WO2012002062A1 - Driving system for automobile and method for controlling same - Google Patents

Driving system for automobile and method for controlling same Download PDF

Info

Publication number
WO2012002062A1
WO2012002062A1 PCT/JP2011/061583 JP2011061583W WO2012002062A1 WO 2012002062 A1 WO2012002062 A1 WO 2012002062A1 JP 2011061583 W JP2011061583 W JP 2011061583W WO 2012002062 A1 WO2012002062 A1 WO 2012002062A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
way clutch
input
engine
rotational speed
Prior art date
Application number
PCT/JP2011/061583
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 市川
文康 菅
康浩 森本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2012002062A1 publication Critical patent/WO2012002062A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/08Arrangement or mounting of internal-combustion or jet-propulsion units comprising more than one engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a hybrid vehicle drive system including an internal combustion engine and an electric motor as a driving source for traveling, and a control method thereof.
  • a drive system for a series parallel composite electric vehicle (SPHV) that can be run as a series hybrid vehicle (SHV) or a parallel hybrid vehicle (PHV) is known (for example, see Patent Document 1.)
  • the drive system described in Patent Document 1 includes an engine, a generator driven by the engine output of the engine, a battery charged by the generator output of the generator, a motor driven by the discharge output of the battery, Clutch means for mechanically connecting / disconnecting between the machine and the motor.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an automobile drive system and a control method thereof that can reduce a shock when switching from EV running to engine running. .
  • an invention according to claim 1 is an automobile drive system (for example, drive system 1 in an embodiment described later).
  • An internal combustion engine that generates rotational power for example, a first engine ENG1 in an embodiment described later
  • a speed change mechanism for example, a first transmission TM1 in an embodiment described later
  • An input member for example, an input member 122 in an embodiment described later
  • an output member for example, an output member 121 in an embodiment described later
  • An engaging member for example, a roller 123 in an embodiment to be described later
  • One-way clutch OWC1 The rotational drive coupled to the output member of the one-way clutch and transmitting the rotational power transmitted to the output member to a drive wheel (for example, drive wheel 2 in an embodiment described later) and rotating integrally with the drive wheel A member (for example, a rotated drive member 11 in an embodiment described later);
  • An electric motor for example, a main motor generator MG1 in an embodiment to be described later
  • a clutch mechanism for example, a first clutch mechanism CL1 in an embodiment described later
  • Control means for executing an EV travel control mode for controlling EV travel by the driving force of the electric motor and an engine travel control mode for controlling engine travel by the driving force of the internal combustion engine (for example, control means in the embodiments described later) 5) and With The control means includes When the clutch mechanism is held in the disconnected state and the EV travel control mode is switched to the engine travel control mode, the rotation speed of the output member of the one-way clutch is in a range lower than the rotation speed of the driven member.
  • the clutch mechanism is connected, and then the input of the one-way clutch Characterized in that it includes first switching control means for transmitting rotational power on the input member side of the one-way clutch to the driven member by controlling the rotational speed of the member to exceed the rotational speed of the output member.
  • the invention according to claim 2 is the structure of claim 1,
  • the first switching control means changes the rotation speed of the internal combustion engine section and / or the transmission gear ratio of the transmission mechanism, whereby the rotation speed of the output member of the one-way clutch and the rotation speed of the driven drive member are It is characterized in that the difference between them falls within a predetermined range.
  • the invention according to claim 3 is the configuration of claim 1,
  • the engine further includes starting means (for example, a sub motor generator MG2 in an embodiment described later) of the internal combustion engine section,
  • the transmission mechanism is An input shaft (for example, an input shaft 101 in an embodiment described later) that rotates around an input center axis (for example, an input center axis O1 in an embodiment described later) by receiving rotational power;
  • the input shafts are provided at equal intervals in the circumferential direction, each of which can change the amount of eccentricity with respect to the input center axis (for example, the amount of eccentricity r1 in an embodiment described later), and while maintaining the amount of eccentricity,
  • a plurality of first fulcrums for example, a first fulcrum O3 in an embodiment described later
  • a plurality of eccentric disks for example, the eccentric disk 104 in the embodiment described later having the first fulcrum at the respective centers and rotating around the input center axis;
  • An output member for example, an output
  • the rotational power input to the input member is A one-way clutch that transmits to the output member, thereby converting the swinging motion of the input member into the rotational motion of the output member (e.g., implementation described below)
  • the one-way clutch 120) in the state A second fulcrum (for example, a second fulcrum O4 in an embodiment described later) provided at a position separated from the output center axis on the input member;
  • One end for example, a ring portion 131 in an embodiment described later
  • the other end for example, a distal end portion 132 in an embodiment described later
  • a gear ratio variable mechanism (for example, a gear ratio in an embodiment described later) that changes a gear ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member.
  • Variable ratio mechanism 112 is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the eccentric amount can be set to zero so that the gear ratio can be set to infinity
  • An output shaft (for example, an output shaft S1 in an embodiment described later) of the internal combustion engine section is connected to an input shaft of the continuously variable transmission mechanism
  • the one-way clutch that is a component of the continuously variable transmission mechanism serves also as the one-way clutch provided between the transmission mechanism and the driven member for rotation
  • the control means is characterized in that the internal combustion engine section is started in a state in which the speed ratio of the continuously variable transmission mechanism is set to infinity, and then the travel mode is switched by the first switching control means.
  • the invention according to claim 4 is the structure according to any one of claims 1 to 3,
  • the apparatus further comprises request output detecting means for detecting an output required for traveling of the vehicle,
  • the control means further includes When the clutch mechanism is held in the disengaged state and switched from the EV travel control mode to the engine travel control mode, the rotational speed of the output member of the one-way clutch exceeds the rotational speed of the driven member, When the difference between the rotation speed of the output member of the one-way clutch and the rotation speed of the driven member is within a predetermined range, the clutch mechanism is connected to the input member side of the one-way clutch.
  • Second switching control means for transmitting the rotational power of the rotation to the rotation driven member;
  • Second switching control means for transmitting the rotational power of the rotation to the rotation driven member;
  • the invention according to claim 5 An internal combustion engine that generates rotational power; A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
  • the input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member.
  • An electric motor that provides rotational power for traveling to the drive wheel or another drive wheel;
  • a clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
  • a method for controlling an automotive drive system comprising: When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state, The rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the difference between the rotational speed of the output member of the one-way clutch and the rotational speed of the driven drive member When is within a predetermined range, the clutch mechanism is connected, The rotational power on the input member side of the one-way clutch is transmitted to the rotated drive member
  • the invention according to claim 6 is the structure of claim 5, When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state, Detect the output required for vehicle travel, When the required output is less than a predetermined value, the rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the rotational speed of the output member of the one-way clutch and the When the difference between the rotational speed of the driven member to be rotated is within a predetermined range, the clutch mechanism is connected, and the rotational speed of the input member of the one-way clutch is controlled to exceed the rotational speed of the output member.
  • the invention according to claim 7 provides: A first internal combustion engine section (for example, a first engine ENG1 in an embodiment described later) and a second internal combustion engine section (for example, a second engine ENG2 in an embodiment described later) that independently generate rotational power.
  • a first speed change mechanism for example, a first transmission TM1 in an embodiment described later
  • a second speed change and output each rotational power generated by the first internal combustion engine part and the second internal combustion engine part, respectively.
  • a speed change mechanism for example, a second transmission TM2 in an embodiment described later
  • the first one-way clutch for example, the first one-way clutch OWC1 in an embodiment described later
  • the second one that transmit the rotational power input to the input member to the output member.
  • a one-way clutch for example, a second one-way clutch OWC2 in an embodiment described later
  • a rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel
  • a first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members.
  • Control for executing a first engine traveling control mode for controlling engine traveling by the driving force of the first internal combustion engine section and a second engine traveling control mode for controlling engine traveling by the driving force of the second internal combustion engine section Means,
  • the control means includes When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotation speed of the second one-way clutch is within a predetermined range when the difference between the rotation speed of the output member of the second one-way clutch and the rotation speed of the driven member is within a predetermined range.
  • a drive system for an automobile comprising: a third switching control means for transmitting rotational power to the driven member for rotation.
  • the invention according to claim 8 is the structure of claim 7,
  • the third switching control means changes the rotational speed of the second internal combustion engine section and / or the transmission gear ratio of the second transmission mechanism, thereby changing the rotational speed of the output member of the second one-way clutch.
  • the difference between the rotational speed of the driven member to be rotated is within a predetermined range.
  • the invention according to claim 9 is the configuration of claim 7, Different between the output shaft of the second internal combustion engine part and the driven drive member, the output shaft of the second internal combustion engine part and the driven drive member differ from the power transmission via the second speed change mechanism. And further includes clutch means (for example, a synchro mechanism 20 in an embodiment described later) capable of connecting and disconnecting power transmission between them,
  • the first and second transmission mechanisms are An input shaft that rotates around the input center axis by receiving rotational power; and A plurality of first fulcrums that are provided at equal intervals in the circumferential direction of the input shaft and that each rotate with the input shaft around the input center axis while maintaining a variable amount of eccentricity with respect to the input center axis; A plurality of eccentric disks each having the first fulcrum at its center and rotating about the input center axis; An output member that rotates around an output center axis that is distant from the input center axis, an input member that swings around the output center axis by receiving power in the rotational direction from the
  • a one-way clutch that converts the swinging motion of the input member into the rotational motion of the output member;
  • a second fulcrum provided at a position spaced from the output center axis on the input member;
  • One end is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end is rotatably connected to the second fulcrum provided on the input member of the one-way clutch.
  • a plurality of connecting members that transmit the rotational motion given from the input shaft to the eccentric disc as the swinging motion of the input member to the input member of the one-way clutch, By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed.
  • Each of which is configured as a continuously variable transmission mechanism of a four-bar linkage mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
  • the output shafts of the first and second internal combustion engine sections are respectively connected to the input shafts of the continuously variable transmission mechanism that is the first and second transmission mechanisms
  • the one-way clutch which is a component of the continuously variable transmission mechanism, also serves as the first and second one-way clutches provided between the first and second transmission mechanisms and the driven member, respectively.
  • the control means controls the second speed change mechanism so as to set the speed ratio to infinity, and the clutch means is brought into a connected state where power can be transmitted to the rotation driven member.
  • the second internal combustion engine part is cranked by the power of the rotationally driven member to start the second internal combustion engine part, and then the second engine travel control mode is performed by the third switching control means.
  • the invention according to claim 10 is the structure according to any one of claims 7 to 9,
  • the apparatus further comprises request output detecting means for detecting an output required for traveling of the vehicle,
  • the control means further includes When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotational speed of the second one-way clutch exceeds the rotational speed of the driving member and the difference between the rotational speed of the output member of the second one-way clutch and the rotational speed of the driven member is within a predetermined range,
  • a fourth switching control means for transmitting rotational power on the input member side of the second one-way clutch to the rotated drive member by coupling a clutch mechanism; When the request output detected by the request output detection means falls below a predetermined value, execution of switching control using the third switching control means is selected, and when the request output detected by the request output detection means is equal to or greater than a predetermined value Switching control selection means for selecting execution
  • the invention according to claim 11 is: A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power; A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part; An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; Receiving the rotational power from the first transmission mechanism and the second transmission mechanism, when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
  • a rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
  • a first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members.
  • a method for controlling an automotive drive system comprising: When switching from the first engine running, which controls the engine running by the driving force of the first internal combustion engine portion, with the clutch mechanism held in the disconnected state, to the second engine running by the driving force of the second internal combustion engine portion
  • the rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven drive member, and the rotation speed of the output member of the second one-way clutch and the driven drive member
  • the second clutch mechanism is connected, By controlling the rotational speed of the input member of the second one-way clutch to exceed the rotational speed of the output member, the rotational power on the input member side of the second one-way clutch is transmitted to the driven member. It is characterized by making it.
  • the invention according to claim 12 is the structure of claim 11, When switching from the first engine running to the second engine running with the second clutch mechanism held in a disconnected state, Detect the output required for vehicle travel, When the required output is lower than a predetermined value, the rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven member, and the output of the second one-way clutch When the difference between the rotation speed of the member and the rotation speed of the driven member is within a predetermined range, the second clutch mechanism is connected and the rotation speed of the input member of the second one-way clutch is output.
  • the rotational power on the input member side of the second one-way clutch is transmitted to the rotated drive member,
  • the rotational speed of the output member of the second one-way clutch exceeds the rotational speed of the driven member, and the output member of the second one-way clutch
  • the rotational power on the input member side of the second one-way clutch is reduced by connecting the second clutch mechanism. It is transmitted to the rotation drive member.
  • the power transmission from the internal combustion engine portion side to the rotated drive member side is not performed by coupling of the clutch mechanism, but on the input side. Since the rotation speed exceeds the output-side rotation speed and the one-way clutch is locked, the shock caused by switching can be reduced as compared with the case where power transmission is performed by coupling the clutch mechanism.
  • the difference between the rotation speed of the output member of the one-way clutch and the rotation speed of the driven member is changed by changing the rotation speed of the internal combustion engine and / or the transmission gear ratio. Since it falls within the predetermined range, it is possible to switch from EV traveling to engine traveling while reducing the shock without decreasing the vehicle speed (the number of rotations of the driven member to be rotated).
  • the engine when the output required for traveling is low (for example, when the acceleration request is low) and when it is high (for example, when the acceleration request is high), the engine is operated from EV traveling.
  • the way of switching control to travel is different. That is, when the required output is low, power transmission from the internal combustion engine side to the wheel side is performed by a one-way clutch, and when the required output is high, power transmission from the internal combustion engine side to the wheel side is performed by a clutch mechanism. I'm trying to do it. Therefore, when the required output is low, it is possible to switch the smooth running mode with less shock, while when the required output is high, it is possible to switch the driving mode with good response.
  • the power transmission from the second internal combustion engine portion side to the rotated drive member side is as follows. Since the second one-way clutch is locked because the input side rotational speed exceeds the output side rotational speed and not by the connection of the second clutch mechanism, the power transmission is performed by the connection of the second clutch mechanism. The shock caused by switching can be reduced as compared with the case where it is performed.
  • the rotation speed and output of the output member of the second one-way clutch are changed. Since the difference from the rotational speed of the drive member falls within a predetermined range, switching from the first engine travel to the second engine travel is performed while reducing the shock without reducing the vehicle speed (the rotational speed of the driven drive member). be able to.
  • the internal combustion engine unit is started in a state where the speed ratio of the second speed change mechanism is infinite, and then the first engine running is switched to the second engine running. It is possible to reduce the load at the time of starting the internal combustion engine part and to easily start the second internal combustion engine part.
  • the first engine travels when the output required for travel is low (for example, when the acceleration request is low) and when it is high (for example, when the acceleration request is high).
  • the method of switching control from to the second engine running is different. That is, when the required output is low, power transmission from the second internal combustion engine unit side to the wheel side is performed by the second one-way clutch, and when the required output is high, from the second internal combustion engine unit side Power transmission to the wheel side is performed by the second clutch mechanism. Therefore, when the required output is low, it is possible to switch the smooth running mode with less shock, while when the required output is high, it is possible to switch the driving mode with good response.
  • FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG.
  • 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”.
  • ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the transmission ratio i is set to “large”, and
  • (d) is a state in which the eccentricity r1 is set to “zero” and the transmission ratio i is set to “infinity ( ⁇ )”. It is a figure which shows the state set to.
  • FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • 5B is a diagram showing a state in which the swing angle ⁇ 2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle ⁇ 2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar linkage mechanism.
  • FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism.
  • . 4 is a flowchart of travel switching control A executed in the drive system.
  • FIG. 4 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R1, R2, R3 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control A is executed. It is explanatory drawing of the operation pattern A in the drive system of this embodiment. It is explanatory drawing of the operation pattern B in the drive system of this embodiment. It is explanatory drawing of the operation pattern C in the drive system of this embodiment. It is explanatory drawing of the operation pattern D in the drive system of this embodiment. It is explanatory drawing of the operation pattern E in the drive system of this embodiment. It is explanatory drawing of the operation pattern F in the drive system of this embodiment. It is explanatory drawing of the operation pattern G in the drive system of this embodiment.
  • (A) And (b) is explanatory drawing of the reverse drive impossible state by the lock
  • 7 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R1, R2, R3 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control B is executed. It is a flowchart which shows the flow of control in the case of selecting and performing driving
  • (A) is a figure which shows the change of each drive torque of an engine, a motor, and an axle shaft when the driving
  • (b) is the driving
  • It is a skeleton figure of the drive system for vehicles of another embodiment of the present invention.
  • It is a skeleton figure of the drive system for vehicles provided with the basic composition of the present invention.
  • 4 is a flowchart of travel switching control C for switching from the first engine travel to the second engine travel in the drive system.
  • 7 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R11, R12, R13 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control C is executed.
  • FIG. 1 is a skeleton diagram of an automobile drive system according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a specific configuration of an infinite / continuously variable transmission mechanism that is a main part of the drive system
  • FIG. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
  • the vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2.
  • First and second transmissions (transmission mechanisms) TM1 and TM2 provided on the transmission, first and second one-way clutches OWC1 and OWC2 provided on the output portions of the transmissions TM1 and TM2, and these one-way clutches
  • a rotation driven member 11 that receives the output rotation transmitted via OWC1 and OWC2, a main motor generator (electric motor) MG1 connected to the rotation driven member 11, and an output shaft S1 of the first engine ENG1
  • Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges
  • the first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other.
  • the first and second clutch mechanisms CL1 and CL2 are connected to the rotation driven member 11 together.
  • the first and second clutch mechanisms CL1 and CL2 control the transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated. Is provided.
  • these clutch mechanisms CL1 and CL2 other types of clutches (friction clutches or the like) may be used, but dog clutches are used because of low transmission loss.
  • the driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2.
  • a differential case (rotary drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown).
  • the left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different from each other. Dynamic rotation.
  • the first and second engines ENG1 and ENG2 use different engines with high efficiency operation points.
  • the first engine ENG1 is an engine with a small displacement
  • the second engine ENG2 The engine has a larger displacement than the first engine ENG1.
  • the displacement of the first engine ENG1 is 500 cc
  • the displacement of the second engine ENG2 is 1000 cc
  • the total displacement is 1500 cc.
  • the combination of the displacements is arbitrary.
  • the main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes.
  • the main motor generator MG1 functions as a motor
  • a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated.
  • the main motor generator MG1 functions as a generator
  • power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy.
  • a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
  • the sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG1 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
  • the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way
  • the rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
  • the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used.
  • a synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided.
  • the synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2.
  • a second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
  • the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
  • the first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration.
  • I can be changed steplessly, and the maximum value of the gear ratio can be set to infinity ( ⁇ ), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft.
  • 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
  • the plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3.
  • the first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101.
  • Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
  • the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101.
  • the inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance.
  • the outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes.
  • the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
  • the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108.
  • a pinion 110 is rotatably accommodated inside the two circular holes 109.
  • the teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
  • the pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other.
  • the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101.
  • a reduction ratio is applied to the rotation difference.
  • a speed reduction mechanism for example, a planetary gear
  • the relative angle between the input shaft 101 and the pinion 110 changes by the amount.
  • the internal gear 107 with which the teeth of the pinion 110 are engaged that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
  • the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match.
  • the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
  • the one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction.
  • the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
  • the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction.
  • the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric.
  • the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction.
  • the roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
  • a protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124.
  • the pin 125 is arrange
  • the connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120.
  • the eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle ⁇ 2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed.
  • the swing angle ⁇ 2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed.
  • the speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
  • the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the one-way clutch 120 which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
  • FIGS. 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2).
  • the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated.
  • the amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
  • FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism
  • FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2).
  • the rotational angle ( ⁇ ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”.
  • FIG. 8 is a diagram showing the relationship of the angular velocity ⁇ 2 of the input member 122.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120.
  • the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130.
  • the input member 122 of the one-way clutch 120 swings one reciprocating motion.
  • the swing cycle of the input member 122 of the one-way clutch 120 is always constant.
  • the angular velocity ⁇ 2 of the input member 122 is determined by the rotational angular velocity ⁇ 1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
  • One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
  • transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
  • the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state).
  • This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
  • the number of revolutions of each engine ENG1, ENG2, the number of revolutions of the input member 122 of each one-way clutch OWC1, OWC2, the number of revolutions of the output member 121, and the number of revolutions of the driven member 11 are detected.
  • Rotation detecting means (not shown) is provided.
  • the rotational speed of the input member 122 of the first one-way clutch OWC1 (also referred to as the upstream rotational speed or the input rotational speed of the first one-way clutch OWC1) is R1, and the output of the first one-way clutch OWC1.
  • the rotational speed of the member 121 (also referred to as the downstream rotational speed or the output rotational speed of the first one-way clutch OWC1) is R2, and the rotational speed of the driven member 11 is R3. Further, the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven member 11 are the rotational speeds before and after (upstream and downstream) of the clutch mechanism CL.
  • the rotation speed R3 of the member 11 is regarded as equivalent to the rotation speed of the axle (foot shaft) 13 and the main motor generator MG1.
  • the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2.
  • Various driving patterns are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements.
  • the control means 5 is supplied with signals from various element rotation detection means and other detection means, including a later-described request output detection means.
  • typical control contents will be described.
  • the control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2.
  • EV traveling, series traveling, engine traveling, and parallel traveling are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
  • FIG. 10 is a time chart corresponding to the travel switching control A.
  • step S101 the gear ratio is set to infinity ⁇ (step S101), and in this state, the first engine ENG1 is started using the driving force of the sub motor generator MG2 (step S102, Part indicated by Z1 in FIG. 10).
  • the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 is increased by changing the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 (step S103).
  • step S104 the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven member 11 to be rotated are detected (step S104).
  • the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is still in a range lower than the rotational speed R3 of the driven member 11 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1.
  • step S105 the rotational speed R3 of the driven member 11 is within a predetermined range Ah (step S105), and the first clutch mechanism CL1 is connected at the timing when step S105 becomes YES (step S105). Steps S106 and S107, part indicated by Z3 in FIG. 10).
  • the output member 121 of the first one-way clutch OWC1 and the driven member 11 are mechanically connected, so that the rotational speed R2 of the output member 121 instantaneously reaches the rotational speed R3 of the driven member 11 to be rotated. Be raised.
  • the rotational speed R2 of the output member 121 exceeds the rotational speed R1 of the input member 122, the one-way clutch OWC1 is unlocked, and the power transmission between the input member 122 and the output member 121 is not performed. Blocked.
  • step S108 the rotational speed R1 of the input member 122 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 are detected (step S108). Then, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 is increased in step S103 so that the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121.
  • the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121 (part indicated by Z4 in FIG. 10)
  • the first one-way clutch OWC1 is again locked. Rotational power on the input member 122 side of the first one-way clutch OWC is transmitted to the output member 121 side, and the rotation is rotated via the first clutch mechanism CL1 that is connected first. It can be transmitted to the drive member 11.
  • the power transmission from the first engine ENG1 side to the rotation driven member 11 side when switching from EV traveling to engine traveling is not performed by the connection of the first clutch mechanism CL1, but the rotational speed of the input member 122. Since the one-way clutch OWC1 is locked by causing R1 to exceed the rotational speed R2 of the output member 121, the switching is performed as compared with the case where power transmission is performed by connecting the first clutch mechanism CL1. Can reduce the shock.
  • step S109 If it is determined in step S109 that the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121 and the engine has been switched to the engine running, Power supply to generator MG1 is stopped (step S110). Thereby, the transition to engine running is completed, and the process ends.
  • the series travel is performed while the travel mode is switched from the EV travel to the engine travel.
  • engine energy from the start of the first engine ENG1 to the transition to engine running. That is, since the engine energy from when the engine is started to when the driving force is transmitted to the driven member 11 is run in series, it is supplied to the main motor generator MG1 and the battery 8 as electric power for effective use.
  • the generated energy can be used up without waste, contributing to improved fuel efficiency.
  • the power generation by the sub motor generator MG2 is stopped.
  • the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2.
  • Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ⁇ ⁇ ) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121.
  • the speed ratio of the second transmission TM2 is set to infinity ( ⁇ ), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed.
  • the speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
  • the second engine ENG2 when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1,
  • the synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission.
  • the engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
  • the second engine ENG2 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1.
  • the rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
  • both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted.
  • Synchronous control for controlling the transmission ratio of TM2 is performed.
  • both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at the high-efficiency operation point and the other engine (second engine 2) The engine ENG2) increases the output to meet the output request.
  • the first and second engines ENG1 so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121
  • the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region.
  • the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
  • FIGS. 11 to 25 are enlarged explanatory diagrams showing the operation patterns A to O
  • FIGS. 26 to 35 are explanatory diagrams of a control operation executed according to each operation state or a control operation at the time of traveling mode switching.
  • the symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 26 to 35 correspond to the symbols of the operation patterns A to O shown in FIGS.
  • movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
  • EV traveling is performed with the driving force of the main motor generator MG1.
  • the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential.
  • the vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R.
  • the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
  • the sub motor generator MG2 In the operation pattern B shown in FIG. 12, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is supplied to the main motor generator MG1 and the battery 8 to perform series running. ing.
  • the first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
  • parallel running is performed by using the driving forces of both the main motor generator MG1 and the first engine ENG1.
  • the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated.
  • This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling.
  • the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state.
  • the driving force of the first engine ENG1 is transmitted to the driven member 11 and the one-way clutch OWC2 is prevented from being dragged.
  • the engine travels using the driving force of the first engine ENG1.
  • This operation pattern D is used, for example, to reduce the power consumption of the battery 8 when the SOC is low at the start.
  • the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 through the driven member 11 during deceleration.
  • the mechanical energy input from the drive wheel 2 via the rotated drive member 11 is changed to electric energy.
  • regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8.
  • the clutch mechanisms CL1 and CL2 are turned off.
  • the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1.
  • the battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
  • the vehicle is driven by the driving force of the first engine ENG1 and is driven by the power introduced into the rotation driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20.
  • the engine ENG2 of No. 2 is started, and the shortage of output to the drive wheel 2 due to the increase in load at the time of startup is compensated by the driving force of the first motor generator MG1.
  • the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and supplies the generated electric power to the first motor generator MG1 or charges the battery 8.
  • the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state).
  • the rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2.
  • the output of the second transmission TM2 is not input to the driven member 11 to be rotated.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
  • the engine is driven by the driving force of the second engine ENG2.
  • the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2.
  • the engine is running.
  • the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established).
  • the operation pattern J shown in FIG. 20 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2.
  • the first engine ENG1 in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11).
  • the rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
  • the operation pattern K shown in FIG. 21 is, for example, an operation pattern when a deceleration request is generated during medium-high speed traveling.
  • the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and the regenerative braking force is applied to the drive wheel 2.
  • the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheel 2 as a braking force.
  • the operation pattern L shown in FIG. 22 is an operation pattern at the time of switching when a further increase in required output occurs in a state where the vehicle is running with the driving force of the second engine ENG2.
  • the sub motor generator MG2 is driven to start the first engine ENG1.
  • the gear ratio of the first transmission TM1 is set to infinity.
  • the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and become.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
  • the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state.
  • the operation pattern O shown in FIG. 25 is an operation pattern while the vehicle is stopped.
  • the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is charged in the battery 8. is doing.
  • the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity ( ⁇ ) or by disengaging the clutches CL1 and CL2.
  • the series running with operation pattern B is performed.
  • the first engine ENG1 is started by the sub motor generator MG2.
  • the sub motor generator MG2 functions as a generator to generate electric power, and the generated electric power is supplied to the battery 8 and the main motor generator MG1, thereby continuing the EV traveling,
  • the electric power generated by the sub motor generator MG2 by the power of the engine ENG1 is effectively used.
  • the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 is controlled so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed.
  • the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed.
  • the ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1.
  • the battery 8 may be charged using the sub motor generator MG2 as a generator.
  • the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
  • the parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
  • control is performed to increase the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 by changing the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1.
  • the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is still in a range lower than the rotational speed R3 of the driven member 11 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1.
  • the first clutch mechanism CL1 are connected when the difference between the rotational speed R3 and the rotational speed R3 of the driven member 11 falls within the predetermined range Ah.
  • the operation mode B is switched to perform series traveling by power generation of the sub motor generator MG2.
  • the main motor generator MG1 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
  • SOC remaining battery capacity
  • the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started.
  • the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated.
  • the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock.
  • the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible.
  • the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
  • the synchro mechanism 20 When returning from (25) to (23), the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked. (26) At the time of deceleration, the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2.
  • the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start. (29)
  • the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11).
  • the rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
  • the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state.
  • a strong braking force is applied by the regenerative operation of the main motor generator MG1.
  • the battery 8 is charged with the regenerative power generated by the main motor generator MG1.
  • the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
  • the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest from each other (or when the rotation direction opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 36 (b)
  • the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other)
  • the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked.
  • the control unit 5 when the control unit 5 holds the first clutch mechanism CL1 in the disconnected state and switches from the EV travel control mode to the engine travel control mode,
  • the rotational speed R2 of the output member 122 of the one-way clutch OWC1 is in a range lower than the rotational speed R3 of the driven member 11, and the rotational speed R2 of the output member of the first one-way clutch and the driven drive
  • the difference from the rotational speed of the member 11 falls within the predetermined range Ah
  • the first clutch mechanism CL1 is connected, and then the rotational speed R1 of the input member 121 of the first one-way clutch CL1 is equal to that of the output member 122.
  • the rotational power on the input member side of the first one-way clutch OWC1 is transmitted to the driven member 11 to be rotated. That includes a first switching control unit.
  • the power transmission from the engine side to the driven member side when switching from EV traveling to engine traveling is not due to the connection of the first clutch mechanism CL1, but the input side rotational speed exceeds the output side rotational speed. Since the first one-way clutch OWC1 is performed by being locked, the shock caused by the switching can be reduced as compared with the case where power transmission is performed by connecting the first clutch mechanism CL1.
  • the difference between the speed of the output member of the one-way clutch and the speed of the driven member is within a predetermined range. It is possible to switch from EV traveling to engine traveling while reducing the shock without reducing the vehicle speed (the number of rotations of the driven member).
  • the engine is started with the speed ratio of the continuously variable transmission mechanism being infinite, and then the EV driving is switched to the engine driving, the engine starting load is reduced and the engine can be started easily. Can do.
  • the vehicle drive system according to the second embodiment further includes requested output detection means (not shown) for detecting an output (driving force) required for traveling of the vehicle based on the accelerator opening, the vehicle speed, and the like.
  • requested output detection means (not shown) for detecting an output (driving force) required for traveling of the vehicle based on the accelerator opening, the vehicle speed, and the like.
  • the control means is configured such that the second switching control means for executing the traveling switching control B and the request output detected by the request output detecting means is below a predetermined value.
  • the execution of the travel switching control A using the second switching control means is selected when the execution of the travel switching control A using the first switching control means is selected and the request output detected by the request output detection means is greater than or equal to a predetermined value.
  • the control by the second switching control means is performed when the first clutch mechanism CL1 is held in the disengaged state and the EV traveling control mode is executed to switch to the execution of the engine traveling control mode.
  • the rotational speed R2 of the output member 121 of the clutch OWC1 exceeds the rotational speed R3 of the driven member 11, and the rotational speed R2 of the output member 121 of the one-way clutch OWC and the rotational speed R3 of the driven member 11
  • the difference is within the predetermined range Bh, the rotational power on the input member 122 side of the one-way clutch OWC is transmitted to the rotated drive member 11 side by connecting the clutch mechanism CL.
  • the transmission TM ratio is set to infinity ( ⁇ ) in step S201, and the engine ENG is started in step S202 (part indicated by Z11 in FIG. 38). At this time, since the ratio of the transmission TM is set to infinity, the engine ENG can be started with the minimum load.
  • step S203 control is performed to increase the rotational speed R1 on the upstream side (input member 122) of the one-way clutch OWC.
  • the rotational speed R1 on the upstream side (input member 122) of the one-way clutch is increased by changing the rotational speed of the engine ENG and / or the gear ratio of the transmission TM.
  • step S204 the upstream rotational speed R2 and the downstream rotational speed R3 of the first clutch mechanism CL1 are monitored (step S204).
  • step S205 the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is determined.
  • the difference between the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven drive member 11 is within a predetermined range Bh in a state exceeding the rotational speed R3 of the driven drive member 11.
  • the first clutch mechanism CL1 is connected (step S206).
  • the output member 121 of the first one-way clutch OWC1 and the rotationally driven member 11 are mechanically connected, so that the rotational speed R2 of the output member 121 instantaneously becomes the rotational speed R3 of the rotationally driven member 11. It is pulled down close. Although a shock occurs at this moment, immediately, the upstream side of the first one-way clutch OWC1 raised by changing the rotation speed of the first engine ENG and / or the transmission ratio of the first transmission TM1 ( When the rotational speed R1 of the input member 122) exceeds the rotational speed R3 of the output member 121 (part indicated by Z14 in FIG.
  • the first one-way clutch OWC1 is maintained in the locked state while the first The rotational power on the input member 122 side of the one-way clutch OWC1 is transmitted to the output member 121 side, and the rotational power is transmitted to the rotated drive member 11 via the first clutch mechanism CL that is now connected, and finally To the driving wheel 2 via the axle 13.
  • step S207 where the electric motor MOT is stopped. Thereby, the transition to engine running is completed, and the process is terminated.
  • step S11 a required output is detected in step S11 according to the accelerator opening. If the requested output is greater than or equal to the predetermined value, it is determined that the acceleration is abrupt in step S12, the process proceeds to step S13, and the travel switching control B is executed. On the other hand, if it is determined in step S12 that the requested output is not greater than or equal to the predetermined value, it is regarded as slow acceleration, and the process proceeds to step S14 to execute travel switching control A. When the travel switching control A or the travel switching control B is executed, the process is terminated.
  • the traveling switching control A and B can be selectively executed according to the required output. That is, when the required output is low (for example, when the acceleration request is low), the power transmission from the first engine ENG1 side to the drive wheel 2 side is performed by the first one-way clutch OWC1, and the smooth running mode with less shock is performed. Switching can be done. Further, when the required output is high (for example, when the acceleration request is high), power transmission from the first engine ENG1 side to the drive wheel 2 side is performed by the first clutch mechanism CL1, and the driving mode with good response is switched. be able to.
  • the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1.
  • the first and second one-way clutches OWC1 and OWC1 are connected to one side of the differential device 10 as in another embodiment shown in FIG.
  • the OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
  • the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120.
  • a transmission mechanism such as CVT may be used.
  • the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
  • the engine has two engines ENG1 and ENG2, two transmissions TM1 and TM2, two one-way clutches OWC1 and OWC2, two motor generators MG1 and MG2, and two clutch mechanisms CL1 and CL2.
  • the present invention can be applied to a configuration including one engine ENG, one transmission TM, one-way clutch OWC, one electric motor MOT, and one clutch mechanism CL as shown in FIG.
  • the electric motor MOT may be configured to give rotational power to the drive wheel 2 driven by the engine ENG as in the present embodiment, or as shown by a broken line in FIG.
  • the driving wheel 2 is a front wheel
  • the rear wheel may be used, and when the driving wheel 2 is a rear wheel, the driving power may be applied to a front wheel).
  • the switching control of the present invention has been described for the case of switching from the state of traveling with the driving force of the main motor generator MG1 to the state of traveling with the driving force of the first engine ENG1.
  • the present invention can also be applied to a case where the state of traveling with the driving force of the first engine ENG1 is switched to the state of traveling with the driving force of the second engine ENG2.
  • the control means 5 includes a first engine traveling control mode for controlling engine traveling by the driving force of the first engine ENG1, and a second engine traveling control mode for controlling engine traveling by the driving force of the second engine ENG2. Execute.
  • the control means 5 keeps the second clutch mechanism CL2 in the disconnected state and switches from the first engine travel control mode to the second engine travel control mode, the output member 121 of the second one-way clutch OWC2 is used. And the difference between the rotation speed of the output member 121 of the second one-way clutch OWC2 and the rotation speed of the driven member 11 is within a predetermined range.
  • a third switching control means for transmitting the rotational power on the input member side of the one-way clutch OWC2 to the driven member 11 to be rotated. The control of the third switching control means will be described with reference to the travel switching control C shown in the flowchart of FIG. 43 and the time chart corresponding to the travel switching control C of FIG.
  • the gear ratio of the second transmission TM2 is set to infinity ⁇ (step S301), and in this state, the synchro mechanism 20 is connected and the second engine ENG2 is covered.
  • the second engine ENG2 is started by cranking using the power of the rotary drive member 11 (step S302, a portion indicated by Z21 in FIG. 44).
  • the rotational speed R11 of the input member 122 of the second one-way clutch OWC2 is increased by changing the rotational speed of the second engine ENG2 and / or the gear ratio of the second transmission TM2 (step S303).
  • step S304 the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 and the rotational speed R13 of the driven member 11 to be rotated are detected (step S304).
  • the rotation speed R12 of the output member 121 of the second one-way clutch OWC2 is still in a range lower than the rotation speed R13 of the driven member 11 and the rotation speed R12 of the output member 121 of the second one-way clutch OWC2 is.
  • step S305 the rotational speed R13 of the driven member 11 to be rotated are determined whether they are within the predetermined range Ah (step S305), and the second clutch mechanism CL2 is connected at the timing when step S305 becomes YES (step S305). Steps S306, S307, part indicated by Z23 in FIG. 44).
  • the output member 122 of the second one-way clutch OWC2 and the driven member 11 are mechanically connected, so that the rotational speed R12 of the output member 121 instantaneously reaches the rotational speed R13 of the driven member 11 to be rotated. Be raised.
  • the one-way clutch OWC2 is unlocked, and the power transmission between the input member 122 and the output member 121 is not performed. Blocked.
  • step S308 the rotational speed R11 of the input member 122 and the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 are detected (step S308). Then, the rotation speed R11 of the input member 122 of the second one-way clutch OWC2 is increased in step S203 so that the rotation speed R11 of the input member 122 of the second one-way clutch OWC2 exceeds the rotation speed R12 of the output member 121.
  • step S309 a portion indicated by Z24 in FIG. 44
  • the second one-way clutch OWC2 is locked again. Rotational power on the input member 122 side of the second one-way clutch OWC is transmitted to the output member 121 side, and the rotation is transmitted via the second clutch mechanism CL2 that is connected first. Thus, the rotation can be transmitted to the driven member 11.
  • the power transmission from the second engine ENG2 side to the rotated drive member 11 side when switching from the first engine travel to the second engine travel is not performed by the connection of the second clutch mechanism CL2, but the input member.
  • the one-way clutch OWC2 is locked by making the rotation speed R11 of 122 higher than the rotation speed R12 of the output member 121, the power transmission is performed by the connection of the second clutch mechanism CL2. Rather than switching.
  • the control means executes the travel switching control D in addition to the third switching control means that executes the travel switching control C, as in the second embodiment.
  • the execution of the travel switching control C using the third switching control means is selected, and the demand detected by the demand output detection means Switching control selection means for selecting execution of travel switching control D using the fourth switching control means when the output is greater than or equal to a predetermined value.
  • the control by the fourth switching control means is performed when the second engine mechanism control mode is switched from the state in which the second engine mechanism control mode is being executed while the second clutch mechanism CL2 is maintained in the disengaged state.
  • the rotation speed R12 of the output member 121 of the second one-way clutch OWC2 exceeds the rotation speed R13 of the driven member 11 and the rotation speed R2 of the output member 121 of the second one-way clutch OWC2 and the driven rotation
  • the difference from the rotational speed R3 of the member 11 is within the predetermined range Bh, the rotational power on the input member 122 side of the second one-way clutch OWC2 is driven to rotate by connecting the second clutch mechanism CL2. It is transmitted to the member 11 side.
  • the ratio of the second transmission TM2 is set to infinity ( ⁇ ) in step S401, and the second engine ENG2 is started in step S402 (part indicated by Z31 in FIG. 46). .
  • the second engine ENG2 can be started with the minimum load.
  • step S403 control is performed to increase the rotational speed R11 on the upstream side (input member 122) of the second one-way clutch OWC2.
  • the rotational speed R11 on the upstream side (input member 122) of the second one-way clutch OWC2 is increased by changing the rotational speed of the second engine ENG2 and / or the gear ratio of the second transmission TM2. .
  • step S404 the upstream rotational speed R12 and the downstream rotational speed R13 of the second clutch mechanism CL2 are monitored (step S404).
  • step S405 the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 is determined.
  • the difference between the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 and the rotational speed R13 of the driven drive member 11 is within a predetermined range Bh while exceeding the rotational speed R13 of the driven drive member 11.
  • the second clutch mechanism CL2 is connected (step S406).
  • the output member 121 of the second one-way clutch OWC2 and the driven member 11 are mechanically connected, so that the rotational speed R12 of the output member 121 instantaneously becomes the rotational speed R13 of the driven member 11 to be rotated. It is pulled down close. Although a shock occurs at this moment, immediately, the upstream side of the second one-way clutch OWC2 raised by changing the rotation speed of the second engine ENG2 and / or the speed ratio of the second transmission TM2 ( When the rotational speed R11 of the input member 122) exceeds the rotational speed R13 of the output member 121 (part indicated by Z34 in FIG.
  • the second one-way clutch OWC2 is kept in the locked state while the second one-way clutch OWC2 is maintained in the locked state.
  • the rotational power on the input member 122 side of the one-way clutch OWC2 is transmitted to the output member 121 side, and the rotational power is transmitted to the rotated drive member 11 via the second clutch mechanism CL2 that is now connected.
  • step S21 a required output is detected in step S21 according to the accelerator opening. If the required output is greater than or equal to the predetermined value, it is determined that the acceleration is abrupt in step S22, the process proceeds to step S23, and the travel switching control D is executed. On the other hand, if it is determined in step S22 that the required output is not equal to or greater than the predetermined value, it is regarded as slow acceleration, and the process proceeds to step S24 to execute the travel switching control C. Then, when the travel switching control C or the travel switching control D is executed, the process is terminated.
  • the travel switching control C, D it is possible to selectively execute the travel switching control C, D according to the required output. That is, when the required output is low (for example, when the acceleration request is low), the power transmission from the second engine ENG2 side to the drive wheel 2 side is performed by the second one-way clutch OWC2, and the smooth running mode with less shock is performed. Switching can be done. Further, when the required output is high (for example, when the acceleration request is high), the power transmission from the second engine ENG2 side to the drive wheel 2 side is performed by the second clutch mechanism CL2, and the driving mode with good response is switched. be able to.
  • the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions.
  • the engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
  • first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally.
  • the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
  • the present invention is based on a Japanese patent application (Japanese Patent Application No. 2010-147727) filed on June 29, 2010, the contents of which are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Disclosed is a driving system (1) for an automobile, the driving system (1) comprising a control means for controlling an engine (ENG), a transmission (TM), a one-way clutch (OWC), a rotated drive member (11), an electric motor (MOT), a clutch mechanism (CL) disposed between an output member of the one-way clutch and the rotated drive member, and EV running and engine running. The control means includes a switching control means. When switching from EV running to engine running by disconnecting the clutch mechanism, the switching control means connects the clutch mechanism when the revolution speed (R2) of the output member of the one-way clutch is lower than the revolution speed (R3) of the rotated drive member and the difference between the revolution speeds is within a predetermined range. The switching control means then performs control in such a way that the revolution speed (R1) of an input member of the one-way clutch is greater than the revolution speed (R2) of the output member. Shock can therefore be reduced when switching from EV running to engine running.

Description

自動車用駆動システム及びその制御方法Driving system for automobile and control method thereof
 本発明は、走行用の駆動源として、内燃機関部と電動モータを備えたハイブリッド型の自動車用駆動システム及びその制御方法に関するものである。 The present invention relates to a hybrid vehicle drive system including an internal combustion engine and an electric motor as a driving source for traveling, and a control method thereof.
 従来のこの種の自動車用駆動システムとして、シリーズハイブリッド車(SHV)としてもパラレルハイブリッド車(PHV)としても走行させることが可能なシリーズパラレル複合電気自動車(SPHV)の駆動システムが知られている(例えば、特許文献1参照。)。この特許文献1に記載の駆動システムは、エンジンと、エンジンの機械出力により駆動される発電機と、発電機の発電出力により充電される電池と、電池の放電出力により駆動されるモータと、発電機とモータの間を機械的に連結/遮断するクラッチ手段とを備える。 As a conventional drive system for an automobile of this type, a drive system for a series parallel composite electric vehicle (SPHV) that can be run as a series hybrid vehicle (SHV) or a parallel hybrid vehicle (PHV) is known ( For example, see Patent Document 1.) The drive system described in Patent Document 1 includes an engine, a generator driven by the engine output of the engine, a battery charged by the generator output of the generator, a motor driven by the discharge output of the battery, Clutch means for mechanically connecting / disconnecting between the machine and the motor.
 そして、シリーズハイブリッド車(SHV)として走行させる場合は、クラッチ手段を開いた状態にして、エンジンの機械出力によって発電機を駆動し、発電機の発電出力及び電池の放電出力によりモータを駆動し、モータにより車輪を駆動する。また、パラレルハイブリッド車(PHV)として走行させる場合は、クラッチ手段を閉じた状態にして、エンジンの機械出力を発電機及びモータを介して車輪に伝達させる。 And when traveling as a series hybrid vehicle (SHV), with the clutch means opened, the generator is driven by the mechanical output of the engine, the motor is driven by the generator output of the generator and the discharge output of the battery, The wheels are driven by a motor. Further, when traveling as a parallel hybrid vehicle (PHV), the clutch means is closed and the mechanical output of the engine is transmitted to the wheels via a generator and a motor.
日本国特開平8-98322号公報Japanese Laid-Open Patent Publication No. 8-98322
 ところで、上記従来の駆動システムにおいては、例えば、EV走行からパラレル走行(エンジンの機械的出力を車軸に伝達するので、エンジン走行の一部とみなせる)への移行に際しクラッチ手段を連結するときに、発電機の回転数とモータの回転数、つまり、クラッチ手段の前後の回転数を実質的に一致させた状態にして連結するようにしているが、この回転数を一致させるための制御は非常に難しく、クラッチを閉じる直前の状態で発電機の回転数とモータの回転数が僅かでも相違していると、クラッチを閉じるのに伴い切り替えショックを発生しやすいという問題があった。 By the way, in the above conventional drive system, for example, when the clutch means is connected at the time of transition from EV traveling to parallel traveling (which can be regarded as a part of engine traveling because the mechanical output of the engine is transmitted to the axle), The number of rotations of the generator and the number of rotations of the motor, that is, the number of rotations before and after the clutch means are substantially matched to be connected, but the control for matching this number of rotations is very It is difficult, and if the rotational speed of the generator and the rotational speed of the motor are slightly different just before the clutch is closed, there is a problem that a switching shock is likely to occur as the clutch is closed.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、EV走行からエンジン走行に切り替えるときのショックを軽減することのできる自動車用駆動システム及びその制御方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an automobile drive system and a control method thereof that can reduce a shock when switching from EV running to engine running. .
 上記目的を達成するために、請求項1に係る発明は、自動車用駆動システム(例えば、後述の実施形態における駆動システム1)において、
 回転動力を発生する内燃機関部(例えば、後述の実施形態における第1のエンジンENG1)と、
 該内燃機関部の発生する回転動力を変速して出力する変速機構(例えば、後述の実施形態における第1のトランスミッションTM1)と、
 該変速機構の出力部に設けられ、入力部材(例えば、後述の実施形態における入力部材122)と出力部材(例えば、後述の実施形態における出力部材121)とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチ(例えば、後述の実施形態における第1のワンウェイ・クラッチOWC1)と、
 前記ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪(例えば、後述の実施形態における駆動車輪2)に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材(例えば、後述の実施形態における被回転駆動部材11)と、
 前記駆動車輪または別の駆動車輪(例えば、後述の実施形態における駆動車輪2B)に走行のための回転動力を与える電動モータ(例えば、後述の実施形態におけるメインモータジェネレータMG1)と、
 前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構(例えば、後述の実施形態における第1のクラッチ機構CL1)と、
 前記電動モータの駆動力によるEV走行を制御するEV走行制御モードと前記内燃機関部の駆動力によるエンジン走行を制御するエンジン走行制御モードとを実行する制御手段(例えば、後述の実施形態における制御手段5)と、
 を備えており、
 前記制御手段は、
 前記クラッチ機構を遮断状態に保持して前記EV走行制御モードから前記エンジン走行制御モードに切り替える際に、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、その後、前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第1切替制御手段を含むことを特徴とする。
In order to achieve the above object, an invention according to claim 1 is an automobile drive system (for example, drive system 1 in an embodiment described later).
An internal combustion engine that generates rotational power (for example, a first engine ENG1 in an embodiment described later);
A speed change mechanism (for example, a first transmission TM1 in an embodiment described later) for shifting and outputting the rotational power generated by the internal combustion engine section;
An input member (for example, an input member 122 in an embodiment described later) and an output member (for example, an output member 121 in an embodiment described later) and these input member and output member are locked or An engaging member (for example, a roller 123 in an embodiment to be described later) that is unlocked, and the rotational speed in the positive direction of the input member that receives rotational power from the speed change mechanism is in the positive direction of the output member. When the rotational speed is exceeded, the input member and the output member are in a locked state so that the rotational power input to the input member is transmitted to the output member (for example, a first way in the embodiment described later) One-way clutch OWC1),
The rotational drive coupled to the output member of the one-way clutch and transmitting the rotational power transmitted to the output member to a drive wheel (for example, drive wheel 2 in an embodiment described later) and rotating integrally with the drive wheel A member (for example, a rotated drive member 11 in an embodiment described later);
An electric motor (for example, a main motor generator MG1 in an embodiment to be described later) that gives rotational power for traveling to the drive wheel or another driving wheel (for example, a drive wheel 2B in an embodiment to be described later);
A clutch mechanism (for example, a first clutch mechanism CL1 in an embodiment described later) that is interposed between the output member of the one-way clutch and the rotationally driven member and capable of transmitting / cutting power between these members. When,
Control means for executing an EV travel control mode for controlling EV travel by the driving force of the electric motor and an engine travel control mode for controlling engine travel by the driving force of the internal combustion engine (for example, control means in the embodiments described later) 5) and
With
The control means includes
When the clutch mechanism is held in the disconnected state and the EV travel control mode is switched to the engine travel control mode, the rotation speed of the output member of the one-way clutch is in a range lower than the rotation speed of the driven member. And when the difference between the rotational speed of the output member of the one-way clutch and the rotational speed of the driven member is within a predetermined range, the clutch mechanism is connected, and then the input of the one-way clutch Characterized in that it includes first switching control means for transmitting rotational power on the input member side of the one-way clutch to the driven member by controlling the rotational speed of the member to exceed the rotational speed of the output member. To do.
 請求項2に係る発明は、請求項1の構成において、
 前記第1切替制御手段が、前記内燃機関部の回転数および/または前記変速機構の変速比を変更することにより、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差を所定範囲内に入るようにすることを特徴とする。
The invention according to claim 2 is the structure of claim 1,
The first switching control means changes the rotation speed of the internal combustion engine section and / or the transmission gear ratio of the transmission mechanism, whereby the rotation speed of the output member of the one-way clutch and the rotation speed of the driven drive member are It is characterized in that the difference between them falls within a predetermined range.
 請求項3に係る発明は、請求項1の構成において、 
 前記内燃機関部の始動手段(例えば、後述の実施形態におけるサブモータジェネレータMG2)を更に備えると共に、
 前記変速機構が、
 回転動力を受けることで入力中心軸線(例えば、後述の実施形態における入力中心軸線O1)の周りを回転する入力軸(例えば、後述の実施形態における入力軸101)と、
 該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対する偏心量(例えば、後述の実施形態における偏心量r1)を変更可能で、且つ、該偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点(例えば、後述の実施形態における第1支点O3)と、
 該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスク(例えば、後述の実施形態における偏心ディスク104)と、
 前記入力中心軸線から離れた出力中心軸線(例えば、後述の実施形態における出力中心軸線O2)の周りを回転する出力部材(例えば、後述の実施形態における出力部材121)と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材(例えば、後述の実施形態における入力部材122)と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチ120)と、
 前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点(例えば、後述の実施形態における第2支点O4)と、
 それぞれ一端(例えば、後述の実施形態におけるリング部131)が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端(例えば、後述の実施形態における先端部132)が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材(例えば、後述の実施形態における連結部材130)と、
 前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構(例えば、後述の実施形態における変速比可変機構112)と、
 を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構として構成され、
 前記内燃機関部の出力軸(例えば、後述の実施形態における出力軸S1)が前記無段変速機構の入力軸に連結され、
 前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記変速機構と前記被回転駆動部材との間に設けられた前記ワンウェイ・クラッチを兼ねており、
 前記制御手段は、前記無段変速機構の変速比を無限大に設定した状態で前記内燃機関部を始動させ、その後、前記第1切替制御手段によって走行モードを切り替えることを特徴とする。
The invention according to claim 3 is the configuration of claim 1,
The engine further includes starting means (for example, a sub motor generator MG2 in an embodiment described later) of the internal combustion engine section,
The transmission mechanism is
An input shaft (for example, an input shaft 101 in an embodiment described later) that rotates around an input center axis (for example, an input center axis O1 in an embodiment described later) by receiving rotational power;
The input shafts are provided at equal intervals in the circumferential direction, each of which can change the amount of eccentricity with respect to the input center axis (for example, the amount of eccentricity r1 in an embodiment described later), and while maintaining the amount of eccentricity, A plurality of first fulcrums (for example, a first fulcrum O3 in an embodiment described later) rotating around the central axis along with the input shaft;
A plurality of eccentric disks (for example, the eccentric disk 104 in the embodiment described later) having the first fulcrum at the respective centers and rotating around the input center axis;
An output member (for example, an output member 121 in an embodiment to be described later) that rotates around an output center axis (for example, an output center axis O2 in an embodiment to be described later) separated from the input center axis, and power in the rotational direction from the outside And an engaging member (for example, an input member 122 in the embodiment described later) and an engaging member (which locks or unlocks the input member and the output member). For example, when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member, the rotational power input to the input member is A one-way clutch that transmits to the output member, thereby converting the swinging motion of the input member into the rotational motion of the output member (e.g., implementation described below) The one-way clutch 120) in the state,
A second fulcrum (for example, a second fulcrum O4 in an embodiment described later) provided at a position separated from the output center axis on the input member;
One end (for example, a ring portion 131 in an embodiment described later) is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end (for example, a distal end portion 132 in an embodiment described later) is connected. By being rotatably connected to the second fulcrum provided on the input member of the one-way clutch, the rotational movement given from the input shaft to the eccentric disk is caused to move with respect to the input member of the one-way clutch. A plurality of connecting members (for example, connecting members 130 in the embodiments described later) to be transmitted as a swinging motion of the input member;
By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A gear ratio variable mechanism (for example, a gear ratio in an embodiment described later) that changes a gear ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member. Variable ratio mechanism 112);
And is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the eccentric amount can be set to zero so that the gear ratio can be set to infinity,
An output shaft (for example, an output shaft S1 in an embodiment described later) of the internal combustion engine section is connected to an input shaft of the continuously variable transmission mechanism,
The one-way clutch that is a component of the continuously variable transmission mechanism serves also as the one-way clutch provided between the transmission mechanism and the driven member for rotation,
The control means is characterized in that the internal combustion engine section is started in a state in which the speed ratio of the continuously variable transmission mechanism is set to infinity, and then the travel mode is switched by the first switching control means.
 請求項4に係る発明は、請求項1~3のいずれかの構成において、 
 車両の走行に要求される出力を検出する要求出力検出手段を更に備えると共に、
 前記制御手段は更に、
 前記クラッチ機構を遮断状態に保持して前記EV走行制御モードから前記エンジン走行制御モードに切り替える際に、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結することによって、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第2切替制御手段と、
 前記要求出力検出手段が検出した要求出力が所定より下回る場合に前記第1切替制御手段を用いた切替制御の実行を選択すると共に、前記要求出力検出手段が検出した要求出力が所定以上の場合に前記第2切替制御手段を用いた切替制御の実行を選択する切替制御選択手段と、を含むことを特徴とする。
The invention according to claim 4 is the structure according to any one of claims 1 to 3,
The apparatus further comprises request output detecting means for detecting an output required for traveling of the vehicle,
The control means further includes
When the clutch mechanism is held in the disengaged state and switched from the EV travel control mode to the engine travel control mode, the rotational speed of the output member of the one-way clutch exceeds the rotational speed of the driven member, When the difference between the rotation speed of the output member of the one-way clutch and the rotation speed of the driven member is within a predetermined range, the clutch mechanism is connected to the input member side of the one-way clutch. Second switching control means for transmitting the rotational power of the rotation to the rotation driven member;
When the request output detected by the request output detection means falls below a predetermined value, execution of switching control using the first switch control means is selected, and when the request output detected by the request output detection means is greater than or equal to a predetermined value Switching control selection means for selecting execution of switching control using the second switching control means.
 請求項5に係る発明は、
 回転動力を発生する内燃機関部と、
 該内燃機関部の発生する回転動力を変速して出力する変速機構と、
 該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
 前記ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
 前記駆動車輪または別の駆動車輪に走行のための回転動力を与える電動モータと、
 前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
 を備えた自動車用駆動システムの制御方法であって、
 前記クラッチ機構を遮断状態に保持して前記電動モータの駆動力によるEV走行から前記内燃機関部の駆動力によるエンジン走行に切り替える際に、
 前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、
 前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする。
The invention according to claim 5
An internal combustion engine that generates rotational power;
A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
A rotation driven member that is connected to the output member of the one-way clutch, transmits the rotational power transmitted to the output member to the drive wheel, and rotates integrally with the drive wheel;
An electric motor that provides rotational power for traveling to the drive wheel or another drive wheel;
A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
A method for controlling an automotive drive system comprising:
When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state,
The rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the difference between the rotational speed of the output member of the one-way clutch and the rotational speed of the driven drive member When is within a predetermined range, the clutch mechanism is connected,
The rotational power on the input member side of the one-way clutch is transmitted to the rotated drive member by controlling the rotational speed of the input member of the one-way clutch to exceed the rotational speed of the output member. .
 請求項6に係る発明は、請求項5の構成において、 
 前記クラッチ機構を遮断状態に保持して前記電動モータの駆動力によるEV走行から前記内燃機関部の駆動力によるエンジン走行に切り替える際に、
 車両の走行に要求される出力を検出し、
 要求出力が所定より下回る場合には、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させ、
 要求出力が所定以上の場合には、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結することによって、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする。
The invention according to claim 6 is the structure of claim 5,
When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state,
Detect the output required for vehicle travel,
When the required output is less than a predetermined value, the rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the rotational speed of the output member of the one-way clutch and the When the difference between the rotational speed of the driven member to be rotated is within a predetermined range, the clutch mechanism is connected, and the rotational speed of the input member of the one-way clutch is controlled to exceed the rotational speed of the output member. , Causing the rotational power on the input member side of the one-way clutch to be transmitted to the driven member for rotation,
When the required output is greater than or equal to a predetermined value, the rotational speed of the output member of the one-way clutch exceeds the rotational speed of the driven member, and the rotational speed of the output member of the one-way clutch and the rotated When the difference between the number of rotations of the driving member is within a predetermined range, the rotational power on the input member side of the one-way clutch is transmitted to the rotated driving member by connecting the clutch mechanism. To do.
 請求項7に係る発明は、
 それぞれ独立して回転動力を発生する第1の内燃機関部(例えば、後述の実施形態における第1のエンジンENG1)および第2の内燃機関部(例えば、後述の実施形態における第2のエンジンENG2)と、
 前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構(例えば、後述の実施形態における第1のトランスミッションTM1)および第2の変速機構(例えば、後述の実施形態における第2のトランスミッションTM2)と、
 前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチ(例えば、後述の実施形態における第1のワンウェイ・クラッチOWC1)および第2のワンウェイ・クラッチ(例えば、後述の実施形態における第2のワンウェイ・クラッチOWC2)と、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ介在され、両部材間における動力の伝達/遮断がそれぞれ可能な第1のクラッチ機構(例えば、後述の実施形態における第1のクラッチ機構CL1)および第2のクラッチ機構(例えば、後述の実施形態における第2のクラッチ機構CL2)と、
 前記第1の内燃機関部の駆動力によるエンジン走行を制御する第1エンジン走行制御モードと前記第2の内燃機関部の駆動力によるエンジン走行を制御する第2エンジン走行制御モードとを実行する制御手段と、
 を備えており、
 前記制御手段は、
 前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行制御モードから前記第2エンジン走行制御モードに切り替える際に、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、その後、前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第3切替制御手段を含むことを特徴とする自動車用駆動システム。
The invention according to claim 7 provides:
A first internal combustion engine section (for example, a first engine ENG1 in an embodiment described later) and a second internal combustion engine section (for example, a second engine ENG2 in an embodiment described later) that independently generate rotational power. When,
A first speed change mechanism (for example, a first transmission TM1 in an embodiment described later) and a second speed change and output each rotational power generated by the first internal combustion engine part and the second internal combustion engine part, respectively. A speed change mechanism (for example, a second transmission TM2 in an embodiment described later);
An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member Is in the locked state, the first one-way clutch (for example, the first one-way clutch OWC1 in an embodiment described later) and the second one that transmit the rotational power input to the input member to the output member. A one-way clutch (for example, a second one-way clutch OWC2 in an embodiment described later);
A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
A first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members. (For example, a first clutch mechanism CL1 in an embodiment described later) and a second clutch mechanism (for example, a second clutch mechanism CL2 in an embodiment described later),
Control for executing a first engine traveling control mode for controlling engine traveling by the driving force of the first internal combustion engine section and a second engine traveling control mode for controlling engine traveling by the driving force of the second internal combustion engine section Means,
With
The control means includes
When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotation speed of the second one-way clutch is within a predetermined range when the difference between the rotation speed of the output member of the second one-way clutch and the rotation speed of the driven member is within a predetermined range. 2 is coupled, and then the control is performed so that the rotational speed of the input member of the second one-way clutch exceeds the rotational speed of the output member. A drive system for an automobile comprising: a third switching control means for transmitting rotational power to the driven member for rotation.
 請求項8に係る発明は、請求項7の構成において、 
 前記第3切替制御手段が、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比を変更することにより、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差を所定範囲内に入るようにすることを特徴とする。
The invention according to claim 8 is the structure of claim 7,
The third switching control means changes the rotational speed of the second internal combustion engine section and / or the transmission gear ratio of the second transmission mechanism, thereby changing the rotational speed of the output member of the second one-way clutch. The difference between the rotational speed of the driven member to be rotated is within a predetermined range.
 請求項9に係る発明は、請求項7の構成において、 
 前記第2の内燃機関部の出力軸と前記被回転駆動部材との間で、前記第2の変速機構を介した動力伝達と異なる前記第2の内燃機関部の出力軸と被回転駆動部材の間での動力伝達を断接可能なクラッチ手段(例えば、後述の実施形態におけるシンクロ機構20)を更に備えると共に、
 前記第1及び第2の変速機構が、
 回転動力を受けることで入力中心軸線の周りを回転する入力軸と、
 該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対して可変の偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点と、
 該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスクと、
 前記入力中心軸線から離れた出力中心軸線の周りを回転する出力部材と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチと、
 前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点と、
 それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材と、
 前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構と、
を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構としてそれぞれ構成され、
 前記第1および第2の内燃機関部の出力軸が前記第1および第2の変速機構である前記無段変速機構の各入力軸にそれぞれ連結され、
 前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記第1および第2の変速機構と前記被回転駆動部材との間にそれぞれ設けられた前記第1及び第2のワンウェイ・クラッチを兼ねており、
 前記制御手段は、前記第2の変速機構の変速比を無限大に設定するように制御し、被回転駆動部材に動力が入力されている状態で、前記クラッチ手段を動力伝達可能な接続状態にすることにより、前記被回転駆動部材の動力で前記第2の内燃機関部をクランキングして該第2の内燃機関部を始動させ、その後、前記第3切替制御手段によって第2エンジン走行制御モードに切り替えることを特徴とする請求項7または8に記載の自動車用駆動システム。
The invention according to claim 9 is the configuration of claim 7,
Different between the output shaft of the second internal combustion engine part and the driven drive member, the output shaft of the second internal combustion engine part and the driven drive member differ from the power transmission via the second speed change mechanism. And further includes clutch means (for example, a synchro mechanism 20 in an embodiment described later) capable of connecting and disconnecting power transmission between them,
The first and second transmission mechanisms are
An input shaft that rotates around the input center axis by receiving rotational power; and
A plurality of first fulcrums that are provided at equal intervals in the circumferential direction of the input shaft and that each rotate with the input shaft around the input center axis while maintaining a variable amount of eccentricity with respect to the input center axis;
A plurality of eccentric disks each having the first fulcrum at its center and rotating about the input center axis;
An output member that rotates around an output center axis that is distant from the input center axis, an input member that swings around the output center axis by receiving power in the rotational direction from the outside, and the input member and the output member An engaging member that is locked or unlocked, and the rotational power input to the input member when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member. A one-way clutch that converts the swinging motion of the input member into the rotational motion of the output member;
A second fulcrum provided at a position spaced from the output center axis on the input member;
One end is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end is rotatably connected to the second fulcrum provided on the input member of the one-way clutch. Thus, a plurality of connecting members that transmit the rotational motion given from the input shaft to the eccentric disc as the swinging motion of the input member to the input member of the one-way clutch,
By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A speed ratio variable mechanism for changing a speed ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member;
Each of which is configured as a continuously variable transmission mechanism of a four-bar linkage mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
The output shafts of the first and second internal combustion engine sections are respectively connected to the input shafts of the continuously variable transmission mechanism that is the first and second transmission mechanisms,
The one-way clutch, which is a component of the continuously variable transmission mechanism, also serves as the first and second one-way clutches provided between the first and second transmission mechanisms and the driven member, respectively. And
The control means controls the second speed change mechanism so as to set the speed ratio to infinity, and the clutch means is brought into a connected state where power can be transmitted to the rotation driven member. By doing so, the second internal combustion engine part is cranked by the power of the rotationally driven member to start the second internal combustion engine part, and then the second engine travel control mode is performed by the third switching control means. The vehicle drive system according to claim 7 or 8, wherein
 請求項10に係る発明は、請求項7~9のいずれかの構成において、 
 車両の走行に要求される出力を検出する要求出力検出手段を更に備えると共に、
 前記制御手段は更に、
 前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行制御モードから前記第2エンジン走行制御モードに切り替える際に、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結することによって、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第4切替制御手段と、
 前記要求出力検出手段が検出した要求出力が所定より下回る場合に前記第3切替制御手段を用いた切替制御の実行を選択すると共に、前記要求出力検出手段が検出した要求出力が所定以上の場合に前記第4切替制御手段を用いた切替制御の実行を選択する切替制御選択手段と、
を含むことを特徴とする。
The invention according to claim 10 is the structure according to any one of claims 7 to 9,
The apparatus further comprises request output detecting means for detecting an output required for traveling of the vehicle,
The control means further includes
When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotational speed of the second one-way clutch exceeds the rotational speed of the driving member and the difference between the rotational speed of the output member of the second one-way clutch and the rotational speed of the driven member is within a predetermined range, A fourth switching control means for transmitting rotational power on the input member side of the second one-way clutch to the rotated drive member by coupling a clutch mechanism;
When the request output detected by the request output detection means falls below a predetermined value, execution of switching control using the third switching control means is selected, and when the request output detected by the request output detection means is equal to or greater than a predetermined value Switching control selection means for selecting execution of switching control using the fourth switching control means;
It is characterized by including.
 請求項11に係る発明は、
 それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
 前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
 前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける 前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、 前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
 前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ介在され、両部材間における動力の伝達/遮断がそれぞれ可能な第1のクラッチ機構および第2のクラッチ機構と、
 制御モードと前記第2の内燃機関部の駆動力によるエンジン走行を制御する第2エンジン走行制御モードとを実行する制御手段と、
 を備えた自動車用駆動システムの制御方法であって、
 前記クラッチ機構を遮断状態に保持して前記前記第1の内燃機関部の駆動力によるエンジン走行を制御する第1エンジン走行から前記第2の内燃機関部の駆動力による第2エンジン走行に切り替える際に、
 前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、
 前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする。
The invention according to claim 11 is:
A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; Receiving the rotational power from the first transmission mechanism and the second transmission mechanism, when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
A first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members. And a second clutch mechanism;
Control means for executing a control mode and a second engine travel control mode for controlling engine travel by the driving force of the second internal combustion engine section;
A method for controlling an automotive drive system comprising:
When switching from the first engine running, which controls the engine running by the driving force of the first internal combustion engine portion, with the clutch mechanism held in the disconnected state, to the second engine running by the driving force of the second internal combustion engine portion In addition,
The rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven drive member, and the rotation speed of the output member of the second one-way clutch and the driven drive member When the difference from the rotational speed of the second clutch mechanism is within a predetermined range, the second clutch mechanism is connected,
By controlling the rotational speed of the input member of the second one-way clutch to exceed the rotational speed of the output member, the rotational power on the input member side of the second one-way clutch is transmitted to the driven member. It is characterized by making it.
 請求項12に係る発明は、請求項11の構成において、 
 前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行から前記第2エンジン走行に切り替える際に、
 車両の走行に要求される出力を検出し、
 要求出力が所定より下回る場合には、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させ、
 要求出力が所定以上の場合には、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結することによって、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする。
The invention according to claim 12 is the structure of claim 11,
When switching from the first engine running to the second engine running with the second clutch mechanism held in a disconnected state,
Detect the output required for vehicle travel,
When the required output is lower than a predetermined value, the rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven member, and the output of the second one-way clutch When the difference between the rotation speed of the member and the rotation speed of the driven member is within a predetermined range, the second clutch mechanism is connected and the rotation speed of the input member of the second one-way clutch is output. By controlling to exceed the rotation speed of the member, the rotational power on the input member side of the second one-way clutch is transmitted to the rotated drive member,
When the required output is equal to or greater than a predetermined value, the rotational speed of the output member of the second one-way clutch exceeds the rotational speed of the driven member, and the output member of the second one-way clutch When the difference between the rotational speed and the rotational speed of the driven member is within a predetermined range, the rotational power on the input member side of the second one-way clutch is reduced by connecting the second clutch mechanism. It is transmitted to the rotation drive member.
 請求項1の発明及び請求項5の発明によれば、EV走行からエンジン走行へ切り替える際、内燃機関部側から被回転駆動部材側への動力伝達が、クラッチ機構の連結によってではなく、入力側回転数が出力側回転数を上回ってワンウェイ・クラッチがロック状態になることによって行われるので、クラッチ機構の連結によって動力伝達が行われる場合よりも、切り替えによるショックを少なくすることができる。 According to the first and fifth aspects of the invention, when switching from EV running to engine running, the power transmission from the internal combustion engine portion side to the rotated drive member side is not performed by coupling of the clutch mechanism, but on the input side. Since the rotation speed exceeds the output-side rotation speed and the one-way clutch is locked, the shock caused by switching can be reduced as compared with the case where power transmission is performed by coupling the clutch mechanism.
 また、EV走行中は、クラッチ機構が遮断状態に保持されているため、ワンウェイ・クラッチの摩擦(引き摺り)による損失を低減することができ、エネルギー効率の向上が図れる。 Also, since the clutch mechanism is maintained in the disconnected state during EV traveling, loss due to friction (dragging) of the one-way clutch can be reduced, and energy efficiency can be improved.
 請求項2の発明によれば、内燃機関部の回転数および/または変速機構の変速比を変更することにより、ワンウェイ・クラッチの出力部材の回転数と被回転駆動部材の回転数との差を所定範囲内に入るようにするので、車速(被回転駆動部材の回転数)を落とさずに、EV走行からエンジン走行にショックを低減しながら切り替えることができる。 According to the invention of claim 2, the difference between the rotation speed of the output member of the one-way clutch and the rotation speed of the driven member is changed by changing the rotation speed of the internal combustion engine and / or the transmission gear ratio. Since it falls within the predetermined range, it is possible to switch from EV traveling to engine traveling while reducing the shock without decreasing the vehicle speed (the number of rotations of the driven member to be rotated).
 請求項3の発明によれば、無段変速機構の変速比を無限大にした状態で内燃機関部を始動させ、その後、EV走行からエンジン走行に切り替えるので、内燃機関部始動時の負荷を軽減して、内燃機関部の始動を容易にすることができる。 According to the invention of claim 3, since the internal combustion engine is started with the speed ratio of the continuously variable transmission mechanism being infinite, and then the EV running is switched to the engine running, the load at the time of starting the internal combustion engine is reduced. Thus, starting of the internal combustion engine can be facilitated.
 請求項4の発明及び請求項6の発明によれば、走行に要求される出力が低い場合(例えば加速要求の低い場合)と高い場合(例えば加速要求の高い場合)とで、EV走行からエンジン走行への切替制御の仕方を違えている。即ち、要求出力が低い場合には、内燃機関部側から車輪側への動力伝達をワンウェイ・クラッチで行い、要求出力が高い場合には、内燃機関部側から車輪側への動力伝達をクラッチ機構で行うようにしている。そのため、要求出力が低い場合には、ショックの少ないスムーズな走行モードの切り替えを行うことができ、一方、要求出力が高い場合には、レスポンスの良い走行モードの切り替えを行うことができる。 According to the invention of claim 4 and the invention of claim 6, when the output required for traveling is low (for example, when the acceleration request is low) and when it is high (for example, when the acceleration request is high), the engine is operated from EV traveling. The way of switching control to travel is different. That is, when the required output is low, power transmission from the internal combustion engine side to the wheel side is performed by a one-way clutch, and when the required output is high, power transmission from the internal combustion engine side to the wheel side is performed by a clutch mechanism. I'm trying to do it. Therefore, when the required output is low, it is possible to switch the smooth running mode with less shock, while when the required output is high, it is possible to switch the driving mode with good response.
 請求項7の発明及び請求項11の発明によれば、第1のエンジン走行から第2のエンジン走行へ切り替える際、第2の内燃機関部側から被回転駆動部材側への動力伝達が、第2のクラッチ機構の連結によってではなく、入力側回転数が出力側回転数を上回って第2のワンウェイ・クラッチがロック状態になることによって行われるので、第2のクラッチ機構の連結によって動力伝達が行われる場合よりも、切り替えによるショックを少なくすることができる。 According to the seventh and eleventh aspects of the invention, when switching from the first engine running to the second engine running, the power transmission from the second internal combustion engine portion side to the rotated drive member side is as follows. Since the second one-way clutch is locked because the input side rotational speed exceeds the output side rotational speed and not by the connection of the second clutch mechanism, the power transmission is performed by the connection of the second clutch mechanism. The shock caused by switching can be reduced as compared with the case where it is performed.
 また、第1エンジン走行中は、第2のクラッチ機構が遮断状態に保持されているため、第2のワンウェイ・クラッチの摩擦(引き摺り)による損失を低減することができ、エネルギー効率の向上が図れる。 Further, since the second clutch mechanism is maintained in the disconnected state while the first engine is running, loss due to friction (drag) of the second one-way clutch can be reduced, and energy efficiency can be improved. .
 請求項8の発明によれば、第2の内燃機関部の回転数および/または第2の変速機構の変速比を変更することにより、第2のワンウェイ・クラッチの出力部材の回転数と被回転駆動部材の回転数との差を所定範囲内に入るようにするので、車速(被回転駆動部材の回転数)を落とさずに、第1エンジン走行から第2エンジン走行にショックを低減しながら切り替えることができる。 According to the invention of claim 8, by changing the rotation speed of the second internal combustion engine section and / or the speed ratio of the second transmission mechanism, the rotation speed and output of the output member of the second one-way clutch are changed. Since the difference from the rotational speed of the drive member falls within a predetermined range, switching from the first engine travel to the second engine travel is performed while reducing the shock without reducing the vehicle speed (the rotational speed of the driven drive member). be able to.
 請求項9の発明によれば、前記第2の変速機構の変速比を無限大にした状態で内燃機関部を始動させ、その後、第1エンジン走行から第2エンジン走行に切り替えるので、第2の内燃機関部始動時の負荷を軽減して、第2の内燃機関部の始動を容易にすることができる。 According to the ninth aspect of the invention, the internal combustion engine unit is started in a state where the speed ratio of the second speed change mechanism is infinite, and then the first engine running is switched to the second engine running. It is possible to reduce the load at the time of starting the internal combustion engine part and to easily start the second internal combustion engine part.
 請求項10の発明及び請求項12の発明によれば、走行に要求される出力が低い場合(例えば加速要求の低い場合)と高い場合(例えば加速要求の高い場合)とで、第1エンジン走行から第2エンジン走行への切替制御の仕方を違えている。即ち、要求出力が低い場合には、第2の内燃機関部側から車輪側への動力伝達を第2のワンウェイ・クラッチで行い、要求出力が高い場合には、第2の内燃機関部側から車輪側への動力伝達を第2のクラッチ機構で行うようにしている。そのため、要求出力が低い場合には、ショックの少ないスムーズな走行モードの切り替えを行うことができ、一方、要求出力が高い場合には、レスポンスの良い走行モードの切り替えを行うことができる。 According to the invention of claim 10 and the invention of claim 12, the first engine travels when the output required for travel is low (for example, when the acceleration request is low) and when it is high (for example, when the acceleration request is high). The method of switching control from to the second engine running is different. That is, when the required output is low, power transmission from the second internal combustion engine unit side to the wheel side is performed by the second one-way clutch, and when the required output is high, from the second internal combustion engine unit side Power transmission to the wheel side is performed by the second clutch mechanism. Therefore, when the required output is low, it is possible to switch the smooth running mode with less shock, while when the required output is high, it is possible to switch the driving mode with good response.
本発明の第1実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of a 1st embodiment of the present invention. 同システムの要部である無限・無段変速機構の具体的構成を示す断面図である。It is sectional drawing which shows the specific structure of the infinite and continuously variable transmission mechanism which is the principal part of the system. 同変速機構の一部の構成を軸線方向から見た側断面図である。It is the sectional side view which looked at the one part structure of the transmission mechanism from the axial direction. 同変速機構における変速比可変機構による変速原理の前半部分の説明図であり、(a)は偏心ディスク104の中心点である第1支点O3の回転中心である入力中心軸線O1に対する偏心量r1を「大」にして変速比iを「小」に設定した状態を示す図、(b)は偏心量r1を「中」にして変速比iを「中」に設定した状態を示す図、(c)は偏心量r1を「小」にして変速比iを「大」に設定した状態を示す図、(d)は偏心量r1を「ゼロ」にして変速比iを「無限大(∞)」に設定した状態を示す図である。It is explanatory drawing of the first half part of the speed change principle by the gear ratio variable mechanism in the same speed change mechanism, and (a) shows the amount of eccentricity r1 with respect to the input center axis O1 that is the rotation center of the first fulcrum O3 that is the center point of the eccentric disk 104. FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG. 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”. ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the transmission ratio i is set to “large”, and (d) is a state in which the eccentricity r1 is set to “zero” and the transmission ratio i is set to “infinity (∞)”. It is a figure which shows the state set to. 同変速機構における変速比可変機構による変速原理の後半部分の説明図であって、偏心ディスクの偏心量r1を変更して変速比iを変えた場合のワンウェイ・クラッチ120の入力部材122の揺動角度θ2の変化を示す図であり、(a)は偏心量r1を「大」にし変速比iを「小」にすることで、入力部材122の揺動角度θ2が「大」になった状態を示す図、(b)は偏心量r1を「中」にし変速比iを「中」にすることで、入力部材122の揺動角度θ2が「中」になった状態を示す図、(c)は偏心量r1を「小」にし変速比iを「大」にすることで、入力部材122の揺動角度θ2が「小」になった状態を示す図である。FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk. FIG. 6A is a diagram showing a change in the angle θ2, and (a) shows a state in which the swing angle θ2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”. FIG. 5B is a diagram showing a state in which the swing angle θ2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle θ2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. 四節リンク機構として構成された前記無限・無段変速機構の駆動力伝達原理の説明図である。It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar linkage mechanism. 同変速機構において、入力軸と共に等速回転する偏心ディスクの偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸の回転角度θとワンウェイ・クラッチの入力部材の角速度ω2の関係を示す図である。In the same speed change mechanism, when the eccentricity r1 (speed ratio i) of the eccentric disk rotating at the same speed as the input shaft is changed to “large”, “medium”, and “small”, the rotation angle θ of the input shaft and the one-way -It is a figure which shows the relationship of angular velocity (omega) 2 of the input member of a clutch. 同変速機構において、複数の連結部材によって入力側(入力軸や偏心ディスク)から出力側(ワンウェイ・クラッチの出力部材)へ動力が伝達される際の出力の取り出し原理を説明するための図である。FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. . 同駆動システムにおいて実行する走行切替制御Aのフローチャートである。4 is a flowchart of travel switching control A executed in the drive system. 前記走行切替制御Aを実行するときの、車速、アクセル開度、各要素の回転数R1、R2、R3、クラッチ、エンジン回転数、トランスミッションのレシオの関係を示すタイムチャートである。4 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R1, R2, R3 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control A is executed. 本実施形態の駆動システムにおける動作パターンAの説明図である。It is explanatory drawing of the operation pattern A in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンBの説明図である。It is explanatory drawing of the operation pattern B in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンCの説明図である。It is explanatory drawing of the operation pattern C in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンDの説明図である。It is explanatory drawing of the operation pattern D in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンEの説明図である。It is explanatory drawing of the operation pattern E in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンFの説明図である。It is explanatory drawing of the operation pattern F in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンGの説明図である。It is explanatory drawing of the operation pattern G in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンHの説明図である。It is explanatory drawing of the operation pattern H in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンIの説明図である。It is explanatory drawing of the operation pattern I in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンJの説明図である。It is explanatory drawing of the operation pattern J in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンKの説明図である。It is explanatory drawing of the operation pattern K in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンLの説明図である。It is explanatory drawing of the operation pattern L in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンMの説明図である。It is explanatory drawing of the operation pattern M in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンNの説明図である。It is explanatory drawing of the operation pattern N in the drive system of this embodiment. 本実施形態の駆動システムにおける動作パターンOの説明図である。It is explanatory drawing of the operation pattern O in the drive system of this embodiment. 本実施形態の駆動システムにおいて、発進時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of start. 本実施形態の駆動システムにおいて、低速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of low speed driving | running | working. 本実施形態の駆動システムにおいて、EV走行モードからエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control operation at the time of switching (switch operation) from EV driving mode to engine driving mode. 本実施形態の駆動システムにおいて、中速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium speed driving | running | working. 本実施形態の駆動システムにおいて、第1のエンジンによるエンジン走行モードから第2のエンジンによるエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of the switching (switch operation) from the engine running mode by the 1st engine to the engine running mode by the 2nd engine. 本実施形態の駆動システムにおいて、中高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of medium-high speed driving | running | working. 本実施形態の駆動システムにおいて、第2のエンジンによるエンジン走行モードから、第2のエンジンと第1のエンジンによるパラレルのエンジン走行モードへの切り替え(スイッチ動作)時の制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action at the time of switching (switch operation) from the engine running mode by the 2nd engine to the parallel engine running mode by the 2nd engine and the 1st engine. 本実施形態の駆動システムにおいて、高速走行時に運転状態に応じて実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed according to a driving | running state at the time of high speed driving | running | working. 本実施形態の駆動システムにおいて、車両後退時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle reverses. 本実施形態の駆動システムにおいて、車両停止時に実行する制御動作の説明図である。In the drive system of this embodiment, it is explanatory drawing of the control action performed when a vehicle stops. (a)及び(b)はトランスミッションのロックによる後進不可状態の説明図である。(A) And (b) is explanatory drawing of the reverse drive impossible state by the lock | rock of a transmission. 本発明の第2実施形態に係る、走行切替制御Bを実行するフローチャートである。It is a flowchart which performs the travel switching control B based on 2nd Embodiment of this invention. 前記走行切替制御Bを実行するときの、車速、アクセル開度、各要素の回転数R1、R2、R3、クラッチ、エンジン回転数、トランスミッションのレシオの関係を示すタイムチャートである。7 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R1, R2, R3 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control B is executed. 本発明の第2実施形態に係る、要求出力に応じて走行切替制御Aと走行切替制御Bを選択して実行する場合の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the case of selecting and performing driving | running | working switching control A and driving | running | working switching control B according to request output based on 2nd Embodiment of this invention. (a)は走行切替制御Aを実行したとき、(b)は走行切替制御Bを実行したときの、エンジンとモータと車軸の各駆動トルクの変化を示す図である。(A) is a figure which shows the change of each drive torque of an engine, a motor, and an axle shaft when the driving | running | working switching control A is performed, (b) is the driving | running | working switching control B performed. 本発明の別の実施形態の自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles of another embodiment of the present invention. 本発明の基本的な構成を備えた自動車用駆動システムのスケルトン図である。It is a skeleton figure of the drive system for vehicles provided with the basic composition of the present invention. 同駆動システムにおいて第1エンジン走行から第2エンジン走行へ切り替える走行切替制御Cのフローチャートである。4 is a flowchart of travel switching control C for switching from the first engine travel to the second engine travel in the drive system. 前記走行切替制御Cを実行するときの、車速、アクセル開度、各要素の回転数R11、R12、R13、クラッチ、エンジン回転数、トランスミッションのレシオの関係を示すタイムチャートである。7 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R11, R12, R13 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control C is executed. 同駆動システムにおいて第1エンジン走行から第2エンジン走行へ切り替える走行切替制御Dを実行するフローチャートである。It is a flowchart which performs driving | running | working switching control D which switches from a 1st engine driving | running | working to the 2nd engine driving | running | working in the drive system. 前記走行切替制御Dを実行するときの、車速、アクセル開度、各要素の回転数R11、R12、R13、クラッチ、エンジン回転数、トランスミッションのレシオの関係を示すタイムチャートである。6 is a time chart showing the relationship among vehicle speed, accelerator opening, rotational speeds R11, R12, R13 of each element, clutch, engine rotational speed, and transmission ratio when the travel switching control D is executed. 第1エンジン走行から第2エンジン走行へ切り替える際、要求出力に応じて走行切替制御Dと走行切替制御Dを選択して実行する場合の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control at the time of switching from 1st engine driving | running | working to 2nd engine driving | running | working, selecting driving switching control D and driving switching control D according to a request | requirement output. 本発明の自動車用駆動システムの変形例を示す断面図である。It is sectional drawing which shows the modification of the drive system for motor vehicles of this invention.
《第1実施形態》
 以下、本発明の第1実施形態を図面に基づいて説明する。
 図1は本発明の第1実施形態の自動車用駆動システムのスケルトン図であり、図2は同駆動システムの要部である無限・無段変速機構の具体的構成を示す断面図、図3は同無限・無段変速機構の一部の構成を軸線方向から見た側断面図である。
<< First Embodiment >>
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings.
FIG. 1 is a skeleton diagram of an automobile drive system according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a specific configuration of an infinite / continuously variable transmission mechanism that is a main part of the drive system, and FIG. It is the sectional side view which looked at the one part structure of the infinite and continuously variable transmission mechanism from the axial direction.
《全体構成》
 この自動車用駆動システム1は、それぞれ独立して回転動力を発生する第1、第2の内燃機関部としての2つのエンジンENG1、ENG2と、第1、第2のエンジンENG1、ENG2の各下流側に設けられた第1、第2のトランスミッション(変速機構)TM1、TM2と、各トランスミッションTM1、TM2の出力部に設けられた第1、第2のワンウェイ・クラッチOWC1、OWC2と、これらワンウェイ・クラッチOWC1、OWC2を介して伝達された出力回転を受ける被回転駆動部材11と、この被回転駆動部材11に接続されたメインモータジェネレータ(電動モータ)MG1と、第1のエンジンENG1の出力軸S1に接続されたサブモータジェネレータ(エンジンの始動手段)MG2と、メインおよび/またはサブのモータジェネレータMG1、MG2との間で電力のやりとりが可能なバッテリ(蓄電手段)8と、各種要素を制御することで走行パターンなどの制御を行う制御手段5と、を備えている。
"overall structure"
The vehicle drive system 1 includes two engines ENG1 and ENG2 as first and second internal combustion engine portions that independently generate rotational power, and downstream sides of the first and second engines ENG1 and ENG2. First and second transmissions (transmission mechanisms) TM1 and TM2 provided on the transmission, first and second one-way clutches OWC1 and OWC2 provided on the output portions of the transmissions TM1 and TM2, and these one-way clutches A rotation driven member 11 that receives the output rotation transmitted via OWC1 and OWC2, a main motor generator (electric motor) MG1 connected to the rotation driven member 11, and an output shaft S1 of the first engine ENG1 The connected sub motor generator (engine starting means) MG2 and the main and / or sub And over motor generators MG1, the battery capable of power exchange between the MG2 (power storage unit) 8, a control unit 5 for controlling such travel pattern by controlling the various elements, and a.
 各ワンウェイ・クラッチOWC1、OWC2は、入力部材(クラッチアウタ)122と、出力部材(クラッチインナ)121と、これら入力部材122および出力部材121の間に配されて両部材122、121を互いにロック状態または非ロック状態にする複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有する。そして、第1のトランスミッションTM1および第2のトランスミッションTM2からの各回転動力を受ける入力部材122の正方向(矢印RD1方向)の回転速度が、出力部材121の正方向の回転速度を上回ったとき、入力部材122と出力部材121が互いにロック状態になることにより、入力部材122に入力された回転動力が出力部材121に伝達される。 Each one-way clutch OWC1 and OWC2 is arranged between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121, and the members 122 and 121 are locked to each other. Or it has the some roller (engagement member) 123 made into a non-locking state, and the urging member 126 which urges | biases the roller 123 in the direction which gives a locked state. When the rotational speed of the input member 122 that receives the rotational power from the first transmission TM1 and the second transmission TM2 in the positive direction (arrow RD1 direction) exceeds the rotational speed of the output member 121 in the positive direction, When the input member 122 and the output member 121 are locked with each other, the rotational power input to the input member 122 is transmitted to the output member 121.
 第1、第2のワンウェイ・クラッチOWC1、OWC2は、ディファレンシャル装置10を挟んで右と左に配置されており、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121は、それぞれ別の第1、第2のクラッチ機構CL1、CL2を介して、被回転駆動部材11に共に連結されている。第1、第2のクラッチ機構CL1、CL2は、第1、第2のワンウェイ・クラッチOWC1、OWC2の各出力部材121と被回転駆動部材11との間の動力の伝達/遮断を制御するために設けられている。これらのクラッチ機構CL1、CL2としては、他の種類のクラッチ(摩擦クラッチ等)を使用してもよいが、伝達ロスの低さからドグクラッチが使用されている。 The first and second one-way clutches OWC1 and OWC2 are arranged on the right and left sides of the differential device 10, and the output members 121 of the first and second one-way clutches OWC1 and OWC2 are different from each other. The first and second clutch mechanisms CL1 and CL2 are connected to the rotation driven member 11 together. The first and second clutch mechanisms CL1 and CL2 control the transmission / cutoff of power between the output members 121 of the first and second one-way clutches OWC1 and OWC2 and the driven member 11 to be rotated. Is provided. As these clutch mechanisms CL1 and CL2, other types of clutches (friction clutches or the like) may be used, but dog clutches are used because of low transmission loss.
 被回転駆動部材11は、ディファレンシャル装置10のデフケースにより構成されており、各ワンウェイ・クラッチOWC1、OWC2の出力部材121に伝達された回転動力は、ディファレンシャル装置10および左右のアクスルシャフト13L、13Rを介して、左右の駆動車輪2に伝達される。ディファレンシャル装置10のデフケース(被回転駆動部材11)には、図示しないデフピニオンやサイドギヤが取り付けられており、左右のサイドギヤに左右のアクスルシャフト13L、13Rが連結され、左右のアクスルシャフト13L、13Rは差動回転する。 The driven member 11 is constituted by a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of each one-way clutch OWC1, OWC2 is transmitted through the differential device 10 and the left and right axle shafts 13L, 13R. And transmitted to the left and right drive wheels 2. A differential case (rotary drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown). The left and right axle shafts 13L and 13R are connected to the left and right side gears, and the left and right axle shafts 13L and 13R are different from each other. Dynamic rotation.
 第1、第2の2つのエンジンENG1、ENG2には、高効率運転ポイントの互いに異なるエンジンが用いられており、第1のエンジンENG1は排気量の小さいエンジンとされ、第2のエンジンENG2は、第1のエンジンENG1よりも排気量の大きいエンジンとされている。例えば、第1のエンジンENG1の排気量は500ccとされ、第2のエンジンENG2の排気量は1000ccとされており、合計排気量が1500ccとされている。もちろん、排気量の組み合わせは任意である。 The first and second engines ENG1 and ENG2 use different engines with high efficiency operation points. The first engine ENG1 is an engine with a small displacement, and the second engine ENG2 The engine has a larger displacement than the first engine ENG1. For example, the displacement of the first engine ENG1 is 500 cc, the displacement of the second engine ENG2 is 1000 cc, and the total displacement is 1500 cc. Of course, the combination of the displacements is arbitrary.
 メインモータジェネレータMG1と被回転駆動部材11は、メインモータジェネレータMG1の出力軸に取り付けたドライブギヤ15と被回転駆動部材11に設けたドリブンギヤ12とが噛合することにより、動力伝達可能に接続されている。例えば、メインモータジェネレータMG1がモータとして機能するときは、メインモータジェネレータMG1から被回転駆動部材11に駆動力が伝達される。また、メインモータジェネレータMG1を発電機として機能させるときは、被回転駆動部材11からメインモータジェネレータMG1に動力が入力され、機械エネルギーが電気エネルギーに変換される。同時に、メインモータジェネレータMG1から被回転駆動部材11に回生制動力が作用する。 The main motor generator MG1 and the driven member 11 are connected so that power can be transmitted when the drive gear 15 attached to the output shaft of the main motor generator MG1 and the driven gear 12 provided on the driven member 11 are engaged. Yes. For example, when the main motor generator MG1 functions as a motor, a driving force is transmitted from the main motor generator MG1 to the driven member 11 to be rotated. When the main motor generator MG1 functions as a generator, power is input from the driven member 11 to the main motor generator MG1, and mechanical energy is converted into electrical energy. At the same time, a regenerative braking force acts on the driven member 11 from the main motor generator MG1.
 また、サブモータジェネレータMG2は、第1のエンジンENG1の出力軸S1に直に接続されており、該出力軸S1との間で動力の相互伝達を行う。この場合も、サブモータジェネレータMG2がモータとして機能するときは、サブモータジェネレータMG1から第1のエンジンENG1の出力軸S1に駆動力が伝達される。また、サブモータジェネレータMG2が発電機として機能するときは、第1のエンジンENG1の出力軸S1からサブモータジェネレータMG2に動力が伝達される。 The sub motor generator MG2 is directly connected to the output shaft S1 of the first engine ENG1, and performs mutual transmission of power with the output shaft S1. Also in this case, when the sub motor generator MG2 functions as a motor, the driving force is transmitted from the sub motor generator MG1 to the output shaft S1 of the first engine ENG1. When sub motor generator MG2 functions as a generator, power is transmitted from output shaft S1 of first engine ENG1 to sub motor generator MG2.
 以上の要素を備えたこの駆動システム1では、第1のエンジンENG1および第2のエンジンENG2の発生する回転動力が、第1のトランスミッションTM1および第2のトランスミッションTM2を介して、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2に入力され、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2を介して、回転動力が被回転駆動部材11に入力される。 In the drive system 1 having the above elements, the rotational power generated by the first engine ENG1 and the second engine ENG2 is transmitted through the first transmission TM1 and the second transmission TM2 to the first one-way The rotational power is input to the driven member 11 via the first one-way clutch OWC1 and the second one-way clutch OWC2 and input to the clutch OWC1 and the second one-way clutch OWC2.
 また、この駆動システム1では、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に、第2のトランスミッションTM2を介した動力伝達と異なる当該出力軸S2と被回転駆動部材11の間での動力伝達を断接可能なシンクロ機構(スタータ・クラッチとも言われるクラッチ手段)20が設けられている。このシンクロ機構20は、被回転駆動部材11に設けたドリブンギヤ12に常時噛み合うと共に第2のエンジンENG2の出力軸S2の周りに回転自在に設けられた第1ギヤ21と、第2のエンジンENG2の出力軸S2の周りに該出力軸S2と一体に回転するように設けられた第2ギヤ22と、軸方向にスライド操作されることで第1ギヤ21と第2ギヤ22を結合または解除するスリーブ24と、を備えている。即ち、シンクロ機構20は、第2のトランスミッションTM2、クラッチ機構CL2を介した動力伝達経路と異なる動力伝達経路を構成し、この動力伝達経路での動力伝達を断接する。 Further, in this drive system 1, the output shaft S2 and the rotated drive member 11 different from the power transmission via the second transmission TM2 between the output shaft S2 of the second engine ENG2 and the rotated drive member 11 are used. A synchro mechanism (clutch means also referred to as a starter clutch) 20 capable of connecting / disconnecting power transmission between them is provided. The synchro mechanism 20 always meshes with the driven gear 12 provided on the driven member 11 and rotates between the first gear 21 provided around the output shaft S2 of the second engine ENG2 and the second engine ENG2. A second gear 22 provided so as to rotate integrally with the output shaft S2 around the output shaft S2, and a sleeve for coupling or releasing the first gear 21 and the second gear 22 by being slid in the axial direction. 24. That is, the synchro mechanism 20 forms a power transmission path different from the power transmission path via the second transmission TM2 and the clutch mechanism CL2, and connects and disconnects the power transmission through this power transmission path.
《トランスミッションの構成》
 次に、この駆動システム1に用いられている第1、第2の2つのトランスミッションTM1、TM2について説明する。
 第1、第2のトランスミッションTM1、TM2は、ほぼ同じ構成の無段変速機構により構成されている。この場合の無段変速機構は、IVT(Infinity Variable Transmission=クラッチを使用せずに変速比を無限大にして出力回転をゼロにできる方式の変速機構)と呼ばれるものの一種であり、変速比(レシオ=i)を無段階に変更できると共に、変速比の最大値を無限大(∞)に設定することのできる、無限・無段変速機構BD(BD1、BD2)により構成されている。
<Configuration of transmission>
Next, the first and second transmissions TM1 and TM2 used in the drive system 1 will be described.
The first and second transmissions TM1 and TM2 are constituted by continuously variable transmission mechanisms having substantially the same configuration. The continuously variable transmission mechanism in this case is a kind of what is called an IVT (Infinity Variable Transmission = transmission mechanism in which the transmission ratio can be made infinite without using a clutch and the output rotation can be made zero). = I) can be changed steplessly, and the maximum value of the gear ratio can be set to infinity (∞), which is configured by an infinite and continuously variable transmission mechanism BD (BD1, BD2).
 この無限・無段変速機構BDは、図2および図3に構成を示すように、エンジンENG1、ENG2からの回転動力を受けることで入力中心軸線O1の周りを回転する入力軸101と、入力軸101と一体回転する複数の偏心ディスク104と、入力側と出力側を結ぶための偏心ディスク104と同数の連結部材130と、出力側に設けられたワンウェイ・クラッチ120とを備えている。 2 and 3, the infinite and continuously variable transmission mechanism BD includes an input shaft 101 that rotates around an input center axis O1 by receiving rotational power from the engines ENG1 and ENG2, and an input shaft. 101 includes a plurality of eccentric discs 104 that rotate integrally with 101, the same number of connecting members 130 as the eccentric discs 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side.
 複数の偏心ディスク104は、それぞれ第1支点O3を中心とした円形形状に形成されている。第1支点O3は、入力軸101の周方向に等間隔に設けられると共に、それぞれが、入力中心軸線O1に対する偏心量r1を変更可能で、且つ、該偏心量r1を保ちつつ、入力中心軸線O1の周りに入力軸101と共に回転するように設定されている。従って、複数の偏心ディスク104は、それぞれに偏心量r1を保った状態で、入力中心軸線O1の周りに入力軸101の回転に伴って偏心回転するように設けられている。 The plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3. The first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101. Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and the input center axis O1 while maintaining the amount of eccentricity r1. Is set to rotate together with the input shaft 101. Accordingly, the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
 偏心ディスク104は、図3に示すように、外周側円板105と、入力軸101に一体形成された内周側円板108とで構成されている。内周側円板108は、入力軸101の中心軸線である入力中心軸線O1に対して一定の偏心距離だけ中心を偏倚させた肉厚円板として形成されている。外周側円板105は、第1支点O3を中心にした肉厚円板として形成されており、その中心(第1支点O3)を外れた位置に中心を持つ第1円形孔106を有している。そして、この第1円形孔106の内周に回転可能に内周側円板108の外周が嵌っている。 As shown in FIG. 3, the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101. The inner circumferential disc 108 is formed as a thick disc whose center is deviated from the input center axis O1 which is the center axis of the input shaft 101 by a certain eccentric distance. The outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes. And the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
 また、内周側円板108には、入力中心軸線O1を中心とすると共に周方向の一部が内周側円板108の外周に開口した第2円形孔109が設けられており、その第2円形孔109の内部にピニオン110が回転自在に収容されている。ピニオン110の歯は、第2円形孔109の外周の開口を通して、外周側円板105の第1円形孔106の内周に形成した内歯歯車107に噛み合っている。 Further, the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108. A pinion 110 is rotatably accommodated inside the two circular holes 109. The teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
 このピニオン110は、入力軸101の中心軸線である入力中心軸線O1と同軸に回転するように設けられている。即ち、ピニオン110の回転中心と入力軸101の中心軸線である入力中心軸線O1とが一致している。ピニオン110は、図2に示すように、直流モータ及び減速機構によって構成されるアクチュエータ180により、第2円形孔109の内部で回転させられる。通常時は、入力軸101の回転と同期させてピニオン110を回転させ、同期する回転数を基準として、ピニオン110に入力軸101の回転数を上回るか下回るかする回転数を与えることにより、ピニオン110を入力軸101に対して相対回転させる。例えば、ピニオン110およびアクチュエータ180の出力軸が互いに連結されるように配置し、アクチュエータ180の回転が入力軸101の回転に対して回転差が生じる場合には、その回転差に減速比をかけた分だけ入力軸101とピニオン110の相対角度が変化する減速機構(例えば遊星歯車)を用いることで実現できる。この際、アクチュエータ180と入力軸101の回転差がなく同期している場合には偏心量r1は変化しない。 The pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other. As shown in FIG. 2, the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101. For example, when the pinion 110 and the output shaft of the actuator 180 are arranged so as to be connected to each other and the rotation of the actuator 180 causes a rotation difference with respect to the rotation of the input shaft 101, a reduction ratio is applied to the rotation difference. This can be realized by using a speed reduction mechanism (for example, a planetary gear) in which the relative angle between the input shaft 101 and the pinion 110 changes by the amount. At this time, if there is no rotational difference between the actuator 180 and the input shaft 101 and they are synchronized, the eccentricity r1 does not change.
 従って、ピニオン110を回すことにより、ピニオン110の歯が噛合している内歯歯車107つまり外周側円板105が内周側円板108に対して相対回転し、それにより、ピニオン110の中心(入力中心軸線O1)と外周側円板105の中心(第1支点O3)との間の距離(つまり偏心ディスク104の偏心量r1)が変化する。 Therefore, when the pinion 110 is turned, the internal gear 107 with which the teeth of the pinion 110 are engaged, that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
 この場合、ピニオン110の回転によって、ピニオン110の中心(入力中心軸線O1)に外周側円板105の中心(第1支点O3)を一致させることができるように設定されており、両中心を一致させることにより、偏心ディスク104の偏心量r1を「ゼロ」に設定できる。 In this case, the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match. By doing so, the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
 また、ワンウェイ・クラッチ120は、入力中心軸線O1から離れた出力中心軸線O2の周りを回転する出力部材(クラッチインナ)121と、外部から回転方向の動力を受けることで出力中心軸線O2の周りを揺動するリング状の入力部材(クラッチアウタ)122と、これら入力部材122および出力部材121を互いにロック状態または非ロック状態にするために入力部材122と出力部材121の間に挿入された複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有し、入力部材122の正方向(例えば、図3中の矢印RD1で示す方向)の回転速度が出力部材121の正方向の回転速度を上回ったとき、入力部材122に入力された回転動力を出力部材121に伝達し、それにより、入力部材122の揺動運動を出力部材121の回転運動に変換することができるようになっている。 The one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction. A swinging ring-shaped input member (clutch outer) 122 and a plurality of members inserted between the input member 122 and the output member 121 to lock the input member 122 and the output member 121 with each other. It has a roller (engagement member) 123 and a biasing member 126 that biases the roller 123 in a direction to give a locked state, and is in the positive direction of the input member 122 (for example, the direction indicated by the arrow RD1 in FIG. When the rotational speed exceeds the positive rotational speed of the output member 121, the rotational power input to the input member 122 is transmitted to the output member 121, The Le, and is capable of converting the oscillating motion of the input member 122 to the rotational motion of the output member 121.
 図2に示すように、ワンウェイ・クラッチ120の出力部材121は、軸方向に一体に連続した部材として構成されたものであるが、入力部材122は、軸方向に複数に分割されており、偏心ディスク104および連結部材130の数だけ、軸方向に各々独立して揺動できるように配列されている。そして、ローラ123は、入力部材122毎に、入力部材122と出力部材121との間に挿入されている。 As shown in FIG. 2, the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction. However, the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric. As many as the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction. The roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
 リング状の各入力部材122上の周方向の1箇所には張り出し部124が設けられており、その張り出し部124に、出力中心軸線O2から離間した第2支点O4が設けられている。そして、各入力部材122の第2支点O4上にピン125が配置され、このピン125によって、連結部材130の先端(他端部)132が入力部材122に回転自在に連結されている。 A protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124. And the pin 125 is arrange | positioned on the 2nd fulcrum O4 of each input member 122, and the front-end | tip (other end part) 132 of the connection member 130 is rotatably connected with the input member 122 by this pin 125. FIG.
 連結部材130は、一端側にリング部131を有し、そのリング部131の円形開口133の内周が、ベアリング140を介して、偏心ディスク104の外周に回転自在に嵌合されている。従って、このように連結部材130の一端が偏心ディスク104の外周に回転自在に連結されると共に、連結部材130の他端が、ワンウェイ・クラッチ120の入力部材122上に設けられた第2支点O4に回動自在に連結されることにより、入力中心軸線O1、第1支点O3、出力中心軸線O2、第2支点O4の4つの節を回動点とする四節リンク機構が構成されており、入力軸101から偏心ディスク104に与えられる回転運動が、ワンウェイ・クラッチ120の入力部材122に対して該入力部材122の揺動運動として伝えられ、その入力部材122の揺動運動が出力部材121の回転運動に変換される。 The connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120. Are connected to each other in such a manner that a four-joint link mechanism having four joints of an input center axis O1, a first fulcrum O3, an output center axis O2, and a second fulcrum O4 as pivot points is configured. The rotational motion given from the input shaft 101 to the eccentric disk 104 is transmitted to the input member 122 of the one-way clutch 120 as the swing motion of the input member 122, and the swing motion of the input member 122 is transmitted to the output member 121. Converted to rotational motion.
 その際、ピニオン110、ピニオン110を収容する第2円形孔109を備えた内周側円板108、内周側円板108を回転可能に収容する第1円形孔106を備えた外周側円板105、アクチュエータ180などにより構成された変速比可変機構112の前記ピニオン110をアクチュエータ180で動かすことにより、偏心ディスク104の偏心量r1を変化させることができる。そして、偏心量r1を変更することで、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を変更することができ、それにより、入力軸101の回転数に対する出力部材121の回転数の比(変速比:レシオi)を変えることができる。即ち、入力中心軸線O1に対する第1支点O3の偏心量r1を調節することで、偏心ディスク104からワンウェイ・クラッチ120の入力部材122に伝えられる揺動運動の揺動角度θ2を変更し、それにより、入力軸101に入力される回転動力が、偏心ディスク104および連結部材130を介してワンウェイ・クラッチ120の出力部材121に回転動力として伝達される際の変速比を変更することができる。 In that case, the outer peripheral side disk provided with the pinion 110, the inner periphery side disk 108 provided with the 2nd circular hole 109 which accommodates the pinion 110, and the 1st circular hole 106 which accommodates the inner periphery side disk 108 rotatably. The eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed. That is, by adjusting the eccentric amount r1 of the first fulcrum O3 with respect to the input center axis O1, the swing angle θ2 of the swing motion transmitted from the eccentric disk 104 to the input member 122 of the one-way clutch 120 is changed. The speed ratio when the rotational power input to the input shaft 101 is transmitted as rotational power to the output member 121 of the one-way clutch 120 via the eccentric disk 104 and the connecting member 130 can be changed.
 この場合、第1、第2のエンジンENG1、ENG2の出力軸S1、S2が、この無限・無段変速機構BD(BD1、BD2)の入力軸101に一体に連結されている。また、無限・無段変速機構BD(BD1、BD2)の構成要素であるワンウェイ・クラッチ120が、第1のトランスミッションTM1および第2のトランスミッションTM2と被回転駆動部材11との間に設けられた前記第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2をそれぞれに兼ねている。 In this case, the output shafts S1 and S2 of the first and second engines ENG1 and ENG2 are integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD (BD1, BD2). Further, the one-way clutch 120, which is a component of the infinite and continuously variable transmission mechanism BD (BD1, BD2), is provided between the first transmission TM1 and the second transmission TM2 and the driven member 11 to be rotated. The first one-way clutch OWC1 and the second one-way clutch OWC2 also serve as each.
 図4及び図5は、無限・無段変速機構BD(BD1、BD2)における変速比可変機構112による変速原理の説明図である。これら図4および図5に示すように、変速比可変機構112のピニオン110を回転させて、内周側円板108に対して外周側円板105を回転させることにより、偏心ディスク104の入力中心軸線O1(ピニオン110の回転中心)に対する偏心量r1を調節することができる。 4 and 5 are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD (BD1, BD2). As shown in FIGS. 4 and 5, the pinion 110 of the gear ratio variable mechanism 112 is rotated, and the outer peripheral disk 105 is rotated with respect to the inner peripheral disk 108, whereby the input center of the eccentric disk 104 is rotated. The amount of eccentricity r1 with respect to the axis O1 (rotation center of the pinion 110) can be adjusted.
 例えば、図4(a)、図5(a)に示すように、偏心ディスク104の偏心量r1を「大」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を大きくすることができるので、小さな変速比iを実現することができる。また、図4(b)、図5(b)に示すように、偏心ディスク104の偏心量r1を「中」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「中」にすることができるので、中くらいの変速比iを実現することができる。また、図4(c)、図5(c)に示すように、偏心ディスク104の偏心量r1を「小」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を小さくすることができるので、大きな変速比iを実現することができる。また、図4(d)に示すように、偏心ディスク104の偏心量r1を「ゼロ」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「ゼロ」にすることができるので、変速比iを「無限大(∞)」にすることができる。 For example, as shown in FIGS. 4A and 5A, when the eccentric amount r1 of the eccentric disk 104 is set to “large”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is increased. Therefore, a small gear ratio i can be realized. Further, as shown in FIGS. 4B and 5B, when the eccentric amount r1 of the eccentric disk 104 is set to “medium”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is set to “medium”. Therefore, a medium speed ratio i can be realized. Further, as shown in FIGS. 4C and 5C, when the eccentric amount r1 of the eccentric disk 104 is set to “small”, the swing angle θ2 of the input member 122 of the one-way clutch 120 is decreased. Therefore, a large gear ratio i can be realized. Further, as shown in FIG. 4D, when the eccentric amount r1 of the eccentric disk 104 is set to “zero”, the swing angle θ2 of the input member 122 of the one-way clutch 120 can be set to “zero”. Therefore, the gear ratio i can be set to “infinity (∞)”.
 図6は四節リンク機構として構成された前記無限・無段変速機構BD(BD1、BD2)の駆動力伝達原理の説明図、図7は同変速機構BD(BD1、BD2)において、入力軸101と共に等速回転する偏心ディスク104の偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸101の回転角度(θ)とワンウェイ・クラッチ120の入力部材122の角速度ω2の関係を示す図、図8は同変速機構BD(BD1、BD2)において、複数の連結部材130によって入力側(入力軸101や偏心ディスク104)から出力側(ワンウェイ・クラッチ120の出力部材121)へ動力が伝達される際の出力の取り出し原理を説明するための図である。 FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite and continuously variable transmission mechanism BD (BD1, BD2) configured as a four-bar linkage mechanism, and FIG. 7 shows the input shaft 101 in the transmission mechanism BD (BD1, BD2). The rotational angle (θ) of the input shaft 101 and the one-way clutch 120 when the eccentricity r1 (transmission ratio i) of the eccentric disk 104 that rotates at the same speed is changed to “large”, “medium”, and “small”. FIG. 8 is a diagram showing the relationship of the angular velocity ω2 of the input member 122. FIG. 8 is a diagram showing the relationship between the input side (input shaft 101 and the eccentric disk 104) and the output side (one-way It is a figure for demonstrating the output taking-out principle at the time of motive power being transmitted to the output member 121) of the clutch 120. FIG.
 そして、図6に示すように、ワンウェイ・クラッチ120の入力部材122は、連結部材130を介して偏心ディスク104から与えられる動力により揺動運動する。偏心ディスク104を回転させる入力軸101が1回転すると、ワンウェイ・クラッチ120の入力部材122は1往復揺動する。図7に示すように、偏心ディスク104の偏心量r1の値に関係なく、ワンウェイ・クラッチ120の入力部材122の揺動周期は常に一定である。入力部材122の角速度ω2は、偏心ディスク104(入力軸101)の回転角速度ω1と偏心量r1によって決まる。 Then, as shown in FIG. 6, the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130. When the input shaft 101 that rotates the eccentric disk 104 makes one rotation, the input member 122 of the one-way clutch 120 swings one reciprocating motion. As shown in FIG. 7, irrespective of the value of the eccentricity r1 of the eccentric disk 104, the swing cycle of the input member 122 of the one-way clutch 120 is always constant. The angular velocity ω2 of the input member 122 is determined by the rotational angular velocity ω1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
 入力軸101とワンウェイ・クラッチ120を繋ぐ複数の連結部材130の一端(リング部131)は、入力中心軸線O1の周りに周方向等間隔で設けられた偏心ディスク104に回転自在に連結されているので、各偏心ディスク104の回転運動によりワンウェイ・クラッチ120の入力部材122にもたらされる揺動運動は、図8に示すように、一定の位相で順番に起こることになる。 One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
 その際、ワンウェイ・クラッチ120の入力部材122から出力部材121への動力(トルク)の伝達は、入力部材122の正方向(図3中矢印RD1方向)の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ行われる。つまり、ワンウェイ・クラッチ120では、入力部材122の回転速度が出力部材121の回転速度より高くなったときに初めてローラ123を介しての噛み合い(ロック)が発生し、連結部材130により、入力部材122の動力が出力部材121に伝達され、駆動力が発生する。 At that time, transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
 1つの連結部材130による駆動が終了した後は、入力部材122の回転速度が出力部材121の回転速度より低下すると共に、他の連結部材130の駆動力によってローラ123によるロックが解除されて、フリーな状態(空転状態)に戻る。これが、連結部材130の数だけ順番に行われることで、揺動運動が一方向の回転運動に変換される。そのため、出力部材121の回転速度を超えたタイミングの入力部材122の動力のみが出力部材121に順番に伝えられ、ほぼ平滑に均された回転動力が出力部材121に与えられることになる。 After the driving by one connecting member 130 is finished, the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Return to the normal state (idle state). This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is transmitted to the output member 121 in order, and the rotational power leveled almost smoothly is applied to the output member 121.
 また、この四節リンク機構式の無限・無段変速機構BD(BD1、BD2)では、偏心ディスク104の偏心量r1を変更することで、変速比(レシオ=エンジンのクランク軸の1回転でどれだけ被回転駆動部材を回転させるか)を決めることができる。この場合、偏心量r1をゼロに設定することで、変速比iを無限大に設定することができ、エンジンの回転中にも拘わらず、入力部材122に伝達される揺動角度θ2をゼロにすることができる。 Further, in this infinite / continuously variable transmission mechanism BD (BD1, BD2) of the four-bar linkage mechanism, by changing the eccentric amount r1 of the eccentric disc 104, the transmission ratio (ratio = one revolution of the crankshaft of the engine) It is possible to determine whether to rotate the driven member only. In this case, by setting the eccentricity r1 to zero, the speed ratio i can be set to infinity, and the swing angle θ2 transmitted to the input member 122 is set to zero despite the engine rotating. can do.
 また、この駆動システムでは、各エンジンENG1、ENG2の回転数、各ワンウェイ・クラッチOWC1,OWC2の入力部材122の回転数、出力部材121の回転数、被回転駆動部材11の回転数をそれぞれ検出するための回転検出手段(図示略)を備えている。
 ここで、第1のワンウェイ・クラッチOWC1の入力部材122の回転数(第1のワンウェイ・クラッチOWC1の上流側回転数または入力側回転数ともいう)をR1、第1のワンウェイ・クラッチOWC1の出力部材121の回転数(第1のワンウェイ・クラッチOWC1の下流側回転数または出力側回転数ともいう)をR2、被回転駆動部材11の回転数をR3とする。また、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2と被回転駆動部材11の回転数R3は、クラッチ機構CLの前後(上流側と下流側)の回転数であり、被回転駆動部材11の回転数R3は、車軸(足軸)13やメインモータジェネレータMG1の回転数と等価と見なす。
Further, in this drive system, the number of revolutions of each engine ENG1, ENG2, the number of revolutions of the input member 122 of each one-way clutch OWC1, OWC2, the number of revolutions of the output member 121, and the number of revolutions of the driven member 11 are detected. Rotation detecting means (not shown) is provided.
Here, the rotational speed of the input member 122 of the first one-way clutch OWC1 (also referred to as the upstream rotational speed or the input rotational speed of the first one-way clutch OWC1) is R1, and the output of the first one-way clutch OWC1. The rotational speed of the member 121 (also referred to as the downstream rotational speed or the output rotational speed of the first one-way clutch OWC1) is R2, and the rotational speed of the driven member 11 is R3. Further, the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven member 11 are the rotational speeds before and after (upstream and downstream) of the clutch mechanism CL. The rotation speed R3 of the member 11 is regarded as equivalent to the rotation speed of the axle (foot shaft) 13 and the main motor generator MG1.
《制御手段の主な働き》
 次に、この駆動システム1において実行する制御内容について説明する。
 図1に示すように、制御手段5は、第1、第2のエンジンENG1、ENG2、メインモータジェネレータMG1、サブモータジェネレータMG2、第1、第2のトランスミッションTM1、TM2を構成する無限・無段変速機構BD1、BD2のアクチュエータ180、クラッチ機構CL1、CL2、シンクロ機構20などに制御信号を送って、これらの要素を制御することにより、様々な走行パターン(動作パターンとも言う)制御を行う。また、制御手段5には、後述の要求出力検出手段を始めとして、各種要素の回転検出手段、その他の検出手段の信号が入力されている。以下、代表的な制御の内容を説明する。
<Main functions of control means>
Next, the control contents executed in the drive system 1 will be described.
As shown in FIG. 1, the control means 5 includes infinite and continuously variable first and second engines ENG1 and ENG2, a main motor generator MG1, a sub motor generator MG2, and first and second transmissions TM1 and TM2. Various driving patterns (also referred to as operation patterns) are controlled by sending control signals to the actuator 180 of the speed change mechanisms BD1, BD2, the clutch mechanisms CL1, CL2, the synchro mechanism 20, and the like to control these elements. The control means 5 is supplied with signals from various element rotation detection means and other detection means, including a later-described request output detection means. Hereinafter, typical control contents will be described.
 制御手段5は、メインモータジェネレータMG1の駆動力のみによるEV走行を制御するEV走行制御モードと、第1のエンジンENG1および/または第2のエンジンENG2の駆動力のみによるエンジン走行を制御するエンジン走行制御モードと、第1のエンジンENG1によりサブモータジェネレータMG2を発電機として駆動させ、それにより生成した電力をメインモータジェネレータMG1および/またはバッテリ8に供給しながら、メインモータジェネレータMG1の駆動力によるモータ走行を行うシリーズ走行を制御するシリーズ走行制御モードと、を選択して実行する機能を有する。また、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の両方を利用して走行するパラレル走行モードを実行する機能も有する。また、EV走行、シリーズ走行、エンジン走行、パラレル走行は、要求駆動力およびバッテリ8の残容量(SOC)に応じて、選択して実行される。 The control means 5 controls the EV traveling control mode for controlling the EV traveling only by the driving force of the main motor generator MG1, and the engine traveling for controlling the engine traveling only by the driving force of the first engine ENG1 and / or the second engine ENG2. A motor driven by the driving force of the main motor generator MG1 while driving the sub motor generator MG2 as a generator by the control mode and the first engine ENG1 and supplying the electric power generated thereby to the main motor generator MG1 and / or the battery 8 And a function of selecting and executing a series traveling control mode for controlling series traveling in which traveling is performed. Further, it also has a function of executing a parallel traveling mode in which traveling is performed using both the driving force of the main motor generator MG1 and the driving force of the first engine ENG1. Further, EV traveling, series traveling, engine traveling, and parallel traveling are selected and executed according to the required driving force and the remaining capacity (SOC) of the battery 8.
 EV走行中は、クラッチ機構CL1、CL2を遮断状態に保持している。それにより、ワンウェイ・クラッチOWC1、OWC2の引き摺りトルクロスを無くすことができ、エネルギー効率の向上が図れる。 During the EV travel, the clutch mechanisms CL1 and CL2 are kept in the disconnected state. Thereby, the dragging torque cross of the one-way clutches OWC1 and OWC2 can be eliminated, and the energy efficiency can be improved.
 次に、クラッチ機構CL1、CL2を遮断状態に保持してEV走行を実行している状態から、エンジン走行に切り替える場合には、図9のフローチャートに示した走行切替制御Aを実行する。図10は、走行切替制御Aに対応するタイムチャートである。 Next, when switching from the state in which the clutch mechanisms CL1 and CL2 are held in the disconnected state and the EV traveling is performed to the engine traveling, the traveling switching control A shown in the flowchart of FIG. 9 is performed. FIG. 10 is a time chart corresponding to the travel switching control A.
 まず、回転負荷を最小にするため、変速比を無限大∞に設定し(ステップS101)、この状態で、第1のエンジンENG1をサブモータジェネレータMG2の駆動力を用いて始動する(ステップS102、図10のZ1で示す部分)。 First, in order to minimize the rotational load, the gear ratio is set to infinity ∞ (step S101), and in this state, the first engine ENG1 is started using the driving force of the sub motor generator MG2 (step S102, Part indicated by Z1 in FIG. 10).
 そして、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を変更することにより、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1を上昇させる(ステップS103)。 Then, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 is increased by changing the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 (step S103).
 この段階では、第1のクラッチ機構CL1が遮断状態にあるから、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1は、出力部材121の回転数R2を上回っており、第1のワンウェイ・クラッチOWC1の入力部材122と出力部材121は互いにロック状態になり、入力部材122に入力された回転が出力部材121に伝達され、入力部材122の回転数R1と出力部材121の回転数R2が共に上昇して行く(図10のZ2で示す部分)。 At this stage, since the first clutch mechanism CL1 is in the disconnected state, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121, and the first one-way clutch The input member 122 and the output member 121 of the clutch OWC1 are locked with each other, the rotation input to the input member 122 is transmitted to the output member 121, and the rotation speed R1 of the input member 122 and the rotation speed R2 of the output member 121 are Both rise (the part indicated by Z2 in FIG. 10).
 また、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2、及び被回転駆動部材11の回転数R3を検出する(ステップS104)。そして、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2が被回転駆動部材11の回転数R3よりもまだ低い範囲にあり、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2と被回転駆動部材11の回転数R3との差が所定範囲Ah内に入っているかどうか判断し(ステップS105)、ステップS105がYESとなったタイミングで、第1のクラッチ機構CL1を連結させる(ステップS106、S107、図10のZ3で示す部分)。 Also, the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven member 11 to be rotated are detected (step S104). The rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is still in a range lower than the rotational speed R3 of the driven member 11 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1. And the rotational speed R3 of the driven member 11 is within a predetermined range Ah (step S105), and the first clutch mechanism CL1 is connected at the timing when step S105 becomes YES (step S105). Steps S106 and S107, part indicated by Z3 in FIG. 10).
 すると、第1のワンウェイ・クラッチOWC1の出力部材121と被回転駆動部材11が機械的に連結されることで、出力部材121の回転数R2が瞬間的に被回転駆動部材11の回転数R3まで引き上げられる。この瞬間に、入力部材122の回転数R1より出力部材121の回転数R2が上回ることになるので、ワンウェイ・クラッチOWC1は非ロック状態になり、入力部材122と出力部材121の間の動力伝達が遮断される。 Then, the output member 121 of the first one-way clutch OWC1 and the driven member 11 are mechanically connected, so that the rotational speed R2 of the output member 121 instantaneously reaches the rotational speed R3 of the driven member 11 to be rotated. Be raised. At this moment, since the rotational speed R2 of the output member 121 exceeds the rotational speed R1 of the input member 122, the one-way clutch OWC1 is unlocked, and the power transmission between the input member 122 and the output member 121 is not performed. Blocked.
 また、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1、及び出力部材121の回転数R2を検出する(ステップS108)。そして、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回るように、ステップS103における第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1の上昇制御を継続する。第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回ることで(図10のZ4で示す部分)、第1のワンウェイ・クラッチOWC1を再びロック状態にすることができ、第1のワンウェイ・クラッチOWCの入力部材122側の回転動力を出力部材121側へ伝達させ、その回転を、先に連結してある第1のクラッチ機構CL1を介して、被回転駆動部材11に伝達させることができるようになる。 Also, the rotational speed R1 of the input member 122 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 are detected (step S108). Then, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 is increased in step S103 so that the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121. Continue control. When the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121 (part indicated by Z4 in FIG. 10), the first one-way clutch OWC1 is again locked. Rotational power on the input member 122 side of the first one-way clutch OWC is transmitted to the output member 121 side, and the rotation is rotated via the first clutch mechanism CL1 that is connected first. It can be transmitted to the drive member 11.
 このように、EV走行からエンジン走行へ切り替わる際の第1のエンジンENG1側から被回転駆動部材11側への動力伝達を、第1のクラッチ機構CL1の連結によってではなく、入力部材122の回転数R1を出力部材121の回転数R2より上回らせてワンウェイ・クラッチOWC1をロック状態にすることによって行うようにしているので、第1のクラッチ機構CL1の連結によって動力伝達が行われる場合よりも、切り替えによるショックを少なくすることができる。 Thus, the power transmission from the first engine ENG1 side to the rotation driven member 11 side when switching from EV traveling to engine traveling is not performed by the connection of the first clutch mechanism CL1, but the rotational speed of the input member 122. Since the one-way clutch OWC1 is locked by causing R1 to exceed the rotational speed R2 of the output member 121, the switching is performed as compared with the case where power transmission is performed by connecting the first clutch mechanism CL1. Can reduce the shock.
 また、ステップS109にて、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回り、エンジン走行への切り替えが済んだと判断した場合には、メインモータジェネレータMG1への電力供給を停止する(ステップS110)。これにより、エンジン走行への移行が完了し、処理を終える。 If it is determined in step S109 that the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121 and the engine has been switched to the engine running, Power supply to generator MG1 is stopped (step S110). Thereby, the transition to engine running is completed, and the process ends.
 また、本実施形態では、図28の動作制御に示すように、EV走行からエンジン走行へと走行モードを切り替える間に、シリーズ走行が行われている。これにより、第1のエンジンENG1の始動からエンジン走行に移行するまでの間のエンジンエネルギーの有効活用を図ることができる。つまり、エンジンが始動してから駆動力が被回転駆動部材11に伝わるまでの間のエンジンエネルギーを、シリーズ走行させることにより、メインモータジェネレータMG1やバッテリ8に電力として供給して有効活用するので、発生したエネルギーを無駄なく使い切ることができ、燃費向上に貢献することができる。 In this embodiment, as shown in the operation control of FIG. 28, the series travel is performed while the travel mode is switched from the EV travel to the engine travel. As a result, it is possible to effectively use engine energy from the start of the first engine ENG1 to the transition to engine running. That is, since the engine energy from when the engine is started to when the driving force is transmitted to the driven member 11 is run in series, it is supplied to the main motor generator MG1 and the battery 8 as electric power for effective use. The generated energy can be used up without waste, contributing to improved fuel efficiency.
 そして、走行モードをシリーズ走行からエンジン走行へと切り替えた後に、サブモータジェネレータMG2による発電を停止する。但し、走行モードをシリーズ走行からエンジン走行へ切り替えた後に、バッテリ8の残容量(SOC)が第1所定値(基準値:例えば基準SOCt=35%)以下である場合には、サブモータジェネレータMG2によるチャージ(発電によるバッテリ8の充電動作)を継続する。 Then, after the traveling mode is switched from the series traveling to the engine traveling, the power generation by the sub motor generator MG2 is stopped. However, if the remaining capacity (SOC) of the battery 8 is equal to or lower than a first predetermined value (reference value: for example, reference SOCt = 35%) after the traveling mode is switched from the series traveling to the engine traveling, the sub motor generator MG2 Continue charging (charging operation of the battery 8 by power generation).
 次に、第2のエンジンENG2の始動を行う際には、例えば、1つの方法として、第2のトランスミッションTM2の変速比を、第2のエンジンENG2からの動力を第2のワンウェイ・クラッチOWC2に伝達可能であり(i≠∞)且つ第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るような有限値(目標値にできるだけ近い値)に制御する。あるいは、別の方法として、第2のエンジンENG2の始動を行う際に、第2のトランスミッションTM2の変速比を無限大(∞)に設定し、第2のワンウェイ・クラッチOWC2の入力部材122の回転速度が出力部材121の回転速度を下回るように制御する。そして、第2のエンジンENG2の始動後に、第2のトランスミッションTM2の変速比を有限値(目標値)に変更することで、第2のワンウェイ・クラッチOWC2に入力される回転速度を制御する。 Next, when starting the second engine ENG2, for example, as one method, the gear ratio of the second transmission TM2 is set, and the power from the second engine ENG2 is sent to the second one-way clutch OWC2. Control is made to a finite value (a value as close as possible to the target value) so that transmission is possible (i ≠ ∞) and the rotational speed of the input member 122 of the second one-way clutch OWC2 is lower than the rotational speed of the output member 121. Alternatively, as another method, when the second engine ENG2 is started, the speed ratio of the second transmission TM2 is set to infinity (∞), and the rotation of the input member 122 of the second one-way clutch OWC2 is performed. The speed is controlled to be lower than the rotation speed of the output member 121. Then, after the second engine ENG2 is started, the rotational speed input to the second one-way clutch OWC2 is controlled by changing the gear ratio of the second transmission TM2 to a finite value (target value).
 ここで、第1のエンジンENG1やメインモータジェネレータMG1の駆動力を利用して走行している状態で、被回転駆動部材11の動力を用いて第2のエンジンENG2を始動する場合には、第2のエンジンENG2の出力軸S2と被回転駆動部材11との間に設けられたシンクロ機構20を動力伝達可能な接続状態とすることにより、被回転駆動部材11の動力を用いて、第2のエンジンENG2のクランキング(スタート回転)を行い、第2のエンジンENG2を始動する。 Here, when the second engine ENG2 is started using the power of the rotation driven member 11 while traveling using the driving force of the first engine ENG1 or the main motor generator MG1, The synchronized mechanism 20 provided between the output shaft S2 of the second engine ENG2 and the driven member 11 is brought into a connected state capable of transmitting power, so that the second driving member 11 can be used for power transmission. The engine ENG2 is cranked (start rotation), and the second engine ENG2 is started.
 第2のエンジンENG2を始動させて、駆動源を第1のエンジンENG1から第2のエンジンENG2に切り替える場合は、第1のワンウェイ・クラッチOWC1を介して第1のエンジンENG1の発生する動力が被回転駆動部材11に入力されている状態で、第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転数が出力部材121の回転数を上回るように、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比の変更を行う。こうすることにより、駆動源として用いるエンジンを、第1のエンジンENG1から第2のエンジンENG2にスムーズに切り替えることができる。 When the second engine ENG2 is started and the drive source is switched from the first engine ENG1 to the second engine ENG2, the power generated by the first engine ENG1 is received via the first one-way clutch OWC1. The rotational speed of the second engine ENG2 and the rotational speed of the second engine ENG2 so that the rotational speed input to the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed of the output member 121 while being input to the rotational drive member 11. / Or change the gear ratio of the second transmission TM2. By doing so, the engine used as the drive source can be smoothly switched from the first engine ENG1 to the second engine ENG2.
 また、第1のエンジンENG1と第2のエンジンENG2の両方の駆動力を合成して被回転駆動部材11に伝達させる場合は、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の両入力部材122に入力される回転速度が共に同期して出力部材121の回転速度を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御する同期制御を行う。 Further, when the driving forces of both the first engine ENG1 and the second engine ENG2 are combined and transmitted to the driven member 11, both the first one-way clutch OWC1 and the second one-way clutch OWC2 are transmitted. The rotational speeds of the first and second engines ENG1, ENG2 and / or the first and second transmissions TM1, so that the rotational speeds input to the input member 122 are both synchronized and exceed the rotational speed of the output member 121. Synchronous control for controlling the transmission ratio of TM2 is performed.
 この場合、加速のときに、両方のエンジンENG1、ENG2を無条件に動かすのではなく、一方のエンジン(第1のエンジンENG1)を高効率運転ポイントに固定した状態で、他方のエンジン(第2のエンジンENG2)の出力を上げることで、出力要求に応えるようにする。 In this case, during acceleration, both engines ENG1 and ENG2 are not moved unconditionally, but one engine (first engine ENG1) is fixed at the high-efficiency operation point and the other engine (second engine 2) The engine ENG2) increases the output to meet the output request.
 具体的には、第1のワンウェイ・クラッチOWC1および第2のワンウェイ・クラッチOWC2の入力部材122に入力される回転速度が出力部材121の回転速度を上回るように第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御しているとき、第1のエンジンENG1の回転数および/またはトルクが高効率運転領域に入るように、運転条件を一定範囲に固定した状態で、第1のエンジンENG1および/または第1のトランスミッションTM1を制御し、且つ、その固定した運転条件によって得られる出力を超える出力要求に対しては、第2のエンジンENG2および第2のトランスミッションTM2を制御することで対応する。 Specifically, the first and second engines ENG1, so that the rotational speed input to the input member 122 of the first one-way clutch OWC1 and the second one-way clutch OWC2 exceeds the rotational speed of the output member 121, When controlling the rotational speed of the ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2, the operation is performed so that the rotational speed and / or torque of the first engine ENG1 enters the high efficiency operation region. For an output request that controls the first engine ENG1 and / or the first transmission TM1 with the condition fixed in a certain range and exceeds the output obtained by the fixed operation condition, This is dealt with by controlling the engine ENG2 and the second transmission TM2.
 あるいは、上記とは別の制御方法として、要求出力に応じて、排気量大の第2のエンジンENG2を運転条件の固定側に設定するようにしてもよく、例えば、要求出力が所定以上の場合は、第1のエンジンENG1を運転条件の固定側に設定し、要求出力が所定以下の場合は、第2のエンジンENG2を運転条件の固定側に設定するようにしてもよい。 Alternatively, as a control method different from the above, the second engine ENG2 having a large displacement may be set to a fixed operating condition side according to the required output. For example, when the required output is equal to or greater than a predetermined value The first engine ENG1 may be set on the fixed side of the operating condition, and when the required output is equal to or lower than the predetermined value, the second engine ENG2 may be set on the fixed side of the operating condition.
 また、車両の後進時には、クラッチ機構CL1、CL2を遮断状態にして、第1、第2のトランスミッションTM1、TM2のロックによる後進不可状態を解除する。一方、登坂発進時には、少なくとも一方のクラッチ機構CL1、CL2を接続状態とする。 Also, when the vehicle is moving backward, the clutch mechanisms CL1 and CL2 are disengaged, and the reverse rotation impossible state due to the lock of the first and second transmissions TM1 and TM2 is released. On the other hand, at the time of starting uphill, at least one of the clutch mechanisms CL1 and CL2 is brought into a connected state.
《動作パターンについて》
 次に、本実施形態の駆動システムにおいて実行する動作パターンについて説明する。
 図11~図25は動作パターンA~Oを取り出して示す拡大説明図、図26~図35は各運転状態に応じて実行する制御動作、または走行モード切り替え時の制御動作の説明図である。なお、図26~図35の各動作パターンを示す枠の中の右上のA~Oの符号は、図11~図25に取り出して示す動作パターンA~Oの符号と対応している。また、動作パターンを示す図の中で、動作中の駆動源を網掛けにより区別して示し、動力の伝達経路や電力の流れを実線や点線などの矢印で示す。
<About operation pattern>
Next, an operation pattern executed in the drive system of this embodiment will be described.
FIGS. 11 to 25 are enlarged explanatory diagrams showing the operation patterns A to O, and FIGS. 26 to 35 are explanatory diagrams of a control operation executed according to each operation state or a control operation at the time of traveling mode switching. The symbols A to O at the upper right in the frames showing the operation patterns in FIGS. 26 to 35 correspond to the symbols of the operation patterns A to O shown in FIGS. Moreover, in the figure which shows an operation pattern, the drive source in operation | movement is distinguished and shown by shading, and the power transmission path and the flow of electric power are shown by arrows, such as a solid line and a dotted line.
 図11に示す動作パターンAでは、メインモータジェネレータMG1の駆動力でEV走行を行っている。即ち、バッテリ8からメインモータジェネレータMG1に通電することでメインモータジェネレータMG1を駆動し、メインモータジェネレータMG1の駆動力を、ドライブギヤ15、ドリブンギヤ12を介して被回転駆動部材11に伝達し、ディファレンシャル装置10および左右アクスルシャフト13L、13Rを介して駆動車輪2に伝えることで走行する。このとき、クラッチ機構CL1、CL2は遮断状態(OFF状態)にしておく。 In the operation pattern A shown in FIG. 11, EV traveling is performed with the driving force of the main motor generator MG1. In other words, the main motor generator MG1 is energized from the battery 8 to drive the main motor generator MG1, and the driving force of the main motor generator MG1 is transmitted to the driven member 11 through the drive gear 15 and the driven gear 12 for differential. The vehicle travels by being transmitted to the drive wheel 2 through the device 10 and the left and right axle shafts 13L and 13R. At this time, the clutch mechanisms CL1 and CL2 are kept in the disconnected state (OFF state).
 図12に示す動作パターンBでは、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、その発電した電力をメインモータジェネレータMG1およびバッテリ8に供給して、シリーズ走行を行っている。第1のエンジンENG1の始動は、サブモータジェネレータMG2により行う。このとき、第1のトランスミッションTM1の変速比は無限大に設定しておく。 In the operation pattern B shown in FIG. 12, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is supplied to the main motor generator MG1 and the battery 8 to perform series running. ing. The first engine ENG1 is started by the sub motor generator MG2. At this time, the gear ratio of the first transmission TM1 is set to infinity.
 図13に示す動作パターンCでは、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用してパラレル走行を行っている。第1のエンジンENG1の駆動力を被回転駆動部材11に伝達させるには、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。そうすることにより、メインモータジェネレータMG1の駆動力と第1のエンジンENG1の駆動力の合成力を被回転駆動部材11に伝達させることができる。この動作パターンCは、低速走行や中速走行において、加速時などの要求駆動力が大きくなった場合に実行される。この際、クラッチ機構CL1は接続状態に維持され、クラッチ機構CL2は遮断状態に維持される。これにより、第1のエンジンENG1の駆動力が被回転駆動部材11に伝達されるとともに、ワンウェイ・クラッチOWC2の引きずりが防止される。 In the operation pattern C shown in FIG. 13, parallel running is performed by using the driving forces of both the main motor generator MG1 and the first engine ENG1. In order to transmit the driving force of the first engine ENG1 to the driven member 11 to be rotated, the rotational speed of the first engine ENG1 and / or the first rotational speed of the first engine ENG1 is set so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. Alternatively, the gear ratio of the first transmission TM1 is controlled. By doing so, the combined force of the driving force of the main motor generator MG1 and the driving force of the first engine ENG1 can be transmitted to the driven member 11 to be rotated. This operation pattern C is executed when the required driving force during acceleration or the like increases during low-speed traveling or medium-speed traveling. At this time, the clutch mechanism CL1 is maintained in the connected state, and the clutch mechanism CL2 is maintained in the disconnected state. As a result, the driving force of the first engine ENG1 is transmitted to the driven member 11 and the one-way clutch OWC2 is prevented from being dragged.
 図14に示す動作パターンDでは、第1のエンジンENG1の駆動力を利用したエンジン走行を行っている。この動作パターンDは、例えば、発進時にSOCが低い場合に、バッテリ8の電力消費を少なくするために用いられる。 In the operation pattern D shown in FIG. 14, the engine travels using the driving force of the first engine ENG1. This operation pattern D is used, for example, to reduce the power consumption of the battery 8 when the SOC is low at the start.
 図15に示す動作パターンEでは、減速時に駆動車輪2から被回転駆動部材11を介して伝達される動力を用いたメインモータジェネレータMG1の回生動作によって、メインモータジェネレータMG1が発電機として作用し、駆動車輪2から被回転駆動部材11を介して入力される機械エネルギーが電気エネルギーに変化される。そして、駆動車輪2に回生制動力が伝達されると共に、回生電力がバッテリ8に充電される。このとき、クラッチ機構CL1、CL2は切っておく。 In the operation pattern E shown in FIG. 15, the main motor generator MG1 acts as a generator by the regenerative operation of the main motor generator MG1 using the power transmitted from the driving wheel 2 through the driven member 11 during deceleration. The mechanical energy input from the drive wheel 2 via the rotated drive member 11 is changed to electric energy. Then, regenerative braking force is transmitted to the drive wheel 2 and regenerative power is charged in the battery 8. At this time, the clutch mechanisms CL1 and CL2 are turned off.
 図16に示す動作パターンFでは、第1のエンジンENG1の駆動力のみを利用してエンジン走行を行っており、同時に、第1のエンジンENG1の駆動力を利用してサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。なお、SOCに応じて、サブモータジェネレータMG2の発電を停止させてもよい。 In the operation pattern F shown in FIG. 16, the engine travels using only the driving force of the first engine ENG1, and at the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1. The battery 8 is charged with the generated power. It should be noted that power generation of sub motor generator MG2 may be stopped according to the SOC.
 図17に示す動作パターンGでは、第1のエンジンENG1の駆動力で走行しながら、シンクロ機構(スタータ・クラッチ手段)20を介して、被回転駆動部材11(デフケース)に導入された動力により第2のエンジンENG2の始動を行っており、その始動時の負荷の増大による駆動車輪2への出力の不足分を第1のモータジェネレータMG1の駆動力で補っている。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力を第1のモータジェネレータMG1に供給またはバッテリ8に充電している。 In the operation pattern G shown in FIG. 17, the vehicle is driven by the driving force of the first engine ENG1 and is driven by the power introduced into the rotation driven member 11 (difference case) via the synchro mechanism (starter / clutch means) 20. The engine ENG2 of No. 2 is started, and the shortage of output to the drive wheel 2 due to the increase in load at the time of startup is compensated by the driving force of the first motor generator MG1. The sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and supplies the generated electric power to the first motor generator MG1 or charges the battery 8.
 図18に示す動作パターンHでは、第1のエンジンENG1の駆動力を利用してエンジン走行を行っており、動作パターンGにおいて接続されたシンクロ機構20を遮断(噛み合い状態を解除)することで、被回転駆動部材11(デフケース)と第2のエンジンENG2の出力軸S2を切り離した状態にし、その状態で、始動後の第2のエンジンENG2の動力を第2のトランスミッションTM2に入力させている。ただし、この段階ではまだ、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回っていないので、第2のトランスミッションTM2の出力は、被回転駆動部材11に入力されていない。また、サブモータジェネレータMG2は、第1のエンジンENG1の駆動力を利用して発電し、生成した電力をバッテリ8に充電している。 In the operation pattern H shown in FIG. 18, the engine travels using the driving force of the first engine ENG1, and the synchro mechanism 20 connected in the operation pattern G is shut off (releases the meshing state). The rotational drive member 11 (difference case) and the output shaft S2 of the second engine ENG2 are separated from each other, and in this state, the power of the second engine ENG2 after starting is input to the second transmission TM2. However, at this stage, since the input rotational speed of the second one-way clutch OWC2 does not exceed the output rotational speed, the output of the second transmission TM2 is not input to the driven member 11 to be rotated. The sub motor generator MG2 generates power using the driving force of the first engine ENG1, and charges the battery 8 with the generated power.
 図19に示す動作パターンIでは、第2のエンジンENG2の駆動力によるエンジン走行を行っている。この動作パターンIは、動作パターンHの状態から第2のトランスミッションTM2の変速比をOD(オーバードライブ)側に変更して、第2のワンウェイ・クラッチOWC2の入力部材122の回転数が出力部材121の回転数を上回るように制御し、それにより、第2のエンジンENG2の動力を第2のトランスミッションTM2を介して被回転駆動部材11(デフケース)に伝達させ、第2のエンジンENG2の駆動力によるエンジン走行を実現している。この動作パターンIでは、第2のエンジンENG2によるエンゲージが成立(被回転駆動部材11への動力伝達が成立)した段階で、第1のエンジンENG1を停止させている。この際、クラッチ機構CL2は接続状態に維持され、クラッチ機構CL1は遮断状態に維持される。これにより、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達されるとともに、ワンウェイ・クラッチOWC1の引きずりが防止される。 In the operation pattern I shown in FIG. 19, the engine is driven by the driving force of the second engine ENG2. In this operation pattern I, the speed ratio of the second transmission TM2 is changed to the OD (overdrive) side from the state of the operation pattern H, and the rotational speed of the input member 122 of the second one-way clutch OWC2 is changed to the output member 121. So that the power of the second engine ENG2 is transmitted to the rotated drive member 11 (difference case) via the second transmission TM2 and is driven by the driving force of the second engine ENG2. The engine is running. In this operation pattern I, the first engine ENG1 is stopped when the engagement by the second engine ENG2 is established (power transmission to the driven member 11 is established). At this time, the clutch mechanism CL2 is maintained in the connected state, and the clutch mechanism CL1 is maintained in the disconnected state. As a result, the driving force of the second engine ENG2 is transmitted to the driven member 11 and the one-way clutch OWC1 is prevented from being dragged.
 図20に示す動作パターンJは、第2のエンジンENG2の駆動力を利用したエンジン走行を行っている状態で、更に要求出力が上昇した場合の動作パターンである。この動作パターンJでは、第2のエンジンENG2による走行状態において、更に第1のエンジンENG1を始動させて、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を合成して、被回転駆動部材11(デフケース)に伝達させている。即ち、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御している。 The operation pattern J shown in FIG. 20 is an operation pattern when the required output further increases while the engine is running using the driving force of the second engine ENG2. In this operation pattern J, in the running state of the second engine ENG2, the first engine ENG1 is further started, and the driving forces of both the second engine ENG2 and the first engine ENG1 are combined to be rotated. It is transmitted to the drive member 11 (difference case). That is, the first and second one-way clutches OWC1 and OWC2 are synchronized with each other so that the rotation speed of the input member 122 exceeds the rotation speed of the output member 121 (the rotation speed of the driven member 11). The rotational speed of the second engine ENG1, ENG2 and / or the gear ratio of the first and second transmissions TM1, TM2 are controlled.
 図21に示す動作パターンKは、例えば、中高速走行時に減速要求が発生した場合の動作パターンである。この動作パターンKでは、第1のエンジンENG1および第2のエンジンENG2を停止させ、減速に伴って駆動車輪2から被回転駆動部材11を介して伝達される動力によりメインモータジェネレータMG1で発電し、それにより生成される回生電力をバッテリ8に充電すると共に、回生制動力を駆動車輪2に作用させている。また同時に、シンクロ機構20を接続状態にして、第2のエンジンENG2のエンジンブレーキを制動力として駆動車輪2に作用させている。 The operation pattern K shown in FIG. 21 is, for example, an operation pattern when a deceleration request is generated during medium-high speed traveling. In this operation pattern K, the first engine ENG1 and the second engine ENG2 are stopped, and the main motor generator MG1 generates electric power with the power transmitted from the driving wheel 2 through the driven member 11 with deceleration, The regenerative electric power generated thereby is charged in the battery 8 and the regenerative braking force is applied to the drive wheel 2. At the same time, the synchro mechanism 20 is connected, and the engine brake of the second engine ENG2 is applied to the drive wheel 2 as a braking force.
 図22に示す動作パターンLは、第2のエンジンENG2の駆動力により走行している状態で、更なる要求出力の上昇が生じた場合の切り替え時の動作パターンである。この動作パターンLでは、第1のエンジンENG1を始動するために、サブモータジェネレータMG2を駆動している。このときは、第1のトランスミッションTM1の変速比を無限大に設定する。また、この動作パターンによって、第1のエンジンENG1が始動した後は、第1、第2の両方のエンジンENG1、ENG2の両方の駆動力が、被回転駆動部材11に伝達される動作パターンJとなる。 The operation pattern L shown in FIG. 22 is an operation pattern at the time of switching when a further increase in required output occurs in a state where the vehicle is running with the driving force of the second engine ENG2. In this operation pattern L, the sub motor generator MG2 is driven to start the first engine ENG1. At this time, the gear ratio of the first transmission TM1 is set to infinity. In addition, after the first engine ENG1 is started by this operation pattern, the operation pattern J in which the driving forces of both the first and second engines ENG1 and ENG2 are transmitted to the rotated drive member 11 and Become.
 図23に示す動作パターンMでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。 In the operation pattern M shown in FIG. 23, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and power is generated by the sub motor generator MG2 using the driving force of the first engine ENG1. The generated power is charged in the battery 8.
 図24に示す動作パターンNでは、シンクロ機構20を接続状態にして第2のエンジンENG2によるエンジンブレーキが利用できる状態にすると共に、メインモータジェネレータMG1で回生電力を生成してバッテリ8に充電し、同時に、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。また、シンクロ機構20を接続状態に保つことで、第2のエンジンENG2はクランキング待機の状態にある。 In the operation pattern N shown in FIG. 24, the synchro mechanism 20 is set in a connected state so that engine braking by the second engine ENG2 can be used, and regenerative power is generated by the main motor generator MG1 to charge the battery 8, At the same time, the sub motor generator MG2 generates electric power using the driving force of the first engine ENG1, and the generated electric power is charged in the battery 8. Further, the second engine ENG2 is in the cranking standby state by keeping the synchro mechanism 20 in the connected state.
 図25に示す動作パターンOは、停車中の動作パターンであり、この動作パターンOでは、第1のエンジンENG1の駆動力を用いてサブモータジェネレータMG2で発電し、生成した電力をバッテリ8に充電している。この際、第1、第2のトランスミッションTM1、TM2の変速比を無限大(∞)にするか、クラッチCL1、CL2を切ることで、引き摺りトルクロスを抑制している。 The operation pattern O shown in FIG. 25 is an operation pattern while the vehicle is stopped. In this operation pattern O, the sub motor generator MG2 generates power using the driving force of the first engine ENG1, and the generated power is charged in the battery 8. is doing. At this time, the dragging torque cross is suppressed by setting the gear ratio of the first and second transmissions TM1 and TM2 to infinity (∞) or by disengaging the clutches CL1 and CL2.
《運転状況に応じた制御動作について》
 次に図26~図35を用いて、様々な運転状況における制御動作について説明する。各運転状況は表形式で示してあり、表中の各枠の左下には説明の便宜上、以下の括弧内の数字対応する通し番号を付してある。また、各枠の右上の符号A~Oは、図11~図25の拡大図に対応しており、必要に応じて参照されたい。
《Control action according to the driving situation》
Next, control operations in various driving situations will be described with reference to FIGS. Each driving situation is shown in a table format, and for convenience of explanation, a serial number corresponding to the number in parentheses below is attached to the lower left of each frame in the table. Reference symbols A to O at the upper right of each frame correspond to the enlarged views of FIGS. 11 to 25, and should be referred to as necessary.
《発進時》
 まず、発進時の制御動作について図26を参照して説明する。
(1) 発進時の緩加速クルーズの際には、基本的に動作パターンAによるEV走行を行う。EV走行では、バッテリ8から供給される電力によりメインモータジェネレータMG1を駆動し、その駆動力のみによって走行する。
<When starting>
First, the control operation at the start will be described with reference to FIG.
(1) During slow acceleration cruise at the time of departure, basically, EV traveling by the operation pattern A is performed. In EV traveling, the main motor generator MG1 is driven by the electric power supplied from the battery 8, and the vehicle travels only by the driving force.
(2) また、加速時には、動作パターンBによるシリーズ走行を行う。シリーズ走行では、まず、サブモータジェネレータMG2により第1のエンジンENG1を始動する。第2のエンジンENG1が始動したら、サブモータジェネレータMG2を発電機として機能させて発電し、生成した電力をバッテリ8とメインモータジェネレータMG1に供給することで、EV走行を継続しながら、第1のエンジンENG1の動力によりサブモータジェネレータMG2で発電した電力を有効利用する。この際、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を下回るように、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を制御する。 (2) Also, during acceleration, the series running with operation pattern B is performed. In the series running, first, the first engine ENG1 is started by the sub motor generator MG2. When the second engine ENG1 is started, the sub motor generator MG2 functions as a generator to generate electric power, and the generated electric power is supplied to the battery 8 and the main motor generator MG1, thereby continuing the EV traveling, The electric power generated by the sub motor generator MG2 by the power of the engine ENG1 is effectively used. At this time, the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1 is controlled so that the input rotational speed of the first one-way clutch OWC1 is lower than the output rotational speed.
(3) また、加速要求に応じた制御により第1のエンジンENG1の回転数が上がったら、第1のワンウェイ・クラッチOWC1の入力回転数が出力回転数を上回るように第1のトランスミッションTM1の変速比を変更し、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を合成したパラレル走行を行う。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(4) さらに、SOCが低い場合には、動作パターンDに示す第1のエンジンENG1よるエンジン走行によって発進する。この場合にも、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(3) When the rotational speed of the first engine ENG1 is increased by the control according to the acceleration request, the first transmission TM1 is shifted so that the input rotational speed of the first one-way clutch OWC1 exceeds the output rotational speed. The ratio is changed, and parallel traveling is performed by combining the driving forces of both the main motor generator MG1 and the first engine ENG1. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(4) Further, when the SOC is low, the vehicle starts with the engine running by the first engine ENG1 shown in the operation pattern D. Also in this case, the battery 8 may be charged by using the sub motor generator MG2 as a generator.
 このように、車両発進時には、メインモータジェネレータMG1の駆動力を利用したEV走行モードと、第1のエンジンENG1とサブモータジェネレータMG2とメインモータジェネレータMG1を利用したシリーズ走行モードと、メインモータジェネレータMG1と第1のエンジンENG1の両方の駆動力を利用したパラレル走行モードと、第1のエンジンENG1によるエンジン走行モードとを、運転状況に応じて選択して実行する。 Thus, when the vehicle starts, the EV travel mode using the driving force of the main motor generator MG1, the series travel mode using the first engine ENG1, the sub motor generator MG2, and the main motor generator MG1, and the main motor generator MG1. The parallel traveling mode using the driving force of both the first engine ENG1 and the engine traveling mode by the first engine ENG1 are selected and executed according to the driving situation.
《低速走行(例えば、0~30km/h)時》
 次に低速走行時の制御動作について図27を参照して説明する。
(5)、(6) 緩加速クルーズ時や、例えばアクセルを離した緩減速クルーズ時は、動作パターンAによるEV走行を行う。
(7) また、ブレーキを踏むなどした減速時には、動作パターンEによる回生運転を行う。
(8)、(9) 緩加速クルーズ時および緩減速クルーズ時でも、バッテリ8の残容量(SOC)が35%以下の場合は、動作パターンBによるシリーズ運転を行う。
(10) また、加速の場合にも、動作パターンBによるシリーズ運転を行う。
(11) 更に加速要求が高い場合は、動作パターンCに切り替えることで、メインモータジェネレータMG1と第1のエンジンENG1の駆動力を用いたパラレル走行を行う。
<< When traveling at low speed (for example, 0-30 km / h) >>
Next, the control operation during low-speed traveling will be described with reference to FIG.
(5), (6) EV travel by the operation pattern A is performed during slow acceleration cruise, for example, during slow deceleration cruise with the accelerator released.
(7) When the vehicle is decelerated such as by depressing the brake, the regenerative operation by the operation pattern E is performed.
(8), (9) Even during the slow acceleration cruise and the slow deceleration cruise, if the remaining capacity (SOC) of the battery 8 is 35% or less, the series operation by the operation pattern B is performed.
(10) Also, in the case of acceleration, the series operation by the operation pattern B is performed.
(11) When the acceleration request is higher, the operation is switched to the operation pattern C to perform parallel traveling using the driving force of the main motor generator MG1 and the first engine ENG1.
《メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え》
 メインモータジェネレータMG1から第1のエンジンENG1への駆動源の切り替え時には、前述した走行切替制御Aを用いて、図28に示すように動作制御する。
(12)、(13) まず、クラッチ機構CL1を遮断状態に保持して、動作パターンAによるEV走行を行っている状況から、第1のトランスミッションTM1の変速比を無限大にして、サブモータジェネレータMG2により第1のエンジンENG1を始動する。
<< Switching of drive source from main motor generator MG1 to first engine ENG1 >>
When the drive source is switched from the main motor generator MG1 to the first engine ENG1, the operation is controlled as shown in FIG. 28 using the travel switching control A described above.
(12), (13) First, from the situation where the clutch mechanism CL1 is held in the disengaged state and EV travel is performed according to the operation pattern A, the transmission ratio of the first transmission TM1 is set to infinity, and the sub motor generator The first engine ENG1 is started by MG2.
 そして、第1のエンジンENG1の回転数および/または第1のトランスミッションTM1の変速比を変更することにより、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1を上昇させる制御を行う。その後、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2が被回転駆動部材11の回転数R3よりもまだ低い範囲にあり、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2と被回転駆動部材11の回転数R3との差が所定範囲Ah内に入った段階で、第1のクラッチ機構CL1を連結させる。この間、第1のエンジンENG1の始動後には、動作パターンBに切り替えて、サブモータジェネレータMG2の発電によるシリーズ走行を行う。 Then, control is performed to increase the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 by changing the rotational speed of the first engine ENG1 and / or the gear ratio of the first transmission TM1. Thereafter, the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is still in a range lower than the rotational speed R3 of the driven member 11 and the rotational speed R2 of the output member 121 of the first one-way clutch OWC1. And the first clutch mechanism CL1 are connected when the difference between the rotational speed R3 and the rotational speed R3 of the driven member 11 falls within the predetermined range Ah. During this time, after the first engine ENG1 is started, the operation mode B is switched to perform series traveling by power generation of the sub motor generator MG2.
(14) その後、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1がさらに上昇し、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回ることで、動作パターンFに移行し、第1のエンジンENG1の動力を被回転駆動部材11に伝達する。 (14) Thereafter, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 further increases, and the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121. As a result, the operation pattern F is entered, and the power of the first engine ENG1 is transmitted to the rotation driven member 11.
 第1のエンジンENG1による被回転駆動部材11への動力伝達(駆動源の切り替え)が成立したら、メインモータジェネレータMG1を停止する。但し、バッテリ残容量(SOC)が少ない場合は、サブモータジェネレータMG2による発電および充電を継続し、バッテリ残容量(SOC)が十分にある場合は、サブモータジェネレータMG2を停止させる。 When the power transmission (switching of the drive source) to the rotated drive member 11 by the first engine ENG1 is established, the main motor generator MG1 is stopped. However, when the remaining battery capacity (SOC) is small, power generation and charging by the sub motor generator MG2 is continued, and when the remaining battery capacity (SOC) is sufficient, the sub motor generator MG2 is stopped.
 なお、この切替制御では、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回ることで、動作パターンFに示すエンジン走行に移行するとしたが、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2に到達した際に、第1のエンジンENG1の動力とメインモータジェネレータMG1の動力の両方が被回転駆動部材11に伝達されるパラレル走行に移行するようにしてもよい。 In this switching control, when the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121, the engine travel shown in the operation pattern F is started. When the rotational speed R1 of the input member 122 of the one-way clutch OWC1 reaches the rotational speed R2 of the output member 121, both the power of the first engine ENG1 and the power of the main motor generator MG1 are supplied to the driven member 11 to be rotated. You may make it transfer to the parallel travel transmitted.
《中速走行(例えば20~70km/h)時》
 次に中速走行時の制御動作について図29を参照して説明する。
(15) 緩加速クルーズ時は、動作パターンFにより、第1のエンジンENG1の駆動力のみを利用した単独エンジン走行を行う。その際、サブモータジェネレータMG2で発電した電力でバッテリ8を充電する。第1エンジンENG1は高効率運転ポイントで運転し、第1のトランスミッションTM1の変速比を制御することで、運転状況に対応する。
<< When driving at medium speed (for example, 20 to 70 km / h) >>
Next, the control operation during medium speed running will be described with reference to FIG.
(15) During the slow acceleration cruise, the single engine running using only the driving force of the first engine ENG1 is performed according to the operation pattern F. At that time, the battery 8 is charged with the electric power generated by the sub motor generator MG2. The first engine ENG1 operates at a high-efficiency operation point, and responds to the driving situation by controlling the gear ratio of the first transmission TM1.
(16)、(17) 緩減速クルーズ時および減速時には、動作パターンEにより、第1エンジンENG1を停止し、クラッチ機構CL1,CL2を切って、メインモータジェネレータMG1による回生運転を行う。
(18) 一方、加速時には、動作パターンCに切り替えて、第1のエンジンENG1とメインモータジェネレータMG1の両方の駆動力を利用したパラレル運転を行う。この際、基本は第1のエンジンENG1によるエンジン走行であり、加速要求に対してメインモータジェネレータMG1でアシストする。この制御動作は、中速走行時の加速要求に対して第1のトランスミッションTM1の変速比の変化で対応できないときに選択される。
(16), (17) During slow deceleration cruise and deceleration, the first engine ENG1 is stopped by the operation pattern E, the clutch mechanisms CL1, CL2 are turned off, and the regenerative operation by the main motor generator MG1 is performed.
(18) On the other hand, at the time of acceleration, the operation pattern C is switched to perform parallel operation using the driving forces of both the first engine ENG1 and the main motor generator MG1. At this time, the basic is engine running by the first engine ENG1, and the main motor generator MG1 assists the acceleration request. This control operation is selected when it is not possible to respond to an acceleration request during medium speed traveling by a change in the gear ratio of the first transmission TM1.
《第1のエンジンENG1から第2のエンジンENG2への駆動源の切り替え》
 第1のエンジンENG1の駆動力を利用したエンジン走行から第2のエンジンENG2を利用したエンジン走行への切り替え時には、図30に示すように動作制御する。
<< Switching of drive source from first engine ENG1 to second engine ENG2 >>
When switching from engine running using the driving force of the first engine ENG1 to engine running using the second engine ENG2, operation control is performed as shown in FIG.
(19)、(20) まず、動作パターンFにより、第1のエンジンENG1でエンジン走行している状態で、動作パターンGに切り替え、第2のエンジンENG2を始動する。この場合、シンクロ機構20を接続状態にして、被回転駆動部材11の動力で第2のエンジンENG2の出力軸S2をクランキングすることにより、第2のエンジンENG2を始動する。その際、始動ショックによる被回転駆動部材11の回転低下をメインモータジェネレータMG1で補う。即ち、第2のエンジンENG2の始動は、被回転駆動部材11に導入されている第1のエンジンENG1からの動力のみでも可能であるが、メインモータジェネレータMG1の駆動力を利用して行うことも可能である。なお、このときは、第2のトランスミッションTM2の変速比は、ワンウェイ・クラッチの入力回転数が出力回転数を下回るように設定されればよく、無限大に設定されてもよいし、目標とする変速比より僅かに小さい値に設定されてもよい。また、第1のエンジンENG1の駆動力に余裕がある場合には、サブモータジェネレータMG2で発電しバッテリ8の充電を行ってもよい。 (19), (20) First, the operation pattern F is switched to the operation pattern G while the engine is running on the first engine ENG1, and the second engine ENG2 is started. In this case, the second engine ENG2 is started by setting the synchro mechanism 20 to the connected state and cranking the output shaft S2 of the second engine ENG2 with the power of the driven member 11 to be rotated. At that time, the main motor generator MG1 compensates for the rotation reduction of the driven member 11 due to the start shock. In other words, the second engine ENG2 can be started only with the power from the first engine ENG1 introduced into the driven member 11 to be rotated, but can also be performed using the driving force of the main motor generator MG1. Is possible. At this time, the speed ratio of the second transmission TM2 only needs to be set so that the input rotational speed of the one-way clutch is lower than the output rotational speed, and may be set to infinity or targeted. It may be set to a value slightly smaller than the gear ratio. Further, when there is a margin in the driving force of the first engine ENG1, the battery 8 may be charged by generating power with the sub motor generator MG2.
(21) その後、第2のエンジンENG2が始動したら、動作パターンHに切り替え、シンクロ機構20を接続遮断状態にして、メインモータジェネレータMG1を停止する。この段階では、まだ第2のエンジンENG2の動力は被回転駆動部材11まで入らない状態にある。そこで、徐々に第2のトランスミッションTM2の変速比をOD側に変更していく。このとき、第1のエンジンENG1を利用してサブモータジェネレータMG2で発電しバッテリ8の充電を行う。 (21) Thereafter, when the second engine ENG2 is started, the operation pattern H is switched to, the synchro mechanism 20 is disconnected, and the main motor generator MG1 is stopped. At this stage, the power of the second engine ENG2 has not yet entered the rotated drive member 11. Therefore, the gear ratio of the second transmission TM2 is gradually changed to the OD side. At this time, the first engine ENG1 is used to generate power with the sub motor generator MG2 to charge the battery 8.
(22) 第2のトランスミッションTM2の変速比をOD側に変更していき、第2のワンウェイ・クラッチOWC2の入力回転数が出力回転数を上回ることで、動作パターンIに切り替わり、第2のワンウェイ・クラッチOWC2を介して、第2のエンジンENG2の駆動力が被回転駆動部材11に伝達される。 (22) The gear ratio of the second transmission TM2 is changed to the OD side, and when the input rotational speed of the second one-way clutch OWC2 exceeds the output rotational speed, the operation mode is switched to I, and the second one-way The driving force of the second engine ENG2 is transmitted to the rotated drive member 11 via the clutch OWC2.
《中高速走行(50~110km/h)時》
 次に中高速走行時の制御動作について図31を参照して説明する。
(23) 緩加速クルーズ時は、動作パターンIにより、第2のエンジンENG2の駆動力を利用した単体エンジン走行を実施する。
(24) 加速時には、後述する動作パターンJへの切り替えにより、第2のエンジンENG2と第1のエンジンENG1の両方の駆動力を利用して走行する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
(25) 緩減速クルーズ時には、動作パターンEにより、メインモータジェネレータMG1による回生運転を行い、両エンジンENG1、ENG2は停止する。また、(25)から(23)に戻るときには、シンクロ機構20を接続状態にして、第2のエンジンENG2をクランキングする。
(26) 減速時には、動作パターンKにより、メインモータジェネレータMG1を回生運転させ、同時に、シンクロ機構20を接続状態にすることで、第2のエンジンENG2によるエンジンブレーキを利かせる。
《Medium and high speed driving (50-110 km / h)》
Next, the control operation at the time of medium to high speed traveling will be described with reference to FIG.
(23) During slow acceleration cruise, the single engine running using the driving force of the second engine ENG2 is performed according to the operation pattern I.
(24) During acceleration, the vehicle travels by using the driving forces of both the second engine ENG2 and the first engine ENG1 by switching to an operation pattern J described later. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(25) During slow deceleration cruise, the regenerative operation is performed by the main motor generator MG1 according to the operation pattern E, and both the engines ENG1 and ENG2 are stopped. When returning from (25) to (23), the synchro mechanism 20 is set in the connected state, and the second engine ENG2 is cranked.
(26) At the time of deceleration, the main motor generator MG1 is regeneratively operated by the operation pattern K, and at the same time, the synchro mechanism 20 is brought into the connected state, thereby applying the engine brake by the second engine ENG2.
《第2のエンジンENG2によるエンジン走行から第2のエンジンENG2と第1のエンジンENG1によるエンジン走行への切り替え》
 第2のエンジンENG2の駆動力を利用したエンジン走行から、第2のエンジンENG2に加えて第1のエンジンENG1の両方の駆動力を利用したエンジン走行への切り替え時には、図32に示すように動作制御する。
<< Switching from Engine Driving by Second Engine ENG2 to Engine Driving by Second Engine ENG2 and First Engine ENG1 >>
When switching from engine running using the driving force of the second engine ENG2 to engine running using both the driving forces of the first engine ENG1 in addition to the second engine ENG2, the operation as shown in FIG. Control.
(27)、(28) まず、動作パターンIにより、第2のエンジンENG2で単独エンジン走行している状態で、動作パターンLに示すように、サブモータジェネレータMG2を利用して第1のエンジンENG1を始動する。
(29) その後、動作パターンJに示すように、第1、第2のワンウェイ・クラッチOWC1、OWC2の入力部材122の回転数が共に同期して出力部材121の回転数(被回転駆動部材11の回転数)を上回るように、第1、第2のエンジンENG1、ENG2の回転数および/または第1、第2のトランスミッションTM1、TM2の変速比を制御し、第2のエンジンENG2と第1のENG1の両駆動力を合成したエンジン走行へ移行する。
(27), (28) First, as shown in the operation pattern L, the first engine ENG1 is operated by using the sub motor generator MG2 in the state where the second engine ENG2 is traveling independently by the operation pattern I. Start.
(29) After that, as shown in the operation pattern J, the rotational speeds of the input members 122 of the first and second one-way clutches OWC1 and OWC2 are synchronized with each other (the rotational speed of the output drive member 11). The rotational speed of the first and second engines ENG1 and ENG2 and / or the gear ratio of the first and second transmissions TM1 and TM2 is controlled so as to exceed the rotational speed), and the second engine ENG2 and the first engine The engine shifts to the combined drive force of ENG1.
《高速走行(100~Vmaxkm/h)時》
 次に、高速走行時の制御動作について図33を参照して説明する。
(30)、(31) 緩加速クルーズ時および加速時は、動作パターンJにより、第2のエンジンENG2の駆動力と第1のエンジンENG1の駆動力の合成力を利用したエンジン走行を実施する。この際、小排気量の第1のエンジンENG1は、回転数やトルクが高効率運転領域に入るように第1のエンジンENG1および/または第1のトランスミッションTM1を制御する固定した運転条件で運転し、それ以上の要求出力に対しては、大排気量の第2のエンジンENG2および/または第2のトランスミッションTM2を制御する。なお、SOCが低い場合には、サブモータジェネレータMG2を発電機として利用し、バッテリ8の充電を行ってもよい。
<< At high speed (100 to Vmaxkm / h) >>
Next, the control operation during high speed traveling will be described with reference to FIG.
(30), (31) During slow acceleration cruise and acceleration, engine running is performed using the combined force of the driving force of the second engine ENG2 and the driving force of the first engine ENG1 according to the operation pattern J. At this time, the first engine ENG1 with a small displacement is operated under a fixed operating condition for controlling the first engine ENG1 and / or the first transmission TM1 so that the rotation speed and torque are in the high efficiency operation region. For more demanded output, the second engine ENG2 and / or the second transmission TM2 having a large displacement is controlled. When the SOC is low, the battery 8 may be charged using the sub motor generator MG2 as a generator.
(32) また、緩減速クルーズ時は、動作パターンMにより、シンクロ機構20を接続状態にして第2のエンジンENG2のエンジンブレーキを利かせる。このとき、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。
(33) また、ブレーキを踏むなどした減速時には、動作パターンNに切り替え、シンクロ機構20を接続状態にすることにより、第2のエンジンENG2のエンジンブレーキを利かせる。同時に、メインモータジェネレータMG1の回生運転により、強い制動力が働くようにする。そして、メインモータジェネレータMG1で生成した回生電力をバッテリ8に充電する。また、減速に寄与しない第1のエンジンENG1は、サブモータジェネレータMG2の発電運転に使い、バッテリ8を充電する。
(32) Further, during slow deceleration cruise, the operation mechanism M causes the synchro mechanism 20 to be connected and apply the engine brake of the second engine ENG2. At this time, the first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
(33) Further, at the time of deceleration such as stepping on the brake, the engine brake of the second engine ENG2 is applied by switching to the operation pattern N and setting the synchro mechanism 20 to the connected state. At the same time, a strong braking force is applied by the regenerative operation of the main motor generator MG1. Then, the battery 8 is charged with the regenerative power generated by the main motor generator MG1. The first engine ENG1 that does not contribute to deceleration is used for the power generation operation of the sub motor generator MG2, and charges the battery 8.
《後進時》
 次に後進(後退)時の制御動作について図34を参照して説明する。
(34) 後進時は緩加速クルーズとして、動作パターンAによりEV走行を行う。後進しようとする時には、第1、第2のワンウェイ・クラッチOWC1、OWC2において、被回転駆動部材11に繋がる出力部材121が、正方向に対して逆方向(図3中の矢印RD2方向)に回転することになるので、入力部材122と出力部材121が互いにローラ123を介して噛み合う。入力部材122と出力部材121が噛み合うと、出力部材121の逆方向の回転力が入力部材122に作用することになるが、図36(a)に示す連結部材130の延長線上に入力中心軸線O1が位置する、入力中心軸線O1と第2支点O4とが最も離れた位置(または、正方向に対して逆方向の回転方向が図3中の矢印RD1方向の場合には、図36(b)に示す連結部材130が入力中心軸線O1を通り入力中心軸線O1と第2支点O4とが最も近接した位置)に至ると、入力部材122は連結部材130に連結されていることにより、入力部材122の揺動運動が規制されるので、それ以上逆方向の運動の伝達はロックされる。従って、出力部材121が逆回転しようとしても、無限・無段変速機構BD1、BD2よりなる第1、第2のトランスミッションTM1、TM2がロックすることにより、後進できない状態(後進不可状態)が発生する。そこで、予めクラッチ機構CL1、CL2を解放状態にしてロックを回避しておき、その状態でメインモータジェネレータMG1を逆回転させて、車両を後進させる。
(35) EV走行で後退している場合も、バッテリ8の残容量SOCが35%以下の場合は、動作パターンBのシリーズ走行に切り替えて、バッテリ8を充電しながら、メインモータジェネレータMG1を逆回転させる。
《Reversing time》
Next, the control operation during reverse (reverse) will be described with reference to FIG.
(34) When traveling backward, EV travel is performed by operation pattern A as a slow acceleration cruise. When going backward, in the first and second one-way clutches OWC1 and OWC2, the output member 121 connected to the driven member 11 rotates in the reverse direction (the direction of the arrow RD2 in FIG. 3) with respect to the forward direction. Therefore, the input member 122 and the output member 121 are engaged with each other via the roller 123. When the input member 122 and the output member 121 mesh with each other, the rotational force in the reverse direction of the output member 121 acts on the input member 122. However, the input center axis O1 is on the extension line of the connecting member 130 shown in FIG. Where the input center axis O1 and the second fulcrum O4 are farthest from each other (or when the rotation direction opposite to the forward direction is the direction of the arrow RD1 in FIG. 3, FIG. 36 (b) When the connecting member 130 shown in FIG. 2 passes through the input center axis O1 and reaches the position where the input center axis O1 and the second fulcrum O4 are closest to each other), the input member 122 is connected to the connecting member 130. Since the oscillating motion is restricted, transmission of motion in the opposite direction is locked. Therefore, even if the output member 121 tries to reversely rotate, the first and second transmissions TM1 and TM2 including the infinite and continuously variable transmission mechanisms BD1 and BD2 are locked, so that a state in which the vehicle cannot reverse (non-reverse) is generated. . Therefore, the clutch mechanisms CL1 and CL2 are released in advance to avoid the lock, and the main motor generator MG1 is reversely rotated in this state to reverse the vehicle.
(35) If the remaining capacity SOC of the battery 8 is 35% or less even when reversing in EV traveling, the main motor generator MG1 is reversed while charging the battery 8 by switching to the operation pattern B series traveling. Rotate.
《停止時》
 次に停止時の制御動作について図35を参照して説明する。
(36) 車両停止の際のアイドリング時には、動作パターンOに切り替え、第1のエンジンENG1のみ駆動し、駆動力が被回転駆動部材11に伝わらないように、例えば、第1のトランスミッションTM1の変速比を無限大にして、サブモータジェネレータMG2により発電し、生成した電力をバッテリ8に充電する。
(37) また、アイドリングストップの場合は、全ての動力源を停止する。
<When stopped>
Next, the control operation at the time of stop will be described with reference to FIG.
(36) At the time of idling when the vehicle is stopped, the operation mode is switched to O, and only the first engine ENG1 is driven, so that the driving force is not transmitted to the rotated drive member 11, for example, the gear ratio of the first transmission TM1 Is set to infinity, power is generated by the sub motor generator MG2, and the generated power is charged in the battery 8.
(37) In the case of idling stop, all power sources are stopped.
 以上において説明した本実施形態の自動車用駆動システム1によれば、制御手段5は、第1のクラッチ機構CL1を遮断状態に保持してEV走行制御モードからエンジン走行制御モードに切り替える際に、第1のワンウェイ・クラッチOWC1の出力部材122の回転数R2が被回転駆動部材11の回転数R3よりも低い範囲にあり、且つ、第1のワンウェイ・クラッチの出力部材の回転数R2と被回転駆動部材11の回転数との差が所定範囲Ah内になったとき、第1のクラッチ機構CL1を連結させ、その後、第1のワンウェイ・クラッチCL1の入力部材121の回転数R1が出力部材122の回転数R2を上回るように制御することで、第1のワンウェイ・クラッチOWC1の入力部材側の回転動力を被回転駆動部材11に伝達させる第1切替制御手段を含む。 According to the vehicle drive system 1 of the present embodiment described above, when the control unit 5 holds the first clutch mechanism CL1 in the disconnected state and switches from the EV travel control mode to the engine travel control mode, The rotational speed R2 of the output member 122 of the one-way clutch OWC1 is in a range lower than the rotational speed R3 of the driven member 11, and the rotational speed R2 of the output member of the first one-way clutch and the driven drive When the difference from the rotational speed of the member 11 falls within the predetermined range Ah, the first clutch mechanism CL1 is connected, and then the rotational speed R1 of the input member 121 of the first one-way clutch CL1 is equal to that of the output member 122. By controlling the rotational speed to exceed the rotational speed R2, the rotational power on the input member side of the first one-way clutch OWC1 is transmitted to the driven member 11 to be rotated. That includes a first switching control unit.
 これにより、EV走行からエンジン走行へ切り替える際のエンジン側から被回転駆動部材側への動力伝達が、第1のクラッチ機構CL1の連結によってではなく、入力側回転数が出力側回転数を上回って第1のワンウェイ・クラッチOWC1がロック状態になることによって行われるので、第1のクラッチ機構CL1の連結によって動力伝達が行われる場合よりも、切り替えによるショックを少なくすることができる。 As a result, the power transmission from the engine side to the driven member side when switching from EV traveling to engine traveling is not due to the connection of the first clutch mechanism CL1, but the input side rotational speed exceeds the output side rotational speed. Since the first one-way clutch OWC1 is performed by being locked, the shock caused by the switching can be reduced as compared with the case where power transmission is performed by connecting the first clutch mechanism CL1.
 また、EV走行中は、クラッチ機構が遮断状態に保持されているため、ワンウェイ・クラッチの摩擦(引き摺り)による損失を低減することができ、エネルギー効率の向上が図れる。 Also, since the clutch mechanism is maintained in the disconnected state during EV traveling, loss due to friction (dragging) of the one-way clutch can be reduced, and energy efficiency can be improved.
 また、エンジンの回転数および/または変速機構の変速比を変更することにより、ワンウェイ・クラッチの出力部材の回転数と被回転駆動部材の回転数との差を所定範囲内に入るようにするので、車速(被回転駆動部材の回転数)を落とさずに、EV走行からエンジン走行にショックを低減しながら切り替えることができる。 Also, by changing the engine speed and / or the gear ratio of the speed change mechanism, the difference between the speed of the output member of the one-way clutch and the speed of the driven member is within a predetermined range. It is possible to switch from EV traveling to engine traveling while reducing the shock without reducing the vehicle speed (the number of rotations of the driven member).
 さらに、無段変速機構の変速比を無限大にした状態でエンジンを始動させ、その後、EV走行からエンジン走行に切り替えるので、エンジン始動時の負荷を軽減して、エンジンの始動を容易にすることができる。 Furthermore, since the engine is started with the speed ratio of the continuously variable transmission mechanism being infinite, and then the EV driving is switched to the engine driving, the engine starting load is reduced and the engine can be started easily. Can do.
《第2実施形態》
 次に、本発明の第2実施形態に係る自動車用駆動システムについて説明する。
 この第2実施形態の自動車用駆動システムでは、アクセル開度や車速などに基づいて、車両の走行に要求される出力(駆動力)を検出する要求出力検出手段(図示略)を更に備えている。
 また、制御手段は、走行切替制御Aを実行する第1切替制御手段の他に、走行切替制御Bを実行する第2切替制御手段と、要求出力検出手段が検出した要求出力が所定より下回る場合に第1切替制御手段を用いた走行切替制御Aの実行を選択すると共に、要求出力検出手段が検出した要求出力が所定以上の場合に第2切替制御手段を用いた走行切替制御Bの実行を選択する切替制御選択手段とを含んでいる。
<< Second Embodiment >>
Next, an automobile drive system according to a second embodiment of the present invention will be described.
The vehicle drive system according to the second embodiment further includes requested output detection means (not shown) for detecting an output (driving force) required for traveling of the vehicle based on the accelerator opening, the vehicle speed, and the like. .
In addition to the first switching control means for executing the travel switching control A, the control means is configured such that the second switching control means for executing the traveling switching control B and the request output detected by the request output detecting means is below a predetermined value. The execution of the travel switching control A using the second switching control means is selected when the execution of the travel switching control A using the first switching control means is selected and the request output detected by the request output detection means is greater than or equal to a predetermined value. Switching control selection means for selecting.
 この第2切替制御手段による制御は、第1のクラッチ機構CL1を遮断状態に保持してEV走行制御モードを実行している状態からエンジン走行制御モードの実行に切り替える際に、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2が被回転駆動部材11の回転数R3を上回る状態で、且つ、ワンウェイ・クラッチOWCの出力部材121の回転数R2と被回転駆動部材11の回転数R3との差が所定範囲Bh内になったところで、クラッチ機構CLを連結することによって、ワンウェイ・クラッチOWCの入力部材122側の回転動力を被回転駆動部材11側に伝達させるものである。 The control by the second switching control means is performed when the first clutch mechanism CL1 is held in the disengaged state and the EV traveling control mode is executed to switch to the execution of the engine traveling control mode. The rotational speed R2 of the output member 121 of the clutch OWC1 exceeds the rotational speed R3 of the driven member 11, and the rotational speed R2 of the output member 121 of the one-way clutch OWC and the rotational speed R3 of the driven member 11 When the difference is within the predetermined range Bh, the rotational power on the input member 122 side of the one-way clutch OWC is transmitted to the rotated drive member 11 side by connecting the clutch mechanism CL.
 以下、図37のフローチャート及び図38のタイムチャートに基づいて走行切替制御Bの内容について説明する。 Hereinafter, the content of the travel switching control B will be described based on the flowchart of FIG. 37 and the time chart of FIG.
 この走行切替制御Bがスタートすると、ステップS201でトランスミッションTMのレシオを無限大(∞)に設定して、ステップS202でエンジンENGを始動する(図38のZ11で示す部分)。この際、トランスミッションTMのレシオを無限大に設定しているので、最小負荷でエンジンENGを始動させることができる。 When this travel switching control B is started, the transmission TM ratio is set to infinity (∞) in step S201, and the engine ENG is started in step S202 (part indicated by Z11 in FIG. 38). At this time, since the ratio of the transmission TM is set to infinity, the engine ENG can be started with the minimum load.
 次にステップS203で、ワンウェイ・クラッチOWCの上流側(入力部材122)の回転数R1を上昇させる制御を行う。ここでは、エンジンENGの回転数および/またはトランスミッションTMの変速比を変更することにより、ワンウェイ・クラッチの上流側(入力部材122)の回転数R1を上昇させる。 Next, in step S203, control is performed to increase the rotational speed R1 on the upstream side (input member 122) of the one-way clutch OWC. Here, the rotational speed R1 on the upstream side (input member 122) of the one-way clutch is increased by changing the rotational speed of the engine ENG and / or the gear ratio of the transmission TM.
 この段階では、第1のクラッチ機構CL1が遮断されていることにより、第1のワンウェイ・クラッチOWC1の入力部材122の回転数R1が出力部材121の回転数R2を上回っているので、第1のワンウェイ・クラッチOWC1の入力部材122と出力部材121がロック状態になり、入力部材122に入力された回転が出力部材121に伝達され(R1とR2が一致)、出力部材121の回転数が上昇していく(図38のZ12で示す部分)。 At this stage, since the first clutch mechanism CL1 is disengaged, the rotational speed R1 of the input member 122 of the first one-way clutch OWC1 exceeds the rotational speed R2 of the output member 121. The input member 122 and the output member 121 of the one-way clutch OWC1 are locked, the rotation input to the input member 122 is transmitted to the output member 121 (R1 and R2 match), and the rotation speed of the output member 121 increases. (The portion indicated by Z12 in FIG. 38).
 そして、第1のクラッチ機構CL1の上流側の回転数R2と下流側の回転数R3を監視し(ステップS204)、ステップS205において、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2が被回転駆動部材11の回転数R3を上回る状態で、且つ、第1のワンウェイ・クラッチOWC1の出力部材121の回転数R2と被回転駆動部材11の回転数R3との差が所定範囲Bh内になったら、その時点で第1のクラッチ機構CL1を連結させる(ステップS206)。 Then, the upstream rotational speed R2 and the downstream rotational speed R3 of the first clutch mechanism CL1 are monitored (step S204). In step S205, the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 is determined. The difference between the rotational speed R2 of the output member 121 of the first one-way clutch OWC1 and the rotational speed R3 of the driven drive member 11 is within a predetermined range Bh in a state exceeding the rotational speed R3 of the driven drive member 11. At that time, the first clutch mechanism CL1 is connected (step S206).
 この場合、第1のワンウェイ・クラッチOWC1の出力部材121と被回転駆動部材11が機械的に連結されることで、出力部材121の回転数R2が瞬間的に被回転駆動部材11の回転数R3近くまで引き下げられる。この瞬間にショックは発生するが、即座に、第1のエンジンENGの回転数および/または第1のトランスミッションTM1の変速比を変更することで上昇させた第1のワンウェイ・クラッチOWC1の上流側(入力部材122)の回転数R1が出力部材121の回転数R3を上回っていることにより(図38のZ14で示す部分)、第1のワンウェイ・クラッチOWC1はロック状態を維持したまま、第1のワンウェイ・クラッチOWC1の入力部材122側の回転動力が出力部材121側に伝達され、その回転動力が、いま連結された第1のクラッチ機構CLを介して被回転駆動部材11に伝達され、最終的に車軸13を介して駆動車輪2に伝達されるようになる。 In this case, the output member 121 of the first one-way clutch OWC1 and the rotationally driven member 11 are mechanically connected, so that the rotational speed R2 of the output member 121 instantaneously becomes the rotational speed R3 of the rotationally driven member 11. It is pulled down close. Although a shock occurs at this moment, immediately, the upstream side of the first one-way clutch OWC1 raised by changing the rotation speed of the first engine ENG and / or the transmission ratio of the first transmission TM1 ( When the rotational speed R1 of the input member 122) exceeds the rotational speed R3 of the output member 121 (part indicated by Z14 in FIG. 38), the first one-way clutch OWC1 is maintained in the locked state while the first The rotational power on the input member 122 side of the one-way clutch OWC1 is transmitted to the output member 121 side, and the rotational power is transmitted to the rotated drive member 11 via the first clutch mechanism CL that is now connected, and finally To the driving wheel 2 via the axle 13.
 次に、エンジン走行への切り替えが進んだと見なして、ステップS207に進み、電動モータMOTを停止させる。これにより、エンジン走行への移行が完了し、処理を終了する。 Next, assuming that the switch to engine running has proceeded, the process proceeds to step S207, where the electric motor MOT is stopped. Thereby, the transition to engine running is completed, and the process is terminated.
 次に、図39のフローチャートに基づいて走行切替制御Aと走行切替制御Bを要求出力に応じて選択して実行する制御の内容を説明する。
 この制御がスタートすると、ステップS11でアクセル開度などに応じて要求出力を検出する。要求出力が所定以上の場合は、ステップS12で急加速と判断してステップS13に進み、走行切替制御Bを実行する。一方、要求出力が所定以上でないとステップS12にて判断した場合は、緩加速と見なしてステップS14に進み、走行切替制御Aを実行する。そして、走行切替制御Aまたは走行切替制御Bを実行したら、処理を終了する。
Next, the contents of control executed by selecting and executing the travel switching control A and the travel switching control B according to the request output will be described based on the flowchart of FIG.
When this control starts, a required output is detected in step S11 according to the accelerator opening. If the requested output is greater than or equal to the predetermined value, it is determined that the acceleration is abrupt in step S12, the process proceeds to step S13, and the travel switching control B is executed. On the other hand, if it is determined in step S12 that the requested output is not greater than or equal to the predetermined value, it is regarded as slow acceleration, and the process proceeds to step S14 to execute travel switching control A. When the travel switching control A or the travel switching control B is executed, the process is terminated.
 このように、走行切替制御Aと走行切替制御Bを選択して実行することにより、図40(b)に示すように、レスポンス優先で走行切替制御Bを実行した場合には、駆動トルクの段差が生じるが、図40(a)に示すように、走行切替制御Aを実行した場合には、駆動トルクのスムーズな立ち上げが可能となり、運転者に違和感を感じさせない加速が可能となる。 Thus, by selecting and executing the travel switching control A and the travel switching control B, as shown in FIG. 40 (b), when the travel switching control B is performed with priority on response, the step of the drive torque However, as shown in FIG. 40 (a), when the travel switching control A is executed, the driving torque can be smoothly started up, and acceleration without causing the driver to feel uncomfortable is possible.
 従って、第2実施形態の切替制御によれば、要求出力に応じて走行切替制御A,Bを選択的に実行することができる。即ち、要求出力が低いとき(例えば加速要求の低い場合)、第1のエンジンENG1側から駆動車輪2側への動力伝達を第1のワンウェイ・クラッチOWC1で行い、ショックの少ないスムーズな走行モードの切り替えを行うことができる。また、要求出力が高いとき(例えば加速要求の高い場合)、第1のエンジンENG1側から駆動車輪2側への動力伝達を第1のクラッチ機構CL1で行い、レスポンスの良い走行モードの切り替えを行うことができる。 Therefore, according to the switching control of the second embodiment, the traveling switching control A and B can be selectively executed according to the required output. That is, when the required output is low (for example, when the acceleration request is low), the power transmission from the first engine ENG1 side to the drive wheel 2 side is performed by the first one-way clutch OWC1, and the smooth running mode with less shock is performed. Switching can be done. Further, when the required output is high (for example, when the acceleration request is high), power transmission from the first engine ENG1 side to the drive wheel 2 side is performed by the first clutch mechanism CL1, and the driving mode with good response is switched. be able to.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. can be made as appropriate. In addition, the material, shape, dimensions, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 例えば、上記実施形態では、ディファレンシャル装置10の左右両側に第1のワンウェイ・クラッチOWC1と第2のワンウェイ・クラッチOWC2をそれぞれ配置し、各ワンウェイ・クラッチOWC1、OWC2の出力部材121をそれぞれクラッチ機構CL1、CL2を介して被回転駆動部材11に接続した場合を示したが、図41に示す別の実施形態のように、ディファレンシャル装置10の片側に第1と第2の両方のワンウェイ・クラッチOWC1、OWC2を配置し、これら両方のワンウェイ・クラッチOWC1、OWC2の出力部材を連結した上で、1つのクラッチ機構CLを介して被回転駆動部材11に接続してもよい。 For example, in the above-described embodiment, the first one-way clutch OWC1 and the second one-way clutch OWC2 are respectively arranged on the left and right sides of the differential device 10, and the output members 121 of the one-way clutches OWC1 and OWC2 are respectively connected to the clutch mechanism CL1. As shown in FIG. 41, the first and second one-way clutches OWC1 and OWC1 are connected to one side of the differential device 10 as in another embodiment shown in FIG. The OWC 2 may be disposed, and the output members of both the one-way clutches OWC 1 and OWC 2 may be connected, and then connected to the driven member 11 through one clutch mechanism CL.
 また、上記実施形態では、第1、第2のトランスミッションTM1、TM2が、偏心ディスク104や連結部材130、ワンウェイ・クラッチ120を使用した形式のもので構成されている場合を示したが、その他のCVTなどの変速機構を用いてもよい。その他の形式の変速機構を用いた場合は、ワンウェイ・クラッチOWC1、OWC2を変速機構の外側(下流側)に装備してもよい。 In the above-described embodiment, the first and second transmissions TM1 and TM2 are configured to be of the type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120. A transmission mechanism such as CVT may be used. When another type of speed change mechanism is used, the one-way clutches OWC1 and OWC2 may be provided outside (downstream side) of the speed change mechanism.
 また、上記実施形態では、2つのエンジンENG1,ENG2、2つのトランスミッションTM1,TM2、2つのワンウェイ・クラッチOWC1,OWC2、2つのモータジェネレータMG1,MG2、及び2つのクラッチ機構CL1,CL2を有する構成を用いて説明したが、図42に示すような、エンジンENG、トランスミッションTM、ワンウェイ・クラッチOWC、電動モータMOT、クラッチ機構CLを1つずつ備える構成に適用可能である。 In the above embodiment, the engine has two engines ENG1 and ENG2, two transmissions TM1 and TM2, two one-way clutches OWC1 and OWC2, two motor generators MG1 and MG2, and two clutch mechanisms CL1 and CL2. Although described with reference to FIG. 42, the present invention can be applied to a configuration including one engine ENG, one transmission TM, one-way clutch OWC, one electric motor MOT, and one clutch mechanism CL as shown in FIG.
 また、電動モータMOTは、本実施形態のようにエンジンENGによって駆動される駆動車輪2に回転動力を与える構成であってもよいし、図42の破線で示すように、別の駆動車輪2B(駆動車輪2が前輪の場合は後輪、駆動車輪2が後輪の場合は前輪)に回転動力を与える構成であってもよい。 Further, the electric motor MOT may be configured to give rotational power to the drive wheel 2 driven by the engine ENG as in the present embodiment, or as shown by a broken line in FIG. When the driving wheel 2 is a front wheel, the rear wheel may be used, and when the driving wheel 2 is a rear wheel, the driving power may be applied to a front wheel).
 また、本発明の切替制御は、上記実施形態では、メインモータジェネレータMG1の駆動力で走行している状態から、第1のエンジンENG1の駆動力で走行する状態に切り替える場合について説明したが、第1のエンジンENG1の駆動力で走行している状態から、第2のエンジンENG2の駆動力で走行する状態に切り替える場合についても適用することができる。 In the above embodiment, the switching control of the present invention has been described for the case of switching from the state of traveling with the driving force of the main motor generator MG1 to the state of traveling with the driving force of the first engine ENG1. The present invention can also be applied to a case where the state of traveling with the driving force of the first engine ENG1 is switched to the state of traveling with the driving force of the second engine ENG2.
 この場合、制御手段5は、第1のエンジンENG1の駆動力によるエンジン走行を制御する第1エンジン走行制御モードと第2のエンジンENG2の駆動力によるエンジン走行を制御する第2エンジン走行制御モードとを実行する。そして、制御手段5は、第2のクラッチ機構CL2を遮断状態に保持して第1エンジン走行制御モードから第2エンジン走行制御モードに切り替える際には、第2のワンウェイ・クラッチOWC2の出力部材121の回転数が被回転駆動部材11の回転数よりも低い範囲にあり、且つ、第2のワンウェイ・クラッチOWC2の出力部材121の回転数と被回転駆動部材11の回転数との差が所定範囲内になったとき、第2のクラッチ機構CL2を連結させ、その後、第2のワンウェイ・クラッチOWC2の入力部材122の回転数が出力部材121の回転数を上回るように制御することで、第2のワンウェイ・クラッチOWC2の入力部材側の回転動力を被回転駆動部材11に伝達させる第3切替制御手段を含む。この第3切替制御手段の制御を、図43のフローチャートに示した走行切替制御C及び図44の走行切替制御Cに対応するタイムチャートを参照して説明する。 In this case, the control means 5 includes a first engine traveling control mode for controlling engine traveling by the driving force of the first engine ENG1, and a second engine traveling control mode for controlling engine traveling by the driving force of the second engine ENG2. Execute. When the control means 5 keeps the second clutch mechanism CL2 in the disconnected state and switches from the first engine travel control mode to the second engine travel control mode, the output member 121 of the second one-way clutch OWC2 is used. And the difference between the rotation speed of the output member 121 of the second one-way clutch OWC2 and the rotation speed of the driven member 11 is within a predetermined range. When the second clutch mechanism CL2 is engaged, the second one-way clutch OWC2 is controlled so that the rotational speed of the input member 122 exceeds the rotational speed of the output member 121. A third switching control means for transmitting the rotational power on the input member side of the one-way clutch OWC2 to the driven member 11 to be rotated. The control of the third switching control means will be described with reference to the travel switching control C shown in the flowchart of FIG. 43 and the time chart corresponding to the travel switching control C of FIG.
 まず、回転負荷を最小にするため、第2のトランスミッションTM2の変速比を無限大∞に設定し(ステップS301)、この状態で、シンクロ機構20を接続状態にして、第2のエンジンENG2を被回転駆動部材11の動力を用いてクランキングすることにより、第2のエンジンENG2を始動する(ステップS302、図44のZ21で示す部分)。 First, in order to minimize the rotational load, the gear ratio of the second transmission TM2 is set to infinity ∞ (step S301), and in this state, the synchro mechanism 20 is connected and the second engine ENG2 is covered. The second engine ENG2 is started by cranking using the power of the rotary drive member 11 (step S302, a portion indicated by Z21 in FIG. 44).
 そして、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比を変更することにより、第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11を上昇させる(ステップS303)。 Then, the rotational speed R11 of the input member 122 of the second one-way clutch OWC2 is increased by changing the rotational speed of the second engine ENG2 and / or the gear ratio of the second transmission TM2 (step S303).
 この段階では、第2のクラッチ機構CL2が遮断状態にあるから、第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11は、出力部材121の回転数R12を上回っており、第2のワンウェイ・クラッチOWC2の入力部材122と出力部材121は互いにロック状態になり、入力部材122に入力された回転が出力部材121に伝達され、入力部材122の回転数R11と出力部材121の回転数R12が共に上昇して行く(図44のZ22で示す部分)。 At this stage, since the second clutch mechanism CL2 is in the disconnected state, the rotational speed R11 of the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed R12 of the output member 121, and the second one-way clutch The input member 122 and the output member 121 of the clutch OWC2 are locked to each other, the rotation input to the input member 122 is transmitted to the output member 121, and the rotation speed R11 of the input member 122 and the rotation speed R12 of the output member 121 are Both rise (the portion indicated by Z22 in FIG. 44).
 また、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12、及び被回転駆動部材11の回転数R13を検出する(ステップS304)。そして、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12が被回転駆動部材11の回転数R13よりもまだ低い範囲にあり、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12と被回転駆動部材11の回転数R13との差が所定範囲Ah内に入っているかどうか判断し(ステップS305)、ステップS305がYESとなったタイミングで、第2のクラッチ機構CL2を連結させる(ステップS306、S307、図44のZ23で示す部分)。 Also, the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 and the rotational speed R13 of the driven member 11 to be rotated are detected (step S304). The rotation speed R12 of the output member 121 of the second one-way clutch OWC2 is still in a range lower than the rotation speed R13 of the driven member 11 and the rotation speed R12 of the output member 121 of the second one-way clutch OWC2 is. And the rotational speed R13 of the driven member 11 to be rotated are determined whether they are within the predetermined range Ah (step S305), and the second clutch mechanism CL2 is connected at the timing when step S305 becomes YES (step S305). Steps S306, S307, part indicated by Z23 in FIG. 44).
 すると、第2のワンウェイ・クラッチOWC2の出力部材122と被回転駆動部材11が機械的に連結されることで、出力部材121の回転数R12が瞬間的に被回転駆動部材11の回転数R13まで引き上げられる。この瞬間に、入力部材122の回転数R11より出力部材121の回転数R12が上回ることになるので、ワンウェイ・クラッチOWC2は非ロック状態になり、入力部材122と出力部材121の間の動力伝達が遮断される。 Then, the output member 122 of the second one-way clutch OWC2 and the driven member 11 are mechanically connected, so that the rotational speed R12 of the output member 121 instantaneously reaches the rotational speed R13 of the driven member 11 to be rotated. Be raised. At this moment, since the rotational speed R12 of the output member 121 exceeds the rotational speed R11 of the input member 122, the one-way clutch OWC2 is unlocked, and the power transmission between the input member 122 and the output member 121 is not performed. Blocked.
 また、第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11、及び出力部材121の回転数R12を検出する(ステップS308)。そして、第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11が出力部材121の回転数R12を上回るように、ステップS203における第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11の上昇制御を継続する。第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11が出力部材121の回転数R12を上回ることで(ステップS309、図44のZ24で示す部分)、第2のワンウェイ・クラッチOWC2を再びロック状態にすることができ、第2のワンウェイ・クラッチOWCの入力部材122側の回転動力を出力部材121側へ伝達させ、その回転を、先に連結してある第2のクラッチ機構CL2を介して、被回転駆動部材11に伝達させることができるようになる。 Also, the rotational speed R11 of the input member 122 and the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 are detected (step S308). Then, the rotation speed R11 of the input member 122 of the second one-way clutch OWC2 is increased in step S203 so that the rotation speed R11 of the input member 122 of the second one-way clutch OWC2 exceeds the rotation speed R12 of the output member 121. Continue control. When the rotational speed R11 of the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed R12 of the output member 121 (step S309, a portion indicated by Z24 in FIG. 44), the second one-way clutch OWC2 is locked again. Rotational power on the input member 122 side of the second one-way clutch OWC is transmitted to the output member 121 side, and the rotation is transmitted via the second clutch mechanism CL2 that is connected first. Thus, the rotation can be transmitted to the driven member 11.
 このように、第1エンジン走行から第2エンジン走行へ切り替わる際の第2のエンジンENG2側から被回転駆動部材11側への動力伝達を、第2のクラッチ機構CL2の連結によってではなく、入力部材122の回転数R11を出力部材121の回転数R12より上回らせてワンウェイ・クラッチOWC2をロック状態にすることによって行うようにしているので、第2のクラッチ機構CL2の連結によって動力伝達が行われる場合よりも、切り替えによるショックを少なくすることができる。 Thus, the power transmission from the second engine ENG2 side to the rotated drive member 11 side when switching from the first engine travel to the second engine travel is not performed by the connection of the second clutch mechanism CL2, but the input member. When the one-way clutch OWC2 is locked by making the rotation speed R11 of 122 higher than the rotation speed R12 of the output member 121, the power transmission is performed by the connection of the second clutch mechanism CL2. Rather than switching.
 また、第1エンジン走行から第2エンジン走行へ切り替わる際にも、制御手段は、第2実施形態と同様、走行切替制御Cを実行する第3切替制御手段の他に、走行切替制御Dを実行する第4切替制御手段と、要求出力検出手段が検出した要求出力が所定より下回る場合に第3切替制御手段を用いた走行切替制御Cの実行を選択すると共に、要求出力検出手段が検出した要求出力が所定以上の場合に第4切替制御手段を用いた走行切替制御Dの実行を選択する切替制御選択手段とを含んでもよい。 In addition, when switching from the first engine travel to the second engine travel, the control means executes the travel switching control D in addition to the third switching control means that executes the travel switching control C, as in the second embodiment. When the demand output detected by the fourth switching control means and the demand output detection means falls below a predetermined value, the execution of the travel switching control C using the third switching control means is selected, and the demand detected by the demand output detection means Switching control selection means for selecting execution of travel switching control D using the fourth switching control means when the output is greater than or equal to a predetermined value.
 この第4切替制御手段による制御は、第2のクラッチ機構CL2を遮断状態に保持して第1エンジン走行制御モードを実行している状態から第2エンジン走行制御モードの実行に切り替える際に、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12が被回転駆動部材11の回転数R13を上回る状態で、且つ、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R2と被回転駆動部材11の回転数R3との差が所定範囲Bh内になったところで、第2のクラッチ機構CL2を連結することによって、第2のワンウェイ・クラッチOWC2の入力部材122側の回転動力を被回転駆動部材11側に伝達させるものである。 The control by the fourth switching control means is performed when the second engine mechanism control mode is switched from the state in which the second engine mechanism control mode is being executed while the second clutch mechanism CL2 is maintained in the disengaged state. The rotation speed R12 of the output member 121 of the second one-way clutch OWC2 exceeds the rotation speed R13 of the driven member 11 and the rotation speed R2 of the output member 121 of the second one-way clutch OWC2 and the driven rotation When the difference from the rotational speed R3 of the member 11 is within the predetermined range Bh, the rotational power on the input member 122 side of the second one-way clutch OWC2 is driven to rotate by connecting the second clutch mechanism CL2. It is transmitted to the member 11 side.
 以下、図45のフローチャート及び図46のタイムチャートに基づいて走行切替制御Dの内容について説明する。 Hereinafter, the content of the travel switching control D will be described based on the flowchart of FIG. 45 and the time chart of FIG.
 この走行切替制御Dがスタートすると、ステップS401で第2のトランスミッションTM2のレシオを無限大(∞)に設定して、ステップS402で第2のエンジンENG2を始動する(図46のZ31で示す部分)。この際、第2のトランスミッションTM2のレシオを無限大に設定しているので、最小負荷で第2のエンジンENG2を始動させることができる。 When the travel switching control D is started, the ratio of the second transmission TM2 is set to infinity (∞) in step S401, and the second engine ENG2 is started in step S402 (part indicated by Z31 in FIG. 46). . At this time, since the ratio of the second transmission TM2 is set to infinity, the second engine ENG2 can be started with the minimum load.
 次にステップS403で、第2のワンウェイ・クラッチOWC2の上流側(入力部材122)の回転数R11を上昇させる制御を行う。ここでは、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比を変更することにより、第2のワンウェイ・クラッチOWC2の上流側(入力部材122)の回転数R11を上昇させる。 Next, in step S403, control is performed to increase the rotational speed R11 on the upstream side (input member 122) of the second one-way clutch OWC2. Here, the rotational speed R11 on the upstream side (input member 122) of the second one-way clutch OWC2 is increased by changing the rotational speed of the second engine ENG2 and / or the gear ratio of the second transmission TM2. .
 この段階では、第2のクラッチ機構CL2が遮断されていることにより、第2のワンウェイ・クラッチOWC2の入力部材122の回転数R11が出力部材121の回転数R12を上回っているので、第2のワンウェイ・クラッチOWC2の入力部材122と出力部材121がロック状態になり、入力部材122に入力された回転が出力部材121に伝達され(R11とR12が一致)、出力部材121の回転数が上昇していく(図46のZ32で示す部分)。 At this stage, since the second clutch mechanism CL2 is disengaged, the rotational speed R11 of the input member 122 of the second one-way clutch OWC2 exceeds the rotational speed R12 of the output member 121. The input member 122 and the output member 121 of the one-way clutch OWC2 are locked, the rotation input to the input member 122 is transmitted to the output member 121 (R11 and R12 match), and the rotation speed of the output member 121 increases. (A portion indicated by Z32 in FIG. 46).
 そして、第2のクラッチ機構CL2の上流側の回転数R12と下流側の回転数R13を監視し(ステップS404)、ステップS405において、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12が被回転駆動部材11の回転数R13を上回る状態で、且つ、第2のワンウェイ・クラッチOWC2の出力部材121の回転数R12と被回転駆動部材11の回転数R13との差が所定範囲Bh内になったら、その時点で第2のクラッチ機構CL2を連結させる(ステップS406)。 Then, the upstream rotational speed R12 and the downstream rotational speed R13 of the second clutch mechanism CL2 are monitored (step S404). In step S405, the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 is determined. The difference between the rotational speed R12 of the output member 121 of the second one-way clutch OWC2 and the rotational speed R13 of the driven drive member 11 is within a predetermined range Bh while exceeding the rotational speed R13 of the driven drive member 11. At that time, the second clutch mechanism CL2 is connected (step S406).
 この場合、第2のワンウェイ・クラッチOWC2の出力部材121と被回転駆動部材11が機械的に連結されることで、出力部材121の回転数R12が瞬間的に被回転駆動部材11の回転数R13近くまで引き下げられる。この瞬間にショックは発生するが、即座に、第2のエンジンENG2の回転数および/または第2のトランスミッションTM2の変速比を変更することで上昇させた第2のワンウェイ・クラッチOWC2の上流側(入力部材122)の回転数R11が出力部材121の回転数R13を上回っていることにより(図46のZ34で示す部分)、第2のワンウェイ・クラッチOWC2はロック状態を維持したまま、第2のワンウェイ・クラッチOWC2の入力部材122側の回転動力が出力部材121側に伝達され、その回転動力が、いま連結された第2のクラッチ機構CL2を介して被回転駆動部材11に伝達され、最終的に車軸13を介して駆動車輪2に伝達されるようになる。 In this case, the output member 121 of the second one-way clutch OWC2 and the driven member 11 are mechanically connected, so that the rotational speed R12 of the output member 121 instantaneously becomes the rotational speed R13 of the driven member 11 to be rotated. It is pulled down close. Although a shock occurs at this moment, immediately, the upstream side of the second one-way clutch OWC2 raised by changing the rotation speed of the second engine ENG2 and / or the speed ratio of the second transmission TM2 ( When the rotational speed R11 of the input member 122) exceeds the rotational speed R13 of the output member 121 (part indicated by Z34 in FIG. 46), the second one-way clutch OWC2 is kept in the locked state while the second one-way clutch OWC2 is maintained in the locked state. The rotational power on the input member 122 side of the one-way clutch OWC2 is transmitted to the output member 121 side, and the rotational power is transmitted to the rotated drive member 11 via the second clutch mechanism CL2 that is now connected. To the driving wheel 2 via the axle 13.
 次に、図47のフローチャートに基づいて走行切替制御Cと走行切替制御Dを要求出力に応じて選択して実行する制御の内容を説明する。
 この制御がスタートすると、ステップS21でアクセル開度などに応じて要求出力を検出する。要求出力が所定以上の場合は、ステップS22で急加速と判断してステップS23に進み、走行切替制御Dを実行する。一方、要求出力が所定以上でないとステップS22にて判断した場合は、緩加速と見なしてステップS24に進み、走行切替制御Cを実行する。そして、走行切替制御Cまたは走行切替制御Dを実行したら、処理を終了する。
Next, the content of the control that selects and executes the travel switching control C and the travel switching control D according to the request output based on the flowchart of FIG. 47 will be described.
When this control starts, a required output is detected in step S21 according to the accelerator opening. If the required output is greater than or equal to the predetermined value, it is determined that the acceleration is abrupt in step S22, the process proceeds to step S23, and the travel switching control D is executed. On the other hand, if it is determined in step S22 that the required output is not equal to or greater than the predetermined value, it is regarded as slow acceleration, and the process proceeds to step S24 to execute the travel switching control C. Then, when the travel switching control C or the travel switching control D is executed, the process is terminated.
 これにより、要求出力に応じて走行切替制御C,Dを選択的に実行することができる。即ち、要求出力が低いとき(例えば加速要求の低い場合)、第2のエンジンENG2側から駆動車輪2側への動力伝達を第2のワンウェイ・クラッチOWC2で行い、ショックの少ないスムーズな走行モードの切り替えを行うことができる。また、要求出力が高いとき(例えば加速要求の高い場合)、第2のエンジンENG2側から駆動車輪2側への動力伝達を第2のクラッチ機構CL2で行い、レスポンスの良い走行モードの切り替えを行うことができる。 Thereby, it is possible to selectively execute the travel switching control C, D according to the required output. That is, when the required output is low (for example, when the acceleration request is low), the power transmission from the second engine ENG2 side to the drive wheel 2 side is performed by the second one-way clutch OWC2, and the smooth running mode with less shock is performed. Switching can be done. Further, when the required output is high (for example, when the acceleration request is high), the power transmission from the second engine ENG2 side to the drive wheel 2 side is performed by the second clutch mechanism CL2, and the driving mode with good response is switched. be able to.
 さらに、上記実施形態では、2つのエンジン及び2つのトランスミッションを有する構成としたが、3つ以上のエンジン及び3つ以上のトランスミッションを有する構成であってもよい。また、エンジンは、ディーゼルエンジンや水素エンジンとガソリンエンジンとを組み合わせて用いてもよい。 Furthermore, in the above embodiment, the configuration has two engines and two transmissions, but the configuration may have three or more engines and three or more transmissions. The engine may be a combination of a diesel engine, a hydrogen engine, and a gasoline engine.
 加えて、上記実施形態の第1のエンジンENG1と第2のエンジンENG2は、別体に構成されていてもよいし、あるいは、一体に構成されていてもよい。例えば、図48に示すように、第1のエンジンENG1と第2のエンジンENG2が、それぞれ本発明の第1の内燃機関部及び第2の内燃機関部として、共通のブロックBL内に配置されるようにしてもよい。 In addition, the first engine ENG1 and the second engine ENG2 of the above embodiment may be configured separately or may be configured integrally. For example, as shown in FIG. 48, the first engine ENG1 and the second engine ENG2 are arranged in a common block BL as the first internal combustion engine part and the second internal combustion engine part of the present invention, respectively. You may do it.
 なお、本発明は、2010年6月29日出願の日本特許出願(特願2010-147727)に基づくものであり、その内容はここに参照として取り込まれる。 The present invention is based on a Japanese patent application (Japanese Patent Application No. 2010-147727) filed on June 29, 2010, the contents of which are incorporated herein by reference.
 1 駆動システム
 2 駆動車輪
 2B 別の駆動車輪
 5 制御手段
 11 被回転駆動部材
 101 入力軸
 104 偏心ディスク
 112 変速比可変機構
 120 ワンウェイ・クラッチ
 121 出力部材
 122 入力部材
 123 ローラ(係合部材)
 130 連結部材
 131 一端部(リング部)
 132 他端部
 CL クラッチ機構
 CL1 第1のクラッチ機構
 ENG エンジン(内燃機関部)
 ENG1 第1のエンジン(第1の内燃機関部)
 MOT 電動モータ
 MG1 メインモータジェネレータ
 MG2 サブモータジェネレータ(始動手段)
 OWC ワンウェイ・クラッチ
 OWC1 第1のワンウェイ・クラッチ
 TM トランスミッション(変速機構)
 TM1 第1のトランスミッション(第1の変速機構)
 O1 入力中心軸線
 O2 出力中心軸線
 O3 第1支点
 O4 第2支点
DESCRIPTION OF SYMBOLS 1 Drive system 2 Drive wheel 2B Another drive wheel 5 Control means 11 Rotated drive member 101 Input shaft 104 Eccentric disk 112 Gear ratio variable mechanism 120 One-way clutch 121 Output member 122 Input member 123 Roller (engagement member)
130 Connecting member 131 One end (ring part)
132 Other end portion CL clutch mechanism CL1 first clutch mechanism ENG engine (internal combustion engine portion)
ENG1 first engine (first internal combustion engine section)
MOT Electric motor MG1 Main motor generator MG2 Sub motor generator (starting means)
OWC One-way clutch OWC1 First one-way clutch TM Transmission (transmission mechanism)
TM1 first transmission (first transmission mechanism)
O1 Input center axis O2 Output center axis O3 First fulcrum O4 Second fulcrum

Claims (12)

  1.  回転動力を発生する内燃機関部と、
     該内燃機関部の発生する回転動力を変速して出力する変速機構と、
     該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
     前記ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
     前記駆動車輪または別の駆動車輪に走行のための回転動力を与える電動モータと、
     前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
     前記電動モータの駆動力によるEV走行を制御するEV走行制御モードと前記内燃機関部の駆動力によるエンジン走行を制御するエンジン走行制御モードとを実行する制御手段と、
     を備えており、
     前記制御手段は、
     前記クラッチ機構を遮断状態に保持して前記EV走行制御モードから前記エンジン走行制御モードに切り替える際に、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、その後、前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第1切替制御手段を含むことを特徴とする自動車用駆動システム。
    An internal combustion engine that generates rotational power;
    A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
    The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
    A rotation driven member that is connected to the output member of the one-way clutch, transmits the rotational power transmitted to the output member to the drive wheel, and rotates integrally with the drive wheel;
    An electric motor that provides rotational power for traveling to the drive wheel or another drive wheel;
    A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
    Control means for executing an EV traveling control mode for controlling EV traveling by the driving force of the electric motor and an engine traveling control mode for controlling engine traveling by the driving force of the internal combustion engine section;
    With
    The control means includes
    When the clutch mechanism is held in the disconnected state and the EV travel control mode is switched to the engine travel control mode, the rotation speed of the output member of the one-way clutch is in a range lower than the rotation speed of the driven member. And when the difference between the rotational speed of the output member of the one-way clutch and the rotational speed of the driven member is within a predetermined range, the clutch mechanism is connected, and then the input of the one-way clutch Characterized in that it includes first switching control means for transmitting rotational power on the input member side of the one-way clutch to the driven member by controlling the rotational speed of the member to exceed the rotational speed of the output member. Automobile drive system.
  2.  前記第1切替制御手段が、前記内燃機関部の回転数および/または前記変速機構の変速比を変更することにより、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差を所定範囲内に入るようにすることを特徴とする請求項1に記載の自動車用駆動システム。 The first switching control means changes the rotation speed of the internal combustion engine section and / or the transmission gear ratio of the transmission mechanism, whereby the rotation speed of the output member of the one-way clutch and the rotation speed of the driven drive member are The vehicle drive system according to claim 1, wherein the difference is within a predetermined range.
  3.  前記内燃機関部の始動手段を更に備えると共に、
     前記変速機構が、
     回転動力を受けることで入力中心軸線の周りを回転する入力軸と、
     該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対して可変の偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点と、
     該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスクと、
     前記入力中心軸線から離れた出力中心軸線の周りを回転する出力部材と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチと、
     前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点と、
     それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材と、
     前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構と、
    を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構として構成され、
     前記内燃機関部の出力軸が前記無段変速機構の入力軸に連結され、
     前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記変速機構と前記被回転駆動部材との間に設けられた前記ワンウェイ・クラッチを兼ねており、
     前記制御手段は、前記無段変速機構の変速比を無限大に設定した状態で前記内燃機関部を始動させ、その後、前記第1切替制御手段によって走行モードを切り替えることを特徴とする請求項1に記載の自動車用駆動システム。
    And further comprising starting means for the internal combustion engine section,
    The transmission mechanism is
    An input shaft that rotates around the input center axis by receiving rotational power; and
    A plurality of first fulcrums that are provided at equal intervals in the circumferential direction of the input shaft and that each rotate with the input shaft around the input center axis while maintaining a variable amount of eccentricity with respect to the input center axis;
    A plurality of eccentric disks each having the first fulcrum at its center and rotating about the input center axis;
    An output member that rotates around an output center axis that is distant from the input center axis, an input member that swings around the output center axis by receiving power in the rotational direction from the outside, and the input member and the output member An engaging member that is locked or unlocked, and the rotational power input to the input member when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member. A one-way clutch that converts the swinging motion of the input member into the rotational motion of the output member;
    A second fulcrum provided at a position spaced from the output center axis on the input member;
    One end is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end is rotatably connected to the second fulcrum provided on the input member of the one-way clutch. Thus, a plurality of connecting members that transmit the rotational motion given from the input shaft to the eccentric disc as the swinging motion of the input member to the input member of the one-way clutch,
    By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A speed ratio variable mechanism for changing a speed ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member;
    And is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the eccentric amount can be set to zero so that the gear ratio can be set to infinity,
    An output shaft of the internal combustion engine section is connected to an input shaft of the continuously variable transmission mechanism;
    The one-way clutch, which is a component of the continuously variable transmission mechanism, also serves as the one-way clutch provided between the transmission mechanism and the driven member for rotation,
    2. The control unit according to claim 1, wherein the internal combustion engine unit is started in a state in which a speed ratio of the continuously variable transmission mechanism is set to infinity, and thereafter, the traveling mode is switched by the first switching control unit. The drive system for motor vehicles described in 1.
  4.  車両の走行に要求される出力を検出する要求出力検出手段を更に備えると共に、
     前記制御手段は更に、
     前記クラッチ機構を遮断状態に保持して前記EV走行制御モードから前記エンジン走行制御モードに切り替える際に、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結することによって、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第2切替制御手段と、
     前記要求出力検出手段が検出した要求出力が所定より下回る場合に前記第1切替制御手段を用いた切替制御の実行を選択すると共に、前記要求出力検出手段が検出した要求出力が所定以上の場合に前記第2切替制御手段を用いた切替制御の実行を選択する切替制御選択手段と、
     を含むことを特徴とする請求項1~3のいずれか1項に記載の自動車用駆動システム。
    The apparatus further comprises request output detecting means for detecting an output required for traveling of the vehicle,
    The control means further includes
    When the clutch mechanism is held in the disengaged state and switched from the EV travel control mode to the engine travel control mode, the rotational speed of the output member of the one-way clutch exceeds the rotational speed of the driven member, When the difference between the rotation speed of the output member of the one-way clutch and the rotation speed of the driven member is within a predetermined range, the clutch mechanism is connected to the input member side of the one-way clutch. Second switching control means for transmitting the rotational power of the rotation to the rotation driven member;
    When the request output detected by the request output detection means falls below a predetermined value, execution of switching control using the first switch control means is selected, and when the request output detected by the request output detection means is greater than or equal to a predetermined value Switching control selection means for selecting execution of switching control using the second switching control means;
    The automobile drive system according to any one of claims 1 to 3, further comprising:
  5.  回転動力を発生する内燃機関部と、
     該内燃機関部の発生する回転動力を変速して出力する変速機構と、
     該変速機構の出力部に設けられ、入力部材と出力部材とこれら入力部材および出力部材をロック状態または非ロック状態にする係合部材とを有し、前記変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
     前記ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪に伝えると共に、該駆動車輪と一体に回転する被回転駆動部材と、
     前記駆動車輪または別の駆動車輪に走行のための回転動力を与える電動モータと、
     前記ワンウェイ・クラッチの出力部材と前記被回転駆動部材との間に介在され、これら両部材間における動力の伝達/遮断が可能なクラッチ機構と、
     を備えた自動車用駆動システムの制御方法であって、
     前記クラッチ機構を遮断状態に保持して前記電動モータの駆動力によるEV走行から前記内燃機関部の駆動力によるエンジン走行に切り替える際に、
     前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、
     前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする自動車用駆動システムの制御方法。
    An internal combustion engine that generates rotational power;
    A transmission mechanism for shifting and outputting the rotational power generated by the internal combustion engine section;
    The input that is provided at an output portion of the speed change mechanism, has an input member, an output member, and an engagement member that locks or unlocks the input member and the output member, and receives the rotational power from the speed change mechanism When the rotation speed in the positive direction of the member exceeds the rotation speed in the positive direction of the output member, the input member and the output member are in a locked state, so that the rotational power input to the input member is transmitted to the output member. One-way clutch to
    A rotation driven member that is connected to the output member of the one-way clutch, transmits the rotational power transmitted to the output member to the drive wheel, and rotates integrally with the drive wheel;
    An electric motor that provides rotational power for traveling to the drive wheel or another drive wheel;
    A clutch mechanism that is interposed between the output member of the one-way clutch and the driven member, and capable of transmitting / cutting power between the two members;
    A method for controlling an automotive drive system comprising:
    When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state,
    The rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the difference between the rotational speed of the output member of the one-way clutch and the rotational speed of the driven drive member When is within a predetermined range, the clutch mechanism is connected,
    The rotational power on the input member side of the one-way clutch is transmitted to the rotated drive member by controlling the rotational speed of the input member of the one-way clutch to exceed the rotational speed of the output member. A method for controlling an automobile drive system.
  6.  前記クラッチ機構を遮断状態に保持して前記電動モータの駆動力によるEV走行から前記内燃機関部の駆動力によるエンジン走行に切り替える際に、
     車両の走行に要求される出力を検出し、
     要求出力が所定より下回る場合には、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結させ、前記ワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させ、
     要求出力が所定以上の場合には、前記ワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記ワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記クラッチ機構を連結することによって、前記ワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする請求項5に記載の自動車用駆動システムの制御方法。
    When switching from EV traveling by the driving force of the electric motor to engine traveling by the driving force of the internal combustion engine section while holding the clutch mechanism in a disconnected state,
    Detect the output required for vehicle travel,
    When the required output is less than a predetermined value, the rotational speed of the output member of the one-way clutch is in a range lower than the rotational speed of the driven member, and the rotational speed of the output member of the one-way clutch and the When the difference between the rotational speed of the driven member to be rotated is within a predetermined range, the clutch mechanism is connected, and the rotational speed of the input member of the one-way clutch is controlled to exceed the rotational speed of the output member. , Causing the rotational power on the input member side of the one-way clutch to be transmitted to the driven member for rotation,
    When the required output is greater than or equal to a predetermined value, the rotational speed of the output member of the one-way clutch exceeds the rotational speed of the driven member, and the rotational speed of the output member of the one-way clutch and the rotated When the difference between the number of rotations of the driving member is within a predetermined range, the rotational power on the input member side of the one-way clutch is transmitted to the rotated driving member by connecting the clutch mechanism. 6. A method for controlling an automobile drive system according to claim 5.
  7.  それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
     前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
     前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ介在され、両部材間における動力の伝達/遮断がそれぞれ可能な第1のクラッチ機構および第2のクラッチ機構と、
     前記第1の内燃機関部の駆動力によるエンジン走行を制御する第1エンジン走行制御モードと前記第2の内燃機関部の駆動力によるエンジン走行を制御する第2エンジン走行制御モードとを実行する制御手段と、
     を備えており、
     前記制御手段は、
     前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行制御モードから前記第2エンジン走行制御モードに切り替える際に、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、その後、前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第3切替制御手段を含むことを特徴とする自動車用駆動システム。
    A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
    A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
    An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
    A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
    A first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members. And a second clutch mechanism;
    Control for executing a first engine traveling control mode for controlling engine traveling by the driving force of the first internal combustion engine section and a second engine traveling control mode for controlling engine traveling by the driving force of the second internal combustion engine section Means,
    With
    The control means includes
    When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotation speed of the second one-way clutch is within a predetermined range when the difference between the rotation speed of the output member of the second one-way clutch and the rotation speed of the driven member is within a predetermined range. 2 is coupled, and then the control is performed so that the rotational speed of the input member of the second one-way clutch exceeds the rotational speed of the output member. A drive system for an automobile comprising: a third switching control means for transmitting rotational power to the driven member for rotation.
  8.  前記第3切替制御手段が、前記第2の内燃機関部の回転数および/または前記第2の変速機構の変速比を変更することにより、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差を所定範囲内に入るようにすることを特徴とする請求項7に記載の自動車用駆動システム。 The third switching control means changes the rotational speed of the second internal combustion engine section and / or the transmission gear ratio of the second transmission mechanism, thereby changing the rotational speed of the output member of the second one-way clutch. The drive system for an automobile according to claim 7, wherein a difference from the rotation speed of the driven member to be rotated is within a predetermined range.
  9.  前記第2の内燃機関部の出力軸と前記被回転駆動部材との間で、前記第2の変速機構を介した動力伝達と異なる前記第2の内燃機関部の出力軸と被回転駆動部材の間での動力伝達を断接可能なクラッチ手段を更に備えると共に、
     前記第1及び第2の変速機構が、
     回転動力を受けることで入力中心軸線の周りを回転する入力軸と、
     該入力軸の周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対して可変の偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の第1支点と、
     該各第1支点をそれぞれの中心に持つと共に前記入力中心軸線の周りを回転する複数の偏心ディスクと、
     前記入力中心軸線から離れた出力中心軸線の周りを回転する出力部材と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材と、これら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチと、
     前記入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点と、
     それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上に設けられた前記第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材と、
     前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更し、それにより、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構と、
    を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる四節リンク機構式の無段変速機構としてそれぞれ構成され、
     前記第1および第2の内燃機関部の出力軸が前記第1および第2の変速機構である前記無段変速機構の各入力軸にそれぞれ連結され、
     前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記第1および第2の変速機構と前記被回転駆動部材との間にそれぞれ設けられた前記第1及び第2のワンウェイ・クラッチを兼ねており、
     前記制御手段は、前記第2の変速機構の変速比を無限大に設定するように制御し、被回転駆動部材に動力が入力されている状態で、前記クラッチ手段を動力伝達可能な接続状態にすることにより、前記被回転駆動部材の動力で前記第2の内燃機関部をクランキングして該第2の内燃機関部を始動させ、その後、前記第3切替制御手段によって第2エンジン走行制御モードに切り替えることを特徴とする請求項7に記載の自動車用駆動システム。
    Different between the output shaft of the second internal combustion engine part and the driven drive member, the output shaft of the second internal combustion engine part and the driven drive member differ from the power transmission via the second speed change mechanism. Clutch means capable of connecting / disconnecting power transmission between them,
    The first and second transmission mechanisms are
    An input shaft that rotates around the input center axis by receiving rotational power; and
    A plurality of first fulcrums that are provided at equal intervals in the circumferential direction of the input shaft and that each rotate with the input shaft around the input center axis while maintaining a variable amount of eccentricity with respect to the input center axis;
    A plurality of eccentric disks each having the first fulcrum at its center and rotating about the input center axis;
    An output member that rotates around an output center axis that is distant from the input center axis, an input member that swings around the output center axis by receiving power in the rotational direction from the outside, and the input member and the output member An engaging member that is locked or unlocked, and the rotational power input to the input member when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member. A one-way clutch that converts the swinging motion of the input member into the rotational motion of the output member;
    A second fulcrum provided at a position spaced from the output center axis on the input member;
    One end is connected to the outer periphery of each eccentric disk so as to be rotatable around the first fulcrum, and the other end is rotatably connected to the second fulcrum provided on the input member of the one-way clutch. Thus, a plurality of connecting members that transmit the rotational motion given from the input shaft to the eccentric disc as the swinging motion of the input member to the input member of the one-way clutch,
    By adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis, the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch is changed. A speed ratio variable mechanism for changing a speed ratio when input rotational power is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member;
    Each of which is configured as a continuously variable transmission mechanism of a four-bar linkage mechanism type in which the gear ratio can be set to infinity by allowing the eccentricity to be set to zero.
    The output shafts of the first and second internal combustion engine sections are respectively connected to the input shafts of the continuously variable transmission mechanism that is the first and second transmission mechanisms,
    The one-way clutch, which is a component of the continuously variable transmission mechanism, also serves as the first and second one-way clutches provided between the first and second transmission mechanisms and the driven member, respectively. And
    The control means controls the second speed change mechanism so as to set the speed ratio to infinity, and the clutch means is brought into a connected state where power can be transmitted to the rotation driven member. By doing so, the second internal combustion engine part is cranked by the power of the rotationally driven member to start the second internal combustion engine part, and then the second engine travel control mode is performed by the third switching control means. The vehicle drive system according to claim 7, wherein the vehicle drive system is switched to.
  10.  車両の走行に要求される出力を検出する要求出力検出手段を更に備えると共に、
     前記制御手段は更に、
     前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行制御モードから前記第2エンジン走行制御モードに切り替える際に、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結することによって、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させる第4切替制御手段と、
     前記要求出力検出手段が検出した要求出力が所定より下回る場合に前記第3切替制御手段を用いた切替制御の実行を選択すると共に、前記要求出力検出手段が検出した要求出力が所定以上の場合に前記第4切替制御手段を用いた切替制御の実行を選択する切替制御選択手段と、
     を含むことを特徴とする請求項7~9のいずれか1項に記載の自動車用駆動システム。
    Further comprising request output detecting means for detecting an output required for traveling of the vehicle,
    The control means further includes
    When switching from the first engine travel control mode to the second engine travel control mode while maintaining the second clutch mechanism in the disconnected state, the rotational speed of the output member of the second one-way clutch is the rotated When the rotational speed of the second one-way clutch exceeds the rotational speed of the driving member and the difference between the rotational speed of the output member of the second one-way clutch and the rotational speed of the driven member is within a predetermined range, A fourth switching control means for transmitting rotational power on the input member side of the second one-way clutch to the rotated drive member by coupling a clutch mechanism;
    When the request output detected by the request output detection means falls below a predetermined value, execution of switching control using the third switching control means is selected, and when the request output detected by the request output detection means is equal to or greater than a predetermined value Switching control selection means for selecting execution of switching control using the fourth switching control means;
    The automobile drive system according to any one of claims 7 to 9, characterized by comprising:
  11.  それぞれ独立して回転動力を発生する第1の内燃機関部および第2の内燃機関部と、
     前記第1の内燃機関部および第2の内燃機関部の発生する各回転動力をそれぞれ変速して出力する第1の変速機構および第2の変速機構と、
     前記第1の変速機構および第2の変速機構の各出力部にそれぞれ設けられ、入力部材と出力部材とこれら入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記第1の変速機構および第2の変速機構からの各回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達する第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチと、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの両出力部材に共通に連結され、各ワンウェイ・クラッチの出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
     前記第1のワンウェイ・クラッチおよび第2のワンウェイ・クラッチの各出力部材と前記被回転駆動部材との間にそれぞれ介在され、両部材間における動力の伝達/遮断がそれぞれ可能な第1のクラッチ機構および第2のクラッチ機構と、
     制御モードと前記第2の内燃機関部の駆動力によるエンジン走行を制御する第2エンジン走行制御モードとを実行する制御手段と、
     を備えた自動車用駆動システムの制御方法であって、
     前記クラッチ機構を遮断状態に保持して前記前記第1の内燃機関部の駆動力によるエンジン走行を制御する第1エンジン走行から前記第2の内燃機関部の駆動力による第2エンジン走行に切り替える際に、
     前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、
     前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする自動車用駆動システムの制御方法。
    A first internal combustion engine section and a second internal combustion engine section that independently generate rotational power;
    A first speed change mechanism and a second speed change mechanism that respectively shift and output the rotational power generated by the first internal combustion engine part and the second internal combustion engine part;
    An input member, an output member, and an engagement member that locks the input member and the output member with each other in a locked state or an unlocked state, provided at each output portion of the first speed change mechanism and the second speed change mechanism; When the positive rotation speed of the input member receiving the rotational power from the first transmission mechanism and the second transmission mechanism exceeds the positive rotation speed of the output member, the input member and the output member The first one-way clutch and the second one-way clutch that transmit the rotational power input to the input member to the output member.
    A rotationally driven member that is commonly connected to both output members of the first one-way clutch and the second one-way clutch, and that transmits rotational power transmitted to the output member of each one-way clutch to a drive wheel;
    A first clutch mechanism that is interposed between each output member of the first one-way clutch and the second one-way clutch and the driven member, and capable of transmitting / cutting power between the two members. And a second clutch mechanism;
    Control means for executing a control mode and a second engine travel control mode for controlling engine travel by the driving force of the second internal combustion engine section;
    A method for controlling an automotive drive system comprising:
    When switching from the first engine running, which controls the engine running by the driving force of the first internal combustion engine portion, with the clutch mechanism held in the disconnected state, to the second engine running by the driving force of the second internal combustion engine portion In addition,
    The rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven drive member, and the rotation speed of the output member of the second one-way clutch and the driven drive member When the difference from the rotational speed of the second clutch mechanism is within a predetermined range, the second clutch mechanism is connected,
    By controlling the rotational speed of the input member of the second one-way clutch to exceed the rotational speed of the output member, the rotational power on the input member side of the second one-way clutch is transmitted to the driven member. A method for controlling an automotive drive system.
  12.  前記第2のクラッチ機構を遮断状態に保持して前記第1エンジン走行から前記第2エンジン走行に切り替える際に、
     車両の走行に要求される出力を検出し、
     要求出力が所定より下回る場合には、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数よりも低い範囲にあり、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結させ、前記第2のワンウェイ・クラッチの入力部材の回転数が出力部材の回転数を上回るように制御することで、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させ、
     要求出力が所定以上の場合には、前記第2のワンウェイ・クラッチの出力部材の回転数が前記被回転駆動部材の回転数を上回る状態で、且つ、前記第2のワンウェイ・クラッチの出力部材の回転数と前記被回転駆動部材の回転数との差が所定範囲内になったとき、前記第2のクラッチ機構を連結することによって、前記第2のワンウェイ・クラッチの入力部材側の回転動力を前記被回転駆動部材に伝達させることを特徴とする請求項11に記載の自動車用駆動システムの制御方法。
    When switching from the first engine running to the second engine running with the second clutch mechanism held in a disconnected state,
    Detect the output required for vehicle travel,
    When the required output is lower than a predetermined value, the rotation speed of the output member of the second one-way clutch is in a range lower than the rotation speed of the driven member, and the output of the second one-way clutch When the difference between the rotation speed of the member and the rotation speed of the driven member is within a predetermined range, the second clutch mechanism is connected and the rotation speed of the input member of the second one-way clutch is output. By controlling to exceed the rotation speed of the member, the rotational power on the input member side of the second one-way clutch is transmitted to the rotated drive member,
    When the required output is equal to or greater than a predetermined value, the rotational speed of the output member of the second one-way clutch exceeds the rotational speed of the driven member, and the output member of the second one-way clutch When the difference between the rotational speed and the rotational speed of the driven member is within a predetermined range, the rotational power on the input member side of the second one-way clutch is reduced by connecting the second clutch mechanism. The method according to claim 11, wherein the rotation drive member is transmitted.
PCT/JP2011/061583 2010-06-29 2011-05-19 Driving system for automobile and method for controlling same WO2012002062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010147727 2010-06-29
JP2010-147727 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012002062A1 true WO2012002062A1 (en) 2012-01-05

Family

ID=45401796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061583 WO2012002062A1 (en) 2010-06-29 2011-05-19 Driving system for automobile and method for controlling same

Country Status (1)

Country Link
WO (1) WO2012002062A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156334A1 (en) * 2013-03-29 2014-10-02 本田技研工業株式会社 Stepless transmission
WO2015151287A1 (en) * 2014-04-04 2015-10-08 本田技研工業株式会社 Continuously variable transmission
CN106394228A (en) * 2015-05-20 2017-02-15 丰田自动车株式会社 Control system for hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929642B1 (en) * 1970-09-29 1974-08-06
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929642B1 (en) * 1970-09-29 1974-08-06
JPH10259746A (en) * 1997-03-07 1998-09-29 Mannesmann Sachs Ag Driving device for power car
JP2005295691A (en) * 2004-03-31 2005-10-20 Toyota Motor Corp Power output unit and automobile mounting it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156334A1 (en) * 2013-03-29 2014-10-02 本田技研工業株式会社 Stepless transmission
CN104968972A (en) * 2013-03-29 2015-10-07 本田技研工业株式会社 Stepless transmission
JP5982558B2 (en) * 2013-03-29 2016-08-31 本田技研工業株式会社 Continuously variable transmission
WO2015151287A1 (en) * 2014-04-04 2015-10-08 本田技研工業株式会社 Continuously variable transmission
CN106068214A (en) * 2014-04-04 2016-11-02 本田技研工业株式会社 Buncher
JPWO2015151287A1 (en) * 2014-04-04 2017-04-13 本田技研工業株式会社 Continuously variable transmission
CN106394228A (en) * 2015-05-20 2017-02-15 丰田自动车株式会社 Control system for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5638075B2 (en) Driving system for automobile and control method thereof
JP5492990B2 (en) Car drive system
JP5019080B2 (en) Driving system for automobile and control method thereof
JP5501461B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5589076B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5455994B2 (en) Car drive system
JPWO2011077813A1 (en) Hybrid vehicle
JP2010076625A (en) Hybrid car
JP5747081B2 (en) Car drive system
JP5542204B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP2010036781A (en) Hybrid vehicle
JP5056450B2 (en) Power output device and vehicle
WO2012002062A1 (en) Driving system for automobile and method for controlling same
JP5589075B2 (en) Vehicle drive system and method for controlling vehicle drive system
JP5586694B2 (en) Vehicle drive system and method for controlling vehicle drive system
WO2011162056A1 (en) Drive system for a motor vehicle and control method of same
JP2010274805A (en) Power device
JP2009190457A (en) Power output device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP