WO2011158109A1 - Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance - Google Patents

Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance Download PDF

Info

Publication number
WO2011158109A1
WO2011158109A1 PCT/IB2011/001398 IB2011001398W WO2011158109A1 WO 2011158109 A1 WO2011158109 A1 WO 2011158109A1 IB 2011001398 W IB2011001398 W IB 2011001398W WO 2011158109 A1 WO2011158109 A1 WO 2011158109A1
Authority
WO
WIPO (PCT)
Prior art keywords
clinker
calcium
cement
c4a3s
phases
Prior art date
Application number
PCT/IB2011/001398
Other languages
English (en)
Inventor
Homero Ramirez Tovias
Juan Carlos Mertinez
Norma Leticia Garza Gongalez
Karla Serrano Gonzalez
Original Assignee
Cemex Research Group Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemex Research Group Ag filed Critical Cemex Research Group Ag
Publication of WO2011158109A1 publication Critical patent/WO2011158109A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • C04B7/367Avoiding or minimising carbon dioxide emissions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a new family of clinker produced industrially containing the phases alite (C3S), belite (C2S), calcium suifoaluminate (C4A3S) and calcium ferroaluminate (C4AF) which, by its composition emits less amount C0 2 during its manufacturing a current Portland cement clinker, has a high level of compressive strength and is suitable for the manufacture of a new family of hydraulic cements.
  • C3S alite
  • belite C2S
  • C4AF calcium ferroaluminate
  • the present invention relates to the manufacture of clinker in industrial furnaces, during which lower amounts of CO 2 are emitted and which by its nature makes it possible to obtain a higher mechanical strength and in particular its compressive component in hydraulic cements. .
  • Portland cement clinker is normally manufactured using an intimate pulverized mixture of limestone, clay, iron ore and other minor components, this mixture is exposed in a rotary kiln at temperatures above 1450 ° C, ensuring the formation of the phases at the origin of the required characteristics of the cements.
  • These phases are alite (C3S), belite (C2S), aluminate calcium (C3A), calcium ferroaluminate (C4AF) and other minor phases.
  • the alite (C3S) mainly ensures the resistance properties, which normally keep values higher than 50%, by requiring large quantities of limestone and therefore generating a high level of C0 2 emissions.
  • Suifoaluminate cements are the result of efforts by scientists and technologists to find an alternative to Portland cements.
  • This type of cement consists mainly of the C4A3S phase (calcium sulphoaluminate) replacing the C3A and C3S phases in clinker and cement and reducing the emission of CO2.
  • C4A3S calcium sulphoaluminate
  • the proportion of C4A3S in this type of clinker exceeds 40%, requiring raw materials rich in alumina and sulfates to form said phase.
  • high sulphate (SO 4) materials are common, such as in gypsum, anhydrite and other materials, alumina-rich feedstocks are not common and may be considered special resulting in a high supply cost; bauxite is an example.
  • the distribution of deposits is heterogeneous geographically.
  • This type of clinker and cement uses less CaCO3, because of its composition and its special formulation, resulting in a significant reduction of C02 emissions that can nevertheless reach 50% during the decarbonation process, depending on the raw materials used and of their formulation.
  • This type of cement has the particularity of presenting a high initial resistance due to the formation of large quantities of ettringite (C6ASH32).
  • C6ASH32 ettringite
  • Another characteristic of these cements is the temperature level at which they are manufactured. As this temperature is below 1300 ° C, the energy consumption is lower, thus reducing CO2 emissions.
  • the present invention relates to a clinker composition and the process for the industrial production of this new clinker and a cement with a high content of alite (alitic) and calcium suifoaluminate, by using raw materials generally used by the production plants. of Portland cement.
  • the cement of the invention is composed of alite (C3S) in a proportion of 30% to 70% by weight, of belite (C2S) in a proportion of 10% to 40% by weight of calcium suifoaluminate (C4A3S) in a proportion of 5% to 15% by weight and ferrite (C4AF) in a proportion of 1% to 7% by weight, for the main phases, and, if appropriate, anhydrite (CS) and C3A for the minority phases or components.
  • C3S alite
  • belite C2S
  • C4A3S calcium suifoaluminate
  • C4AF ferrite
  • This clinker and cement uses common raw materials already used in factories producing clinker and Portland cement, such as limestone, clay, kaolin, gypsum, fluorite (CaF2) and others. Its formulation frees itself from rare materials, such as bauxite and aluminous clays, which are difficult to obtain and generally of high commercial value. Fluorite is added to lower the temperature of the eutectic for the formation of liquid phases during clinkerization and to lower the required energy level. The amount of fluorite is between 0.1% and 1.5% by weight and preferably between 0.2% and 1% by weight.
  • this new clinker makes it possible to use a lower proportion of limestone and to have formulations of raw flour which, once calcined, generates less CO 2 during the decarbonation process.
  • the sintering temperature of this clinker also decreases, since the temperatures of 1400 ° C-1450 ° C normally used to manufacture the Portland clinker are lowered between 1250 ° C and 1350 ° C for the clinker of the invention, which reduces the amount of fuel needed and, therefore, CO2 emissions.
  • the manufacture of this new clinker involves adaptations of the operating parameters of the rotary kilns used for the development of the product.
  • the regulation of the temperature in the furnace and the content of O 2 (oxygen) in it are important parameters of the process for fixing the sulfur in the clinker by forming the calcium suifoaluminate (C4A3S), thus avoiding the formation of concretions in the furnace.
  • the preheater and rings in the oven common phenomena if we use materials rich in sulfur. Detailed description of the invention.
  • the present invention allows the alite (C3S) and calcium suifoaluminate (C4A3S) phases to coexist in a clinker, thereby producing high alite (C3S) and calcium suifoaluminate (C4A3S) cements.
  • This alite content is an important difference with the technologies of the belitic cements, the suifoaluminous cements and the combination of the two technologies, where there is normally no alite.
  • the coexistence of the alite and suifoaluminate phases is possible thanks to a rigorously controlled production process.
  • the raw materials used in the production of this new clinker are commonly available in cement plants where conventional Portland gray clinker is made and in their supply quarries. These raw materials generally comprise limestone (CaCO 3 ), clay, kaolin or any material containing SiO 2 and Al 2 O 3 and a sulfur material necessary for the formation of the calcium suifoaluminate phase, namely gypsum, natural anhydrite, gas desulphurisation ash, hydrofluoric acid industry residues, etc.
  • the proportion of materials constituting the raw meal is defined according to the clinker control modules, namely the lime saturation factor (FSC), between 91 and 96, the silicic module (MS), between 2 , 0 and 5.0, and the alumina modulus (AM), between 2.7 and 22, and strongly depends on the iron content of the materials employed.
  • FSC lime saturation factor
  • MS silicic module
  • AM alumina modulus
  • the value of the lime saturation factor has a direct effect on the clinker content of free calcium oxide, due to thermal energy required for the formation of the mineralogical phases combining the calcium ions with silica, alumina and iron, as illustrated on the Figurel.
  • the process for the formulation of the raw flour according to the invention makes it possible to reduce both the quantity of limestone and the quantity of fuels since the temperature at which the clinker is sintered is of the order of 1250 ° C. to 1300 ° C. hence a clear reduction in C0 2 emissions.
  • An essential element in the formulation of raw flour is the content of SO 3 : this is determined from stoichiometric calculations in which the amount of aluminum is considered equal to the total quantity of aluminum available for the formation of sulphoaluminate. of calcium, namely, the amount likely to react with iron oxide, to which is added an additional factor representing a slight excess of SO 3 in the clinker and intended to improve both the stabilization of calcium suifoaluminate than obtaining a low content of free lime.
  • the formula for calculating the content of S0 3 in raw flour is:
  • the clinker production process includes grinding of the raw meal, feeding of the kiln, precalcination and sintering of the raw meal, cooling of the clinker and grinding of the cement.
  • Grinding of the raw flour consists of the introduction of the preconcassed and mixed materials into the mill. appropriate proportions, making it possible to obtain particles retained by the sieve 200, in order to optimize the combustion in the oven, that is to say the conversion of the totality of the calcium oxide into mineralogical phases of silicates and silicates. calcium aluminates.
  • the value of the FSC influences the degree of combustion of the raw product, as shown in Figure 2.
  • S03 CLK is the material retained in the clinker and P. Ign IV the combustion loss determined at 950 ° C in the material of the fourth stage of the preheater. Evaporation should be controlled, ensuring that it does not fall, for example, below 40%, to avoid sulfur losses.
  • the oxygen content in the furnace is another critical parameter to control to avoid problems of deposition or formation of rings of sulfur.
  • a suitable oxygen content in the furnace facilitating complete combustion and a strongly oxidizing atmosphere, in which the SO 3 can be retained in the clinker and extracted from the furnace, is typically between 2.5% and 10% by volume in the furnace. oven atmosphere and preferably between 4% and 8%.
  • Calcium sulfoaluminate is formed in a temperature range of 1000 ° C to 1250 ° C in which CaO, Al 2 O 3 and CaSO 4 present in the system combine and react.
  • the monitoring of the presence of calcium suifoaluminate is carried out only in the laboratory by X-ray diffraction on the clinker produced in order to confirm that the alumina determined in the chemical analysis is combined in the mineralogical phase of interest. If the temperature is insufficient, 1 ⁇ 1203 stabilizes as calcium aluminate (C12A7) at about 1000 ° C, and not as calcium suifoaluminate, reactive phase for the development of compression resistance at advanced ages of matter and SiO 2 as belite, and not as alite. In the case where the temperature is above 1250 ° C - 1300 ° C, SO3 evaporates by decomposing to C3A in C4A3S.
  • the clinker obtained contains between 30% and 70% of C3S, 10% and 40% of C2S, 4% and 30% of C4A3S, 5% and 15% of C3A, and between 1% and 7% of C4AF.
  • the present invention contributes to the formation of an alitic clinker.
  • composition of a low carbon clinker comprises 73% limestone, 22% kaolin, in addition to promoters promoting the formation of low temperature clinker phases.
  • the chemical analysis of clinker obtained is presented below:
  • the raw meal is obtained which When heated at 1350 ° C in a rotary kiln, produces a low carbon clinker, the chemical composition of which is as follows:
  • the clinker obtained made it possible to produce at industrial level in a ball mill, the cement with 6.4% of S0 3 determined as optimum for obtaining resistances with 96% passing through sieve d 325 and a surface of 4570 cm 2 / g defined by the Blaine method.
  • Clinker analysis by the X-ray diffraction technique confirms that virtually all aluminum is combined to form calcium sulphoaluminate, and that there is no formation of C3A but only C4AF which stabilizes in because of the Fe203 content present in the raw meal.
  • the mineralogical composition of the resulting clinker is as follows: Phase Uni Value

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

La présente invention concerne une composition de clinker caractérisée en ce qu'elle comprend : - de 30% à 70% en poids d'alite (C3S), - de 10% à 40% en poids de bélite (C2S), - de 5% à 15% en poids de suifoaluminate de calcium (C4A3S), - de 1% à 7% de ferrite (C4AF) et, - le reste étant constitué d'anhydrite (CS) et/ou de chaux (C3A) ainsi qu'un procédé de fabrication d'un ciment à partir dudit clinker.

Description

Clinker et procédé de préparation d'un ciment hydraulique à basse émission de C02 et haute résistance.
Domaine de l'invention.
La présente invention concerne une nouvelle famille de clinker produit industriellement contenant les phases alite (C3S) , bélite (C2S) , suifoaluminate de calcium (C4A3S) et ferroaluminate de calcium (C4AF) qui, par sa composition émet moins de quantité C02 pendant sa fabrication qu'un clinker de ciment Portland courant, présente un niveau de résistance élevée à la compression et est adapté à la fabrication d'une nouvelle famille de ciments hydrauliques.
Arrière-plan de l'invention.
La présente invention concerne la fabrication de clinker dans les fours industriels, au cours de laquelle des quantités moindres de C02 sont émises et qui par sa nature permet d'obtenir une résistance mécanique plus élevée et en particulier sa composante en compression dans les ciments hydrauliques .
Le clinker de ciment Portland est normalement fabriqué en utilisant un mélange pulvérisé intime de calcaire, d'argile, de minerai de fer et d'autres composants minoritaires, ce mélange est exposé dans un four rotatif à des températures supérieures à 1450 °C, assurant la formation des phases à l'origine des caractéristiques requises des ciments. Ces phases sont l'alite (C3S) , la bélite (C2S) , l'aluminate calcium (C3A) , le ferroaluminate de calcium (C4AF) et d'autres phases mineures. L'alite (C3S) assure à titre principal les propriétés de résistance, laquelle conserve normalement des valeurs supérieures à 50%, en exigeant pour ce faire des quantités importantes de calcaire et générant par conséquent, un niveau élevé d'émissions de C02.
Il est important de rappeler que les émissions de C02 liées à un processus industriel de production de clinker pour ciment Portland sont dues principalement à deux phénomènes : la décarbonatation du calcaire qui passe de CaC03 en CaO puis en C02 et la combustion lors de la conversion en carbone de ces derniers en C02, combinés efficacement avec 1 ' 02 de l'air.
Par le passé, des efforts ont été entrepris pour réduire les émissions de C02 en modifiant la composition chimique et minéralogique du clinker et celle du ciment Portland ; ces modifications ont permis d'éliminer la phase alite du clinker et d'augmenter de manière importante la teneur en bélite avec conversion en une variante de clinkers et de ciments bélitiques .
On sait qu'avec le clinker bélitique on obtient du ciment à faible réactivité et, par suite, à faible résistance à la compression initiale bien qu'à des âges avancés 28 jours et plus, la résistance devienne plus élevée sans qu'elle soit jamais comparable à celle des ciments à forte teneur en alite (C3S) .
Cette faible résistance à la compression lors du vieillissement rend difficile la commercialisation de ce type de ciment, puisque cette caractéristique ne répond pas aux exigences dans le temps des constructions modernes imposés par l'industrie du bâtiment et aux normes de qualité des ciments .
Un exemple de cette technologie de production de ciments bélitiques est décrit dans le brevet américain US 5509962 du 23 avril 1996, dans lequel Fluvio J. Tang décrit la méthode de production d'un ciment consistant principalement en bélite alpha, catégorie de bélite plus réactive et que l'on ne rencontre généralement pas dans les ciments produits dans les conditions normales. Tang montre dans ce brevet comment l'utilisation d'ions Na, K et Fe permet d'activer et de fixer cette catégorie de bélite, en essayant d'améliorer la résistance initiale des ciments bélitiques.
Un autre exemple est représenté par le brevet britannique GB2013648 du 15 août 1979 intitulé "Processus de fabrication de ciment", dans lequel Richard Schrader explique comment, en utilisant le même processus de production de ciment Portland, et avec une formulation appropriée de farine brute, laquelle emploie normalement moins de quantité de matière calcaire (CaC03), on obtient à une température aussi basse que 1350°C un clinker bélitique bêta, dont la bélite est activée selon une technique de refroidissement appropriée.
Les ciments à base de suifoaluminate sont le fruit des efforts réalisés par les scientifiques et technologues pour trouver une alternative aux ciments Portland. Ce type de ciments est constitué principalement par la phase C4A3S (Sulfoaluminate de calcium) remplaçant les phases C3A et C3S dans le clinker et le ciment et réduisant l'émission de C02. Généralement, la proportion de C4A3S dans ce type de clinker dépasse 40%, exigeant des matières premières riches en alumine et en sulfates pour pouvoir former ladite phase. Même s'il est certain que les matières à teneur élevée en sulfate (S04) sont courantes, comme dans le gypse, l'anhydrite et d'autres matériaux, les matières premières riches en alumine ne sont pas habituelles et peuvent être considérées comme spéciales, entraînant un coût d'approvisionnement élevé; la bauxite en est un exemple. En outre, la distribution des gisements est hétérogène sur le plan géographique .
Ce type de clinker et de ciment utilise moins de CaC03 , en raison de sa composition et de sa formulation spéciale, entraînant une diminution importante des émissions de C02 qui peuvent néanmoins atteindre 50% lors du processus de décarbonatation, en fonction des matières premières utilisées et de leur formulation.
Ce type de ciment a la particularité de présenter une résistance initiale élevée en raison de la formation de grandes quantités d'ettringite (C6ASH32) . Cependant, étant fabriqué dans des conditions spéciales de coût et de production, son utilisation a été réservée à des usages spéciaux tels que les réparations et les dallages.
Une autre caractéristique de ces ciments est le niveau de température auquel ils sont fabriqués. Cette température étant inférieure à 1300°C, la consommation d'énergie est donc plus basse, réduisant ainsi les émissions de C02.
Certains exemples de cette technologie de fabrication sont divulgués dans les brevets américains US 6149724, du 21 novembre 2000 et US 7150786, du 19 décembre 2006. Dans ces documents, Ulibarri et Kunbargi nous présentent respectivement leurs procédés de fabrication de ciments à proportions élevées de suifoaluminate de calcium (C4A3S) , avec une faible proportion de bélite (C2S) et pour Ulibarri avec au moins 1% d'alite (C3S) , afin d'obtenir une résistance initiale élevée lors de la réaction du suifoaluminate de calcium C4A3S pour former de l'ettringite (C6ASH32 ) , ce qui réduit également le temps de prise. Ce ciment est souvent utilisé en mélange avec le ciment Portland dans différentes proportions afin d'améliorer son rôle.
Dans les deux cas mentionnés ci-dessus, on utilise des matières premières spéciales, c'est-à-dire des matières qui ne nécessitent pas d'installation pour produire le clinker Portland ou du moins dans des quantités conseillées par ces inventeurs. Dans ces conditions, des matières premières à très hautes teneurs en alumine (A1203) sont nécessaires, lesquelles sont en général rares et à haute valeur économique, d'où un coût très élevé de production de ce type de ciments.
Ces dernières années, un autre groupe de scientifiques a mis au point de nouveaux ciments utilisant les technologies (ciments bélitiques et sui oalumineux) décrites précédemment dans ce document, afin d'améliorer le rôle des ciments bélitiques, ainsi que la perception sur le marché de l'obtention de ciments de ce type à évolution lente de la résistance à la compression.
Un autre exemple de ce cas est représenté par la demande de brevet américain US 2007/0266903, du 22 novembre 2007, dans lequel Ellis Gartner nous montre comment un ciment bélitique, préparé avec un clinker fabriqué à une température comprise entre 1150 et 1350°C, composé principalement de bélite de catégorie alpha exempte d' alite (C3S) , et dont la formulation utilise une série de composants minoritaires, est amélioré en le mélangeant à du suifoaluminate de calcium (C4A3S) . Dans ce cas, ce composant est incorporé afin d'activer la belite et d'augmenter la résistance initiale, laquelle est ordinairement très faible lorsque l'on utilise seulement un ciment bélitique.
Description de l'invention
La présente invention concerne une composition de clinker et le procédé de fabrication industrielle de ce nouveau clinker et d'un ciment à haute teneur en alite (alitiques) et en suifoaluminate de calcium, en recourant à des matières premières généralement employées par les usines de production de ciment Portland.
Le ciment de l'invention est composé d'alite (C3S) dans une proportion de 30% à 70% en poids, de bélite (C2S) dans une proportion de 10% à 40% en poids, de suifoaluminate de calcium (C4A3S) dans une proportion de 5% à 15% en poids et de ferrite (C4AF) dans une proportion de 1% à 7% en poids, pour les phases principales, et, le cas échéant, d'anhydrite (CS) et de C3A pour les phases ou composants minoritaires.
La fabrication de ce clinker et de ce ciment fait appel à des matières premières courantes déjà utilisées dans les usines produisant du clinker et ciment Portland, telles que calcaire, argile, kaolin, gypse, fluorite (CaF2) et autres. Sa formulation s'affranchit des matières rares, telles que la bauxite et les argiles alumineuses, difficiles à obtenir et généralement de haute valeur commerciale. La fluorite est ajoutée pour abaisser la température de l'eutectique pour la formation des phases liquides lors de la clinkerisation et d'abaisser le niveau d'énergie requis. La quantité de fluorite est comprise entre 0,1% et 1,5% en poids et de préférence entre 0,2% et 1% en poids.
La formulation de ce nouveau clinker permet d'employer une proportion moindre de calcaire et de disposer de formulations de farine brute qui, une fois calcinée, génère moins de C02 pendant le processus de décarbonatation . La température de frittage de ce clinker diminue également, puisque les températures de 1400°C-1450°C utilisées normalement pour fabriquer le clinker Portland sont abaissées entre 1250°C et 1350°C pour le clinker de l'invention, ce qui réduit la quantité de combustible nécessaire et, par conséquent, les émissions de C02.
Les propriétés mécaniques de ce nouveau ciment fabriqué avec le clinker de l'invention améliorent la résistance à la compression à tous les âges du produit, des premières heures à 28 jours et il n'est pas rare de constater des augmentations de résistance allant de 25 à 50%.
La fabrication de ce nouveau clinker implique des adaptations des paramètres de fonctionnement des fours rotatifs utilisés pour l'élaboration du produit. La régulation de la température dans le four et la teneur en 02 (oxygène) dans celui-ci sont des paramètres importants du procédé pour fixer le soufre dans le clinker en formant le suifoaluminate de calcium (C4A3S) , évitant ainsi la formation de concrétions dans le préchauffeur et d'anneaux dans le four, phénomènes courants si l'on a recours à des matériaux riches en soufre. Description détaillée de l'invention.
La présente invention permet de faire coexister les phases alite (C3S) et suifoaluminate de calcium (C4A3S) dans un clinker, en produisant de cette manière des ciments à haute teneur en alite (C3S) et suifoaluminate de calcium (C4A3S) . Cette teneur en alite constitue une différence importante avec les technologies des ciments bélitigues, les ciments suifoalumineux et la combinaison des deux technologies, où il n'existe normalement pas d' alite. Dans l'invention, la coexistence des phases alite et suifoaluminate est possible grâce à un processus de production rigoureusement contrôlé.
Les matières premières employées pour la production de ce nouveau clinker sont couramment disponibles dans les cimenteries où s'effectue la fabrication de clinker gris Portland classique et dans leurs carrières d'approvisionnement. Ces matières premières comprennent généralement du calcaire (CaC03) , de l'argile, du kaolin ou tout matériau contenant Si02 et Al203 ainsi qu'un matériau soufré nécessaire à la formation de la phase de suifoaluminate de calcium, à savoir gypse, anhydrite naturelle, cendres de désuifuration des gaz, résidus de l'industrie de l'acide fluorhydrique, etc. La proportion des matériaux constitutifs de la farine brute est définie d'après les modules de contrôle propres au clinker, à savoir le facteur de saturation en chaux (FSC) , compris entre 91 et 96, le module silicique (MS) , compris entre 2,0 et 5,0, et le module d'alumine (MA), compris entre 2,7 et 22, et dépend fortement de la teneur en fer des matériaux employés .
La valeur du facteur de saturation en chaux a un effet direct sur la teneur du clinker en oxyde de calcium libre, en raison de l'énergie thermique requise pour la formation des phases minéralogiques combinant les ions calcium avec la silice, l'alumine et le fer, tel qu'illustré sur la Figurel .
Le procédé de formulation de la farine brute selon l'invention permet de réduire à la fois la quantité de calcaire et la quantité de combustibles puisque la température à laquelle le clinker est fritté est de l'ordre de 1250°C à 1300°C, d'où une nette diminution des émissions de C02.
Un élément essentiel de la formulation de la farine brute est la teneur de S03 : celle-ci est déterminée à partir de calculs stœchiométriques dans lesquels on considère la quantité d'aluminium égale à la quantité totale d'aluminium disponible pour la formation du suifoaluminate de calcium, à savoir, la quantité susceptible d'entrer en réaction avec l'oxyde de fer, à laquelle s'ajoute un facteur supplémentaire représentant un léger excès de S03 dans le clinker et destiné à améliorer tant la stabilisation du suifoaluminate de calcium que l'obtention d'une faible teneur en chaux libre. La formule de calcul de la teneur en S03 dans la farine brute s'écrit :
S03 dans la farine brute = 0,261 X Al203 - 0,638 X Fe203 + 3
Le processus de production du clinker comprend : le broyage de la farine brute, l'alimentation du four, la précalcination et le frittage de la farine brute, le refroidissement du clinker et le broyage du ciment.
Le broyage de la farine brute consiste en l'introduction des matériaux préconcassés et mélangés dans le moulin en proportions appropriées, permettant l'obtention de particules retenues au tamis 200, afin d'optimiser la combustion dans le four, c'est-à-dire la conversion de l'intégralité de l'oxyde de calcium en phases minéralogiques de silicates et d'aluminates de calcium. La valeur du FSC influence le degré de combustion du produit brut, comme le montre la Figure 2.
Pendant l'alimentation de la tour de préchauffage en farine brute, il est nécessaire de contrôler la température pour faciliter le processus de décarbonatation du matériau calcaire inclus dans la matière première tout en maintenant 1 ' évaporation des composants volatils (S03 principalement) au même niveau et sans entraver le fonctionnement du four par des dépôts dans les conduites du préchauffeur ou à l'intérieur du four. Le contrôle de 1 ' évaporation de S03 dans le four est la clé d'une opération stable et continue. Le contrôle de 1 ' évaporation repose sur la surveillance du matériau retenu dans la quatrième étape du préchauffeur, zone dans laquelle les matières volatiles ont tendance à se concentrer (principalement, S03 , Na20, K20) . On détermine la perte par combustion dudit matériau et on calcule 1 ' évaporation du S03 dans le four par les formules suivantes :
Evaporation de S03 dans le four = (S03 Bi - S03 CLK) / S03 Bi
S03 ai = S03 base ignée = S03 IV X (100/(100- P. Ign IV) )
Où S03 CLK est la matière retenue dans le clinker et P. Ign IV la perte par combustion déterminée à 950°C dans le matériau de la quatrième étape du préchauffeur. L' évaporation doit être contrôlée, en veillant à ce qu'elle ne descende pas, par exemple, en dessous de 40%, afin d'éviter des pertes en soufre.
Outre la température, la teneur en oxygène dans le four est un autre paramètre critique à contrôler pour éviter des problèmes de dépôt ou de formation d'anneaux de soufre. Une teneur en oxygène appropriée dans le four facilitant une combustion complète et une atmosphère fortement oxydante, dans laquelle le S03 peut être retenu dans le clinker et extrait du four, se situe typiquement entre 2,5% et 10% en volume dans l'atmosphère du four et de préférence entre 4% et 8%.
A la différence du processus de production classique de clinker, pour obtenir le produit proposé dans présente invention, il est nécessaire de contrôler la température de frittage ou de clinkerisation en agissant sur le taux de S03 retenu, celui de chaux libre et la composition minéralogique du clinker.
La formation du suifoaluminate de calcium s'effectue dans une plage de températures comprise entre 1000°C et 1250°C, dans laquelle CaO, A1203 et CaS04 , présents dans le système, se combinent et entrent en réaction. Le suivi de la présence du suifoaluminate de calcium s'effectue uniquement en laboratoire par diffraction des rayons X, sur le clinker produit afin de confirmer que l'alumine déterminée dans l'analyse chimique est combinée dans la phase minéralogique d'intérêt. Si la température est insuffisante, 1Ά1203 se stabilise comme aluminate de calcium (C12A7) à 1000°C environ, et non comme suifoaluminate de calcium, phase réactive pour le développement de la résistance à la compression aux âges avancés de la matière et le Si02 comme bélite, et non comme alite. Dans le cas où la température est supérieure à 1250°C - 1300°C, le S03 s'évapore en se décomposant en C3A dans le C4A3S.
Le clinker obtenu contient entre 30% et 70% de C3S, 10% et 40% de C2S, 4% et 30% de C4A3S , 5% et 15% de C3A, et entre 1% et 7% de C4AF. Par suite, à la différence d'autres clinkers obtenus à basse température contenant la phase active de suifoaluminate de calcium, la présente invention contribue à la formation d'un clinker alitique.
Exemples
EXEMPLE 1
La composition d'un clinker à faible teneur en carbone comprend 73% de calcaire, 22% de kaolin, en plus d'agents promoteurs de la formation des phases de clinker à basse température. L'analyse chimique du clinker obtenu est présentée ci-dessous :
Analyse chimique
Si02 % 22, 80
A1203 % 4,80
Fe203 % 0,35
CaO % 65, 28
MgO % 0, 88
S03 % 4, 18
Na20 % 0,27
20 % 0, 19
Ti02 % 0,25
P205 % 0, 06
Mn203 % 0, 00
CaF2 % 0,49
CaO libre % 1,10
Control Modules
LSF 93, 6
SM 4,4
AM 13, 7
Un contrôle adéquat de la température de frittage dans le four rotatif et de son refroidissement, de préférence, par un échangeur de chaleur à grilles permet d'obtenir la composition minéralogique du clinker, en prenant comme base les équations de Bogue pour les phases potentielles :
Phase U Valeur
n
i
t
é
Alite % 48
Bélite % 29
Suifoaluminate de % 9
calcium
Aluminate de % 1
calcium
Ferroaluminate de o,
*b 1
calcium
Anhydrite o.
o 5
Chaux libre o.
O 1
REMARQUE : La distinction des phases de C3A et C4A3S s'effectue par diffraction des rayons X, ce qui explique que l'aluminium pris en compte pour calculer les phases potentielles du C4A3S et C4AF est libre après formation du C3A quantifié par la méthode de Rietveld (par diffraction des rayons X) . Dans la préparation du ciment, le S03 à utiliser se définit par la résistance maximale à la compression sur 24 heures. Une fois déterminée la teneur en S03 du ciment à 7,3 % pour obtenir sa réactivité optimale dans ce cas particulier, et après broyage de la matière à 96% au tamis de 325, on a obtenu les résistances à la compression sur cubes de 2" (pouces) de mortier ; les résultats correspondants sont présentés ci-dessous:
Figure imgf000016_0001
EXEMPLE 2
En utilisant 71,2% de calcaire, 10,2% d'un matériau riche en Al203, 11,5% de kaolin alumineux et les agents promoteurs de formation des phases du clinker, on obtient la farine brute qui, une fois chauffée à 1350°C dans un four rotatif, produit un clinker de faible teneur en carbone, dont la composition chimique est la suivante :
Analyse chimique
Si02 ¾,
o 21, 82
Al203 % 5, 54
Fe203 % 0,81
CaO % 63 , 89
MgO % 0,87
S03 % 5, 53
Na20 % 0, 56
K20 % 0,47
Ti02 o,
o 0,16
P205 % 0, 04
Mn203 o,
o 0, 00
CaF2 % 0, 53
CaO libre % 1, 23
Modules de contrôle
LSF 93,8
SM 3,5
AM 6,8
Après avoir confirmé par la technique de diffraction des rayons X la stabilisation du suifoaluminate de calcium dans le clinker, on calcule les phases potentielles de celui-ci au moyen des équations de Bogue, ce qui donne les résultats suivants :
Phase Uni Valeur
Alite % 40
Bélite % 32
Suifoaluminate de % 10
calcium
Aluminate de % 1
calcium
Ferroaluminate de % 3
calcium
Anhydrite % 7
Chaux libre % 1
REMARQUE : La distinction des phases de C3A et C4A3S s'effectue par diffraction des rayons X, ce qui explique que l'aluminium pris en compte pour calculer les phases potentielles du C4A3S et C4AF est libre après formation du C3A quantifié par la méthode de Rietveld (par diffraction des rayons X) .
Le clinker obtenu a permis de produire au niveau industriel dans un moulin à boulets, le ciment avec 6,4 % de S03 déterminé comme optimum pour obtenir des résistances avec 96 % passant au tamis d 325 et une surface de 4570 cm2/g définie par la méthode Blaine.
Les résistances suivantes à la compression ont été obtenues dans le mortier :
Figure imgf000019_0001
EXEMPLE 3
En laboratoire on fritte un clinker en utilisant 75.7% de calcaire, 17.5% de matière résiduelle riche en A1203 , et les composants promoteurs des phases du clinker à basse température ; le matériau obtenu présente la composition chimique suivante :
Analyse chimique
Si02 % 20, 46
A1203 % 7,28
Fe203 % 0,89
CaO % 63, 68
MgO 0, 52
S03 % 7,25
Na20 % 0,41
K20 0, 72
Ti02 % 0,33
P205 0, 13
Mn203 0, 03
CaF2 0, 52
CaO libre % 1,01
Modules de contrôle
LSF 95,8
SM 2,5
AM 8,2
L'analyse du clinker par la technique de diffraction des rayons X confirme que pratiquement tout l'aluminium est combiné en formant du suifoaluminate de calcium, et qu'il n'y a pas de formation de C3A mais seulement de C4AF qui se stabilise en raison de la teneur en Fe203 présent dans la farine brute. La composition minéralogique du clinker résultante est la suivante : Phase Uni Valeur
Alite % 33
Bélite % 34
Suifoaluminate de % 13
calcium
Aluminate de % 1
calcium
Ferroaluminate de % 3
calcium
Anhydrite % 9
Chaux libre % 1
REMARQUE : La distinction des phases de C3A et C4A3S s'effectue par diffraction des rayons X, ce qui explique que l'aluminium pris en compte pour calculer les phases potentielles du C4A3S et C4AF est libre après formation du C3A quantifié par la méthode Rietveld (par diffraction des rayons X) . Les résistances à la compression sur cubes de mortier de 2" après 24 h ont permis de déterminer que la teneur optimale en S03 est de 9% pour ce clinker, et d'obtenir les résistances suivantes à la compression :
Figure imgf000022_0001

Claims

REVENDICATIONS
1. Procédé de fabrication d'un clinker pour ciment caractérisé en ce qu'il est obtenu par broyage d'une farine brute comprenant, notamment, du A1203/ du Fe203 et du S03 dans une teneur telle que S03 = 0,261 X A1203 - 0,638 X Fe203 + 3, puis par frittage de ladite farine dans un four comprise où la température est comprise entre 1250°C et 1350°C et la teneur en oxygène est comprise entre 2,5% et 10% en volume.
2. Procédé selon la revendication 1 caractérisé en ce que la teneur en oxygène est comprise entre 4% et 8% en volume.
3. Composition de clinker obtenue par le procédé selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle comprend :
- de 30% à 70% en poids d'alite (C3S) ,
- de 10% à 40% en poids de bélite (C2S) ,
- de 5% à 15% en poids de suifoaluminate de calcium (C4A3S) ,
- de 1% à 7% de ferrite (C4AF) et,
le reste étant constitué d'anhydrite (CS) et/ou de chaux (C3A) .
4. Composition selon la revendication 3 caractérisée en ce qu'elle comprend, en outre, de 0,1% à 1,5% en poids de fluorite (CaF2) .
5. Composition selon la revendication 2 caractérisée en ce qu'elle comprend de 0,2% à 1% en poids de fluorite (CaF2) .
PCT/IB2011/001398 2010-06-18 2011-06-17 Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance WO2011158109A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR10/02587 2010-06-18
FR1002587A FR2961505B1 (fr) 2010-06-18 2010-06-18 Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance

Publications (1)

Publication Number Publication Date
WO2011158109A1 true WO2011158109A1 (fr) 2011-12-22

Family

ID=42830424

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2011/001376 WO2011158105A1 (fr) 2010-06-18 2011-06-17 Procédé de fabrication d'un clinker pour ciment hydraulique a basse émission de co2 et haute résistance
PCT/IB2011/001398 WO2011158109A1 (fr) 2010-06-18 2011-06-17 Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/001376 WO2011158105A1 (fr) 2010-06-18 2011-06-17 Procédé de fabrication d'un clinker pour ciment hydraulique a basse émission de co2 et haute résistance

Country Status (8)

Country Link
US (1) US8715411B2 (fr)
EP (1) EP2582641A1 (fr)
BR (1) BR112012033789A2 (fr)
CO (1) CO6660444A2 (fr)
CR (1) CR20120633A (fr)
FR (1) FR2961505B1 (fr)
MX (1) MX2012014995A (fr)
WO (2) WO2011158105A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574359B2 (en) * 2010-11-15 2013-11-05 Italcementi High performance sulfo-aluminous clinker
CN104098304A (zh) * 2014-06-18 2014-10-15 池州市新科建材有限公司 一种萤石尾矿/钢渣粉复合的轻质隔墙板及其制作方法
CN104310820A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种利用五元矿物相体系制备硫铝酸盐水泥熟料的方法
US10450232B2 (en) 2014-12-03 2019-10-22 Universidad Nacional De Colombia Cement formulation based on aluminium sulphate with a specific proportion of Ye'elimite systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961505B1 (fr) * 2010-06-18 2013-08-02 Cemex Res Group Ag Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance
FR3003251B1 (fr) * 2013-03-15 2015-04-10 Vicat Nouveau clinker sulfo-belitique dope en phosphore
FR3003250B1 (fr) * 2013-03-15 2016-05-06 Vicat Nouveau clinker sulfo-alumineux a faible teneur en belite
US8986444B2 (en) * 2013-04-23 2015-03-24 University Of Kentucky Research Foundation Hybrid cement clinker and cement made from that clinker
ITTO20130962A1 (it) * 2013-11-27 2015-05-28 Buzzi Unicem S P A Prodotti cementizi ottenibili da calcestruzzo dismesso
CN104860556B (zh) * 2014-02-24 2018-07-13 唐山北极熊建材有限公司 快凝快硬贝利特硫铝酸盐水泥熟料、应用及其生产工艺
CN104326687B (zh) * 2014-10-16 2016-11-02 中国建筑材料科学研究总院 一种c3s型硫铝酸盐水泥熟料及其制备方法
EP3418727B1 (fr) * 2016-02-17 2022-05-11 Rigaku Corporation Dispositif d'analyse, procédé d'analyse et programme d'analyse
FR3125817A1 (fr) 2021-07-30 2023-02-03 Welya Procédé de formation d’un produit final à partir de carbonate de calcium et d’une autre espèce

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2013648A (en) 1978-02-06 1979-08-15 Thaelmann Schwermaschbau Veb A Process for the Manufacture of Cement
DE4204227C1 (en) * 1992-02-13 1993-02-11 Ivan Prof. Dr. 3380 Goslar De Odler Portland cement clinker prepn. - by firing mixt. of calcium oxide, silica, aluminium@ and ferric oxide in presence of additive contg. sulphate and fluorine ions
US5509962A (en) 1994-05-20 1996-04-23 Construction Technology Laboratories, Inc. Cement containing activated belite
US6149724A (en) 1996-06-10 2000-11-21 Cemex, S.A. De C.V. Hydraulic cement with accelerated high strength development
US7150786B2 (en) 1999-04-16 2006-12-19 Ultimax Corporation Very early setting ultra-high strength cement
US20070266903A1 (en) 2004-07-20 2007-11-22 Ellis Gartner High Belite-Containing Sulfoaluminous Clinker, Method for the Production and the Use Thereof for Preparing Hydraulic Binders
CN100453496C (zh) * 2005-10-20 2009-01-21 王红 一种砂浆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957556A (en) * 1989-06-08 1990-09-18 Hassan Kunbargi Very early setting ultra high early strength cement
FR2831161B1 (fr) * 2001-10-24 2004-09-10 Francais Ciments Clinker sulfoalumineux sans fer et sans chaux libre, son procede de preparation et son utilisation dans des liants blancs
MXPA04007614A (es) * 2004-08-05 2006-02-09 Cemex Trademarks Worldwide Ltd Proceso para producir clinker de cemento portland y clinker obtenido.
US7480356B2 (en) 2004-12-08 2009-01-20 Telefonaktiebolaget L M Ericsson (Publ) Method of and system for path selection in rich multipath conditions
JP5403496B2 (ja) * 2006-02-28 2014-01-29 太平洋セメント株式会社 コンクリート硬化体及びコンクリート組成物
EP2105419A1 (fr) * 2008-03-28 2009-09-30 Lafarge Additifs pour ciment
EP2379466B1 (fr) * 2008-12-19 2019-04-03 Holcim Technology Ltd. Liant hydraulique a base de clinker sulfoalumineux et de clinker portland
FR2949112B1 (fr) * 2009-08-17 2012-10-26 Lafarge Sa Additifs pour liant hydraulique a base de clinker belite - calcium - sulphoalumineux - ferrite (bcsaf)
FR2961505B1 (fr) * 2010-06-18 2013-08-02 Cemex Res Group Ag Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2013648A (en) 1978-02-06 1979-08-15 Thaelmann Schwermaschbau Veb A Process for the Manufacture of Cement
DE4204227C1 (en) * 1992-02-13 1993-02-11 Ivan Prof. Dr. 3380 Goslar De Odler Portland cement clinker prepn. - by firing mixt. of calcium oxide, silica, aluminium@ and ferric oxide in presence of additive contg. sulphate and fluorine ions
US5509962A (en) 1994-05-20 1996-04-23 Construction Technology Laboratories, Inc. Cement containing activated belite
US6149724A (en) 1996-06-10 2000-11-21 Cemex, S.A. De C.V. Hydraulic cement with accelerated high strength development
US7150786B2 (en) 1999-04-16 2006-12-19 Ultimax Corporation Very early setting ultra-high strength cement
US20070266903A1 (en) 2004-07-20 2007-11-22 Ellis Gartner High Belite-Containing Sulfoaluminous Clinker, Method for the Production and the Use Thereof for Preparing Hydraulic Binders
CN100453496C (zh) * 2005-10-20 2009-01-21 王红 一种砂浆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574359B2 (en) * 2010-11-15 2013-11-05 Italcementi High performance sulfo-aluminous clinker
CN104098304A (zh) * 2014-06-18 2014-10-15 池州市新科建材有限公司 一种萤石尾矿/钢渣粉复合的轻质隔墙板及其制作方法
CN104098304B (zh) * 2014-06-18 2016-03-23 池州市新科建材有限公司 一种萤石尾矿/钢渣粉复合的轻质隔墙板及其制作方法
CN104310820A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种利用五元矿物相体系制备硫铝酸盐水泥熟料的方法
CN104310820B (zh) * 2014-10-10 2016-08-17 北京工业大学 一种利用五元矿物相体系制备硫铝酸盐水泥熟料的方法
US10450232B2 (en) 2014-12-03 2019-10-22 Universidad Nacional De Colombia Cement formulation based on aluminium sulphate with a specific proportion of Ye'elimite systems

Also Published As

Publication number Publication date
US8715411B2 (en) 2014-05-06
WO2011158105A1 (fr) 2011-12-22
CO6660444A2 (es) 2013-04-30
FR2961505A1 (fr) 2011-12-23
BR112012033789A2 (pt) 2019-10-01
FR2961505B1 (fr) 2013-08-02
EP2582641A1 (fr) 2013-04-24
MX2012014995A (es) 2013-06-28
US20130152825A1 (en) 2013-06-20
CR20120633A (es) 2013-03-08

Similar Documents

Publication Publication Date Title
WO2011158109A1 (fr) Clinker et procede de preparation d'un ciment hydraulique a basse emission de co2 et haute resistance
EP2443073B1 (fr) Procede industriel de fabrication de clinker a haute teneur en belite
CA2574532C (fr) Clinker sulfoalumineux a haute teneur en belite, procede de fabrication d'un tel clinker et son utilisation pour la preparation de liants hydrauliques
CA2802405C (fr) Clinker sulfo-belitique dope en fer
CA2749417C (fr) Clinker sulfo-alumineux et procede pour sa preparation
WO2010070215A1 (fr) Liant hydraulique a base de clinker sulfoalumineux et d'additions minerales
CA2747347A1 (fr) Liant hydraulique a base de clinker sulfoalumineux et de clinker portland
WO2005061406A1 (fr) Composition minerale hydraulique et son procede de fabrication produits cimentaires et liants hydrauliques contenant une telle composition
JP2004189597A (ja) 燃料として使用される高硫黄含有量のペット‐コークから誘導される高硫黄含有量を有するクリンカーおよびホワイトセメント
WO2014140487A1 (fr) Nouveau clinker sulfo-bélitique dopé en phosphore
FR2941448A1 (fr) Nouveau clinker sulfo-alumineux
JPH10512841A (ja) ポートランドセメントクリンカ及びその利用
EP2970010B1 (fr) Clinker sulfo-alumineux à faible teneur en bélite
JP2008156187A (ja) 膨張性組成物
FR3019174A1 (fr) Liant sulfoalumineux belitique
CA2973443A1 (fr) Nouveau liant hydraulique et composition hydraulique le comprenant
JP2021143108A (ja) セメントクリンカー
JP2021155326A (ja) 混合セメント組成物
García-Díaz et al. Preparation of belite cements using ceramic wastes as raw materials
FR3005656A1 (fr) Liant hydraulique d'une couleur claire a base de clinker belite-calcium-sulfoaluminate-ferrite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11735537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11735537

Country of ref document: EP

Kind code of ref document: A1