the first engine ENG1.
  • the gear ratio of the first transmission TM1 is set to infinity.
  • the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and become.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state. Also at this time, the clutch mechanisms CL1 and CL2 are turned off at a certain timing with the start of the regenerative operation.
  • An operation pattern O shown in FIG. 25 is an operation pattern when the vehicle is stopped.
  • the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. is doing.
  • the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity ( ⁇ ) or by disengaging the clutches CL1 and CL2.
  • the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1.
  • the battery 8 may be charged using the sub motor generator MG2 as a generator.
  • the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
  • the parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
  • the transmission ratio of the first transmission TM1 is set to infinity so that the output of the first engine ENG1 does not enter the rotated drive member 11.
  • the operation mode is switched to the operation pattern B and the series running is performed by the power generation of the sub motor generator MG2.
  • the operation proceeds to the operation pattern F, and the rotation speed of the first engine ENG1 and / or the first transmission TM1 is set so that the input rotation speed of the first one-way clutch OWC1 exceeds the output rotation speed.
  • the transmission ratio is controlled, and the power of the first engine ENG1 is transmitted to the driven member 11 for rotation.
  • the gear ratio is moved to the OD (overdrive) side, and the engine running by the first engine ENG1 is performed from the EV running by the main motor generator MG1 through the series running. Make a smooth transition to At this time, the clutch mechanism CL1 controls connection at an appropriate timing so as not to cause a delay.
  • the main motor generator MG1 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
  • SOC remaining battery capacity
  • the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started.
  • the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated.
  • the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock.
  • the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible.
  • the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
  • the cutoff control of the second clutch mechanism CL2 is performed according to the flowchart of FIG. 9 described above.
  • the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked.
  • the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2.
  • the control of the flowchart of FIG. 9 is performed with the start of the regenerative operation.
  • the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start. (29)
  • the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11).
  • the rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
  • the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state.
  • a strong braking force is applied by the regenerative operation of the main motor generator MG1.
  • the battery 8 is charged with the regenerative power generated by the main motor generator MG1.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the flowchart of FIG. 10 is followed. Shut-off control of the clutch mechanisms CL1 and CL2 is performed.
  • the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest from each other (or when the rotation direction opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 36 (b)
  • the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other)
  • the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked.
  • the control means 5 shuts off the first clutch mechanism CL1 and the second clutch mechanism CL2 during the regenerative operation during deceleration of the vehicle.
  • the upstream side of the mechanisms CL1 and CL2 can be disconnected from the downstream side, thereby reducing the friction loss due to the rotation of the power transmission member between the one-way clutches OWC1 and OWC2 and the clutch mechanisms CL1 and CL2.
  • the energy recovery efficiency can be improved.
  • the clutch mechanisms CL1 and CL2 are disconnected, the rotational speed R1 of the input member 122 of the one-way clutches OWC1 and OWC2 is lower than the rotational speed R2 of the output member 121. Therefore, even when a dog clutch is used.
  • the clutch mechanisms CL1 and CL2 can be smoothly and smoothly disconnected, contributing to improvement in energy recovery efficiency.
  • the clutch mechanisms CL1 and CL2 are shut off according to the degree of deceleration request, and the clutch mechanisms CL1 and CL2 are stopped from being shut down in the case of slow deceleration where the accelerator may be stepped on again immediately. Therefore, it is possible to reduce the dead time for connecting the clutch mechanisms CL1 and CL2 according to the re-depression of the accelerator, and to improve the response.
  • the rotational speed R1 of the input member 122 of the engine-side one-way clutch OWC1, OWC2 that transmits the driving force to the driven member 11 is determined by the engine ENG1, ENG2.
  • the clutch mechanism CL1, CL2 can be shut off early and the energy recovery efficiency can be improved because the speed is controlled by changing the speed and / or the transmission ratio of the transmission TM1, TM2. Can contribute.
  • the clutch mechanisms CL1 and CL2 are shut off in a situation where the driving forces of the two engines ENG1 and ENG2 are transmitted to the driven member 11, the clutch mechanisms CL1 and CL2 are individually set according to the upstream conditions. Since the shut-off control is performed, the clutch mechanisms Cl1 and CL2 can be smoothly shut off under optimum conditions.
  • step S301 it is first determined whether or not the vehicle is decelerating. If the vehicle is not decelerating, the process is terminated. If the vehicle is decelerating, control is performed to decrease the upstream rotational speed R1 of the first and second one-way clutches OWC1 and OWC2 (the rotational speed of the input member 122) (step). S302).
  • step S303 the degree of vehicle deceleration request is determined in step S303, and when slow deceleration is requested, the process is terminated without proceeding to the first and second clutch mechanism CL1, CL2 disconnection steps.
  • step S304 the first and second clutch mechanisms CL1 and CL2 are simultaneously disconnected according to the conditions of the rotational speeds R1 and R2 before and after both the first and second one-way clutches OWC1 and OWC2 (step S304). ⁇ 306). That is, when it is confirmed that the rotational speeds R1 and R2 of both the one-way clutches OWC1 and OWC2 are both “R1 ⁇ R2”, the first and second clutch mechanisms CL1 and CL2 are simultaneously disconnected. Finish the process.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1.
  • the case where it is connected to the driven member 11 via CL2 as in another embodiment shown in FIG. 38, both the first and second one-way clutches OWC1, on one side of the differential device 10,
  • the OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
  • the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120.
  • a transmission mechanism such as CVT may be used.
  • the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
  • the engine has two engines ENG1 and ENG2, two transmissions TM1 and TM2, two one-way clutches OWC1 and OWC2, two motor generators MG1 and MG2, and two clutch mechanisms CL1 and CL2.
  • the present invention can be applied to a configuration including one engine ENG, one transmission TM, one-way clutch OWC, and one clutch mechanism MOT as shown in FIG.
  • the main motor generator MG1 may be configured to give rotational power to the drive wheels 2 driven by the engines ENG1 and ENG2 as in the present embodiment, or another drive as shown by the broken line in FIG.
  • the configuration may be such that rotational power is applied to the wheels 2B (rear wheels when the driving wheels 2 are front wheels, and front wheels when the driving wheels 2 are rear wheels).
  • the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions.
  • the engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
  • first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally.
  • the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
  • the present invention is based on a Japanese patent application (Japanese Patent Application No. 2010-143814) filed on June 24, 2010, the contents of which are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A drive system for a motor vehicle (1) comprises first and second engines (ENG1 and ENG2); first and second transmissions (TM1 and TM2); first and second one-way clutches (OWC1 and OWC2); a rotated drive member (11) which, by being coupled to the output members of both one-way clutches in common, communicates the rotational power that has been transferred to the output member to a drive wheel and rotates integrally with the drive wheel; a main motor generator (MG1) which has a motor operation function for imparting rotational power for driving to the drive wheel or to another drive wheel, and a regenerative operation function which generates electricity by way of power from the drive wheel side and imparts a regenerative braking force to the drive wheel at the same time; first and second clutch mechanisms (CL1 and CL2) interposed between the output members of the one-way clutches and the rotated drive member; and a control means (5) for blocking the clutch mechanism at deceleration time of the vehicle to cause the main motor generator to perform a regenerative operation. As a result, it is possible to increase energy recovery efficiency when decelerating.

Description

自動車用駆動システム及びその制御方法Driving system for automobile and control method thereof
 本発明は、走行用の駆動源として、内燃機関部とモータジェネレータを備えたハイブリッド型の自動車用駆動システム及びその制御方法に関するものである。 The present invention relates to a hybrid automobile drive system including an internal combustion engine section and a motor generator as a driving source for traveling, and a control method thereof.
 従来のこの種の自動車用駆動システムとして、特許文献1に示されるように、エンジンとトランスミッションとモータジェネレータを組み合わせ、トランスミッションの駆動軸と被駆動軸とを、駆動軸に設けられた偏心体駆動装置と被駆動軸に設けられたワンウェイ・クラッチとにより接続し、トランスミッションの駆動軸にエンジンの出力を導入すると共に、モータジェネレータをクラッチを介して、トランスミッションの入力側、または、ワンウェイ・クラッチの出力側に選択的に接続可能とし、あるいは、トランスミッションの入力側とワンウェイ・クラッチの出力側の両方に同時に接続可能に構成したハイブリッド型の駆動システムが知られている。 As a conventional vehicle drive system of this type, as disclosed in Patent Document 1, an engine, a transmission, and a motor generator are combined, and a drive shaft and a driven shaft of the transmission are provided on the drive shaft. And the one-way clutch provided on the driven shaft to introduce the engine output to the transmission drive shaft, and the motor generator via the clutch to the transmission input side or the one-way clutch output side There is known a hybrid drive system that can be selectively connected to each other, or can be connected simultaneously to both the input side of the transmission and the output side of the one-way clutch.
 この駆動システムでは、エンジンの駆動力だけを利用したエンジン走行、モータジェネレータの駆動力だけを利用したEV走行、エンジンの駆動力とモータジェネレータの駆動力の両方を利用したパラレル走行を行うことができる。また、モータジェネレータの回生動作を利用することにより、減速時に回生エネルギーを得ることができると同時に、回生ブレーキを駆動車輪に利かせることもできる。また、モータジェネレータでエンジンを始動させることもできる。 In this drive system, engine running using only the driving force of the engine, EV running using only the driving force of the motor generator, and parallel running using both the driving force of the engine and the driving force of the motor generator can be performed. . Further, by using the regenerative operation of the motor generator, regenerative energy can be obtained during deceleration, and at the same time, the regenerative brake can be applied to the drive wheels. It is also possible to start the engine with a motor generator.
日本国特表2005-502543号公報Japan Special Table 2005-502543
 ところで、上述の特許文献1に記載された駆動システムにおいては、クラッチが、エンジンと車軸とを繋ぐ動力伝達経路上にではなく、モータジェネレータと車軸とを繋ぐ動力伝達経路上に設けられており、エンジンと車軸とを繋ぐ動力伝達経路上には、入力側(上流側)の回転速度が出力側(下流側)の回転速度より上回るときに係合するワンウェイ・クラッチが設けられている。 By the way, in the drive system described in Patent Document 1 described above, the clutch is provided not on the power transmission path connecting the engine and the axle, but on the power transmission path connecting the motor generator and the axle. A one-way clutch that engages when the rotational speed on the input side (upstream side) exceeds the rotational speed on the output side (downstream side) is provided on the power transmission path that connects the engine and the axle.
 従って、減速時にクラッチを連結してモータジェネレータで回生運転を行っているときに、車軸側の回転と一緒にワンウェイ・クラッチの出力側(下流側)部材が一緒に連れ回ることになり、摩擦ロスを生じるという問題があった。つまり、エンジンから車軸までの動力伝達経路上にはワンウェイ・クラッチが介在されていることにより、確かに、減速時の条件によって自動的にワンウェイ・クラッチの上流側を下流側から切り離すことができるが、ワンウェイ・クラッチの要素の一部が車軸と一緒に連れ回るため、連れ回りによる摩擦ロスは避けられず、エネルギー回収効率のアップに支障を生じる可能性があった。 Therefore, when the clutch is connected at the time of deceleration and regenerative operation is performed by the motor generator, the output side (downstream side) member of the one-way clutch is rotated together with the rotation of the axle, resulting in friction loss. There was a problem that caused. In other words, because the one-way clutch is interposed on the power transmission path from the engine to the axle, it is possible to automatically disconnect the upstream side of the one-way clutch from the downstream side depending on the deceleration conditions. Since some of the elements of the one-way clutch are rotated together with the axle, friction loss due to the rotation is inevitable, and there is a possibility that the energy recovery efficiency may be increased.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、減速時のエネルギー回収効率のアップを図ることのできる自動車用駆動システム及びその制御方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an automobile drive system and a control method thereof that can improve energy recovery efficiency during deceleration.
 上記目的を達成するために、請求項1に係る発明は、自動車用駆動システム(例えば、後述の実施形態における駆動システム1)において、
 回転動力を発生する内燃機関部(例えば、後述の実施形態における第1のエンジンENG1および第2のエンジンENG2)と、
 該内燃機関部の発生する回転動力を変速して出力する変速機構(例えば、後述の実施形態における第1のトランスミッションTM1および第2のトランスミッションTM2)と、 該変速機構の出力部に設けられ、入力部材(例えば、後述の実施形態における入力部材122)と出力部材(例えば、後述の実施形態における出力部材121)とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチ(例えば、後述の実施形態における第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2)と、
 前記ワンウェイ・クラッチの出力部材に連結されることで、該出力部材に伝達された回転動力を駆動車輪(例えば、後述の実施形態における駆動車輪2)に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材(例えば、後述の実施形態における被回転駆動部材11)と、
 前記駆動車輪または別の駆動車輪に走行のための回転動力を与えるモータ運転機能と前記駆動車輪側からの動力により発電し同時に駆動車輪に回生制動力を与える回生運転機能とを持つモータジェネレータ(例えば、後述の実施形態におけるメインモータジェネレータMG1)と、
 前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構(例えば、後述の実施形態における第1のクラッチ機構CL1および第2のクラッチ機構CL2)と、
 車両の減速時に、前記クラッチ機構を遮断し、前記モータジェネレータに回生運転をさせる制御手段(例えば、後述の実施形態における制御手段5)と、
 を備えることを特徴とする。
In order to achieve the above object, an invention according to claim 1 is an automobile drive system (for example, drive system 1 in an embodiment described later).
An internal combustion engine that generates rotational power (for example, a first engine ENG1 and a second engine ENG2 in an embodiment described later);
A transmission mechanism (for example, a first transmission TM1 and a second transmission TM2 in an embodiment described later) for shifting and outputting the rotational power generated by the internal combustion engine section, and an output section of the transmission mechanism. A member (for example, an input member 122 in an embodiment described later), an output member (for example, an output member 121 in an embodiment described later), and an engagement member (for example, an input member and an output member that lock or unlock the input member) A roller 123) in an embodiment described later, and when the rotational speed in the positive direction of the input member that receives rotational power from the transmission mechanism exceeds the rotational speed in the positive direction of the output member, A one-way clutch that transmits rotational power input to the input member to the output member when the output member is locked. (For example, the first one-way clutch OWC1 and the second one-way clutch OWC2 in the embodiment described later),
By being connected to the output member of the one-way clutch, the rotational power transmitted to the output member is transmitted to a drive wheel (for example, a drive wheel 2 in an embodiment described later) and rotates together with the drive wheel. A rotated drive member (for example, a rotated drive member 11 in an embodiment described later);
A motor generator (for example, a regenerative operation function that generates rotational power for traveling to the drive wheel or another drive wheel and a regenerative braking force that simultaneously generates power from the drive wheel side and applies a regenerative braking force to the drive wheel) A main motor generator MG1) in an embodiment described later;
A clutch mechanism that is interposed between the output member of the one-way clutch and the driven drive member and is capable of transmitting / cutting power between the two members (for example, a first clutch mechanism CL1 and a clutch mechanism in a later-described embodiment) A second clutch mechanism CL2),
Control means (for example, control means 5 in an embodiment described later) for cutting off the clutch mechanism and causing the motor generator to perform a regenerative operation when the vehicle decelerates;
It is characterized by providing.
 請求項2に係る発明は、請求項1の構成において、
 前記ワンウェイ・クラッチの入力部材および出力部材の回転数を検出し、該ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数より下回った段階で、前記クラッチ機構を遮断することを特徴とする。
The invention according to claim 2 is the structure of claim 1,
The rotational speed of the input member and output member of the one-way clutch is detected, and the clutch mechanism is shut off when the rotational speed of the input member of the one-way clutch is lower than the rotational speed of the output member. .
 請求項3に係る発明は、請求項1の構成において、
 前記制御手段が、車両の減速要求の程度を判断し、急減速が要求されているときに前記クラッチ機構を遮断し、緩減速が要求されているときに前記クラッチ機構の遮断を停止することを特徴とする。
The invention according to claim 3 is the configuration of claim 1,
The control means judges the degree of deceleration request of the vehicle, and shuts off the clutch mechanism when sudden deceleration is requested, and stops breaking the clutch mechanism when slow deceleration is requested. Features.
 請求項4に係る発明は、請求項1の構成において、 
 前記制御手段が、車両の減速要求があったときに、前記内燃機関部の回転数および/または前記変速機構の変速比を変更して前記ワンウェイ・クラッチの入力部材の回転数を低下させた後に、前記クラッチ機構を遮断することを特徴とする。
The invention according to claim 4 is the configuration of claim 1,
When the control means changes the rotational speed of the internal combustion engine section and / or the speed ratio of the transmission mechanism to reduce the rotational speed of the input member of the one-way clutch when a vehicle deceleration request is made The clutch mechanism is shut off.
 請求項5に係る発明は、請求項1~4のいずれかの構成において、
 前記内燃機関部として、それぞれに回転動力を発生する第1の内燃機関部および第2の内燃機関部が設けられ、
 前記変速機構として、前記第1の内燃機関部および第2の内燃機関部の下流側にそれぞれ第1の変速機構および第2の変速機構が設けられ、
 前記ワンウェイ・クラッチとして、前記第1の変速機構と第2の変速機構の出力部にそれぞれ第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチが設けられ、
 前記被回転駆動部材が、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、
 前記クラッチ機構として、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ第1のクラッチ機構および第2のクラッチ機構が設けられており、
 前記制御手段が、車両の減速時に、前記第1のクラッチ機構および第2のクラッチ機構を、それぞれの上流側の第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチそれぞれの入力部材と出力部材の回転数に応じて個別に遮断することを特徴とする。
The invention according to claim 5 is the structure according to any one of claims 1 to 4,
As the internal combustion engine portion, a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
As the speed change mechanism, a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
As the one-way clutch, a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
The rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
As the clutch mechanism, a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively. ,
When the vehicle is decelerating, the control means causes the first clutch mechanism and the second clutch mechanism to switch the input members and the output members of the first one-way clutch and the second one-way clutch on the upstream side, respectively. It is characterized by being individually cut off according to the number of rotations.
 請求項6に係る発明は、請求項1~4のいずれかの構成において、
 前記内燃機関部として、それぞれに回転動力を発生する第1の内燃機関部および第2の内燃機関部が設けられ、
 前記変速機構として、前記第1の内燃機関部および第2の内燃機関部の下流側にそれぞれ第1の変速機構および第2の変速機構が設けられ、
 前記ワンウェイ・クラッチとして、前記第1の変速機構と第2の変速機構の出力部にそれぞれ第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチが設けられ、
 前記被回転駆動部材が、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、
 前記クラッチ機構として、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ第1のクラッチ機構および第2のクラッチ機構が設けられており、
 前記制御手段が、車両の減速時に、前記第1のクラッチ機構および第2のクラッチ機構を同時に遮断することを特徴とする。
The invention according to claim 6 is the structure according to any one of claims 1 to 4,
As the internal combustion engine portion, a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
As the speed change mechanism, a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
As the one-way clutch, a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
The rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
As the clutch mechanism, a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively. ,
The control means simultaneously shuts off the first clutch mechanism and the second clutch mechanism when the vehicle is decelerated.
 請求項7に係る発明は、 
 回転動力を発生する内燃機関部と、
 該内燃機関部の発生する回転動力を変速して出力する変速機構と、
 該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
 前記ワンウェイ・クラッチの出力部材に連結されることで、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
 前記駆動車輪または別の駆動車輪に走行のための回転動力を与えるモータ運転機能と前記駆動車輪側からの動力により発電し同時に駆動車輪に回生制動力を与える回生運転機能とを持つモータジェネレータと、
 前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
を備えることを特徴とする自動車用駆動システムの制御方法であって、
 車両の減速時に、前記クラッチ機構を遮断し、前記モータジェネレータに回生運転をさせることを特徴とする。
The invention according to claim 7 provides:
An internal combustion engine that generates rotational power;
A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
By being connected to the output member of the one-way clutch, the rotational drive force transmitted to the output member is transmitted to the drive wheel, and the driven drive member that rotates integrally with the drive wheel;
A motor generator having a motor operation function for providing rotational power for traveling to the drive wheel or another drive wheel and a regenerative operation function for generating power by the power from the drive wheel side and simultaneously applying a regenerative braking force to the drive wheel;
A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
A method for controlling an automotive drive system, comprising:
When the vehicle is decelerated, the clutch mechanism is disconnected and the motor generator is caused to perform a regenerative operation.
 請求項1および請求項7の発明によれば、車両の減速時の回生運転中にクラッチ機構を遮断するので、クラッチ機構の上流側を下流側から切り離すことができる。従って、ワンウェイ・クラッチからクラッチ機構までの間の動力伝達部材の連れ回りによる摩擦ロスを低減することができ、エネルギー回収効率の向上を図ることができる。 According to the first and seventh aspects of the invention, since the clutch mechanism is disconnected during the regenerative operation when the vehicle is decelerated, the upstream side of the clutch mechanism can be disconnected from the downstream side. Accordingly, it is possible to reduce friction loss due to the accompanying power transmission member between the one-way clutch and the clutch mechanism, and to improve energy recovery efficiency.
 請求項2の発明によれば、ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数より下回った段階で、つまり、入力部材から出力部材に動力が伝達されなくなって出力部材が入力部材に拘束されずに自由回転できるようになった段階で初めて、クラッチ機構を遮断するので、クラッチ機構にドグクラッチを使用した場合にも、クラッチ機構を無理なくスムーズに遮断することができ、エネルギー回収効率の向上に貢献することができる。 According to the invention of claim 2, when the rotational speed of the input member of the one-way clutch is lower than the rotational speed of the output member, that is, power is not transmitted from the input member to the output member, and the output member becomes the input member. Since the clutch mechanism is disconnected only when it can be freely rotated without being constrained, even when a dog clutch is used for the clutch mechanism, the clutch mechanism can be disconnected smoothly and smoothly, and energy recovery efficiency can be improved. Can contribute to improvement.
 請求項3の発明によれば、減速要求があるときに常にクラッチ機構を遮断するのではなく、再び直ぐにアクセルが踏み込まれる可能性のある緩減速の場合にはクラッチ機構の遮断を停止するので、アクセルの再踏み込みに応じてクラッチ機構を繋ぎに行くための時間を減らすことができ、レスポンスを高めることができる。 According to the invention of claim 3, since the clutch mechanism is not always shut off when there is a deceleration request, but the clutch mechanism is stopped in the case of slow deceleration in which the accelerator may be stepped on again immediately. The time required to connect the clutch mechanism can be reduced in accordance with the re-depression of the accelerator, and the response can be improved.
 請求項4の発明によれば、車両の減速時にクラッチ機構を早めに遮断することができ、エネルギー回収効率の向上に貢献することができる。 According to the invention of claim 4, the clutch mechanism can be disconnected early when the vehicle decelerates, which can contribute to the improvement of energy recovery efficiency.
 請求項5の発明によれば、第1のクラッチ機構と第2のクラッチ機構をそれぞれの上流側のワンウェイ・クラッチの条件に応じて個別に遮断するので、各クラッチ機構を最適な条件でスムーズに遮断することができる。 According to the invention of claim 5, since the first clutch mechanism and the second clutch mechanism are individually disconnected according to the conditions of the upstream one-way clutch, each clutch mechanism can be smoothly operated under the optimum conditions. Can be blocked.
 請求項6の発明によれば、第1のクラッチ機構および第2のクラッチ機構を同時に遮断するので、各クラッチ機構CL1、CL2の遮断に伴うショックの発生回数が少なくなるので、商品性を高めることができる。 According to the invention of claim 6, since the first clutch mechanism and the second clutch mechanism are simultaneously disconnected, the number of occurrences of shocks associated with the disconnection of each clutch mechanism CL1, CL2 is reduced, so that the merchantability is improved. Can do.
本発明の第1実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of a 1st embodiment of the present invention. 同システムの要部である無限・無段変速機構の具体的構成を示す断面図である。It is sectional drawing which shows the specific structure of the infinite and continuously variable transmission mechanism which is the principal part of the system. 同変速機構の一部の構成を軸線方向から見た側断面図である。It is the sectional side view which looked at the one part structure of the transmission mechanism from the axial direction. 同変速機構における変速比可変機構による変速原理の前半部分の説明図であり、(a)は偏心ディスク104の中心点である第1支点O3の回転中心である入力中心軸線O1に対する偏心量r1を「大」にして変速比iを「小」に設定した状態を示す図、(b)は偏心量r1を「中」にして変速比iを「中」に設定した状態を示す図、(c)は偏心量r1を「小」にして変速比iを「 大」に設定した状態を示す図、(d)は偏心量r1を「ゼロ」にして変速比iを「無限大(∞)」に設定した状態を示す図である。It is explanatory drawing of the first half part of the speed change principle by the gear ratio variable mechanism in the same speed change mechanism, and (a) shows the amount of eccentricity r1 with respect to the input center axis O1 that is the rotation center of the first fulcrum O3 that is the center point of the eccentric disk 104. FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG. 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”. ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the gear ratio i is set to “large”, and (d) is a diagram in which the eccentricity r1 is set to “zero” and the gear ratio i is set to “infinity (∞)”. It is a figure which shows the state set to. 同変速機構における変速比可変機構による変速原理の後半部分の説明図であって、偏心ディスクの偏心量r1を変更して変速比iを変えた場合のワンウェイ・クラッチ120の入力部材122の揺動角度θ2の変化を示す図であり、(a)は偏心量r1を「大」にし変速比iを「小」にすることで、入力部材122の揺動角度θ2が「大」になった状態を示す図、(b)は偏心量r1を「中」にし変速比iを「中」にすることで、入力部材122の揺動角度θ2が「中」になった状態を示す図、(c)は偏心量r1を「小」にし変速比iを「大」にすることで、入力部材122の揺動角度θ2が「小」になった状態を示す図である。FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk. FIG. 6A is a diagram showing a change in the angle θ2, and (a) shows a state in which the swing angle θ2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”. FIG. 5B is a diagram showing a state in which the swing angle θ2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle θ2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. 四節リンク機構として構成された前記無限・無段変速機構の駆動力伝達原理の説明図である。It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar linkage mechanism. 同変速機構において、入力軸と共に等速回転する偏心ディスクの偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸の回転角度θとワンウェイ・クラッチの入力部材の角速度ω2の関係を示す図である。In the same speed change mechanism, when the eccentricity r1 (speed ratio i) of the eccentric disk rotating at the same speed as the input shaft is changed to “large”, “medium”, and “small”, the rotation angle θ of the input shaft and the one-way -It is a figure which shows the relationship of angular velocity (omega) 2 of the input member of a clutch. 同変速機構において、複数の連結部材によって入力側(入力軸や偏心ディスク)から出力側(ワンウェイ・クラッチの出力部材)へ動力が伝達される際の出力の取り出し原理を説明するための図である。FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. . 同駆動システムにおいて実行する減速回生時のクラッチ機構の遮断制御の内容を示すフローチャートである。It is a flowchart which shows the content of the interruption | blocking control of the clutch mechanism at the time of the deceleration regeneration performed in the drive system. 同駆動システムにおいて実行する減速回生時のクラッチ機構の別の遮断制御の内容を示すフローチャートである。It is a flowchart which shows the content of another interruption | blocking control of the clutch mechanism at the time of the deceleration regeneration performed in the drive system. 本実施形態の駆動システムにおける動作パターンAの説明図である。It is explanatory drawing of the operation pattern A in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンBの説明図である。It is explanatory drawing of the operation pattern B in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンCの説明図である。It is explanatory drawing of the operation pattern C in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンDの説明図である。It is explanatory drawing of the operation pattern D in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンEの説明図である。It is explanatory drawing of the operation pattern E in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンFの説明図である。It is explanatory drawing of the operation pattern F in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンGの説明図である。It is explanatory drawing of the operation pattern G in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンHの説明図である。It is explanatory drawing of the operation pattern H in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンIの説明図である。It is explanatory drawing of the operation pattern I in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンJの説明図である。It is explanatory drawing of the operation pattern J in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンKの説明図である。It is explanatory drawing of the operation pattern K in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンLの説明図である。It is explanatory drawing of the operation pattern L in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンMの説明図である。It is explanatory drawing of the operation pattern M in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンNの説明図である。It is explanatory drawing of the operation pattern N in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンOの説明図である。It is explanatory drawing of the operation pattern O in the drive system of this embodiment. 本実施形態の駆動システムにおいて、発進時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of start. 本実施形態の駆動システムにおいて、低速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of low speed driving | running | working. 本実施形態の駆動システムにおいて、EV走行モードからエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control operation at the time of switching (switch operation) from EV driving mode to engine driving mode. 本実施形態の駆動システムにおいて、中速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium speed driving | running | working. 本実施形態の駆動システムにおいて、第1のエンジンによるエンジン走行モードから第2のエンジンによるエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of the switching (switch operation) from the engine running mode by the 1st engine to the engine running mode by the 2nd engine. 本実施形態の駆動システムにおいて、中高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium-high speed driving | running | working. 本実施形態の駆動システムにおいて、第2のエンジンによるエンジン走行モードから、第2のエンジンと第1のエンジンによるパラレルのエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of switching (switch operation) from the engine running mode by the 2nd engine to the parallel engine running mode by the 2nd engine and the 1st engine. 本実施形態の駆動システムにおいて、高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of high speed driving | running | working. 本実施形態の駆動システムにおいて、車両後退時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle reverses. 本実施形態の駆動システムにおいて、車両停止時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle stops. (a)及び(b)はトランスミッションのロックによる後進不可状態の説明図である。(A) And (b) is explanatory drawing of the reverse drive impossible state by the lock | rock of a transmission. 本発明の第2実施形態に係る、減速回生時のクラッチ機構の遮断制御の内容を示すフローチャートである。It is a flowchart which shows the content of the interruption | blocking control of the clutch mechanism at the time of deceleration regeneration based on 2nd Embodiment of this invention. 本発明の別の実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of another embodiment of the present invention. 本発明の変形例に係る自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles concerning the modification of the present invention. 本発明の自動車用駆動システムの変形例を示す断面図である。It is sectional drawing which shows the modification of the drive system for motor vehicles of this invention.
《第1実施形態》
 以下、本発明の第1実施形態を図面に基づいて説明する。
 図1は本発明の第1実施形態の自動車用駆動システムのスケルトン図であり、図2は同駆動システムの要部である無限・無段変速機構の具体的構成を示す断面図、図3は同無限・無段変速機構の一部の構成を軸線方向から見た側断面図である。
<< First Embodiment >>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a skeleton diagram of an automobile drive system according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a specific configuration of an infinite / continuously variable transmission mechanism that is a main part of the drive system, and FIG. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
《全体構成》
 この自動車用駆動システム1は、それぞれ独立して回転動力を発生する第1、第2の内燃機関部としての2つのエンジンENG1、ENG2と、第1、第2のエンジンENG1、ENG2の各下流側に設けられた第1、第2のトランスミッション(変速機構)TM1、TM2と、各トランスミッションTM1、TM2の出力部に設けられた第1、第2のワンウェイ・クラッチOWC1、OWC2と、これらワンウェイ・クラッチOWC1、OWC2を介して伝達された出力回転を受ける被回転駆動部材11と、この被回転駆動部材11に接続されたメインモータジェネレータ(電動モータ)MG1と、第1のエンジンENG1の出力軸S1に接続されたサブモータジェネレータ(エンジンの始動手段)MG2と、メインおよび/またはサブのモータジェネレータMG1、MG2との間で電力のやりとりが可能なバッテリ(蓄電手段)8と、各種要素を制御することで走行パターンなどの制御を行う制御手段5と、を備えている。
"overall structure"
The vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2. First and second transmissions (transmission mechanisms) TM1 and TM2 provided in the transmission, first and second one-way clutches OWC1 and OWC2 provided at output portions of the transmissions TM1 and TM2, and these one-way clutches A rotation driven member 11 that receives the output rotation transmitted via OWC1 and OWC2, a main motor generator (electric motor) MG1 connected to the rotation driven member 11, and an output shaft S1 of the first engine ENG1 The connected sub motor generator (engine starting means) MG2 and the main and / or sub And over motor generators MG1, the battery capable of power exchange between the MG2 (power storage unit) 8, a control unit 5 for controlling such travel pattern by controlling the various elements, and a.
 各ワンウェイ・クラッチOWC1、OWC2は、入力部材(クラッチアウタ)122と、出力部材(クラッチインナ)121と、これら入力部材122および出力部材121の間に配されて両部材122、121を互いにロック状態または非ロック状態にする複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有する。そして、第1のトランスミッションTM1および第2のトランスミッションTM2からの各回転動力を受ける入力部材122の正方向(矢印RD1方向)の回転速度が、出力部材121の正方向の回転速度を上回ったとき、入力部材122と出力部材121が互いにロック状態になることにより、入力部材122に入力された回転動力が出力部材121に伝達される。 Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges | biases the roller 123 in the direction which gives a locked state. When the rotational speed of the input member 122 that receives the rotational power from the first transmission TM1 and the second transmission TM2 in the positive direction (arrow RD1 direction) exceeds the rotational speed of the output member 121 in the positive direction, When the input member 122 and the output member 121 are locked with each other, the rotational power input to the input member 122 is transmitted to the output member 121.
 第1、第2のワンウェイ・クラッチOWC1、OWC2は、ディファレンシャル装置10を挟んで右と左に配置されており、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121は、それぞれ別の第1、第2のクラッチ機構CL1、CL2を介して、被回転駆動部材11に共に連結されている。第1、第2のクラッチ機構CL1、CL2は、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121と被回転駆動部材11との間の動力の伝達/遮断を制御するために設けられている。これらのクラッチ機構CL1、CL2としては、他の種類のクラッチ(摩擦クラッチ等)を使用することもできるが、伝達ロスの低さからドグクラッチが使用されている。 The first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other. The first and second clutch mechanisms CL1 and CL2 are connected to the rotation driven member 11 together. The first and second clutch mechanisms CL1 and CL2 control the transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated. Is provided. As these clutch mechanisms CL1 and CL2, other types of clutches (friction clutches and the like) can be used, but dog clutches are used because of low transmission loss.
 被回転駆動部材11は、ディファレンシャル装置10のデフケースにより構成されており、各ワンウェイ・クラッチOWC1、OWC2の出力部材121に伝達された回転動力は、ディファレンシャル装置10および左右のアクスルシャフト13L、13Rを介して、左右の駆動車輪2に伝達される。ディファレンシャル装置10のデフケース(被回転駆動部材11)には、図示しないデフピニオンやサイドギヤが取り付けられており、左右のサイドギヤに左右のアクスルシャフト13L、13Rが連結され、左右のアクスルシャフト13L、13Rは差動回転する。 The driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2. A differential case (rotation drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown). The left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different. Dynamic rotation.
 第1、第2の2つのエンジンENG1、ENG2には、高効率運転ポイントの互いに異なるエンジンが用いられており、第1のエンジンENG1は排気量の小さいエンジンとされ、第2のエンジンENG2は、第1のエンジンENG1よりも排気量の大きいエンジンとされている。例えば、第1のエンジンENG1の排気量は500ccとされ、第2のエンジンENG2の排気量は1000ccとされており、合計排気量が1500ccとされている。もちろん、排気量の組み合わせは任意である。 The first and second engines ENG1 and ENG2 use different engines with high efficiency operation points. The first engine ENG1 is an engine with a small displacement, and the second engine ENG2 The engine has a larger displacement than the first engine ENG1. For example, the displacement of the first engine ENG1 is 500 cc, the displacement of the second engine ENG2 is 1000 cc, and the total displacement is 1500 cc. Of course, the combination of the displacements is arbitrary.
 メインモータジェネレータMG1と被回転駆動部材11は、メインモータジェネレータMG1の出力軸に取り付けたドライブギヤ15と被回転駆動部材11に設けたドリブンギヤ12とが噛合することにより、動力伝達可能に接続されている。例えば、メインモータジェネレータMG1がモータとして機能するときは、メインモータジェネレータMG1から被回転駆動部材11に駆動力が伝達される。また、メインモータジェネレータMG1を発電機として機能させるときは、被回転駆動部材11からメインモータジェネレータMG1に動力が入力され、機械エネルギーが電気エネルギーに変換される。同時に、メインモータジェネレータMG1から被回転駆動部材11に回生制動力が作用する。 The main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes. For example, when the main motor generator MG1 functions as a motor, a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated. When the main motor generator MG1 functions as a generator, power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy. At the same time, a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
 また、サブモータジェネレータMG2は、第1のエンジンENG1の出力軸S1に直に接続されており、該出力軸S1との間で動力の相互伝達を行う。この場合も、サブモータジェネレータMG2がモータとして機能するときは、サブモータジェネレータMG2から第1のエンジンENG1の出力軸S1に駆動力が伝達される。また、サブモータジェネレータMG2が発電機として機能するときは、第1のエンジンENG1の出力軸S1からサブモータジェネレータMG2に動力が伝達される。 The sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG2 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
 以上の要素を備えたこの駆動システム1では、第1のエンジンENG1および第2のエンジンENG2の発生する回転動力が、第1のトランスミッションTM1および第2のトランスミッションTM2を介して、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2に入力され、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2を介して、回転動力が被回転駆動部材11に入力される。 In the drive system 1 having the above elements, the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way The rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
 また、この駆動システム1では、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に、第2のトランスミッションTM2を介した動力伝達と異なる当該出力軸S2と被回転駆動部材11の間での動力伝達を断接可能なシンクロ機構(スタータ・クラッチとも言われるクラッチ手段)20が設けられている。このシンクロ機構20は、被回転駆動部材11に設けたドリブンギヤ12に常時噛み合うと共に第2のエンジンENG2の出力軸S2の周りに回転自在に設けられた第1ギヤ21と、第2のエンジンENG2の出力軸S2の周りに該出力軸S2と一体に回転するように設けられた第2ギヤ22と、軸方向にスライド操作されることで第1ギヤ21と第2ギヤ22を結合または解除するスリーブ24と、を備えている。即ち、シンクロ機構20は、第2のトランスミッションTM2、クラッチ機構CL2を介した動力伝達経路と異なる動力伝達経路を構成し、この動力伝達経路での動力伝達を断接する。 Further, in this drive system 1, the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used. A synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided. The synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2. A second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
《トランスミッションの構成》
 次に、この駆動システム1に用いられている第1、第2の2つのトランスミッションTM1、TM2について説明する。
 第1、第2のトランスミッションTM1、TM2は、ほぼ同じ構成の無段変速機構により構成されている。この場合の無段変速機構は、IVT(Infinity Variable Transmission=クラッチを使用せずに変速比を無限大にして出力回転をゼロにできる方式の変速機構)と呼ばれるものの一種であり、変速比(レシオ=i)を無段階に変更できると共に、変速比の最大値を無限大(∞)に設定することのできる、無限・無段変速機構BD(BD1、BD2)により構成されている。
<Configuration of transmission>
Next, the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
The first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration. The continuously variable transmission mechanism in this case is a kind of what is called an IVT (Infinity Variable Transmission = transmission mechanism in which the transmission ratio can be made infinite without using a clutch and the output rotation can be made zero). = I) can be changed steplessly, and the maximum value of the gear ratio can be set to infinity (∞), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
 この無限・無段変速機構BDは、図2および図3に構成を示すように、エンジンENG1、ENG2からの回転動力を受けることで入力中心軸線O1の周りを回転する入力軸101と、入力軸101と一体回転する複数の偏心ディスク104と、入力側と出力側を結ぶための偏心ディスク104と同数の連結部材130と、出力側に設けられたワンウェイ・クラッチ120とを備えている。 2 and 3, the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft. 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
 複数の偏心ディスク104は、それぞれ第1支点O3を中心とした円形形状に形成されている。第1支点O3は、入力軸101の周方向に等間隔に設けられると共に、それぞれが、入力中心軸線O1に対する偏心量r1を変更可能で、且つ、該偏心量r1を保ちつつ、入力中心軸線O1の周りに入力軸101と共に回転するように設定されている。従って、複数の偏心ディスク104は、それぞれに偏心量r1を保った状態で、入力中心軸線O1の周りに入力軸101の回転に伴って偏心回転するように設けられている。 The plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3. The first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101. Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
 偏心ディスク104は、図3に示すように、外周側円板105と、入力軸101に一体形成された内周側円板108とで構成されている。内周側円板108は、入力軸101の中心軸線である入力中心軸線O1に対して一定の偏心距離だけ中心を偏倚させた肉厚円板として形成されている。外周側円板105は、第1支点O3を中心にした肉厚円板として形成されており、その中心(第1支点O3)を外れた位置に中心を持つ第1円形孔106を有している。そして、この第1円形孔106の内周に回転可能に内周側円板108の外周が嵌っている。 As shown in FIG. 3, the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101. The inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance. The outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes. And the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
 また、内周側円板108には、入力中心軸線O1を中心とすると共に周方向の一部が内周側円板108の外周に開口した第2円形孔109が設けられており、その第2円形孔109の内部にピニオン110が回転自在に収容されている。ピニオン110の歯は、第2円形孔109の外周の開口を通して、外周側円板105の第1円形孔106の内周に形成した内歯歯車107に噛み合っている。 Further, the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108. A pinion 110 is rotatably accommodated inside the two circular holes 109. The teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
 このピニオン110は、入力軸101の中心軸線である入力中心軸線O1と同軸に回転するように設けられている。即ち、ピニオン110の回転中心と入力軸101の中心軸線である入力中心軸線O1とが一致している。ピニオン110は、図2に示すように、直流モータ及び減速機構によって構成されるアクチュエータ180により、第2円形孔109の内部で回転させられる。通常時は、入力軸101の回転と同期させてピニオン110を回転させ、同期する回転数を基準として、ピニオン110に入力軸101の回転数を上回るか下回るかする回転数を与えることにより、ピニオン110を入力軸101に対して相対回転させる。例えば、ピニオン110およびアクチュエータ180の出力軸が互いに連結されるように配置し、アクチュエータ180の回転が入力軸101の回転に対して回転差が生じる場合には、その回転差に減速比をかけた分だけ入力軸101とピニオン110の相対角度が変化する減速機構(例えば遊星歯車)を用いることで実現できる。この際、アクチュエータ180と入力軸101の回転差がなく同期している場合には偏心量r1は変化しない。 The pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other. As shown in FIG. 2, the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101. For example, when the pinion 110 and the output shaft of the actuator 180 are arranged so as to be connected to each other and the rotation of the actuator 180 causes a rotation difference with respect to the rotation of the input shaft 101, a reduction ratio is applied to the rotation difference. This can be realized by using a speed reduction mechanism (for example, a planetary gear) in which the relative angle between the input shaft 101 and the pinion 110 changes by the amount. At this time, if there is no rotational difference between the actuator 180 and the input shaft 101 and they are synchronized, the eccentricity r1 does not change.
 従って、ピニオン110を回すことにより、ピニオン110の歯が噛合している内歯歯車107つまり外周側円板105が内周側円板108に対して相対回転し、それにより、ピニオン110の中心(入力中心軸線O1)と外周側円板105の中心(第1支点O3)との間の距離(つまり偏心ディスク104の偏心量r1)が変化する。 Therefore, when the pinion 110 is turned, the internal gear 107 with which the teeth of the pinion 110 are engaged, that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
 この場合、ピニオン110の回転によって、ピニオン110の中心(入力中心軸線O1)に外周側円板105の中心(第1支点O3)を一致させることができるように設定されており、両中心を一致させることにより、偏心ディスク104の偏心量r1を「ゼロ」に設定できる。 In this case, the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match. By doing so, the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
 また、ワンウェイ・クラッチ120は、入力中心軸線O1から離れた出力中心軸線O2の周りを回転する出力部材(クラッチインナ)121と、外部から回転方向の動力を受けることで出力中心軸線O2の周りを揺動するリング状の入力部材(クラッチアウタ)122と、これら入力部材122および出力部材121を互いにロック状態または非ロック状態にするために入力部材122と出力部材121の間に挿入された複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有し、入力部材122の正方向(例えば、図3中の矢印RD1で示す方向)の回転速度が出力部材121の正方向の回転速度を上回ったとき、入力部材122に入力された回転動力を出力部材121に伝達し、それにより、入力部材122の揺動運動を出力部材121の回転運動に変換することができるようになっている。 The one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction. A swinging ring-shaped input member (clutch outer) 122 and a plurality of members inserted between the input member 122 and the output member 121 to lock the input member 122 and the output member 121 with each other. It has a roller (engagement member) 123 and a biasing member 126 that biases the roller 123 in a direction to give a locked state, and is in the positive direction of the input member 122 (for example, the direction indicated by the arrow RD1 in FIG. 3). When the rotational speed exceeds the positive rotational speed of the output member 121, the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
 図2に示すように、ワンウェイ・クラッチ120の出力部材121は、軸方向に一体に連続した部材として構成されたものであるが、入力部材122は、軸方向に複数に分割されており、偏心ディスク104および連結部材130の数だけ、軸方向に各々独立して揺動できるように配列されている。そして、ローラ123は、入力部材122毎に、入力部材122と出力部材121との間に挿入されている。 As shown in FIG. 2, the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction. However, the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric. As many as the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction. The roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
 リング状の各入力部材122上の周方向の1箇所には張り出し部124が設けられており、その張り出し部124に、出力中心軸線O2から離間した第2支点O4が設けられている。そして、各入力部材122の第2支点O4上にピン125が配置され、このピン125によって、連結部材130の先端(他端部)132が入力部材122に回転自在に連結されている。 A protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124. And the pin 125 is arrange | positioned on the 2nd fulcrum O4 of each input member 122, and the front-end | tip (other end part) 132 of the connection member 130 is rotatably connected with the input member 122 by this pin 125. FIG.
 連結部材130は、一端側にリング部131を有し、そのリング部131の円形開口133の内周が、ベアリング140を介して、偏心ディスク104の外周に回転自在に嵌合されている。従って、このように連結部材130の一端が偏心ディスク104の外周に回転自在に連結されると共に、連結部材130の他端が、ワンウェイ・クラッチ120の入力部材122上に設けられた第2支点O4に回動自在に連結されることにより、入力中心軸線O1、第1支点O3、出力中心軸線O2、第2支点O4の4つの節を回動点とする四節リンク機構が構成されており、入力軸101から偏心ディスク104に与えられる回転運動が、ワンウェイ・クラッチ120の入力部材122に対して該入力部材122の揺動運動として伝えられ、その入力部材122の揺動運動が出力部材121の回転運動に変換される。 The connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120. Are connected to each other in such a manner that a four-joint link mechanism having four joints of an input center axis O1, a first fulcrum O3, an output center axis O2, and a second fulcrum O4 as pivot points is configured. The rotational motion given from the input shaft 101 to the eccentric disk 104 is transmitted to the input member 122 of the one-way clutch 120 as the swing motion of the input member 122, and the swing motion of the input member 122 is transmitted to the output member 121. Converted to rotational motion.
 その際、ピニオン110、ピニオン110を収容する第2円形孔109を備えた内周側円板108、内周側円板108を回転可能に収容する第1円形孔106を備えた外周側円板105、アクチュエータ180などにより構成された変速比可変機構112の前記ピニオン110をアクチュエータ180で動かすことにより、偏心ディスク104の偏心量r1を変化させることができる。そして、偏心量r1を変更することで、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を変更することができ、それにより、入力軸101の回転数に対する出力部材121の回転数の比(変速比:レシオi)を変えることができる。即ち、入力中心軸線O1に対する第1支点O3の偏心量r1を調節することで、偏心ディスク104からワンウェイ・クラッチ120の入力部材122に伝えられる揺動運動の揺動角度θ2を変更し、それにより、入力軸101に入力される回転動力が、偏心ディスク104および連結部材130を介してワンウェイ・クラッチ120の出力部材121に回転動力として伝達される際の変速比を変更することができる。 In that case, the outer peripheral side disk provided with the pinion 110, the inner periphery side disk 108 provided with the 2nd circular hole 109 which accommodates the pinion 110, and the 1st circular hole 106 which accommodates the inner periphery side disk 108 rotatably. The eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed. That is, by adjusting the eccentric amount r1 of the first fulcrum O3 with respect to the input center axis O1, the swing angle θ2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed. The speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
 この場合、第1、第2のエンジンENG1、ENG2の出力軸S1、S2が、この無限・無段変速機構BD(BD1、BD2)の入力軸101に一体に連結されている。また、無限・無段変速機構BD(BD1、BD2)の構成要素であるワンウェイ・クラッチ120が、第1のトランスミッションTM1および第2のトランスミッションTM2と被回転駆動部材11との間に設けられた前記第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2をそれぞれに兼ねている。 In this case, the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2). Further, the one-way clutch 120, which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated. The first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
 図4及び図5は、無限・無段変速機構BD(BD1、BD2)における変速比可変機構112による変速原理の説明図である。これら図4および図5に示すように、変速比可変機構112のピニオン110を回転させて、内周側円板108に対して外周側円板105を回転させることにより、偏心ディスク104の入力中心軸線O1(ピニオン110の回転中心)に対する偏心量r1を調節することができる。 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2). As shown in FIGS. 4 and 5, the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated. The amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
 例えば、図4(a)、図5(a)に示すように、偏心ディスク104の偏心量r1を「大」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を大きくすることができるので、小さな変速比iを実現することができる。また、図4(b)、図5(b)に示すように、偏心ディスク104の偏心量r1を「中」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「中」にすることができるので、中くらいの変速比iを実現することができる。また、図4(c)、図5(c)に示すように、偏心ディスク104の偏心量r1を「小」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を小さくすることができるので、大きな変速比iを実現することができる。また、図4(d)に示すように、偏心ディスク104の偏心量r1を「ゼロ」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「ゼロ」にすることができるので、変速比iを「無限大(∞)」にすることができる。 For example, as shown in FIGS. 4A and 5A, when the eccentric amount r1 of the eccentric disk 104 is set to “large”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is increased. Therefore, a small gear ratio i can be realized. Further, as shown in FIGS. 4B and 5B, when the eccentric amount r1 of the eccentric disk 104 is set to “medium”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is set to “medium”. Therefore, a medium speed ratio i can be realized. Further, as shown in FIGS. 4C and 5C, when the eccentric amount r1 of the eccentric disk 104 is set to “small”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is decreased. Therefore, a large gear ratio i can be realized. Further, as shown in FIG. 4D, when the eccentric amount r1 of the eccentric disk 104 is set to “zero”, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be set to “zero”. Therefore, the gear ratio i can be set to “infinity (∞)”.
 図6は四節リンク機構として構成された前記無限・無段変速機構BD(BD1、BD2)の駆動力伝達原理の説明図、図7は同変速機構BD(BD1、BD2)において、入力軸101と共に等速回転する偏心ディスク104の偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸101の回転角度(θ)とワンウェイ・クラッチ120の入力部材122の角速度ω2の関係を示す図、図8は同変速機構BD(BD1、BD2)において、複数の連結部材130によって入力側(入力軸101や偏心ディスク104)から出力側(ワンウェイ・クラッチ120の出力部材121)へ動力が伝達される際の出力の取り出し原理を説明するための図である。 FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism, and FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2). The rotational angle (θ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”. FIG. 8 is a diagram showing the relationship of the angular velocity ω2 of the input member 122. FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120. FIG.
 そして、図6に示すように、ワンウェイ・クラッチ120の入力部材122は、連結部材130を介して偏心ディスク104から与えられる動力により揺動運動する。偏心ディスク104を回転させる入力軸101が1回転すると、ワンウェイ・クラッチ120の入力部材122は1往復揺動する。図7に示すように、偏心ディスク104の偏心量r1の値に関係なく、ワンウェイ・クラッチ120の入力部材122の揺動周期は常に一定である。入力部材122の角速度ω2は、偏心ディスク104(入力軸101)の回転角速度ω1と偏心量r1によって決まる。 Then, as shown in FIG. 6, the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130. When the input shaft 101 that rotates the eccentric disk 104 makes one rotation, the input member 122 of the one-way clutch 120 swings one reciprocating motion. As shown in FIG. 7, irrespective of the value of the eccentricity r1 of the eccentric disk 104, the swing cycle of the input member 122 of the one-way clutch 120 is always constant. The angular velocity ω2 of the input member 122 is determined by the rotational angular velocity ω1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
 入力軸101とワンウェイ・クラッチ120を繋ぐ複数の連結部材130の一端(リング部131)は、入力中心軸線O1の周りに周方向等間隔で設けられた偏心ディスク104に回転自在に連結されているので、各偏心ディスク104の回転運動によりワンウェイ・クラッチ120の入力部材122にもたらされる揺動運動は、図8に示すように、一定の位相で順番に起こることになる。 One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
 その際、ワンウェイ・クラッチ120の入力部材122から出力部材121への動力(トルク)の伝達は、入力部材122の正方向(図3中矢印RD1方向)の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ行われる。つまり、ワンウェイ・クラッチ120では、入力部材122の回転速度が出力部材121の回転速度より高くなったときに初めてローラ123を介しての噛み合い(ロック)が発生し、連結部材130により、入力部材122の動力が出力部材121に伝達され、駆動力が発生する。 At this time, transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. 3) is the positive direction of the output member 121. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
 1つの連結部材130による駆動が終了した後は、入力部材122の回転速度が出力部材121の回転速度より低下すると共に、他の連結部材130の駆動力によってローラ123によるロックが解除されて、フリーな状態(空転状態)に戻る。これが、連結部材130の数だけ順番に行われることで、揺動運動が一方向の回転運動に変換される。そのため、出力部材121の回転速度を超えたタイミングの入力部材122の動力のみが出力部材121に順番に伝えられ、ほぼ平滑に均された回転動力が出力部材121に与えられることになる。 After the driving by one connecting member 130 is finished, the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state) This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
 また、この四節リンク機構式の無限・無段変速機構BD(BD1、BD2)では、偏心ディスク104の偏心量r1を変更することで、変速比(レシオ=エンジンのクランク軸の1回転でどれだけ被回転駆動部材を回転させるか)を決めることができる。この場合、偏心量r1をゼロに設定することで、変速比iを無限大に設定することができ、エンジンの回転中にも拘わらず、入力部材122に伝達される揺動角度θ2をゼロにすることができる。 Further, in this infinite / continuously variable transmission mechanism BD (BD1, BD2) of the four-bar linkage mechanism, by changing the eccentric amount r1 of the eccentric disc 104, the transmission ratio (ratio = one revolution of the crankshaft of the engine) It is possible to determine whether to rotate the driven member only. In this case, by setting the eccentricity r1 to zero, the speed ratio i can be set to infinity, and the swing angle θ2 transmitted to the input member 122 is set to zero despite the engine rotating. can do.
 また、この駆動システムでは、各エンジンENG1、ENG2の回転数、各ワンウェイ・クラッチOWC1,OWC2の入力部材122の回転数、出力部材121の回転数、被回転駆動部材11の回転数をそれぞれ検出するための回転検出手段(図示略)を備えている。 Further, in this drive system, the number of revolutions of each engine ENG1, ENG2, the number of revolutions of the input member 122 of each one-way clutch OWC1, OWC2, the number of revolutions of the output member 121, and the number of revolutions of the driven member 11 are detected. Rotation detecting means (not shown) is provided.
 ここで、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数(第1、第2のワンウェイ・クラッチOWC1、OWC2の上流側回転数または入力側回転数ともいう)をR1、第1、第2のワンウェイ・クラッチOWC1、OWC2の出力部材121の回転数(第1、第2のワンウェイ・クラッチOWC1、OWC2の下流側回転数または出力側回転数ともいう)をR2、被回転駆動部材11の回転数をR3とする。また、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2と被回転駆動部材11の回転数R3は、クラッチ機構CL1、CL2の前後(上流側と下流側)の回転数であり、被回転駆動部材11の回転数R3は、車軸(足軸)13やメインモータジェネレータMG1の回転数と等価と見なす。 Here, the rotational speed of the input member 122 of the first and second one-way clutches OWC1 and OWC2 (also referred to as the upstream rotational speed or the input rotational speed of the first and second one-way clutches OWC1 and OWC2) is R1. , The rotational speed of the output member 121 of the first and second one-way clutches OWC1 and OWC2 (also referred to as the downstream rotational speed or output rotational speed of the first and second one-way clutches OWC1 and OWC2) The rotational speed of the rotation drive member 11 is R3. The rotation speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotation speed R3 of the driven member 11 are the rotation speeds before and after (upstream and downstream) of the clutch mechanisms CL1 and CL2. The rotational speed R3 of the rotation drive member 11 is regarded as equivalent to the rotational speed of the axle (foot shaft) 13 and the main motor generator MG1.
《制御手段の主な働き》
 次に、この駆動システム1において実行する制御内容について説明する。
 図1に示すように、制御手段5は、第1、第2のエンジンENG1、ENG2、メインモータジェネレータMG1、サブモータジェネレータMG2、第1、第2のトランスミッションTM1、TM2を構成する無限・無段変速機構BD1、BD2のアクチュエータ180、クラッチ機構CL1、CL2、シンクロ機構20などに制御信号を送って、これらの要素を制御することにより、様々な走行パターン(動作パターンとも言う)制御を行う。また、制御手段5には、後述の要求出力検出手段を始めとして、各種要素の回転検出手段、その他の検出手段の信号が入力されている。以下、代表的な制御の内容を説明する。
<Main functions of control means>
Next, the control contents executed in the drive system 1 will be described.
As shown in FIG. 1, the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2. Various driving patterns (also referred to as operation patterns) are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements. The control means 5 is supplied with signals from various element rotation detection means and other detection means, including a later-described request output detection means. Hereinafter, typical control contents will be described.
 制御手段5は、メインモータジェネレータMG1の駆動力のみによるEV走行を制御するEV走行制御モードと、第1のエンジンENG1および/または第2のエンジンENG2の駆動力のみによるエンジン走行を制御するエンジン走行制御モードと、第1のエンジンENG1によりサブモータジェネレータMG2を発電機として駆動させ、それにより生成した電力をメインモータジェネレータMG1および/またはバッテリ8に供給しながら、メインモータジェネレータMG1の駆動力によるモータ走行を行うシリーズ走行を制御するシリーズ走行制御モードと、を選択して実行する機能を有する。また、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の両方を利用して走行するパラレル走行モードを実行する機能も有する。また、EV走行、シリーズ走行、エンジン走行、パラレル走行は、要求駆動力およびバッテリ8の残容量(SOC)に応じて、選択して実行される。 The control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2. A motor driven by the driving force of the main motor generator MG1 while driving the sub motor generator MG2 as a generator by the control mode and the first engine ENG1 and supplying the electric power generated thereby to the main motor generator MG1 and / or the battery 8 And a function of selecting and executing a series traveling control mode for controlling series traveling in which traveling is performed. Further, it also has a function of executing a parallel traveling mode in which traveling is performed using both the driving force of the main motor generator MG1 and the driving force of the first engine ENG1. Further, EV traveling, series traveling, engine traveling, and parallel traveling are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
 ここで、シリーズ走行は、EV走行からエンジン走行へと走行モードを切り替える際に、EV走行とエンジン走行との間で実行される。そのシリーズ走行の際には、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御することにより、第1のワンウェイ・クラッチOWC1の入力部材122に入力される回転速度が出力部材121の回転速度を下回るように制御する。 Here, the series traveling is executed between EV traveling and engine traveling when the traveling mode is switched from EV traveling to engine traveling. During the series travel, the rotational speed input to the input member 122 of the first one-way clutch OWC1 is controlled by controlling the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1. Is controlled to be lower than the rotational speed of the output member 121.
 また、シリーズ走行からエンジン走行に切り替える場合、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御することにより、第1のワンウェイ・クラッチOWC1の入力部材122に入力される回転速度を出力部材121の回転速度を上回る値に変更して、シリーズ走行からエンジン走行へと移行させる。 Further, when switching from the series running to the engine running, the rotation speed of the first engine ENG1 and / or the transmission ratio of the first transmission TM1 is controlled to be input to the input member 122 of the first one-way clutch OWC1. The rotation speed is changed to a value that exceeds the rotation speed of the output member 121 to shift from series running to engine running.
 EV走行中に第1のエンジンENG1を始動する際には、第1のトランスミッションTM1の変速比を、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回らないように設定した状態(回転負荷を最小にするため、主に変速比を無限大に設定した状態)で、第1のエンジンENG1をサブモータジェネレータMG2の駆動力を用いて始動する。そして、走行モードをシリーズ走行からエンジン走行へと切り替えた後に、サブモータジェネレータMG2による発電を停止する。但し、走行モードをシリーズ走行からエンジン走行へ切り替えた後に、バッテリ8の残容量(SOC)が第1所定値(基準値:例えば基準SOCt=35%)以下である場合には、サブモータジェネレータMG2によるチャージ(発電によるバッテリ8の充電動作)を継続する。 When starting the first engine ENG1 during EV traveling, the gear ratio of the first transmission TM1 is set so that the input rotational speed of the first one-way clutch OWC1 does not exceed the output rotational speed ( In order to minimize the rotational load, the first engine ENG1 is started using the driving force of the sub motor generator MG2 mainly in a state where the gear ratio is set to infinity. Then, after the traveling mode is switched from the series traveling to the engine traveling, the power generation by the sub motor generator MG2 is stopped. However, if the remaining capacity (SOC) of the battery 8 is equal to or lower than a first predetermined value (reference value: for example, reference SOCt = 35%) after the traveling mode is switched from the series traveling to the engine traveling, the sub motor generator MG2 Continue charging (charging operation of the battery 8 by power generation).
 また、EV走行中は、クラッチ機構CL1、CL2を遮断状態に保持している。それにより、ワンウェイ・クラッチOWC1、OWC2の引き摺りトルクロスを無くすことができ、エネルギー効率の向上が図れる。 Also, during EV traveling, the clutch mechanisms CL1 and CL2 are held in the disconnected state. Thereby, the dragging torque cross of the one-way clutches OWC1 and OWC2 can be eliminated, and energy efficiency can be improved.
 次に、第2のエンジンENG2の始動を行う際には、例えば、1つの方法として、第2のトランスミッションTM2の変速比を、第2のエンジンENG2からの動力を第2のワンウェイ・クラッチOWC2に伝達可能であり(i≠∞)且つ第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るような有限値(目標値にできるだけ近い値)に制御する。あるいは、別の方法として、第2のエンジンENG2の始動を行う際に、第2のトランスミッションTM2の変速比を無限大(∞)に設定し、第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るように制御する。そして、第2のエンジンENG2の始動後に、第2のトランスミッションTM2の変速比を有限値(目標値)に変更することで、第2のワンウェイ・クラッチOWC2に入力される回転速度を制御する。 Next, when starting the second engine ENG2, for example, as one method, the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2. Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ≠ ∞) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121. Alternatively, as another method, when the second engine ENG2 is started, the speed ratio of the second transmission TM2 is set to infinity (∞), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed. The speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
 ここで、第1のエンジンENG1やメインモータジェネレータMG1の駆動力を利用して走行している状態で、被回転駆動部材11の動力を用いて第2のエンジンENG2を始動する場合には、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に設けられたシンクロ機構20を動力伝達可能な接続状態とすることにより、被回転駆動部材11の動力を用いて、第2のエンジンENG2のクランキング(スタート回転)を行い、第2のエンジンENG2を始動する。 Here, when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1, The synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission. The engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
 第2のエンジンENG2を始動させて、駆動源を第1のエンジンENG1から第2のエンジンENG2に切り替える場合は、第1のワンウェイ・クラッチOWC1を介して第1のエンジンENG1の発生する動力が被回転駆動部材11に入力されている状態で、第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転数が出力部材121の回転数を上回るように、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比の変更を行う。こうすることにより、駆動源として用いるエンジンを、第1のエンジンENG1から第2のエンジンENG2にスムーズに切り替えることができる。 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1. The rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
 また、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を合成して被回転駆動部材11に伝達させる場合は、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の両入力部材122に入力される回転速度が共に同期して出力部材121の回転速度を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御する同期制御を行う。 Further, when the driving forces of both the first engine ENG1 and the second engine ENG2 are combined and transmitted to the driven member 11, both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted. The rotational speeds of the first and second engines ENG1, ENG2 and / or the first and second transmissions TM1, so that the rotational speeds input to the input member 122 are both synchronized and exceed the rotational speed of the output member 121. Synchronous control for controlling the transmission ratio of TM2 is performed.
 この場合、加速のときに、両方のエンジンENG1、ENG2を無条件に動かすのではなく、一方(第1のエンジンENG1)を高効率運転ポイントに固定した状態で、他方のエンジン(第2のエンジンENG2)の出力を上げることで、出力要求に応えるようにする。 In this case, at the time of acceleration, both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at a high-efficiency operation point and the other engine (second engine). The output request is satisfied by raising the output of ENG2).
 具体的には、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転速度が出力部材121の回転速度を上回るように第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御しているとき、第1のエンジンENG1の回転数および/またはトルクが高効率運転領域に入るように、運転条件を一定範囲に固定した状態で、第1のエンジンENG1および/または第1のトランスミッションTM1を制御し、且つ、その固定した運転条件によって得られる出力を超える出力要求に対しては、第2のエンジンENG2および第2のトランスミッションTM2を制御することで対応する。 Specifically, the first and second engines ENG1, so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121, When controlling the rotational speed of the ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2, the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region. For an output request that controls the first engine ENG1 and / or the first transmission TM1 with the condition fixed in a certain range and exceeds the output obtained by the fixed operation condition, This is dealt with by controlling the engine ENG2 and the second transmission TM2.
 あるいは、上記とは別の制御方法として、要求出力に応じて、排気量大の第2のエンジンENG2を運転条件の固定側に設定するようにしてもよく、例えば、要求出力が所定以上の場合は、第1のエンジンENG1を運転条件の固定側に設定し、要求出力が所定以下の場合は、第2のエンジンENG2を運転条件の固定側に設定するようにしてもよい。 Alternatively, as a control method different from the above, the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
 また、車両の後進時には、クラッチ機構CL1、CL2を遮断状態にして、第1、第2のトランスミッションTM1、TM2のロックによる後進不可状態を解除する。一方、登坂発進時には、少なくとも一方のクラッチ機構CL1、CL2を接続状態とする。 Also, when the vehicle is moving backward, the clutch mechanisms CL1 and CL2 are disengaged, and the reverse rotation impossible state due to the lock of the first and second transmissions TM1 and TM2 is released. On the other hand, at the time of starting uphill, at least one of the clutch mechanisms CL1 and CL2 is brought into a connected state.
 また、車両の減速時に、第1、第2のクラッチ機構CL1、CL2のいずれかが連結(ON)状態にある場合は、これら第1、第2のクラッチ機構CL1、CL2を遮断(OFF)し、メインモータジェネレータMG1に回生運転をさせる。その際、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122および出力部材121の回転数R1、R2を検出し、ワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数R1が出力部材121の回転数R2より下回った段階で、クラッチ機構CL1、CL2を遮断する。 Further, when one of the first and second clutch mechanisms CL1 and CL2 is in a connected (ON) state when the vehicle is decelerated, the first and second clutch mechanisms CL1 and CL2 are disconnected (OFF). Then, the main motor generator MG1 is caused to perform a regenerative operation. At this time, the rotational speeds R1, R2 of the input member 122 and the output member 121 of the first and second one-way clutches OWC1, OWC2 are detected, and the rotational speed R1 of the input member 122 of the one-way clutches OWC1, OWC2 is output. The clutch mechanisms CL1 and CL2 are shut off when the rotational speed is lower than the rotational speed R2 of 121.
 以下、減速時の制御の流れを図9、図10のフローチャートに従って説明する。
 まず、図9を参照して、1つのエンジンENG1(またはENG2)の駆動力が被回転駆動部材11に伝達されているときの減速制御について説明する。
 この場合は、最初に車両が減速中かどうかを判断する(ステップS101)。減速中かどうか、つまり、減速要求がなされているかどうかは、例えば、アクセルの開度やブレーキの踏み込みのON/OFF等で判断する。減速中でない場合はそのまま処理を終え、減速中である場合は、ワンウェイ・クラッチOWC1(またはOWC2)の上流側回転数R1(入力部材122の回転数)の低下制御を行う(ステップS102)。回転数R1の低下制御は、エンジンENG1(またはENG2)の回転数および/またはトランスミッションTM1(またはTM2)の変速比を変更することで行う。
Hereinafter, the flow of control during deceleration will be described with reference to the flowcharts of FIGS.
First, the deceleration control when the driving force of one engine ENG1 (or ENG2) is transmitted to the rotation driven member 11 will be described with reference to FIG.
In this case, it is first determined whether or not the vehicle is decelerating (step S101). Whether or not the vehicle is decelerating, that is, whether or not a deceleration request is made, is determined by, for example, the accelerator opening, the brake depression ON / OFF, or the like. If the vehicle is not decelerating, the process is finished as it is, and if the vehicle is decelerating, the upstream side rotational speed R1 (the rotational speed of the input member 122) of the one-way clutch OWC1 (or OWC2) is controlled to decrease (step S102). The reduction control of the rotational speed R1 is performed by changing the rotational speed of the engine ENG1 (or ENG2) and / or the transmission ratio of the transmission TM1 (or TM2).
 次に、ステップS103で車両の減速要求の程度を判断し、緩減速が要求されているときには、クラッチ機構CL(CL1またはCL2)の遮断のステップには進まずに処理を終了する。一方、緩減速よりも急な減速が要求されているときには、ステップS104およびステップS105に進み、ワンウェイ・クラッチOWC1(またはOWC2)の上流側回転数R1(入力部材122の回転数)および下流側回転数R2(出力部材121の回転数)を監視し、ワンウェイ・クラッチOWC1(またはOWC2)の上流側回転数R1が下流側回転数R2よりも低くなるのを待つ。そして、上流側回転数R1が下流側回転数R2よりも低くなったタイミングで、クラッチ機構CL(CL1またはCL2)をOFFにして(ステップS106)、処理を終了する。 Next, the degree of vehicle deceleration request is determined in step S103, and when slow deceleration is requested, the process is terminated without proceeding to the step of disconnecting the clutch mechanism CL (CL1 or CL2). On the other hand, when sudden deceleration is required rather than slow deceleration, the process proceeds to step S104 and step S105, and the upstream rotational speed R1 (the rotational speed of the input member 122) and the downstream rotational speed of the one-way clutch OWC1 (or OWC2). The number R2 (the number of rotations of the output member 121) is monitored, and it waits for the upstream rotation number R1 of the one-way clutch OWC1 (or OWC2) to be lower than the downstream rotation number R2. Then, at the timing when the upstream rotational speed R1 becomes lower than the downstream rotational speed R2, the clutch mechanism CL (CL1 or CL2) is turned off (step S106), and the process is terminated.
 次に、図10を参照して、2つのエンジンENG1、ENG2の駆動力が被回転駆動部材11に伝達されているときの減速制御について説明する。 Next, the deceleration control when the driving forces of the two engines ENG1 and ENG2 are transmitted to the rotation driven member 11 will be described with reference to FIG.
 この場合は、最初に車両が減速中かどうかを判断する(ステップS201)。減速中でない場合はそのまま処理を終え、減速中である場合は、第1及び第2のワンウェイ・クラッチOWC1、OWC2の上流側回転数R1(入力部材122の回転数)の低下制御を行う(ステップS202)。 In this case, it is first determined whether or not the vehicle is decelerating (step S201). If the vehicle is not decelerating, the process is finished as it is, and if the vehicle is decelerating, control is performed to reduce the upstream rotational speed R1 (the rotational speed of the input member 122) of the first and second one-way clutches OWC1 and OWC2 (step). S202).
 次に、ステップS203で車両の減速要求の程度を判断し、緩減速が要求されているときには、クラッチ機構CL(CL1またはCL2)の遮断のステップには進まずに処理を終了する。一方、緩減速よりも急な減速が要求されているときには、ステップS204以降に進む。ステップS204以降では、各ワンウェイ・クラッチOWC1、OWC2それぞれの入力部材122と出力部材121の回転数の条件に応じて個別に、第1、第2のクラッチ機構CL1、CL2を遮断する。 Next, the degree of vehicle deceleration request is determined in step S203, and when slow deceleration is requested, the process is terminated without proceeding to the step of disconnecting the clutch mechanism CL (CL1 or CL2). On the other hand, when the deceleration is more rapid than the slow deceleration, the process proceeds to step S204 and subsequent steps. After step S204, the first and second clutch mechanisms CL1 and CL2 are individually disconnected according to the rotational speed conditions of the input member 122 and the output member 121 of each one-way clutch OWC1 and OWC2.
 まず、ステップS204では、第1のクラッチ機構CL1がOFFになっているかどうかを確認し、OFFになっている場合には、ステップS208にすすむ。OFFでない場合に、第1のワンウェイ・クラッチOWC1の上流側回転数R1(入力部材122の回転数)が下流側回転数R2(出力部材121の回転数)よりも低くなるのを待ってから、第1のクラッチ機構CL1をOFFにする(ステップS205~207)。 First, in step S204, it is confirmed whether or not the first clutch mechanism CL1 is OFF. If it is OFF, the process proceeds to step S208. If it is not OFF, after waiting for the upstream rotational speed R1 (the rotational speed of the input member 122) of the first one-way clutch OWC1 to become lower than the downstream rotational speed R2 (the rotational speed of the output member 121), The first clutch mechanism CL1 is turned off (steps S205 to S207).
 第1のクラッチ機構CL1をOFFにした場合は、次にステップS208で、第2のクラッチ機構CL2がOFFになっているかどうかを確認し、OFFになっている場合には、ステップS212にすすむ。OFFでない場合に、第2のワンウェイ・クラッチOWC2の上流側回転数R1(入力部材122の回転数)が下流側回転数R2(出力部材121の回転数)よりも低くなるのを待ってから、第2のクラッチ機構CL2をOFFにする(ステップS209~211)。 If the first clutch mechanism CL1 is turned off, it is next checked in step S208 whether the second clutch mechanism CL2 is turned off. If it is turned off, the process proceeds to step S212. If it is not OFF, after waiting for the upstream rotational speed R1 (the rotational speed of the input member 122) of the second one-way clutch OWC2 to become lower than the downstream rotational speed R2 (the rotational speed of the output member 121), The second clutch mechanism CL2 is turned off (steps S209 to 211).
 そして、両方のクラッチ機構CL1、CL2がOFFになるのをステップS212で確認してから処理を終了する。 Then, after confirming that both clutch mechanisms CL1 and CL2 are OFF in step S212, the process is terminated.
 このように、車両の減速時の回生運転中にクラッチ機構CL(CL1またはCL2)を遮断するので、クラッチ機構CL(CL1またはCL2)の上流側を下流側から切り離すことができる。従って、ワンウェイ・クラッチOWC1(またはOWC2)からクラッチ機構CL(CL1またはCL2)までの間の動力伝達部材(例えば、ワンウェイ・クラッチの出力部材121)の連れ回りによる摩擦ロスを低減することができて、エネルギー回収効率の向上を図ることができる。 Thus, since the clutch mechanism CL (CL1 or CL2) is disconnected during the regenerative operation during deceleration of the vehicle, the upstream side of the clutch mechanism CL (CL1 or CL2) can be disconnected from the downstream side. Accordingly, it is possible to reduce the friction loss due to the accompanying power transmission member (for example, the output member 121 of the one-way clutch) from the one-way clutch OWC1 (or OWC2) to the clutch mechanism CL (CL1 or CL2). The energy recovery efficiency can be improved.
 また、ワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数R1が出力部材121の回転数R2より下回った段階、つまり、入力部材122から出力部材121に動力が伝達されなくなって出力部材121が入力部材122に拘束されずに自由回転できるようになった段階で初めて、クラッチ機構CL1、CL2を遮断するので、クラッチ機構CL1、CL2にドグクラッチを使用した場合にも、クラッチ機構CL1、CL2を無理なくスムーズに遮断することができ、エネルギー回収効率の向上に貢献することができる。 Further, when the rotational speed R1 of the input member 122 of the one-way clutches OWC1 and OWC2 is lower than the rotational speed R2 of the output member 121, that is, the power is not transmitted from the input member 122 to the output member 121 and the output member 121 is input. The clutch mechanisms CL1 and CL2 are disconnected only when they can freely rotate without being constrained by the member 122. Therefore, even when a dog clutch is used for the clutch mechanisms CL1 and CL2, the clutch mechanisms CL1 and CL2 can be operated without difficulty. It can be shut off smoothly and can contribute to the improvement of energy recovery efficiency.
 また、減速要求があるときに全面的にクラッチ機構CL1、CL2を遮断するのではなく、再び直ぐにアクセルが踏み込まれる可能性のある緩減速の場合にはクラッチ機構CL1、CL2の遮断を停止するので、アクセルの再踏み込みに応じてクラッチ機構CL1、CL2を繋ぎに行くための時間を減らすことができ、レスポンスを高めることができる。 Also, the clutch mechanisms CL1 and CL2 are not completely shut off when there is a deceleration request, but the clutch mechanisms CL1 and CL2 are shut off in the case of a slow deceleration that may cause the accelerator to be depressed immediately. The time required to connect the clutch mechanisms CL1 and CL2 can be reduced according to the depression of the accelerator, and the response can be enhanced.
《動作パターンについて》
 次に、本実施形態の駆動システムにおいて実行する動作パターンについて説明する。
 図11~図25は動作パターンA~Oを取り出して示す拡大説明図、図26~図35は各運転状態に応じて実行する制御動作、または走行モード切り替え時の制御動作の説明図である。なお、図26~図35の各動作パターンを示す枠の中の右上のA~Oの符号は、図11~図25に取り出して示す動作パターンA~Oの符号と対応している。また、動作パターンを示す図の中で、動作中の駆動源を網掛けにより区別して示し、動力の伝達経路や電力の流れを実線や点線などの矢印で示す。
<About operation pattern>
Next, an operation pattern executed in the drive system of this embodiment will be described.
FIGS. 11 to 25 are enlarged explanatory diagrams showing the operation patterns A to O, and FIGS. 26 to 35 are explanatory diagrams of a control operation executed according to each operation state or a control operation at the time of traveling mode switching. The symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 26 to 35 correspond to the symbols of the operation patterns A to O shown in FIGS. Moreover, in the figure which shows an operation pattern, the drive source in operation | movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
 図11に示す動作パターンAでは、メインモータジェネレータMG1の駆動力でEV走行を行っている。即ち、バッテリ8からメインモータジェネレータMG1に通電することでメインモータジェネレータMG1を駆動し、メインモータジェネレータMG1の駆動力を、ドライブギヤ15、ドリブンギヤ12を介して被回転駆動部材11に伝達し、ディファレンシャル装置10および左右アクスルシャフト13L、13Rを介して駆動車輪2に伝えることで走行する。このとき、クラッチ機構CL1、CL2は遮断状態(OFF状態)にしておく。 In the operation pattern A shown in FIG. 11, EV traveling is performed with the driving force of the main motor generator MG1. In other words, the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential. The vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R. At this time, the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
 図12に示す動作パターンBでは、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、その発電した電力をメインモータジェネレータMG1およびバッテリ8に供給して、シリーズ走行を行っている。第1のエンジンENG1の始動は、サブモータジェネレータMG2により行う。このとき、第1のトランスミッションTM1の変速比は無限大に設定しておく。 In the operation pattern B shown in FIG. 12, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is supplied to the main motor generator MG1 and the battery 8 to perform series running. ing. The first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
 図13に示す動作パターンCでは、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用してパラレル走行を行っている。第1のエンジンENG1の駆動力を被回転駆動部材11に伝達させるには、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。そうすることにより、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の合成力を被回転駆動部材11に伝達させることができる。この動作パターンCは、低速走行や中速走行において、加速時などの要求駆動力が大きくなった場合に実行される。この際、クラッチ機構CL1は接続状態に維持され、クラッチ機構CL2は遮断状態に維持される。これにより、第1のエンジンENG1の駆動力が被回転駆動部材11に伝達されるとともに、第2のワンウェイ・クラッチOWC2の引きずりが防止される。 In the operation pattern C shown in FIG. 13, parallel running is performed by using the driving forces of both the main motor generator MG1 and the first engine ENG1. In order to transmit the driving force of the first engine ENG1 to the driven member 11 to be rotated, the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. Alternatively, the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated. This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling. At this time, the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state. As a result, the driving force of the first engine ENG1 is transmitted to the driven member 11 and the second one-way clutch OWC2 is prevented from being dragged.
 図14に示す動作パターンDでは、第1のエンジンENG1の駆動力を利用したエンジン走行を行っている。この動作パターンDは、例えば、発進時にSOCが低い場合に、バッテリ8の電力消費を少なくするために用いられる。 In the operation pattern D shown in FIG. 14, the engine travels using the driving force of the first engine ENG1. This operation pattern D is used, for example, to reduce the power consumption of the battery 8 when the SOC is low at the start.
 図15に示す動作パターンEでは、減速時に駆動車輪2から被回転駆動部材11を介して伝達される動力を用いたメインモータジェネレータMG1の回生動作によって、メインモータジェネレータMG1が発電機として作用し、駆動車輪2から被回転駆動部材11を介して入力される機械エネルギーが電気エネルギーに変換される。そして、駆動車輪2に回生制動力が伝達されると共に、回生電力がバッテリ8に充電される。この動作パターンを実行するときには、前述した図9または図10のフローチャートに示すように、所定のタイミングにおいて、クラッチ機構CL1、CL2を切る。 In the operation pattern E shown in FIG. 15, the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 through the driven member 11 during deceleration. Mechanical energy input from the drive wheel 2 through the driven member for rotation 11 is converted into electric energy. Then, regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8. When this operation pattern is executed, the clutch mechanisms CL1 and CL2 are disconnected at a predetermined timing as shown in the flowchart of FIG. 9 or FIG.
 図16に示す動作パターンFでは、第1のエンジンENG1の駆動力のみを利用してエンジン走行を行っており、同時に、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。なお、SOCに応じて、サブモータジェネレータMG2の発電を停止させてもよい。 In the operation pattern F shown in FIG. 16, the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1. The battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
 図17に示す動作パターンGでは、第1のエンジンENG1の駆動力で走行しながら、シンクロ機構(スタータ・クラッチ手段)20を介して、被回転駆動部材11(デフケース)に導入された動力により第2のエンジンENG2の始動を行っており、その始動時の負荷の増大による駆動車輪2への出力の不足分を第1のモータジェネレータMG1の駆動力で補っている。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力を第1のモータジェネレータMG1に供給またはバッテリ8に充電している。 In the operation pattern G shown in FIG. 17, the vehicle is driven by the driving force of the first engine ENG1 and is driven by the power introduced into the driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20. The engine ENG2 of No. 2 is started, and the shortage of output to the drive wheel 2 due to the increase in load at the time of startup is compensated by the driving force of the first motor generator MG1. The sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and supplies the generated electric power to the first motor generator MG1 or charges the battery 8.
 図18に示す動作パターンHでは、第1のエンジンENG1の駆動力を利用してエンジン走行を行っており、動作パターンGにおいて接続されたシンクロ機構20を遮断(噛み合い状態を解除)することで、被回転駆動部材11(デフケース)と第2のエンジンENG2の出力軸S2を切り離した状態にし、その状態で、始動後の第2のエンジンENG2の動力を第2のトランスミッションTM2に入力させている。ただし、この段階ではまだ、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回っていないので、第2のトランスミッションTM2の出力は、被回転駆動部材11に入力されていない。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力をバッテリ8に充電している。 In the operation pattern H shown in FIG. 18, the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state). The rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2. However, at this stage, since the input rotational speed of the second one-way clutch OWC2 does not exceed the output rotational speed, the output of the second transmission TM2 is not input to the driven member 11 to be rotated. The sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
 図19に示す動作パターンIでは、第2のエンジンENG2の駆動力によるエンジン走行を行っている。この動作パターンIは、動作パターンHの状態から第2のトランスミッションTM2の変速比をOD(オーバードライブ)側に変更して、第2のワンウェイ・クラッチOWC2の入力部材122の回転数が出力部材121の回転数を上回るように制御し、それにより、第2のエンジンENG2の動力を第2のトランスミッションTM2を介して被回転駆動部材11(デフケース)に伝達させ、第2のエンジンENG2の駆動力によるエンジン走行を実現している。この動作パターンIでは、第2のエンジンENG2によるエンゲージが成立(被回転駆動部材11への動力伝達が成立)した段階で、第1のエンジンENG1を停止させている。この際、クラッチ機構CL2は接続状態に維持され、クラッチ機構CL1は遮断状態に維持される。これにより、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達されるとともに、ワンウェイ・クラッチOWC1の引きずりが防止される。 In the operation pattern I shown in FIG. 19, the engine travels by the driving force of the second engine ENG2. In this operation pattern I, the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2. The engine is running. In this operation pattern I, the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established). At this time, the clutch mechanism CL2 is maintained in the connected state, and the clutch mechanism CL1 is maintained in the disconnected state. As a result, the driving force of the second engine ENG2 is transmitted to the driven member 11 and the one-way clutch OWC1 is prevented from being dragged.
 図20に示す動作パターンJは、第2のエンジンENG2の駆動力を利用したエンジン走行を行っている状態で、更に要求出力が上昇した場合の動作パターンである。この動作パターンJでは、第2のエンジンENG2による走行状態において、更に第1のエンジンENG1を始動させて、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を合成して、被回転駆動部材11(デフケース)に伝達させている。即ち、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御している。 The operation pattern J shown in FIG. 20 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2. In this operation pattern J, in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11). The rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
 図21に示す動作パターンKは、例えば、中高速走行時に減速要求が発生した場合の動作パターンである。この動作パターンKでは、第1のエンジンENG1および第2のエンジンENG2を停止させ、減速に伴って駆動車輪2から被回転駆動部材11を介して伝達される動力によりメインモータジェネレータMG1で発電し、それにより生成される回生電力をバッテリ8に充電すると共に、回生制動力を駆動車輪2に作用させている。また同時に、シンクロ機構20を接続状態にして、第2のエンジンENG2のエンジンブレーキを制動力として駆動車輪2に作用させている。この回生運転のときも、第1、第2のクラッチ機構CL1、CL2は、所定のタイミングで切っておく。 The operation pattern K shown in FIG. 21 is an operation pattern in the case where a deceleration request is generated, for example, during medium to high speed traveling. In this operation pattern K, the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and a regenerative braking force is applied to the drive wheel 2. At the same time, the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheels 2 as a braking force. Also during the regenerative operation, the first and second clutch mechanisms CL1 and CL2 are turned off at a predetermined timing.
 図22に示す動作パターンLは、第2のエンジンENG2の駆動力により走行している状態で、更なる要求出力の上昇が生じた場合の切り替え時の動作パターンである。この動作パターンLでは、第1のエンジンENG1を始動するために、サブモータジェネレータMG2を駆動している。このときは、第1のトランスミッションTM1の変速比を無限大に設定する。また、この動作パターンによって、第1のエンジンENG1が始動した後は、第1、第2の両方のエンジンENG1、ENG2の両方の駆動力が、被回転駆動部材11に伝達される動作パターンJとなる。 The operation pattern L shown in FIG. 22 is an operation pattern at the time of switching when a further increase in the required output occurs while the vehicle is running with the driving force of the second engine ENG2. In this operation pattern L, the sub motor generator MG2 is driven to start the first engine ENG1. At this time, the gear ratio of the first transmission TM1 is set to infinity. In addition, after the first engine ENG1 is started by this operation pattern, the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and Become.
 図23に示す動作パターンMでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。 In the operation pattern M shown in FIG. 23, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
 図24に示す動作パターンNでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、メインモータジェネレータMG1で回生電力を生成してバッテリ8に充電し、同時に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。また、シンクロ機構20を接続状態に保つことで、第2のエンジンENG2はクランキング待機の状態にある。このときも、回生運転の開始に伴ってクラッチ機構CL1、CL2は、あるタイミングで切っておく。 In the operation pattern N shown in FIG. 24, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state. Also at this time, the clutch mechanisms CL1 and CL2 are turned off at a certain timing with the start of the regenerative operation.
 図25に示す動作パターンOは、停車中の動作パターンであり、この動作パターンOでは、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。この際、第1、第2のトランスミッションTM1、TM2の変速比を無限大(∞)にするか、クラッチCL1、CL2を切ることで、引き摺りトルクロスを抑制している。 An operation pattern O shown in FIG. 25 is an operation pattern when the vehicle is stopped. In this operation pattern O, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. is doing. At this time, the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity (∞) or by disengaging the clutches CL1 and CL2.
《運転状況に応じた制御動作について》
 次に図26~図35を用いて、様々な運転状況における制御動作について説明する。各運転状況は表形式で示してあり、表中の各枠の左下には説明の便宜上、以下の括弧内の数字対応する通し番号を付してある。また、各枠の右上の符号A~Oは、図11~図25の拡大図に対応しており、必要に応じて参照されたい。
《Control action according to the driving situation》
Next, control operations in various driving situations will be described with reference to FIGS. Each driving situation is shown in a table format, and for convenience of explanation, a serial number corresponding to the number in parentheses below is attached to the lower left of each frame in the table. Reference symbols A to O at the upper right of each frame correspond to the enlarged views of FIGS. 11 to 25, and should be referred to as necessary.
《発進時》
 まず、発進時の制御動作について図26を参照して説明する。
(1) 発進時の緩加速クルーズの際には、基本的に動作パターンAによるEV走行を行う。EV走行では、バッテリ8から供給される電力によりメインモータジェネレータMG1を駆動し、その駆動力のみによって走行する。
<When starting>
First, the control operation at the start will be described with reference to FIG.
(1) During slow acceleration cruise at the time of departure, basically, EV traveling by the operation pattern A is performed. In EV traveling, the main motor generator MG1 is driven by the electric power supplied from the battery 8, and the vehicle travels only by the driving force.
(2) また、加速時には、動作パターンBによるシリーズ走行を行う。シリーズ走行では、まず、サブモータジェネレータMG2により第1のエンジンENG1を始動する。第2のエンジンENG1が始動したら、サブモータジェネレータMG2を発電機として機能させて発電し、生成した電力をバッテリ8とメインモータジェネレータMG1に供給することで、EV走行を継続しながら、第1のエンジンENG1の動力によりサブモータジェネレータMG2で発電した電力を有効利用する。この際、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を下回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。 (2) In addition, during acceleration, series travel is performed with operation pattern B. In the series running, first, the first engine ENG1 is started by the sub motor generator MG2. When the second engine ENG1 is started, the sub motor generator MG2 functions as a generator to generate electric power, and the generated electric power is supplied to the battery 8 and the main motor generator MG1, thereby continuing the EV traveling, The electric power generated by the sub motor generator MG2 by the power of the engine ENG1 is effectively used. At this time, the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 is controlled so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed.
(3) また、加速要求に応じた制御により第1のエンジンENG1の回転数が上がったら、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように第1のトランスミッションTM1の変速比を変更し、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を合成したパラレル走行を行う。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(4) さらに、SOCが低い場合には、動作パターンDに示す第1のエンジンENG1よるエンジン走行によって発進する。この場合にも、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(3) When the rotational speed of the first engine ENG1 is increased by the control according to the acceleration request, the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. The ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(4) Further, when the SOC is low, the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
 このように、車両発進時には、メインモータジェネレータMG1の駆動力を利用したEV走行モードと、第1のエンジンENG1とサブモータジェネレータMG2とメインモータジェネレータMG1を利用したシリーズ走行モードと、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用したパラレル走行モードと、第1のエンジンENG1によるエンジン走行モードとを、運転状況に応じて選択して実行する。 Thus, when the vehicle starts, the EV travel mode using the driving force of the main motor generator MG1, the series travel mode using the first engine ENG1, the sub motor generator MG2, and the main motor generator MG1, and the main motor generator MG1. The parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
《低速走行(例えば、0~30km/h)時》
 次に低速走行時の制御動作について図27を参照して説明する。
(5)、(6) 緩加速クルーズ時や、例えばアクセルを離した緩減速クルーズ時は、動作パターンAによるEV走行を行う。
(7) また、ブレーキを踏むなどした減速時には、動作パターンEによる回生運転を行う。このとき、第1、第2のクラッチ機構CL1、CL2は切っておく。
(8)、(9) 緩加速クルーズ時および緩減速クルーズ時でも、バッテリ8の残容量(SOC)が35%以下の場合は、動作パターンBによるシリーズ運転を行う。
(10) また、加速の場合にも、動作パターンBによるシリーズ運転を行う。
(11) 更に加速要求が高い場合は、動作パターンCに切り替えることで、メインモータジェネレータMG1と第1のエンジンENG1の駆動力を用いたパラレル走行を行う。
<< When traveling at low speed (for example, 0-30 km / h) >>
Next, the control operation during low-speed traveling will be described with reference to FIG.
(5), (6) EV travel by the operation pattern A is performed during slow acceleration cruise, for example, during slow deceleration cruise with the accelerator released.
(7) When the vehicle is decelerated such as by depressing the brake, the regenerative operation by the operation pattern E is performed. At this time, the first and second clutch mechanisms CL1 and CL2 are turned off.
(8), (9) Even during the slow acceleration cruise and the slow deceleration cruise, if the remaining capacity (SOC) of the battery 8 is 35% or less, the series operation by the operation pattern B is performed.
(10) Also, in the case of acceleration, the series operation by the operation pattern B is performed.
(11) When the acceleration request is higher, the operation is switched to the operation pattern C to perform parallel traveling using the driving force of the main motor generator MG1 and the first engine ENG1.
《メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え》
 メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え時には、前述した走行切替制御Aを用いて、図28に示すように動作制御する。
(12)、(13) まず、クラッチ機構CL1を遮断状態に保持して、動作パターンAによるEV走行を行っている状況から、第1のトランスミッションTM1の変速比を無限大にして、サブモータジェネレータMG2により第1のエンジンENG1を始動する。
<< Switching of drive source from main motor generator MG1 to first engine ENG1 >>
When the drive source is switched from the main motor generator MG1 to the first engine ENG1, the operation is controlled as shown in FIG. 28 using the travel switching control A described above.
(12), (13) First, from the situation where the clutch mechanism CL1 is held in the disengaged state and EV travel is performed according to the operation pattern A, the transmission ratio of the first transmission TM1 is set to infinity, and the sub motor generator The first engine ENG1 is started by MG2.
 その際、第1のトランスミッションTM1の変速比を無限大にして、第1のエンジンENG1の出力が被回転駆動部材11に入らない状態にする。始動後には、動作パターンBに切り替えて、サブモータジェネレータMG2の発電によるシリーズ走行を行う。 At that time, the transmission ratio of the first transmission TM1 is set to infinity so that the output of the first engine ENG1 does not enter the rotated drive member 11. After the start, the operation mode is switched to the operation pattern B and the series running is performed by the power generation of the sub motor generator MG2.
(14) 次いで、動作パターンFに移行して、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御し、第1のエンジンENG1の動力を被回転駆動部材11に伝達する。例えば、変速比を無限大にして一旦充電モードに入れた後に、変速比をOD(オーバードライブ)側に動かし、メインモータジェネレータMG1によるEV走行からシリーズ走行を介して第1のエンジンENG1によるエンジン走行へとスムーズに移行させる。この際、クラッチ機構CL1は、遅れが生じないように適当なタイミングで接続制御する。 (14) Next, the operation proceeds to the operation pattern F, and the rotation speed of the first engine ENG1 and / or the first transmission TM1 is set so that the input rotation speed of the first one-way clutch OWC1 exceeds the output rotation speed. The transmission ratio is controlled, and the power of the first engine ENG1 is transmitted to the driven member 11 for rotation. For example, after setting the gear ratio to infinity and once entering the charging mode, the gear ratio is moved to the OD (overdrive) side, and the engine running by the first engine ENG1 is performed from the EV running by the main motor generator MG1 through the series running. Make a smooth transition to At this time, the clutch mechanism CL1 controls connection at an appropriate timing so as not to cause a delay.
 第1のエンジンENG1による被回転駆動部材11への動力伝達(駆動源の切り替え)が成立したら、メインモータジェネレータMG1を停止する。但し、バッテリ残容量(SOC)が少ない場合は、サブモータジェネレータMG2による発電および充電を継続し、バッテリ残容量(SOC)が十分にある場合は、サブモータジェネレータMG2を停止させる。 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
《中速走行(例えば20~70km/h)時》
 次に中速走行時の制御動作について図29を参照して説明する。
(15) 緩加速クルーズ時は、動作パターンFにより、第1のエンジンENG1の駆動力のみを利用した単独エンジン走行を行う。その際、サブモータジェネレータMG2で発電した電力でバッテリ8を充電する。第1エンジンENG1は高効率運転ポイントで運転し、第1のトランスミッションTM1の変速比を制御することで、運転状況に対応する。
<< When driving at medium speed (for example, 20 to 70 km / h) >>
Next, the control operation during medium speed running will be described with reference to FIG.
(15) During the slow acceleration cruise, the single engine running using only the driving force of the first engine ENG1 is performed according to the operation pattern F. At that time, the battery 8 is charged with the electric power generated by the sub motor generator MG2. The first engine ENG1 operates at a high efficiency operation point, and responds to the driving situation by controlling the gear ratio of the first transmission TM1.
(16)、(17) 緩減速クルーズ時および減速時には、動作パターンEにより、第1エンジンENG1を停止し、メインモータジェネレータMG1による回生運転を行う。この場合、回生運転の開始に伴い、前述した図9のフローチャートに従って、第1のクラッチ機構CL1の遮断制御を行う。
(18) 一方、加速時には、動作パターンCに切り替えて、第1のエンジンENG1とメインモータジェネレータMG1の両方の駆動力を利用したパラレル運転を行う。この際、基本は第1エンジンENG1によるエンジン走行であり、加速要求に対してメインモータジェネレータMG1でアシストする。この制御動作は、中速走行時の加速要求に対して第1のトランスミッションTM1の変速比の変化で対応できないときに選択される。
(16), (17) During slow deceleration cruise and deceleration, the first engine ENG1 is stopped by the operation pattern E, and the regenerative operation by the main motor generator MG1 is performed. In this case, with the start of the regenerative operation, the cutoff control of the first clutch mechanism CL1 is performed according to the flowchart of FIG. 9 described above.
(18) On the other hand, at the time of acceleration, the operation pattern C is switched to perform parallel operation using the driving forces of both the first engine ENG1 and the main motor generator MG1. At this time, the basic is engine running by the first engine ENG1, and the main motor generator MG1 assists the acceleration request. This control operation is selected when it is not possible to respond to an acceleration request during medium speed traveling by a change in the gear ratio of the first transmission TM1.
《第1のエンジンENG1から第2のエンジンENG2への駆動源の切り替え》
 第1のエンジンENG1の駆動力を利用したエンジン走行から第2のエンジンENG2を利用したエンジン走行への切り替え時には、図30に示すように動作制御する。
<< Switching of drive source from first engine ENG1 to second engine ENG2 >>
When switching from engine running using the driving force of the first engine ENG1 to engine running using the second engine ENG2, operation control is performed as shown in FIG.
(19)、(20) まず、動作パターンFにより、第1のエンジンENG1でエンジン走行している状態で、動作パターンGに切り替え、第2のエンジンENG2を始動する。この場合、シンクロ機構20を接続状態にして、被回転駆動部材11の動力で第2のエンジンENG2の出力軸S2をクランキングすることにより、第2のエンジンENG2を始動する。その際、始動ショックによる被回転駆動部材11の回転低下をメインモータジェネレータMG1で補う。即ち、第2のエンジンENG2の始動は、被回転駆動部材11に導入されている第1のエンジンENG1からの動力のみでも可能であるが、メインモータジェネレータMG1の駆動力を利用して行うことも可能である。なお、このときは、第2のトランスミッションTM2の変速比は、ワンウェイ・クラッチの入力回転数が出力回転数を下回るように設定されればよく、無限大に設定されてもよいし、目標とする変速比より僅かに小さい値に設定されてもよい。また、第1のエンジンENG1の駆動力に余裕がある場合には、サブモータジェネレータMG2で発電しバッテリ8の充電を行ってもよい。 (19), (20) First, the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started. In this case, the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated. At that time, the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock. In other words, the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible. At this time, the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
(21) その後、第2のエンジンENG2が始動したら、動作パターンHに切り替え、シンクロ機構20を接続遮断状態にして、メインモータジェネレータMG1を停止する。この段階では、まだ第2のエンジンENG2の動力は被回転駆動部材11まで入らない状態にある。そこで、徐々に第2のトランスミッションTM2の変速比をOD側に変更していく。このとき、第1のエンジンENG1を利用してサブモータジェネレータMG2で発電しバッテリ8の充電を行う。 (21) Thereafter, when the second engine ENG2 is started, the operation pattern H is switched to, the synchro mechanism 20 is disconnected, and the main motor generator MG1 is stopped. At this stage, the power of the second engine ENG2 has not yet entered the rotated drive member 11. Therefore, the gear ratio of the second transmission TM2 is gradually changed to the OD side. At this time, the first engine ENG1 is used to generate power with the sub motor generator MG2 to charge the battery 8.
(22) 第2のトランスミッションTM2の変速比をOD側に変更していき、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回ることで、動作パターンIに切り替わり、第2のワンウェイ・クラッチOWC2を介して、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達される。 (22) The gear ratio of the second transmission TM2 is changed to the OD side, and when the input rotational speed of the second one-way clutch OWC2 exceeds the output rotational speed, the operation mode is switched to I, and the second one-way The driving force of the second engine ENG2 is transmitted to the rotated drive member 11 via the clutch OWC2.
《中高速走行(50~110km/h)時》
 次に中高速走行時の制御動作について図31を参照して説明する。
(23) 緩加速クルーズ時は、動作パターンIにより、第2のエンジンENG2の駆動力を利用した単体エンジン走行を実施する。
(24) 加速時には、後述する動作パターンJへの切り替えにより、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を利用して走行する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(25) 緩減速クルーズ時には、動作パターンEにより、メインモータジェネレータMG1による回生運転を行い、両エンジンENG1、ENG2は停止する。この場合も、回生運転の開始に伴い、前述した図9のフローチャートに従って、第2のクラッチ機構CL2の遮断制御を行う。また、(25)から(23)に戻るときには、シンクロ機構20を接続状態にして、第2のエンジンENG2をクランキングする。
(26) 減速時には、動作パターンKにより、メインモータジェネレータMG1を回生運転させ、同時に、シンクロ機構20を接続状態にすることで、第2のエンジンENG2によるエンジンブレーキを利かせる。このときも、回生運転の開始に伴い、図9のフローチャートの制御を行う。
《Medium and high speed driving (50-110 km / h)》
Next, the control operation at the time of medium to high speed traveling will be described with reference to FIG.
(23) During slow acceleration cruise, the single engine running using the driving force of the second engine ENG2 is performed according to the operation pattern I.
(24) During acceleration, the vehicle travels by using the driving forces of both the second engine ENG2 and the first engine ENG1 by switching to an operation pattern J described later. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(25) During slow deceleration cruise, the regenerative operation is performed by the main motor generator MG1 according to the operation pattern E, and both the engines ENG1 and ENG2 are stopped. Also in this case, with the start of the regenerative operation, the cutoff control of the second clutch mechanism CL2 is performed according to the flowchart of FIG. 9 described above. When returning from (25) to (23), the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked.
(26) At the time of deceleration, the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2. Also at this time, the control of the flowchart of FIG. 9 is performed with the start of the regenerative operation.
《第2のエンジンENG2によるエンジン走行から第2のエンジンENG2と第1のエンジンENG1によるエンジン走行への切り替え》
 第2のエンジンENG2の駆動力を利用したエンジン走行から、第2のエンジンENG2に加えて第1のエンジンENG1の両方の駆動力を利用したエンジン走行への切り替え時には、図32に示すように動作制御する。
<< Switching from Engine Driving by Second Engine ENG2 to Engine Driving by Second Engine ENG2 and First Engine ENG1 >>
When switching from engine running using the driving force of the second engine ENG2 to engine running using both the driving forces of the first engine ENG1 in addition to the second engine ENG2, the operation as shown in FIG. Control.
(27)、(28) まず、動作パターンIにより、第2のエンジンENG2で単独エンジン走行している状態で、動作パターンLに示すように、サブモータジェネレータMG2を利用して第1のエンジンENG1を始動する。
(29) その後、動作パターンJに示すように、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御し、第2のエンジンENG2と第1のENG1の両駆動力を合成したエンジン走行へ移行する。
(27), (28) First, as shown in the operation pattern L, the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start.
(29) After that, as shown in the operation pattern J, the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11). The rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
《高速走行(100~Vmaxkm/h)時》
 次に、高速走行時の制御動作について図33を参照して説明する。
(30)、(31) 緩加速クルーズ時および加速時は、動作パターンJにより、第2のエンジンENG2の駆動力と第1のエンジンENG1の駆動力の合成力を利用したエンジン走行を実施する。この際、小排気量の第1のエンジンENG1は、回転数やトルクが高効率運転領域に入るように第1のエンジンENG1および/または第1のトランスミッションTM1を制御する固定した運転条件で運転し、それ以上の要求出力に対しては、大排気量の第2のエンジンENG2および/または第2のトランスミッションTM2を制御する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
<< At high speed (100 to Vmaxkm / h) >>
Next, the control operation during high speed traveling will be described with reference to FIG.
(30), (31) During slow acceleration cruise and acceleration, engine running is performed using the combined force of the driving force of the second engine ENG2 and the driving force of the first engine ENG1 according to the operation pattern J. At this time, the first engine ENG1 with a small displacement is operated under a fixed operating condition for controlling the first engine ENG1 and / or the first transmission TM1 so that the rotation speed and torque are in the high efficiency operation region. For more demanded output, the second engine ENG2 and / or the second transmission TM2 having a large displacement is controlled. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(32) また、緩減速クルーズ時は、動作パターンMにより、シンクロ機構20を接続状態にして第2のエンジンENG2のエンジンブレーキを利かせる。このとき、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。
(33) また、ブレーキを踏むなどした減速時には、動作パターンNに切り替え、シンクロ機構20を接続状態にすることにより、第2のエンジンENG2のエンジンブレーキを利かせる。同時に、メインモータジェネレータMG1の回生運転により、強い制動力が働くようにする。そして、メインモータジェネレータMG1で生成した回生電力をバッテリ8に充電する。また、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。このときは、第1のエンジンENG1および第2のエンジンENG2の両方の駆動力を被回転駆動部材11に伝達させている状態での回生運転への切り替えであるから、図10のフローチャートに従ったクラッチ機構CL1、CL2の遮断制御を行う。
(32) Further, during slow deceleration cruise, the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2. At this time, the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
(33) Further, at the time of deceleration such as stepping on the brake, the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state. At the same time, a strong braking force is applied by the regenerative operation of the main motor generator MG1. Then, the battery 8 is charged with the regenerative power generated by the main motor generator MG1. The first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8. At this time, since the driving force of both the first engine ENG1 and the second engine ENG2 is switched to the regenerative operation in a state where the driving force is transmitted to the driven member 11, the flowchart of FIG. 10 is followed. Shut-off control of the clutch mechanisms CL1 and CL2 is performed.
《後進時》
 次に後進(後退)時の制御動作について図34を参照して説明する。
(34) 後進時は緩加速クルーズとして、動作パターンAによりEV走行を行う。後進しようとする時には、第1、第2のワンウェイ・クラッチOWC1、OWC2において、被回転駆動部材11に繋がる出力部材121が、正方向に対して逆方向(図3中の矢印RD2方向)に回転することになるので、入力部材122と出力部材121が互いにローラ123を介して噛み合う。入力部材122と出力部材121が噛み合うと、出力部材121の逆方向の回転力が入力部材122に作用することになるが、図36(a)に示す連結部材130の延長線上に入力中心軸線O1が位置する、入力中心軸線O1と第2支点O4とが最も離れた位置(または、正方向に対して逆方向の回転方向が図3中の矢印RD1方向の場合には、図36(b)に示す連結部材130が入力中心軸線O1を通り入力中心軸線O1と第2支点O4とが最も近接した位置)に至ると、入力部材122は連結部材130に連結されていることにより、入力部材122の揺動運動が規制されるので、それ以上逆方向の運動の伝達はロックされる。従って、出力部材121が逆回転しようとしても、無限・無段変速機構BD1、BD2よりなる第1、第2のトランスミッションTM1、TM2がロックすることにより、後進できない状態(後進不可状態)が発生する。そこで、予めクラッチ機構CL1、CL2を解放状態にしてロックを回避しておき、その状態でメインモータジェネレータMG1を逆回転させて、車両を後進させる。
(35) EV走行で後退している場合も、バッテリ8の残容量SOCが35%以下の場合は、動作パターンBのシリーズ走行に切り替えて、バッテリ8を充電しながら、メインモータジェネレータMG1を逆回転させる。
<Backward>
Next, the control operation during reverse (reverse) will be described with reference to FIG.
(34) When traveling backward, EV travel is performed by operation pattern A as a slow acceleration cruise. When going backward, in the first and second one-way clutches OWC1 and OWC2, the output member 121 connected to the driven member 11 rotates in the reverse direction (the direction of the arrow RD2 in FIG. 3) with respect to the forward direction. Therefore, the input member 122 and the output member 121 are engaged with each other via the roller 123. When the input member 122 and the output member 121 mesh with each other, the rotational force in the reverse direction of the output member 121 acts on the input member 122. However, the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest from each other (or when the rotation direction opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 36 (b) When the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other), the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked. Therefore, even if the output member 121 tries to reversely rotate, the first and second transmissions TM1 and TM2 including the infinite and continuously variable transmission mechanisms BD1 and BD2 are locked, so that a state in which the vehicle cannot reverse (non-reverse) is generated. . Therefore, the clutch mechanisms CL1 and CL2 are released in advance to avoid the lock, and the main motor generator MG1 is reversely rotated in this state to reverse the vehicle.
(35) If the remaining capacity SOC of the battery 8 is 35% or less even when reversing in EV traveling, the main motor generator MG1 is reversed while charging the battery 8 by switching to the operation pattern B series traveling. Rotate.
《停止時》
 次に停止時の制御動作について図35を参照して説明する。
(36) 車両停止の際のアイドリング時には、動作パターンOに切り替え、第1のエンジンENG1のみ駆動し、駆動力が被回転駆動部材11に伝わらないように、例えば、第1のトランスミッションTM1の変速比を無限大にして、サブモータジェネレータMG2により発電し、生成した電力をバッテリ8に充電する。
(37) また、アイドリングストップの場合は、全ての動力源を停止する。
<When stopped>
Next, the control operation at the time of stop will be described with reference to FIG.
(36) At the time of idling when the vehicle is stopped, the operation mode is switched to O, and only the first engine ENG1 is driven, so that the driving force is not transmitted to the rotated drive member 11, for example, the gear ratio of the first transmission TM1 Is set to infinity, power is generated by the sub motor generator MG2, and the generated power is charged in the battery 8.
(37) In the case of idling stop, all power sources are stopped.
 以上において説明した本実施形態の自動車用駆動システム1によれば、制御手段5は、車両の減速時の回生運転中に第1のクラッチ機構CL1および第2のクラッチ機構CL2を遮断するので、クラッチ機構CL1、CL2の上流側を下流側から切り離すことができ、それにより、ワンウェイ・クラッチOWC1、OWC2からクラッチ機構CL1、CL2までの間の動力伝達部材の連れ回りによる摩擦ロスを低減することができて、エネルギー回収効率の向上を図ることができる。 According to the vehicle drive system 1 of the present embodiment described above, the control means 5 shuts off the first clutch mechanism CL1 and the second clutch mechanism CL2 during the regenerative operation during deceleration of the vehicle. The upstream side of the mechanisms CL1 and CL2 can be disconnected from the downstream side, thereby reducing the friction loss due to the rotation of the power transmission member between the one-way clutches OWC1 and OWC2 and the clutch mechanisms CL1 and CL2. Thus, the energy recovery efficiency can be improved.
 特に、クラッチ機構CL1、CL2を遮断するタイミングを、ワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数R1が出力部材121の回転数R2より下回った段階としているので、ドグクラッチを使用した場合にも、クラッチ機構CL1、CL2を無理なくスムーズに遮断することができ、エネルギー回収効率の向上に貢献することができる。 In particular, when the clutch mechanisms CL1 and CL2 are disconnected, the rotational speed R1 of the input member 122 of the one-way clutches OWC1 and OWC2 is lower than the rotational speed R2 of the output member 121. Therefore, even when a dog clutch is used. The clutch mechanisms CL1 and CL2 can be smoothly and smoothly disconnected, contributing to improvement in energy recovery efficiency.
 また、減速要求の程度に応じてクラッチ機構CL1、CL2を遮断するようにして、再び直ぐにアクセルが踏み込まれる可能性のある緩減速の場合にはクラッチ機構CL1、CL2の遮断を停止するようにしているので、アクセルの再踏み込みに応じてクラッチ機構CL1、CL2を繋ぎに行く無駄時間を減らすことができ、レスポンスを高めることができる。 In addition, the clutch mechanisms CL1 and CL2 are shut off according to the degree of deceleration request, and the clutch mechanisms CL1 and CL2 are stopped from being shut down in the case of slow deceleration where the accelerator may be stepped on again immediately. Therefore, it is possible to reduce the dead time for connecting the clutch mechanisms CL1 and CL2 according to the re-depression of the accelerator, and to improve the response.
 また、メインモータジェネレータMG1で回生運転するときに、駆動力を被回転駆動部材11に伝達しているエンジン側のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数R1を、エンジンENG1、ENG2の回転数および/またはトランスミッションTM1、TM2の変速比を変更することよって積極的に低下するように制御しているので、クラッチ機構CL1、CL2を早めに遮断することができ、エネルギー回収効率の向上に貢献することができる。 Further, when the main motor generator MG1 performs the regenerative operation, the rotational speed R1 of the input member 122 of the engine-side one-way clutch OWC1, OWC2 that transmits the driving force to the driven member 11 is determined by the engine ENG1, ENG2. The clutch mechanism CL1, CL2 can be shut off early and the energy recovery efficiency can be improved because the speed is controlled by changing the speed and / or the transmission ratio of the transmission TM1, TM2. Can contribute.
 また、2つのエンジンENG1、ENG2の駆動力が被回転駆動部材11に共に伝達されている状況でクラッチ機構CL1、CL2を遮断する場合に、各上流側の条件に従ってクラッチ機構CL1、CL2を個別に遮断制御するようにしているので、各クラッチ機構Cl1、CL2をそれぞれに最適な条件でスムーズに遮断することができる。 Further, when the clutch mechanisms CL1 and CL2 are shut off in a situation where the driving forces of the two engines ENG1 and ENG2 are transmitted to the driven member 11, the clutch mechanisms CL1 and CL2 are individually set according to the upstream conditions. Since the shut-off control is performed, the clutch mechanisms Cl1 and CL2 can be smoothly shut off under optimum conditions.
《第2実施形態》
 上記第1実施形態において実行される図10のフローチャートでは、第1のクラッチ機構CL1と第2のクラッチ機構CL2を、それぞれ上流側の条件に応じて個別に遮断する場合を述べたが、本実施形態では、第1のクラッチ機構CL1と第2のクラッチ機構CL2を同時に遮断する制御について、図37のフローチャートを参照して説明する。
<< Second Embodiment >>
In the flowchart of FIG. 10 executed in the first embodiment, the case where the first clutch mechanism CL1 and the second clutch mechanism CL2 are individually disconnected according to the upstream conditions is described. In the embodiment, control for simultaneously disconnecting the first clutch mechanism CL1 and the second clutch mechanism CL2 will be described with reference to the flowchart of FIG.
 このフローチャートの処理がスタートすると、最初に車両が減速中かどうかを判断する(ステップS301)。減速中でない場合はそのまま処理を終え、減速中である場合は、第1、第2のワンウェイ・クラッチOWC1、OWC2の上流側回転数R1(入力部材122の回転数)の低下制御を行う(ステップS302)。 When the processing of this flowchart starts, it is first determined whether or not the vehicle is decelerating (step S301). If the vehicle is not decelerating, the process is terminated. If the vehicle is decelerating, control is performed to decrease the upstream rotational speed R1 of the first and second one-way clutches OWC1 and OWC2 (the rotational speed of the input member 122) (step). S302).
 次に、ステップS303で車両の減速要求の程度を判断し、緩減速が要求されているときには、第1、第2のクラッチ機構CL1、CL2の遮断のステップには進まずに処理を終了する。一方、緩減速よりも急な減速が要求されているときには、ステップS304以降に進む。ステップS304以降では、第1、第2の両方のワンウェイ・クラッチOWC1、OWC2の前後の回転数R1、R2の条件に応じて同時に第1、第2のクラッチ機構CL1、CL2を遮断する(ステップS304~306)。即ち、両方のワンウェイ・クラッチOWC1、OWC2の前後の回転数R1、R2が共に「R1<R2」になったことを確認した段階で、第1、第2のクラッチ機構CL1、CL2を同時に遮断し、処理を終える。 Next, the degree of vehicle deceleration request is determined in step S303, and when slow deceleration is requested, the process is terminated without proceeding to the first and second clutch mechanism CL1, CL2 disconnection steps. On the other hand, when the deceleration is more rapid than the slow deceleration, the process proceeds to step S304 and subsequent steps. After step S304, the first and second clutch mechanisms CL1 and CL2 are simultaneously disconnected according to the conditions of the rotational speeds R1 and R2 before and after both the first and second one-way clutches OWC1 and OWC2 (step S304). ~ 306). That is, when it is confirmed that the rotational speeds R1 and R2 of both the one-way clutches OWC1 and OWC2 are both “R1 <R2”, the first and second clutch mechanisms CL1 and CL2 are simultaneously disconnected. Finish the process.
 このように、第1のクラッチ機構CL1および第2のクラッチ機構CL2を同時に遮断することで、各クラッチ機構CL1、CL2の遮断に伴うショックの発生回数が少なくなるので、商品性を高めることができる。 As described above, by simultaneously disconnecting the first clutch mechanism CL1 and the second clutch mechanism CL2, the number of shocks that accompanies the disconnection of the clutch mechanisms CL1 and CL2 is reduced, so that the merchantability can be improved. .
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. can be made as appropriate. In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 例えば、上記実施形態では、ディファレンシャル装置10の左右両側に第1のワンウェイ・クラッチOWC1と第2のワンウェイ・クラッチOWC2をそれぞれ配置し、各ワンウェイ・クラッチOWC1、OWC2の出力部材121をそれぞれクラッチ機構CL1、CL2を介して被回転駆動部材11に接続した場合を示したが、図38に示す別の実施形態のように、ディファレンシャル装置10の片側に第1と第2の両方のワンウェイ・クラッチOWC1、OWC2を配置し、これら両方のワンウェイ・クラッチOWC1、OWC2の出力部材を連結した上で、1つのクラッチ機構CLを介して被回転駆動部材11に接続してもよい。 For example, in the above-described embodiment, the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1. , The case where it is connected to the driven member 11 via CL2, as in another embodiment shown in FIG. 38, both the first and second one-way clutches OWC1, on one side of the differential device 10, The OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
 また、上記実施形態では、第1、第2のトランスミッションTM1、TM2が、偏心ディスク104や連結部材130、ワンウェイ・クラッチ120を使用した形式のもので構成されている場合を示したが、その他のCVTなどの変速機構を用いてもよい。その他の形式の変速機構を用いた場合は、ワンウェイ・クラッチOWC1、OWC2を変速機構の外側(下流側)に装備してもよい。 In the above-described embodiment, the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120. A transmission mechanism such as CVT may be used. When another type of speed change mechanism is used, the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
 また、上記実施形態では、2つのエンジンENG1,ENG2、2つのトランスミッションTM1,TM2、2つのワンウェイ・クラッチOWC1,OWC2、2つのモータジェネレータMG1,MG2、及び2つのクラッチ機構CL1,CL2を有する構成を用いて説明したが、図39に示すような、エンジンENG、トランスミッションTM、ワンウェイ・クラッチOWC、クラッチ機構MOTを1つずつ備える構成に適用可能である。 In the above embodiment, the engine has two engines ENG1 and ENG2, two transmissions TM1 and TM2, two one-way clutches OWC1 and OWC2, two motor generators MG1 and MG2, and two clutch mechanisms CL1 and CL2. Although described with reference to FIG. 39, the present invention can be applied to a configuration including one engine ENG, one transmission TM, one-way clutch OWC, and one clutch mechanism MOT as shown in FIG.
 また、メインモータジェネレータMG1は、本実施形態のようにエンジンENG1、ENG2によって駆動される駆動車輪2に回転動力を与える構成であってもよいし、図39の破線で示すように、別の駆動車輪2B(駆動車輪2が前輪の場合は後輪、駆動車輪2が後輪の場合は前輪)に回転動力を与える構成であってもよい。 Further, the main motor generator MG1 may be configured to give rotational power to the drive wheels 2 driven by the engines ENG1 and ENG2 as in the present embodiment, or another drive as shown by the broken line in FIG. The configuration may be such that rotational power is applied to the wheels 2B (rear wheels when the driving wheels 2 are front wheels, and front wheels when the driving wheels 2 are rear wheels).
 さらに、上記実施形態では、2つのエンジン及び2つのトランスミッションを有する構成としたが、3つ以上のエンジン及び3つ以上のトランスミッションを有する構成であってもよい。また、エンジンは、ディーゼルエンジンや水素エンジンとガソリンエンジンとを組み合わせて用いてもよい。 Furthermore, in the above embodiment, the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions. The engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
 加えて、上記実施形態の第1のエンジンENG1と第2のエンジンENG2は、別体に構成されていてもよいし、あるいは、一体に構成されていてもよい。例えば、図40に示すように、第1のエンジンENG1と第2のエンジンENG2が、それぞれ本発明の第1の内燃機関部及び第2の内燃機関部として、共通のブロックBL内に配置されるようにしてもよい。 In addition, the first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally. For example, as shown in FIG. 40, the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
 なお、本発明は、2010年6月24日出願の日本特許出願(特願2010-143814)に基づくものであり、その内容はここに参照として取り込まれる。 The present invention is based on a Japanese patent application (Japanese Patent Application No. 2010-143814) filed on June 24, 2010, the contents of which are incorporated herein by reference.
 1 駆動システム
 2 駆動車輪
 5 制御手段
 8 バッテリ(蓄電手段)
 11 被回転駆動部材(デフケース)
 12 ドリブンギヤ
 13L 左アクスルシャフト
 13R 右アクスルシャフト
 15 ドライブギヤ
 20 シンクロ機構(クラッチ手段)
 101 入力軸
 104 偏心ディスク
 112 変速比可変機構
 120 ワンウェイ・クラッチ
 121 出力部材
 122 入力部材
 123 ローラ(係合部材)
 130 連結部材
 131 一端部(リング部)
 132 他端部
 133 円形開口
 140 ベアリング
 180 アクチュエータ
 BD1 第1の無限・無段変速機構
 BD2 第2の無限・無段変速機構
 CL1 クラッチ機構
 CL2 クラッチ機構
 ENG1 第1のエンジン(第1の内燃機関部)
 ENG2 第2のエンジン(第2の内燃機関部)
 MG1 メインモータジェネレータ
 MG2 サブモータジェネレータ
 OWC1 第1のワンウェイ・クラッチ
 OWC2 第2のワンウェイ・クラッチ
 S1 出力軸
 S2 出力軸
 TM1 第1のトランスミッション(第1の変速機構)
 TM2 第2のトランスミッション(第2の変速機構)
 O1 入力中心軸線
 O2 出力中心軸線
 O3 第1支点
 O4 第2支点
 RD1 正回転方向
 RD2 逆回転方向
 r1 偏心量
 θ2 揺動角度
 ω1 入力軸の回転角速度
 ω2 出力部材の角速度
DESCRIPTION OF SYMBOLS 1 Drive system 2 Drive wheel 5 Control means 8 Battery (electric storage means)
11 Rotated drive member (Differential case)
12 Driven gear 13L Left axle shaft 13R Right axle shaft 15 Drive gear 20 Synchro mechanism (clutch means)
DESCRIPTION OF SYMBOLS 101 Input shaft 104 Eccentric disk 112 Gear ratio variable mechanism 120 One-way clutch 121 Output member 122 Input member 123 Roller (engagement member)
130 Connecting member 131 One end (ring part)
132 Other end portion 133 Circular opening 140 Bearing 180 Actuator BD1 First infinite and continuously variable transmission mechanism BD2 Second infinite and continuously variable transmission mechanism CL1 Clutch mechanism CL2 Clutch mechanism ENG1 First engine (first internal combustion engine section)
ENG2 Second engine (second internal combustion engine section)
MG1 main motor generator MG2 sub motor generator OWC1 first one-way clutch OWC2 second one-way clutch S1 output shaft S2 output shaft TM1 first transmission (first transmission mechanism)
TM2 Second transmission (second transmission mechanism)
O1 Input center axis O2 Output center axis O3 First fulcrum O4 Second fulcrum RD1 Forward rotation direction RD2 Reverse rotation direction r1 Eccentricity θ2 Swing angle ω1 Input shaft rotation angular velocity ω2 Angular velocity of output member

Claims (7)

  1.  回転動力を発生する内燃機関部と、
     該内燃機関部の発生する回転動力を変速して出力する変速機構と、
     該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
     前記ワンウェイ・クラッチの出力部材に連結されることで、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
     前記駆動車輪または別の駆動車輪に走行のための回転動力を与えるモータ運転機能と前記駆動車輪側からの動力により発電し同時に駆動車輪に回生制動力を与える回生運転機能とを持つモータジェネレータと、
     前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
     車両の減速時に、前記クラッチ機構を遮断し、前記モータジェネレータに回生運転をさせる制御手段と、
     を備えることを特徴とする自動車用駆動システム。
    An internal combustion engine that generates rotational power;
    A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
    The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
    By being connected to the output member of the one-way clutch, the rotational drive force transmitted to the output member is transmitted to the drive wheel, and the driven drive member that rotates integrally with the drive wheel;
    A motor generator having a motor operation function for providing rotational power for traveling to the drive wheel or another drive wheel and a regenerative operation function for generating power by the power from the drive wheel side and simultaneously applying a regenerative braking force to the drive wheel;
    A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
    Control means for disconnecting the clutch mechanism and causing the motor generator to perform regenerative operation when the vehicle is decelerated;
    An automobile drive system comprising:
  2.  前記ワンウェイ・クラッチの入力部材および出力部材の回転数を検出し、該ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数より下回った段階で、前記クラッチ機構を遮断することを特徴とする請求項1に記載の自動車用駆動システム。 The rotational speed of the input member and output member of the one-way clutch is detected, and the clutch mechanism is shut off when the rotational speed of the input member of the one-way clutch is lower than the rotational speed of the output member. The vehicle drive system according to claim 1.
  3.  前記制御手段が、車両の減速要求の程度を判断し、急減速が要求されているときに前記クラッチ機構を遮断し、緩減速が要求されているときに前記クラッチ機構の遮断を停止することを特徴とする請求項1に記載の自動車用駆動システム。 The control means judges the degree of deceleration request of the vehicle, and shuts off the clutch mechanism when sudden deceleration is requested, and stops breaking the clutch mechanism when slow deceleration is requested. The automobile drive system according to claim 1, wherein the drive system is for a vehicle.
  4.  前記制御手段が、車両の減速要求があったときに、前記内燃機関部の回転数および/または前記変速機構の変速比を変更して前記ワンウェイ・クラッチの入力部材の回転数を低下させた後に、前記クラッチ機構を遮断することを特徴とする請求項1に記載の自動車用駆動システム。 When the control means changes the rotational speed of the internal combustion engine section and / or the speed ratio of the transmission mechanism to reduce the rotational speed of the input member of the one-way clutch when a vehicle deceleration request is made The vehicle drive system according to claim 1, wherein the clutch mechanism is disconnected.
  5.  前記内燃機関部として、それぞれに回転動力を発生する第1の内燃機関部および第2の内燃機関部が設けられ、
     前記変速機構として、前記第1の内燃機関部および第2の内燃機関部の下流側にそれぞれ第1の変速機構および第2の変速機構が設けられ、
     前記ワンウェイ・クラッチとして、前記第1の変速機構と第2の変速機構の出力部にそれぞれ第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチが設けられ、
     前記被回転駆動部材が、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、
     前記クラッチ機構として、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ第1のクラッチ機構および第2のクラッチ機構が設けられており、
     前記制御手段が、車両の減速時に、前記第1のクラッチ機構および第2のクラッチ機構を、それぞれの上流側の第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチそれぞれの入力部材と出力部材の回転数に応じて個別に遮断することを特徴とする請求項1~4のいずれか1項に記載の自動車用駆動システム。
    As the internal combustion engine portion, a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
    As the speed change mechanism, a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
    As the one-way clutch, a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
    The rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
    As the clutch mechanism, a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively. ,
    When the vehicle is decelerating, the control means causes the first clutch mechanism and the second clutch mechanism to switch the input members and the output members of the first one-way clutch and the second one-way clutch on the upstream side, respectively. The vehicle drive system according to any one of claims 1 to 4, wherein the motor drive system is cut off individually according to the number of rotations.
  6.  前記内燃機関部として、それぞれに回転動力を発生する第1の内燃機関部および第2の内燃機関部が設けられ、
     前記変速機構として、前記第1の内燃機関部および第2の内燃機関部の下流側にそれぞれ第1の変速機構および第2の変速機構が設けられ、
     前記ワンウェイ・クラッチとして、前記第1の変速機構と第2の変速機構の出力部にそれぞれ第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチが設けられ、
     前記被回転駆動部材が、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、
     前記クラッチ機構として、前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ第1のクラッチ機構および第2のクラッチ機構が設けられており、
     前記制御手段が、車両の減速時に、前記第1のクラッチ機構および第2のクラッチ機構を同時に遮断することを特徴とする請求項1~4のいずれか1項に記載の自動車用駆動システム。
    As the internal combustion engine portion, a first internal combustion engine portion and a second internal combustion engine portion that generate rotational power are provided, respectively.
    As the speed change mechanism, a first speed change mechanism and a second speed change mechanism are provided on the downstream side of the first internal combustion engine part and the second internal combustion engine part, respectively.
    As the one-way clutch, a first one-way clutch and a second one-way clutch are provided at the output portions of the first transmission mechanism and the second transmission mechanism, respectively.
    The rotated drive member is commonly connected to both output members of the first one-way clutch and the second one-way clutch;
    As the clutch mechanism, a first clutch mechanism and a second clutch mechanism are provided between the output members of the first one-way clutch and the second one-way clutch and the driven member, respectively. ,
    The automobile drive system according to any one of claims 1 to 4, wherein the control means simultaneously shuts off the first clutch mechanism and the second clutch mechanism when the vehicle is decelerated.
  7.  回転動力を発生する内燃機関部と、
     該内燃機関部の発生する回転動力を変速して出力する変速機構と、
     該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
     前記ワンウェイ・クラッチの出力部材に連結されることで、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
     前記駆動車輪または別の駆動車輪に走行のための回転動力を与えるモータ運転機能と前記駆動車輪側からの動力により発電し同時に駆動車輪に回生制動力を与える回生運転機能とを持つモータジェネレータと、
     前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
    を備えることを特徴とする自動車用駆動システムの制御方法であって、
     車両の減速時に、前記クラッチ機構を遮断し、前記モータジェネレータに回生運転をさせることを特徴とする自動車用駆動システムの制御方法。
    An internal combustion engine that generates rotational power;
    A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
    The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
    By being connected to the output member of the one-way clutch, the rotational drive force transmitted to the output member is transmitted to the drive wheel, and the driven drive member that rotates integrally with the drive wheel;
    A motor generator having a motor operation function for providing rotational power for traveling to the drive wheel or another drive wheel and a regenerative operation function for generating power by the power from the drive wheel side and simultaneously applying a regenerative braking force to the drive wheel;
    A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
    A method for controlling an automotive drive system, comprising:
    A method for controlling an automobile drive system, wherein the clutch mechanism is disconnected when the vehicle is decelerated, and the motor generator is caused to perform a regenerative operation.
PCT/JP2011/061582 2010-06-24 2011-05-19 Drive system for a motor vehicle and control method of same WO2011162056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-143814 2010-06-24
JP2010143814 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011162056A1 true WO2011162056A1 (en) 2011-12-29

Family

ID=45371253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061582 WO2011162056A1 (en) 2010-06-24 2011-05-19 Drive system for a motor vehicle and control method of same

Country Status (1)

Country Link
WO (1) WO2011162056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113479059A (en) * 2021-07-30 2021-10-08 重庆长安汽车股份有限公司 Hybrid power driving system and hybrid power automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929642B1 (en) * 1970-09-29 1974-08-06
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929642B1 (en) * 1970-09-29 1974-08-06
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113479059A (en) * 2021-07-30 2021-10-08 重庆长安汽车股份有限公司 Hybrid power driving system and hybrid power automobile
CN113479059B (en) * 2021-07-30 2022-12-09 重庆长安汽车股份有限公司 Hybrid power driving system and hybrid power automobile

Similar Documents

Publication Publication Date Title
JP5638075B2 (en) Driving system for automobile and control method thereof
JP5019080B2 (en) Driving system for automobile and control method thereof
JP5501461B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5492990B2 (en) Car drive system
JP5589076B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5455994B2 (en) Car drive system
JP5747081B2 (en) Car drive system
JP5542204B2 (en) Vehicle drive system and method for controlling vehicle drive system
WO2012002062A1 (en) Driving system for automobile and method for controlling same
WO2011162056A1 (en) Drive system for a motor vehicle and control method of same
JP5589075B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5586694B2 (en) Vehicle drive system and method for controlling vehicle drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP