WO2022087759A1 - Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons - Google Patents

Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons Download PDF

Info

Publication number
WO2022087759A1
WO2022087759A1 PCT/CL2021/050121 CL2021050121W WO2022087759A1 WO 2022087759 A1 WO2022087759 A1 WO 2022087759A1 CL 2021050121 W CL2021050121 W CL 2021050121W WO 2022087759 A1 WO2022087759 A1 WO 2022087759A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
piston
hydraulic
stroke
free piston
Prior art date
Application number
PCT/CL2021/050121
Other languages
Spanish (es)
French (fr)
Inventor
Luis Ernesto GUTZLAFF LILLO
Original Assignee
Gutzlaff Lillo Luis Ernesto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gutzlaff Lillo Luis Ernesto filed Critical Gutzlaff Lillo Luis Ernesto
Publication of WO2022087759A1 publication Critical patent/WO2022087759A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/02Equalising or cushioning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/08Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type with direct fluid transmission link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/16Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with pistons synchronously moving in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • F01L25/02Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • F01L25/02Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means
    • F01L25/04Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means by working-fluid of machine or engine, e.g. free-piston machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L25/00Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means
    • F01L25/02Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means
    • F01L25/04Drive, or adjustment during the operation, or distribution or expansion valves by non-mechanical means by fluid means by working-fluid of machine or engine, e.g. free-piston machine
    • F01L25/06Arrangements with main and auxiliary valves, at least one of them being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B69/00Internal-combustion engines convertible into other combustion-engine type, not provided for in F02B11/00; Internal-combustion engines of different types characterised by constructions facilitating use of same main engine-parts in different types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • F02B71/06Free-piston combustion gas generators per se
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines

Definitions

  • Free piston engines have been the subject of extensive research during this century for being simple engines that in theory should have better performance than crankshaft engines, however despite their potential better performance, there are still no successful commercial applications, which indicates that there are problems in achieving the expected theoretical performance and there are even problems in achieving stable and reliable operation.
  • the free piston engine has a number of unique features, some of which provide potential advantages and others present challenges that must be overcome for the free piston engine to be a realistic alternative to conventional technology.
  • the piston can perform a faster expansion stroke as it is not mechanically clamped, which reduces heat transfer loss during movement.
  • the length of the piston stroke can be varied in order to obtain that optimum.
  • the number of cycles per minute can be varied to obtain that optimum.
  • free piston engines solve the problem of not having piston position information by using two-stroke engines with intake and exhaust ports, which brings about the benefits and problems associated with two-stroke engines.
  • No flywheel The absence of an energy storage device, such as the flywheel in conventional engines, has been reported as one of the main problems during starting and running of a free piston engine.
  • an energy storage device such as the flywheel in conventional engines
  • each combustion depends on the previous combustion and affects the following combustion and when a variation in the compression ratio occurs during operation, it can cause a chain reaction that leads to unstable operation or even to stop the engine.
  • Vibrations The oscillating piston inside the engine produces vibrations that can be avoided by running several engines in parallel, but again this solution requires precise control of engine speed and the ability to synchronize movements. Another possibility is to apply counterweights which makes the design more complex, increases its size and weight and leads to additional friction losses.
  • Two-stroke engine In general, free piston engines are two-stroke since they require power in each stroke they make, the simplest way to do it is to use a piston that makes a stroke by fuel explosion and returns through a rebound chamber produced by mechanical or gas springs or with the help of some electrical accessory.
  • Figure 1 Base unit of the three-stroke internal combustion engine with hydraulic movement transmission, which is used to generate hydraulic energy.
  • the present invention proposes a three-stroke internal combustion hydraulic engine that delivers hydraulic energy, comprising:
  • An engine block (1) which is the base structure on which the other engine components are installed and is made up of several parts in order to allow its assembly.
  • piston or pistons we refer to those that form the double piston.
  • a pumper (7) which is an area with a larger diameter in the double piston rod, is located in the middle area of the double piston and moves in a compartment inside the engine block, the pumper has an annular area to both sides, on which the hydraulic pressure acts.
  • At least one fuel injector (11) per combustion chamber At least one fuel injector (11) per combustion chamber.
  • At least one tank (15) of hydraulic oil At least one tank (15) of hydraulic oil.
  • At least one flow regulating valve (17) that allows regulating the flow of hydraulic oil in the hydraulic circuit of the three-stroke engine.
  • the three-stroke engine requires among many other components: cooling circuits, lubrication and fuel and air supply lines and exhaust gas channels, in addition to control elements, which are not shown or indicated.
  • the block valve and the directional valve can be integrated in a single valve, or they can be distributed in the circuit in different ways to meet the same objectives, but this does not change the principle of operation presented. Form of operation.
  • the double piston oscillates thanks to the explosions that take place alternately in the two existing combustion chambers, in each oscillation it travels a distance that we call a stroke.
  • the stroke of the double piston of the three-stroke hydraulic engine is carried out between the top dead center and the bottom dead center, but in this engine, the double piston, when it makes a stroke, always arrives simultaneously at the point top dead center on one piston and bottom dead center on the other piston and when the double piston makes another stroke, it again reaches both top and bottom points, but each piston reaches the opposite point, since the two pistons do the same thing, no we make a distinction between them and we know which piston we are talking about by the operation it is performing.
  • the stroke of the double piston that is, the distance it travels, is not a fixed distance and can vary, since the engine stroke is between points in balance of forces, not between mechanical limits.
  • one of the pistons reaches its top dead center when it is closest to its cylinder head and at that moment the piston stops because a balance of forces occurs, between three forces:
  • the double piston remains in equilibrium, stopped and in one of the work stages of the three-stroke engine, at this stage a combustion chamber is at its maximum volume and it is the chamber in which the process is carried out. exhaust and intake and the other chamber is at its minimum volume, at compression pressure and waiting for ignition, at each oscillation of the double piston, the combustion chambers change function.
  • both pumping chambers are filled with oil which prevents movement of the double piston.
  • the fuel can enter the chamber together with the air during the stop or it can be injected when the valves are already closed and the ignition can be by self-ignition or by spark, microwave or similar, whichever is the case, when the ignition occurs and the blocking valve allows the passage of oil, the combustion of the gases produces an increase in pressure on the piston head, the balance is lost and the double piston moves, but as the double piston moves due to the expansion of combustion gases in the combustion chamber, the pressure of the gases decreases, until reaching a balance of forces again where the double piston remains stopped, in this process the hydraulic pressure remains constant and therefore the hydraulic pressure of balance is the same at both points of the stroke and is what we call working pressure and nominally corresponds to the hydraulic pressure in the working circuit which is the circu ito to the hydraulic motor.
  • the corresponding blocking valve In order to allow the movement of the double piston, the corresponding blocking valve must be actuated in synchronism with the ignition, in order to allow the passage of oil in the circuit again.
  • the pumper moves and changes the volume in both pumping chambers, with which on one side of the pumper the available volume increases, which causes a vacuum that sucks oil from the hydraulic tank and on the other side of the pumping unit produces a decrease in the available volume, which pushes the pressurized hydraulic oil out of the pumping chamber and creates a pulse of oil towards the working circuit, correctly installed one-way valves maintain the flow of oil in the directions indicated. have indicated.
  • One-way valves are valves that allow the passage of oil only in one direction and when the displacement of the pump occurs, the one-way valves only allow the passage of oil from the hydraulic tank to the pumping chambers and from the pumping chambers to the side of the hydraulic accumulator, flows in the opposite direction to those indicated cannot occur.
  • the displacement of the pumper caused by the oscillations of the double piston converts the central area of the engine block into a reciprocating pump, which is commonly known as a piston pump, in hydraulics piston pumps are in common use but are generally driven by a rotary engine, in the three-stroke engine there is a piston pump that is directly driven by the oscillations caused by explosions on both sides of the double piston.
  • a reciprocating pump which is commonly known as a piston pump
  • piston pump in hydraulics piston pumps are in common use but are generally driven by a rotary engine, in the three-stroke engine there is a piston pump that is directly driven by the oscillations caused by explosions on both sides of the double piston.
  • Each oscillation movement of the double piston produces a pulse of hydraulic oil whose instantaneous flow rate exceeds the flow capacity of the flow regulating valve installed in the circuit, the instantaneous excess that cannot pass through the flow regulating valve enters the hydraulic accumulator and leaves the accumulator to the extent allowed by the flow regulator valve, thus regulating the operating variables of the three-stroke engine, at the outlet of the flow regulator, there is a flow of hydraulic oil that for practical purposes is constant flow.
  • the flow of hydraulic oil that leaves the flow regulator passes through at least one hydraulic motor before returning to the hydraulic tank.
  • the flow passes through the motor, it rotates the output shaft of the hydraulic motor, which, for practical purposes, rotates at constant speed and torque.
  • the three-stroke engine allows the use of all types of fuels, liquid and gaseous and can even be used with hydrogen.
  • the described three-stroke engine produces hydraulic energy that can be used as any hydraulic flow that has flow and pressure, to move all types of hydraulic actuators and motors.
  • the double piston When the double piston is moving due to the effect of the expansion of the combustion gases and the backward movement of the double piston is prevented by closing the passage of oil by means of the corresponding blocking valve, the double piston will stop advancing and remain stopped, when the exhaust valve of the combustion chamber where the combustion is taking place is opened and the pressure is released, in this case the arrest of the double piston can occur before there is a balance of forces and allows another form of control of the three-stroke engine , depending on the position of the double piston, the delivered flow, the compression pressure or any other variable considered relevant.
  • a three-stroke engine can have one or several output shafts, which correspond to the hydraulic motors that the hydraulic circuit of the three-stroke engine is making work, therefore the output power of the three-stroke engine is the total power that they deliver. hydraulic motors.
  • the pressure and flow rate of hydraulic oil passing through a hydraulic motor determines its power output and in this three-stroke engine the pressure and flow rate of hydraulic oil delivered depends on:
  • the stroke of the double piston and the pressure generated by the combustion gases depend on the initial compression of the charge of air and fuel that has been injected into the combustion chamber, thus varying the amount of fuel injected, within certain margins. that ensure adequate combustion, the stroke of the double piston of the three-stroke engine can be varied, by varying the amount of fuel injected, the pressure of the burned gases varies, but the final appreciable result is the stroke of the double piston.
  • the compression pressure is a variable dependent on the working hydraulic pressure.
  • the compression pressure of the air enclosed in the combustion chamber is defined by a balance of forces, if the hydraulic working pressure is varied, the compression pressure and the compression ratio of the engine vary.
  • variables such as pressure and temperature in the chambers, hydraulic working pressure, engine temperature, cylinder head piston distance can be measured and based on these values and other data, the load of the piston can be calculated. fuel to be injected to achieve a given stroke.
  • the three-stroke engine carries out the same combustion process as the four-stroke engine and it is intuitive to think of using the four strokes as a reference and considering that, as in the four-stroke engine, the exhaust and intake strokes correspond to half the time of the engine. engine cycle, the time that the double piston remains stopped in the three-stroke engine corresponds to half the cycle of the three-stroke engine, but strictly speaking the time of detention will be a consequence of the duration of the compression stroke.
  • the duration of the explosion-compression stroke is not mechanically limited and its duration will depend on the operating conditions of the engine and if these conditions do not vary, this time should remain constant although the power delivered by the engine varies.
  • the duration of the detention time of the double piston in the three-stroke engine will depend on the engine's own parameters and the operating conditions at each moment, for example, if it is determined that a three-stroke engine delivers its maximum power. at 3,000 cpm and at that cadence it is true that the stopping time is half the duration of each cycle, then at 1,500 cpm that engine delivers half of its maximum power and the stopping time is now three quarters of the duration of each cycle, but the stroke of the double piston lasts in both cases 0.01 second.
  • a particular case in which the double piston stopping time increases in the three-stroke engine is when the engine does not need to deliver power and the hydraulic motor(s) are stopped, but the three-stroke engine continues to run.
  • the three-stroke engine when stopping at each oscillation and after having carried out the valve opening and closing cycle, has two hermetic chambers, one chamber is at its maximum volume with air enclosed at the air charge pressure and the other chamber is at its minimum volume with air at compression pressure, the combustion engine The three-stroke can remain in this state of rest, maintaining the pressures in both chambers for an indefinite time that will depend on the tightness of the valves.
  • This ability to maintain pressure in both chambers allows the engine to stop completely when it is in operation when it does not need to deliver power, this implies that when this engine is used in vehicles and there are stoppages, for example in front of a traffic light or due to traffic congestion , the engine stops, stops making noises, stops emitting gases and stops wasting fuel.
  • control can define that when the three-stroke combustion engine is running and stopped, there is a minimum level of acceptable pressure in the combustion chambers of the engine that, when detected, causes the engine will make a stroke to rebuild compression pressure in one of the chambers and continue to wait for power to be called upon.
  • the hydraulic accumulator has the ability to provide hydraulic energy for a period of time even if the three-stroke engine is stopped, which can be used as a source of supplementary energy in case of stoppage, to take advantage of this quality of the hydraulic accumulator, the three-stroke engine times before stopping the ignition in the engine, you can carry out some operating cycles with the hydraulic motors stopped in order to accumulate energy in the accumulator, energy that will be used when putting the engine back to deliver power.
  • the energy stored in the accumulator acts as the flywheel of conventional engines and can act as a stabilizing element and provides the minimum hydraulic pressure for the system to work.
  • the hydraulic motors that move thanks to the three-stroke engine can act as hydraulic pumps if an external force rotates the motor's output shaft, which is the situation when braking a vehicle, in this case the hydraulic motor acting as a pump drives hydraulic flow into the hydraulic accumulator, as the accumulator fills with oil the pressure in the accumulator increases and the trapped oil contains energy that can later be used to turn the same motor or other hydraulic accessory.
  • the hydraulic motor acting as a pump serves as a brake for the vehicle.
  • a hydraulic accumulator in a vehicle allows braking energy to be recovered for short periods of time, but when working with a three-stroke engine, that recovered energy can be used immediately, pressure sensors in the hydraulic accumulator would allow a control system to stop braking.
  • three-stroke engine to use the accumulator charge, even if stopping the engine only allows the equivalent of an oil pulse to be used which, instead of coming from the three-stroke engine, comes from the accumulator.
  • the three-stroke hydraulic combustion engine is scalable, because if you have a three-stroke engine that has a single engine block and that delivers a given number of kW of power, if it is joined to another equal engine, the power delivered by the two motors is twice the initial power, that is, we can move two hydraulic motors like the one initially used or move a hydraulic motor twice the initial power, this scalability is maintained as long as the necessary adjustments can be made to the equipment annexes and is technically and dimensionally feasible.
  • the three-stroke single-block engine is the basic unit of this type of engine, but it has the drawback that when it works it behaves like a vibrator that transmits vibrations to any structure that supports it, in order to reduce the vibratory effect of an engine.
  • Three-stroke can have two engine blocks or any even number of them, which allows two double pistons to oscillate simultaneously in opposite directions in order to cancel the external effect of vibration.
  • each one delivers oil pulses that are out of phase in time, but they can overlap and finally these pulses end up adding up in the working hydraulic circuit and the result for practical purposes is a continuous flow, in this case the hydraulic accumulator is not necessary to obtain a continuous flow, but it is still necessary to have regenerative braking.
  • An adequate control using three-stroke motors allows to obtain a constant output electrical signal using linear generators, this can be obtained by overlapping the start from rest of a double piston with the stop from the movement to rest of another piston.
  • a three-stroke combustion engine is used to drive a linear electric generator
  • the position and stop of the piston can be controlled using a hydraulic follow-up system in which the engine piston moves in solidarity with a hydraulic cylinder which, as it moves, scrolls only transfers oil from one chamber to another, the oil in this case does no work, but when the flow of oil from one chamber to another in the hydraulic cylinder that accompanies the engine piston is blocked, the engine piston stops , although this system occupies part of the energy generated in the engine to move the oil inside the hydraulic companion, the system as a whole, when working in a three-stroke cycle, could provide more energy available per unit of fuel than working as a gasoline engine. two times.
  • the compression stroke can be performed by hydraulic energy stored in a hydraulic accumulator, it would be the hydraulic equivalent of the rebound chamber.
  • the double piston hydraulic combustion motor that stops the piston at each swing, allows to perform a swing movement using water injection.
  • the burned gases at high temperature and compression pressure are in the larger volume chamber, if at that moment the controlled release of the burned gases is carried out and leaves a percentage of these gases in the chamber, this remainder, when compressed, in addition to having the compression pressure again without fresh air entering the chamber, has a high temperature and if at that moment, instead of injecting fuel, it is injected water, the high temperature of the gases will turn the water into steam, the amount of water injected and the temperature of the gases will determine a pressure in the chamber that must allow the movement of the double piston.
  • the motor control should allow a constant hydraulic flow at the output to deliver constant power.
  • the hydraulic engine which may be less than the power delivered when only fuel is injected, but since residual heat is being used, interspersing an injection of water between fuel injections can increase engine performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Disclosed is a three-stroke engine that uses the oscillatory movement of a double piston (2), produced by fuel explosions in combustion chambers (6), to move a pumping device (7) that sucks oil from a tank (15) and sends pulses to an accumulator (16) and a flow-regulating valve (17) that transform the pulses into a continuous flow that moves a hydraulic motor (18). The engine is a three-stroke engine because it has compression, expansion and stopping strokes, the cycle of opening and closing an exhaust valve (10) and an intake valve (9) taking place during stopping. The double piston is stopped by the balance of forces between the pressure of the combusted gases and the sum of the forces of the compression pressure and the hydraulic pressure on the pumping device. A blocking valve (14) stops the double piston until the moment of ignition.

Description

MEMORIA DESCRIPTIVA. DESCRIPTIVE MEMORY.
Descripción de lo conocido en la materia Description of what is known in the field
Los motores de pistón libre han sido objeto de extensa investigación durante este siglo por ser motores sencillos que en teoría deberían tener mejor rendimiento que motores con cigüeñal, sin embargo a pesar de su potencial mejor rendimiento, aún no existen aplicaciones comerciales exitosas, lo que indica que existen problemas para conseguir el rendimiento teórico esperado e incluso existen problemas para conseguir un funcionamiento estable y confiable. Free piston engines have been the subject of extensive research during this century for being simple engines that in theory should have better performance than crankshaft engines, however despite their potential better performance, there are still no successful commercial applications, which indicates that there are problems in achieving the expected theoretical performance and there are even problems in achieving stable and reliable operation.
El motor de pistón libre tiene una serie de características únicas, algunas le brindan ventajas potenciales y otras representan desafíos que deben superarse para que el motor de pistón libre sea una alternativa realista a la tecnología convencional. The free piston engine has a number of unique features, some of which provide potential advantages and others present challenges that must be overcome for the free piston engine to be a realistic alternative to conventional technology.
Ventajas del motor de pistón libre Advantages of the free piston engine
En un motor de pistón libre el movimiento del pistón no está restringido mecánicamente por un mecanismo de manivela, lo que debería inducir ventajas como: In a free piston engine the piston movement is not mechanically restricted by a crank mechanism, which should induce advantages such as:
- Permitir una relación de compresión variable, que permite optimizar su funcionamiento y eficiencia a cargas parciales. - Allow a variable compression ratio, which allows to optimize its operation and efficiency at partial loads.
- Permitir el uso de cualquier combustible y cualquier sistema de inyección, incluso se pueden usar sistema mixtos según el momento de operación del motor. - Allow the use of any fuel and any injection system, even mixed systems can be used depending on the moment of engine operation.
- El pistón puede realizar una carrera de expansión más rápida al no estar sujeto mecánicamente, lo que reduce la pérdida por transferencia de calor durante el movimiento. - The piston can perform a faster expansion stroke as it is not mechanically clamped, which reduces heat transfer loss during movement.
- Si se determina que el motor de pistón libre tiene su optimo de operación y rendimiento a un número fijo de ciclos por minuto, se puede variar la longitud de la carrera del pistón de forma obtener ese óptimo. - If it is determined that the free piston engine has its optimum operation and performance at a fixed number of cycles per minute, the length of the piston stroke can be varied in order to obtain that optimum.
- Si se determina que existe una velocidad lineal del pistón para el cual el motor tiene un optimo de operación y rendimiento, se puede variar el número de ciclos por minuto para obtener ese óptimo. - If it is determined that there is a linear speed of the piston for which the engine has an optimum of operation and performance, the number of cycles per minute can be varied to obtain that optimum.
- Menor número de partes móviles lo que reduce las perdidas por fricción y el costo de fabricación. - Fewer moving parts which reduces friction losses and manufacturing cost.
- Diseño simple y compacto que requiere menos mantenimiento y aumenta la vida útil. - Simple and compact design that requires less maintenance and increases service life.
- Movimiento puramente lineal del pistón lo que produce cargas laterales muy bajas y perdidas por fricción reducidas, lo que permite menor lubricación en el pistón. Permiten quemar mezclas de combustible a menores temperaturas lo que reduce la formación de emisiones dependientes de la temperatura, como los óxidos de nitrógeno (NOx). - Purely linear movement of the piston which produces very low lateral loads and reduced friction losses, which allows less lubrication in the piston. They allow fuel mixtures to be burned at lower temperatures, which reduces the formation of temperature-dependent emissions, such as nitrogen oxides (NOx).
Desventajas del motor de pistón libre Free Piston Engine Disadvantages
Sin Manivela: Al no estar el movimiento del pistón restringido mecánicamente no existe una medición directa que nos permita determinar con precisión los puntos extremos de la carrera del pistón y así determinar el momento exacto de abertura y cierre de válvulas y de inyección y/o el encendido del combustible, de forma de obtener una combustión eficiente y evitar presiones excesivas o contra presiones dentro del cilindro o, peor aún, el choque del pistón contra la culata. Without Crank: As the movement of the piston is not mechanically restricted, there is no direct measurement that allows us to accurately determine the extreme points of the piston stroke and thus determine the exact moment of opening and closing of valves and injection and/or the ignition of the fuel, in order to obtain efficient combustion and avoid excessive pressures or against pressures inside the cylinder or, worse still, the impact of the piston against the cylinder head.
Si no se posee un control eficiente de los puntos extremos del movimiento del pistón existirán variaciones de ciclo a ciclo en el proceso de combustión y en el rendimiento del motor. Without efficient control of the extreme points of piston movement, there will be cycle-to-cycle variations in the combustion process and in engine performance.
En general, los motores de pistón libre resuelven el problema de no tener información de posición del pistón, utilizando motores de dos tiempos con lumbreras de admisión y escape, lo que conlleva los beneficios y problemas asociados a los motores de dos tiempos. In general, free piston engines solve the problem of not having piston position information by using two-stroke engines with intake and exhaust ports, which brings about the benefits and problems associated with two-stroke engines.
Sin volante: La ausencia de un dispositivo de almacenamiento de energía, como el volante en los motores convencionales, ha sido reportado como uno de los principales problemas durante el arranque y el funcionamiento de un motor de pistón libre. Cuando no existe un elemento estabilizador como un volante, cada combustión depende de la combustión anterior y afecta la combustión siguiente y al producirse una variación en la relación de compresión durante el funcionamiento se puede provocar una reacción en cadena que lleve a un funcionamiento inestable o incluso a la detención del motor. No flywheel: The absence of an energy storage device, such as the flywheel in conventional engines, has been reported as one of the main problems during starting and running of a free piston engine. When there is no stabilizing element such as a flywheel, each combustion depends on the previous combustion and affects the following combustion and when a variation in the compression ratio occurs during operation, it can cause a chain reaction that leads to unstable operation or even to stop the engine.
Vibraciones: El pistón al oscilar al interior del motor produce vibraciones que pueden evitarse haciendo funcionar varios motores en paralelo, pero nuevamente esta solución requiere un control preciso de la velocidad del motor y la posibilidad de sincronizar los movimientos. Otra posibilidad es aplicar contrapesos lo que hace más complejo al diseño, aumenta su tamaño y peso y conlleva pérdidas adicionales por fricción. Vibrations: The oscillating piston inside the engine produces vibrations that can be avoided by running several engines in parallel, but again this solution requires precise control of engine speed and the ability to synchronize movements. Another possibility is to apply counterweights which makes the design more complex, increases its size and weight and leads to additional friction losses.
Funcionamiento de accesorios: Si el motor de pistón libre se desea para aplicaciones móviles se debe considerar el problema de obtener la energía para hacer funcionar accesorios, como alternadores, compresores de aire acondicionado o bombas de dirección asistida, para solucionar esto, algunos diseños plantean como solución una turbina situada en la corriente de escape o en caso de trabajar con bomba hidráulica se pueden usar motores hidráulicos. Motor de dos tiempos: En general los motores de pistón libre son de dos tiempos ya que requieren potencia en cada carrera que realizan, siendo la forma más simple de hacerlo el utilizar un pistón que realiza una carrera por la explosión de combustible y regresa mediante una cámara de rebote producida por resortes mecánicos o de gas o con ayuda de algún accesorio eléctrico.Accessory operation: If the free piston engine is desired for mobile applications, the problem of obtaining the energy to run accessories, such as alternators, air conditioning compressors or power steering pumps, must be considered. To solve this, some designs pose as solution a turbine located in the exhaust current or in case of working with a hydraulic pump, hydraulic motors can be used. Two-stroke engine: In general, free piston engines are two-stroke since they require power in each stroke they make, the simplest way to do it is to use a piston that makes a stroke by fuel explosion and returns through a rebound chamber produced by mechanical or gas springs or with the help of some electrical accessory.
Una alternativa es utilizar un pistón doble, que son dos pistones opuestos unidos mecánicamente, en el cual cada pistón tiene su propia cámara y culata, con lo cual la explosión además de provocar el movimiento del pistón doble, provoca la compresión en la cámara del otro pistón. An alternative is to use a double piston, which are two opposed pistons mechanically joined, in which each piston has its own chamber and cylinder head, with which the explosion, in addition to causing the movement of the double piston, causes compression in the chamber of the other. piston.
El usar un motor de dos tiempos que es más contaminante atenta contra las ventajas que puede aportar el uso del motor de pistón libre. Using a two-stroke engine that is more polluting undermines the advantages that the use of the free piston engine can bring.
Investigación en motores de pistón libre. Research in free piston engines.
El interés reciente en la tecnología de motores de pistón libre se centra casi exclusivamente para uso en generadores eléctricos y para accionamiento de bombas hidráulicas, pensados para proporcionar un generador de energía compacto y eficiente para vehículos eléctricos híbridos o como planta motriz para vehículos accionados hidráulicamente, estos desarrollos se diferencian de las primeras aplicaciones de estos motores, que fueron en compresores de aire y generadores de gas, donde mostraron generalmente propiedades ventajosas pero también mostraron serios problemas de confiabilidad. Recent interest in free piston engine technology is focused almost exclusively for use in electric generators and for driving hydraulic pumps, intended to provide a compact and efficient power generator for hybrid electric vehicles or as a power plant for hydraulically driven vehicles. These developments differ from the first applications of these motors, which were in air compressors and gas generators, where they generally showed advantageous properties but also serious reliability problems.
Una búsqueda del concepto: "motor de pistón libre", permite apreciar que actualmente existe un interés académico por este tema y en todo el mundo existen grupos dedicados al desarrollo de esta tecnología; algunas entidades son: Instituto de Tecnología de Beijing, Universidad Nacional de Ciencia y Tecnología de Taiwán, Universidad Jiao Tong de Shanghai, Universidad de Tianjin, Instituto Avanzado de Ciencia y Tecnología de Corea, Universidad de Stanford, Universidad de Nanjing, Uni versiti Teknologi PETRONAS y Newcastle Universidad. A search for the concept: "free piston engine", allows us to appreciate that there is currently an academic interest in this subject and there are groups throughout the world dedicated to the development of this technology; some entities are: Beijing Institute of Technology, National Taiwan University of Science and Technology, Shanghai Jiao Tong University, Tianjin University, Korea Advanced Institute of Science and Technology, Stanford University, Nanjing University, Uni versiti Teknologi PETRONAS and Newcastle University.
Sin embargo, la misma búsqueda permite apreciar que no existen desarrollos comerciales, aunque grandes actores de la automoción han participado o participan en su investigación, por ejemplo, Volvo en el proyecto Free Piston Energy Converter, financiado con fondos europeos, y el de Lotus Ingeniería en el proyecto Zero Constraint Free Piston Energy Converter, financiado por el Consejo de Investigación de Ingeniería y Ciencias Físicas del Reino Unido (EPSRC). However, the same search shows that there are no commercial developments, although large automotive players have participated or are participating in its research, for example, Volvo in the Free Piston Energy Converter project, financed with European funds, and Lotus Engineering in the Zero Constraint Free Piston Energy Converter project, funded by the UK Engineering and Physical Sciences Research Council (EPSRC).
Si no existen motores comerciales y si hay investigación, una búsqueda en bases de datos de patentes podrá permitir determinar aquellos conceptos referidos al motor de pistón libre que probablemente están más cerca de la etapa comercial. Al revisar las patentes solicitadas referidas a motores de pistón libre, la mayoría se refiere a aplicaciones con generadores eléctricos y solo una empresa los utiliza asociados a bombas hidráulicas. If there are no commercial engines and if there is research, a search in patent databases may allow to determine those concepts related to the free piston engine that are probably closer to the commercial stage. When reviewing the requested patents referring to free piston motors, most refer to applications with electric generators and only one company uses them associated with hydraulic pumps.
Las siguientes compañías han solicitado patentes relacionadas con motores de pistón libre asociados al uso de generadores eléctricos: The following companies have applied for patents related to free piston engines associated with the use of electric generators:
- General Motors Company. -General Motors Company.
- Toyota Motor Corporation. -Toyota Motor Corporation.
- Mazda Motor Corporation. -Mazda Motor Corporation.
- Volvo Technology Corporation. -Volvo Technology Corporation.
- Honda Motor Company. -Honda Motor Company.
Las cuatro primeras compañías en sus solicitudes de patentes utilizan motores de dos tiempos, ya sea utilizando pistones dobles o motores con un pistón con cámara de rebote. The top four companies on their patent applications use two-stroke engines, either using twin pistons or engines with a rebound-chambered piston.
Honda en cambio desarrolló un motor de 4 tiempos con un solo pistón y regreso por resorte, que usa la energía cinética de la carrera de potencia, almacenada parcialmente como energía potencial en un resorte mecánico para impulsar las carreras de escape y compresión. Honda instead developed a single-piston, spring-return, 4-stroke engine that uses the kinetic energy of the power stroke, partially stored as potential energy in a mechanical spring, to drive the exhaust and compression strokes.
Solo la empresa Ford Global Technologies subsidiaria de Ford Motor Company, el quinto fabricante de automóviles más grande del mundo, ha solicitado patentes de motores de pistón libre trabajando con bombas hidráulicas y lo hizo entre los años 2004 y 2006. Only Ford Global Technologies, a subsidiary of Ford Motor Company, the fifth largest automobile manufacturer in the world, has applied for patents for free-piston engines working with hydraulic pumps, and it did so between 2004 and 2006.
Ford eligió desarrollar un sistema hidráulico en vez de un generador eléctrico porque al igual que el inventor que solicita esta patente, consideró que: "... los generadores lineales no son particularmente eficientes en la producción de energía, especialmente en comparación con los generadores rotativos convencionales". Ford chose to develop a hydraulic system rather than an electrical generator because, like the inventor applying for this patent, he felt that: "...linear generators are not particularly efficient in producing power, especially compared to rotary generators." conventional".
Las patentes solicitadas por FORD y que tienen relación con el invento presentado en esta solicitud son: The patents applied for by FORD and that are related to the invention presented in this application are:
- "Piston Stopper for a free piston Engine," US 2005/0284428 A1 , 2005.- "Piston Stopper for a free piston Engine," US 2005/0284428 A1 , 2005.
- "Exhaust gas recirculation for a free piston engine," US 6,925,971 B1 , 2005. - "Exhaust gas recirculation for a free piston engine," US 6,925,971 B1, 2005.
- "Position sensing for a free piston engine," US 6,948,459 B1 , 2005. - "Position sensing for a free piston engine," US 6,948,459 B1, 2005.
- "Opposed piston opposed cylinder free piston engine," US 6,953,010 B1 , 2005. - "Opposed piston opposed cylinder free piston engine," US 6,953,010 B1 , 2005.
- "Fuel injection for a free piston engine," US 6,959,672 B1 , 2005. - "Fuel injection for a free piston engine," US 6,959,672 B1 , 2005.
- "Piston lubrication for a free piston engine," US 6,971 ,341 B1 , 2005. - "Piston lubrication for a free piston engine," US 6,971,341 B1, 2005.
- "Sodium cooled pistons for a free piston engine," US 6,904,876 B1 , 2005. - "Hydraulic synchronizing coupler for a free piston engine," US 7,077,080 B2, 2006. - "Sodium cooled pistons for a free piston engine," US 6,904,876 B1 , 2005. - "Hydraulic synchronizing coupler for a free piston engine," US 7,077,080 B2, 2006.
- "Compression pulse starting of a free piston internal combustion engine having multiple cylinders," US 6,966,280 B1 , 2005. - "Compression pulse starting of a free piston internal combustion engine having multiple cylinders," US 6,966,280 B1 , 2005.
Todas estas patentes, a excepción de la última, utilizan los mismos dibujos pues se refieren a distintos aspectos del mismo motor, el cual es descrito como un motor de 2 tiempos, que utiliza lumbreras de admisión y escape. All these patents, with the exception of the last one, use the same drawings since they refer to different aspects of the same engine, which is described as a 2-stroke engine, which uses intake and exhaust ports.
En la última patente, aunque no se indica expresamente que es un motor de 2 tiempos, se mencionan las lumbreras y cada movimiento del pistón se realiza mediante explosiones lo cual es inherente al motor de 2 tiempos. In the last patent, although it is not expressly indicated that it is a 2-stroke engine, the ports are mentioned and each movement of the piston is carried out by means of explosions, which is inherent to the 2-stroke engine.
Otros motores oscilantes hidráulicos Other Hydraulic Swing Motors
La patente chilena Ns 201701671 del mismo inventor que presenta esta solicitud, considera un motor oscilante que impulsa una bomba hidráulica, la presente invención también utiliza el movimiento oscilante de un pistón para mover una bomba hidráulica que genera un flujo hidráulico que puede ser utilizado para mover motores y actuadores hidráulicos, pero ambas patentes difieren en la fuente de energía utilizada y en como se realiza la secuencia de trabajo del piston que oscila. The Chilean patent N s 201701671 of the same inventor who presents this application, considers an oscillating motor that drives a hydraulic pump, the present invention also uses the oscillating movement of a piston to move a hydraulic pump that generates a hydraulic flow that can be used to move motors and hydraulic actuators, but both patents differ in the energy source used and in how the work sequence of the oscillating piston is carried out.
Conclusiones Conclusions
Si grandes empresas en el mundo buscan la forma de hacer confiable y fácilmente controlable un motor de pistón libre y aún no han conseguido un motor de pistón libre comercial, desarrollar un método para que el motor de pistón libre sea confiable en su uso, sería algo nuevo, no evidente y de aplicación comercial. If large companies in the world are looking for a way to make a free piston engine reliable and easily controllable and have not yet achieved a commercial free piston engine, developing a method to make the free piston engine reliable in use would be something new, non-obvious and of commercial application.
Descripción de las figuras Description of the figures
Como complemento a la descripción detallada del invento se adjunta un circuito hidráulico que representa, un caso básico de implementación del invento, el circuito se presenta a título de ejemplo y sin carácter limitativo alguno. As a complement to the detailed description of the invention, a hydraulic circuit is attached that represents a basic case of implementation of the invention, the circuit is presented by way of example and without any limiting character.
Figura 1 Unidad base del motor de combustión interna de tres tiempos con transmisión de movimiento hidráulica, que sirve para generar energía hidráulica. Figure 1 Base unit of the three-stroke internal combustion engine with hydraulic movement transmission, which is used to generate hydraulic energy.
Figura 2 Visualization de las tres etapas de funcionamiento del motor de tres tiempos considerando un solo pistón, de forma de visualizar claramente las razones de definir que el motor trabaja en tres etapas. Figure 2 Visualization of the three stages of operation of the three-stroke engine considering a single piston, in order to clearly visualize the reasons for defining that the engine works in three stages.
- Compresión: El pistón viaja desde el punto muerto inferior al punto muerto superior. - Compression: The piston travels from bottom dead center to top dead center.
- Expansión: Como consecuencia de la inyección e ignición de combustible, el pistón viaja desde el punto muerto superior al punto muerto inferior. - Expansion: As a result of fuel injection and ignition, the piston travels from top dead center to bottom dead center.
- Detención: El pistón permanece detenido mientras se realiza un ciclo de abertura y cierre de válvulas, para reemplazar los gases quemados por gases frescos. - Detention: The piston remains stopped while a valve opening and closing cycle is carried out, to replace the burned gases with fresh gases.
Figura 3 Visualization de las tres etapas de funcionamiento del motor de tres tiempos considerando ambos pistones, de forma de visualizar claramente que cuando un pistón está en la etapa de compresión el otro pistón está en la etapa de expansión y que el ciclo de de abertura y cierre de válvula se realiza cada tercer tiempo, pero en pistones opuestos. Figure 3 Visualization of the three operating stages of the three-stroke engine considering both pistons, in order to clearly visualize that when one piston is in the compression stage the other piston is in the expansion stage and that the cycle of opening and Valve closing is done every third time, but on opposite pistons.
Figura 4 Motor de combustión interna de tres tiempos con transmisión de movimiento hidráulica y un eje de salida. Descripción detallada de la invención Figure 4 Three-stroke internal combustion engine with hydraulic movement transmission and an output shaft. Detailed description of the invention
En un motor oscilante, el pistón se detiene en ambos puntos extremos de su oscilación y debe aplicarse una fuerza para iniciar nuevamente el movimiento, por razones mecánicas en los motores con cigüeñal el tiempo de velocidad cero es un instante, pero en un motor de pistón libre el tiempo en que el pistón permanece detenido no depende de restricciones mecánicas, es simplemente un problema de control, si se implementa un sistema de control que detenga y retenga el pistón en cada oscilación se pueden eliminar muchos de los problemas actuales del motor de pistón libre y además se puede optimizar todo el proceso de preparación, mezcla e ignición del combustible que utiliza el motor. In an oscillating engine, the piston stops at both extreme points of its oscillation and a force must be applied to start the movement again, for mechanical reasons in crankshaft engines the zero speed time is an instant, but in a piston engine free the time the piston remains stopped does not depend on mechanical restrictions, it is simply a control problem, if a control system is implemented that stops and retains the piston in each oscillation, many of the current problems of the piston engine can be eliminated free and you can also optimize the entire process of preparation, mixing and ignition of the fuel used by the engine.
Si en un motor oscilante sin cigüeñal se consigue retener el pistón, se puede tener una carrera de expansión, una carrera de compresión y un tiempo en que el pistón esté detenido y en el cual se realicen los procesos de escape y admisión, en ese caso, tendremos un motor tres tiempos: If in an oscillating engine without crankshaft it is possible to retain the piston, it is possible to have an expansion stroke, a compression stroke and a time in which the piston is stopped and in which the exhaust and intake processes are carried out, in that case , we will have a three-stroke engine:
1 Explosión. 1 Explosion.
2.- Detención. 2.- Detention.
3.- Compresión. 3.- Compression.
Si en lo que se denomina un motor de pistón libre, se puede detener y retener el pistón, variar el tiempo de detención, controlar la frecuencia de las oscilaciones, la velocidad de desplazamiento del pistón y la fuerza de empuje del pistón e incluso sin detener el motor se puede detener el movimiento del pistón mientras no existe demanda de energía, creemos contradictorio llamarlo motor de pistón libre, por tanto la presente invención que es una mejora sobre el motor de pistón libre, la llamaremos: "Motor de combustión interna de tres tiempos con transmisión de movimiento hidráulica" (19) o simplemente, "Motor de tres tiempos". If in what is called a free piston engine, you can stop and hold the piston, vary the stopping time, control the frequency of oscillations, the speed of displacement of the piston and the pushing force of the piston, and even without stopping the engine can stop the movement of the piston while there is no energy demand, we believe it is contradictory to call it a free piston engine, therefore the present invention, which is an improvement over the free piston engine, we will call it: "Internal combustion engine of three times with hydraulic movement transmission" (19) or simply, "Three-stroke engine".
Componentes Components
La presente invención propone un Motor hidráulico de combustión interna de tres tiempos que entrega energía hidráulica, que comprende: The present invention proposes a three-stroke internal combustion hydraulic engine that delivers hydraulic energy, comprising:
- Un bloque del motor (1 ) que es la estructura base sobre la cual se instalan los demás componentes del motor y está formado de varias piezas de forma de permitir su armado. - An engine block (1) which is the base structure on which the other engine components are installed and is made up of several parts in order to allow its assembly.
- Un pistón doble (2) formado por un vástago (3) que tiene fijo en cada extremo un pistón (4), el conjunto así formado se mueve como una sola unidad al interior del bloque del motor. Cuando hablamos de pistón o pistones nos referimos a los que forman el pistón doble. - A double piston (2) formed by a rod (3) that has a piston (4) fixed at each end; the assembly thus formed moves as a single unit inside the engine block. When we talk about piston or pistons we refer to those that form the double piston.
- Culata (5) cada una de las dos tapas del bloque del motor que permiten crear zonas estancas por sobre la zona en que se mueven los pistones en el bloque del motor. En la culata se instalan elementos necesarios para el funcionamiento del motor. - Cylinder head (5) each of the two covers of the engine block that allow the creation of watertight areas above the area in which the pistons move on the engine block. Elements necessary for the operation of the engine are installed in the cylinder head.
- Cámara de combustión (6) cada uno de los dos espacios libres entre un pistón y una culata, donde se produce la admisión, compresión y explosión de los gases. - Combustion chamber (6) each of the two free spaces between a piston and a cylinder head, where the admission, compression and explosion of gases takes place.
- Un bombeador (7) que es una zona de mayor diámetro en el vástago del pistón doble, se encuentra ubicado en la zona media del pistón doble y se mueve en un compartimento al interior del bloque del motor, el bombeador posea un área anular a ambos lados, sobre la que actúa la presión hidráulica. - A pumper (7) which is an area with a larger diameter in the double piston rod, is located in the middle area of the double piston and moves in a compartment inside the engine block, the pumper has an annular area to both sides, on which the hydraulic pressure acts.
- Cámaras de bombeo (8) cada uno de los compartimentos cerrados que se forman a ambos lados del bombeador cuando este oscila al interior del bloque del motor. - Pumping chambers (8) each of the closed compartments that are formed on both sides of the pump when it oscillates inside the engine block.
- Al menos una válvula de admisión de aire (9), que debe ser capaz de abrir y cerrar en función de una señal de mando. - At least one air intake valve (9), which must be able to open and close based on a command signal.
- Al menos una válvula de escape de gases (10), que debe ser capaz de abrir y cerrar en función de una señal de mando. - At least one gas exhaust valve (10), which must be able to open and close based on a command signal.
- Al menos un inyector de combustible (11 ) por cámara de combustión.- At least one fuel injector (11) per combustion chamber.
- Al menos una bujía de encendido (12), por cámara de combustión, si es requerida. - At least one spark plug (12), per combustion chamber, if required.
- Al menos cuatro válvulas unidireccionales (13) que controlan el sentido de flujo del aceite hidráulico. - At least four unidirectional valves (13) that control the flow direction of the hydraulic oil.
- Al menos una válvulas de bloqueo (14), que permite o bloquea el paso de aceite hidráulico desde las cámaras de bombeo hacia el acumulador hidráulico. - At least one blocking valve (14), which allows or blocks the passage of hydraulic oil from the pumping chambers to the hydraulic accumulator.
- Al menos un estanque (15) de aceite hidráulico. - At least one tank (15) of hydraulic oil.
- Al menos un acumulador hidráulico (16). - At least one hydraulic accumulator (16).
- Al menos una válvula reguladora de flujo (17) que permite regular el caudal de aceite hidráulico en el circuito hidráulico del motor de tres tiempos. - At least one flow regulating valve (17) that allows regulating the flow of hydraulic oil in the hydraulic circuit of the three-stroke engine.
- Al menos un motor hidráulico (18) por el cual circula el aceite hidráulico.- At least one hydraulic motor (18) through which the hydraulic oil circulates.
Como todo motor de combustión para su correcto funcionamiento, el motor de tres tiempos requiere entre otros muchos componentes de: circuitos de refrigeración, lubricación y vías para alimentación de combustible y aire y vías para los gases de escape, además de elementos de control, que no se muestran ni se indican. Like any combustion engine, for its correct operation, the three-stroke engine requires among many other components: cooling circuits, lubrication and fuel and air supply lines and exhaust gas channels, in addition to control elements, which are not shown or indicated.
La válvula de bloqueo y la válvula directional pueden estar integradas en una sola válvula, o pueden distribuirse en el circuito de diferentes maneras para cumplir los mismos objetivos, pero eso no modifica el principio de funcionamiento presentado. Forma de funcionamiento. The block valve and the directional valve can be integrated in a single valve, or they can be distributed in the circuit in different ways to meet the same objectives, but this does not change the principle of operation presented. Form of operation.
En el motor de tres tiempos el pistón doble oscila gracias a las explosiones que se realizan en forma alternada en las dos cámaras de combustión existentes, en cada oscilación recorre una distancia que llamamos carrera. In the three-stroke engine, the double piston oscillates thanks to the explosions that take place alternately in the two existing combustion chambers, in each oscillation it travels a distance that we call a stroke.
La carrera del pistón doble del motor hidráulico de tres tiempos al igual que en todo motor de combustión oscilante se realiza entre el punto muerto superior y el punto muerto inferior, pero en este motor, el pistón doble cuando realiza una carrera siempre llega simultáneamente al punto muerto superior en un pistón y al punto muerto inferior en el otro pistón y cuando el pistón doble realiza otra carrera, nuevamente llega a ambos puntos, superior e inferior, pero cada pistón alcanza el punto contrario, como los dos pistones hacen lo mismo, no hacemos distinción entre ellos y se sabe de cual pistón hablamos por la operación que está realizando. The stroke of the double piston of the three-stroke hydraulic engine, as in all oscillating combustion engines, is carried out between the top dead center and the bottom dead center, but in this engine, the double piston, when it makes a stroke, always arrives simultaneously at the point top dead center on one piston and bottom dead center on the other piston and when the double piston makes another stroke, it again reaches both top and bottom points, but each piston reaches the opposite point, since the two pistons do the same thing, no we make a distinction between them and we know which piston we are talking about by the operation it is performing.
La carrera del pistón doble, es decir la distancia que recorre, no es una distancia fija y puede variar, pues la carrera del motor se realiza entre puntos en equilibrio de fuerzas, no entre límites mecánicos. The stroke of the double piston, that is, the distance it travels, is not a fixed distance and can vary, since the engine stroke is between points in balance of forces, not between mechanical limits.
En el pistón doble, uno de los pistones llega a su punto muerto superior cuando se encuentra más cerca de su culata y en ese momento el pistón se detiene porque se produce un equilibrio de fuerzas, entre tres fuerzas: In the double piston, one of the pistons reaches its top dead center when it is closest to its cylinder head and at that moment the piston stops because a balance of forces occurs, between three forces:
1 .- La fuerza producida por la presión de los gases combustionados en la cámara de combustión sobre el área del pistón. 1.- The force produced by the pressure of the combustion gases in the combustion chamber on the piston area.
Que se opone a la suma de: What is opposed to the sum of:
2.- La fuerza producida por la presión del aire comprimido sobre el área del pistón en la cámara de combustión que tiene gases no combustionados. 2.- The force produced by the pressure of the compressed air on the area of the piston in the combustion chamber that has uncombusted gases.
3.- La fuerza ejercida por la presión hidráulica existente entre el motor de tres tiempos y el acumulador, sobre el área anular del bombeador. 3.- The force exerted by the hydraulic pressure existing between the three-stroke engine and the accumulator, on the annular area of the pumper.
Si ninguna de las presiones varía el pistón doble permanece en equilibrio, detenido y en una de las etapas de trabajo del motor de tres tiempos, en esta etapa una cámara de combustión está en su volumen máximo y es la cámara en que se realiza el proceso de escape y admisión y la otra cámara está en su volumen mínimo, a la presión de compresión y a la espera de la ignición, en cada oscilación del pistón doble, las cámaras de combustión cambian de función. If none of the pressures varies, the double piston remains in equilibrium, stopped and in one of the work stages of the three-stroke engine, at this stage a combustion chamber is at its maximum volume and it is the chamber in which the process is carried out. exhaust and intake and the other chamber is at its minimum volume, at compression pressure and waiting for ignition, at each oscillation of the double piston, the combustion chambers change function.
En esta etapa del motor de tres tiempos se deben abrir las válvulas de escape, pero cuando se produce la abertura de las válvulas de escape el equilibrio se pierde y el pistón doble que está siendo empujado por la presión de compresión tendería a moverse, por eso, antes de abrir las válvulas de escape se impide ese movimiento del pistón doble, cerrando el paso del aceite desde la cámara de bombeo hacia el acumulador hidráulico mediante el accionamiento de la válvula de bloqueo correspondiente, cuando finalmente el pistón doble realice una carrera, la situación volverá a ser la misma, pero la válvula de bloqueo involucrada será la otra, se menciona que para una correcta operación, se puede utilizar una sola válvula de bloqueo y dos válvulas antiretorno. In this stage of the three-stroke engine, the exhaust valves must open, but when the exhaust valves open, the balance is lost and the double piston that is being pushed by the compression pressure would tend to move, that is why , before opening the exhaust valves, this movement of the double piston is prevented, closing the passage of oil from the pumping chamber towards the hydraulic accumulator by activating the corresponding blocking valve, when the double piston finally makes a stroke, the situation will be the same, but the blocking valve involved will be the other, it is mentioned that for one correct operation, a single block valve and two non-return valves can be used.
Cuando la válvula de bloqueo impide el flujo de aceite hidráulico desde una cámara de bombeo, ambas cámaras de bombeo están llenas de aceite lo que impide el movimiento del pistón doble. When the block valve prevents the flow of hydraulic oil from one pumping chamber, both pumping chambers are filled with oil which prevents movement of the double piston.
Mientras el pistón doble está detenido y bloqueado, en la cámara de combustión de mayor volumen se abren las válvulas de escape y admisión y el aire quemado es reemplazado por aire fresco, esto se puede hacer de múltiples maneras: While the double piston is stopped and locked, in the larger volume combustion chamber the intake and exhaust valves open and the burned air is replaced by fresh air, this can be done in multiple ways:
- Abriendo secuencialmente las válvulas y extrayendo por vacío el aire quemado y luego llenando con aire fresco a presión atmosférica o superior, si se usa un sobrealimentador o turbocompresor. - Sequentially opening the valves and vacuuming out the burned air and then filling with fresh air at or above atmospheric pressure, if a supercharger or turbocharger is used.
- Abriendo todas las válvulas y creando una corriente de aire. - Opening all the valves and creating an air current.
- Modificando el diseño del pistón doble para incorporar una válvula en cada pistón por donde entre aire fresco y en ese caso el flujo de aire hará un barrido de los gases. - Modifying the design of the double piston to incorporate a valve in each piston through which fresh air enters and in this case the air flow will sweep the gases.
Cualquiera sea el método de reemplazo del aire, cuando se cierran las válvulas del motor, el aire queda encerrado en esa cámara de combustión. Whatever the method of air replacement, when the engine valves close, the air is trapped in that combustion chamber.
El combustible puede ingresar a la cámara junto con el aire durante la detención o puede ser inyectado cuando las válvulas ya estén cerradas y la ignición puede ser por autoencendido o por chispa, microondas o similar, cualquiera sea el caso, cuando se produce la ignición y la válvula de bloqueo permite el paso del aceite, la combustión de los gases produce un aumento de presión sobre la cabeza del pistón, se pierde el equilibrio y el pistón doble se desplaza, pero a medida que el pistón doble se desplaza por la expansión de los gases de combustión en la cámara de combustión, la presión de los gases disminuye, hasta llegar nuevamente a un equilibrio de fuerzas en donde el pistón doble vuelve a quedar detenido, en este proceso la presión hidráulica permanece constante y por tanto la presión hidráulica de equilibrio es la misma en ambos puntos de la carrera y es lo que llamamos presión de trabajo y corresponde nominalmente a la presión hidráulica en el circuito de trabajo que es el circuito hasta el motor hidráulico. The fuel can enter the chamber together with the air during the stop or it can be injected when the valves are already closed and the ignition can be by self-ignition or by spark, microwave or similar, whichever is the case, when the ignition occurs and the blocking valve allows the passage of oil, the combustion of the gases produces an increase in pressure on the piston head, the balance is lost and the double piston moves, but as the double piston moves due to the expansion of combustion gases in the combustion chamber, the pressure of the gases decreases, until reaching a balance of forces again where the double piston remains stopped, in this process the hydraulic pressure remains constant and therefore the hydraulic pressure of balance is the same at both points of the stroke and is what we call working pressure and nominally corresponds to the hydraulic pressure in the working circuit which is the circu ito to the hydraulic motor.
Para permitir el movimiento del pistón doble, la válvula de bloqueo correspondiente debe accionarse en sincronía con la ignición, para volver a permitir el paso de aceite en el circuito. Al moverse el pistón doble el bombeador se desplaza y cambia el volumen en ambas cámaras de bombeo, con lo cual en uno de los lados del bombeador aumenta el volumen disponible lo que provoca un vacío que succiona aceite desde el estanque hidráulico y en el otro lado del bombeador se produce una disminución del volumen disponible, lo que empuja el aceite hidráulico presurizado fuera de la cámara de bombeo y crea un pulso de aceite hacia el circuito de trabajo, las válvulas unidireccionales correctamente instaladas mantienen el flujo de aceite en las direcciones que se han indicado. In order to allow the movement of the double piston, the corresponding blocking valve must be actuated in synchronism with the ignition, in order to allow the passage of oil in the circuit again. When the double piston moves, the pumper moves and changes the volume in both pumping chambers, with which on one side of the pumper the available volume increases, which causes a vacuum that sucks oil from the hydraulic tank and on the other side of the pumping unit produces a decrease in the available volume, which pushes the pressurized hydraulic oil out of the pumping chamber and creates a pulse of oil towards the working circuit, correctly installed one-way valves maintain the flow of oil in the directions indicated. have indicated.
Las válvulas unidireccionales son válvulas que permiten el paso de aceite solo en un sentido y cuando se produce el desplazamiento del bombeador, las válvulas unidireccionales solo permiten el paso de aceite desde el estanque hidráulico hacia las cámaras de bombeo y de las cámaras de bombeo hacia el lado del acumulador hidráulico, los flujos en sentido opuesto a los indicados no pueden ocurrir. One-way valves are valves that allow the passage of oil only in one direction and when the displacement of the pump occurs, the one-way valves only allow the passage of oil from the hydraulic tank to the pumping chambers and from the pumping chambers to the side of the hydraulic accumulator, flows in the opposite direction to those indicated cannot occur.
El desplazamiento del bombeador causado por las oscilaciones del pistón doble, convierte la zona central del bloque de motor en una bomba alternativa, que comúnmente se conoce como bomba de pistón, en hidráulica las bombas de pistón son de uso común pero son generalmente accionadas por un motor giratorio, en el motor de tres tiempos hay una bomba de pistón que es accionada directamente por las oscilaciones provocadas por explosiones en ambos lados del pistón doble. The displacement of the pumper caused by the oscillations of the double piston, converts the central area of the engine block into a reciprocating pump, which is commonly known as a piston pump, in hydraulics piston pumps are in common use but are generally driven by a rotary engine, in the three-stroke engine there is a piston pump that is directly driven by the oscillations caused by explosions on both sides of the double piston.
Cada movimiento de oscilación del pistón doble, produce un pulso de aceite hidráulico cuyo caudal instantáneo supera la capacidad de paso de la válvula reguladora de flujo instalada en el circuito, el excedente instantáneo que no puede pasar por la válvula reguladora de flujo ingresa al acumulador hidráulico y sale del acumulador a la medida que lo permite la válvula reguladora de flujo, de esta forma regulando las variables de funcionamiento del motor de tres tiempos, se tiene a la salida del regulador de flujo, un flujo de aceite hidráulico que para fines prácticos es de caudal constante. Each oscillation movement of the double piston produces a pulse of hydraulic oil whose instantaneous flow rate exceeds the flow capacity of the flow regulating valve installed in the circuit, the instantaneous excess that cannot pass through the flow regulating valve enters the hydraulic accumulator and leaves the accumulator to the extent allowed by the flow regulator valve, thus regulating the operating variables of the three-stroke engine, at the outlet of the flow regulator, there is a flow of hydraulic oil that for practical purposes is constant flow.
El caudal de aceite hidráulico que sale del regulador de flujo, pasa por al menos un motor hidráulico antes de retornar al estanque hidráulico, el flujo al pasar por el motor hace girar el eje de salida del motor hidráulico, que para los fines prácticos, gira a una velocidad y un torque constante. The flow of hydraulic oil that leaves the flow regulator passes through at least one hydraulic motor before returning to the hydraulic tank. When the flow passes through the motor, it rotates the output shaft of the hydraulic motor, which, for practical purposes, rotates at constant speed and torque.
Aunque el funcionamiento del motor de tres tiempos se explica utilizando aceite hidráulico, cualquier otro fluido puede ser utilizado, incluso el uso de un fluido compresible es permitido si el control se adecúa a las variaciones de presión que eso implique. Although the operation of the three-stroke engine is explained using hydraulic oil, any other fluid can be used, even the use of a compressible fluid is allowed if the control is adapted to the pressure variations that this implies.
El motor de tres tiempos permite utilizar todo tipo de combustibles, líquidos y gaseosos e incluso puede ser utilizado con hidrógeno. El motor de tres tiempos descrito produce energía hidráulica que se puede utilizar como cualquier flujo hidráulico que posea caudal y presión, para mover todo tipo de actuadores y motores hidráulicos. The three-stroke engine allows the use of all types of fuels, liquid and gaseous and can even be used with hydrogen. The described three-stroke engine produces hydraulic energy that can be used as any hydraulic flow that has flow and pressure, to move all types of hydraulic actuators and motors.
En rigor lo que hemos llamado "motor de tres tiempos" (19) no es propiamente un motor, pues no transforma energía primaria en energía útil en forma continua y tampoco cuenta con un eje de salida, lo que llamamos "motor de tres tiempos" necesita de otros elementos para tener un flujo continuo y un eje de salida, con lo cual el nombre "motor de tres tiempos" es una sinécdoque y dependiendo del contexto se puede referir solo al bloque del motor con todos sus componentes o al circuito que incluye el bloque del motor completo más los otros componentes que le permiten disponer de un eje de salida, como se muestra en la Figura 4. Strictly speaking, what we have called a "three-stroke engine" (19) is not exactly an engine, since it does not continuously transform primary energy into useful energy and does not have an output shaft, which we call a "three-stroke engine" it needs other elements to have a continuous flow and an output shaft, with which the name "three-stroke engine" is a synecdoche and depending on the context it can refer only to the engine block with all its components or to the circuit that includes the complete engine block plus the other components that allow it to have an output shaft, as shown in Figure 4.
Elementos distintivos del motor de tres tiempos Distinctive elements of the three-stroke engine
Esta solicitud se insinúan una serie de características con la intención expresa de que sean parte del estado del arte. This application hints at a number of features with the express intention that they be part of the state of the art.
Detención sin equilibrio de fuerzas. Stop without balance of forces.
Cuando el pistón doble se está desplazando por efecto de la expansión de los gases combustionados y se impide el movimiento de retroceso del pistón doble al cerrar el paso de aceite mediante la válvula de bloqueo correspondiente, el pistón doble dejara de avanzar y quedara detenido, cuando se abra la válvula de escape de la cámara de combustión donde está ocurriendo la combustión y se libere la presión, en este caso la detención del pistón doble puede ocurrir antes de que exista equilibrio de fuerzas y permite otra forma de control del motor de tres tiempos, en función de la posición del pistón doble, el caudal impulsado, la presión de compresión u otra variable que se considere relevante. When the double piston is moving due to the effect of the expansion of the combustion gases and the backward movement of the double piston is prevented by closing the passage of oil by means of the corresponding blocking valve, the double piston will stop advancing and remain stopped, when the exhaust valve of the combustion chamber where the combustion is taking place is opened and the pressure is released, in this case the arrest of the double piston can occur before there is a balance of forces and allows another form of control of the three-stroke engine , depending on the position of the double piston, the delivered flow, the compression pressure or any other variable considered relevant.
Control de la potencia del motor de tres tiempos. Control of the power of the three-stroke engine.
Un motor de tres tiempos puede tener uno o vahos ejes de salidas, que corresponden a los motores hidráulicos que el circuito hidráulico del motor de tres tiempos este haciendo funcionar, por tanto la potencia de salida del motor de tres tiempos es la potencia total que entreguen los motores hidráulicos. A three-stroke engine can have one or several output shafts, which correspond to the hydraulic motors that the hydraulic circuit of the three-stroke engine is making work, therefore the output power of the three-stroke engine is the total power that they deliver. hydraulic motors.
La presión y el caudal del aceite hidráulico que pasa a través de un motor hidráulico determina su potencia de salida y en este motor de tres tiempos la presión y el caudal del aceite hidráulico entregado, depende de: The pressure and flow rate of hydraulic oil passing through a hydraulic motor determines its power output and in this three-stroke engine the pressure and flow rate of hydraulic oil delivered depends on:
- La carrera que hace el bombeador en la bomba alternativa que es la carrera del pistón doble. - The stroke made by the pumper in the reciprocating pump, which is the stroke of the double piston.
- La relación entre las aéreas de los pistones del pistón doble y el área anular del bombeador. - El número de oscilaciones por minuto que el motor de tres tiempos realice. - The relationship between the areas of the pistons of the double piston and the annular area of the pumper. - The number of oscillations per minute that the three-stroke engine performs.
- La presión de trabajo hidráulica. - Hydraulic working pressure.
- La presión generada por los gases combustionados. - The pressure generated by the combustion gases.
Pero la carrera del pistón doble y la presión generada por los gases combustionados depende de la compresión inicial de la carga del aire y del combustible que se haya inyectado en la cámara de combustión, por tanto vahando la cantidad de combustible inyectado, dentro de ciertos márgenes que aseguren una adecuada combustión, se puede variar la carrera del pistón doble del motor de tres tiempos, al variar la cantidad de combustible inyectado, varía la presión de los gases quemados, pero el resultado final apreciable, es la carrera del pistón doble. But the stroke of the double piston and the pressure generated by the combustion gases depend on the initial compression of the charge of air and fuel that has been injected into the combustion chamber, thus varying the amount of fuel injected, within certain margins. that ensure adequate combustion, the stroke of the double piston of the three-stroke engine can be varied, by varying the amount of fuel injected, the pressure of the burned gases varies, but the final appreciable result is the stroke of the double piston.
En un motor de tres tiempos construido están fijas las dimensiones de los componentes, por tanto para variar la potencia entregada, se pueden controlar: In a built three-stroke engine, the dimensions of the components are fixed, therefore, to vary the power delivered, the following can be controlled:
- Número de oscilaciones por minuto. - Number of oscillations per minute.
- Cantidad de combustible inyectado. - Quantity of fuel injected.
- Presión hidráulica de trabajo. - Hydraulic working pressure.
La presión de compresión es una variable dependiente de la presión hidráulica de trabajo. The compression pressure is a variable dependent on the working hydraulic pressure.
Relación de compresión variable. Variable compression ratio.
Como la presión de compresión del aire encerrado en la cámara de combustión se define por un equilibrio de fuerzas, si se varía la presión hidráulica de trabajo, varían la presión de compresión y la relación de compresión del motor.As the compression pressure of the air enclosed in the combustion chamber is defined by a balance of forces, if the hydraulic working pressure is varied, the compression pressure and the compression ratio of the engine vary.
Existiendo los sensores adecuados, durante la detención del pistón doble se pueden medir variables como presión y temperatura en las cámaras, presión hidráulica de trabajo, temperatura del motor, distancia pistón culata y en base a estos valores y otros datos se puede calcular la carga de combustible a inyectar para conseguir una determinada carrera. If the appropriate sensors exist, during the stopping of the double piston, variables such as pressure and temperature in the chambers, hydraulic working pressure, engine temperature, cylinder head piston distance can be measured and based on these values and other data, the load of the piston can be calculated. fuel to be injected to achieve a given stroke.
Algunos factores externos pueden influir en la posición final del pistón doble, aunque el equilibrio de fuerzas sea el mismo, la posición del pistón doble puede ser diferente en oscilaciones diferentes, pero el motor de tres tiempos tiene las herramientas para medir y actuar durante el tiempo de detención, para mantener un funcionamiento estable en el motor. Some external factors can influence the final position of the double piston, although the balance of forces is the same, the position of the double piston can be different in different oscillations, but the three-stroke engine has the tools to measure and act during the time stop, to maintain stable operation on the engine.
Como alternativas de posicionamiento del pistón doble, se pueden implementar sistemas de alivio de presión controlados, mecánicos o electrónicos, de forma que las presión hidráulica sobre el bombeador sea diferente en ambos extremos de la carrera del pistón, incluso puede detenerse el flujo de aceite hacia el circuito de trabajo, lo que detendría el movimiento del pistón doble, pero esas formas de trabajo siguen usando el mismo principio de funcionamiento, detener el movimiento del pistón en el motor. As alternatives to the positioning of the double piston, mechanical or electronic controlled pressure relief systems can be implemented, so that the hydraulic pressure on the pumper is different at both ends of the piston stroke, even the flow of oil towards the piston can be stopped. the working circuit, which would stop the movement of the double piston, but those ways of working still use the same principle of operation, stopping the movement of the piston in the engine.
Duración del tiempo de detención en el motor de tres tiempos. Duration of the stopping time in the three-stroke engine.
El motor de tres tiempos realiza el mismo proceso de combustión que el motor de cuatro tiempos y es intuitivo pensar usar los cuatro tiempos como referencia y considerar que como en el motor de cuatro tiempos las carreras de escape y admisión corresponden a la mitad del tiempo del ciclo del motor, el tiempo que permanece detenido el pistón doble en el motor de tres tiempos corresponde a la mitad del ciclo del motor de tres tiempos, pero en rigor el tiempo de detención va a ser consecuencia de la duración de la carrera de compresión.The three-stroke engine carries out the same combustion process as the four-stroke engine and it is intuitive to think of using the four strokes as a reference and considering that, as in the four-stroke engine, the exhaust and intake strokes correspond to half the time of the engine. engine cycle, the time that the double piston remains stopped in the three-stroke engine corresponds to half the cycle of the three-stroke engine, but strictly speaking the time of detention will be a consequence of the duration of the compression stroke.
En un motor de tres tiempos de pistón doble la duración de la carrera de explosión-compresión no está limitada mecánicamente y su duración dependerá de las condiciones de operación del motor y si estas condiciones no varían este tiempo debería permanecer constante aunque la potencia entregada por el motor varíe. In a double piston three-stroke engine, the duration of the explosion-compression stroke is not mechanically limited and its duration will depend on the operating conditions of the engine and if these conditions do not vary, this time should remain constant although the power delivered by the engine varies.
Por analogía con el motor de cuatro tiempos en que se habla de rpm (revoluciones por minuto) en el motor de tres tiempos hablamos de cpm (carreras por minuto), que serían el número de carreras que el pistón doble del motor da por minuto, pero en este caso la analogía es incompleta, porque además de poder variar los cpm el motor de tres tiempos puede variar la carrera del pistón. By analogy with the four-stroke engine in which we speak of rpm (revolutions per minute) in the three-stroke engine we speak of cpm (strokes per minute), which would be the number of strokes that the double piston of the engine gives per minute, but in this case the analogy is incomplete, because in addition to being able to vary the cpm, the three-stroke engine can vary the piston stroke.
Por tanto la duración del tiempo de detención del pistón doble en el motor de tres tiempos dependerá de los parámetros propios del motor y de las condiciones de operación de cada momento, por ejemplo, si se determina que un motor de tres tiempos entrega su máxima potencia a 3.000 cpm y a esa cadencia se cumple que el tiempo de detención es la mitad de la duración de cada ciclo, entonces a 1 .500 cpm ese motor entrega la mitad de su potencia máxima y el tiempo de detención es ahora tres cuartas partes de la duración de cada ciclo, pero la carrera del pistón doble dura en ambos casos 0,01 segundo. Therefore, the duration of the detention time of the double piston in the three-stroke engine will depend on the engine's own parameters and the operating conditions at each moment, for example, if it is determined that a three-stroke engine delivers its maximum power. at 3,000 cpm and at that cadence it is true that the stopping time is half the duration of each cycle, then at 1,500 cpm that engine delivers half of its maximum power and the stopping time is now three quarters of the duration of each cycle, but the stroke of the double piston lasts in both cases 0.01 second.
Detención en funcionamiento del motor del motor de tres tiempos. Stopping in operation of the engine of the three-stroke engine.
Un caso particular en que aumenta el tiempo de detención del pistón doble en el motor de tres tiempos, es cuando el motor no necesita entregar potencia y el o los motores hidráulicos están detenidos, pero el motor de tres tiempos sigue funcionando. A particular case in which the double piston stopping time increases in the three-stroke engine is when the engine does not need to deliver power and the hydraulic motor(s) are stopped, but the three-stroke engine continues to run.
El motor de tres tiempos al detenerse en cada oscilación y después de haber realizado el ciclo de abertura y cierre de válvulas, posee dos cámaras herméticas, una cámara se encuentra en su volumen máximo con aire encerrado a la presión de carga de aire y la otra cámara se encuentra en su volumen mínimo con aire a la presión de compresión, el motor de combustión de tres tiempos puede permanecer en este estado de reposo conservando las presiones en ambas cámaras por un tiempo indefinido que dependerá de la hermeticidad de cierre de las válvulas. The three-stroke engine, when stopping at each oscillation and after having carried out the valve opening and closing cycle, has two hermetic chambers, one chamber is at its maximum volume with air enclosed at the air charge pressure and the other chamber is at its minimum volume with air at compression pressure, the combustion engine The three-stroke can remain in this state of rest, maintaining the pressures in both chambers for an indefinite time that will depend on the tightness of the valves.
Esta capacidad de mantener las presiones en ambas cámaras, permite que el motor estando en operación se detenga completamente cuando no necesita entregar potencia, esto implica que cuando se utilice este motor en vehículos y existan detenciones, por ejemplo delante de un semáforo o por congestión vehicular, el motor se detiene, deja de emitir ruidos, deja de emitir gases y deja de gastar combustible. This ability to maintain pressure in both chambers allows the engine to stop completely when it is in operation when it does not need to deliver power, this implies that when this engine is used in vehicles and there are stoppages, for example in front of a traffic light or due to traffic congestion , the engine stops, stops making noises, stops emitting gases and stops wasting fuel.
Si el sistema control monitorea las presiones en ambas cámaras de combustión, el control puede definir que estando el motor de combustión de tres tiempos funcionando y detenido, existe un nivel mínimo de presión aceptable en las cámaras de combustión del motor que al ser detectado hace que el motor realice una carrera para volver a generar la presión de compresión en una de las cámaras y seguir esperando que se le solicite potencia. If the control system monitors the pressures in both combustion chambers, the control can define that when the three-stroke combustion engine is running and stopped, there is a minimum level of acceptable pressure in the combustion chambers of the engine that, when detected, causes the engine will make a stroke to rebuild compression pressure in one of the chambers and continue to wait for power to be called upon.
El acumulador hidráulico tiene la capacidad de proveer energía hidráulica por un periodo de tiempo aunque el motor de tres tiempos este detenido, lo cual puede usarse como fuente de energía suplementaria en caso de detención, para aprovechar esta cualidad del acumulador hidráulico, el motor de tres tiempos antes de detener la ignición en el motor, puede realizar algunos ciclos de operación con los motores hidráulicos detenidos de forma de acumular energía en el acumulador, energía que será ocupada al poner el motor nuevamente a entregar potencia. The hydraulic accumulator has the ability to provide hydraulic energy for a period of time even if the three-stroke engine is stopped, which can be used as a source of supplementary energy in case of stoppage, to take advantage of this quality of the hydraulic accumulator, the three-stroke engine times before stopping the ignition in the engine, you can carry out some operating cycles with the hydraulic motors stopped in order to accumulate energy in the accumulator, energy that will be used when putting the engine back to deliver power.
La energía almacenada en el acumulador actúa como el volante de los motores convencionales y puede actuar como elemento estabilizador y provee la presión hidráulica mínima para que el sistema funcione. The energy stored in the accumulator acts as the flywheel of conventional engines and can act as a stabilizing element and provides the minimum hydraulic pressure for the system to work.
Frenado regenerativo. regenerative braking.
Si se utiliza el motor de tres tiempos en vehículos, otra forma de acumular energía en el acumulador hidráulico es usando frenado regenerativo, con lo cual el motor de tres tiempos además de detener el pistón doble cada vez que detecte que se está frenando, recupera energía. If the three-stroke engine is used in vehicles, another way of accumulating energy in the hydraulic accumulator is by using regenerative braking, with which the three-stroke engine, in addition to stopping the double piston every time it detects that it is braking, recovers energy .
Los motores hidráulicos que se mueven gracias al motor de tres tiempos pueden actuar como bombas hidráulicas si una fuerza externa hace girar el eje de salida del motor, que es la situación al frenar un vehículo, en este caso el motor hidráulico al actuar como bomba impulsa caudal hidráulico hacia el acumulador hidráulico, a medida que el acumulador se llena de aceite aumenta la presión en el acumulador y el aceite encerrado contiene energía que puede ser utilizada posteriormente para hacer girar el mismo motor u otro accesorio hidráulico. El motor hidráulico al actuar como bomba, sirve de freno para el vehículo. The hydraulic motors that move thanks to the three-stroke engine can act as hydraulic pumps if an external force rotates the motor's output shaft, which is the situation when braking a vehicle, in this case the hydraulic motor acting as a pump drives hydraulic flow into the hydraulic accumulator, as the accumulator fills with oil the pressure in the accumulator increases and the trapped oil contains energy that can later be used to turn the same motor or other hydraulic accessory. The hydraulic motor acting as a pump, serves as a brake for the vehicle.
Un acumulador hidráulico en un vehículo permite recuperar energía de frenado por periodos breves de tiempo, pero al trabajar con un motor de tres tiempos, esa energía recuperada puede ser utilizada inmediatamente, sensores de presión en el acumulador hidráulico permitirían a un sistema de control detener el motor de tres tiempos para utilizar la carga del acumulador, aunque la detención del motor solo permita utilizar el equivalente de un pulso de aceite que en vez de provenir del motor de tres tiempos, provenga del acumulador.A hydraulic accumulator in a vehicle allows braking energy to be recovered for short periods of time, but when working with a three-stroke engine, that recovered energy can be used immediately, pressure sensors in the hydraulic accumulator would allow a control system to stop braking. three-stroke engine to use the accumulator charge, even if stopping the engine only allows the equivalent of an oil pulse to be used which, instead of coming from the three-stroke engine, comes from the accumulator.
Escalabilidad del motor de de tres tiempos. Scalability of the three-stroke engine.
Podemos decir que el motor hidráulico de combustión de tres tiempos es escalable, pues si se tiene un motor de tres tiempos que posee un único bloque del motor y que entrega un número dado de kW de potencia, si se une a otro motor igual, la potencia entregada por los dos motores es dos veces la potencia inicial, es decir podemos mover dos motores hidráulicos como el inicialmente utilizado o mover un motor hidráulico del doble de la potencia inicial, esta escalabilidad se mantiene mientras se puedan realizar las adecuaciones necesarias en los equipos anexos y sea factible técnica y dimensionalmente.We can say that the three-stroke hydraulic combustion engine is scalable, because if you have a three-stroke engine that has a single engine block and that delivers a given number of kW of power, if it is joined to another equal engine, the power delivered by the two motors is twice the initial power, that is, we can move two hydraulic motors like the one initially used or move a hydraulic motor twice the initial power, this scalability is maintained as long as the necessary adjustments can be made to the equipment annexes and is technically and dimensionally feasible.
Funcionamiento equilibrado. Balanced operation.
El motor de tres tiempos de un solo bloque del motor es la unidad básica de este tipo de motor, pero presenta el inconveniente que al funcionar se comporta como un vibrador que transmite vibraciones a cualquier estructura que lo soporte, para reducir el efecto vibratorio un motor de tres tiempos puede contar con dos bloques del motor o cualquier número par de ellos, lo que permite hacer oscilar simultáneamente dos pistones dobles en direcciones opuestas de forma de cancelar el efecto externo de vibración. The three-stroke single-block engine is the basic unit of this type of engine, but it has the drawback that when it works it behaves like a vibrator that transmits vibrations to any structure that supports it, in order to reduce the vibratory effect of an engine. Three-stroke can have two engine blocks or any even number of them, which allows two double pistons to oscillate simultaneously in opposite directions in order to cancel the external effect of vibration.
Cuando se utilizan varios bloques del motor, cada uno entrega pulsos de aceite que se encuentran desfasados en el tiempo, pero se pueden traslapar y finalmente estos pulsos se terminan sumando en el circuito hidráulico de trabajo y el resultado para fines prácticos es un flujo continuo, en este caso el acumulador hidráulico no es necesario para obtener un flujo continuo, pero sigue siendo necesario para tener frenado regenerativo. When several engine blocks are used, each one delivers oil pulses that are out of phase in time, but they can overlap and finally these pulses end up adding up in the working hydraulic circuit and the result for practical purposes is a continuous flow, in this case the hydraulic accumulator is not necessary to obtain a continuous flow, but it is still necessary to have regenerative braking.
Motor de tres tiempos de varios pistones. Three-stroke multi-piston engine.
Cuando hablemos de un motor de combustión de tres tiempos que usa dos bloques de motor cada uno con su pistón doble, por mantener la nomenclatura usual hablaremos de un motor de combustión interna de tres tiempos y cuatro pistones, sin usar el término pistón doble, es decir pueden haber motores de tres tiempos con dos, cuatro, seis, ocho o más pistones, en esos casos los golpes por minuto, gpm, es la suma de todos los golpes que los diversos motores realicen. Motor de de tres tiempos en generadores eléctricos. When we talk about a three-stroke combustion engine that uses two engine blocks each with its double piston, to maintain the usual nomenclature we will talk about a three-stroke four-piston internal combustion engine, without using the term double piston, it is say there may be three-stroke engines with two, four, six, eight or more pistons, in these cases the blows per minute, gpm, is the sum of all the blows that the various engines make. Three-stroke engine in electric generators.
Para obtener un motor de combustión de tres tiempos se necesita poder detener y retener el pistón en el punto muerto superior y en su punto muerto inferior, lo cual es técnicamente más sencillo cuando el motor se utiliza para mover una bomba hidráulica, pero técnicamente es factible realizar la detención del pistón cuando el motor se utiliza para mover un generador lineal. To get a three-stroke combustion engine you need to be able to stop and retain the piston at top dead center and bottom dead center, which is technically easier when the engine is used to drive a hydraulic pump, but is technically feasible. perform piston stop when the motor is used to drive a linear generator.
Un adecuado control utilizando motores de tres tiempos, permite obtener una señal eléctrica de salida constante usando generadores lineales, esto se puede obtener solapando la partida desde el reposo de un pistón doble con la detención desde el movimiento hasta el reposo de otro pistón. An adequate control using three-stroke motors, allows to obtain a constant output electrical signal using linear generators, this can be obtained by overlapping the start from rest of a double piston with the stop from the movement to rest of another piston.
Si un motor de combustión de tres tiempos se usa para mover un generador eléctrico lineal, la posición y detención del pistón se puede controlar utilizando un sistema de acompañamiento hidráulico en el cual el pistón del motor se mueve solidariamente con un cilindro hidráulico que a medida que se desplaza solo transfiere aceite desde una cámara a otra, el aceite en este caso no realiza trabajo, pero cuando se bloquea el flujo de aceite de una cámara a otra en el cilindro hidráulico que acompaña al pistón del motor, el pistón del motor se detiene, aunque este sistema ocupa parte de la energía generada en el motor para mover el aceite al interior del acompañador hidráulico, el sistema como conjunto al trabajar en un ciclo de tres tiempos, podría proveer más energía disponible por unidad de combustible que trabajando como motor de dos tiempos. If a three-stroke combustion engine is used to drive a linear electric generator, the position and stop of the piston can be controlled using a hydraulic follow-up system in which the engine piston moves in solidarity with a hydraulic cylinder which, as it moves, scrolls only transfers oil from one chamber to another, the oil in this case does no work, but when the flow of oil from one chamber to another in the hydraulic cylinder that accompanies the engine piston is blocked, the engine piston stops , although this system occupies part of the energy generated in the engine to move the oil inside the hydraulic companion, the system as a whole, when working in a three-stroke cycle, could provide more energy available per unit of fuel than working as a gasoline engine. two times.
Si el motor de tres tiempos no utiliza un pistón doble, la carrera de compresión puede ser realizada mediante energía hidráulica almacenada en un acumulador hidráulico, sería el equivalente hidráulico a la cámara de rebote. If the three-stroke engine does not use a double piston, the compression stroke can be performed by hydraulic energy stored in a hydraulic accumulator, it would be the hydraulic equivalent of the rebound chamber.
Motor de tres tiempos con inyección de agua. Three-stroke engine with water injection.
El motor de combustión hidráulico de pistón doble que detiene el pistón en cada oscilación, permite realizar un movimiento de oscilación usando inyección de agua. The double piston hydraulic combustion motor that stops the piston at each swing, allows to perform a swing movement using water injection.
Cuando el pistón doble se encuentra detenido y aun no se han abierto las válvulas, en la cámara de mayor volumen están los gases quemados a alta temperatura y a la presión de compresión, si en ese momento se hace la liberación controlada de los gases quemados y se deja un porcentaje de estos gases en la cámara, este remanente al ser comprimido además de tener nuevamente la presión de compresión sin que haya entrado aire fresco en la cámara, tiene una alta temperatura y si en ese momento, en vez de inyectar combustible se inyecta agua, la alta temperatura de los gases convertirá el agua en vapor, la cantidad de agua inyectada y la temperatura de los gases determinará una presión en la cámara que debe permitir realizar el movimiento del pistón doble. When the double piston is stopped and the valves have not yet opened, the burned gases at high temperature and compression pressure are in the larger volume chamber, if at that moment the controlled release of the burned gases is carried out and leaves a percentage of these gases in the chamber, this remainder, when compressed, in addition to having the compression pressure again without fresh air entering the chamber, has a high temperature and if at that moment, instead of injecting fuel, it is injected water, the high temperature of the gases will turn the water into steam, the amount of water injected and the temperature of the gases will determine a pressure in the chamber that must allow the movement of the double piston.
Aunque la carrera del pistón doble con ambos tipos de inyección (agua o combustible) será diferente y por tanto pueden ser diferentes los pulsos de flujo hidráulico generados, el control del motor debería permitir tener a la salida un flujo hidráulico constante que entregue una potencia constante en el motor hidráulico, que puede ser menor a la potencia entregada cuando solo se inyecta combustible, pero como se está aprovechando un calor residual, intercalando una inyección de agua entre inyecciones de combustible se puede obtener un aumento del rendimiento del motor. Although the stroke of the double piston with both types of injection (water or fuel) will be different and therefore the generated hydraulic flow pulses may be different, the motor control should allow a constant hydraulic flow at the output to deliver constant power. in the hydraulic engine, which may be less than the power delivered when only fuel is injected, but since residual heat is being used, interspersing an injection of water between fuel injections can increase engine performance.

Claims

REIVINDICACIONES
1.- Un motor de combustión interna de pistón libre que transforma las carreras de un pistón doble (2) que se mueve en movimiento oscilante al interior de un bloque del motor (1 ) en energía hidráulica que mueve al menos un motor hidráulico (18), el movimiento oscilante del pistón doble se obtiene por la combustión de una mezcla combustible en las cámaras de combustión (6) de los pistones (4) que unidos por un vástago (3) forman el pistón doble, un bombeador (7) fijo al vástago y de mayor diámetro, también se mueve en un movimiento oscilatorio al interior de un compartimento en el bloque del motor, lo que forma a ambos lados del bombeador las cámaras de bombeo (8), el bombeador al moverse hace que varíen de tamaño las cámaras de bombeo, la cámara de bombeo que aumenta su tamaño durante la carrera del bombeador succiona fluido desde un estanque (15) y la cámara de bombeo que disminuye su tamaño entrega un pulso de fluido a presión hacia la zona del circuito que tiene el motor hidráulico, la disposición de las válvulas direccionales (13) obliga a que el fluido solo pueda fluir en las direcciones indicadas, este motor es caracterizado porque el pistón doble al final de cada carrera se detiene por un equilibrio de fuerzas y es retenido en su posición por una válvula de bloqueo (14) que impide el flujo del fluido de la cámara de bombeo, mientras el pistón doble está detenido se realiza un ciclo de de abertura y cierre de la válvulas de admisión (9) y de escape (10). 1.- A free piston internal combustion engine that transforms the strokes of a double piston (2) that moves in an oscillating movement inside an engine block (1) into hydraulic energy that moves at least one hydraulic motor (18 ), the oscillating movement of the double piston is obtained by the combustion of a fuel mixture in the combustion chambers (6) of the pistons (4) which, joined by a rod (3) form the double piston, a fixed pump (7) to the stem and with a larger diameter, it also moves in an oscillating movement inside a compartment in the engine block, which forms the pumping chambers (8) on both sides of the pumper; when the pumper moves, they vary in size the pumping chambers, the pumping chamber that increases in size during the stroke of the pump sucks fluid from a tank (15) and the pumping chamber that decreases in size delivers a pulse of pressurized fluid to the area of the circuit that has the hydraulic engine, the arrangement of the directional valves (13) requires that the fluid can only flow in the directions indicated, this engine is characterized in that the double piston at the end of each stroke stops by a balance of forces and is held in position by a blocking valve (14) that prevents the flow of fluid from the pumping chamber, while the double piston is stopped, an opening and closing cycle of the intake (9) and exhaust (10) valves is carried out.
2.- Un motor de combustión de pistón libre de acuerdo a la reivindicación 1 , caracterizado porque finalizado el ciclo de abertura y cierre de las válvulas de admisión y escape, inyecta combustible mediante el inyector (11 ) y luego provoca la ignición del combustible mediante una chispa de la bujía (12) u otro medio. 2. A free piston combustion engine according to claim 1, characterized in that once the opening and closing cycle of the intake and exhaust valves has finished, it injects fuel through the injector (11) and then ignites the fuel through a spark from the spark plug (12) or other means.
3.- Un motor de combustión de pistón libre de acuerdo a la reivindicación 1 , caracterizado porque finalizado el ciclo de abertura y cierre de las válvulas de admisión y escape, inyecta combustible mediante el inyector y la mezcla combustible hace autoencendido. 3. A free piston combustion engine according to claim 1, characterized in that after the opening and closing cycle of the intake and exhaust valves, fuel is injected through the injector and the fuel mixture self-ignites.
4.- Un motor de combustión de pistón libre de acuerdo a la reivindicación 1 , caracterizado porque el fluido en el estanque es aceite hidráulico. 4. A free piston combustion engine according to claim 1, characterized in that the fluid in the tank is hydraulic oil.
5.- Un motor de combustión de pistón libre de acuerdo a la reivindicación 1 , caracterizado porque el circuito hidráulico al que la cámara de bombeo envía los pulsos de fluido a presión, incluye antes del motor hidráulico, un acumulador hidráulico (16) y una válvula reguladora de flujo (17), que convierten los pulsos de fluido a presión enviados por las cámaras de bombeo en un flujo continuo a la salida de la válvula reguladora de flujo, capaz de mover motores o actuadores hidráulicos. 5. A free piston combustion engine according to claim 1, characterized in that the hydraulic circuit to which the pumping chamber sends the pressurized fluid pulses, includes before the hydraulic motor, a hydraulic accumulator (16) and a flow regulating valve (17), which convert the pressurized fluid pulses sent by the pumping chambers into a continuous flow at the outlet of the flow regulating valve, capable of moving motors or hydraulic actuators.
6.- Método de control para un motor de combustión interna de pistón libre de tres tiempos, caracterizado porque el pistón libre al final de cada carrera es detenido y retenido por un tiempo variable y durante el tiempo de detención del pistón libre se realiza un ciclo de abertura y cierre de las válvulas de admisión y escape, para realizar una nueva carrera se realiza la liberación del pistón libre, la inyección del combustible y la ignición de la mezcla combustible, la explosión de la mezcla combustible provoca el desplazamiento del pistón libre, el cual nuevamente al final de su carrera vuelve a ser detenido y el ciclo vuelve a repetirse, esto ocurre mientras el motor este en funcionamiento. 6.- Control method for a three-stroke free piston internal combustion engine, characterized in that the free piston at the end of each stroke is stopped and held for a variable time and during the stop time of the free piston a cycle is performed of opening and closing of the intake and exhaust valves, to carry out a new stroke, the release of the free piston is carried out, the fuel injection and the ignition of the fuel mixture, the explosion of the fuel mixture causes the displacement of the free piston, which again at the end of its run is stopped again and the cycle repeats itself, this occurs while the engine is running.
PCT/CL2021/050121 2020-10-27 2021-12-17 Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons WO2022087759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2789-2020 2020-10-27
CL2020002789A CL2020002789A1 (en) 2020-10-27 2020-10-27 Three-stroke internal combustion engine with hydraulic motion transmission

Publications (1)

Publication Number Publication Date
WO2022087759A1 true WO2022087759A1 (en) 2022-05-05

Family

ID=75469139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2021/050121 WO2022087759A1 (en) 2020-10-27 2021-12-17 Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons

Country Status (2)

Country Link
CL (1) CL2020002789A1 (en)
WO (1) WO2022087759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023104487B3 (en) 2023-02-23 2024-08-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Process of an internal combustion engine with two times three strokes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791786A (en) * 1986-07-25 1988-12-20 De Rotterdamsche Droogdok Maatschappij Free-piston motor with hydraulic or pneumatic energy transmission
US5123245A (en) * 1990-10-19 1992-06-23 Sampower Oy Method and apparatus for starting a free piston combustion engine hydraulically
US5983638A (en) * 1994-07-27 1999-11-16 Innas Free Piston B.V. Hydraulic switching valve, and a free piston engine provided therewith
WO2001049998A2 (en) * 1999-12-30 2001-07-12 Innas Free Piston B.V. Free-piston unit for generating hydraulic energy
US6279517B1 (en) * 1997-04-17 2001-08-28 Innas Free Piston B.V. Free piston engine provided with a purging air dosing system
US20030044293A1 (en) * 2001-09-06 2003-03-06 Gray Charles L. Fully-controlled, free-piston engine
US20040065277A1 (en) * 2000-05-19 2004-04-08 Rudolf Schaeffer Free piston engine
GB2421981A (en) * 2005-01-07 2006-07-12 David Clark Crankless opposed-cylinder internal combustion engine with hydraulic output

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791786A (en) * 1986-07-25 1988-12-20 De Rotterdamsche Droogdok Maatschappij Free-piston motor with hydraulic or pneumatic energy transmission
US5123245A (en) * 1990-10-19 1992-06-23 Sampower Oy Method and apparatus for starting a free piston combustion engine hydraulically
US5983638A (en) * 1994-07-27 1999-11-16 Innas Free Piston B.V. Hydraulic switching valve, and a free piston engine provided therewith
US6279517B1 (en) * 1997-04-17 2001-08-28 Innas Free Piston B.V. Free piston engine provided with a purging air dosing system
WO2001049998A2 (en) * 1999-12-30 2001-07-12 Innas Free Piston B.V. Free-piston unit for generating hydraulic energy
US20040065277A1 (en) * 2000-05-19 2004-04-08 Rudolf Schaeffer Free piston engine
US20030044293A1 (en) * 2001-09-06 2003-03-06 Gray Charles L. Fully-controlled, free-piston engine
GB2421981A (en) * 2005-01-07 2006-07-12 David Clark Crankless opposed-cylinder internal combustion engine with hydraulic output

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023104487B3 (en) 2023-02-23 2024-08-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Process of an internal combustion engine with two times three strokes

Also Published As

Publication number Publication date
CL2020002789A1 (en) 2021-03-26

Similar Documents

Publication Publication Date Title
KR100609945B1 (en) Internal combusion engine
US6539913B1 (en) Rotary internal combustion engine
US6270322B1 (en) Internal combustion engine driven hydraulic pump
US8539930B2 (en) Rotary combustion apparatus
JP2013526677A (en) Free piston internal combustion engine
US7124718B2 (en) Multi-chamber internal combustion engine
JP2003521611A (en) A device that uses a rotating rocking piston
WO2022087759A1 (en) Three-stroke internal combustion engine with hydraulic movement transmission, comprising a control system that stops and retains double pistons in each oscillation of the pistons
US11306651B2 (en) Method of operating an internal combustion engine
US6550442B2 (en) Rotary machine used as a four-cycle rotary combustion engine, a compressor, a vacuum pump, a steam engine and a high pressure water motor
WO1999019646A2 (en) Rotating/reciprocating cylinder positive displacement device
US8230836B2 (en) Multi-cylinder reciprocating rotary engine
CN101270688A (en) Piston rotor internal combustion engine
ES2644731T3 (en) Direct distribution system by internal combustion engine
ES2292326B1 (en) INTERNAL COMBUSTION HYPOCICLOID ROTATING MOTOR.
JP2017155616A (en) Heat engine
WO2009007474A1 (en) Rotary piston and cylinder drive system
JP2007064027A (en) Auxiliary chamber type internal combustion engine
EP1399646A1 (en) Combustion engine
RU2761695C1 (en) ”normas” no. 30 internal combustion engine
ES2295555T3 (en) COMBUSTION ENGINE
RU2476698C1 (en) Free-piston internal combustion engine
EP2775094A1 (en) Internal combustion engine with pistons which rotate and move axially
ES2908485A1 (en) One hundred percent machine of internal combustion (Machine-translation by Google Translate, not legally binding)
RU2165030C2 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884242

Country of ref document: EP

Kind code of ref document: A1