WO2011157065A1 - 光路切换开关以及光路由器 - Google Patents

光路切换开关以及光路由器 Download PDF

Info

Publication number
WO2011157065A1
WO2011157065A1 PCT/CN2011/070628 CN2011070628W WO2011157065A1 WO 2011157065 A1 WO2011157065 A1 WO 2011157065A1 CN 2011070628 W CN2011070628 W CN 2011070628W WO 2011157065 A1 WO2011157065 A1 WO 2011157065A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
cavity
light guide
optical
elastic light
Prior art date
Application number
PCT/CN2011/070628
Other languages
English (en)
French (fr)
Inventor
毛剑宏
Original Assignee
上海丽恒光微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海丽恒光微电子科技有限公司 filed Critical 上海丽恒光微电子科技有限公司
Priority to US13/704,917 priority Critical patent/US8837875B2/en
Publication of WO2011157065A1 publication Critical patent/WO2011157065A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3506Translating the waveguides along the beam path, e.g. by varying the distance between opposed waveguide ends, or by translation of the waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/3542Non-blocking switch, e.g. with multiple potential paths between multiple inputs and outputs, the establishment of one switching path not preventing the establishment of further switching paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3566Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details involving bending a beam, e.g. with cantilever
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force

Definitions

  • the present invention relates to the field of optical fiber communication, and in particular to an optical path switching switch and an optical router based on MEMS technology.
  • the demand for information and quality of network communication is increasing, and the social demand for broadband video, multimedia services and other IP-based real-time services is also growing.
  • high-speed broadband networks have become an important development field in the communication field.
  • the optical fiber has become a major development direction due to its huge bandwidth, good information load capacity and relatively secure encryption capability.
  • the network scheme using opto-electric hybrid is limited by the upper working rate of the electrical device, especially in the processing capability of switching/routing, resulting in a bandwidth bottleneck in the optical network.
  • An all-optical network means that optical information flows always exist in the form of light when transmitted, exchanged, and routed in the network, without the need for optical/electrical, electrical/optical conversion.
  • the optical switch/optical router belongs to the key optical node technology in the all-optical network, and mainly performs optical signal exchange and routing between any optical port at the optical node.
  • Optical routers that use the microelectromechanical systems (MEMS) to fabricate routing functions have become well known.
  • the schematic diagram of the optical router is as shown in FIG. 1 , and includes a two-dimensional pop-up MEMS mirror array located in a free space, and the mirrors of the array nodes in the pop-up MEMS mirror array It can be rotated and popped by an electromagnetic deflection control mechanism (not shown) to enter an open state, and can be stabilized The deflection angle is fixed.
  • the input beam When the input beam is transmitted to the path node, it is illuminated on the mirror, and the deflection angle of the mirror determines the direction of reflection of the beam, thereby enabling the beam from the through path to be selectively transmitted to any other path node.
  • the light beams input by the input terminal In are respectively reflected by the mirror 1, the mirror 2, the mirror 5, and finally outputted from the output terminal Out, completing the output from the output terminal In to the output terminal Out.
  • the above optical router has the following problems: In the MEMS mirror array, the electromagnetic deflection control mechanism of the mirror of each node is complicated, causing the size of the optical router to be large; and the deflection angle is difficult to accurately control, and the beam is easily laterally shifted. The offset effect is cumulative. When passing through multiple nodes, the above lateral offset will be amplified, which will further reduce the coupling efficiency of the input light.
  • the problem solved by the present invention is to provide an optical router, which is easy to manufacture and can avoid the accumulation of offset errors.
  • the optical path switching switch comprises an input optical path, two output optical paths and optical path switching elements, and the optical path converting elements selectively route the light beams from the input optical path to one of the output optical paths, the optical path converting elements comprising:
  • the optical path conversion element further includes an upper induction plate and a lower induction plate respectively located at the top and the bottom of the cavity, and a force field perpendicular to the optical path transmission path is formed in the cavity by energizing the upper induction plate and the lower induction plate; The free end of the elastic light guide is located in the force field.
  • the upper and lower induction plates are located on the wall of the cavity or as part of the cavity wall, and the upper and lower induction plates are insulated from the remainder of the cavity wall.
  • the upper induction plate and the lower induction plate are located in an interlayer dielectric layer outside the cavity, and are separated from the cavity cavity wall by the interlayer dielectric layer.
  • the semiconductor substrate is a silicon substrate or silicon on insulator.
  • the inner surface of the cavity wall is coated with a reflective coating.
  • the cavity cavity wall is made of metal, including one of aluminum, titanium, zinc, silver, or a combination thereof.
  • the elastic light guide sheet is made of metal, and includes one of aluminum, titanium, zinc, silver, or a combination thereof.
  • the surface of the elastic light guide sheet is formed with a silicon oxide or silicon nitride film
  • the free end width of the elastic light guide sheet is greater than the fixed end width.
  • the cavity has a rectangular cross section, and the cross-sectional width gradually decreases toward the fixed end along the free end of the elastic light guide sheet, and the gap between the sidewall of the cavity and the elastic light guide sheet is kept uniform.
  • the upper cavity and the lower cavity are filled with a light transmissive medium, and specifically may be filled with quartz or glass containing a silica component.
  • the invention also provides an optical router comprising a plurality of the above-mentioned optical path switching switches, comprising at least one input end and a plurality of output ends; the input end is connected to the input optical path of the first-stage optical path switching switch, and the output end is connected to the last An output optical path of the first-stage optical path switching switch, wherein the input optical path of the optical path switching switch of each stage is connected to one of the output optical paths of the upper optical path switching switch.
  • the optical router of the invention adopts an optical path switching switch of two paths and one path as an optical path node, and adopts a multi-level routing manner to realize selective routing of the optical path.
  • the optical path switching switch has a simple structure, convenient control, and no beam exists.
  • the lateral offset problem prevents the accumulation of errors in the optical router.
  • FIG. 2 is a schematic cross-sectional view of the optical path changeover switch of the present invention
  • FIG. 3 is a cross-sectional view along the ⁇ - ⁇ ' direction of FIG. 2
  • 2 is a schematic cross-sectional view of the direction along the CC
  • FIG. 6 is a schematic view showing the working state of the optical path switching switch of the present invention
  • 7 is a schematic structural diagram of an embodiment of an optical router according to the present invention
  • FIG. 8 is a schematic structural diagram of another embodiment of the optical router according to the present invention.
  • optical routers mostly use a plurality of rotatable mirror elements located in a free space to form a mirror array, and multiple times reflect the light beam, thereby achieving selective routing of the optical path.
  • This type of mirror array requires very high precision of the rotation of the mirror elements of each node, and any small offset error is multiplied after being reflected by the multi-stage mirror elements. Therefore, the complexity of the control mechanism of the existing optical router and the accuracy requirements are high, so that the manufacturing cost of the optical router is also high.
  • the invention utilizes a multi-stage two-selection optical path switching switch to form a closed channel guiding beam to realize selective routing of the optical path.
  • the single optical path switching switch has a relatively simple structure, which reduces the manufacturing difficulty of the optical router; There is no lateral offset of the beam, which avoids the accumulation of errors.
  • the optical path switching switch includes an input optical path 100, an output optical path 201, an output optical path 202, and an optical path conversion element 300.
  • the optical path conversion element 300 selectively routes a light beam from the input optical path 100 to one of the output optical paths, that is, the optical path.
  • the switch 300 has only two routing states.
  • 3 is a cross-sectional view along the ⁇ - ⁇ ' direction of FIG. 2. As shown in FIG. 3, the optical path conversion element 300 includes a semiconductor substrate 301 and an interlayer dielectric layer 307 (Inter-level dielectric, ILD) on the surface thereof.
  • ILD Inter-level dielectric
  • a cavity 302 located in the interlayer dielectric layer 307, one end of the cavity 302 is connected to the input optical path 100, and the other end is separated by an isolation layer 303 into an upper cavity 304 and a lower cavity 305, the upper cavity 304 and the lower
  • the cavity 305 is connected to two output optical paths respectively; an elastic light guide 306, the elastic light guide 306 includes a fixed end connected to the isolation layer 303 and a free end suspended in the cavity toward the input optical path 100. The free end can be moved between the top and bottom of the cavity 302 under the influence of a force field applied within the cavity 302 such that the resilient light guide sheet 306 is curved.
  • the optical path conversion element 300 of the present embodiment further includes an upper induction plate 308 and a lower induction plate 309 which are respectively located at the top and bottom of the cavity.
  • an upper induction plate 308 and a lower induction plate 309 By energizing the upper induction plate 308 and the lower induction plate 309, a vertical path can be formed in the cavity 302.
  • the force field of the transmission path is such that the free end is located in the force field.
  • the upper induction plate 308 and the lower induction plate 309 may be made of metal, such as copper, aluminum, tungsten, etc.; may be disposed on the cavity wall or directly as part of the cavity wall, or may be disposed on the outer layer of the cavity. In the dielectric layer 307.
  • the upper induction plate 308 and the lower induction plate 309 are energized to form an electric field in the cavity 302; then the charge is injected into the elastic light guide plate 306 through the connection electrode. According to the tip aggregation effect of the charge, the free end of the elastic light guide sheet 306 will accumulate charges and move to the top or bottom of the cavity 302 under the influence of the electric field in the cavity 302 to control the bending of the elastic light guide sheet 306. Direction and degree of bending.
  • the elastic light guide sheet 306 can also be made of a magnetic material, and the upper induction plate 308 and the lower induction plate 309 are energized to form an electromagnetic field in the cavity to control the bending direction of the elastic light guide piece 306. And the degree of bending.
  • the upper induction plate 308 and the lower induction plate 309 are disposed on the cavity cavity wall or as part of the cavity cavity wall, the segment cavity wall needs to be insulated from the rest of the cavity cavity wall. In order to prevent the upper induction plate 308 and the lower induction plate 309 from being short-circuited or leaked through the cavity wall.
  • the elastic light guide sheet 306 is a sheet-like body, so that the elastic bending has a directionality, so that the bending direction of the elastic light guiding sheet 306 coincides with the position of the upper guiding plate 308 and the lower guiding plate 309, and is curved.
  • the cross section of the upper cavity 304 or the lower cavity 305 can be closed later such that the elastic surface of the elastic light guide sheet 306 is perpendicular to the projection surface between the upper induction plate 308 and the lower induction plate 309.
  • the structure of the optical path conversion element 300 is compatible with the semiconductor process, and the upper induction plate 308, the lower induction plate 309, and the elastic light guide 306 are all connected to the electrodes.
  • the fixed end of the elastic light guide sheet 306 may extend from the isolation layer into the interlayer dielectric layer 307 to form a contact hole connection electrode.
  • the above-mentioned specific metal interconnection structure is not shown, as a known technique, those skilled in the art should be able to make contact holes according to the requirements of the metal interconnection, and details are not described herein again.
  • the semiconductor substrate 301 is a silicon substrate or a silicon-on-insulator SOL.
  • the cavity 302 is formed in an interlayer dielectric layer 307 on the surface of the semiconductor substrate 301.
  • the interlayer dielectric layer 307 is used to insulate the isolation cavity 302.
  • the material may be silicon dioxide, silicon nitride or the like.
  • the inner surface of the cavity 302 must be capable of reflecting a beam of light.
  • a reflective coating can be formed on the inner surface of the cavity 302.
  • the cavity wall can be high.
  • a metal material having a reflectance such as a metal such as aluminum, titanium, zinc, silver, or a combination thereof.
  • the cavity cavity wall is made of aluminum.
  • the elastic light guide sheet 306 must be capable of reflecting the light beam and being bendable within the cavity.
  • a highly reflective metal material such as aluminum, titanium, zinc, silver or the like or a combination thereof may be used.
  • a thin layer of silicon oxide or silicon nitride coating may be formed on the surface of the elastic light guide sheet 306 to improve elasticity.
  • the tension of the surface of the light guide sheet 306. is made of aluminum and is coated with a silicon nitride film on the surface.
  • the aluminum is a conductive metal
  • the upper induction plate 308 is used.
  • the lower induction plate 309 is disposed in the interlayer dielectric layer 307 outside the cavity, and is spaced apart from the cavity cavity wall by the interlayer dielectric layer 307.
  • the free end of the resilient light guide sheet 306 must be movable to the top or bottom of the cavity 302 such that the flexible catheter sheet 306 is curved to prevent light beams entering the cavity from the input optical path from entering the upper cavity 304 or the lower cavity 305. .
  • the free end width of the elastic light guide sheet 306 may be made larger than the fixed end width. 4 is a cross-sectional view taken along line BB of FIG. 2. As shown in FIG.
  • the cross section of the cavity 302 may be selected as a rectangle; on the other hand, to reduce the bending of the elastic light guide sheet 306 Thereafter, light is leaked from the gap between the wall of the cavity, and the cross-sectional width D of the cavity gradually decreases along the free end of the elastic light guide 306 toward the fixed end, and the elastic light guide 306 and the cavity wall are maintained.
  • the gap size is the same.
  • the shape of the cavity cross section may also be an elliptical shape, a trapezoidal shape, etc., only to satisfy that the elastic light guide sheet 306 can freely bend within the cavity 302 and prevent the light beam from entering the upper cavity 304 or the lower cavity.
  • the light path of 305 can be.
  • the upper cavity 304 and The lower cavity 305 may also be filled with a light transmissive medium such as quartz, glass or the like containing a silica component.
  • FIG. 5 is a cross-sectional view taken along line CC of FIG. 2.
  • the upper cavity 308 and the lower cavity 309 are adjacent to the elastic light guide sheet 306.
  • One end of the AA, the direction (ie, the vertical direction in Figure 3) constitutes a stack, away from the elastic light guide
  • One end is extended and separated, and the output optical path 201 and the output optical path 202 are respectively connected.
  • FIG. 6 is a schematic diagram showing the working state of the optical path switching switch according to the present invention. The working mechanism of the optical path switching switch according to the present invention will be described below with reference to FIG.
  • the upper induction plate 308 and the lower induction plate 309 are energized, the upper induction plate 308 is connected to the negative end of the power source, and the lower induction plate 309 is connected to the positive end of the power source, and a bottom-up electric field is formed in the cavity 302.
  • the strength of the electric field is determined by the potential difference between the upper induction plate 308 and the lower induction plate 309. Electrons are then injected into the elastic light guide sheet 306, which will gather at the free end of the elastic light guide sheet 306, which is subjected to an electric field force to move the lower induction plate 309.
  • the lower cavity 305 is closed by the elastic light guide sheet 306 as viewed in the cross-sectional direction of the cavity 302.
  • the induction plate 308 and the lower induction plate 309 when it is necessary to make the light beam enter the cavity 302 from the input optical path 100 and output from the output optical path 202 via the lower cavity 305, it is only necessary to reversely connect the induction plate 308 and the lower induction plate 309 during the energization, in the cavity 302.
  • a reverse electric field is formed such that the free end of the elastic light guide sheet 306 moves upwardly to the plate 308 until it contacts the top of the cavity 302, thereby closing the cross section of the upper cavity 304.
  • the beam can only be emitted through the lower cavity 305 and selectively routed to the output optical path 202.
  • the optical path switching switch has an alternative switching structure, and realizes selective routing from one input optical path to two output optical paths.
  • a multi-input multi-output capability is usually required, so that multiple levels can be adopted.
  • the above-mentioned optical path switching switches are used in series to form a multiplexed router.
  • the present invention further provides an optical router, including at least one input end, a plurality of output ends, and at least one first-order optical path switching switch; the input end is connected to the first-stage optical path switching switch.
  • the input optical path is connected to the output optical path of the last-stage optical path change switch, and the input optical path of the next-stage optical path change switch is connected to the output optical path of the first-stage optical path change switch.
  • FIG. 7 is a schematic structural diagram of an embodiment of an optical router according to the present invention, as shown in FIG.
  • the optical router includes: one input terminal, three levels of seven optical path switching switches, and eight output terminals.
  • the beam When the beam is input from the input terminal and output from the output terminal, it needs to go through three alternative routes. For example, if the light beam needs to be routed from the input terminal In1 to the output terminal Out1, first enter the first-stage optical path changeover switch S1 through the input terminal In1, and enter the second-level optical path changeover switch S2 through the second-selection route, and then go through two alternatives.
  • the route enters the third-stage optical path changeover switch S3, and is finally outputted from the output terminal Out1 connected to the output path of the third-stage S3 output.
  • FIG. 8 is a schematic structural diagram of another embodiment of the optical router according to the present invention.
  • an input optical path is added to the embodiment, and the optical path switching switch S10 is connected in series. , optical path switch S20.
  • An output optical path of the optical path switching switch S10 is connected to the input optical path of the optical path switching switch S1, and an output optical path of the optical path switching switch S20 is connected to the input optical path of the optical path switching switch S3.
  • this embodiment is compared with the foregoing embodiment.
  • the middle beam is input from the input end, and when outputting from the output end, it may go through an indefinite number of alternative routes. The number of stages is not obvious, and the specific routing is more flexible.
  • the beam needs to be routed from the input terminal In2 to the output terminal 0ut2, first enter the optical path switching switch S10 through the input terminal In2, enter the optical path switching switch S1 through the second selection route, and then pass the optical path switching switch S2 and the optical path switching switch S4 in sequence.
  • the two-choice route is output from the output terminal 0ut2.
  • the optical path switching switch S1, the optical path switching switch S2, and the optical path switching switch S4 become the second, third, and fourth levels of routing, respectively.
  • the beam needs to be routed from the input terminal In2 to the output terminal 0ut3, it can be realized only by two-way routing of the optical path switching switch S10 and the optical path switching switch S20.
  • the router of the present invention can be flexibly split or combined based on optical path switching switches to meet various requirements of optical routing.
  • Those skilled in the art should be able to freely expand according to the inventive concept to form a more complicated optical router to adapt to different routing occasions. I will not repeat them here.
  • the optical router adopts an optical path switching switch as an optical path node, which has the characteristics of convenient control of the structure of the single tube, and the switching path of the second selection does not have the lateral offset problem of the beam in the reflective array, even after multi-stage routing, The optical router does not accumulate error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

提供了一种光路切换开关以及光路由器。光路切换开关包括:一个输入光路(100)、两个输出光路(201,202)和光路转换元件(300)。光路转换元件将光束选择性地从输入光路路由至其中一个输出光路。光路转换元件包括:半导体衬底(301)及其表面的层间介质层(307),位于层间介质层内的空腔(302),和位于空腔内的弹性导光片(306)。空腔的一端连接输入光路,另一端由隔离层(303)分为上空腔(304)以及下空腔(305),其中上空腔以及下空腔分别连接两个输出光路。弹性导光片由反光材料制造,包括连接于隔离层的固定端以及朝向输入光路悬置于空腔内的自由端。自由端可在空腔顶部至底部间移动。

Description

光路切换开关以及光路由器
本申请要求于 2010 年 6 月 18 日提交中国专利局、 申请号为 201010207878.4、 发明名称为 "光路切换开关以及光路由器"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光纤通信领域,特别涉及一种基于 MEMS技术的光路切换开关 以及光路由器。
背景技术
随着社会的进步, 人们对网络通信的信息量以及质量的要求日益提高, 宽带视频、 多媒体业务以及其他基于 IP的实时业务的社会需求也不断增长。 由 于上述新兴业务所占用的网络带宽资源较多,高速宽带网络已经成为通信领域 的重要发展领域。 相较于传统的电信号传输网络, 光纤由于具有巨大的带宽, 良好的信息负载能力以及较为安全的加密能力已成为主要的发展方向。但在众 多的网络实现方案中,采用光电混合的网络方案由于受限于电学器件的工作上 限速率, 尤其在交换 /路由的处理能力不足, 导致光纤网络中形成带宽瓶颈。 只有基于光纤的全光网络方案才能提供更高速、大容量的传输以及交换处理能 力, 以打破上述瓶颈的限制, 以适应高速宽带业务的需求。 全光网络是指光信息流在网络中的传输、 交换以及路由时始终以光的形 式存在, 而不需要经过光 /电、 电 /光转换。 而光交换机 /光路由器属于全光网络 中的关键光节点技术,主要完成光节点处任意光纤端口之间的光信号的交换以 及路由。 使用微机电系统(MEMS ) 制造选择路由功能的光路由器已成为公知技 术。 例如, 由 Wood R丄 , Madadevan R和 Hill E在 2002年 3月美国洛杉矶的光 乡千通信会议的论文 " the proceedings of the Optical Fiber Communications conference" 中描述了一种基于 MEMS的二维矩阵光路由器。 所述光路由器的 结构示意图如图 1所示, 包括位于自由空间内的二维弹出式(pop-up ) MEMS 反射镜阵列, 所述弹出式 MEMS反射镜阵列中, 位于各阵列节点的反射镜可以 通过电磁偏转控制机构(未示出 )旋转弹出而进入开启状态, 并能够稳定在特 定的偏转角度。 当输入光束传输至通路节点时, 照射于反射镜上, 所述反射镜 的偏转角度将决定光束的反射方向,从而实现来自于直穿通路的光束被选择性 地传输至任意其他的通路节点。 例如图 1中, 由输入端 In输入的光束分别经由 反射镜 1、 反射镜 2...反射镜 5,的多次反射, 最终从输出端 Out输出, 完成从输 出端 In至输出端 Out的选择路由。 上述光路由器存在如下问题: MEMS反射镜阵列中, 各节点的反射镜的 电磁偏转控制机构较为复杂,造成光路由器的尺寸偏大; 且偏转角度难以精确 控制, 容易使得光束产生横向偏移, 这种偏移效果是累积的, 当经过多级的节 点, 上述横向偏移将被放大, 将进一步降低输入光线的耦合效率。
发明内容
本发明解决的问题是提供一种光路由器, 控制机构筒单, 易于生产制造, 并能够避免偏移误差的累积。
本发明提供的光路切换开关, 包括一个输入光路、 两个输出光路和光路转 换元件,所述光路转换元件将光束选择性地从输入光路路由至其中一个输出光 路, 所述光路转换元件包括:
半导体衬底及其表面的层间介质层; 位于层间介质层内的空腔, 所述空腔 的一端连接输入光路, 另一端由隔离层间隔成上空腔以及下空腔, 所述上空腔 以及下空腔分别连接两个输出光路; 位于所述空腔内的弹性导光片, 所述弹性 导光片为反光材料,包括连接于所述隔离层的固定端以及朝向输入光路悬置于 空腔内的自由端;所述自由端受到施加于空腔内的力场影响在空腔顶部至空腔 底部间移动。
所述光路转换元件还包括分别位于空腔顶部以及底部的上诱导板、下诱导 板,通过对所述上诱导板以及下诱导板通电,在空腔内形成垂直于光路传输路 径的力场; 所述弹性导光片的自由端位于所述力场中。
可选的,所述上诱导板以及下诱导板位于空腔腔壁上或作为空腔腔壁的一 部分, 且所述上诱导板以及下诱导板与空腔腔壁的其余部分绝缘隔离。
可选的, 所述上诱导板以及下诱导板位于空腔外部的层间介质层内, 且通 过层间介质层与空腔腔壁相间隔。
可选的, 所述半导体衬底为硅衬底或绝缘体上硅。 可选的, 所述空腔腔壁的内表面涂覆有反射涂层。所述空腔腔壁的材质为 金属, 包括铝、 钛、 锌、 银中的一种或其组合。
可选的, 所述弹性导光片的材质为金属, 包括铝、 钛、 锌、 银中的一种或 其组合。 所述弹性导光片的表面形成有氧化硅或氮化硅薄膜
可选的, 所述弹性导光片的自由端宽度大于固定端宽度。 所述空腔的截面 为矩形,且截面宽度沿弹性导光片的自由端向固定端方向逐渐递减,保持空腔 侧壁与弹性导光片的间隙大小一致。
可选的, 所述上空腔以及下空腔内填充有透光介质, 具体可以填充包含二 氧化硅成分的石英或玻璃。
本发明还提供了一种包括多级上述光路切换开关的光路由器,包括至少一 个输入端, 多个输出端; 所述输入端连接第一级光路切换开关的输入光路, 所 述输出端连接最后一级光路切换开关的输出光路,所述各级光路切换开关的输 入光路连接上一级光路切换开关的其中一个输出光路。
本发明所述光路由器采用二选一通路的光路切换开关作为光路节点,并采 用多级路由的方式, 实现光路的选择性路由, 所述光路切换开关结构筒单, 控 制方便, 且不存在光束的横向偏移问题, 从而避免了光路由器的误差累积。 附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其 他目的、特征和优势将更加清晰。 附图中与现有技术相同的部件使用了相同的 附图标记。 附图并未按比例绘制, 重点在于示出本发明的主旨。 在附图中为清 楚起见, 放大了层和区域的尺寸。 图 1是现有光路由器的结构示意图
图 2是本发明所述光路切换开关的结构示意图; 图 3是图 2中沿 Α-Α'方向的剖面示意图; 图 4是图 2中沿 Β-Β,方向的剖面示意图; 图 5是图 2中沿 C-C,方向的剖面示意图; 图 6是本发明所述光路切换开关的工作状态示意图; 图 7是本发明所述光路由器一个实施例的结构示意图;
图 8是本发明所述光路由器另一个实施例的结构示意图。
具体实施方式 现有的光路由器大多采用多个位于自由空间内的可旋转反射镜元件组成 反射镜阵列, 多次反射光束, 从而实现光路的选择性路由。 这种反射镜阵列对 各节点的反射镜元件的旋转精度要求非常高,任何细小的偏移误差,在经过多 级反射镜元件反射后, 都会被成倍的放大。 因此, 现有光路由器的控制机构复 杂程度以及对精度要求都很高,使得光路由器的制造成本也较高。本发明则利 用多级的二选一光路切换开关, 形成封闭式的通道引导光束, 实现光路的选择 性路由, 一方面单个光路切换开关结构较为筒单, 降低光路由器的制造难度; 另一方面不存在光束的横向偏移, 可以避免误差的累积。
介绍。
图 2是本发明所述光路切换开关的结构示意图。所述光路切换开关包括一 个输入光路 100、 输出光路 201、 输出光路 202和光路转换元件 300, 所述光 路转换元件 300将光束选择性地从输入光路 100路由至其中一个输出光路,即 所述光路切换开关 300仅有两种路由状态。 图 3是图 2中沿 Α-Α'方向的剖面示意图, 如图 3所示, 所述光路转换元 件 300包括:半导体衬底 301及其表面的层间介质层 307( Inter-level dielectric, ILD ); 位于层间介质层 307内的空腔 302, 所述空腔 302的一端连接输入光路 100, 另一端由隔离层 303间隔成上空腔 304以及下空腔 305 , 所述上空腔 304 以及下空腔 305分别连接两个输出光路;弹性导光片 306,所述弹性导光片 306 包括连接于所述隔离层 303的固定端以及朝向输入光路 100悬置于空腔内的自 由端。所述自由端可以受到施加于空腔 302内的力场影响下,在空腔 302的顶 部至底部之间移动, 使得弹性导光片 306弯曲。 为形成上述使得弹性导光片 306弯曲的力场,本实施例所述光路转换元件 300还包括分别位于空腔顶部以及底部的上诱导板 308、 下诱导板 309。 通过 向上诱导板 308以及下诱导板 309通电,即可在空腔 302内形成垂直于光路传 输路径的力场,且使得所述自由端位于该力场中。所述上诱导板 308以及下诱 导板 309, 材质可以为金属, 例如铜、 铝、 钨等; 可以设置于空腔腔壁上或直 接作为腔壁的一部分, 也可以设置于空腔外部的层间介质层 307内。 作为一个可选实施例, 所述光路切换开关在工作时, 向所述上诱导板 308 以及下诱导板 309通电,在空腔 302中形成电场; 然后通过连接电极向弹性导 光片 306注入电荷,根据电荷的尖端聚集效应, 所述弹性导光片 306的自由端 将聚集电荷, 并在空腔 302内电场的影响下向空腔 302顶部或底部移动, 以控 制弹性导光片 306的弯曲方向以及弯曲程度。作为另一个可选实施例,还可以 采用磁性材料制作弹性导光片 306, 而通过向上诱导板 308、 下诱导板 309通 电, 在空腔内形成电磁场, 以控制弹性导光片 306的弯曲方向以及弯曲程度。 此外,如果所述上诱导板 308以及下诱导板 309设置于空腔腔壁上或作为空腔 腔壁的一部分, 则需要将该段空腔腔壁与空腔腔壁的其余部分绝缘隔离, 以防 止上诱导板 308以及下诱导板 309通过空腔腔壁短路或者漏电。
进一步的, 所述弹性导光片 306为片状体, 因此其弹性弯曲存在方向性, 为了使得弹性导光片 306的弯曲方向与上诱导板 308以及下诱导板 309的位置 相吻合,且弯曲后能够封闭上空腔 304或下空腔 305的截面, 需使得弹性导光 片 306的弹性面垂直于上诱导板 308与下诱导板 309之间的投影面。
需要说明的是,在微机电系统中, 上述光路转换元件 300的结构与半导体 工艺相兼容, 上述上诱导板 308、 下诱导板 309以及弹性导光片 306均需连接 电极。作为可选方案, 所述弹性导光片 306的固定端可以自隔离层延伸至层间 介质层 307内, 以便形成接触孔连接电极。 本实施例, 虽未示出上述具体的金 属互连结构,但作为公知技术,本领域技术人员应当可以根据金属互连的需要, 进行接触孔的制作, 此处不再赘述。
所述半导体衬底 301为硅衬底或者绝缘体上硅 SOL所述空腔 302形成于 半导体衬底 301表面的层间介质层 307内,所述层间介质层 307用于绝缘隔离 空腔 302, 其材质可以为二氧化硅、 氮化硅等。
所述空腔 302的内表面须能够反射光束,作为一种可选方案, 可以在空腔 302的内表面形成反射涂层, 作为另一种可选方案, 所述空腔腔壁可以采用高 反射率的金属材质, 例如铝、 钛、 锌、 银等金属或其组合。 本实施例中, 为降 低成本, 且与半导体制造工艺相兼容, 所述空腔腔壁采用铝材质。
所述弹性导光片 306 须能够反射光束且能够在空腔内弯曲, 作为可选方 案, 可以采用高反射率的金属材质, 例如铝、 钛、 锌、 银等金属或其组合。 进 一步的, 为了改善弹性导光片 306在使用过程中, 因频繁弯曲而导致的金属疲 劳现象, 可以在弹性导光片 306的表面形成一薄层的氧化硅或氮化硅镀膜, 以 提高弹性导光片 306表面的张力。 本实施例中, 同样为了降低成本, 且与半导 体制造工艺相兼容, 所述弹性导光片 306采用铝材质,表面镀有一层氮化硅薄 膜。 此外, 由于铝为导电金属, 为避免弹性导光片 306的自由端移动至空腔顶 部或底部时, 与上诱导板 308或下诱导板 309相接触导致接触短路,将所述上 诱导板 308以及下诱导板 309设置于空腔外部的层间介质层 307内,且通过层 间介质层 307与空腔腔壁相间隔。
根据前述原理,弹性导光片 306的自由端须能够移动至空腔 302的顶部或 者底部,使得弹性导管片 306弯曲, 阻止从输入光路射入空腔的光束进入上空 腔 304或者下空腔 305。 为提高弹性导光片 306的弯曲能力, 可以使得弹性导 光片 306的自由端宽度大于固定端宽度。 图 4是图 2中沿 B-B,方向的剖面示 意图, 如图 4所示, 为筒化制造工艺, 所述空腔 302的截面可以选择为矩形; 另一方面, 为降低弹性导光片 306弯曲后, 与空腔腔壁之间的间隙处漏光, 所 述空腔的截面宽度 D沿弹性导光片 306 自由端向固定端的方向逐渐递减, 保 持弹性导光片 306与空腔腔壁之间的间隙大小一致。 除上述优选实施例, 所述 空腔截面的形状还可以是椭型、梯形等,仅需满足弹性导光片 306能够在空腔 302内自由弯曲, 并阻止光束进入上空腔 304或下空腔 305的光路即可。
再如图 3所示, 由于弹性导光片 306的固定端连接于隔离层 303 , 为支撑 隔离层 303 以避免弹性导光片 306的纵向偏移, 作为可选方案, 所述上空腔 304以及下空腔 305内还可以填充有透光介质,例如包含二氧化硅成分的石英、 玻璃等。
图 5是图 2中沿 C-C,方向的剖面示意图, 结合图 2以及图 5所示, 作为 可选方案,本实施例中,所述上空腔 308以及下空腔 309,靠近弹性导光片 306 的一端沿 A-A,方向 (即沿图 3 中的垂直方向)构成堆叠, 而远离弹性导光片 的一端则延伸分离, 并分别连接输出光路 201以及输出光路 202。 图 6为本发明所述光路切换开关的工作状态示意图,下面结合图 6介绍本 发明所述光路切换开关的工作机制。 当需要使得光束从输入光路 100进入空腔 302, 并经由上空腔 304从输出 光路 201输出。 首先向上诱导板 308以及下诱导板 309通电, 将上诱导板 308 接电源的负端, 而下诱导板 309接电源的正端, 此时便在空腔 302内形成自下 而上的电场。所述电场的强度由上诱导板 308以及下诱导板 309之间的电势差 决定。 然后向弹性导光片 306中注入电子, 所述电子将在弹性导光片 306的自 由端聚集, 所述自由端受到电场力作用, 向下诱导板 309 移动。 只需在空腔 302内形成足够大的电场强度, 克服弹性导光片 306的自身弹力作用, 使弹性 导光片 306的自由端与空腔 302的底部接触。 此时从空腔 302的截面方向看, 下空腔 305被弹性导光片 306所封闭。 当光束从输入光路 100进入空腔 302 时,在空腔 302的内表面以及弹性导光片 306的表面多次反射, 最终仅能通过 上空腔 304射出, 被选择性路由至输出光路 201。 反之, 当需要使得光束从输入光路 100进入空腔 302, 并经由下空腔 305 从输出光路 202输出时,仅需要在通电时反接上诱导板 308以及下诱导板 309, 在空腔 302内形成反向的电场, 使得弹性导光片 306的自由端向上诱导板 308 移动, 直至与空腔 302的顶部接触, 从而封闭上空腔 304的截面。 所述光束即 仅能通过下空腔 305射出, 而被选择性路由至输出光路 202。
上述光路切换开关作为二选一的开关结构,实现了从一条输入光路到两条 输出光路的选择性路由,但在路由器中,通常需要具有多路输入多路输出的能 力, 因此可以将多级的上述光路切换开关串接使用, 构成多路选择的路由器。
基于上述光路切换开关, 本发明还提供了一种光路由器, 包括至少一个输 入端, 多个输出端以及至少一级的二选一光路切换开关; 所述输入端连接第一 级光路切换开关的输入光路,所述输出端连接最后一级光路切换开关的输出光 路, 所述下一级光路切换开关的输入光路连接上一级光路切换开关的输出光 路。
图 7提供了本发明所述光路由器一个实施例的结构示意图, 如图 6所示, 所述光路由器包括: 一个输入端, 三级共七个光路切换开关, 八个输出端。 当 光束自输入端输入, 从输出端输出时, 均需要经过 3次二选一的路由。 例如, 如果光束需要自输入端 Inl路由至输出端 Outl时, 首先通过输入端 Inl进入 第一级光路切换开关 S1 , 经过二选一路由进入第二级光路切换开关 S2, 然后 再经过二选一路由进入第三级光路切换开关 S3 ,最终从连接第三级 S3输出光 路的输出端 Outl输出。
图 8提供了本发明所述光路由器的另一个实施例的结构示意图,如图 8所 示, 在上述实施例基础上, 本实施例又增加了一条输入光路, 以及串接的光路 切换开关 S10、 光路切换开关 S20。 其中, 光路切换开关 S10的一条输出光路 连接于光路切换开关 S1的输入光路, 而光路切换开关 S20的一条输出光路则 连接于光路切换开关 S3的输入光路, 与前述实施例相比, 本实施例中光束自 输入端输入, 而从输出端输出时, 可能经过不定次的二选一路由, 级数区分并 不明显, 具体的路由选择则更为灵活。 例如, 如果光束需要自输入端 In2路由 至输出端 0ut2时, 首先通过输入端 In2进入光路切换开关 S10, 经过二选一 路由进入光路切换开关 S1 , 再依次经过光路切换开关 S2、 光路切换开关 S4 的二选一路由, 从输出端 0ut2输出。 在上述光路中, 光路切换开关 Sl、 光路 切换开关 S2以及光路切换开关 S4便分别变成第二级、第三级以及第四级路由。 再如图 8所示, 如果光束需要自输入端 In2路由至输出端 0ut3时, 则仅需经 过光路切换开关 S10、 光路切换开关 S20两级路由即可实现。
进一步扩展, 本发明所述路由器可以基于光路切换开关的灵活拆分或组 合, 以满足光路由的各种需求。 本领域技术人员, 应当可以根据本发明思想, 进行自由的扩展, 形成更为复杂的光路由器, 以适应不同的路由场合。 此处不 再赘述。
上述光路由器中采用光路切换开关作为光路节点,具有结构筒单控制方便 的特点,且二选一的转换通路并不存在反射阵列中光束的横向偏移问题, 即使 经过多级路由选择后, 所述光路由器也不会产生误差累积。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 明技术方案的内容, 依据本发 ^ 筒单修 改、 等同变化及修饰, 均属于本发明技术方案的保护范围
+

Claims

权 利 要 求
1. 一种光路切换开关, 包括一个输入光路、 两个输出光路和光路转换元件, 所述光路转换元件将光束选择性地从输入光路路由至其中一个输出光路,其特 征在于, 所述光路转换元件包括:
半导体衬底及其表面的层间介质层; 位于层间介质层内的空腔, 所述空腔 的一端连接输入光路, 另一端由隔离层间隔成上空腔以及下空腔, 所述上空腔 以及下空腔分别连接两个输出光路;
位于所述空腔内的弹性导光片, 所述弹性导光片采用反光材料, 包括连接 于所述隔离层的固定端以及朝向输入光路悬置于空腔内的自由端;所述自由端 在受到施加于空腔内的力场影响时, 在空腔顶部至空腔底部间移动。
2. 如权利要求 1 所述的光路切换开关, 其特征在于, 所述光路转换元件还包 括分别位于空腔顶部以及底部的上诱导板、 下诱导板,通过对所述上诱导板以 及下诱导板通电,在空腔内形成垂直于光路传输路径的力场; 所述弹性导光片 的自由端位于所述力场中。
3. 如权利要求 2所述的光路切换开关, 其特征在于, 所述上诱导板以及下诱 导板设置于空腔腔壁上或作为空腔腔壁的一部分。
4. 如权利要求 3 所述的光路切换开关, 其特征在于, 所述设置有上诱导板以 及下诱导板的空腔腔壁部分与空腔腔壁的其余部分绝缘隔离。
5. 如权利要求 2所述的光路切换开关, 其特征在于, 所述上诱导板以及下诱 导板位于空腔外部的层间介质层内, 且通过层间介质层与空腔腔壁相间隔。
6. 如权利要求 1 所述的光路切换开关 , 其特征在于, 所述半导体衬底为硅衬 底或绝缘体上硅。
7. 如权利要求 1 所述的光路切换开关 , 其特征在于, 所述空腔腔壁的内表面 涂覆有反射涂层。
8. 如权利要求 1 所述的光路切换开关 , 其特征在于, 所述空腔腔壁的材质为 金属。
9. 如权利要求 8所述的光路切换开关 , 其特征在于, 所述空腔腔壁的材质包 括铝、 钛、 锌、 银中的一种或其组合。
10.如权利要求 1所述的光路切换开关 , 其特征在于, 所述弹性导光片的材质 为金属。
11.如权利要求 9所述的光路切换开关, 其特征在于, 所述弹性导光片的表面 形成有氧化硅或氮化硅薄膜。
12.如权利要求 9所述的光路切换开关, 其特征在于, 所述弹性导光片的材质 包括铝、 钛、 锌、 银中的一种或其组合。
13.如权利要求 1所述的光路切换开关, 其特征在于, 所述弹性导光片的自由 端宽度大于固定端宽度。
14.如权利要求 13所述的光路切换开关,其特征在于,所述空腔的截面为矩形, 且截面宽度沿弹性导光片的自由端向固定端方向逐渐递减,保持空腔侧壁与弹 性导光片的间隙大小一致。
15.如权利要求 1所述的光路切换开关, 其特征在于, 所述上空腔以及下空腔 内填充有透光介质。
16.如权利要求 15所述的光路切换开关, 其特征在于, 所述上空腔以及下空腔 内填充含有二氧化硅成分的石英或玻璃。
17.—种包括多级如权利要求 1所述光路切换开关的光路由器, 包括至少一个 输入端, 多个输出端; 所述输入端连接第一级光路切换开关的输入光路, 所述 输出端连接最后一级光路切换开关的输出光路,所述各级光路切换开关的输入 光路连接上一级光路切换开关的其中一个输出光路。
+
PCT/CN2011/070628 2010-06-18 2011-01-26 光路切换开关以及光路由器 WO2011157065A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/704,917 US8837875B2 (en) 2010-06-18 2011-01-26 Optical path switch and optical router

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010207878.4A CN102289067B (zh) 2010-06-18 2010-06-18 光路切换开关以及光路由器
CN201010207878.4 2010-06-18

Publications (1)

Publication Number Publication Date
WO2011157065A1 true WO2011157065A1 (zh) 2011-12-22

Family

ID=45335610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070628 WO2011157065A1 (zh) 2010-06-18 2011-01-26 光路切换开关以及光路由器

Country Status (3)

Country Link
US (1) US8837875B2 (zh)
CN (1) CN102289067B (zh)
WO (1) WO2011157065A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545559A (zh) * 2022-01-10 2022-05-27 桂林光隆集成科技有限公司 一种多通道的mems光开关模块

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289067B (zh) 2010-06-18 2013-02-13 江苏丽恒电子有限公司 光路切换开关以及光路由器
US9231584B2 (en) * 2013-08-12 2016-01-05 Huawei Technologies Co., Ltd. Device and method for micro-electro-mechanical-system photonic switch
US9213142B2 (en) * 2013-11-21 2015-12-15 Huawei Technologies Co., Ltd. Device and method for micro-electro-mechanical-system photonic switch
CN111541956B (zh) * 2020-04-20 2021-11-23 深圳市三旺通信股份有限公司 光口自适应方法、装置、交换机与计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343318A (zh) * 1999-03-09 2002-04-03 加利福尼亚大学董事会 悬臂式微结构的方法和装置
US6721473B1 (en) * 2001-02-02 2004-04-13 Cheetah Omni, Llc Variable blazed grating based signal processing
CN101158747A (zh) * 2007-11-23 2008-04-09 中国科学院长春光学精密机械与物理研究所 柔性悬臂微机械光开关制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2294535A1 (fr) * 1974-12-10 1976-07-09 Lewiner Jacques Perfectionnements aux dispositifs de commande du genre des relais
FR2296297A1 (fr) * 1974-12-27 1976-07-23 Thomson Csf Dispositif commutateur a commande electrique de deplacement
FR2376548A1 (fr) * 1977-01-04 1978-07-28 Thomson Csf Dispositif bistable electrostatique
DE2704984A1 (de) * 1977-02-07 1978-08-10 Siemens Ag Schalter fuer lichtleitfasern
FR2729232A1 (fr) * 1995-01-10 1996-07-12 Commissariat Energie Atomique Dispositif optique pour application optomecanique
US6539143B1 (en) * 2000-07-31 2003-03-25 Sarcon Microsystems, Inc. Optical switching system
US6633692B2 (en) * 2001-07-31 2003-10-14 The National University Of Singapore High carrier injection optical waveguide switch
JP5370714B2 (ja) 2007-05-31 2013-12-18 ソニー株式会社 光導波路、および信号処理装置
CN102289067B (zh) 2010-06-18 2013-02-13 江苏丽恒电子有限公司 光路切换开关以及光路由器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343318A (zh) * 1999-03-09 2002-04-03 加利福尼亚大学董事会 悬臂式微结构的方法和装置
US6721473B1 (en) * 2001-02-02 2004-04-13 Cheetah Omni, Llc Variable blazed grating based signal processing
CN101158747A (zh) * 2007-11-23 2008-04-09 中国科学院长春光学精密机械与物理研究所 柔性悬臂微机械光开关制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545559A (zh) * 2022-01-10 2022-05-27 桂林光隆集成科技有限公司 一种多通道的mems光开关模块
CN114545559B (zh) * 2022-01-10 2024-04-30 桂林光隆集成科技有限公司 一种多通道的mems光开关模块

Also Published As

Publication number Publication date
CN102289067A (zh) 2011-12-21
CN102289067B (zh) 2013-02-13
US20130094803A1 (en) 2013-04-18
US8837875B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
WO2011157065A1 (zh) 光路切换开关以及光路由器
US6795605B1 (en) Micromechanical optical switch
US6839478B2 (en) Optical switching system based on hollow waveguides
US6597491B2 (en) Micromechanical optical switch
US6259835B1 (en) Mechanically actuated optical switch
KR20010048133A (ko) 마이크로 구조체를 이용한 광스위치
KR20010102533A (ko) 캔틸레버형 마이크로구조 장치 및 그 제조 방법
US6907154B2 (en) Optical switch having switch cells with movable switch mirrors
CN105847166B (zh) 支持多播通信的多端口可扩展片上光路由器
US6819821B2 (en) Optical switch with a geometry based on perpendicularly-oriented planar lightwave circuit switches
Parsons et al. Optical switching for data center networks
JP5341867B2 (ja) 波長選択スイッチとその制御方法
US6678436B2 (en) Optical switch with moving lenses
CN110412779B (zh) 基于石墨烯-硅波导紧凑型y分叉宽带双模光开关
Suzuki et al. Broadband 8x8 Si-wire PILOSS switch with double Mach-Zehnder switch elements
US9161105B2 (en) Routing optical signals
JPH09297230A (ja) 導波路型変形2×2光スイッチ及び導波路型マトリクス光スイッチ
US11630266B2 (en) Adiabatic optical switch using a waveguide on a MEMS cantilever
JP2004133196A (ja) ミラーチルト機構及びそれを用いた光スイッチ
Bhattacharya et al. DbOBS: dual buffered switch for variable optical bursts in future datacenters
KR100331805B1 (ko) 광 스위치 및 그 제조방법
JP2007017562A (ja) 多チャンネル光スイッチ
Ibrahim et al. 100-Gb/s optical packet switching technologies for data center networks
JP2004246302A (ja) 光信号喪失回避回路付きマトリックス光スイッチおよびこれを用いた光信号喪失回避方法
US20130272651A1 (en) Routing optical signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13704917

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795031

Country of ref document: EP

Kind code of ref document: A1