WO2011157861A1 - Pneumatic propulsion drive system - Google Patents
Pneumatic propulsion drive system Download PDFInfo
- Publication number
- WO2011157861A1 WO2011157861A1 PCT/ES2010/000411 ES2010000411W WO2011157861A1 WO 2011157861 A1 WO2011157861 A1 WO 2011157861A1 ES 2010000411 W ES2010000411 W ES 2010000411W WO 2011157861 A1 WO2011157861 A1 WO 2011157861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pneumatic
- explosion
- compressed air
- fuel
- valve
- Prior art date
Links
- 238000004880 explosion Methods 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims 6
- 238000005516 engineering process Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000005431 greenhouse gas Substances 0.000 claims 1
- 239000003209 petroleum derivative Substances 0.000 claims 1
- 230000009471 action Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- GJJFMKBJSRMPLA-HIFRSBDPSA-N (1R,2S)-2-(aminomethyl)-N,N-diethyl-1-phenyl-1-cyclopropanecarboxamide Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)N(CC)CC)C[C@@H]1CN GJJFMKBJSRMPLA-HIFRSBDPSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000013641 Cerebrofacial arteriovenous metameric syndrome Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B17/00—Reciprocating-piston machines or engines characterised by use of uniflow principle
- F01B17/02—Engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B1/00—Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B29/00—Machines or engines with pertinent characteristics other than those provided for in preceding main groups
- F01B29/08—Reciprocating-piston machines or engines not otherwise provided for
- F01B29/10—Engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L23/00—Valves controlled by impact by piston, e.g. in free-piston machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
Definitions
- the invention is within the motorization and automotive sector in relation to the application of a different system of DRIVE IMPULSION, a clean and inexpensive clean tire system.
- a Pneumatic Drive System (S.I.N.) that APPLYING to the elements of conventional blasting engines, you get great economic and technical results.
- the difference between one system and another is precisely that the EXPLOSION CHAMBER AND THE FOUR TIMES that compose it, work differently from the chamber of PNEUMATIC IMPULSION S.I.N, and its TWO TIMES, by the complementary conjunction of the LA VALVULA S.I.N. (1A) or (IB) and THE EXHAUST OR RETURN VALVE (8), CYLINDER (4) PISTON (3) of the Pneumatic Drive System (S.I.N).
- the fundamental objective of the Pneumatic Drive System is the use of THE PNEUMATICS as a driving energy, in order to reduce pollution and overcome the increasingly high barriers, economically speaking, the cost to the economy the use of fossil fuel, and apply the use of good, clean and cheap alternative energy, such as this PNEUMATIC system of PROPULSION.
- the Pneumatic Drive System (SIN), is an alternative, possible and capable of presenting a clean motorization, unlike what happens with the Internal Combustion Engines, - until now the Hydrogen could replace the fossil energy -, but It is very expensive to obtain, since oxygen is something that is free in the atmosphere but not the hydrogen that must be produced, in addition to its high degree of instability.
- the present invention that is presented, is a new drive system based on the NEUMATICA and is composed of: a) THE VALVE WITHOUT MECHANICAL ACTION (I a ) in conjunction with THE EXHAUST VALVE or RETURN (Fig 1) and
- the System has the same elements as conventional explosion engines, but with a big difference, and this one is in the IMPULSION CHAMBER, which replaces the EXPLOSION CHAMBER, to incorporate the PNEUMATIC IMPULSION CHAMBER.
- the Pneumatic Drive System (S.I.N)
- the Pneumatic Drive System (SIN) is composed of the same elements as conventional explosion engines, but with a big difference: THE DRIVE CHAMBER that is composed of THE VALVE WITHOUT (1A) or ( IB) (if e electro-magnetic) is a fundamental piece, for the IMPULSION CHAMBER, the main mechanism fixed in it, different from that of the explosion engine, since it does not make any explosion, which effects are injections of compressed air in the CYLINDER (4).
- the Race begins at the point P.M.S. of the PISTON (3) and the PERCUTOR (2), by mechanically connecting the latter with the VALVE WITHOUT (1A), which will allow, - by the connection between both, - PERCUTOR AND VALVE S.I.N. (1A), the input of COMPRESSED AIR in the CYLINDER (4), generating the sufficient driving force to move the PISTON (3) by the CYLINDER (4) towards the PMI transmitting a rectilinear movement to the ROPE (5) and it is at CRANKSHAFT (6), turning the race into a rotating movement.
- I a .- Increase the number of drives per turn of the CRANKSHAFT (6) That is, when in an engine of explosion, - of four cylinders-, they are made TWO explosions per revolution, in the Pneumatic Drive System (SIN) there are FOUR impulses per revolution
- - Compressed air can be stored in the Boiler () or
- the boiler (7) with compressed air can operate for a while with the auxiliary compressor stopped or damaged.
- a basic circuit of pneumatics is formed by the following components:
- compressed air is a recommended energy source and widely used in the industry.
- the compressed air used by the Pneumatic Drive Motor System (S.I.N) is generated by THEIR PNEUMATIC DRIVE MOTOR SYSTEM. Therefore THE COMPRESSOR is the System (S.I.N).
- the flow that is able to provide in the circuit Its unit of measure is cubic meter per hour (m3 / h).
- a Auxiliary Compressor (12) is incorporated into the System (S.I.N) (Fig. 5) that is connected to the circuits and performs its mission in the following way:
- the SIN System works at TWO TCEMPOS or runs: DRIVE and ESCAPE or RETURN.
- the IMPULSION with this type of valve is MECHANICAL (Fig. 1) and starts at the PMS, that is at 0 or the turn of the CRANKSHAFT (6) where the PERCUTOR (2) of the PISTON (3) mechanically connects to the the sensor of the SIN VALVE (1A), which when introduced into said SIN VALVE (1A), opens mechanically by pushing, allowing the entry of COMPRESSED AIR into the CYLINDER (4), thus generating a sufficient driving force to displace the PISTON (3) to the PMI transmitting a rectilinear movement that the CRANKSHAFT (6) converts into a rotary movement.
- the SIN System works at TWO TCEMPOS or runs: DRIVE and ESCAPE or RETURN.
- the IMPULSION, in this valve mode, is carried out in an ELECTRO-MAGNETIC way (Fig.
- the second stroke begins in the P.M.I at 180 ° of the turn of the CRANKSHAFT (6) opening the ESCAPE VALVE (8) mechanically by CAMS or ELECTROMAGNETICALLY by means of sensors.
- the COMPRESSED AIR of the first race is returned to the BOILER. o DEPOSIT (7).
- DOS -2- EXPLOSIONS PER RETURN are performed, instead in the PNEUMATIC IMPULSION MOTOR S.I.N. FOUR - 4 - IMPULSIONS PER RETURN are performed.
- the system S.I.N. It has the advantage that the BOILER (7) is fed with the compressed air used for the DRIVE, thus getting the self-supply generated by the SISTEMA S.I.N.
- the System is equipped with a COMPRESSOR (12) (Fig. 5) or AUXILIARY compressor to keep the BOILER (7) at an optimal pressure regime, by means of ELECTRO PRESSURE VALVES.
- PERCUTOR (2) (Fig. 1):
- the PISTON (3) (Fig. 1) is composed as a conventional explosion piston, that is, it is formed by: the PERCUTOR (2), the segments and the mocking or connecting rod anchor
- This valve obtains its opening electro-magnetically by the action of sensors that regulate its opening and closing, according to the degrees of turn of the CRANKSHAFT (6), that is: it will open at 0 ° and close at 180 ° of the turn of the CRANKSHAFT (6).
- Electromagnetic (I B) is formed by: the segments and the mocking or connecting rod anchor.
- cranks or elbows It constitutes an axis with cranks or elbows, with two or more points that rest on a bench integrated in the upper part of the CRANKCASE and which is then covered by the engine block itself.
- crankshaft elbows (when there is more than one cylinder), rotate eccentrically with respect to the axis. In each of the elbows are fixed the bearings or bearings of the connecting rods that transmit to the Crankshaft the force that the IMPULSES develop in the pistons during the races.
- the CRANKSHAFT (6) turns only half turn for each IMPULSION that takes place in the chamber of the CYLINDER (4), or of each piston; that is to say, that for every IMPULSION that is produced in the CYLINDER (4), the CRANKSHAFT (6) must complete, by its own impulse, one more turn. Therefore, while in the first of the IMPULSION times the PISTON (3) "delivers energy" useful, in the other time “enough energy is consumed” so that the crankshaft can be kept rotating by inertia.
- the pressure in the lubrication circuit depends on the rate of rotation of the system and the viscosity of the oil.
- the oil pump has the same advantages for this system as in the explosion system, but without explosion, you just have to cool the temperature produced by the friction in the CYLINDER (4) the CRANKSHAFT (6) and THE ROPE (5).
- the temperature is the reflection of the amount or level of heat energy that the bodies have to cool, in our case, it is necessary to remove the heat energy produced by the friction in the system.
- cooling methods are the environmental air itself or the forced air draft that is obtained with the help of fans. These cooling methods are used only in engines that develop low power and small vehicles.
- the most widely used and most efficient cooling system is to circulate water inside the block and the cylinder head.
- an external radiator consisting of tubes and cooling fins is used. When the water goes through the radiator tubes, it transfers the heat to the environment, aided by the natural air that flows through the pipes and the air draft of a fan that forces it to pass through these tubes.
- This action causes the CRANKSHAFT (6) to rotate, to push the ROPE (5) and the PISTON (3) of the engine to start moving, and the PERCUTOR (2) to connect with the VALVE WITHOUT (1 A) and AIR INJECTION COMPRESSED in d CYLINDER (4) and the engine starts, since the PNEUMATIC IMPULSION is done mechanically.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid-Pressure Circuits (AREA)
- Valve Device For Special Equipments (AREA)
- Compressor (AREA)
Abstract
The invention relates to a pneumatic propulsion drive system comprising a motor having at least one cylinder defining an internal propulsion chamber containing a moving piston that is connected to a rod and in turn connected to a crankshaft. The upper wall of the propulsion chamber is provided with a valve for supplying compressed air to the chamber. Said valve can be actuated electromagnetically or mechanically in which case the valve is actuated by a striker located on the piston head. The motor is located in a circuit comprising a drum or tank of compressed air for supplying the motor by means of pipes or hoses and connectors, and an auxiliary compressor for maintaining the pressure of said tank.
Description
SISTEMA MOTRIZ DE IMPULSIÓN NEUMÁTICA PNEUMATIC IMPULSION DRIVE SYSTEM
Sector de la técnica Sector of the technique
La invención se encuentra dentro del sector de la motorización y automoción en lo relativo a la aplicación de un sistema diferente de IMPULSIÓN MOTRIZ, un sistema Neumático limpio barato y novedoso. Un Sistema Motriz de Impulsión Neumática (S.I.N.) que APLICANDOLO a los elementos de los motores convencionales de explosión, se obtienen magníficos resultados económicos y técnicos. La diferencia entre un sistema y otro estriba precisamente en que la CÁMARA DE EXPLOSIÓN Y LOS CUATRO TIEMPOS que la componen, funciona diferente a la cámarar de IMPULSIÓN NEUMÁTICA S.I.N, y sus DOS TIEMPOS, por la conjunción complementaria de las LA VALVULA S.I.N. (1A) o (IB) y LA VALVULA DE ESCAPE o RETORNO (8), CILINDRO (4) PISTON (3) del Sistema Motriz de impulsión Neumática (S.I.N). The invention is within the motorization and automotive sector in relation to the application of a different system of DRIVE IMPULSION, a clean and inexpensive clean tire system. A Pneumatic Drive System (S.I.N.) that APPLYING to the elements of conventional blasting engines, you get great economic and technical results. The difference between one system and another is precisely that the EXPLOSION CHAMBER AND THE FOUR TIMES that compose it, work differently from the chamber of PNEUMATIC IMPULSION S.I.N, and its TWO TIMES, by the complementary conjunction of the LA VALVULA S.I.N. (1A) or (IB) and THE EXHAUST OR RETURN VALVE (8), CYLINDER (4) PISTON (3) of the Pneumatic Drive System (S.I.N).
Estado de la técnica State of the art
Actualmente, dentro del campo de la motorización y automoción, el sistema energético que se pretende patentar es un proyecto sobre la aplicación técnica de un innovador SISTEMA IMPULSOR NEUMATICO. Currently, within the field of motorization and automotive, the energy system to be patented is a project on the technical application of an innovative PNEUMATIC IMPULSOR SYSTEM.
El objetivo fundamental del Sistema Motriz de Impulsión Neumática (S.I.N), es la utilización de LA NEUMATICA como energía motriz, con el fin de disminuir la contaminación y superar las barreras, cada vez más altas, económicamente hablando, del coste que supone para la economía el empleo de combustible fósil, y aplicar el uso de una energía alternativa buena, limpia y barata, como es este sistema NEUMATICO de PROPULSIÓN. The fundamental objective of the Pneumatic Drive System (SIN), is the use of THE PNEUMATICS as a driving energy, in order to reduce pollution and overcome the increasingly high barriers, economically speaking, the cost to the economy the use of fossil fuel, and apply the use of good, clean and cheap alternative energy, such as this PNEUMATIC system of PROPULSION.
Problemas técnicos planteados Technical problems raised
El Sistema Motriz de Impulsión Neumática (S.I.N), es una alternativa, posible y capaz de presentar una motorización limpia, a diferencia de lo que sucede con los Motores de Combustión Interna, - hasta ahora el Hidrógeno podría reemplazar a la energía fósil -, pero es muy caro de conseguir, ya que el oxígeno es algo que esta libre en la atmósfera pero no así el hidrógeno que hay que producirlo, amén de su alto grado de inestabilidad. The Pneumatic Drive System (SIN), is an alternative, possible and capable of presenting a clean motorization, unlike what happens with the Internal Combustion Engines, - until now the Hydrogen could replace the fossil energy -, but It is very expensive to obtain, since oxygen is something that is free in the atmosphere but not the hydrogen that must be produced, in addition to its high degree of instability.
Cuando los combustibles fósiles son quemados, el azufre, el nitrógeno y el carbono desprendidos se combinan con el oxígeno para formar óxidos. Cuando estos óxidos son liberados en el aire, reaccionan químicamente con el vapor de agua de la atmósfera, formando ácido sulfúrico, ácido When fossil fuels are burned, the sulfur, nitrogen and carbon released are combined with oxygen to form oxides. When these oxides are released into the air, they react chemically with the water vapor in the atmosphere, forming sulfuric acid, acid
HOJA DE REEMPLAZO (Regla 26)
E 2010/000411 SUBMISSION SHEET (Rule 26) E 2010/000411
2 two
nítrico y ácido carbónico, respectivamente. nitric and carbonic acid, respectively.
Esos vapores de agua que contienen ácidos —conocidos comúnmente como lluvia ácida— entran en el ciclo del agua y, por tanto, perjudican a la calidad de vida de las ciudades, bosques, suelos, lagos y arroyos. Those water vapors that contain acids - commonly known as acid rain - enter the water cycle and, therefore, harm the quality of life of cities, forests, soils, lakes and streams.
El sector de fabricantes de vehículos de automoción está evolucionando para tratar de sacar al mercado motores de menor consumo, tanto por su ahorro económico como para conseguir una incidencia medioambiental menos contaminante. The sector of manufacturers of automotive vehicles is evolving to try to bring to the market engines of lower consumption, both for their economic savings and to achieve a less polluting environmental impact.
Descripción detallada de la invención Detailed description of the invention
La presente invención que se presenta, es un nuevo sistema de impulsión Motriz basado en la NEUMATICA y está compuesto por: a) LA VÁLVULA S.I.N. DE ACCIÓN MECÁNICA (Ia) en conjunción con LA VÁLVULA DE ESCAPE ó RETORNO (Fig 1) y The present invention that is presented, is a new drive system based on the NEUMATICA and is composed of: a) THE VALVE WITHOUT MECHANICAL ACTION (I a ) in conjunction with THE EXHAUST VALVE or RETURN (Fig 1) and
b) LA VÁLVULA S.I.N. ELECTROMAGNÉTICA (IB) en conjunción con LA VÁLVULA DE ESCAPE ó RETORNO. (Fig 2) b) THE VALVE S.I.N. ELECTROMAGNETIC (IB) in conjunction with THE ESCAPE VALVE or RETURN. (Fig 2)
El Sistema tiene los mismos elementos que los motores convencionales de explosión, pero con una gran diferencia, y ésta estriba en la CÁMARA DE IMPULSION, que sustituye a LA CAMARA de EXPLOSIÓN, para incorporar la CAMARA DE IMPULSIÓN NEUMATICA. The System has the same elements as conventional explosion engines, but with a big difference, and this one is in the IMPULSION CHAMBER, which replaces the EXPLOSION CHAMBER, to incorporate the PNEUMATIC IMPULSION CHAMBER.
Ejemplo: Example:
Si se emplea un motor de explosión tradicional y se cambia el sistema de impulsión y se instala el Sistema Motriz de Impulsión Neumática (S.I.N) cuyas partes principales son las siguientes: If a traditional engine is used and the drive system is changed and the Pneumatic Drive Motor System (S.I.N) is installed, the main parts are the following:
Válvula SIN (1A) y (IB) (Fig 1 y 2) Valve SIN (1A) and (IB) (Fig 1 and 2)
Cilindro (4) (Fig 1) Cylinder (4) (Fig 1)
Pistón (3)- Percutor (2) de acción mecánica (Fig 1) Piston (3) - Mechanical action hammer (2) (Fig 1)
Y estos APLICADOS a: And these APPLIED to:
Biela (5) (Fig 1 y 2) Connecting rod (5) (Fig 1 and 2)
Cigüeñal (6) (Fig 1 y 2) Crankshaft (6) (Fig 1 and 2)
Volante El sistema consigue, el mismo movimiento giratorio del Cigüeñal (6), generando una fuerza motriz de la misma modalidad, aunque con diversas características a los del sistema de explosión, pero con mejores resultados ya que, mediante la Innovación del Sistema de Impulsión Neumática (S.I.N) se consiguen las siguientes ventajas:
Nula contaminación por C02. Steering wheel The system achieves the same rotational movement of the Crankshaft (6), generating a driving force of the same type, although with different characteristics to those of the explosion system, but with better results since, through the Innovation of the Pneumatic Drive System (SIN) the following advantages are achieved: No contamination by C02.
Mínima contaminación acústica. Minimum noise pollution
Nula dependencia de los combustibles fósiles. No dependence on fossil fuels.
Ahorro de energía. Energy saving.
Mayor autonomía. Greater autonomy
El Sistema Motriz de impulsión Neumática (S.I.N) The Pneumatic Drive System (S.I.N)
Se alimenta de aire comprimido, que convierte la energía neumática en energía mecánica, por mediación de la VALVULA S.I.N. (1A) o (IB), EL PERCUTOR (2) forma parte morfológica del PISTON (3) para una acción mecánica a la Válvula S.I.N. (1A) (Mecánica) desplazándose dentro de CILINDRO (4), unido este a la BIELA (5), y a su vez al CIGÜEÑAL (6) por la IMPULSION NEUMATICA. (Fig. 1). Como se ha dicho anteriormente, El Sistema Motriz de impulsión Neumática (S.I.N) se compone de los mismos elementos que los motores convencionales de explosión, pero con una gran diferencia: LA CÁMARA DE IMPULSIÓN que está compuesta por LA VALVULA SIN (1A) ó (IB) (si e electro-magnética) es una pieza fundamental, para la CÁMARA DE IMPULSIÓN, principal mecanismo fijo en ella, diferente al del motor de explosión, ya que no efectúa ninguna explosión, lo que efectúa son inyecciones de aire comprimido en el CILINDRO (4). It feeds on compressed air, which converts pneumatic energy into mechanical energy, through the VALVE S.I.N. (1A) or (IB), THE PERCUTOR (2) forms a morphological part of the PISTON (3) for a mechanical action to the S.I.N. Valve. (1A) (Mechanical) moving inside CYLINDER (4), linked to the ROPE (5), and in turn to the CRANKSHAFT (6) by the PNEUMATIC IMPULSION. (Fig. 1). As mentioned above, the Pneumatic Drive System (SIN) is composed of the same elements as conventional explosion engines, but with a big difference: THE DRIVE CHAMBER that is composed of THE VALVE WITHOUT (1A) or ( IB) (if e electro-magnetic) is a fundamental piece, for the IMPULSION CHAMBER, the main mechanism fixed in it, different from that of the explosion engine, since it does not make any explosion, which effects are injections of compressed air in the CYLINDER (4).
Para conseguir esta transformación de la energía, se deben realizar dos operaciones distintas y de forma escalonada. Cada una de estas operaciones se realiza en una carrera del PISTÓN (3) (desplazamiento desde el P.M.S.-Punto Máximo Superior-, al P.M.I -Punto Máximo Inferior) llamada tiempo y, como el Sistema tiene dos tiempos que son los que necesita para realizar el ciclo completo, el CIGÜEÑAL (6) dará una vuelta completa, sumando las dos Careras, esto quiere decir, que cada carrera corresponde a media vuelta en el CIGÜEÑAL o (180° de giro). To achieve this transformation of energy, two different operations must be carried out in a staggered manner. Each of these operations is carried out in a stroke of the PISTON (3) (displacement from the PMS-Highest Point Maximum), to the PMI-Bottom Maximum Point) called time and, as the System has two times that are what you need to perform the complete cycle, the CRANKSHAFT (6) will make a complete revolution, adding the two Careras, this means that each race corresponds to a half turn in the CRANKSHAFT or (180 ° of turn).
La Carrera comienza en el punto P.M.S. del PISTON (3) y el PERCUTOR (2), al conectar mecánicamente este último con la VALVULA SIN (1A), que permitirá, - por la conexión entre ambos, - PERCUTOR Y VALVULA S.I.N. (1A), la entrada de AIRE COMPRIMIDO en el CILINDRO (4), generando la fuerza impulsora suficiente para desplazar al PISTON (3) por el CILINDRO (4) hacia el P.M.I transmitiendo un movimiento rectilíneo a la BIELA (5) y esta al CIGÜEÑAL (6), convirtiendo la carrera en movimiento giratorio. The Race begins at the point P.M.S. of the PISTON (3) and the PERCUTOR (2), by mechanically connecting the latter with the VALVE WITHOUT (1A), which will allow, - by the connection between both, - PERCUTOR AND VALVE S.I.N. (1A), the input of COMPRESSED AIR in the CYLINDER (4), generating the sufficient driving force to move the PISTON (3) by the CYLINDER (4) towards the PMI transmitting a rectilinear movement to the ROPE (5) and it is at CRANKSHAFT (6), turning the race into a rotating movement.
VENTAJAS DEL SISTEMA ADVANTAGES OF THE SYSTEM
Ia.- Aumenta el numero de impulsiones por vuelta del CIGÜEÑAL(6) Es decir, cuando en un motor de explosión, - de cuatro cilindros-, se efectúan
DOS explosiones por vuelta , en el Sistema Motriz de impulsión Neumática (S.I.N) se efectúan CUATRO impulsos por vuelta I a .- Increase the number of drives per turn of the CRANKSHAFT (6) That is, when in an engine of explosion, - of four cylinders-, they are made TWO explosions per revolution, in the Pneumatic Drive System (SIN) there are FOUR impulses per revolution
2a.- Es barato y puede ser utilizado en cantidades ilimitadas. 2 a .- It is cheap and can be used in unlimited quantities.
3a.- - No es necesario reciclar 3 a .- - It is not necessary to recycle
4a.- Se transporta con facilidad por las tuberías o mangueras yt una vez empleado en la impulsión, se reutiliza al retornar al CALDERIN (7) o4 a .- It is transported easily through the pipes or hoses and t once used in the drive, it is reused when returning to the BOILER (7) or
DEPOSITO. Esta circunstancia simplifica el abastecimiento del SistemaDEPOSIT. This circumstance simplifies the supply of the System
Motriz de impulsión Neumática (S.I.N) Pneumatic drive motor (S.I.N)
5a. - El aire comprimido se puede almacenar en el Calderín( ) o 5 a . - Compressed air can be stored in the Boiler () or
depósito. El Calderín (7) con aire comprimido puede funcionar un tiempo con el compresor auxiliar parado o averiado. Deposit. The boiler (7) with compressed air can operate for a while with the auxiliary compressor stopped or damaged.
6a. - Es menos sensible a las variaciones de temperatura que los aceites, garantizando un trabajo seguro incluso a temperaturas extremas. 6 a . - It is less sensitive to temperature variations than oils, guaranteeing safe work even at extreme temperatures.
7a.- No tiene ningún riesgo de incendio, por tanto no es necesario disponer de instalaciones anti-deflagrantes 7 a .- It has no risk of fire, therefore it is not necessary to have anti-blasting facilities
8a. -Es limpio y, en caso de fugas o falta de estanqueidad en los componentes, no ensucia, no contamina y no provoca averías en el vehículo. 8 a . -It is clean and, in case of leakage or lack of sealing in the components, it does not dirty, does not contaminate and does not cause breakdowns in the vehicle.
9a. - Los componentes neumáticos son más sencillos de fabricar y tienen un menor coste económico 9 a . - The pneumatic components are simpler to manufacture and have a lower economic cost
Características del SISTEMA. Un circuito básico de neumática está formado por los siguientes componentes: System caracteristics. A basic circuit of pneumatics is formed by the following components:
- Compresor.(12) (Fig. 5) - Compressor. (12) (Fig. 5)
- Calderín. o Deposito (7) (Fig. 5) - Boiler o Deposit (7) (Fig. 5)
- Canalizaciones o Mangueras (13) (Fig. 5) - Pipelines or Hoses (13) (Fig. 5)
- Conectares o Racord . - Connect or Racord.
Emplear el aire comprimido como fuente de energía, hasta ahora, era más costoso que emplear la energía eléctrica. No obstante, el aire comprimido es una fuente de energía recomendable y muy empleada en la industria. Employing compressed air as an energy source, until now, was more expensive than using electric power. However, compressed air is a recommended energy source and widely used in the industry.
GENERADOR DE AIRE COMPRIMIDO EN EL SISTEMA MOTRIZ DE IMPULSIÓN NEUMÁTICA (S.I.N) COMPRESSED AIR GENERATOR IN THE PNEUMATIC IMPULSION SYSTEM (S.I.N)
El aire comprimido que emplea el propio Sistema Motriz de impulsión Neumática (S.I.N), es generado por EL PROPIO SISTEMA MOTRIZ DE IMPULSIÓN NEUMÁTICA. Por tanto EL COMPRESOR es el Sistema (S.I.N). The compressed air used by the Pneumatic Drive Motor System (S.I.N) is generated by THEIR PNEUMATIC DRIVE MOTOR SYSTEM. Therefore THE COMPRESSOR is the System (S.I.N).
Se trata de un conjunto mecánico de impulsión Neumática, que inyecta el aire comprimido al CILINDRO (4) por la VÁLVULA SIN
(1 A) ó (1 B) y EL PROPIO AIRE COMPRIMIDO utilizado para la IMPULSIÓN RETORNA AL CALDERIN (Tí. por mediación de la VÁLVULA de ESCAPE o RETORNO ( 8), impulsado por el propio CILINDRO (4). Principales partes del Sistema (S.I.N) son: It is a pneumatic drive mechanical assembly, which injects the compressed air to the CYLINDER (4) by the VALVE WITHOUT (1 A) or (1 B) and THE OWN COMPRESSED AIR used for the RETURN DRIVE TO THE BOILER (by means of the EXHAUST VALVE or RETURN (8), driven by the CYLINDER itself (4).) Main parts of the System (SIN) are:
El caudal que es capaz de proporcionar en el circuito. Su unidad de medida es el metro cúbico por hora (m3/h). The flow that is able to provide in the circuit. Its unit of measure is cubic meter per hour (m3 / h).
-La presión máxima que puede suministrar se mide en (bar). -The maximum pressure that can be supplied is measured in (bar).
Al Sistema (S.I.N) se incorpora un Compresor Auxiliar (12) (Fig. 5) que se conecta a los circuitos y realiza su misión del siguiente modo: A Auxiliary Compressor (12) is incorporated into the System (S.I.N) (Fig. 5) that is connected to the circuits and performs its mission in the following way:
- Alimenta también directamente el circuito neumático y mantiene la presión del CALDERIN (7) en sus óptimas condiciones de funcionamiento en lo que se refiere a la presión del AIRE COMPRIMIDO. - It also directly feeds the pneumatic circuit and maintains the pressure of the BOILER (7) in its optimum operating conditions with regard to the pressure of the COMPRESSED AIR.
- El aire comprimido almacenado en el CARDERIN (7), desde el que se abastece el propio Sistema (S.I.N), trabaja con presiones medias y altas (6 a 12 bar) 1.- EL SISTEMA (S.I.N), CICLOS Y FUNCIONAMIENTO - The compressed air stored in the CARDERIN (7), from which the System itself is supplied (S.I.N), works with medium and high pressures (6 to 12 bar) 1.- THE SYSTEM (S.I.N), CYCLES AND OPERATION
LA IMPULSIÓN Con VALVULA SIN f 1A¾; THE IMPULSION With VALVE WITHOUT f 1A¾;
Se puede aplicar, a un motor de cuatro o más cilindros. El Sistema SIN funciona a DOS TCEMPOS o carreras: IMPULSION y ESCAPE o RETORNO . It can be applied to an engine with four or more cylinders. The SIN System works at TWO TCEMPOS or runs: DRIVE and ESCAPE or RETURN.
La IMPULSIÓN con este tipo de válvula se efectúa de forma MECÁNICA (Fig. 1) y comienza en el P.M.S, esto es en el 0o del giro del CIGÜEÑAL (6) donde el PERCUTOR (2) del PISTON (3) conecta mecánicamente con el sensor de la VÁLVULA SIN (1A), que al introducirse en dicha VÁLVULA SIN (1A), abre mecánicamente mediante empuje, permitiendo la entrada de AIRE COMPRIMIDO en el CILINDRO (4), generando por tanto una fuerza impulsora suficiente para desplazar al PISTON (3) hacia el P.M.I transmitiendo un movimiento rectilíneo que el CIGÜEÑAL (6), convierte en movimiento giratorio. The IMPULSION with this type of valve is MECHANICAL (Fig. 1) and starts at the PMS, that is at 0 or the turn of the CRANKSHAFT (6) where the PERCUTOR (2) of the PISTON (3) mechanically connects to the the sensor of the SIN VALVE (1A), which when introduced into said SIN VALVE (1A), opens mechanically by pushing, allowing the entry of COMPRESSED AIR into the CYLINDER (4), thus generating a sufficient driving force to displace the PISTON (3) to the PMI transmitting a rectilinear movement that the CRANKSHAFT (6) converts into a rotary movement.
LA IMPULSIÓN Con VALVULA SIN f IB): THE IMPULSION WITH VALVE WITHOUT f IB):
Se puede aplicar, a un motor de cuatro o más cilindros. El Sistema SIN funciona a DOS TCEMPOS o carreras: IMPULSION y ESCAPE o RETORNO . La IMPULSIÓN, en esta modalidad de válvula, se efectúa de forma ELECTRO- MAGNÉTICA (Fig. 2) y comienza en el P.M.S, esto es en el 0° del giro del CIGÜEÑAL (6), donde un impulso eléctrico, generado mediante sensores de apertura o cierre en la VÁLVULA ELECTRO-MAGNÉTICA SIN (IB), permitiendo la entrada de AIRE
COMPRIMIDO en el CILINDRO (4), generando por tanto una fuerza impulsora suficiente para desplazar al PISTON (3)^ hacia el P.M.I, transmitiendo un movimiento rectilíneo que el CIGÜEÑAL (6), convierte en movimiento giratorio. El ESCAPE p RETQRNQ: It can be applied to an engine with four or more cylinders. The SIN System works at TWO TCEMPOS or runs: DRIVE and ESCAPE or RETURN. The IMPULSION, in this valve mode, is carried out in an ELECTRO-MAGNETIC way (Fig. 2) and starts at the PMS, that is at 0 ° of the turn of the CRANKSHAFT (6), where an electrical impulse, generated by sensors of opening or closing on the ELECTRO-MAGNETIC VALVE WITHOUT (IB), allowing the entry of AIR COMPRESSED in the CYLINDER (4), thus generating a sufficient driving force to move the PISTON (3) ^ towards the PMI, transmitting a rectilinear movement that the CRANKSHAFT (6) converts into a rotary movement. The ESCAPE p RETQRNQ:
La segunda carrera comienza en el P.M.I a los 180° del giro del CIGÜEÑAL (6) abriéndose LA VÁLVULA de ESCAPE (8) mecánicamente por LEVAS o ELECTROMAGNETICAMENTE mediante sensores. Al comenzar la carrera ascendente del PISTON (3) en su recorrido hasta el P.M.S. expulsa el aire que se introdujo en el primer tiempo o carrera. El AIRE COMPRIMIDO de la primera carrera es retornado al CALDERÍN. o DEPOSITO (7). La VÁLVULA de ESCAPE (8) dejando óptimo el CILINDRO (4) para el siguiente tiempo o IMPULSIÓN. Ejemplo: The second stroke begins in the P.M.I at 180 ° of the turn of the CRANKSHAFT (6) opening the ESCAPE VALVE (8) mechanically by CAMS or ELECTROMAGNETICALLY by means of sensors. At the start of the PISTON uphill race (3) on its way to the P.M.S. It expels the air that was introduced in the first time or race. The COMPRESSED AIR of the first race is returned to the BOILER. o DEPOSIT (7). The ESCAPE VALVE (8) leaving the CYLINDER (4) optimal for the next time or IMPULSION. Example:
El siguiente PISTON (3) -del orden de IMPULSIÓN (1,3,4,2), efectuará el mismo proceso anteriormente descrito y así sucesivamente. Si el orden de IMPULSION es -1 -3 -4 -2, esto quiere decir que cada impulsión en cada CILINDRO (4) se efectuará en este orden, y como los 4 codos del CIGÜEÑAL (6) están situados a 90° uno del otro, se obtendrán cuatro - 4- IMPULSIONES en cada vuelta completa del CIGÜEÑAL (6). The next PISTON (3) -of the IMPULSION order (1,3,4,2), will perform the same process described above and so on. If the command of IMPULSION is -1 -3 -4 -2, this means that each impulse in each CYLINDER (4) will be carried out in this order, and since the 4 elbows of the CRANKSHAFT (6) are located at 90 ° one of the another, four - 4 IMPULSIONS will be obtained in each complete turn of the CRANKSHAFT (6).
En un Cilindro de un motor de explosión convencional, se realizan DOS -2- EXPLOSIONES POR VUELTA, en cambio en el MOTOR DE IMPULSION NEUMÁTICA S.I.N. se realizan CUATRO - 4 - IMPULSIONES POR VUELTA. In a Cylinder of a conventional explosion engine, DOS -2- EXPLOSIONS PER RETURN are performed, instead in the PNEUMATIC IMPULSION MOTOR S.I.N. FOUR - 4 - IMPULSIONS PER RETURN are performed.
El sistema S.I.N. tiene la ventaja de que se alimenta el CALDERÍN (7) con el propio aire comprimido utilizado para la IMPULSIÓN, consiguiendo por tanto el auto-abastecimiento generado por el propio SISTEMA S.I.N. The system S.I.N. It has the advantage that the BOILER (7) is fed with the compressed air used for the DRIVE, thus getting the self-supply generated by the SISTEMA S.I.N.
El CALDERÍN o DEPÓSITO (7) (Fig. 5) de aire comprimido, está unido al motor POR DOS VIAS: The BOILER or DEPOSIT (7) (Fig. 5) of compressed air, is attached to the engine BY TWO WAYS:
(A) .- Línea de IMPULSIÓN, que va desde el CALDERIN (7) al motor, (A) .- IMPULSION line, which goes from the BOILER (7) to the engine,
(B) - Línea de ESCAPE o RETORNO que va desde el Motor al CALDERIN (7) (B) - ESCAPE or RETURN line that goes from the Engine to the BOILER (7)
Estas dos líneas, las componen dos elementos (2): MANGUERA (13) y MANGUERA (13-E/ R). (Fig. 5) These two lines are composed of two elements (2): HOSE (13) and HOSE (13-E / R). (Fig. 5)
La salida del CALDERIN (7) por la MANGUERA (13), pasa al DISTRIBUIDOR O REPARTIDOR (10) (Fig. 5) y de este, a cada una
de las VALVULAS S.I.N. (1A ó IB) -según la opción elegida: mecánica o electro-magnética- de cada CILINDRO (4), ubicadas en la CULATA del motor, perpendicularmente en el centro geométrico o en el eje central exacto de cada CILINDRO (4). Para equilibrar la DIFERENCIA que pueda existir en el abastecimiento general, esto es: lo que se gasta por IMPULSIÓN y lo que se recupera mediante el ESCAPE o RETORNO, el Sistema se dota de un COMPRESOR (12) (Fig. 5) o compresor AUXILIAR para que mantenga el CALDERÍN (7) a un régimen óptimo de presión, mediante ELECTRO VALVULAS DE PRESION. The output of the BOILER (7) through the HOSE (13), goes to the DISTRIBUTOR OR DISTRIBUTOR (10) (Fig. 5) and from this, to each one of the VALVES SIN (1A or IB) -according to the option chosen: mechanical or electro-magnetic- of each CYLINDER (4), located in the CYLINDER HEAD, perpendicularly in the geometrical center or in the exact central axis of each CYLINDER ( 4). To balance the DIFFERENCE that may exist in the general supply, that is: what is spent by IMPULSION and what is recovered by the ESCAPE or RETURN, the System is equipped with a COMPRESSOR (12) (Fig. 5) or AUXILIARY compressor to keep the BOILER (7) at an optimal pressure regime, by means of ELECTRO PRESSURE VALVES.
Elementos fundamentales que componen el Sistema S.I.N VALVULA S.I.N.(1 A) (Fig. 1 y 2 ): Fundamental elements that make up the System S.I.N VALVULA S.I.N. (1 A) (Fig. 1 and 2):
Es la válvula de entrada de Aire Comprimido en el CILINDRO (4). Esta Válvula obtiene su apertura mecánicamente por la acción del PERCUTOR (2) que forma parte de la cabeza del PISTÓN (3). PERCUTOR (2) (Fig. 1): It is the Compressed Air inlet valve on the CYLINDER (4). This valve obtains its opening mechanically by the action of the PERCUTOR (2) that is part of the head of the PISTON (3). PERCUTOR (2) (Fig. 1):
Forma parte fundamental del Sistema SIN. Se encuentra situado en el centro exacto de la cabeza del PISTON (3), para un sistema mecánico, con una longitud de lOm/m y un diámetro 4m/m, y es la pieza que efectúa, la apertura de la VALVULA S.I.N. (1 A) de forma mecánica y en el momento exacto del P.M.S. (Punto Máximo Superior). It is a fundamental part of the SIN System. It is located in the exact center of the head of the PISTON (3), for a mechanical system, with a length of 10m / m and a diameter of 4m / m, and it is the piece that effects, the opening of the VALVE S.I.N. (1 A) mechanically and at the exact moment of P.M.S. (Maximum Higher Point).
El PISTÓN (3) (Fig. 1 ) está compuesto como un pistón convencional de explosión, es decir está formado por: el PERCUTOR (2), los segmentos y el burlón o anclaje de biela The PISTON (3) (Fig. 1) is composed as a conventional explosion piston, that is, it is formed by: the PERCUTOR (2), the segments and the mocking or connecting rod anchor
VALVULA S.I.N.(1 B) (Fig. 3): VALVE S.I.N. (1 B) (Fig. 3):
Es la válvula de entrada de Aire Comprimido en el CILINDRO (4). Esta Válvula obtiene su apertura electro-magnéticamente por la acción de sensores que regulan su apertura y cierre, de acuerdo con los grados de giro del CIGÜEÑAL (6), esto es: abrirá a los 0° y cerrará a los 180° del giro del CIGÜEÑAL (6). It is the Compressed Air inlet valve on the CYLINDER (4). This valve obtains its opening electro-magnetically by the action of sensors that regulate its opening and closing, according to the degrees of turn of the CRANKSHAFT (6), that is: it will open at 0 ° and close at 180 ° of the turn of the CRANKSHAFT (6).
El PISTÓN (3) (Fig.3), para el Sistema con VALVULA S.I.N. electromagnética (I B) está formado por: los segmentos y el burlón o anclaje de biela. The PISTON (3) (Fig.3), for the System with VALVE S.I.N. Electromagnetic (I B) is formed by: the segments and the mocking or connecting rod anchor.
BIELA (5): (Fig. 1, 2, 3) ROPE (5): (Fig. 1, 2, 3)
Ya es conocida esta pieza en la mecánica tradicional, y se compone de dos partes: Cabeza y Pie de biela. Está asegurada al PISTÓN por un pasador o BURLÓN y el otro extremo de la BIELA, -Cabeza de biela-, va
anclado sobre casquillos al codo del CIGÜEÑAL (6). CIGÜEÑAL (6) (Fig. 1, 2, 3): This piece is already known in traditional mechanics, and consists of two parts: Head and Bigfoot. It is secured to the PISTON by a pin or BURLÓN and the other end of the CONCRETE, -Container head-, goes anchored on bushings to the CRANKSHAFT elbow (6). CRANKSHAFT (6) (Fig. 1, 2, 3):
Constituye un eje con manivelas o codos, con dos o más puntos que se apoyan en una bancada integrada en la parte superior del CÁRTER y que queda cubierto después por el propio bloque del motor . It constitutes an axis with cranks or elbows, with two or more points that rest on a bench integrated in the upper part of the CRANKCASE and which is then covered by the engine block itself.
BLOQUE DEL MOTOR: MOTOR BLOCK:
Es el que le permite al CIGÜEÑAL (6) poder girar con suavidad. Los codos del cigüeñal (cuando existe más de un cilindro), giran de forma excéntrica con respecto al eje. En cada uno de los codos se fijan los casquillos o cojinetes de las bielas que le transmiten al Cigüeñal la fuerza que desarrollan los IMPULSOS en los pistones durante las carreras. It is the one that allows the CRANKSHAFT (6) to be able to turn smoothly. The crankshaft elbows (when there is more than one cylinder), rotate eccentrically with respect to the axis. In each of the elbows are fixed the bearings or bearings of the connecting rods that transmit to the Crankshaft the force that the IMPULSES develop in the pistons during the races.
VOLANTE (16) STEERING WHEEL (16)
En un motor con El SISTEMA DE IMPULSIÓN NEUMATICA S.I.N. deIn an engine with the PNEUMATIC IMPULSION SYSTEM S.I.N. of
DOS -2- TCEMPOS , el CIGÜEÑAL (6) gira solamente media vuelta por cada IMPULSION que se produce en la cámara del CILINDRO (4), o de cada pistón; es decir, que por cada IMPULSIÓN que se produce en el CILINDRO (4), el CIGÜEÑAL (6) debe completar, por su propio impulso, una vuelta más. Por tanto, mientras en el primero de los tiempos de IMPULSION el PISTÓN (3) "entrega energía" útil, en el otro tiempo "se consume energía suficiente" para que el cigüeñal se pueda mantener girando por inercia. Esa situación obliga a que, parte de la energía que se produce en la IMPULSION, sea necesario acumularla de alguna forma para mantener girando el CIGÜEÑA (6) durante el tiempo siguiente, ESCAPE o RETORNO, sin que pierda impulso. De esa función se encarga una masa metálica denominada VOLANTE DE INERCIA, es decir, una rueda metálica dentada, situada al final del eje del CIGÜEÑAL(6), que absorbe o acumula parte de la energía cinética que se produce durante el tiempo de IMPULSION, devolviéndosela después al cigüeñal para mantenerlo girando. DISTRIBUIDOR (17) (Fig 5) DOS -2- TCEMPOS, the CRANKSHAFT (6) turns only half turn for each IMPULSION that takes place in the chamber of the CYLINDER (4), or of each piston; that is to say, that for every IMPULSION that is produced in the CYLINDER (4), the CRANKSHAFT (6) must complete, by its own impulse, one more turn. Therefore, while in the first of the IMPULSION times the PISTON (3) "delivers energy" useful, in the other time "enough energy is consumed" so that the crankshaft can be kept rotating by inertia. This situation requires that, part of the energy that is produced in the IMPULSION, it is necessary to accumulate it in some way to keep turning the CRANKSHAFT (6) during the following time, EXHAUST or RETURN, without losing momentum. This function is in charge of a metallic mass called INERTIA STEERING WHEEL, that is to say, a toothed metal wheel, located at the end of the axis of the CRANKSHAFT (6), that absorbs or accumulates part of the kinetic energy that is produced during the time of IMPULSION, returning it to the crankshaft to keep it spinning. DISTRIBUTOR (17) (Fig 5)
Es un dispositivo muy común en neumática, cuyo cometido es el de repartir el mismo fluido con la misma presión a varios mecanismos en un sistema determinado. Está compuesto por una entrada de la MANGUERA (13) general, y cuatro salidas que van a cada una de las VALVULAS S.I.N. It is a very common device in pneumatics, whose task is to distribute the same fluid with the same pressure to several mechanisms in a given system. It is composed of a general HOSE (13) inlet, and four outlets that go to each of the S.I.N. VALVES.
ENGRASE.- (Fig 4) LUBRICATION.- (Fig 4)
La presión en el circuito de engrase depende del régimen de rotación del Sistema y de la viscosidad del aceite. La bomba de aceite tiene las mismas ventajas para este sistema que en el sistema de explosión, pero sin
explosión, solo tiene que refrigerar la temperatura producida por el rozamiento en El CILINDRO (4) el CIGÜEÑAL(6) y LA BIELA (5).The pressure in the lubrication circuit depends on the rate of rotation of the system and the viscosity of the oil. The oil pump has the same advantages for this system as in the explosion system, but without explosion, you just have to cool the temperature produced by the friction in the CYLINDER (4) the CRANKSHAFT (6) and THE ROPE (5).
La temperatura es el reflejo de la cantidad o nivel de energía calorífica que poseen los cuerpos a enfriar, en nuestro caso, es necesario retirar la energía calorífica que se produzcan por el rozamiento en el sistema. The temperature is the reflection of the amount or level of heat energy that the bodies have to cool, in our case, it is necessary to remove the heat energy produced by the friction in the system.
REFRIGERACIÓN DEL MOTOR: (Fig 5) ENGINE COOLING: (Fig 5)
Entre los métodos de enfriamiento más comúnmente utilizados se encuentra el propio aire del medio ambiente o el tiro de aire forzado que se obtiene con la ayuda de ventiladores. Esos métodos de enfriamiento se emplean solamente en motores que desarrollan poca potencia y vehículos pequeños. Para motores de mayor tamaño el sistema de refrigeración más ampliamente empleado y sobre todo el más eficaz, es hacer circular agua por el interior del bloque y la culata. Para extraer el calor del agua una vez que ha recorrido el interior del motor, se emplea un radiador externo compuesto por tubos y aletas de enfriamiento. Cuando el agua recorre los tubos del radiador transfiere el calor al medio ambiente ayudado por el aire natural que atraviesa los tubos y el tiro de aire de un ventilador que lo fuerza a pasar a través de esos tubos MOTOR DE ARRANQUE.- Está constituido por un motor eléctrico especial, que desarrolla momentáneamente una gran potencia para poder poner en marcha el Sistema. Esta acción provoca que gire el CIGÜEÑAL (6), que empuje a la BIELA (5) y que el PISTON (3) del motor comience a moverse, y el PERCUTOR (2) conecte con la VALVULA SIN (1 A) e INYECTE AIRE COMPRIMIDO en d CILINDRO (4) y el motor arranque, ya que la IMPULSION NEUMÁTICA se realiza de manera mecánica.
Among the most commonly used cooling methods is the environmental air itself or the forced air draft that is obtained with the help of fans. These cooling methods are used only in engines that develop low power and small vehicles. For larger engines, the most widely used and most efficient cooling system is to circulate water inside the block and the cylinder head. To extract the heat from the water once it has traveled inside the engine, an external radiator consisting of tubes and cooling fins is used. When the water goes through the radiator tubes, it transfers the heat to the environment, aided by the natural air that flows through the pipes and the air draft of a fan that forces it to pass through these tubes. STARTING MOTOR.- It is constituted by a special electric motor, which momentarily develops a great power to start the System. This action causes the CRANKSHAFT (6) to rotate, to push the ROPE (5) and the PISTON (3) of the engine to start moving, and the PERCUTOR (2) to connect with the VALVE WITHOUT (1 A) and AIR INJECTION COMPRESSED in d CYLINDER (4) and the engine starts, since the PNEUMATIC IMPULSION is done mechanically.
Claims
REIVINDICACIONES
Ia.- Mecanismo Neumático (1) (2) (3) (4) (5) que, asociado con la -LO mecánica convierte el movimiento rectilíneo del pistón generado por la impulsión neumática, en movimiento motriz giratorio del Cigüeñal (6). I a .- Pneumatic Mechanism (1) (2) (3) (4) (5) which, associated with the mechanical -LO, converts the rectilinear movement of the piston generated by the pneumatic drive, in the revolving movement of the Crankshaft (6) .
2a.- Mecanismo Neumático según reivindicación 1 que se caracteriza 2 por la asociación de piezas neumáticas mecánicas para generar una impulsión motriz rotativa (1A) (IB) y mecánica (2) (3) (4) (5) (6). 2 .- tire according to claim 1 Mechanism 2 is characterized by the association of pneumatic mechanical parts to generate a mechanical rotary (2) (3) (4) (5) (6) motor drive (1A) (IB) and.
3a.- Mecanismo neumático-mecánico según reivindicación 1, que es un sistema motriz basado en impulsos neumáticos rectilíneos de los 20 pistones versión (1A) o (IB) impulsores como los sistemas de explosión, pero sin explosión (2) (3) (4) (5) y (6), por tanto al no haber explosión, no se emanan gases, y sin emisión de gases de efecto invernadero, y lo que es más sin dependencia del petróleo.3 a .- Mechanical-pneumatic mechanism according to claim 1, which is a motor system based on rectilinear pneumatic pulses of the 20 pistons version (1A) or (IB) impellers such as explosion systems, but without explosion (2) (3) (4) (5) and (6), therefore, in the absence of an explosion, no gases are emitted, and no greenhouse gas emissions, and what is more without dependence on oil.
5 4a.- Mecanismo Neumático según reivindicación 1, es un sistema motriz basado en los mismos principios impulsores que los sistemas de explosión (1A) o (IB) (2) (3) (4) (5) y (6), pero sin explosión, y al no haber explosión, se anula la existencia de ruidos, siendo la automocion menos contaminante y mas silenciosa5 4 a .- Pneumatic Mechanism according to claim 1, is a motor system based on the same driving principles as the explosion systems (1A) or (IB) (2) (3) (4) (5) and (6), but without explosion, and having no explosion, cancels the existence of noise, being the least polluting and quietest automotive
0 0
5a.- Mecanismo Neumático según reivindicación 1, la automocion Neumática (1A) mecánica (lB)electro-magnética (3) (4) (5) y (6), es una solución a los problemas que implican la contaminación ambiental producto de la combustión de derivados del petróleo, sobre todo en 5 zonas urbanas, así como ayuda a solucionar la dependencia que genera este tipo de combustibles. 5 .- Mechanism tire according to claim 1, automotive inflatable (1A) mechanical (lB) electro-magnetic (3) (4) (5) and (6), is a solution to problems involving pollution product the combustion of petroleum derivatives, especially in 5 urban areas, as well as helping to solve the dependence generated by this type of fuel.
6a.- Mecanismo Neumático según reivindicación 1, que no necesita conectarse a la red de alimentación eléctrica, genera su propia 0 alimentación Neumática (aire comprimido) ((1A) (IB), de modo que no necesita el almacenamiento de combustible alguno y genera la cantidad suficiente de energía (Aire comprimido ) para su propulsión. 6 .- Mechanism tire according to claim 1, which need not be connected to the mains supply, generates its own power Pneumatic 0 (compressed air) ((1A) (IB) so it does not need any fuel storage and generates a sufficient amount of energy (compressed air) for its propulsion.
7a.- Mecanismo Neumático según reivindicación 1, es un sistema de automocion, con las características de independencia, movilidad y libertad que le confiere su propia energía: Aire comprimido . 7 a .- Pneumatic Mechanism according to claim 1, is an automotive system, with the characteristics of independence, mobility and freedom that gives it its own energy: Compressed air.
8a.- Mecanismo Neumático según reivindicación 1, tiene presente que la tecnología que emplea es la Impulsión Neumática (1A) (IB) como 0 forma 8 a .- Pneumatic Mechanism according to claim 1, keep in mind that the technology used is the Pneumatic Drive (1A) (IB) as 0 form
HOJA DE REEMPLAZO (Regla 26)
de combustible propio, generado por el propio Sistema de impulsión Neumática ((1A) o (IB) y que reconvierte en fuerza motriz para la automoción. SUBMISSION SHEET (Rule 26) of own fuel, generated by the Pneumatic Drive System ((1A) or (IB) and which converts it into a driving force for the automotive industry.
9a.- Mecanismo Neumático según reivindicación 1, que no usa combustible para su funcionamiento ya que el combustible, es la propia atmósfera o el aire. Esto quiere decir, que no emplea ningún tipo de combustible para la alimentación del Sistema S.I.M., ni para el funcionamiento de dicho Sistema (1A) (IB). 9 a. - Pneumatic Mechanism according to claim 1, which does not use fuel for its operation since the fuel is the atmosphere itself or the air. This means that it does not use any type of fuel to power the SIM System, nor for the operation of said System (1A) (IB).
HOJA DE REEMPLAZO (Regla 26)
SUBMISSION SHEET (Rule 26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201000788A ES2379069B1 (en) | 2010-06-16 | 2010-06-16 | PNEUMATIC DRIVE MOTOR SYSTEM (S.I.N.) |
ESP201000788 | 2010-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011157861A1 true WO2011157861A1 (en) | 2011-12-22 |
Family
ID=45347674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2010/000411 WO2011157861A1 (en) | 2010-06-16 | 2010-10-09 | Pneumatic propulsion drive system |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2379069B1 (en) |
WO (1) | WO2011157861A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102787866A (en) * | 2012-08-17 | 2012-11-21 | 彭学军 | Turbine engine using compressed air as working energy |
US20130318967A1 (en) * | 2010-11-26 | 2013-12-05 | Daimler Ag | Waste heat recovery device |
CN106437917A (en) * | 2015-08-05 | 2017-02-22 | 熵零股份有限公司 | Direct-acting valve cylinder piston process engine |
CN106438034A (en) * | 2015-08-06 | 2017-02-22 | 熵零股份有限公司 | Direct-acting valve air cylinder and piston mechanism and engine with same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2018366A (en) * | 1978-03-31 | 1979-10-17 | Boc Ltd | Gas-operated motors |
US4292804A (en) * | 1980-06-10 | 1981-10-06 | Rogers Sr Leroy K | Method and apparatus for operating an engine on compressed gas |
US5515675A (en) * | 1994-11-23 | 1996-05-14 | Bindschatel; Lyle D. | Apparatus to convert a four-stroke internal combustion engine to a two-stroke pneumatically powered engine |
EP1162353A2 (en) * | 2000-06-07 | 2001-12-12 | Amos Bonazzoli | High efficiency engine |
GB2459079A (en) * | 2008-01-14 | 2009-10-14 | Sean O'brien | An air engine |
EP2187052A1 (en) * | 2007-06-26 | 2010-05-19 | Yu-Hun Nien | Power machine |
WO2010057285A1 (en) * | 2008-11-24 | 2010-05-27 | Jailson Ferreira Leite | Movimentation system for engines in general with use of compressed air |
-
2010
- 2010-06-16 ES ES201000788A patent/ES2379069B1/en not_active Expired - Fee Related
- 2010-10-09 WO PCT/ES2010/000411 patent/WO2011157861A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2018366A (en) * | 1978-03-31 | 1979-10-17 | Boc Ltd | Gas-operated motors |
US4292804A (en) * | 1980-06-10 | 1981-10-06 | Rogers Sr Leroy K | Method and apparatus for operating an engine on compressed gas |
US5515675A (en) * | 1994-11-23 | 1996-05-14 | Bindschatel; Lyle D. | Apparatus to convert a four-stroke internal combustion engine to a two-stroke pneumatically powered engine |
EP1162353A2 (en) * | 2000-06-07 | 2001-12-12 | Amos Bonazzoli | High efficiency engine |
EP2187052A1 (en) * | 2007-06-26 | 2010-05-19 | Yu-Hun Nien | Power machine |
GB2459079A (en) * | 2008-01-14 | 2009-10-14 | Sean O'brien | An air engine |
WO2010057285A1 (en) * | 2008-11-24 | 2010-05-27 | Jailson Ferreira Leite | Movimentation system for engines in general with use of compressed air |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130318967A1 (en) * | 2010-11-26 | 2013-12-05 | Daimler Ag | Waste heat recovery device |
CN102787866A (en) * | 2012-08-17 | 2012-11-21 | 彭学军 | Turbine engine using compressed air as working energy |
WO2014026423A1 (en) * | 2012-08-17 | 2014-02-20 | Peng Xuejun | Turbine engine using compressed air as working energy source |
CN106437917A (en) * | 2015-08-05 | 2017-02-22 | 熵零股份有限公司 | Direct-acting valve cylinder piston process engine |
CN106438034A (en) * | 2015-08-06 | 2017-02-22 | 熵零股份有限公司 | Direct-acting valve air cylinder and piston mechanism and engine with same |
Also Published As
Publication number | Publication date |
---|---|
ES2379069B1 (en) | 2012-11-27 |
ES2379069A1 (en) | 2012-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2249741T3 (en) | GEROTOR TYPE COMPRESSOR AND GEROTOR TYPE EXPANSOR. | |
ES2254365T3 (en) | MOTORS DRIVEN BY LIQUID OR COMPRESSED GAS. | |
WO2011157861A1 (en) | Pneumatic propulsion drive system | |
Teng | Waste heat recovery concept to reduce fuel consumption and heat rejection from a diesel engine | |
US8161924B1 (en) | Orbital, non-reciprocating, internal combustion engine | |
WO2012004630A1 (en) | Internal combustion engine | |
US10738613B2 (en) | Paired air pressure energy power system and power method thereof | |
US20130263817A1 (en) | Double Bar Single Wheel Rotary Combustion Engine | |
KR101391994B1 (en) | The vane turbine engine that using recovery of the working fluid and power generation device using the same | |
WO2022087759A1 (en) | Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons | |
ES2821742T3 (en) | Thermal power plant, in particular for the use of low temperature heat sources | |
ES1285384U (en) | internal combustion rotary engine (Machine-translation by Google Translate, not legally binding) | |
JP2006258087A (en) | Rotary type external combustion engine | |
US20040163620A1 (en) | Rotating piston engine | |
ES2292326B1 (en) | INTERNAL COMBUSTION HYPOCICLOID ROTATING MOTOR. | |
US9624825B1 (en) | Orbital non-reciprocating internal combustion engine | |
WO2005066461A1 (en) | Steam driven engine | |
WO2012052034A2 (en) | System for adapting an internal combustion engine so that it is operated using compressed air or gas | |
ES2908485A1 (en) | One hundred percent machine of internal combustion (Machine-translation by Google Translate, not legally binding) | |
WO2006021593A1 (en) | Rotary piston engine | |
ES2411829B1 (en) | AXIAL INJECTION MOTOR | |
ES1295974U (en) | Hydraulic or pneumatic machine (Machine-translation by Google Translate, not legally binding) | |
US20060196181A1 (en) | Nelson flywheel power plant | |
ES1289299U (en) | Continuous flow turbine engine and external compression (Machine-translation by Google Translate, not legally binding) | |
BR102021018663A2 (en) | COMPRESSED AIR INJECTION SYSTEM AND ENGINE MODIFICATION FOR VEHICLES, GENERATORS OR THEIR DERIVATIVES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10853156 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10853156 Country of ref document: EP Kind code of ref document: A1 |