WO2011157876A1 - Proceso de conversión de biomasa en combustible líquido - Google Patents

Proceso de conversión de biomasa en combustible líquido Download PDF

Info

Publication number
WO2011157876A1
WO2011157876A1 PCT/ES2011/070372 ES2011070372W WO2011157876A1 WO 2011157876 A1 WO2011157876 A1 WO 2011157876A1 ES 2011070372 W ES2011070372 W ES 2011070372W WO 2011157876 A1 WO2011157876 A1 WO 2011157876A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
carried out
catalyst
hydrogenation
mixture
Prior art date
Application number
PCT/ES2011/070372
Other languages
English (en)
French (fr)
Inventor
Avelino CORMA CANÓS
Michael Renz
Olalla De La Torre Alfaro
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to EP11795229.1A priority Critical patent/EP2584022A4/en
Priority to CA2802811A priority patent/CA2802811C/en
Priority to CN201180039136.8A priority patent/CN103189475B/zh
Publication of WO2011157876A1 publication Critical patent/WO2011157876A1/es
Priority to US13/714,542 priority patent/US9416068B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • C10G3/52Hydrogen in a special composition or from a special source
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • This invention pertains to the field of the conversion of vegetable biomass into transport fuels.
  • Biofuels or biofuels are fuels of plant origin, which have similar characteristics to fossil fuels, which allows their use in barely modified engines. These fuels have several environmental benefits. In the event that the biofuels are of plant origin, the balance of carbon dioxide in its combustion is theoretically neutral since it can be considered that the same amount of carbon dioxide produced in said combustion has previously been consumed of the dioxide of carbon from the atmosphere through the cycles of photosynthesis (over a period of years). In addition, biofuels do not contain or contain nitrogen and sulfur compounds in low quantities.
  • biodiesel (or FAMEs) it is called the methyl and ethyl esters of fatty acids.
  • Biodiesel is obtained by transesterification of vegetable oils with methanol or ethanol.
  • This biofuel has some disadvantages that limit its use in current engines to quantities of the order of 6%.
  • Another drawback of Biodiesel is that improper or elongated storage can favor its decomposition and release fatty acids. These acids are not completely soluble in the mixture and the formation of solids can cause problems in ducts and filters, in addition to the possible corrosion caused by their acidic properties.
  • biodiesel cannot currently replace conventional diesel is related to the fact that vegetable oil is mainly obtained from crop plants, which makes it compete for arable land. This means that in the end biodiesel production competes with food production, increasing the price of some staple foods considerably.
  • Dumesic Another interesting contribution of Dumesic (Science 2010, 327, 1 1 10-1 1 14) proposes the conversion of gamma-valerolactone into butene, water and carbon dioxide in a first step. In a second step, butene is oligomerized.
  • the substrate used, gamma-valerolactone had recently been identified as a platform molecule that can be obtained by hydrogenation of levulinic acid, which is in turn a platform molecule produced from agricultural residues.
  • Dumesic manages to convert lactone into a mixture of alkenes of eight or more carbon atoms with a yield above 75%. However, molecules with only eight carbon atoms are not suitable for the diesel fraction and therefore the diesel yield is reduced by twenty percent.
  • oxygenated products are obtained. These do not meet the requirement for second generation biofuels so that they can be used in engines currently in use and could, perhaps, be used as additives that can only be added to the fuel in limited concentrations. Examples of these may be 2,5-dimethylfuran ⁇ Nature, 2007, 447, 982-986), or ethers or esters of 5- hydroxymethylfurfural (PCT Int. Appl. WO2009030510, 2007).
  • Dumesic (Angew. Chem. Int. Ed. 2007, 46, 7164-7183), in addition to the processes explained above, describes other processes such as the dehydration and hydrogenation of sorbitol or xylitol to light linear alkanes.
  • this last process cannot be considered as an alternative to produce hydrocarbons that increases the number of carbon atoms to more than the initial five or six (see also Angew. Chem. Int. Ed. 2004, 43, 1549-1551 ).
  • the present invention relates to a process for the production of a fuel with a high content of alkanes and low in oxygenated compounds comprising at least:
  • molecules with at least 10 carbon atoms are constructed, preferably with 15 or more carbon atoms, which may be connected with at least two other carbon atoms with the exception of those constituting the end of the molecule that are methyl groups.
  • This mixture obtained in the first step is preferably a mixture of oxygenated hydrocarbons.
  • carbohydrate monomers which means from biomass.
  • the great advantage of this type of constructed molecules is that they can be hydrogenated and dehydrated in one step to alkanes, branched alkanes or cyclic alkanes. Because of the number of carbon atoms that these products contain (hydrogenated and dehydrated), their boiling point is in the range of diesel boiling points.
  • the starting compound 2-methylfuran or "Sylvan” can be obtained, for example, as a by-product in the production of furfuryl hydrogenated furfural alcohol in vapor phase at 135 5 C using a copper chromite catalyst (KJ Zeitsch, The chem ⁇ stry and technology of furfural and its many by-products, Elsevier, Amsterdam, 2000, p. 229).
  • 2- Methylfuran with the same catalyst can also be obtained by increasing the reaction temperature to 250 QC and increasing the hydrogen to furfural ratio to 6: 1. Under these conditions, up to 92.5% yield of 2-methylfuran can be obtained (LE Schniepp, HH Geller, RW von Korff, J. Am. Chem. Soc. 1947, 69, 672-674).
  • 2-methylfuran is mixed with a catalyst and water to obtain a mixture of products with at least 10 carbon atoms, preferably at least 15 carbon atoms.
  • this mixture is a mixture of oxygenated hydrocarbons.
  • the mixture of products obtained comprises at least one oligomer of 2-methylfuran.
  • this oligomer is present in the mixture at least 20% by weight.
  • the second step of the process of the present invention deals with a hydrogenation / dehydration of the mixture obtained after the treatment of 2-methylfuran (step 1) to give hydrocarbons that may contain one or more branches.
  • the oligomer obtained in step 1 is a trimer of 2-methlurane.
  • the oligomer obtained in the first step can be converted, under the reaction conditions, into other products that are suitable for use in the second step.
  • these products can be formed, for example, by the addition of water or by arylation with one or more 2-methylfuran molecules or by a combination of both.
  • step 1 the treatment of step 1 is carried out in the presence of an acid catalyst.
  • step 1 is carried out in the presence of a mineral acid and more preferably in the presence of sulfuric acid. It is important to note that the use of sulfuric acid as a catalyst entails a great economic advantage since it is a very accessible and cheap acid.
  • step 1 the treatment of step 1 is carried out in the presence of an acid insoluble in the medium.
  • the treatment of step 1 is carried out in the presence of an acidic resin, for example with sulfonic groups.
  • the treatment of step 1 is carried out at a temperature between 0 Q C and 200 S C, more preferably between 0 q C and 100 Q C, while the hydrogenation / dehydration of step 2 is carried out. preferably at a temperature between 180 S C and 450 e C, more preferably between 220 S C and 400 9 C.
  • step 2 is carried out at a hydrogen pressure between 0.1 bar and 60 bar, preferably between 3 bar and 50 bar.
  • the hydrogenation catalyst used in step 2 may preferably contain a metal function and a dehydrating function.
  • the catalyst of the second step comprises at least one of the elements selected from Re, Pd, Ru, Pt, Rh, Ni, or Cu, which are preferably supported on a support selected from active carbon and inorganic oxides.
  • the inorganic oxides possess Lewis and / or Bronsted acidity and are preferably selected from alumina, zirconia, titania, silica, and combinations thereof.
  • the main advantages of the process according to the present invention are: the accessibility of the large-scale industrial raw material by hydrogenation of furfural, the high selectivity of the oligomerization process of 2-methylfuran (Sylvan) in the first step, the high selectivity of the process of hydrodeoxygenation in the second step and the chemical and energy efficiency of the global process. It is important to note that no extra purification step of the mixture of products obtained in the first step is necessary, thus avoiding an extra energy expenditure with the consequent economic and time savings.
  • cellulosic biomass is transformed into a diesel in which the majority product is preferably a mixture of hydrocarbons with sufficient carbon atoms so that it can be added to the diesel currently sold at service stations.
  • Another additional advantage of the present process from the economic and ecological point of view is that no solvent is needed for its realization.
  • the only byproduct that is formed in hydrogenation / dehydration is water.
  • Example 1 Preparation of a hydrogenation / dehydration catalyst A.
  • Norit active carbon particles of 0.425 to 0.850 mm are impregnated with a solution of platinum hexachloride acid hexahydrate in deionized water at pore volume to obtain a catalyst with a platinum concentration at three percent by weight.
  • the material is dried at 60 ° C for 12 h in an oven.
  • Example 2 Reactor for a hydrogenation / dehydration reaction.
  • Example 4 Synthesis of a mixture of products.
  • the organic phase was analyzed by two-dimensional gas chromatography (Agilent 7890A equipped with flow modulator and two columns, first HP-5 column, 30 m, 0.25 mm inner diameter, 0.5 ⁇ film; second Innowax column, 5 m, 0.25 mm inner diameter, 0.15 ⁇ of film; accumulation time of the modulator 1 .0 s, purge time of the accumulation tube of the modulator 0.12 s, hydrogen flow in the first column 1 .26 mL / min, in the second column 24 mL / min).
  • the chromatogram obtained was treated with the GC image program of the American company Zoex Corporation and 90% of hydrocarbons with a number of carbon atoms between nine and fifteen were detected, which can serve as diesel.
  • Example 6 Hydrogenation / dehydration of a mixture of products.

Abstract

La presente invención describe un procedimiento para la producción de combustible líquido, con un contenido alto en alcanos y bajo en compuestos oxigenados que comprende al menos: un primer paso de tratamiento de 2-metilfurano con un catalizador y agua en condiciones de reacción para formar una mezcla de productos con al menos diez átomos de carbono; un segundo paso de hidrogenación y deshidratación catalítica del producto o de la mezcla obtenido en el paso 1, utilizando catalizadores de hidrogenación y de deshidratación adecuados.

Description

PROCESO DE CONVERSIÓN DE BIOMASA EN COMBUSTIBLE LÍQUIDO
Campo de la invención Esta invención pertenece al campo de la conversión de bíomasa vegetal en combustibles para transporte.
Estado del arte anterior a ia invención Biocarburantes o biocombustibles son combustibles de origen vegetal, que tienen características parecidas a las de combustibles fósiles, lo que permite su utilización en motores apenas modificados. Estos combustibles tienen varias ventajas medio-ambientales. En el caso de que el biocombustibles sea de origen vegetal, el balance de dióxido de carbono en su combustión es teóricamente neutro ya que se puede considerar que esa misma cantidad de dióxido de carbono que se produce en dicha combustión, se ha consumido previamente del dióxido de carbono de la atmósfera a través de los ciclos de fotosíntesis (en un período de años). Además, los biocarburantes no contienen o contienen en bajos cantidades compuestos de nitrógeno y azufre. Así pues, en su combustión no se producirán, o si se producen deberían ser en menores cantidades que en el caso de combustibles fósiles, óxidos de nitrógeno y de azufre que causan irritaciones y daños en el aparato respiratorio y que son el origen de la formación de ozono troposférico y del smog. Es conocido que estos óxidos fomentan la formación de la lluvia ácida siendo los óxidos de azufre los principales causantes de la misma.
La primera generación de biocarburantes se centró principalmente en el biodiesel (junto con el bioetanol). Hoy en día, con el nombre biodiesel (o FAMEs) se denomina a los esteres metílicos y etílicos de los ácidos grasos. El biodiesel se obtiene por transesterífícación de aceites vegetales con metanol o etanol. Este biocombustible tiene algunas desventajas que limitan su uso en los motores actuales a cantidades del orden del 6%. Otro inconveniente del biodiesel es que un almacenamiento inadecuado o alargado puede favorecer su descomposición y liberar ácidos grasos. Estos ácidos no son completamente solubles en la mezcla y la formación de sólidos puede causar problemas en conductos y filtros, además de las posibles corrosiones causadas por sus propiedades ácidas. Sin embargo, la razón principal por la cual el biodíesel no puede sustituir en la actualidad al diesel convencional esta relacionado con el hecho de que el aceite vegetal se obtiene principalmente de plantas de cultivo lo que hace que compita por superficie cultivable. Esto quiere decir que al final la producción del biodiesel compite con la producción de alimentos, llegando a aumentar considerablemente el precio de algunos alimentos básicos.
Para evitar la competencia con la producción de alimentos se ha desarrollado una segunda generación de biocombustibles, que debe evitar plantas, semillas, tubérculos, etc. que tengan uso directo como alimento y, en general, cualquier biomasa vegetal que requiere superficie cultivable. Sobre estas bases se pretende desarrollar biocumbustíbles de segunda generación a partir de celulosa o hemicelulosa que puede provenir de madera (virutas o serrín) pero también de cualquier tipo de residuo de biomasa vegetal. Recientemente se han sugerido posibles soluciones al problema de la producción de bíocarburantes de segunda generación. En el proceso descrito por J. A. Dumesic y col. {Science 2005, 308, 1446-1450; PTC Int. Appl. WO2008151 178, 2008; US Patent 20090124839, 2007) se lleva a cabo la condensación aldólica de 5-hidroximetilfurfural (HMF; o de furfural) para conseguir moléculas con 9, 12 ó 15 átomos de carbono (ver esquema 1 ) que en pasos posteriores se pueden hidrogenar a sus correspondientes alcanos. Esta tecnología presenta varios inconvenientes. Por ejemplo el hecho de que la condensación aldólica necesita una segunda materia prima ya que una condensación aldólica del HMF o del furfural consigo mismo no es posible, por lo que es necesario realizar una condensación aldólica cruzada. Con este fin, Dumesic y colaboradores emplean acetona como conector de dos moléculas furánicas. Sin embargo, una condensación aldólica cruzada implica, por su naturaleza, una selectividad más baja, ye que ia acetona puede condensar consigo misma.
Figure imgf000005_0001
Esto tiene como consecuencia que si se emplean reiaciones estequiométricas, lo que quiere decir 2 moles de furfurat y 1 mol de acetona (ya que la acetona puede reaccionar por ambos extremos), se obtendría entre un 16 y un 37% de componentes con solamente 5 étomos de carbono que tiene un interés muy limitado como componentes para ia gasolina (Appl. Cata!. B Environ. 2006, 66, 111-115). En otras condiciones aparece un segundo producto con 8 átomos de carbono que suele ser un tercio de ia mezcla. Este producto de condensación se hidrogena a n-octano que tampoco tiene una aplicación interesante, ni en gasolina por ser de cadena lineal, ni en diesel por el bajo peso molecular. Para aumentar la selectividad a un 85% con un rendimiento de 71% se tiene que llevar a cabo la condensación en una fase acuosa, y ia hidrogenación en hexadecano como disolvente a 120 °C lo que supone un encarecimiento de proceso (Appl. Catal. B Environ. 2008, 66, 111-1 18). Los propios autores se dieron cuenta de las desventajas causadas por ia selectividad y propusieron como alternativa ia hidrogenación del anillo furáníco a tetrahidrofurano ya que estos derivados son capaces de efectuar una condensación aídólica consigo mismo lo que garantizaría una alta selectividad. Sin embargo, ta hidrogenarán quimioselectiva de, por ejemplo, furfural a tetrahidrofurfural en un paso es aun un reto y actualmente se iieva acabo en varias etapas. En cualquier caso, si se acepta un proceso multietapa. se pueden conseguir moléculas con un total de 10 átomos de carbono (Science 2005. 308, 1446-1450) iguai que por la formación de furoin.
Una solución alternativa para la producción de biocarburantes de segunda generación se describe en R. D. Coríright, WO2008109877, 2007; Int. SugarJ. 2008, 110, 672-679 (Figura 1), produciendo en un primer paso mezclas de compuestos con 4 átomos de carbono o más a partir de compuestos oxigenados en una solución acuosa en presencia de un catalizador de desoxigenación y uno de condensación (Aqueous Phase Reforming). Con ei fin de obtener sitos niveles de aicanos ios inventores utilizan catalizadores básicos para condensar cetonas y aldehidos como en e! caso de Dumesic o le oiigomerización de aiquenos. Sin embargo la manera que tienen de combinar moléculas con bajo numero de carbonos no es suficiente para dar moléculas con un número de átomos de carbono suficientemente alto para ser utilizadas como Diesel. Así. et contenido en ios productos crudos de moléculas con diez átomos de carbono o más está por debajo de! 50%. La Figura 1 ilustra el proceso de Cortright.
Otra contribución interesante de Dumesic (Science 2010, 327, 1 1 10-1 1 14) propone la conversión de gama-valerolactona en buteno, agua y dióxido de carbono en un primer paso. En un segundo paso el buteno es oligomerizado. El sustrato empleado, la gama-valerolactona, había sido identificada recientemente como molécula de plataforma que se puede obtener por hidrogenación de ácido levulínico, que es a su vez molécula de plataforma producido a partir de residuos agrícolas. Con su nuevo proceso Dumesic consigue convertir la lactona en una mezcla de alquenos de ocho o más átomos de carbono con un rendimiento por encima del 75%. Sin embargo, las moléculas con solamente ocho átomos de carbono no son aptas para la fracción diesel y por esto el rendimiento a diesel se reduce en un veinte por ciento.
En otros intentos de convertir bíomasa en carburantes se obtienen productos oxigenados. Estos no cumplen el requisito exigido para los biocombustibles de segunda generación para que puedan usarse en los motores actualmente en uso y podrían, quizás, utilizarse como aditivos que solamente se pueden añadir al combustible en concentraciones limitadas. Ejemplos de estos pueden ser 2,5-dimetilfurano {Nature, 2007, 447, 982-986), o éteres o ésteres de 5- hidroximetilfurfural (PCT Int. Appl. WO2009030510, 2007).
Dumesic (Angew. Chem. Int. Ed. 2007, 46, 7164-7183), además de los procesos explicados anteriormente, describe otros procesos tales como la deshídratación e hidrogenación de sorbitol o xilitol a alcanos lineales ligeros. Sin embargo, este último proceso no se puede considerar como una alternativa para producir hidrocarburos que aumente el número de átomos de carbono a más de los cinco o seis iniciales (véase también Angew. Chem. Int. Ed. 2004, 43, 1549-1551 ).
En la presente invención se presenta un procedimiento para transformar productos derivados de la biomasa en diesel de buena calidad. Descripción de la invención
La presente invención se refiere a un procedimiento para la producción de un combustible con un contenido alto en alcanos y bajo en compuestos oxigenados que comprende al menos:
- un primer paso de tratamiento de 2-metílfurano (denominado comúnmente Sylvan) con un catalizador y agua en condiciones de reacción para formar una mezcla de productos con al menos diez átomos de carbono, preferentemente con al menos 15 átomos de carbono.
- un segundo paso de hidrogenación y deshidratación catalítica de la mezcla obtenida en el primer paso, utilizando preferentemente catalizadores de hidrogenación y de deshidratación adecuados.
Según la presente invención, en el primer paso se construyen moléculas con al menos 10 átomos de carbono, preferentemente con 15 o más átomos de carbono, que pueden estar conectados con al menos otros dos átomos de carbono con la excepción de los que constituyen el final de la molécula que son grupos metilos. Esta mezcla obtenida en el primer paso es preferentemente una mezcla de hidrocarburos oxigenados. Para construir estas moléculas se parte de una materia prima que proviene de monómeros de hidratos de carbono, lo que quiere decir a partir de biomasa. La gran ventaja de este tipo de moléculas construidas es que se pueden hidrogenar y deshidratar en un paso a alcanos, a alcanos ramificados o a alcanos cíclicos. Por el número de átomos de carbono que contienen estos productos (hidrogenados y deshidratados) su punto de ebullición está en el rango de los puntos de ebullición del diesel.
Cabe destacar que si se intenta convertir furfural o furfuril alcohol en condiciones ácidas no se puede conseguir un producto aprovechable parar carburantes ya que ambas moléculas en condiciones de reacción tienden a polímerizar formando productos de alto peso molecular (ver por ejemplo Makromol. Chem., Rapid Commun. 1992, 13, 517-523). Para evitar estas polimerizaciones empleando biomasa en condiciones de alquilación/hidroalquilación, en la presente invención se emplea el 2- metilfurano.
El compuesto de partida 2-metilfurano o "Sylvan" se puede obtener, por ejemplo, como sub-producto en la producción de furfuril alcohol hidrogenando furfural en fase vapor a 135 5C empleando un catalizador de cromita de cobre (K. J. Zeitsch, The chemístry and technology of furfural and its many by- products, Elsevier, Amsterdam, 2000, p. 229). También se puede obtener 2- metilfurano con el mismo catalizador aumentando la temperatura de reacción a 250 QC y aumentando la relación hidrógeno a furfural a 6 : 1 . En estas condiciones se puede obtener hasta un 92.5% de rendimiento de 2-metilfurano (L. E. Schniepp, H. H. Geller, R. W. von Korff, J. Am. Chem. Soc. 1947, 69, 672-674).
Esta síntesis directa de 2-metilfurano a partir de pentosas (o furfural) convierte esta molécula en una materia prima adecuada para la elaboración de biocombustibles de segunda generación tal y como se describe en la presente invención.
En el primer paso de la presente invención se mezcla el 2-metilfurano con un catalizador y agua obteniéndose una mezcla de productos con al menos 10 átomos de carbono, preferentemente al menos 15 átomos de carbono. De manera preferente esta mezcla es una mezcla de hidrocarburos oxigenados. Según una realización particular, la mezcla de productos obtenidos comprende, al menos, un oligómero del 2-metilfurano. De manera preferente este oligómero está presente en la mezcla en al menos un 20% en peso. El segundo paso del procedimiento de la presente invención, trata de una hidrogenación/deshidratacíón de la mezcla obtenida tras el tratamiento de 2- metilfurano (paso 1 ) para dar hidrocarburos que pueden contener una o varias ramificaciones.
Según otra realización particular de la presente invención, el oligómero obtenido en el paso 1 es un trímero del 2-metílfurano.
Según una realización particular de la presente invención, el oligómero obtenido en el primer paso se puede convertir, en las condiciones de reacción, en otros productos que son aptos para ser empleados en el segundo paso. De manera preferente estos productos se pueden formar, por ejemplo, por adición de agua o por arilación con una o más moléculas de 2-metilfurano o por una combinación de ambos.
Según una realización preferente, el tratamiento del paso 1 se lleva a cabo en presencia de un catalizador ácido.
Además de manera preferente el tratamiento del paso 1 se lleva a cabo en presencia de un ácido mineral y más preferentemente en presencia de ácido sulfúrico. Es importante destacar que el uso de ácido sulfúrico como catalizador conlleva una gran ventaja económica ya que se trata de un ácido muy accesible y barato.
Según otra realización preferente de la presente invención el tratamiento del paso 1 se lleva a cabo en presencia de un ácido insoluble en el medio.
Según otra realización particular de la presente invención el tratamiento del paso 1 se lleva a cabo en presencia de una resina ácida, por ejemplo con grupos sulfónicos. Según una realización preferente, el tratamiento del paso 1 se lleva a cabo a una temperatura entre 0 QC y 200 SC, más preferentemente entre 0 qC y 100 QC, mientras que la hidrogenación/deshidratacíón del paso 2 se lleva a cabo preferentemente a una temperatura entre 180 SC y 450 eC, más preferentemente entre 220 SC y 400 9C.
Además de manera preferente la hidrogenación del paso 2 se lleva a cabo a una presión de hidrógeno entre 0.1 bar y 60 bar, preferentemente entre 3 bar y 50 bar.
En la presente invención, el catalizador de hidrogenación utilizado en el paso 2 puede contener de manera preferente una función metálica y una función deshidratante. De manera preferente el catalizador del segundo paso comprende al menos uno de los elementos seleccionados entre Re, Pd, Ru, Pt, Rh, Ni, o Cu que se soportan preferentemente sobre un soporte seleccionado entre carbón activo y óxidos inorgánicos. Según una realización particular, los óxidos inorgánicos poseen acidez Lewis y/o Bronsted y están seleccionados preferentemente entre alumina, zírconia, titania, sílice, y combinaciones de los mismo.
Las ventajas principales del procedimiento según la presente invención son: la accesibilidad de la materia prima a gran escala industrial por hidrogenación de furfural, la alta selectividad del proceso de oligomerización de 2-metilfurano (Sylvan) en el primer paso, la alta selectividad del proceso de la hidrodesoxigenación en el segundo paso y la eficacia química y energética del proceso global. Es importante destacar que no es necesario ningún paso extra de purificación de la mezcla de productos obtenidos en el primer paso, evitando así un gasto energético extra con el consiguiente ahorro económico y en tiempo. De manera global se transforma biomasa celulósica en un diesel en el que el producto mayoritario es, de manera preferente, una mezcla de hidrocarburos con suficientes átomos de carbono para que se pueda añadir al diesel actualmente vendido en las estaciones de servicio. Otra ventaja adicional del presente procedimiento desde el punto de vista económico y ecológico es que no se necesita ningún disolvente para su realización. Además, ei único subproducto que se forma en la hidrogenación/deshidratacíón es agua.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
EJEMPLOS
A continuación se describirán ejemplos no limitativos de la presente invención. Ejemplo 1 : Preparación de un catalizador A de hidrogenación/deshidratacíón.
Se impregna partículas de carbón activo de Norit de 0.425 a 0.850 mm con una solución de ácido hexacloruro de platino hexahídratado en agua desionizada a volumen de poro para obtener un catalizador con una concentración de platino al tres por cien en peso. Se seca el material a 60 °C durante 12 h en una estufa.
Ejemplo 2: Reactor para una reacción de hidrogenacíón/deshidratación.
En un tubo de acero inoxidable de un diámetro interno de 1.1 1 cm y de una longitud de 18 cm se coloca en el siguiente orden: 1 .0 g de carburo de silicio, como lecho catalítico 6.50 g de catalizador A y después 1 .0 g de carburo de silicio.
Ejemplo 3: Síntesis de un trímero de 2-metilfurano (Ci5Hi803).
En un matraz de tres bocas de un litro, equipado con agitador mecánico y refrigerante, se agitó y se calentó a 60 -C una mezcla de 328 g de 2- metilfurano, 78.7 g de ácido sulfúrico (98%) y 249 g de agua durante 16 horas. Se separaron las fases, la fase orgánica fue destilada en vacío (140 eC/ 2.9 Torr) y se obtuvo un compuesto con una masa de 246, que coincide con la fórmula de Ci5H 803, con un rendimiento de un 76%. 13C RMN (75 MHz, CDCI3) δ = 208.3, 153.2, 151 .0, 106.7, 106.0, 41 .3, 38.1 , 30.0, 26.9, 13.6.
Ejemplo 4: Síntesis de una mezcla de productos.
En un matraz de tres bocas de un litro, equipado con agitador mecánico y refrigerante, se agitó y se calentó a 60 eC una mezcla de 328 g de 2- metilfurano, 78.7 g de ácido sulfúrico (98%) y 249 g de agua durante 16 horas. Se separaron las fases, se filtró la fase orgánica y se obtuvo un 93% en peso de la fase orgánica. Ejemplo 5. Hidrogenación/deshidratación de un trímero de 2-metilfurano (CisH^Oa).
Se pasaron 238 g del compuesto orgánico preparado en el ejemplo 3 por el reactor preparado en ejemplo 2 a una presión de 50 bar de hidrógeno y a una temperatura de reacción de 350 5C con una velocidad de 0.15 mL/min. Se obtuvo un 93% en peso de un producto líquido que consistió en fase acuosa (19.3% en peso) y fase orgánica (81 .7% en peso). La fase orgánica se analizó por cromatografía de gases en dos dimensiones (Agilent 7890A equipado con modulador de flujo y dos columnas, primera columna HP-5, 30 m, 0.25 mm diámetro interior, 0.5 μυι de película; segunda columna Innowax, 5 m, 0.25 mm diámetro interior, 0.15 μνη de película; tiempo de acumulación del modulador 1 .0 s, tiempo de purga del tubo de acumulación del modulador 0.12 s, flujo de hidrógeno en la primera columna 1 .26 mL/min, en la segunda columna 24 mL/min). El cromatograma obtenido se trató con el programa GC image de la empresa estadounidense Zoex Corporation y se detectó un 90% de hidrocarburos con un número de átomos de carbono entre nueve y quince, que pueden servir como diesel. Ejemplo 6. Hidrogenación/deshidratación de una mezcla de productos.
Se pasaron 146 g de la fase orgánica preparado en el ejemplo 4 por el reactor preparado en ejemplo 2 a una presión de 50 bar de hidrógeno y a una temperatura de reacción de 350 SC con una velocidad de 0.12 mL/min. Se obtuvo un 92% en peso de un producto líquido que consistió en fase acuosa (21 % en peso) y fase orgánica (79% en peso). La fase orgánica se analizó por cromatografía de gases en dos dimensiones (condiciones como descrito en el ejemplo 5). El cromatograma obtenido se trató con el programa GC image de la empresa estadounidense Zoex corporation y se detectó un 88% de hidrocarburos con un número de átomos de carbono de nueve o más, que pueden servir como diesel.

Claims

Reivindicaciones
1 . Un procedimiento para ia producción de un combustible caracterizado por que comprende al menos:
a) Un primer paso de tratamiento de 2-metilfurano con un catalizador y agua en condiciones de reacción para formar una mezcla de productos con al menos diez átomos de carbono.
b) Un segundo paso de hidrogenación y deshidratación catalítica de la mezcla de productos obtenida en a).
2. Un procedimiento según la reivindicación 1 , caracterizado porque en el primer paso se forma una mezcla de hidrocarburos oxigenados.
3. Un procedimiento según la reivindicación 1 , caracterizado porque en el primer paso la mezcla de productos comprende, al menos, un oligómero del 2- metilfurano.
4. Un procedimiento según la reivindicación 3, caracterizado porque el oligómero obtenido está en un porcentaje de al menos 20% en peso.
5. Un procedimiento según la reivindicación 1 , caracterizado porque los productos del primer paso contienen al menos 15 átomos de carbono.
6. Un procedimiento según las reivindicaciones 1 hasta 5, caracterizado porque el primer paso se lleva a cabo en presencia de un catalizador ácido.
7. Un procedimiento según la reivindicación 6, caracterizado porque el primer paso se lleva a cabo en presencia de un ácido mineral.
8. Un procedimiento según la reivindicación 7, caracterizado porque el primer paso se lleva a cabo en presencia de ácido sulfúrico.
9. Un procedimiento según la reivindicación 6, caracterizado porque el paso 1 se lleva a cabo en presencia de un ácido insoluble.
10. Un procedimiento según la reivindicación 6, caracterizado porque el paso 1 se lleva a cabo en presencia de una resina ácída.
1 1 . Un procedimiento según la reivindicación 1 , caracterizado porque la reacción del primer paso se lleva a cabo a una temperatura entre 0 QC y 200 eC y preferentemente entre 0 °C y 100 9C.
12. Un procedimiento según la reivindicación 1 , caracterizado porque la hidrogenación/deshidratación del segundo paso se lleva a cabo a una temperatura entre 180 SC y 450 SC y preferentemente entre 220 °-C y 400 QC.
13. Un procedimiento según la reivindicación 1 , caracterizado porque la hidrogenación del segundo paso se lleva a cabo a una presión de hidrógeno entre 0.1 bar y 60 bar, y preferentemente entre 3 bar y 50 bar.
14. Un procedimiento según la reivindicación 1 , caracterizado porque el catalizador del segundo paso comprende al menos una función metálica y una función deshidratante.
15. Un procedimiento según la reivindicación 14, caracterizado porque el catalizador del segundo paso comprende al menos uno de los elementos seleccionado entre Re, Pd, Ru, Pt, Rh, Ni, o Cu soportado.
16. Un procedimiento según la reivindicación 15, caracterizado porque el soporte está seleccionado entre carbón activo, un óxido inorgánico y combinaciones de los mismos.
17. Un procedimiento según la reivindicación 16, caracterizado porque el soporte es un óxido inorgánico seleccionado entre alúmina, zirconia, titania, sílice y combinaciones de ellas.
PCT/ES2011/070372 2010-06-16 2011-05-23 Proceso de conversión de biomasa en combustible líquido WO2011157876A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11795229.1A EP2584022A4 (en) 2010-06-16 2011-05-23 PROCESS FOR THE CONVERSION OF BIOMASS IN LIQUID FUEL
CA2802811A CA2802811C (en) 2010-06-16 2011-05-23 Method for converting biomass into liquid fuel
CN201180039136.8A CN103189475B (zh) 2010-06-16 2011-05-23 将生物质转化为液体燃料的方法
US13/714,542 US9416068B2 (en) 2010-06-16 2012-12-14 Method for converting biomass into liquid fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030928A ES2371839B1 (es) 2010-06-16 2010-06-16 Proceso de conversión de biomasa en combustible líquido.
ESP201030928 2010-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/714,542 Continuation US9416068B2 (en) 2010-06-16 2012-12-14 Method for converting biomass into liquid fuel

Publications (1)

Publication Number Publication Date
WO2011157876A1 true WO2011157876A1 (es) 2011-12-22

Family

ID=45347682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070372 WO2011157876A1 (es) 2010-06-16 2011-05-23 Proceso de conversión de biomasa en combustible líquido

Country Status (6)

Country Link
US (1) US9416068B2 (es)
EP (1) EP2584022A4 (es)
CN (1) CN103189475B (es)
CA (1) CA2802811C (es)
ES (1) ES2371839B1 (es)
WO (1) WO2011157876A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127332B (en) * 2016-12-23 2018-03-29 Neste Oyj Preparation of fuel composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109877A1 (en) 2007-03-08 2008-09-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2008151178A1 (en) 2007-06-04 2008-12-11 Wisconsin Alumni Research Foundation Production of liquid alkanes in the jet fuel range (c8-c15) from biomass-derived carbohydrates
WO2009030510A2 (en) 2007-09-07 2009-03-12 Furanix Technologies B.V. 5-(substituted methyl) 2-methylfuran

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287374A (en) * 1963-08-15 1966-11-22 Quaker Oats Co Novel furan compounds and processes for preparation
US7998339B2 (en) * 2005-12-12 2011-08-16 Neste Oil Oyj Process for producing a hydrocarbon component
US7572925B2 (en) * 2006-06-06 2009-08-11 Wisconsin Alumni Research Foundation Catalytic process for producing furan derivatives in a biphasic reactor
US8669397B2 (en) * 2009-06-13 2014-03-11 Rennovia, Inc. Production of adipic acid and derivatives from carbohydrate-containing materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090124839A1 (en) 2006-06-06 2009-05-14 Dumesic James A Production of liquid alkanes in the jet fuel range (c8-c15) from biomass-derived carbohydrates
WO2008109877A1 (en) 2007-03-08 2008-09-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2008151178A1 (en) 2007-06-04 2008-12-11 Wisconsin Alumni Research Foundation Production of liquid alkanes in the jet fuel range (c8-c15) from biomass-derived carbohydrates
WO2009030510A2 (en) 2007-09-07 2009-03-12 Furanix Technologies B.V. 5-(substituted methyl) 2-methylfuran

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 43, 2004, pages 1549 - 1551
APP. CATAL. B ENVIRON., vol. 66, 2006, pages 111 - 118
APPL. CATAL. B ENVIRON., vol. 66, 2006, pages 111 - 118
BLOMMEL, P.G. ET AL.: "Catalytic conversion of sugar onto conventional gasoline, diesel, jet fuel and other hydrocarbons", INTERNATIONAL SUGAR JOURNAL, vol. 110, no. 1319, 2008, pages 672 - 679, XP008168124 *
CHHEDA J.N. ET AL.: "An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates", CATALYSIS TODAY, vol. 123, 2007, pages 59 - 70, XP022085575 *
CORMA A. ET AL.: "Production of High-quality Diesel from Biomass Waste Products", ANGEWANDTE CHEMIE INT. ED., vol. 50, no. 10, 2011, pages 2375 - 2378, XP055072571 *
DUMESIC, ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 7164 - 7183
DUMESIC, SCIENCE, vol. 327, 2010, pages 1110 - 1114
INT. SUGAR J., vol. 110, 2008, pages 672 - 679
IOVEL I.G. ET AL.: "Hydroxymethylation and alkilation of compounds of the furan, thiophene, and pyrrole series in the presence of H+ cations (review)", CHEMISTRY OF HETEROCYCLIC COMPOUNDS, vol. 34, no. 1, 1998, pages 1 - 12, XP055072573 *
J. A. DUMESIC, SCIENCE, vol. 308, 2005, pages 1446 - 1450
K. J. ZEITSCH: "The chemistry and technology of furfural and its many by-products", 2000, ELSEVIER, pages: 229
L. E. SCHNIEPP; H. H. GELLER; R. W. VON KORFF, J. AM. CHEM. SOC., vol. 69, 1947, pages 672 - 674
MAKROMOL. CHEM., RAPID COMMUN., vol. 13, 1992, pages 517 - 523
NATURE, vol. 447, 2007, pages 982 - 986
SCIENCE, vol. 308, 2005, pages 1446 - 1450
See also references of EP2584022A4
ZHENG H. ET AL.: "Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 246, 2006, pages 18 - 23, XP028015465 *

Also Published As

Publication number Publication date
CA2802811C (en) 2018-10-23
US9416068B2 (en) 2016-08-16
EP2584022A1 (en) 2013-04-24
CA2802811A1 (en) 2011-12-22
CN103189475A (zh) 2013-07-03
US20130158315A1 (en) 2013-06-20
EP2584022A4 (en) 2014-07-02
ES2371839B1 (es) 2012-11-19
CN103189475B (zh) 2015-04-01
ES2371839A1 (es) 2012-01-10

Similar Documents

Publication Publication Date Title
ES2362248B1 (es) Producción de combustibles l�?quidos (sylvan-liquid fuels) a partir de 2 -metilfurano.
Di Bucchianico et al. Production of levulinic acid and alkyl levulinates: a process insight
Hu et al. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2, 5-dimethylfuran
CN104711021B (zh) 一种生物质路线制备作为航空煤油或柴油的环烷烃的方法
He et al. Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy
Climent et al. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels
Liu et al. One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst
JP5584122B2 (ja) 5−置換2−(アルコキシメチル)フラン
Zhao et al. Conversion of biomass-derived furfuryl alcohol into ethyl levulinate catalyzed by solid acid in ethanol
Ramli et al. Esterification of levulinic acid to levulinate esters in the presence of sulfated silica catalyst
Shivhare et al. Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels
JP5315679B2 (ja) フラン化合物の製造方法
JP2010538031A (ja) 糖又はhmfと混合アルコールとに由来するヒドロキシメチルフルフラールエーテル
ES2371839B1 (es) Proceso de conversión de biomasa en combustible líquido.
ES2557393B1 (es) Producción de combustibles a partir de biomasa y nafta pesada
JP2015140311A (ja) フラン化合物の製造方法
Lolli et al. Beyond H2: Exploiting H‐Transfer Reaction as a Tool for the Catalytic Reduction of Biomass
ES2498817B1 (es) Catalizador heteropoliácido soportado, procedimiento de obtención y utilización
García‐Sancho et al. Conversion of Lignocellulosic Biomass to Biofuels
Requies et al. Production of Furanic Biofuels with Zeolite and Metal Oxide Bifunctional Catalysts for Energy-and Product-Driven Biorefineries
Yadav et al. Catalytic conversion and mechanism of glycerol into various value-added products: A critical review
Antunes et al. Versatile Coordination Polymer Catalyst for Acid Reactions Involving Biobased Heterocyclic Chemicals. Catalysts 2021, 11, 190
US20160221908A1 (en) Method for preparing levulinic acid using solid acid catalyst in presence of ethylene glycol-based compound solvent derived from biomass
Bellè Multiphase catalysis for the valorization of biobased compounds
Yan Transformation of biogenic carbohydrates into levulinic acid and further hydrogenation using supported nanoparticle catalysts synthesized by chemical fluid deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2802811

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011795229

Country of ref document: EP