WO2011158413A1 - Optical head, optical element and data recording device - Google Patents

Optical head, optical element and data recording device Download PDF

Info

Publication number
WO2011158413A1
WO2011158413A1 PCT/JP2011/002089 JP2011002089W WO2011158413A1 WO 2011158413 A1 WO2011158413 A1 WO 2011158413A1 JP 2011002089 W JP2011002089 W JP 2011002089W WO 2011158413 A1 WO2011158413 A1 WO 2011158413A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
light
optical
prism
frame
Prior art date
Application number
PCT/JP2011/002089
Other languages
French (fr)
Japanese (ja)
Inventor
新藤 博之
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011158413A1 publication Critical patent/WO2011158413A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/10Structure or manufacture of housings or shields for heads
    • G11B5/102Manufacture of housing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention relates to an optical head, an optical element, and an information recording apparatus.
  • a slider called a femto slider has a length of 0.85 mm, a width of 0.7 mm, and a thickness of 0.23 mm.
  • an optically assisted magnetic recording method has been proposed to further increase the recording density.
  • An optical waveguide for irradiating a recording medium with light from a light source is formed on a slider of this type of magnetic head.
  • a slider there is a type having an optical component that guides light emitted from a light source to an optical waveguide. Since the magnetic head of the optically assisted magnetic recording system is small, an optical component provided on the slider of the magnetic head is also required to have a size of several tens to several hundreds of ⁇ m.
  • a unit substrate on which a light source is mounted is mounted on a slider.
  • the light emitted from the light source is guided to the light propagation part of the slider by a prism provided at the tip of the unit substrate.
  • Patent Document 2 as a technique for realizing high yield mounting by active alignment, first, a chip-on-carrier structure in which a semiconductor laser diode (LD) is mounted on a submount is fabricated in an intermediate manner. Discloses a method of manufacturing a magnetic head in which a submount on which an LD is mounted is mounted on a slider.
  • the micromirror formed on the emission end face of the edge-emitting LD element and the microlens mechanism formed on the submount function as optical components. Thereby, the light emitted from the LD is guided to the slider.
  • a reflection mirror that is one independent component fixed to a groove formed in a submount and a lens structure integrated in the reflection mirror function as an optical component. .
  • the light emitted from the edge-emitting LD is deflected by the reflection mirror and guided to the slider.
  • the unit substrate described in Patent Document 1 is almost the same size as the slider, it is easier to handle than the prism alone. However, it is difficult to manufacture a unit substrate provided with a prism, which requires many steps.
  • substrate described in patent document 1 is demonstrated. First, a dielectric film (prism base material) serving as a propagation layer is laminated on a wafer-shaped substrate serving as a unit substrate, and the wafer-shaped substrate is cut into a rod-shaped member. And the reflective surface of a prism is formed by grind
  • the prism since it is necessary to adjust the angle and control the polishing amount during polishing, a large number of man-hours are required. Further, since the prism is formed by being laminated on a wafer-like substrate, the prism may be peeled off during polishing, and as a result, the yield of the unit substrate is lowered.
  • the optical axis of the lens structure is arranged in parallel to the thickness direction of the magnetic head. For this reason, if it is going to secure the distance from a light emission point to the vertex of a lens surface, a magnetic head will become thick. In order to shorten this distance, the focal length may be shortened, but the radius of curvature of the lens surface becomes small and aberration occurs, resulting in a decrease in optical coupling efficiency with the optical waveguide.
  • Embodiment 3 of Patent Document 2 it is necessary to fix the reflecting mirror in the groove formed in the submount. Since the size of the reflecting mirror is as small as 100 ⁇ m to 200 ⁇ m, handling is difficult. In addition, it is not easy to fix the reflection mirror in the groove while aligning the optical axes of the LD and the reflection mirror, and many man-hours are required. Furthermore, when an adhesive for fixing the reflecting mirror is applied between the reflecting mirror and the submount, the adhesive may enter the beam passage region and the reflecting mirror may not function as an optical component.
  • the present invention solves the above-described problems, and an object thereof is to provide an optical head that is easy to handle and can be thinned, an optical element used in the optical head, and an information recording apparatus having the optical head. There is to do.
  • the invention described in claim 1 is an optical head having a light source, a slider, and a frame-like structure.
  • the slider floats on the recording medium and irradiates the recording medium with light from the light source.
  • the structure has substantially the same size as the slider and is provided on the slider.
  • the light source is provided on the slider and inside the frame of the structure.
  • the structure has an optical function part that guides light emitted from the light source to the slider in a part of the frame.
  • the optical function part is formed integrally with the structure.
  • the optical function unit is constituted by a prism having an incident surface and a deflection surface.
  • the incident surface allows light emitted from the light source to enter the inside.
  • the deflecting surface deflects the light incident inside by the incident surface and guides it to the slider.
  • the invention according to claim 4 is the optical head according to claim 3, wherein the deflecting surface of the prism has an aspherical shape, a spherical shape, a cylindrical surface shape or an elliptic cylindrical surface shape, The light is condensed and guided to the slider.
  • the invention according to claim 5 is the optical head according to claim 3, wherein the light source is constituted by a semiconductor laser diode.
  • the semiconductor laser diode is provided on the slider with its substrate side facing the slider.
  • the prism further has an exit surface that emits the light deflected by the deflecting surface to the outside of the prism.
  • the deflecting surface or the emitting surface has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape, and collects light from the light source and guides it to the slider.
  • the optical head according to the first or second aspect wherein the optical function unit is configured by a reflecting surface that reflects the light emitted from the light source and guides it to the slider. Yes.
  • the invention according to claim 7 is an optical element having a frame and an optical function part.
  • the optical function unit is provided in a part of the frame, and is configured to receive light from the inside of the frame and guide the light to the outside of the frame.
  • the invention according to claim 8 is the optical element according to claim 7, wherein the frame and the optical function part are integrally formed.
  • the optical function unit is constituted by a prism having an incident surface and a deflection surface. The incident surface receives light from the inside of the frame and enters the inside. The deflecting surface deflects the light incident inside by the incident surface and guides it to the outside of the frame.
  • the deflecting surface of the prism has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape.
  • the invention according to claim 11 is the optical element according to claim 7 or claim 8, wherein the optical function unit receives light from the inside of the frame and reflects the light to the outside of the frame. It is comprised by the reflective surface.
  • the invention according to claim 12 includes a recording medium and the optical head according to any one of claims 1 to 6, and the recording medium is irradiated with light emitted from a light source by a slider.
  • An information recording device configured to record information.
  • the structure including the optical function part since the structure including the optical function part has almost the same size as the slider, handling becomes easy. Thereby, the structure including the optical function part can be easily attached to the slider.
  • the structure since the structure has a frame shape, the light head is thinned by arranging the light source inside the frame, even when the light source and the optical component are provided on the slider. It becomes possible.
  • FIG. 1 is an exploded perspective view of an optical head according to a first embodiment of the present invention.
  • 1 is a perspective view of an optical head according to a first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the optical head according to the first embodiment of the present invention, and is a cross-sectional view of the optical head shown in FIG. 3 taken along the line IV-IV.
  • 1 is a side view of an optical head according to a first embodiment of the present invention.
  • 1 is a front view of an optical head according to a first embodiment of the present invention. It is a perspective view of the optical function part which concerns on a modification. It is a partial sectional view of an optical head concerning a modification. It is a perspective view of the optical function part which concerns on another modification. It is sectional drawing of the optical head which concerns on 2nd Embodiment of this invention. It is sectional drawing of the optical head which concerns on 3rd Embodiment of this invention.
  • FIG. 1 shows a schematic configuration of an optically assisted magnetic recording device (for example, a hard disk device, hereinafter also referred to as “information recording device”) equipped with an optically assisted magnetic recording head.
  • the information recording apparatus 1 includes, for example, a plurality of rotatable recording disks (magnetic recording media) 3, a head support 5, a tracking actuator 7, and an optically assisted magnetic head 4 (hereinafter “optical head 4”). And a driving device (not shown) in the housing 2.
  • the disk 3 may be one.
  • the head support portion 5 is provided to be rotatable in the direction of arrow A (tracking direction) with the support shaft 6 as a fulcrum.
  • the tracking actuator 7 is attached to the head support portion 5.
  • the optical head 4 is attached to the tip of the head support 5.
  • a drive device (not shown) rotates the disk 3 in the direction of arrow B.
  • the information recording apparatus 1 is configured to be able to move relative to the disk 3 while the optical head 4 floats on the disk 3.
  • FIG. 2 is an exploded perspective view of the optical head 4.
  • FIG. 3 is a perspective view of the optical head 4.
  • 4 is a cross-sectional view of the optical head 4 shown in FIG. 3 taken along the line IV-IV.
  • the optical head 4 is an optical head that records information on the disk 3 using light.
  • the optical head 4 includes a structure 40, a semiconductor laser diode 50 (hereinafter referred to as “LD50”), and a slider 60.
  • the structure 40 and the LD 50 are provided on the upper surface 60 a of the slider 60.
  • the structure 40 defines the position of the LD 50 and the position of the optical waveguide 64 provided on the slider 60, and guides the light emitted from the LD 50 to the optical waveguide 64.
  • the structure 40 includes a rectangular frame 41, for example.
  • a rectangular opening 42 is formed on the inner side surrounded by the frame body 41.
  • a part of the frame body 41 is provided with a prism 43 having a triangular cross-sectional shape.
  • the prism 43 corresponds to an example of an optical function unit.
  • the structure 40 including the frame body 41 and the prism 43 corresponds to an example of an optical element.
  • the size of the outer shape of the structure 40 is substantially the same as that of the slider 60. Further, the size of the opening 42 is larger than that of the LD 50.
  • the size of the outer shape of the structure 40 is, for example, a thickness of about 100 ⁇ m, a length of 300 ⁇ m to 600 ⁇ m, and a width of 200 ⁇ m to 300 ⁇ m.
  • the prism 43 has an entrance surface 43a, a deflection surface 43b, and an exit surface 43c.
  • the prism 43 guides the light emitted from the LD 50 to the optical waveguide 64 of the slider 60.
  • the entrance surface 43a and the exit surface 43c are orthogonal to each other.
  • the deflection surface 43b is inclined with respect to each of the incident surface 43a and the emission surface 43c.
  • the incident surface 43 a faces the inside of the frame body 41.
  • the incident surface 43 a receives light from the inside of the frame body 41 and makes the light enter the prism 43.
  • the deflection surface 43b reflects the light incident inside by the incident surface 43a toward the output surface 43c.
  • the exit surface 43 c is provided to face the entrance surface 64 a of the optical waveguide 64 of the slider 60.
  • the light deflected by the deflecting surface 43b exits from the exit surface 43c and enters the entrance surface 64a.
  • the surface of the frame 41 that faces the slider 60 and the emission surface 43c of the prism 43 are on the same plane.
  • the refractive index of the prism 43 is larger than 1, for example, 1.5 to 1.6.
  • the length of the prism 43 in the height direction is, for example, several tens ⁇ m to several hundreds ⁇ m.
  • a reflective film may be provided on the deflection surface 43 b of the prism 43.
  • a metal thin film such as aluminum or gold or a dielectric multilayer film can be used.
  • the reflective film is formed on the deflection surface 43b by, for example, vapor deposition or sputtering.
  • the structure 40 is made of, for example, an optically transparent resin or glass.
  • the structure 40 is produced by, for example, injection molding, a glass mold method, or an imprint method.
  • the resin for injection molding include thermoplastic resins such as polycarbonate (for example, AD5503, Teijin Chemicals Limited) and ZEONEX 480R (Nippon Zeon Corporation).
  • An example of the resin for imprinting is PAK-02 (Toyo Gosei Co., Ltd.), which is a photocurable resin.
  • the frame body 41 and the prism 43 are integrally formed. Accordingly, a process such as polishing for forming the prism 43 becomes unnecessary, and the number of steps for manufacturing the structure 40 can be reduced. In addition, since a process such as polishing is not necessary, the yield of the structures 40 is improved.
  • the surfaces corresponding to the incident surface 43a, the deflection surface 43b, and the emission surface 43c of the prism 43 are finished in a mirror state in advance. Thereby, a mirror surface can be obtained without polishing each surface of the prism 43 after molding.
  • the LD 50 as a light source is disposed on the upper surface 60 a of the slider 60 and on the inner side (opening 42) of the frame body 41 of the structure 40.
  • a lower clad layer and an upper clad layer are formed on a substrate 51, and an active layer 52 is formed between the lower clad layer and the upper clad layer.
  • electrode layers are formed on both surfaces of the LD 50.
  • the light exit surface from the LD 50 faces the entrance surface 43 a of the prism 43. Further, the surface opposite to the substrate 51 (surface close to the active layer 52) faces the upper surface 60 a of the slider 60.
  • the LD 50 As a material constituting the LD 50, for example, any one of materials such as GaAs, AlGaAs, InGaAs, AlGaInP, InAlGaN, InGaN, GaN, GaInNA, GaNAsP, and AlGaNAs may be used.
  • the LD 50 can be manufactured by laminating layers necessary for light emission on a wafer.
  • the magnetic head unit 63 includes an optical waveguide 64, a magnetic recording unit (not shown), and a magnetic information reproducing unit (not shown).
  • the optical waveguide 64 guides the light guided by the prism 43 and emits it toward the disk 3.
  • the incident surface 64 a of the optical waveguide 64 is provided on the upper surface 60 a of the slider 60.
  • the exit surface 64b of the optical waveguide 64 is provided on the surface opposite to the upper surface 60a (the surface facing the disk 3).
  • the emission surface 64b is provided with a plasmon probe (not shown) as a near-field light generating element.
  • the light deflected by the prism 43 enters the optical waveguide 64 from the incident surface 64a and travels through the optical waveguide 64 toward the output surface 64b.
  • the plasmon probe provided on the emission surface 64 b converts the light guided by the prism 43 into near-field light and emits it toward the disk 3.
  • a magnetic recording unit (not shown) writes magnetic information to the recording portion of the disk 3.
  • a magnetic information reproducing unit (not shown) reads magnetic information recorded on the disk 3.
  • an electrode 61 and an electrode 62 are formed on the upper surface 60 a of the slider 60.
  • the electrode 61 and the electrode 62 each have a predetermined pattern shape, and are connected to the LD 50 to supply driving power to the LD 50.
  • the first terminal 61 a of the electrode 61 is formed on the upper surface 60 a of the slider 60.
  • the second terminal 61 b is formed on the side surface of the slider 60.
  • the first terminal 62 a of the electrode 62 is formed on the upper surface 60 a of the slider 60.
  • the second terminal 62 b is formed on the side surface of the slider 60.
  • the electrode 61 and the electrode 62 are formed on the upper surface 60a of the slider 60. It is formed.
  • flexible wiring in which predetermined wiring is patterned may be fixed to the upper surface 60a of the slider 60.
  • An electrode layer (not shown) is formed on the substrate 51 side of the LD 50. This electrode layer is connected to the terminal 62a by a bonding wire 55 (see FIG. 4). An electrode layer is also formed on the surface opposite to the substrate 51 (surface close to the active layer 52). The electrode layer and the terminal 61a are connected by solder.
  • the slider 60 moves relative to the disk 3 in a floating state. However, when dust is attached to the disk 3 or when the disk 3 has a defect, the slider 60 and the disk 3 are moved. There is a possibility of contact.
  • the slider 60 is preferably formed of a hard material having high friction resistance. Examples of this material include a ceramic material containing Al 2 O 3 , AlTiC, zirconia, or TiN.
  • a surface treatment for increasing the friction resistance may be performed on the surface of the slider 60 on the disk 3 side. For example, high hardness can be obtained by using a DLC (Diamond Like Carbon) coating.
  • FIG. 5 is a side view of the optical head 4.
  • FIG. 6 is a front view of the optical head 4.
  • the LD 50 is installed on the upper surface 60 a of the slider 60.
  • the surface opposite to the substrate 51 (surface close to the active layer 52) is directed to the upper surface 60a, and the electrode layer formed on the surface opposite to the substrate 51 and the terminal 61a are connected by soldering. Further, the electrode layer formed on the substrate 51 side of the LD 50 and the terminal 62 a are connected by a bonding wire 55.
  • the structure 40 is arranged on the upper surface 60a of the slider 60 so that the LD 50 is arranged inside the frame body 41 (opening 42) of the structure 40.
  • a suction forceps (not shown) is brought into contact with a portion of the frame body 41 where the prism 43 is not provided to hold the structure body 40, and the structure body 40 is disposed on the upper surface 60a of the slider 60 while adjusting the position.
  • the structure 40 is disposed on the upper surface 60 a of the slider 60 by aligning the position of the incident surface 64 a of the optical waveguide 64 with the position of the prism 43.
  • the structure 40 may be held by bringing suction tweezers into contact with a portion of the frame body 41 opposite to the portion where the prism 43 is provided, or a side surface of the frame body 41.
  • the structure 40 can be positioned by a so-called active alignment method.
  • a contact pin (not shown) is brought into contact with the terminal 61b and the terminal 62b of the slider 60 to supply current to the LD 50, thereby turning on the LD 50.
  • the amount of light emitted from the exit surface 64 b of the optical waveguide 64 is measured, the position of the structure 40 is adjusted so that the amount of light is maximized, and the structure 40 is fixed to the slider 60.
  • the structure 40 may be positioned using an alignment mark instead of the active alignment method. For example, alignment marks are formed in advance on the upper surface 60a of the slider 60 and the structure body 40, and the structure body 40 is positioned so that the positions of the alignment marks coincide.
  • the adhesive body 70 is applied to the upper surface 60 a of the slider 60 and the side surfaces of the structure body 40, and the adhesive body 70 is cured to fix the structure body 40 to the slider 60.
  • an ultraviolet curable adhesive may be used as the adhesive 70. It is preferable to apply the adhesive 70 to the upper surface 60 a of the slider 60 while avoiding the magnetic head portion 63. By applying the adhesive 70 to a portion other than the magnetic head portion 63, it is possible to prevent the adhesive 70 from flowing between the prism 43 and the optical waveguide 64. Thereby, the quality and yield of the optical head 4 can be improved.
  • the structure 40 may be fixed to the slider 60 by applying an adhesive 70 between the structure 40 and the slider 60. Also in this case, it is preferable to apply the adhesive 70 to the upper surface 60a of the slider 60 while avoiding the magnetic head portion 63.
  • the operation of the optical head 4 will be described with reference to FIG.
  • the light emitted from the end face of the active layer 52 of the LD 50 reaches the incident surface 43a of the prism 43 while spreading, enters the inside of the prism 43, and reaches the deflection surface 43b.
  • the light reaching the deflection surface 43 b is reflected by the deflection surface 43 b and deflected in the direction of the slider 60.
  • the deflecting surface 43b deflects the optical path of this light by about 90 °.
  • the light reflected by the deflection surface 43 b is emitted from the emission surface 43 c of the prism 43 and is coupled to the optical waveguide 64 of the slider 60.
  • the light coupled to the optical waveguide 64 travels in the optical waveguide 64 from the incident surface 64a toward the output surface 64b, and irradiates a plasmon probe (near-field light generating element) provided on the output surface 64b. Near-field light is generated by the plasmon probe. This near-field light is emitted toward the disk 3.
  • a coil installed in a magnetic recording unit (not shown) generates a magnetic field and records information in an area where the coercive force is reduced. When the area where the information is recorded is cooled, the coercive force returns to a high state and the information is retained.
  • a magnetic information reproducing unit (not shown) reproduces information by detecting the recorded magnetization direction.
  • the structure 40 provided with the prism 43 has substantially the same size as the slider 60, handling is easier than the prism 43 alone. As described above, since the structure 40 is easy to handle, the structure 40 can be easily attached to the slider 60. That is, the optical head 4 can be easily assembled.
  • an optical component for example, a prism
  • optical components are very small, it is difficult to handle the optical component alone, and therefore it is difficult to assemble the optical head.
  • the prism 43 by providing the prism 43 in a part of the structure 40, the structure 40 including the prism 43 can be easily handled. That is, even if the prism 43 itself is very small, the structure 40 has almost the same size as the slider 60, so that the structure 40 including the prism 43 can be easily handled, and as a result, the optical head 4 can be easily assembled. It becomes.
  • the LD 50 (light source) can be disposed inside the frame body 41. That is, the LD 50 can be arranged on the slider 60 without arranging the LD 50 on the structure 40. As a result, the optical head 4 can be made thinner, and as a result, the information recording apparatus 1 can be made thinner. Conventionally, since the light source is provided on the slider via the submount and the unit substrate, the optical head is thick. On the other hand, in this embodiment, the optical head 4 can be thinned while the structure 40 and the LD 50 are provided above the slider 60.
  • the structure 40 can be easily manufactured.
  • the prism 43 having a refractive index larger than 1 the air conversion length from the LD 50 to the incident surface 64a of the optical waveguide 64 is shortened. Thereby, the size of the light spot irradiated to the incident surface 64a of the optical waveguide 64 is reduced, and the optical coupling efficiency in the optical waveguide 64 can be increased.
  • FIG. 7 is a perspective view of an optical function unit according to a modification.
  • FIG. 8 is a cross-sectional view of a part of an optical head according to a modification.
  • FIG. 9 is a perspective view of an optical function unit according to another modification.
  • an aspherical or spherical reflection condensing surface 43d can be provided on the deflection surface 43b of the prism 43 as shown in FIG.
  • the reflective condensing surface 43d and the prism 43 can be integrally formed by injection molding, a glass mold method, or an imprint method.
  • a reflective film may be formed on the reflective condensing surface 43d.
  • the configuration other than the reflection / condensing surface 43d is the same as the configuration of the optical head according to the first embodiment described above.
  • the light emitted from the LD 50 enters the prism 43 from the incident surface 43a and reaches the reflection / condensing surface 43d.
  • the light reaching the reflection / condensing surface 43d is deflected in the direction of the slider 60 by the reflection / condensing surface 43d.
  • the reflective condensing surface 43d has an aspherical shape or a spherical shape. Therefore, the light is collected by the reflection / condensing surface 43d, reaches the incident surface 64d of the optical waveguide 64, and is coupled to the optical waveguide 64.
  • the optical coupling efficiency can be increased.
  • the deflection surface of the prism 43 may be a cylindrical reflecting cylindrical surface 43e having a curvature in a direction perpendicular to the active layer 52.
  • the deflection surface of the prism 43 may be a cylindrical surface having a substantially elliptical cross section instead of the reflecting cylindrical surface 43e.
  • FIG. 10 is a cross-sectional view of the optical head 4.
  • the structure 40 is provided with a prism 43 having a larger cross section (cross sectional area).
  • the rigidity of the structure 40 increases as the cross section (cross sectional area) of the prism 43 increases.
  • the cross sections are orthogonal to the incident surface 43a, the deflecting surface 43b, and the exit surface 43c of the prism 43, respectively.
  • the larger the cross section of the prism 43 the longer the distance from the LD 50 to the deflection surface 43b. Therefore, the light deflected by the deflecting surface 43 b is irradiated to a position shifted from the optical waveguide 64.
  • the prism 43 is arranged at a position farther from the slider 60, and the light emitting portion (active layer 52) of the LD 50 is arranged in accordance with the position of the prism 43. That is, as the cross section of the prism 43 increases, the light emitting portion (active layer 52) of the LD 50 is disposed at a position farther from the slider 60.
  • the light emitting portion (active layer 52) of the LD 50 with the surface opposite to the substrate 51 (surface close to the active layer 52) facing the upper surface 60 a of the slider 60. ) Is disposed at a position away from the slider 60, the optical head 4 becomes thick.
  • the LD 50 is disposed on the upper surface 60a of the slider 60 by inverting the LD 50 upside down. Specifically, the LD 50 is disposed on the upper surface 60 a of the slider 60 with the substrate 51 facing the upper surface 60 a of the slider 60. Then, the electrode layer formed on the substrate 51 side and the terminal 61a are connected by soldering. Further, the electrode layer formed on the surface opposite to the substrate 51 (surface close to the active layer 52) is connected to the terminal 62a by the bonding wire 55. Thereby, the position of the light emitting portion (active layer 52) of the LD 50 can be arranged at a position away from the slider 60 without increasing the thickness of the optical head 4.
  • the lens surface 43f on the emission surface 43c.
  • the lens surface 43 f may be formed integrally with the prism 43. Thereby, the light emitted from the emission surface 43 c is collected by the lens surface 43 f and coupled to the optical waveguide 64 of the slider 60.
  • the lens surface 43f is, for example, an aspherical surface, a spherical surface, a cylindrical surface, or a cylindrical surface having a substantially elliptical cross section.
  • the deflection surface 43b may be, for example, an aspherical surface, a spherical surface, a cylindrical surface, or a cylindrical surface having a substantially elliptical cross section. Note that a diffractive lens may be provided on the exit surface 43c instead of the lens surface 43f.
  • FIG. 11 is a cross-sectional view of the optical head 4.
  • the structure 40 is not provided with a prism, but a reflection surface 44 as an optical function unit is provided on a part of the frame 41.
  • the reflection surface 44 is formed obliquely at the edge of the surface of the frame body 41 that faces the slider 60.
  • a reflective film is formed on the reflective surface 44.
  • the configuration other than the reflection surface 44 is the same as the configuration of the optical head according to the first embodiment described above.
  • the light emitted from the LD 50 is reflected by the reflecting surface 44 and deflected in the direction of the slider 60, and is coupled to the optical waveguide 64 of the slider 60.
  • the reflecting surface 44 may be an aspherical surface, a spherical surface, or a cylindrical surface.
  • the reflection surface 44 on the frame body 41 instead of the prism, it is possible to enlarge the cross section of the frame body 41 where the reflection surface 44 is provided. Thereby, the rigidity of the structure 40 can be increased. In addition, since the optical function unit is configured only by the reflecting surface 44, it is possible to reduce the number of manufacturing steps of a mold for forming the structure 40.
  • the embodiment described above relates to an optically assisted magnetic recording head and an optically assisted magnetic recording device, but the optical recording head and optical recording device in which the recording medium is an optical recording disk are used. It is also possible to apply the main configuration of these embodiments. In this case, the slider 60 need not be provided with a magnetic recording unit and a magnetic information reproducing unit.

Abstract

Provided is an optical head that is easy to handle and can be made thin. An optical head (4) has a slider (60), a frame structure (40) and a laser diode (LD) (50). The structure (40) is substantially the same size as the slider (60) and is provided on the slider (60). The LD (50) is provided on the slider (60) at a position to the inside of a frame (41) of the structure (40). On part of the frame (41), the structure (40) has a prism (43) that guides light emitted from the LD (50) to the slider (60). The slider (60) irradiates the light guided by the prism (43) onto the recording medium.

Description

光ヘッド、光学素子、及び情報記録装置Optical head, optical element, and information recording apparatus
 この発明は、光ヘッド、光学素子、及び情報記録装置に関する。 The present invention relates to an optical head, an optical element, and an information recording apparatus.
 ハードディスク装置などの磁気記録装置は小型化及び大容量化が進んでおり、磁気ヘッドも小型になっている。これに伴い、磁気ヘッドのスライダも小型化されている。例えばフェムトスライダと称されるスライダの大きさは、長さが0.85mm、幅が0.7mm、厚さが0.23mmとなっている。 Magnetic recording devices such as hard disk devices are becoming smaller and larger in capacity, and magnetic heads are also becoming smaller. Accordingly, the slider of the magnetic head is also downsized. For example, a slider called a femto slider has a length of 0.85 mm, a width of 0.7 mm, and a thickness of 0.23 mm.
 また、記録密度をさらに高めるために光アシスト磁気記録方式が提案されている。この方式の磁気ヘッドのスライダには、光源からの光を記録媒体に照射する光導波路が形成されている。スライダとしては、光源から出射した光を光導波路に導く光学部品を有するタイプがある。光アシスト磁気記録方式の磁気ヘッドは小型であるため、磁気ヘッドのスライダに設けられる光学部品についても、数十μm~数百μmのサイズが要求される。 Also, an optically assisted magnetic recording method has been proposed to further increase the recording density. An optical waveguide for irradiating a recording medium with light from a light source is formed on a slider of this type of magnetic head. As a slider, there is a type having an optical component that guides light emitted from a light source to an optical waveguide. Since the magnetic head of the optically assisted magnetic recording system is small, an optical component provided on the slider of the magnetic head is also required to have a size of several tens to several hundreds of μm.
 例えば特許文献1に開示された薄膜磁気ヘッドにおいては、光源を搭載したユニット基板がスライダ上に搭載されている。光源から出射した光は、ユニット基板の先端に設けられたプリズムによってスライダの光伝播部に導かれる。 For example, in the thin film magnetic head disclosed in Patent Document 1, a unit substrate on which a light source is mounted is mounted on a slider. The light emitted from the light source is guided to the light propagation part of the slider by a prism provided at the tip of the unit substrate.
 また、特許文献2には、アクティブアライメントで歩留まりの良い実装を実現する手法として、先ず、半導体レーザダイオード(LD)をサブマウント上に実装するチップ・オン・キャリア構造を中間的に作製し、次に、LDを搭載したサブマウントをスライダ上に搭載する磁気ヘッドの作製方法が開示されている。特許文献2の実施形態1及び2においては、端面発光型LD素子の出射端面に構成されたマイクロミラーと、サブマウントに形成されたマイクロレンズ機構とが光学部品として機能する。それにより、LDから出射した光はスライダに導かれる。また、特許文献2の実施形態3においては、サブマウントに形成された溝に固定された1つの独立した部品である反射ミラーと、この反射ミラーに集積されたレンズ構造とが光学部品として機能する。それにより、端面発光型LDから出射した光は、反射ミラーにより偏向されてスライダに導かれる。 Further, in Patent Document 2, as a technique for realizing high yield mounting by active alignment, first, a chip-on-carrier structure in which a semiconductor laser diode (LD) is mounted on a submount is fabricated in an intermediate manner. Discloses a method of manufacturing a magnetic head in which a submount on which an LD is mounted is mounted on a slider. In Embodiments 1 and 2 of Patent Document 2, the micromirror formed on the emission end face of the edge-emitting LD element and the microlens mechanism formed on the submount function as optical components. Thereby, the light emitted from the LD is guided to the slider. In Embodiment 3 of Patent Document 2, a reflection mirror that is one independent component fixed to a groove formed in a submount and a lens structure integrated in the reflection mirror function as an optical component. . Thereby, the light emitted from the edge-emitting LD is deflected by the reflection mirror and guided to the slider.
特開2007-335027号公報JP 2007-335027 A 特開2009-4030号公報JP 2009-4030 A
 以上のようにスライダに光学部品が設けられる場合、その光学部品は微小であるため、どのように光学部品を製造するかが問題となる。また、微小な光学部品はハンドリングが困難であるため、どのように光学部品をハンドリングしてスライダに取り付けるのかが問題となる。 As described above, when an optical component is provided on the slider, since the optical component is very small, it becomes a problem how to manufacture the optical component. In addition, since a minute optical component is difficult to handle, there is a problem of how to handle the optical component and attach it to the slider.
 例えば特許文献1に記載されたユニット基板は、大きさがスライダとほぼ同じであるため、プリズム単体よりもハンドリングしやすい。しかしながら、プリズムが設けられたユニット基板を製造するのは困難であり、多くの工数を要する。ここで、特許文献1に記載されたユニット基板の製造方法について説明する。まず、ユニット基板となるウェハ状の基板に、伝播層となる誘電体膜(プリズム母材)を積層し、ウェハ状の基板を棒状の部材に切断する。そして、棒状の部材における誘電体膜のエッジを研磨することにより、プリズムの反射面を形成する。しかしながら、大きさが数十μmのプリズムを研磨することは非常に困難である。また、研磨時には角度の調整や研磨量の制御などを行う必要があるため、多数の工数を要する。また、プリズムはウェハ状の基板に積層して形成されているため、研磨時にプリズムが剥離するおそれがあり、その結果、ユニット基板の歩留まりが低下してしまう。 For example, since the unit substrate described in Patent Document 1 is almost the same size as the slider, it is easier to handle than the prism alone. However, it is difficult to manufacture a unit substrate provided with a prism, which requires many steps. Here, the manufacturing method of the unit board | substrate described in patent document 1 is demonstrated. First, a dielectric film (prism base material) serving as a propagation layer is laminated on a wafer-shaped substrate serving as a unit substrate, and the wafer-shaped substrate is cut into a rod-shaped member. And the reflective surface of a prism is formed by grind | polishing the edge of the dielectric material film in a rod-shaped member. However, it is very difficult to polish a prism having a size of several tens of μm. Moreover, since it is necessary to adjust the angle and control the polishing amount during polishing, a large number of man-hours are required. Further, since the prism is formed by being laminated on a wafer-like substrate, the prism may be peeled off during polishing, and as a result, the yield of the unit substrate is lowered.
 また、特許文献2の実施形態1及び2においては、レンズ構造の光軸を磁気ヘッドの厚さ方向に対して平行に配置している。このため、発光点からレンズ面の頂点までの距離を確保しようとすると、磁気ヘッドが厚くなってしまう。この距離を短くするためには焦点距離を短くすればよいが、レンズ面の曲率半径が小さくなって収差が発生し、結果として、光導波路との光結合効率が低下してしまう。 In Embodiments 1 and 2 of Patent Document 2, the optical axis of the lens structure is arranged in parallel to the thickness direction of the magnetic head. For this reason, if it is going to secure the distance from a light emission point to the vertex of a lens surface, a magnetic head will become thick. In order to shorten this distance, the focal length may be shortened, but the radius of curvature of the lens surface becomes small and aberration occurs, resulting in a decrease in optical coupling efficiency with the optical waveguide.
 さらに特許文献2の実施形態3においては、サブマウントに形成された溝に反射ミラーを固定する必要がある。反射ミラーの大きさは100μm~200μmと非常に小さいため、ハンドリングが困難である。また、LDと反射ミラーとの光軸を合わせながら反射ミラーを溝に固定することは容易ではなく、多数の工数が必要となってしまう。さらに、反射ミラーを固定するための接着剤を反射ミラーとサブマウントとの間に塗布した場合、接着剤がビームの通過領域に入り込み、反射ミラーが光学部品として機能しなくなるおそれがある。 Furthermore, in Embodiment 3 of Patent Document 2, it is necessary to fix the reflecting mirror in the groove formed in the submount. Since the size of the reflecting mirror is as small as 100 μm to 200 μm, handling is difficult. In addition, it is not easy to fix the reflection mirror in the groove while aligning the optical axes of the LD and the reflection mirror, and many man-hours are required. Furthermore, when an adhesive for fixing the reflecting mirror is applied between the reflecting mirror and the submount, the adhesive may enter the beam passage region and the reflecting mirror may not function as an optical component.
 特許文献1及び2のいずれにおいても、光源とスライダとの間にユニット基板やサブマントが配置されている。そのため、磁気ヘッドが厚くなり、結果として、磁気記録装置が厚くなってしまう。 In both Patent Documents 1 and 2, a unit substrate and a submount are arranged between the light source and the slider. Therefore, the magnetic head becomes thick, and as a result, the magnetic recording device becomes thick.
 この発明は上記の問題点を解決するものであり、その目的は、ハンドリングが容易であり且つ薄型化が可能な光ヘッド、光ヘッドに用いられる光学素子、及び光ヘッドを有する情報記録装置を提供することにある。 The present invention solves the above-described problems, and an object thereof is to provide an optical head that is easy to handle and can be thinned, an optical element used in the optical head, and an information recording apparatus having the optical head. There is to do.
 請求項1に記載の発明は、光源と、スライダと、枠状の構造体とを有する光ヘッドである。スライダは、記録媒体上を浮上して記録媒体に光源からの光を照射する。構造体は、スライダとほぼ同じ大きさを有し、スライダ上に設けられている。光源は、スライダ上、且つ構造体の枠の内側に設けられている。構造体は、光源から出射された光をスライダに導く光学機能部を、枠の一部に有する。
 また、請求項2に記載の発明は、請求項1に記載の光ヘッドであって、光学機能部が構造体と一体的に成形されている。
 また、請求項3に記載の発明は、請求項1又は請求項2に記載の光ヘッドであって、光学機能部が、入射面と偏向面とを有するプリズムにより構成されている。入射面は、光源から出射した光を内部に入射させる。偏向面は、入射面により内部に入射された光を偏向してスライダに導く。
 また、請求項4に記載の発明は、請求項3に記載の光ヘッドであって、プリズムの偏向面が、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有し、光源からの光を集光させてスライダに導くように構成されている。
 また、請求項5に記載の発明は、請求項3に記載の光ヘッドであって、光源が半導体レーザダイオードにより構成されている。半導体レーザダイオードは、その基板側をスライダに対向させてスライダ上に設けられている。プリズムは、偏向面で偏向された光をプリズムの外部に出射させる出射面を更に有する。偏向面又は出射面は、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有し、光源からの光を集光させてスライダに導く。
 また、請求項6に記載の発明は、請求項1又は請求項2に記載の光ヘッドであって、光学機能部が、光源から出射した光を反射してスライダに導く反射面により構成されている。
 また、請求項7に記載の発明は、枠体と光学機能部とを有する光学素子である。光学機能部は、枠体の一部に設けられ、枠体の内側から光を受けて枠体の外側に光を導くように構成されている。
 また、請求項8に記載の発明は、請求項7に記載の光学素子であって、枠体と光学機能部とが一体的に成形されている。
 また、請求項9に記載の発明は、請求項7又は請求項8に記載の光学素子であって、光学機能部が、入射面と偏向面とを有するプリズムにより構成されている。入射面は、枠体の内側から光を受けて内部に入射させる。偏向面は、入射面により内部に入射された光を偏向して枠体の外側に導く。
 また、請求項10に記載の発明は、請求項9に記載の光学素子であって、プリズムの偏向面が、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有する。
 また、請求項11に記載の発明は、請求項7又は請求項8に記載の光学素子であって、光学機能部が、枠体の内側から光を受けて枠体の外側に光を反射させる反射面により構成されている。
 また、請求項12に記載の発明は、記録媒体と、請求項1から請求項6のいずれかの光ヘッドとを有し、光源から出射した光をスライダによって記録媒体に照射し、記録媒体に情報を記録するように構成された情報記録装置である。
The invention described in claim 1 is an optical head having a light source, a slider, and a frame-like structure. The slider floats on the recording medium and irradiates the recording medium with light from the light source. The structure has substantially the same size as the slider and is provided on the slider. The light source is provided on the slider and inside the frame of the structure. The structure has an optical function part that guides light emitted from the light source to the slider in a part of the frame.
According to a second aspect of the present invention, in the optical head according to the first aspect, the optical function part is formed integrally with the structure.
According to a third aspect of the present invention, in the optical head according to the first or second aspect, the optical function unit is constituted by a prism having an incident surface and a deflection surface. The incident surface allows light emitted from the light source to enter the inside. The deflecting surface deflects the light incident inside by the incident surface and guides it to the slider.
The invention according to claim 4 is the optical head according to claim 3, wherein the deflecting surface of the prism has an aspherical shape, a spherical shape, a cylindrical surface shape or an elliptic cylindrical surface shape, The light is condensed and guided to the slider.
The invention according to claim 5 is the optical head according to claim 3, wherein the light source is constituted by a semiconductor laser diode. The semiconductor laser diode is provided on the slider with its substrate side facing the slider. The prism further has an exit surface that emits the light deflected by the deflecting surface to the outside of the prism. The deflecting surface or the emitting surface has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape, and collects light from the light source and guides it to the slider.
According to a sixth aspect of the present invention, there is provided the optical head according to the first or second aspect, wherein the optical function unit is configured by a reflecting surface that reflects the light emitted from the light source and guides it to the slider. Yes.
The invention according to claim 7 is an optical element having a frame and an optical function part. The optical function unit is provided in a part of the frame, and is configured to receive light from the inside of the frame and guide the light to the outside of the frame.
The invention according to claim 8 is the optical element according to claim 7, wherein the frame and the optical function part are integrally formed.
According to a ninth aspect of the present invention, in the optical element according to the seventh or eighth aspect, the optical function unit is constituted by a prism having an incident surface and a deflection surface. The incident surface receives light from the inside of the frame and enters the inside. The deflecting surface deflects the light incident inside by the incident surface and guides it to the outside of the frame.
According to a tenth aspect of the present invention, in the optical element according to the ninth aspect, the deflecting surface of the prism has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape.
The invention according to claim 11 is the optical element according to claim 7 or claim 8, wherein the optical function unit receives light from the inside of the frame and reflects the light to the outside of the frame. It is comprised by the reflective surface.
The invention according to claim 12 includes a recording medium and the optical head according to any one of claims 1 to 6, and the recording medium is irradiated with light emitted from a light source by a slider. An information recording device configured to record information.
 この発明によれば、光学機能部を含む構造体はスライダとほぼ同じ大きさを有するため、ハンドリングが容易となる。それにより、光学機能部を含む構造体をスライダに容易に取り付けることが可能となる。また、構造体は枠状の形状を有しているため、枠の内側に光源を配置することにより、光源と光学部品とをスライダ上に設けた場合であっても、光ヘッドを薄型化することが可能となる。 According to the present invention, since the structure including the optical function part has almost the same size as the slider, handling becomes easy. Thereby, the structure including the optical function part can be easily attached to the slider. In addition, since the structure has a frame shape, the light head is thinned by arranging the light source inside the frame, even when the light source and the optical component are provided on the slider. It becomes possible.
 また、枠体である構造体と光学機能部とを一体的に成形することにより、光学機能部を形成するための研磨などの工程が不要となる。その結果、光学機能部を有する構造体を容易に作製することが可能となる。 In addition, by integrally forming the structure that is a frame and the optical function part, a process such as polishing for forming the optical function part becomes unnecessary. As a result, a structure having an optical function part can be easily manufactured.
情報記録装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of an information recording device. この発明の第1実施形態に係る光ヘッドの分解斜視図である。1 is an exploded perspective view of an optical head according to a first embodiment of the present invention. この発明の第1実施形態に係る光ヘッドの斜視図である。1 is a perspective view of an optical head according to a first embodiment of the present invention. この発明の第1実施形態に係る光ヘッドの断面図であり、図3に示す光ヘッドのIV-IV断面図である。FIG. 4 is a cross-sectional view of the optical head according to the first embodiment of the present invention, and is a cross-sectional view of the optical head shown in FIG. 3 taken along the line IV-IV. この発明の第1実施形態に係る光ヘッドの側面図である。1 is a side view of an optical head according to a first embodiment of the present invention. この発明の第1実施形態に係る光ヘッドの正面図である。1 is a front view of an optical head according to a first embodiment of the present invention. 変形例に係る光学機能部の斜視図である。It is a perspective view of the optical function part which concerns on a modification. 変形例に係る光ヘッドの一部の断面図である。It is a partial sectional view of an optical head concerning a modification. 別の変形例に係る光学機能部の斜視図である。It is a perspective view of the optical function part which concerns on another modification. この発明の第2実施形態に係る光ヘッドの断面図である。It is sectional drawing of the optical head which concerns on 2nd Embodiment of this invention. この発明の第3実施形態に係る光ヘッドの断面図である。It is sectional drawing of the optical head which concerns on 3rd Embodiment of this invention.
(情報記録装置の概略構成)
 図1に、光アシスト式の磁気記録ヘッドを搭載した光アシスト式の磁気記録装置(例えばハードディスク装置、以下「情報記録装置」ともいう)の概略構成を示す。情報記録装置1は、例えば複数枚の回転可能な記録用ディスク(磁気記録媒体)3と、ヘッド支持部5と、トラッキング用アクチュエータ7と、光アシスト式磁気ヘッド4(以下、「光ヘッド4」と称する)と、図示しない駆動装置と、を筐体2内に備えている。なお、ディスク3は1枚であってもよい。ヘッド支持部5は、支軸6を支点として矢印Aの方向(トラッキング方向)に回動可能に設けられている。トラッキング用アクチュエータ7は、ヘッド支持部5に取り付けられている。光ヘッド4は、ヘッド支持部5の先端に取り付けられている。図示しない駆動装置は、ディスク3を矢印Bの方向に回転させる。情報記録装置1は、光ヘッド4がディスク3の上に浮上した状態でディスク3に対して相対的に移動できるように構成されている。
(Schematic configuration of information recording device)
FIG. 1 shows a schematic configuration of an optically assisted magnetic recording device (for example, a hard disk device, hereinafter also referred to as “information recording device”) equipped with an optically assisted magnetic recording head. The information recording apparatus 1 includes, for example, a plurality of rotatable recording disks (magnetic recording media) 3, a head support 5, a tracking actuator 7, and an optically assisted magnetic head 4 (hereinafter “optical head 4”). And a driving device (not shown) in the housing 2. The disk 3 may be one. The head support portion 5 is provided to be rotatable in the direction of arrow A (tracking direction) with the support shaft 6 as a fulcrum. The tracking actuator 7 is attached to the head support portion 5. The optical head 4 is attached to the tip of the head support 5. A drive device (not shown) rotates the disk 3 in the direction of arrow B. The information recording apparatus 1 is configured to be able to move relative to the disk 3 while the optical head 4 floats on the disk 3.
[第1実施形態]
 図2から図4を参照して、第1実施形態に係る光ヘッド4について説明する。図2は、光ヘッド4の分解斜視図である。図3は、光ヘッド4の斜視図である。図4は、図3に示す光ヘッド4のIV-IV断面図である。
[First Embodiment]
The optical head 4 according to the first embodiment will be described with reference to FIGS. FIG. 2 is an exploded perspective view of the optical head 4. FIG. 3 is a perspective view of the optical head 4. 4 is a cross-sectional view of the optical head 4 shown in FIG. 3 taken along the line IV-IV.
 光ヘッド4は、光を利用してディスク3に情報を記録する光ヘッドである。光ヘッド4は、構造体40と、半導体レーザダイオード50(以下、「LD50」と称する)と、スライダ60とを有する。スライダ60の上面60aには、構造体40とLD50とが設けられている。 The optical head 4 is an optical head that records information on the disk 3 using light. The optical head 4 includes a structure 40, a semiconductor laser diode 50 (hereinafter referred to as “LD50”), and a slider 60. The structure 40 and the LD 50 are provided on the upper surface 60 a of the slider 60.
(構造体40)
 構造体40は、LD50の位置と、スライダ60に設けられている光導波路64の位置とを規定し、LD50から出射した光を光導波路64に導く。構造体40は、例えば矩形状の枠体41を有する。枠体41で囲まれた内側には、矩形状の開口部42が形成されている。枠体41の一部には、三角形の断面形状を有するプリズム43が設けられている。プリズム43が光学機能部の一例に相当する。また、枠体41とプリズム43とを含む構造体40が、光学素子の一例に相当する。構造体40の外形の大きさは、スライダ60とほぼ同じである。また、開口部42の大きさは、LD50よりも大きい。構造体40の外形のサイズは、一例として厚さが100μm程度であり、長さが300μm~600μmであり、幅が200μm~300μmである。
(Structure 40)
The structure 40 defines the position of the LD 50 and the position of the optical waveguide 64 provided on the slider 60, and guides the light emitted from the LD 50 to the optical waveguide 64. The structure 40 includes a rectangular frame 41, for example. A rectangular opening 42 is formed on the inner side surrounded by the frame body 41. A part of the frame body 41 is provided with a prism 43 having a triangular cross-sectional shape. The prism 43 corresponds to an example of an optical function unit. The structure 40 including the frame body 41 and the prism 43 corresponds to an example of an optical element. The size of the outer shape of the structure 40 is substantially the same as that of the slider 60. Further, the size of the opening 42 is larger than that of the LD 50. The size of the outer shape of the structure 40 is, for example, a thickness of about 100 μm, a length of 300 μm to 600 μm, and a width of 200 μm to 300 μm.
 プリズム43は、入射面43aと偏向面43bと出射面43cとを有する。プリズム43は、LD50から出射した光をスライダ60の光導波路64に導く。一例として、入射面43aと出射面43cとは直交している。さらに、偏向面43bは、入射面43a及び出射面43cのそれぞれに対して傾斜している。入射面43aは、枠体41の内側を向いている。入射面43aは、枠体41の内側から光を受けて、プリズム43の内部に光を入射させる。偏向面43bは、入射面43aによって内部に入射された光を、出射面43cに向けて反射する。出射面43cは、スライダ60の光導波路64の入射面64aに対向して設けられている。偏向面43bによって偏向させられた光は、出射面43cから出射して入射面64aに入射する。この実施形態では、例えば、スライダ60に対向する枠体41の面と、プリズム43の出射面43cとが、同一の平面上にある。プリズム43の屈折率は1よりも大きく、例えば1.5~1.6である。プリズム43の高さ方向の長さは、一例として数十μm~数百μmである。 The prism 43 has an entrance surface 43a, a deflection surface 43b, and an exit surface 43c. The prism 43 guides the light emitted from the LD 50 to the optical waveguide 64 of the slider 60. As an example, the entrance surface 43a and the exit surface 43c are orthogonal to each other. Furthermore, the deflection surface 43b is inclined with respect to each of the incident surface 43a and the emission surface 43c. The incident surface 43 a faces the inside of the frame body 41. The incident surface 43 a receives light from the inside of the frame body 41 and makes the light enter the prism 43. The deflection surface 43b reflects the light incident inside by the incident surface 43a toward the output surface 43c. The exit surface 43 c is provided to face the entrance surface 64 a of the optical waveguide 64 of the slider 60. The light deflected by the deflecting surface 43b exits from the exit surface 43c and enters the entrance surface 64a. In this embodiment, for example, the surface of the frame 41 that faces the slider 60 and the emission surface 43c of the prism 43 are on the same plane. The refractive index of the prism 43 is larger than 1, for example, 1.5 to 1.6. The length of the prism 43 in the height direction is, for example, several tens μm to several hundreds μm.
 また、プリズム43の偏向面43bに反射膜を設けてもよい。反射膜としては、アルミニウムや金などの金属薄膜又は誘電体多層膜を用いることができる。反射膜は、例えば蒸着法やスパッタリング法により、偏向面43bに成膜される。 Further, a reflective film may be provided on the deflection surface 43 b of the prism 43. As the reflective film, a metal thin film such as aluminum or gold or a dielectric multilayer film can be used. The reflective film is formed on the deflection surface 43b by, for example, vapor deposition or sputtering.
 構造体40は、例えば光学的に透明な樹脂又はガラスで構成されている。構造体40は、例えば射出成形やガラスモールド法やインプリント法によって作製される。射出成型用の樹脂としては、熱可塑性樹脂であるポリカーボネイト(例えばAD5503、帝人化学株式会社)やZEONEX 480R(日本ゼオン株式会社)などが一例として挙げられる。また、インプリント製法用の樹脂としては、光硬化性樹脂であるPAK-02(東洋合成工業株式会社)などが一例として挙げられる。 The structure 40 is made of, for example, an optically transparent resin or glass. The structure 40 is produced by, for example, injection molding, a glass mold method, or an imprint method. Examples of the resin for injection molding include thermoplastic resins such as polycarbonate (for example, AD5503, Teijin Chemicals Limited) and ZEONEX 480R (Nippon Zeon Corporation). An example of the resin for imprinting is PAK-02 (Toyo Gosei Co., Ltd.), which is a photocurable resin.
 また、枠体41とプリズム43とは一体的に成形されることが好ましい。それにより、プリズム43を形成するための研磨などの工程が不要となり、構造体40を作製するための工数を削減することが可能となる。また、研磨などの工程が不要になることから、構造体40の歩留まりが向上する。 Further, it is preferable that the frame body 41 and the prism 43 are integrally formed. Accordingly, a process such as polishing for forming the prism 43 becomes unnecessary, and the number of steps for manufacturing the structure 40 can be reduced. In addition, since a process such as polishing is not necessary, the yield of the structures 40 is improved.
 また、構造体40の作製に用いられる金型において、プリズム43の入射面43a、偏向面43b、及び出射面43cのそれぞれに対応する面を、予め鏡面の状態に仕上げておくことが好ましい。それにより、成形後にプリズム43の各面を研磨しなくても、鏡面が得られる。 Further, in the mold used for manufacturing the structure 40, it is preferable that the surfaces corresponding to the incident surface 43a, the deflection surface 43b, and the emission surface 43c of the prism 43 are finished in a mirror state in advance. Thereby, a mirror surface can be obtained without polishing each surface of the prism 43 after molding.
(半導体レーザダイオード(LD)50)
 光源としてのLD50は、スライダ60の上面60a、且つ、構造体40の枠体41の内側(開口部42)に配置されている。図4に示すように、LD50においては、図示しない下部クラッド層と上部クラッド層とが基板51上に形成されており、下部クラッド層と上部クラッド層との間には活性層52が形成されている。また、LD50の両面には、図示しない電極層が形成されている。LD50から出射する光の出射面は、プリズム43の入射面43aに対向している。また、基板51とは反対側の表面(活性層52に近い表面)は、スライダ60の上面60aに対向している。
(Semiconductor laser diode (LD) 50)
The LD 50 as a light source is disposed on the upper surface 60 a of the slider 60 and on the inner side (opening 42) of the frame body 41 of the structure 40. As shown in FIG. 4, in the LD 50, a lower clad layer and an upper clad layer (not shown) are formed on a substrate 51, and an active layer 52 is formed between the lower clad layer and the upper clad layer. Yes. In addition, electrode layers (not shown) are formed on both surfaces of the LD 50. The light exit surface from the LD 50 faces the entrance surface 43 a of the prism 43. Further, the surface opposite to the substrate 51 (surface close to the active layer 52) faces the upper surface 60 a of the slider 60.
 LD50を構成する材料としては、例えば、GaAs、AlGaAs、InGaAs、AlGaInP、InAlGaN、InGaN、GaN、GaInNA、GaNAsP、及びAlGaNAsなどの材料のうちのいずれかを用いればよい。LD50は、発光に必要な層をウェハ上に積層することで作製できる。 As a material constituting the LD 50, for example, any one of materials such as GaAs, AlGaAs, InGaAs, AlGaInP, InAlGaN, InGaN, GaN, GaInNA, GaNAsP, and AlGaNAs may be used. The LD 50 can be manufactured by laminating layers necessary for light emission on a wafer.
(スライダ60)
 スライダ60の先端には、磁気ヘッド部63が設けられている。磁気ヘッド部63は、光導波路64と、図示しない磁気記録部と、図示しない磁気情報再生部とを有する。光導波路64は、プリズム43によって導かれた光を導光してディスク3に向けて出射する。図2に示すように、光導波路64の入射面64aは、スライダ60の上面60aに設けられている。また、光導波路64の出射面64bは、上面60aとは反対側の面(ディスク3に対向する面)に設けられている。出射面64bには、近接場光発生素子としてのプラズモンプローブ(図示せず)が設けられている。プリズム43によって偏向された光は、入射面64aから光導波路64に入射し、出射面64bに向かって光導波路64内を進む。出射面64bに設けられているプラズモンプローブは、プリズム43によって導かれた光を近接場光に変換してディスク3に向けて出射する。また、図示しない磁気記録部は、ディスク3の被記録部分に対して磁気情報を書き込む。図示しない磁気情報再生部は、ディスク3に記録されている磁気情報を読み取る。
(Slider 60)
A magnetic head portion 63 is provided at the tip of the slider 60. The magnetic head unit 63 includes an optical waveguide 64, a magnetic recording unit (not shown), and a magnetic information reproducing unit (not shown). The optical waveguide 64 guides the light guided by the prism 43 and emits it toward the disk 3. As shown in FIG. 2, the incident surface 64 a of the optical waveguide 64 is provided on the upper surface 60 a of the slider 60. Further, the exit surface 64b of the optical waveguide 64 is provided on the surface opposite to the upper surface 60a (the surface facing the disk 3). The emission surface 64b is provided with a plasmon probe (not shown) as a near-field light generating element. The light deflected by the prism 43 enters the optical waveguide 64 from the incident surface 64a and travels through the optical waveguide 64 toward the output surface 64b. The plasmon probe provided on the emission surface 64 b converts the light guided by the prism 43 into near-field light and emits it toward the disk 3. In addition, a magnetic recording unit (not shown) writes magnetic information to the recording portion of the disk 3. A magnetic information reproducing unit (not shown) reads magnetic information recorded on the disk 3.
 図2に示すように、スライダ60の上面60aには、電極61と電極62とが形成されている。電極61と電極62とは、それぞれ所定のパターン形状を有し、LD50に接続されてLD50に駆動電力を供給する。電極61の第1の端子61aは、スライダ60の上面60aに形成されている。第2の端子61bは、スライダ60の側面に形成されている。また、電極62の第1の端子62aは、スライダ60の上面60aに形成されている。第2の端子62bは、スライダ60の側面に形成されている。例えばスライダ60の上面60aにおいて、電極のパターン以外の領域をマスキングし、銅箔めっきや銅などの金属をターゲット材料としてスパッタリングなどを行うことにより、スライダ60の上面60aに電極61と電極62とが形成される。あるいは、電極61及び電極62として、所定の配線がパターニングされたフレキシブル配線をスライダ60の上面60aに固着させてもよい。 As shown in FIG. 2, an electrode 61 and an electrode 62 are formed on the upper surface 60 a of the slider 60. The electrode 61 and the electrode 62 each have a predetermined pattern shape, and are connected to the LD 50 to supply driving power to the LD 50. The first terminal 61 a of the electrode 61 is formed on the upper surface 60 a of the slider 60. The second terminal 61 b is formed on the side surface of the slider 60. Further, the first terminal 62 a of the electrode 62 is formed on the upper surface 60 a of the slider 60. The second terminal 62 b is formed on the side surface of the slider 60. For example, by masking a region other than the electrode pattern on the upper surface 60a of the slider 60 and performing sputtering or the like using copper foil plating or a metal such as copper as a target material, the electrode 61 and the electrode 62 are formed on the upper surface 60a of the slider 60. It is formed. Alternatively, as the electrode 61 and the electrode 62, flexible wiring in which predetermined wiring is patterned may be fixed to the upper surface 60a of the slider 60.
 LD50の基板51側には、図示しない電極層が形成されている。この電極層は、ボンディングワイヤ55によって端子62aに接続されている(図4を参照)。また、基板51とは反対側の表面(活性層52に近い表面)にも電極層が形成されている。この電極層と端子61aは、半田によって接続されている。 An electrode layer (not shown) is formed on the substrate 51 side of the LD 50. This electrode layer is connected to the terminal 62a by a bonding wire 55 (see FIG. 4). An electrode layer is also formed on the surface opposite to the substrate 51 (surface close to the active layer 52). The electrode layer and the terminal 61a are connected by solder.
 また、スライダ60は、浮上した状態でディスク3に対して相対的に移動するが、ディスク3にごみが付着している場合やディスク3に欠陥がある場合には、スライダ60とディスク3とが接触する可能性がある。その場合に発生する摩擦を低減するために、スライダ60は、耐摩擦性の高い硬質の材料により形成されることが好ましい。この材質としては、例えば、Alを含むセラミック材料、AlTiCやジリコニア、又はTiNなどがある。また、摩擦防止のために、スライダ60のディスク3側の面に、耐摩擦性を増すための表面処理を行ってもよい。例えば、DLC(Diamond Like Carbon)被膜を用いることにより、高い硬度が得られる。 The slider 60 moves relative to the disk 3 in a floating state. However, when dust is attached to the disk 3 or when the disk 3 has a defect, the slider 60 and the disk 3 are moved. There is a possibility of contact. In order to reduce the friction generated in that case, the slider 60 is preferably formed of a hard material having high friction resistance. Examples of this material include a ceramic material containing Al 2 O 3 , AlTiC, zirconia, or TiN. Further, in order to prevent friction, a surface treatment for increasing the friction resistance may be performed on the surface of the slider 60 on the disk 3 side. For example, high hardness can be obtained by using a DLC (Diamond Like Carbon) coating.
(光ヘッド4の組立方法)
 次に、図2から図6を参照して、光ヘッド4の組立方法について説明する。図5は、光ヘッド4の側面図である。図6は、光ヘッド4の正面図である。
(Assembly method of optical head 4)
Next, an assembly method of the optical head 4 will be described with reference to FIGS. FIG. 5 is a side view of the optical head 4. FIG. 6 is a front view of the optical head 4.
 まず、スライダ60の上面60aにLD50を設置する。基板51とは反対側の表面(活性層52に近い表面)を上面60aに向けて、基板51とは反対側の表面に形成されている電極層と端子61aとを、半田付けによって接続する。また、LD50の基板51側に形成されている電極層と端子62aとを、ボンディングワイヤ55によって接続する。 First, the LD 50 is installed on the upper surface 60 a of the slider 60. The surface opposite to the substrate 51 (surface close to the active layer 52) is directed to the upper surface 60a, and the electrode layer formed on the surface opposite to the substrate 51 and the terminal 61a are connected by soldering. Further, the electrode layer formed on the substrate 51 side of the LD 50 and the terminal 62 a are connected by a bonding wire 55.
 次に、構造体40の枠体41の内側(開口部42)にLD50が配置されるように、スライダ60の上面60aに構造体40を配置する。例えば枠体41においてプリズム43が設けられていない箇所に、図示しない吸着ピンセットを接触させて構造体40を保持し、位置を調整しながらスライダ60の上面60aに構造体40を配置する。光導波路64の入射面64aの位置とプリズム43の位置とを合わせて、スライダ60の上面60aに構造体40を配置する。例えば、枠体41においてプリズム43が設けられている箇所とは反対側の箇所、又は枠体41の側面に、吸着ピンセットを接触させて構造体40を保持すればよい。 Next, the structure 40 is arranged on the upper surface 60a of the slider 60 so that the LD 50 is arranged inside the frame body 41 (opening 42) of the structure 40. For example, a suction forceps (not shown) is brought into contact with a portion of the frame body 41 where the prism 43 is not provided to hold the structure body 40, and the structure body 40 is disposed on the upper surface 60a of the slider 60 while adjusting the position. The structure 40 is disposed on the upper surface 60 a of the slider 60 by aligning the position of the incident surface 64 a of the optical waveguide 64 with the position of the prism 43. For example, the structure 40 may be held by bringing suction tweezers into contact with a portion of the frame body 41 opposite to the portion where the prism 43 is provided, or a side surface of the frame body 41.
 いわゆるアクティブアライメント法によって、構造体40の位置決めを行うことができる。この場合、スライダ60の端子61bと端子62bとに図示しないコンタクトピンを接触させてLD50に電流を供給し、LD50を点灯させる。そして、光導波路64の出射面64bから出射する光の光量を測定し、その光量が最大となるように構造体40の位置を調整し、構造体40をスライダ60に固定する。または、アクティブアライメント法の代わりに、アライメントマークを用いて構造体40の位置決めを行ってもよい。例えばスライダ60の上面60aと構造体40とにアライメントマークを予め形成しておき、アライメントマークの位置が一致するように構造体40の位置決めを行う。 The structure 40 can be positioned by a so-called active alignment method. In this case, a contact pin (not shown) is brought into contact with the terminal 61b and the terminal 62b of the slider 60 to supply current to the LD 50, thereby turning on the LD 50. Then, the amount of light emitted from the exit surface 64 b of the optical waveguide 64 is measured, the position of the structure 40 is adjusted so that the amount of light is maximized, and the structure 40 is fixed to the slider 60. Alternatively, the structure 40 may be positioned using an alignment mark instead of the active alignment method. For example, alignment marks are formed in advance on the upper surface 60a of the slider 60 and the structure body 40, and the structure body 40 is positioned so that the positions of the alignment marks coincide.
 そして、図5及び図6に示すように、スライダ60の上面60aと構造体40の側面とに接着剤70を塗布し、接着剤70を硬化させることにより、構造体40をスライダ60に固定する。接着剤70としては、例えば紫外線硬化性接着剤を用いればよい。磁気ヘッド部63を避けて、スライダ60の上面60aに接着剤70を塗布することが好ましい。磁気ヘッド部63以外の箇所に接着剤70を塗布することにより、プリズム43と光導波路64との間に接着剤70が流れ込むことを防止することができる。それにより、光ヘッド4の品質及び歩留まりの向上を図ることができる。なお、構造体40とスライダ60との間に接着剤70を塗布することにより、構造体40をスライダ60に固定してもよい。この場合も、磁気ヘッド部63を避けてスライダ60の上面60aに接着剤70を塗布することが好ましい。 Then, as shown in FIGS. 5 and 6, the adhesive body 70 is applied to the upper surface 60 a of the slider 60 and the side surfaces of the structure body 40, and the adhesive body 70 is cured to fix the structure body 40 to the slider 60. . For example, an ultraviolet curable adhesive may be used as the adhesive 70. It is preferable to apply the adhesive 70 to the upper surface 60 a of the slider 60 while avoiding the magnetic head portion 63. By applying the adhesive 70 to a portion other than the magnetic head portion 63, it is possible to prevent the adhesive 70 from flowing between the prism 43 and the optical waveguide 64. Thereby, the quality and yield of the optical head 4 can be improved. The structure 40 may be fixed to the slider 60 by applying an adhesive 70 between the structure 40 and the slider 60. Also in this case, it is preferable to apply the adhesive 70 to the upper surface 60a of the slider 60 while avoiding the magnetic head portion 63.
(作用)
 図4を参照して、光ヘッド4の作用について説明する。LD50の活性層52の端面から出射した光は、広がりながらプリズム43の入射面43aに達し、プリズム43の内部に進入して偏向面43bに達する。偏向面43bに達した光は、偏向面43bにより反射されて、スライダ60の方向に偏向される。例えば、偏向面43bは、この光の光路を約90°偏向させる。偏向面43bによって反射された光は、プリズム43の出射面43cから出射し、スライダ60の光導波路64に結合する。光導波路64に結合された光は、入射面64aから出射面64bに向かって光導波路64内を進み、出射面64bに設けられているプラズモンプローブ(近接場光発生素子)を照射する。プラズモンプローブによって近接場光が発生する。この近接場光は、ディスク3に向かって出射される。光ヘッド4から出射した光が微小な光スポットとしてディスク3に照射されると、この照射領域の温度が一時的に上昇して保磁力が低下する。図示しない磁気記録部に設置されたコイルは、磁場を発生し、この保磁力が低下した領域に情報を記録する。情報が記録された領域が冷却されると、保磁力が高い状態に戻り、情報が保持される。また、図示しない磁気情報再生部は、記録された磁化の方向を検出することにより情報を再生する。
(Function)
The operation of the optical head 4 will be described with reference to FIG. The light emitted from the end face of the active layer 52 of the LD 50 reaches the incident surface 43a of the prism 43 while spreading, enters the inside of the prism 43, and reaches the deflection surface 43b. The light reaching the deflection surface 43 b is reflected by the deflection surface 43 b and deflected in the direction of the slider 60. For example, the deflecting surface 43b deflects the optical path of this light by about 90 °. The light reflected by the deflection surface 43 b is emitted from the emission surface 43 c of the prism 43 and is coupled to the optical waveguide 64 of the slider 60. The light coupled to the optical waveguide 64 travels in the optical waveguide 64 from the incident surface 64a toward the output surface 64b, and irradiates a plasmon probe (near-field light generating element) provided on the output surface 64b. Near-field light is generated by the plasmon probe. This near-field light is emitted toward the disk 3. When the light emitted from the optical head 4 is irradiated onto the disk 3 as a minute light spot, the temperature of this irradiation region temporarily rises and the coercive force decreases. A coil installed in a magnetic recording unit (not shown) generates a magnetic field and records information in an area where the coercive force is reduced. When the area where the information is recorded is cooled, the coercive force returns to a high state and the information is retained. A magnetic information reproducing unit (not shown) reproduces information by detecting the recorded magnetization direction.
 以上のように、プリズム43が設けられた構造体40は、スライダ60とほぼ同じ大きさを有しているため、プリズム43単体よりもハンドリングが容易となる。このように構造体40のハンドリングが容易であるため、スライダ60への構造体40の取り付けも容易となる。すなわち、光ヘッド4の組み立てが容易となる。 As described above, since the structure 40 provided with the prism 43 has substantially the same size as the slider 60, handling is easier than the prism 43 alone. As described above, since the structure 40 is easy to handle, the structure 40 can be easily attached to the slider 60. That is, the optical head 4 can be easily assembled.
 光源からスライダの光導波路に光を導くためには、光を導くための光学部品(例えばプリズム)をスライダに設置する必要がある。プリズムなどの光学部品は微小であるため、光学部品単体ではハンドリングが困難であり、そのため、光ヘッドの組み立ても困難である。この実施形態では、構造体40の一部にプリズム43を設けることにより、プリズム43を含む構造体40のハンドリングが容易になる。すなわち、プリズム43自体が微小であっても、構造体40がスライダ60とほぼ同じ大きさを有するため、プリズム43を含む構造体40のハンドリングが容易となり、その結果、光ヘッド4の組み立てが容易となる。 In order to guide light from the light source to the optical waveguide of the slider, it is necessary to install an optical component (for example, a prism) for guiding the light on the slider. Since optical components such as prisms are very small, it is difficult to handle the optical component alone, and therefore it is difficult to assemble the optical head. In this embodiment, by providing the prism 43 in a part of the structure 40, the structure 40 including the prism 43 can be easily handled. That is, even if the prism 43 itself is very small, the structure 40 has almost the same size as the slider 60, so that the structure 40 including the prism 43 can be easily handled, and as a result, the optical head 4 can be easily assembled. It becomes.
 また、構造体40は枠状に成形されているため、LD50(光源)を枠体41の内側に配置することが可能となる。すなわち、構造体40の上にLD50を配置することなく、スライダ60上にLD50を配置することが可能となる。そのことにより、光ヘッド4の薄型化が可能となり、その結果、情報記録装置1の薄型化が可能となる。なお、従来においては、サブマウントやユニット基板を介して光源をスライダに設けていたため、光ヘッドが厚くなっていた。これに対し、この実施形態では、構造体40とLD50とをスライダ60の上方に設けつつも、光ヘッド4を薄型化することが可能となる。 Further, since the structure 40 is formed in a frame shape, the LD 50 (light source) can be disposed inside the frame body 41. That is, the LD 50 can be arranged on the slider 60 without arranging the LD 50 on the structure 40. As a result, the optical head 4 can be made thinner, and as a result, the information recording apparatus 1 can be made thinner. Conventionally, since the light source is provided on the slider via the submount and the unit substrate, the optical head is thick. On the other hand, in this embodiment, the optical head 4 can be thinned while the structure 40 and the LD 50 are provided above the slider 60.
 また、枠体41とプリズム43とを一体的に成形することにより、プリズム43を形成するための研磨などの工程が不要となる。それにより、構造体40を容易に作製することが可能となる。 Further, by integrally forming the frame body 41 and the prism 43, a process such as polishing for forming the prism 43 becomes unnecessary. Thereby, the structure 40 can be easily manufactured.
 また、屈折率が1よりも大きいプリズム43を用いることにより、LD50から光導波路64の入射面64aまでの空気換算長が短くなる。それにより、光導波路64の入射面64aに照射される光スポットのサイズが小さくなり、光導波路64における光結合効率を高めることが可能となる。 Further, by using the prism 43 having a refractive index larger than 1, the air conversion length from the LD 50 to the incident surface 64a of the optical waveguide 64 is shortened. Thereby, the size of the light spot irradiated to the incident surface 64a of the optical waveguide 64 is reduced, and the optical coupling efficiency in the optical waveguide 64 can be increased.
(変形例)
 図7から図9を参照して、変形例に係る光ヘッドについて説明する。図7は、変形例に係る光学機能部の斜視図である。図8は、変形例に係る光ヘッドの一部の断面図である。図9は、別の変形例に係る光学機能部の斜視図である。
(Modification)
An optical head according to a modification will be described with reference to FIGS. FIG. 7 is a perspective view of an optical function unit according to a modification. FIG. 8 is a cross-sectional view of a part of an optical head according to a modification. FIG. 9 is a perspective view of an optical function unit according to another modification.
 光導波路64における光結合効率を高めるために、図7に示すように、プリズム43の偏向面43bに、非球面状又は球面状の反射集光面43dを設けることができる。例えば、射出成形やガラスモールド法やインプリント法によって、反射集光面43dとプリズム43とを一体的に成形することができる。また、反射集光面43dに反射膜を成膜してもよい。なお、変形例に係る光ヘッドにおいて、反射集光面43d以外の構成は上述した第1実施形態に係る光ヘッドの構成と同じである。 In order to increase the optical coupling efficiency in the optical waveguide 64, an aspherical or spherical reflection condensing surface 43d can be provided on the deflection surface 43b of the prism 43 as shown in FIG. For example, the reflective condensing surface 43d and the prism 43 can be integrally formed by injection molding, a glass mold method, or an imprint method. Further, a reflective film may be formed on the reflective condensing surface 43d. In the optical head according to the modification, the configuration other than the reflection / condensing surface 43d is the same as the configuration of the optical head according to the first embodiment described above.
 図8に示すように、LD50から出射した光は、入射面43aからプリズム43の内部に進入して反射集光面43dに達する。反射集光面43dに達した光は、反射集光面43dによって、スライダ60の方向に偏向される。反射集光面43dは、非球面状又は球面状の形状を有する。よって、光は、反射集光面43dによって集光されて光導波路64の入射面64dに達し、光導波路64と結合する。このように光を集光させて光導波路64に結合させることにより、光結合効率を高めることが可能となる。 As shown in FIG. 8, the light emitted from the LD 50 enters the prism 43 from the incident surface 43a and reaches the reflection / condensing surface 43d. The light reaching the reflection / condensing surface 43d is deflected in the direction of the slider 60 by the reflection / condensing surface 43d. The reflective condensing surface 43d has an aspherical shape or a spherical shape. Therefore, the light is collected by the reflection / condensing surface 43d, reaches the incident surface 64d of the optical waveguide 64, and is coupled to the optical waveguide 64. Thus, by condensing the light and coupling it to the optical waveguide 64, the optical coupling efficiency can be increased.
 また、LD50から出射した光のファーフィールドにおける強度分布においては、活性層52に垂直な成分のFWHM(full width at half maximum)(半値全幅)が広くなる。そのため、活性層52に垂直な成分のみを集光しても、光導波路64における光結合効率を高めることができる。この場合、例えば図9に示すように、プリズム43の偏向面を、活性層52に垂直な方向に曲率を持った円筒状の反射円筒面43eとすればよい。これにより、LD50から出射した光のうちの活性層53に垂直な成分が、反射円筒面43eによって集光されるため、光導波路64における光結合効率を高めることが可能となる。なお、プリズム43の偏向面は、反射円筒面43eの代わりに、断面が略楕円形状のシリンドリカル面であってもよい。 Further, in the intensity distribution in the far field of the light emitted from the LD 50, the FWHM (full width at half maximum) (full width at half maximum) of the component perpendicular to the active layer 52 becomes wide. Therefore, even if only the component perpendicular to the active layer 52 is collected, the optical coupling efficiency in the optical waveguide 64 can be increased. In this case, for example, as shown in FIG. 9, the deflection surface of the prism 43 may be a cylindrical reflecting cylindrical surface 43e having a curvature in a direction perpendicular to the active layer 52. As a result, the component perpendicular to the active layer 53 in the light emitted from the LD 50 is collected by the reflecting cylindrical surface 43e, so that the optical coupling efficiency in the optical waveguide 64 can be increased. The deflection surface of the prism 43 may be a cylindrical surface having a substantially elliptical cross section instead of the reflecting cylindrical surface 43e.
[第2実施形態]
 図10を参照して、第2実施形態に係る光ヘッド4について説明する。図10は、光ヘッド4の断面図である。
[Second Embodiment]
The optical head 4 according to the second embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view of the optical head 4.
 第2実施形態においては、断面(断面積)がより大きいプリズム43が構造体40に設けられる。プリズム43の断面(断面積)が大きくなるほど、構造体40の剛性が高まる。断面は、プリズム43の入射面43aと偏向面43bと出射面43cとにそれぞれ直交する。プリズム43の断面が大きくなるほど、LD50から偏向面43bまでの距離が長くなる。したがって、偏向面43bにより偏向された光は、光導波路64からずれた位置に照射される。そのため、プリズム43の断面が大きくなるほど、スライダ60から離れた位置にプリズム43を配置し、このプリズム43の位置に合わせてLD50の発光部(活性層52)を配置する。すなわち、プリズム43の断面が大きくなるほど、スライダ60から離れた位置にLD50の発光部(活性層52)を配置する。この場合、図4に示すように、LD50の基板51とは反対側の表面(活性層52に近い表面)を、スライダ60の上面60aに対向させた状態で、LD50の発光部(活性層52)をスライダ60から離れた位置に配置すると、光ヘッド4が厚くなってしまう。そこで、第2実施形態では、LD50の上下を反転させて、スライダ60の上面60aにLD50を配置する。具体的には、基板51をスライダ60の上面60aに対向させて、スライダ60の上面60aにLD50を配置する。そして、基板51側に形成された電極層と端子61aとを、半田付けによって接続する。また、基板51とは反対側の表面(活性層52に近い表面)に形成されている電極層を、ボンディングワイヤ55によって端子62aに接続する。これにより、光ヘッド4の厚さを増大させることなく、LD50の発光部(活性層52)の位置を、スライダ60から離れた位置に配置することが可能となる。 In the second embodiment, the structure 40 is provided with a prism 43 having a larger cross section (cross sectional area). The rigidity of the structure 40 increases as the cross section (cross sectional area) of the prism 43 increases. The cross sections are orthogonal to the incident surface 43a, the deflecting surface 43b, and the exit surface 43c of the prism 43, respectively. The larger the cross section of the prism 43, the longer the distance from the LD 50 to the deflection surface 43b. Therefore, the light deflected by the deflecting surface 43 b is irradiated to a position shifted from the optical waveguide 64. Therefore, as the cross section of the prism 43 becomes larger, the prism 43 is arranged at a position farther from the slider 60, and the light emitting portion (active layer 52) of the LD 50 is arranged in accordance with the position of the prism 43. That is, as the cross section of the prism 43 increases, the light emitting portion (active layer 52) of the LD 50 is disposed at a position farther from the slider 60. In this case, as shown in FIG. 4, the light emitting portion (active layer 52) of the LD 50 with the surface opposite to the substrate 51 (surface close to the active layer 52) facing the upper surface 60 a of the slider 60. ) Is disposed at a position away from the slider 60, the optical head 4 becomes thick. Therefore, in the second embodiment, the LD 50 is disposed on the upper surface 60a of the slider 60 by inverting the LD 50 upside down. Specifically, the LD 50 is disposed on the upper surface 60 a of the slider 60 with the substrate 51 facing the upper surface 60 a of the slider 60. Then, the electrode layer formed on the substrate 51 side and the terminal 61a are connected by soldering. Further, the electrode layer formed on the surface opposite to the substrate 51 (surface close to the active layer 52) is connected to the terminal 62a by the bonding wire 55. Thereby, the position of the light emitting portion (active layer 52) of the LD 50 can be arranged at a position away from the slider 60 without increasing the thickness of the optical head 4.
 また、プリズム43を大きくすると、光路長が長くなるため、光導波路64における光結合効率が低下してしまう。そこで、光結合効率を高めるために、出射面43cにレンズ面43fを設けることが好ましい。例えば、レンズ面43fをプリズム43に一体的に成形すればよい。これにより、出射面43cから出射する光は、レンズ面43fによって集光されて、スライダ60の光導波路64に結合する。レンズ面43fは、例えば非球面、球面、円筒状の面、又は断面が略楕円形状のシリンドリカル面である。また、偏向面43bが、例えば非球面、球面、円筒状の面、又は断面が略楕円形状のシリンドリカル面であってもよい。なお、レンズ面43fの代わりに、回折レンズを出射面43cに設けてもよい。 Also, if the prism 43 is made larger, the optical path length becomes longer, so that the optical coupling efficiency in the optical waveguide 64 decreases. Therefore, in order to increase the optical coupling efficiency, it is preferable to provide the lens surface 43f on the emission surface 43c. For example, the lens surface 43 f may be formed integrally with the prism 43. Thereby, the light emitted from the emission surface 43 c is collected by the lens surface 43 f and coupled to the optical waveguide 64 of the slider 60. The lens surface 43f is, for example, an aspherical surface, a spherical surface, a cylindrical surface, or a cylindrical surface having a substantially elliptical cross section. The deflection surface 43b may be, for example, an aspherical surface, a spherical surface, a cylindrical surface, or a cylindrical surface having a substantially elliptical cross section. Note that a diffractive lens may be provided on the exit surface 43c instead of the lens surface 43f.
[第3実施形態]
 図11を参照して、第3実施形態に係る光ヘッド4について説明する。図11は、光ヘッド4の断面図である。
[Third Embodiment]
The optical head 4 according to the third embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view of the optical head 4.
 第3実施形態においては、構造体40にプリズムを設けずに、枠体41の一部に光学機能部としての反射面44を設ける。反射面44は、枠体41のスライダ60に対向する面の縁に斜めに形成されている。また、反射面44には反射膜が成膜されている。なお、第3実施形態に係る光ヘッドにおいて、反射面44以外の構成は、上述した第1実施形態に係る光ヘッドの構成と同じである。LD50から出射した光は、反射面44によって反射されてスライダ60の方向に偏向され、スライダ60の光導波路64に結合する。なお、光導波路64における光結合効率を高めるために、反射面44は、非球面、球面、又は円筒状の面であってもよい。 In the third embodiment, the structure 40 is not provided with a prism, but a reflection surface 44 as an optical function unit is provided on a part of the frame 41. The reflection surface 44 is formed obliquely at the edge of the surface of the frame body 41 that faces the slider 60. A reflective film is formed on the reflective surface 44. In the optical head according to the third embodiment, the configuration other than the reflection surface 44 is the same as the configuration of the optical head according to the first embodiment described above. The light emitted from the LD 50 is reflected by the reflecting surface 44 and deflected in the direction of the slider 60, and is coupled to the optical waveguide 64 of the slider 60. In order to increase the optical coupling efficiency in the optical waveguide 64, the reflecting surface 44 may be an aspherical surface, a spherical surface, or a cylindrical surface.
 プリズムの代わりに反射面44を枠体41に設けることにより、枠体41において反射面44が設けられている箇所の断面を大きくすることが可能となる。それにより、構造体40の剛性を高めることが可能となる。また、光学機能部が反射面44のみで構成されているため、構造体40を成形するための金型の製造工数を削減することが可能となる。 By providing the reflection surface 44 on the frame body 41 instead of the prism, it is possible to enlarge the cross section of the frame body 41 where the reflection surface 44 is provided. Thereby, the rigidity of the structure 40 can be increased. In addition, since the optical function unit is configured only by the reflecting surface 44, it is possible to reduce the number of manufacturing steps of a mold for forming the structure 40.
 なお、以上説明してきた実施の形態は、光アシスト磁気記録ヘッド、及び、光アシスト磁気記録装置に関するものであるが、記録媒体を光記録ディスクとした光記録ヘッド、及び、光記録装置に対して、これら実施の形態の要部構成を適用することも可能である。この場合、スライダ60に磁気記録部と磁気情報再生部を設ける必要はない。 The embodiment described above relates to an optically assisted magnetic recording head and an optically assisted magnetic recording device, but the optical recording head and optical recording device in which the recording medium is an optical recording disk are used. It is also possible to apply the main configuration of these embodiments. In this case, the slider 60 need not be provided with a magnetic recording unit and a magnetic information reproducing unit.
 1 情報記録装置
 2 筺体
 3 ディスク
 4 光ヘッド
 5 ヘッド支持部
 6 支軸
 7 トラッキング用アクチュエータ
 40 構造体
 41 枠体
 42 開口部
 43 プリズム
 43a 入射面
 43b 偏向面
 43c 出射面
 43d 反射集光面
 43e 反射円筒面
 43f レンズ面
 44 反射面
 50 半導体レーザダイオード(LD)
 51 基板
 52 活性層
 55 ボンディングワイヤ
 60 スライダ
 60a 上面
 61、62 電極
 63 磁気ヘッド部
 64 光導波路
 64a 入射面
 64b 出射面
 70 樹脂
DESCRIPTION OF SYMBOLS 1 Information recording device 2 Housing | casing 3 Disc 4 Optical head 5 Head support part 6 Support axis 7 Tracking actuator 40 Structure 41 Frame 42 Opening part 43 Prism 43a Incident surface 43b Deflection surface 43c Output surface 43d Reflection condensing surface 43e Reflection cylinder Surface 43f Lens surface 44 Reflecting surface 50 Semiconductor laser diode (LD)
51 Substrate 52 Active layer 55 Bonding wire 60 Slider 60a Upper surface 61, 62 Electrode 63 Magnetic head part 64 Optical waveguide 64a Incident surface 64b Emission surface 70 Resin

Claims (12)

  1.  光源と、
     記録媒体上を浮上して前記記録媒体に前記光源からの光を照射するスライダと、
     前記スライダとほぼ同じ大きさを有し、前記スライダ上に設けられた枠状の構造体と、
     を有し、
     前記光源は、前記スライダ上、且つ前記構造体の枠の内側に設けられ、
     前記構造体は、前記光源から出射された光を前記スライダに導く光学機能部を、前記枠の一部に有する、
     ことを特徴とする光ヘッド。
    A light source;
    A slider that floats on the recording medium and irradiates the recording medium with light from the light source;
    A frame-like structure having substantially the same size as the slider and provided on the slider;
    Have
    The light source is provided on the slider and inside the frame of the structure,
    The structure has an optical function part that guides light emitted from the light source to the slider in a part of the frame.
    An optical head characterized by that.
  2.  前記光学機能部は、前記構造体と一体的に成形されている、
     ことを特徴とする請求項1に記載の光ヘッド。
    The optical function unit is formed integrally with the structure.
    The optical head according to claim 1.
  3.  前記光学機能部は、
     前記光源から出射した光を内部に入射させる入射面と、
     前記入射面により内部に入射された光を偏向して前記スライダに導く偏向面と、
     を有するプリズムである、
     ことを特徴とする請求項1又は請求項2に記載の光ヘッド。
    The optical function unit is
    An incident surface on which light emitted from the light source is incident;
    A deflecting surface that deflects light incident inside by the incident surface and guides the light to the slider;
    A prism having
    The optical head according to claim 1, wherein the optical head is provided.
  4.  前記プリズムの前記偏向面は、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有し、前記光源からの光を集光させて前記スライダに導く、
     ことを特徴とする請求項3に記載の光ヘッド。
    The deflecting surface of the prism has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape, condenses light from the light source, and guides it to the slider.
    The optical head according to claim 3.
  5.  前記光源は半導体レーザダイオードであり、
     前記半導体レーザダイオードは、その基板側を前記スライダに対向させて前記スライダ上に設けられており、
     前記プリズムは、前記偏向面で偏向された光を前記プリズムの外部に出射させる出射面を更に有し、
     前記偏向面又は前記出射面は、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有し、前記光源からの光を集光させて前記スライダに導く、
     ことを特徴とする請求項3に記載の光ヘッド。
    The light source is a semiconductor laser diode;
    The semiconductor laser diode is provided on the slider with the substrate side facing the slider,
    The prism further includes an exit surface that emits the light deflected by the deflection surface to the outside of the prism;
    The deflecting surface or the emitting surface has an aspherical shape, a spherical shape, a cylindrical surface shape, or an elliptical cylindrical surface shape, and collects light from the light source and guides it to the slider.
    The optical head according to claim 3.
  6.  前記光学機能部は、前記光源から出射した光を反射して前記スライダに導く反射面である、
     ことを特徴とする請求項1又は請求項2に記載の光ヘッド。
    The optical function unit is a reflecting surface that reflects light emitted from the light source and guides the light to the slider.
    The optical head according to claim 1, wherein the optical head is provided.
  7.  枠体と、
     前記枠体の一部に設けられ、前記枠体の内側から光を受けて前記枠体の外側に光を導く光学機能部と、
     を有することを特徴とする光学素子。
    A frame,
    An optical function unit that is provided in a part of the frame and receives light from the inside of the frame and guides the light to the outside of the frame;
    An optical element comprising:
  8.  前記枠体と前記光学機能部とは一体的に成形されている、
     ことを特徴とする請求項7に記載の光学素子。
    The frame and the optical function unit are integrally molded,
    The optical element according to claim 7.
  9.  前記光学機能部は、
     前記枠体の内側から光を受けて内部に入射させる入射面と、
     前記入射面により内部に入射された光を偏向して前記枠体の外側に導く偏向面と、
     を有するプリズムである、
     ことを特徴とする請求項7又は請求項8に記載の光学素子。
    The optical function unit is
    An incident surface that receives light from the inside of the frame and enters the inside;
    A deflecting surface that deflects light incident inside by the incident surface and guides the light to the outside of the frame;
    A prism having
    The optical element according to claim 7 or 8, wherein
  10.  前記プリズムの前記偏向面は、非球面形状、球面形状、円筒面形状、又は楕円シリンドリカル面形状を有する、
     ことを特徴とする請求項9に記載の光学素子。
    The deflection surface of the prism has an aspheric shape, a spherical shape, a cylindrical surface shape, or an elliptic cylindrical surface shape,
    The optical element according to claim 9.
  11.  前記光学機能部は、前記枠体の内側から光を受けて前記枠体の外側に光を反射させる反射面である、
     ことを特徴とする請求項7又は請求項8に記載の光学素子。
    The optical function unit is a reflecting surface that receives light from the inside of the frame and reflects the light to the outside of the frame.
    The optical element according to claim 7 or 8, wherein
  12.  記録媒体と、
     請求項1から請求項6のいずれかの光ヘッドと、
     を有し、
     前記光源から出射した光を前記スライダによって前記記録媒体に照射し、前記記録媒体に情報を記録する、
     ことを特徴とする情報記録装置。
    A recording medium;
    An optical head according to any one of claims 1 to 6,
    Have
    Irradiating the recording medium with light emitted from the light source to record information on the recording medium;
    An information recording apparatus characterized by that.
PCT/JP2011/002089 2010-06-16 2011-04-08 Optical head, optical element and data recording device WO2011158413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-137364 2010-06-16
JP2010137364A JP2013175247A (en) 2010-06-16 2010-06-16 Optical head, optical element and information recording device

Publications (1)

Publication Number Publication Date
WO2011158413A1 true WO2011158413A1 (en) 2011-12-22

Family

ID=45347831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002089 WO2011158413A1 (en) 2010-06-16 2011-04-08 Optical head, optical element and data recording device

Country Status (2)

Country Link
JP (1) JP2013175247A (en)
WO (1) WO2011158413A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045004A (en) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd Optical assist magnetic head and optical assist magnetic disk device
WO2008081909A1 (en) * 2006-12-27 2008-07-10 Fujitsu Limited Head suspension assembly, carriage assembly and method for manufacturing head slider assembly
JP2008310865A (en) * 2007-06-13 2008-12-25 Konica Minolta Opto Inc Light-assisted magnetic recording head and method of manufacturing the same
WO2009054229A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Opto, Inc. Optical element manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045004A (en) * 2001-07-27 2003-02-14 Fuji Xerox Co Ltd Optical assist magnetic head and optical assist magnetic disk device
WO2008081909A1 (en) * 2006-12-27 2008-07-10 Fujitsu Limited Head suspension assembly, carriage assembly and method for manufacturing head slider assembly
JP2008310865A (en) * 2007-06-13 2008-12-25 Konica Minolta Opto Inc Light-assisted magnetic recording head and method of manufacturing the same
WO2009054229A1 (en) * 2007-10-25 2009-04-30 Konica Minolta Opto, Inc. Optical element manufacturing method

Also Published As

Publication number Publication date
JP2013175247A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5017184B2 (en) Thermally assisted magnetic recording head
US8477571B1 (en) Heat assisted magnetic recording using surface-emitting distributed feedback laser
KR101423140B1 (en) Optical near-field generating device, Optical near-field generating method and Information recording and reproducing apparatus
US20080002529A1 (en) Optical head and optical recording apparatus
JPWO2007105393A1 (en) Recording head and recording apparatus
JPWO2007105392A1 (en) Recording head and recording apparatus
KR20090037803A (en) Head slider
WO2010010806A1 (en) Optical recording head and optical recording device
KR101595723B1 (en) Slider for magnetic recording apparatus with projection comprising optical turning element and methods of fabrication thereof
JP4305575B2 (en) Optical element manufacturing method
WO2011158413A1 (en) Optical head, optical element and data recording device
JP4148300B1 (en) Optical recording head, optical recording head manufacturing method, and recording / reproducing apparatus
JP4093286B2 (en) Optical element, optical element manufacturing method, and optical head
JP2010129141A (en) Flexure and method of manufacturing the same
JP2011201129A (en) Manufacturing method for manufacturing intermediate formed body, intermediate formed body, and light assist magnetic head
JP2009176354A (en) Optical element, slider and optical head
JP2013004160A (en) Optical assist magnetic head and optical coupling structure
JP4788661B2 (en) Manufacturing method of optical head
JP4853398B2 (en) Optically assisted magnetic recording head, optically assisted magnetic recording device
JP2009217880A (en) Optical head and manufacturing method of optical head
WO2011074322A1 (en) Intermediate and method of manufacturing optically assisted magnetic head
WO2012176498A1 (en) Method for adjusting position of optical element
WO2011078069A1 (en) Method for assembling optically-assisted magnetic head
WO2011074442A1 (en) Intermediate
JP2009110562A (en) Optical element and optical head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP