WO2011157047A1 - Capacitive sensor calibration system for measuring fast transient over-voltages - Google Patents

Capacitive sensor calibration system for measuring fast transient over-voltages Download PDF

Info

Publication number
WO2011157047A1
WO2011157047A1 PCT/CN2011/000387 CN2011000387W WO2011157047A1 WO 2011157047 A1 WO2011157047 A1 WO 2011157047A1 CN 2011000387 W CN2011000387 W CN 2011000387W WO 2011157047 A1 WO2011157047 A1 WO 2011157047A1
Authority
WO
WIPO (PCT)
Prior art keywords
gis
high voltage
steep pulse
resistor
calibration system
Prior art date
Application number
PCT/CN2011/000387
Other languages
French (fr)
Chinese (zh)
Other versions
WO2011157047A8 (en
Inventor
丁卫东
王绍武
李志兵
孙凤举
李峰
马宾
张侨根
Original Assignee
西安交通大学
国家电网公司
中国电力科学研究院
西北核技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学, 国家电网公司, 中国电力科学研究院, 西北核技术研究所 filed Critical 西安交通大学
Priority to JP2013514532A priority Critical patent/JP5889884B2/en
Publication of WO2011157047A1 publication Critical patent/WO2011157047A1/en
Publication of WO2011157047A8 publication Critical patent/WO2011157047A8/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/312Contactless testing by capacitive methods

Definitions

  • the present invention relates to the field of capacitive sensor technology, and in particular, to a capacitive sensor calibration system for fast transient overvoltage measurement. Background technique
  • the VFTO (Very Good Transient Over-voltage) measurement capacitive sensor calibration system is to detect whether the performance of the capacitive sensor meets the requirements and determine the voltage divider ratio of the capacitive sensor.
  • the calibration system of the conventional commonly used VFTO capacitive sensor is shown in FIG. 1, and includes a steep pulse generator 101, a coaxial cable 102, an attenuator 103, a capacitive sensor 104, a first oscilloscope 105, and a second oscilloscope 106.
  • the working principle is that the steep pulse generator 101 is used as a signal source for generating a voltage pulse, and the voltage pulse is transmitted to the attenuator 103 and the capacitance sensor 104 through the coaxial cable 102, and the voltage pulse is generated on the attenuator 103 and the capacitance sensor 104.
  • the voltage, attenuator 103 is used as a reference for comparison.
  • the voltage across the attenuator 103 can be observed by the first oscilloscope 105 coupled to the attenuator 103; the voltage across the capacitive sensor 104 can be observed by the second oscilloscope 106 coupled to the capacitive sensor 104.
  • the performance and voltage division ratio of the capacitive sensor 104 can be verified.
  • the voltage generated by the steep pulse generator in the current capacitive sensor calibration system for VFTO measurement is not high enough, and the steepness is not enough to simulate the environment in which the VFTO occurs.
  • the existing calibration system does not use Gas Insulated Switchgear (GIS, Gas Insulated Switchgear), but there must be GIS knife gate operation in the actual system.
  • GIS Gas Insulated Switchgear
  • the prior art only uses a steep pulse generator to simulate the GIS knife. The pulse waveform, amplitude and steepness generated by the gate operation are different from the actual system. Far away. Therefore, the prior art capacitive sensor calibrated in a low voltage environment cannot be applied to an actual high voltage system, so that the calibrated capacitive sensor cannot meet the VFTO response time requirement.
  • the technical problem to be solved by the present invention is to provide a capacitance sensor calibration system for fast transient overvoltage measurement, which can accurately calibrate a capacitance sensor for VFTO measurement.
  • Embodiments of the present invention provide a capacitance sensor calibration system for fast transient overvoltage measurement, including: a high voltage steep pulse generator, a cone transfer tube, a capacitance sensor, a resistor divider, a coaxial cable, a first oscilloscope, and a second Oscilloscope
  • the high-voltage steep pulse generator is configured to generate a high-voltage steep pulse; the high-voltage steep pulse is transmitted through the tapered transfer tube to the capacitance sensor and the resistor divider disposed on the gas insulated metal-enclosed switch device GIS; The tapered transfer tube and the GIS are coaxially connected;
  • the resistor divider transmits a resistor divider signal to the first oscilloscope via a coaxial cable
  • the capacitive sensor transmits an electrical voltage division signal to the second oscilloscope via a coaxial cable.
  • the conical transfer cylinder comprises a conical transmission inner cylinder and a conical transmission outer cylinder;
  • the tapered transmission inner cylinder is disposed coaxially with the inner conductor of the GIS, and the radius of the bottom surface of the tapered transmission inner cylinder is the same as the radius of the inner conductor;
  • the conical transmission outer cylinder is disposed coaxially with the outer casing of the GIS, and the radius of the bottom surface of the conical transmission outer cylinder is the same as the radius of the outer casing.
  • the capacitive sensor is disposed on a casing flange of the GIS.
  • the resistor divider is disposed through the outer casing of the GIS.
  • the inner conductor of the GIS is symmetrically distributed with the capacitive sensor along a central axis of the GIS.
  • a matching resistor disposed at the end of the GIS is further included.
  • a post insulator disposed between the inner conductor and the outer casing on the top surface of the GIS.
  • the first matching resistor and the second matching resistor are radial water resistors.
  • the high voltage steep pulse generator comprises an adjustable high voltage direct current power source, a first resistor, a second resistor, a first capacitor and a first switch;
  • the first resistor, the first capacitor and the second resistor connected in series between the negative pole and the positive pole of the adjustable high voltage DC power supply;
  • the positive pole of the adjustable high voltage DC power source is grounded
  • the first switch is connected in parallel between the common end of the first resistor and the first capacitor;
  • the common terminal of the first capacitor and the second resistor serves as a high voltage steep pulse output of the high voltage steep pulse generator.
  • the voltage of the high voltage steep pulse generated by the high voltage steep pulse generator is adjustable from 5 kV to 100 kV, and the rise time of the high voltage steep pulse is less than or equal to 3 ns.
  • the pulse width of the high-voltage steep pulse generated by the high-voltage steep pulse generator is compared with the prior art, and the present invention has the following advantages:
  • the VFTO measuring capacitive sensor calibration system transmits a high-voltage steep pulse generated by a steep pulse generator to a capacitive sensor and a resistor divider disposed on the GIS cylinder through a cone transfer cylinder; the cone-shaped transfer cylinder can make a high-voltage steep pulse The distortion generated by the waveform becomes smaller, thereby mitigating the influence of the high-voltage steep pulse due to the transmission process, and the test repeatability of the tapered transfer cylinder is good.
  • the calibration system uses a high voltage steep pulse generator As a signal source, this is more in line with the actual waveform of the VFTO.
  • the capacitive sensor and the resistor divider are placed on the GIS tube, so that the capacitance sensor can be calibrated close to the actual installation conditions.
  • FIG. 1 is a structural diagram of a calibration system of a capacitive sensor for VFTO measurement in the prior art
  • FIG. 2 is a structural diagram of a calibration system of a capacitance sensor for measuring VFTO provided by the present invention
  • FIG. 3 is a structural diagram of still another embodiment of a capacitance sensor calibration system for VFTO measurement provided by the present invention.
  • FIG. 4 is a structural diagram of a steep pulse generator according to an embodiment of the present invention. detailed description
  • High-voltage steep pulse generator A pulse voltage source having a small rise time (preferably 3 ns in the embodiment of the invention) and a half-peak width reaching a certain requirement (about 100 ns in the embodiment of the invention).
  • Conical transfer cylinder A variable radius transmission line whose wave impedance can be gradually changed (variable impedance line) or remains unchanged (in the embodiment of the present invention, an equal impedance line is used, that is, remains unchanged).
  • FIG. 2 the figure is a structural diagram of a calibration system for a capacitance sensor for VFTO measurement provided by the present invention.
  • the capacitive sensor calibration system for measuring VFTO includes: A high voltage steep pulse generator 201, a conical transfer cylinder 202, a capacitive sensor 203, a resistor divider 204, a coaxial cable 205, a first oscilloscope 206, and a second oscilloscope 207.
  • the high-voltage steep pulse generator 201 is configured to generate a high-voltage steep pulse; the high-voltage steep pulse is transmitted through the tapered transfer cylinder 202 to the capacitive sensor 203 and the resistor divider 204 disposed on the GIS; The conical transfer cylinder 202 and the GIS are coaxially connected.
  • the voltage amplitude of the high voltage steep pulse generator 201 in this embodiment is adjustable from 5 kV to 100 kV, and the rising edge is less than or equal to 3 ns.
  • the high voltage steep pulse generator 201 is calibrated to a high voltage of up to 100 kV to meet the ultra high voltage calibration requirements.
  • the tapered transfer cylinder 202 produces less distortion to the waveform and has good test repeatability.
  • the resistor divider 204 transmits a resistor divider signal to the first oscilloscope 206 via the coaxial cable 205.
  • the capacitive sensor 203 transmits a capacitive voltage division signal to the second oscilloscope 207 via the coaxial cable 205.
  • the VTTO measurement capacitive sensor calibration system uses a precisely adjustable wide-range high-voltage steep pulse generator 201 as a signal source, and the generated pulse voltage is simultaneously transmitted to the capacitance sensor disposed on the GIS through the cone transfer tube 202.
  • 203 and resistor divider 204 wherein the voltage across resistor divider 204 is used as a reference voltage, and the voltage across capacitor sensor 203 is compared to the voltage across resistor divider 204 to determine the performance of the capacitor sensor.
  • the voltage across the capacitive sensor 203 can be observed from the second oscilloscope 207, and the voltage across the resistor divider 204 can be observed from the oscilloscope 206.
  • the VFTO measuring capacitive sensor calibration system transmits the high-voltage steep pulse generated by the steep pulse generator to the capacitive sensor and the resistor divider set on the GIS through the cone transfer tube; the high-pressure steep pulse waveform can be made by the cone transfer tube The resulting distortion becomes smaller, thereby mitigating the high-voltage steep pulse due to the influence of the transmission process, and the cone
  • the test tube has good test repeatability.
  • the calibration system uses a high-voltage steep pulse generator as a signal source, which is more in line with the actual environment of the VFTO.
  • the capacitive sensor and the resistor divider are placed on the GIS, which can be combined with the actual GIS action to better calibrate the capacitance. sensor.
  • FIG. 3 there is shown a block diagram of still another embodiment of a capacitance sensor calibration system for VFTO measurement provided by the present invention.
  • the tapered transfer cylinder includes a tapered transfer inner cylinder 202b and a tapered transfer outer cylinder 202a.
  • the tapered transfer inner cylinder 202b is disposed coaxially with the inner conductor 301a of the GIS, and the radius of the tapered transfer inner cylinder 202b is the same as the radius of the inner conductor 301a.
  • the tapered transfer outer cylinder 202a is disposed coaxially with the outer casing 301b of the GIS, and the radius of the bottom surface of the tapered transfer outer cylinder 202a is the same as the radius of the outer casing 301b.
  • the capacitive sensor 203 is disposed on a flange of the outer casing 301b of the GIS.
  • the resistor divider 204 is disposed on the inner conductor 301a of the GIS through the outer casing 301b of the GIS, and is symmetrically distributed along the central axis of the GIS with the capacitive sensor 203.
  • the VFTO measurement capacitive sensor calibration system provided by the embodiment further includes a matching resistor disposed at the end of the GIS.
  • a matching resistor disposed at the end of the GIS.
  • six hand holes capable of installing a matching resistor are preferably disposed at the end of the GIS, according to It is actually necessary to determine the number of matching resistors.
  • the most common configuration used in the test was to place three matching resistors on the same torus, with an angle of 120 degrees between each of the two matching resistors. Only two matching resistors are shown in Figure 3, which are the first matching resistor R1 and the second matching resistor R2.
  • the matching surface of the matching resistor is more than the resistor divider and the resistor.
  • the circular surface on which the sensor is located is closer to the bottom surface of the GIS.
  • the first matching resistor R1 and the second matching resistor R2 preferably use a radial water resistance, which can effectively eliminate the total reflection of the wave, thereby improving the waveform.
  • the VFTO measuring capacitive sensor calibration system further includes a post insulator 302, and the post insulator 302 is symmetrically disposed between the inner conductor 301a and the outer casing 301b of the top surface of the GIS.
  • the number of the pillar insulators is not limited, and the pillar insulator functions to securely support the inner conductor, and therefore is disposed in the annular space formed by the inner conductor 301a and the outer casing 301b to fix the position of the inner conductor.
  • three post insulators may be provided on the same annular surface of the annular space formed by the inner conductor and the outer casing, with each of the two post insulators being spaced 120 degrees apart.
  • FIG. 4 there is shown a block diagram of a high voltage steep pulse generator according to an embodiment of the present invention.
  • the high voltage steep pulse generator provided in this embodiment includes an adjustable high voltage DC power source 401, a first resistor Ra, a second resistor Rb, a first capacitor C1 and a first switch K1.
  • the first resistor Ra, the first capacitor C1 and the second resistor Rb are connected in series between the negative pole and the positive pole of the adjustable high voltage DC power source 401.
  • the positive pole of the adjustable high voltage DC power source 401 is grounded.
  • the first switch K1 is connected in parallel between the common terminal of the first resistor Ra and the first capacitor C1.
  • the common terminal of the first capacitor C1 and the second resistor Rb serves as a high-voltage steep pulse output terminal of the high-voltage steep pulse generator.
  • the voltage amplitude of the high-voltage steep pulse generator is adjustable from 5kV to 100kV, rising The edge is less than or equal to 3 ns and the pulse width is 100 ns.
  • the adjustable high-voltage DC power source charges the first capacitor to a certain amplitude (5kV-100kV adjustable) through the first resistor and the second resistor, under the action of the first switch K1, One end of the first capacitor is grounded, and the other end outputs a high-voltage pulse of a fast leading edge. As shown in FIG. 4, if the adjustable high-voltage DC power supply outputs a negative voltage, the output terminal of the end point b will obtain a positive pulse voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A capacitive sensor calibration system for measuring fast transient over-voltages is provided. The system includes: a high voltage steep pulse generator (201), a conical transmission tube (202), a capacitive sensor (203), a resistive voltage divider (204), coaxial cables (205-1, 205-2), a first oscilloscope (206) and a second oscilloscope (207). The high voltage steep pulse generator (201) is arranged to generate a high voltage steep pulse. The high voltage steep pulse is transmitted to the capacitive sensor (203) and the resistive voltage divider (204), which are installed on a Gas Insulation metal closed Switchgear (GIS) through the conical transmission tube (202). The conical transmission tube (202) is connected with the GIS coaxially. The resistive voltage divider (204) transmits a resistive voltage dividing signal to the first oscilloscope (206) through the coaxial cable (205-1). The capacitive sensor (203) transmits a capacitive voltage dividing signal to the second oscilloscope (207) through the coaxial cable (205-2). The calibration system utilizes the high voltage steep pulse generator (201) as the signal resource, so as to accord with a real wave shape of a Very Fast Transient Over-voltage (VFTO). The capacitive sensor (203) and the resistive voltage divider (204) are installed on the GIS tube, so as to calibrate the capacitive sensor (203) under the state approaching to the real installing condition.

Description

快速暂态过电压测量用电容传感器标定系统 技术领域  Capacitor sensor calibration system for fast transient overvoltage measurement
本发明涉及电容传感器技术领域, 特别涉及一种快速暂态过 电压测量用电容传感器标定系统。 背景技术  The present invention relates to the field of capacitive sensor technology, and in particular, to a capacitive sensor calibration system for fast transient overvoltage measurement. Background technique
快速暂态过电压 ( VFTO, Very Fast Transient Over- voltage )测量用电容传感器标定系统是为了检测电容传感器的性 能是否满足要求和确定电容传感器的分压比。  The VFTO (Very Good Transient Over-voltage) measurement capacitive sensor calibration system is to detect whether the performance of the capacitive sensor meets the requirements and determine the voltage divider ratio of the capacitive sensor.
现有常用的 VFTO 测量用电容传感器的标定系统如图 1 所 示, 包括陡脉冲发生器 101、 同轴电缆 102、 衰减器 103、 电容传 感器 104、 第一示波器 105和第二示波器 106。 其工作原理是, 陡脉冲发生器 101是作为信号源, 用于产生电压脉冲, 电压脉冲 通过同轴电缆 102传送给衰减器 103和电容传感器 104, 电压脉 沖在衰减器 103和电容传感器 104上产生电压, 衰减器 103是为 了作为比较的基准。 衰减器 103 上的电压可以通过与衰减器 103 连接的第一示波器 105观察到; 电容传感器 104上的电压可以通 过与电容传感器 104连接的第二示波器 106观察到。 通过比较第 一示波器 105和第二示波器 106上的电压波形和电压幅值, 便可 以验证电容传感器 104的性能和分压比。  The calibration system of the conventional commonly used VFTO capacitive sensor is shown in FIG. 1, and includes a steep pulse generator 101, a coaxial cable 102, an attenuator 103, a capacitive sensor 104, a first oscilloscope 105, and a second oscilloscope 106. The working principle is that the steep pulse generator 101 is used as a signal source for generating a voltage pulse, and the voltage pulse is transmitted to the attenuator 103 and the capacitance sensor 104 through the coaxial cable 102, and the voltage pulse is generated on the attenuator 103 and the capacitance sensor 104. The voltage, attenuator 103 is used as a reference for comparison. The voltage across the attenuator 103 can be observed by the first oscilloscope 105 coupled to the attenuator 103; the voltage across the capacitive sensor 104 can be observed by the second oscilloscope 106 coupled to the capacitive sensor 104. By comparing the voltage waveform and voltage amplitude on the first oscilloscope 105 and the second oscilloscope 106, the performance and voltage division ratio of the capacitive sensor 104 can be verified.
但是, 目前这种 VFTO测量用电容传感器标定系统中的陡脉 冲发生器产生的电压不够高, 陡度不够, 无法模拟 VFTO发生的 环境。 而且, 现有的标定系统没有使用气体绝缘金属封闭开关设 备(GIS, Gas Insulated Switchgear ), 而实际系统中必然会有 GIS 刀闸操作, 现有技术只是使用了一个陡脉冲发生器来模拟 GIS 刀闸操作所产生的脉冲波形, 幅值和陡度都和实际系统相差 甚远。 因此, 现有技术中的在低压环境下标定出来的电容传感器 无法应用到实际的高压系统中, 这样标定出来的电容传感器也无 法满足 VFTO响应时间的要求。 发明内容 However, the voltage generated by the steep pulse generator in the current capacitive sensor calibration system for VFTO measurement is not high enough, and the steepness is not enough to simulate the environment in which the VFTO occurs. Moreover, the existing calibration system does not use Gas Insulated Switchgear (GIS, Gas Insulated Switchgear), but there must be GIS knife gate operation in the actual system. The prior art only uses a steep pulse generator to simulate the GIS knife. The pulse waveform, amplitude and steepness generated by the gate operation are different from the actual system. Far away. Therefore, the prior art capacitive sensor calibrated in a low voltage environment cannot be applied to an actual high voltage system, so that the calibrated capacitive sensor cannot meet the VFTO response time requirement. Summary of the invention
本发明要解决的技术问题是提供一种快速暂态过电压测量用 电容传感器标定系统, 能够准确标定 VFTO 测量用的电容传感 器。  The technical problem to be solved by the present invention is to provide a capacitance sensor calibration system for fast transient overvoltage measurement, which can accurately calibrate a capacitance sensor for VFTO measurement.
本发明实施例提供一种快速暂态过电压测量用电容传感器标 定系统, 包括: 高压陡脉冲发生器、 锥形传输筒、 电容传感器、 电阻分压器、 同轴电缆、 第一示波器和第二示波器;  Embodiments of the present invention provide a capacitance sensor calibration system for fast transient overvoltage measurement, including: a high voltage steep pulse generator, a cone transfer tube, a capacitance sensor, a resistor divider, a coaxial cable, a first oscilloscope, and a second Oscilloscope
所述高压陡脉冲发生器, 用于产生高压陡脉冲; 所述高压陡 脉冲通过所述锥形传输筒传输至设置于气体绝缘金属封闭开关设 备 GIS 上的所述电容传感器和电阻分压器; 所述锥形传输筒和 GIS同轴连接在一起;  The high-voltage steep pulse generator is configured to generate a high-voltage steep pulse; the high-voltage steep pulse is transmitted through the tapered transfer tube to the capacitance sensor and the resistor divider disposed on the gas insulated metal-enclosed switch device GIS; The tapered transfer tube and the GIS are coaxially connected;
所述电阻分压器通过同轴电缆将电阻分压信号传送至第一示 波器;  The resistor divider transmits a resistor divider signal to the first oscilloscope via a coaxial cable;
所述电容传感器通过同轴电缆将电 ^分压信号传送至第二示 波器。  The capacitive sensor transmits an electrical voltage division signal to the second oscilloscope via a coaxial cable.
优选地, 所述锥形传输筒包括锥形传输内筒和锥形传输外 筒;  Preferably, the conical transfer cylinder comprises a conical transmission inner cylinder and a conical transmission outer cylinder;
所述锥形传输内筒与所述 GIS的内导体同轴设置, 锥形传输 内筒的底面半径与内导体的半径相同;  The tapered transmission inner cylinder is disposed coaxially with the inner conductor of the GIS, and the radius of the bottom surface of the tapered transmission inner cylinder is the same as the radius of the inner conductor;
所述锥形传输外筒与所述 GIS的外壳同轴设置, 锥形传输外 筒的底面半径与所述外壳的半径相同。  The conical transmission outer cylinder is disposed coaxially with the outer casing of the GIS, and the radius of the bottom surface of the conical transmission outer cylinder is the same as the radius of the outer casing.
优选地, 所述电容传感器设置于所述 GIS的外壳法兰上。 优选地, 所述电阻分压器穿过所述 GIS 的外壳设置于所述 GIS的内导体上, 与所述电容传感器沿所述 GIS的中心轴对称分 布。 Preferably, the capacitive sensor is disposed on a casing flange of the GIS. Preferably, the resistor divider is disposed through the outer casing of the GIS The inner conductor of the GIS is symmetrically distributed with the capacitive sensor along a central axis of the GIS.
优选地, 还包括设置于所述 GIS末端的匹配电阻。  Preferably, a matching resistor disposed at the end of the GIS is further included.
优选地, 还包括设置于 GIS顶面, 所述内导体和外壳之间的 支柱绝缘子。  Preferably, further comprising a post insulator disposed between the inner conductor and the outer casing on the top surface of the GIS.
优选地, 所述第一匹配电阻和第二匹配电阻为辐射状水电 阻。  Preferably, the first matching resistor and the second matching resistor are radial water resistors.
优选地, 所述高压陡脉冲发生器包括可调高压直流电源、 第 一电阻、 第二电阻、 第一电容和第一开关;  Preferably, the high voltage steep pulse generator comprises an adjustable high voltage direct current power source, a first resistor, a second resistor, a first capacitor and a first switch;
所述可调高压直流电源的负极和正极之间依次包括串联的第 一电阻、 第一电容和第二电阻;  The first resistor, the first capacitor and the second resistor connected in series between the negative pole and the positive pole of the adjustable high voltage DC power supply;
所述可调高压直流电源的正极接地;  The positive pole of the adjustable high voltage DC power source is grounded;
所述第一开关并联在地所述第一电阻和第一电容的公共端与 之间;  The first switch is connected in parallel between the common end of the first resistor and the first capacitor;
所述第一电容和第二电阻的公共端作为所述高压陡脉冲发生 器的高压陡脉冲输出端。  The common terminal of the first capacitor and the second resistor serves as a high voltage steep pulse output of the high voltage steep pulse generator.
优选地, 所述高压陡脉沖发生器产生的高压陡脉冲的电压的 幅值在 5kV-100kV 可调, 高压陡脉冲的上升时间小于或等于 3ns。  Preferably, the voltage of the high voltage steep pulse generated by the high voltage steep pulse generator is adjustable from 5 kV to 100 kV, and the rise time of the high voltage steep pulse is less than or equal to 3 ns.
优选地, 所述高压陡脉沖发生器产生的高压陡脉冲的脉宽为 与现有技术相比, 本发明具有以下优点:  Preferably, the pulse width of the high-voltage steep pulse generated by the high-voltage steep pulse generator is compared with the prior art, and the present invention has the following advantages:
该 VFTO测量用电容传感器标定系统, 通过锥形传输筒将陡 脉冲产生器产生的高压陡脉冲传输至设置于 GIS筒上的电容传感 器和电阻分压器; 由于锥形传输筒可以使高压陡脉冲波形产生的 畸变变小, 从而减轻高压陡脉冲由于传输过程受到的影响, 并且 锥形传输筒的试验重复性好。 该标定系统使用高压陡脉冲产生器 作为信号源, 这样更符合 VFTO的实际波形, 另外将电容传感器 和电阻分压器设置于 GIS筒上, 这样可在接近实际安装条件的情 况下, 对电容传感器进行标定。 附图说明 The VFTO measuring capacitive sensor calibration system transmits a high-voltage steep pulse generated by a steep pulse generator to a capacitive sensor and a resistor divider disposed on the GIS cylinder through a cone transfer cylinder; the cone-shaped transfer cylinder can make a high-voltage steep pulse The distortion generated by the waveform becomes smaller, thereby mitigating the influence of the high-voltage steep pulse due to the transmission process, and the test repeatability of the tapered transfer cylinder is good. The calibration system uses a high voltage steep pulse generator As a signal source, this is more in line with the actual waveform of the VFTO. In addition, the capacitive sensor and the resistor divider are placed on the GIS tube, so that the capacitance sensor can be calibrated close to the actual installation conditions. DRAWINGS
图 1是现有技术中 VFTO测量用电容传感器的标定系统的结 构图;  1 is a structural diagram of a calibration system of a capacitive sensor for VFTO measurement in the prior art;
图 2是本发明提供的 VFTO测量用电容传感器的标定系统结 构图;  2 is a structural diagram of a calibration system of a capacitance sensor for measuring VFTO provided by the present invention;
图 3是本发明提供的 VFTO测量用电容传感器标定系统的又 一实施例结构图;  3 is a structural diagram of still another embodiment of a capacitance sensor calibration system for VFTO measurement provided by the present invention;
图 4是本发明实施例提供的陡脉冲发生器结构图。 具体实施方式  4 is a structural diagram of a steep pulse generator according to an embodiment of the present invention. detailed description
为了使本领域技术人员更好地理解和实施本发明, 下面介绍 几个专业术语。  In order to make those skilled in the art better understand and practice the invention, several technical terms are described below.
高压陡脉冲发生器: 一种脉冲电压源, 其上升时间小 (本发 明实施例中优选 3ns ), 半峰值宽度达到一定要求(本发明实施例 中约选择 100ns )。  High-voltage steep pulse generator: A pulse voltage source having a small rise time (preferably 3 ns in the embodiment of the invention) and a half-peak width reaching a certain requirement (about 100 ns in the embodiment of the invention).
锥形传输筒: 一种变半径的传输线, 其波阻抗可以逐渐改变 (变阻抗线)或保持不变 (本发明实施例中釆用了等阻抗线, 即 保持不变)。  Conical transfer cylinder: A variable radius transmission line whose wave impedance can be gradually changed (variable impedance line) or remains unchanged (in the embodiment of the present invention, an equal impedance line is used, that is, remains unchanged).
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下 面结合附图对本发明的具体实施方式做详细的说明。  The above described objects, features and advantages of the present invention will become more apparent from the aspects of the appended claims.
参见图 2, 该图为本发明提供的 VFTO测量用电容传感器的 标定系统结构图。  Referring to Fig. 2, the figure is a structural diagram of a calibration system for a capacitance sensor for VFTO measurement provided by the present invention.
本实施例提供的 VFTO测量用电容传感器标定系统, 包括: 高压陡脉冲发生器 201、 锥形传输筒 202、 电容传感器 203、 电阻 分压器 204、 同轴电缆 205、 第一示波器 206和第二示波器 207。 The capacitive sensor calibration system for measuring VFTO provided in this embodiment includes: A high voltage steep pulse generator 201, a conical transfer cylinder 202, a capacitive sensor 203, a resistor divider 204, a coaxial cable 205, a first oscilloscope 206, and a second oscilloscope 207.
所述高压陡脉冲发生器 201, 用于产生高压陡脉冲; 所述高 压陡脉冲通过所述锥形传输筒 202传输至设置于 GIS上的所述电 容传感器 203和电阻分压器 204; 所述锥形传输筒 202和 GIS同 轴连接在一起。  The high-voltage steep pulse generator 201 is configured to generate a high-voltage steep pulse; the high-voltage steep pulse is transmitted through the tapered transfer cylinder 202 to the capacitive sensor 203 and the resistor divider 204 disposed on the GIS; The conical transfer cylinder 202 and the GIS are coaxially connected.
本实施例中的高压陡脉冲发生器 201 的电压幅值在 5kV- 100kV可调, 上升沿小于或等于 3ns。 该高压陡脉冲发生器 201 标定所使用的电压高, 最高可达到 100kV, 满足超高压的标定要 求。  The voltage amplitude of the high voltage steep pulse generator 201 in this embodiment is adjustable from 5 kV to 100 kV, and the rising edge is less than or equal to 3 ns. The high voltage steep pulse generator 201 is calibrated to a high voltage of up to 100 kV to meet the ultra high voltage calibration requirements.
锥形传输筒 202对波形产生的畸变较小, 试验重复性好。  The tapered transfer cylinder 202 produces less distortion to the waveform and has good test repeatability.
所述电阻分压器 204通过同轴电缆 205将电阻分压信号传送 至第一示波器 206。  The resistor divider 204 transmits a resistor divider signal to the first oscilloscope 206 via the coaxial cable 205.
所述电容传感器 203通过同轴电缆 205将电容分压信号传送 至第二示波器 207。  The capacitive sensor 203 transmits a capacitive voltage division signal to the second oscilloscope 207 via the coaxial cable 205.
本实施例提供的 VTTO测量用电容传感器标定系统, 以精确 可调的宽范围高压陡脉冲发生器 201作为信号源, 产生的脉冲电 压经过锥形传输筒 202 同时传送给设置于 GIS 上的电容传感器 203 和电阻分压器 204, 其中电阻分压器 204上的电压作为基准 电压, 电容传感器 203 上的电压与电阻分压器 204 上的电压比 较, 以此判断电容传感器的性能。 电容传感器 203上的电压可以 从第二示波器 207上观测到, 电阻分压器 204上的电压可以从笫 一示波器 206上观测到。  The VTTO measurement capacitive sensor calibration system provided by the embodiment uses a precisely adjustable wide-range high-voltage steep pulse generator 201 as a signal source, and the generated pulse voltage is simultaneously transmitted to the capacitance sensor disposed on the GIS through the cone transfer tube 202. 203 and resistor divider 204, wherein the voltage across resistor divider 204 is used as a reference voltage, and the voltage across capacitor sensor 203 is compared to the voltage across resistor divider 204 to determine the performance of the capacitor sensor. The voltage across the capacitive sensor 203 can be observed from the second oscilloscope 207, and the voltage across the resistor divider 204 can be observed from the oscilloscope 206.
该 VFTO测量用电容传感器标定系统, 通过锥形传输筒将陡 脉冲产生器产生的高压陡脉冲传输至设置于 GIS上的电容传感器 和电阻分压器; 由于锥形传输筒可以使高压陡脉冲波形产生的畸 变变小, 从而减轻高压陡脉冲因为传输过程受到的影响, 并且锥 形传输筒的试验重复性好。 该标定系统使用高压陡脉沖产生器作 为信号源, 这样更符合 VFTO的实际环境, 另外将电容传感器和 电阻分压器设置于 GIS 上, 这样和实际的 GIS 动作结合起来, 可以更好地标定电容传感器。 The VFTO measuring capacitive sensor calibration system transmits the high-voltage steep pulse generated by the steep pulse generator to the capacitive sensor and the resistor divider set on the GIS through the cone transfer tube; the high-pressure steep pulse waveform can be made by the cone transfer tube The resulting distortion becomes smaller, thereby mitigating the high-voltage steep pulse due to the influence of the transmission process, and the cone The test tube has good test repeatability. The calibration system uses a high-voltage steep pulse generator as a signal source, which is more in line with the actual environment of the VFTO. In addition, the capacitive sensor and the resistor divider are placed on the GIS, which can be combined with the actual GIS action to better calibrate the capacitance. sensor.
下面結合图 3详细介绍本发明提供的 VFTO测量用电容传感 器标定系统的具体结构。  The specific structure of the VFTO measuring capacitance sensor calibration system provided by the present invention will be described in detail below with reference to FIG.
参见图 3, 该图为本发明提供的 VFTO测量用电容传感器标 定系统的又一实施例结构图。  Referring to Fig. 3, there is shown a block diagram of still another embodiment of a capacitance sensor calibration system for VFTO measurement provided by the present invention.
如图 3 所示, 所述锥形传输筒包括锥形传输内筒 202b和锥 形传输外筒 202a。  As shown in Fig. 3, the tapered transfer cylinder includes a tapered transfer inner cylinder 202b and a tapered transfer outer cylinder 202a.
所述锥形传输内筒 202b与所述 GIS 的内导体 301a 同轴设 置, 锥形传输内筒 202b的;^面半径与内导体 301a的半径相同。  The tapered transfer inner cylinder 202b is disposed coaxially with the inner conductor 301a of the GIS, and the radius of the tapered transfer inner cylinder 202b is the same as the radius of the inner conductor 301a.
所述锥形传输外筒 202a与所述 GIS的外壳 301b同轴设置, 锥形传输外筒 202a的底面半径与所述外壳 301b的半径相同。  The tapered transfer outer cylinder 202a is disposed coaxially with the outer casing 301b of the GIS, and the radius of the bottom surface of the tapered transfer outer cylinder 202a is the same as the radius of the outer casing 301b.
所述电容传感器 203设置于所述 GIS 的外壳 301b 的法兰 上。  The capacitive sensor 203 is disposed on a flange of the outer casing 301b of the GIS.
所述电阻分压器 204穿过所述 GIS的外壳 301b设置于所述 GIS的内导体 301a上, 与所述电容传感器 203沿所述 GIS的中 心轴对称分布。  The resistor divider 204 is disposed on the inner conductor 301a of the GIS through the outer casing 301b of the GIS, and is symmetrically distributed along the central axis of the GIS with the capacitive sensor 203.
本实施例提供的 VFTO测量用电容传感器标定系统, 还包括 设置于所述 GIS末端的匹配电阻, 需要说明的是, 本实施例中优 选在 GIS末端设置六个可以安装匹配电阻的手孔, 根据实际需要 来确定匹配电阻的数目。 试验中最常用的配置是, 在同一个圆环 面上设置三个匹配电阻, 每两个匹配电阻之间的夹角是 120度。 图 3 中仅示出了两个匹配电阻, 分别是第一匹配电阻 R1 和第二 匹配电阻 R2。  The VFTO measurement capacitive sensor calibration system provided by the embodiment further includes a matching resistor disposed at the end of the GIS. It should be noted that, in this embodiment, six hand holes capable of installing a matching resistor are preferably disposed at the end of the GIS, according to It is actually necessary to determine the number of matching resistors. The most common configuration used in the test was to place three matching resistors on the same torus, with an angle of 120 degrees between each of the two matching resistors. Only two matching resistors are shown in Figure 3, which are the first matching resistor R1 and the second matching resistor R2.
需要说明的是, 匹配电阻所在的圆面比所述电阻分压器和电 容传感器所在的圆面更靠近 GIS的底面。 It should be noted that the matching surface of the matching resistor is more than the resistor divider and the resistor. The circular surface on which the sensor is located is closer to the bottom surface of the GIS.
需要说明的是, 本实施例中所述第一匹配电阻 R1 和第二匹 配电阻 R2优选釆用辐射状水电阻, 可以有效消除波的全反射现 象, 从而改善波形。  It should be noted that, in the embodiment, the first matching resistor R1 and the second matching resistor R2 preferably use a radial water resistance, which can effectively eliminate the total reflection of the wave, thereby improving the waveform.
本实施例提供的 VFTO测量用电容传感器标定系统, 还包括 支柱绝缘子 302, 所述支柱绝缘子 302对称设置在所述 GIS顶面 的内导体 301a和外壳 301b之间。 需要说明的是, 不限定所述支 柱绝缘子的个数, 支柱绝缘子的作用是固定支撑内导体, 因此设 置在内导体 301a与外壳 301b构成的环形空间内, 以使内导体的 位置固定。 例如, 可以设置三个支柱绝缘子, 在内导体与外壳组 成的环形空间的同一个环形面上设置, 每两个支柱绝缘子之间间 隔 120度。  The VFTO measuring capacitive sensor calibration system provided by this embodiment further includes a post insulator 302, and the post insulator 302 is symmetrically disposed between the inner conductor 301a and the outer casing 301b of the top surface of the GIS. It should be noted that the number of the pillar insulators is not limited, and the pillar insulator functions to securely support the inner conductor, and therefore is disposed in the annular space formed by the inner conductor 301a and the outer casing 301b to fix the position of the inner conductor. For example, three post insulators may be provided on the same annular surface of the annular space formed by the inner conductor and the outer casing, with each of the two post insulators being spaced 120 degrees apart.
下面结合图 4详细介绍本发明实施例提供的高压陡脉冲发生 器的结构。  The structure of the high voltage steep pulse generator provided by the embodiment of the present invention will be described in detail below with reference to FIG.
参见图 4, 该图为本发明实施例提供的高压陡脉冲发生器结 构图。  Referring to Figure 4, there is shown a block diagram of a high voltage steep pulse generator according to an embodiment of the present invention.
本实施例提供的高压陡脉沖发生器包括可调高压直流电源 401、 第一电阻 Ra、 第二电阻 Rb、 第一电容 C1 和第一开关 K1.  The high voltage steep pulse generator provided in this embodiment includes an adjustable high voltage DC power source 401, a first resistor Ra, a second resistor Rb, a first capacitor C1 and a first switch K1.
所述可调高压直流电源 401 的负极和正极之间依次包括串联 的第一电阻 Ra、 第一电容 C1和第二电阻 Rb。  The first resistor Ra, the first capacitor C1 and the second resistor Rb are connected in series between the negative pole and the positive pole of the adjustable high voltage DC power source 401.
所述可调高压直流电源 401的正极接地。  The positive pole of the adjustable high voltage DC power source 401 is grounded.
所述第一开关 K1并联在地所迷第一电阻 Ra和笫一电容 C1 的公共端与之间。  The first switch K1 is connected in parallel between the common terminal of the first resistor Ra and the first capacitor C1.
所述第一电容 C1 和第二电阻 Rb 的公共端作为所述高压陡 脉冲发生器的高压陡脉沖输出端。  The common terminal of the first capacitor C1 and the second resistor Rb serves as a high-voltage steep pulse output terminal of the high-voltage steep pulse generator.
所述高压陡脉冲发生器的电压幅值在 5kV-100kV可调, 上升 沿小于或等于 3ns, 脉宽为 100ns。 The voltage amplitude of the high-voltage steep pulse generator is adjustable from 5kV to 100kV, rising The edge is less than or equal to 3 ns and the pulse width is 100 ns.
高压陡脉冲发生器的工作原理是: 可调高压直流电源通过第 一电阻和第二电阻使第一电容充电到一定幅值 (5kV-100kV 可 调), 在第一开关 K1的作用下, 使第一电容的一端接地, 另一端 输出快前沿的高压脉冲, 如图 4所示, 如果可调高压直流电源输 出负电压, 则端点 b所在的输出端将得到正极性的脉冲电压。  The working principle of the high-voltage steep pulse generator is: The adjustable high-voltage DC power source charges the first capacitor to a certain amplitude (5kV-100kV adjustable) through the first resistor and the second resistor, under the action of the first switch K1, One end of the first capacitor is grounded, and the other end outputs a high-voltage pulse of a fast leading edge. As shown in FIG. 4, if the adjustable high-voltage DC power supply outputs a negative voltage, the output terminal of the end point b will obtain a positive pulse voltage.
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作 任何形式上的限制。 虽然本发明已以较佳实施例揭露如上, 然而 并非用以限定本发明。 任何熟悉本领域的技术人员, 在不脱离本 发明技术方案范围情况下, 都可利用上述揭示的方法和技术内容 对本发明技术方案做出许多可能的变动和修饰, 或修改为等同变 化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依 据本发明的技术实质对以上实施例所做的任何简单修改、 等同变 化及修饰, 均仍属于本发明技术方案保护的范围内。  The above description is only a preferred embodiment of the invention and is not intended to limit the invention in any way. Although the invention has been disclosed above in the preferred embodiments, it is not intended to limit the invention. Any person skilled in the art can make many possible variations and modifications to the technical solutions of the present invention by using the methods and technical contents disclosed above, or modify the equivalents of equivalent changes without departing from the scope of the technical solutions of the present invention. Example. Therefore, any simple modifications, equivalent changes, and modifications made to the above embodiments in accordance with the technical spirit of the present invention are still within the scope of the technical solutions of the present invention.

Claims

权 利 要 求 Rights request
1、 一种快速暂态过电压测量用电容传感器标定系统, 其特 征在于, 包括: 高压陡脉沖发生器、 锥形传输筒、 电容传感器、 电阻分压器、 同轴电缆、 第一示波器和第二示波器; 1. A capacitive sensor calibration system for fast transient overvoltage measurement, comprising: a high voltage steep pulse generator, a cone transfer tube, a capacitance sensor, a resistor divider, a coaxial cable, a first oscilloscope, and a Second oscilloscope
所述高压陡脉沖发生器, 用于产生高压陡脉冲; 所述高压陡 脉沖通过所述锥形传输筒传输至设置于气体绝缘金属封闭开关设 备 GIS 上的所述电容传感器和电阻分压器; 所述雉形传输筒和 GIS同轴连接在一起;  The high-voltage steep pulse generator is configured to generate a high-voltage steep pulse; the high-voltage steep pulse is transmitted through the tapered transfer tube to the capacitance sensor and the resistor divider disposed on the gas insulated metal-enclosed switch device GIS; The dome-shaped transmission tube and the GIS are coaxially connected;
所述电阻分压器通过同轴电缆将电阻分压信号传送至第一示 波器;  The resistor divider transmits a resistor divider signal to the first oscilloscope via a coaxial cable;
所述电容传感器通过同轴电缆将电容分压信号传送至第二示 波器。  The capacitive sensor transmits a capacitive voltage division signal to the second oscilloscope via a coaxial cable.
2、 根据权利要求 1 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述锥形传输筒包括锥形传输内筒和 锥形传输外筒;  2. The capacitive sensor calibration system for fast transient overvoltage measurement according to claim 1, wherein the tapered transmission cylinder comprises a conical transmission inner cylinder and a conical transmission outer cylinder;
所述锥形传输内筒与所述 GIS的内导体同轴设置, 锥形传输 内筒的底面半径与内导体的半径相同;  The tapered transmission inner cylinder is disposed coaxially with the inner conductor of the GIS, and the radius of the bottom surface of the tapered transmission inner cylinder is the same as the radius of the inner conductor;
所述锥形传输外筒与所述 GIS的外壳同轴设置, 锥形传输外 筒的底面半径与所述外壳的半径相同。  The conical transmission outer cylinder is disposed coaxially with the outer casing of the GIS, and the radius of the bottom surface of the conical transmission outer cylinder is the same as the radius of the outer casing.
3、 根据权利要求 2 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述电容传感器设置于所述 GIS的外 壳法兰上。  3. The capacitance sensor calibration system for fast transient overvoltage measurement according to claim 2, wherein the capacitance sensor is disposed on an outer casing flange of the GIS.
4、 根据权利要求 3 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述电阻分压器穿过所述 GIS的外壳 设置于所述 GIS 的内导体上, 与所述电容传感器沿所述 GIS 的 中心轴对称分布。 4. The capacitance sensor calibration system for fast transient overvoltage measurement according to claim 3, wherein the resistor divider is disposed on an inner conductor of the GIS through a casing of the GIS, and The capacitive sensors are symmetrically distributed along the central axis of the GIS.
5、 根据权利要求 1 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 还包括设置于所述 GIS末端的匹配电 阻。 5. The capacitive sensor calibration system for fast transient overvoltage measurement according to claim 1, further comprising a matching resistor disposed at an end of the GIS.
6、 根据权利要求 1 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 还包括设置于 GIS顶面, 所述内导体 和外壳之间的支柱绝缘子。  6. The capacitive sensor calibration system for fast transient overvoltage measurement according to claim 1, further comprising a post insulator disposed on the top surface of the GIS between the inner conductor and the outer casing.
7、 根据权利要求 5 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述第一匹配电阻和第二匹配电阻为 辐射状水电阻。  7. The capacitance sensor calibration system for fast transient overvoltage measurement according to claim 5, wherein the first matching resistor and the second matching resistor are radial water resistors.
8、 根据权利要求 1 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述高压陡脉沖发生器包括可调高压 直流电源、 第一电阻、 第二电阻、 第一电容和第一开关;  8. The capacitance sensor calibration system for fast transient overvoltage measurement according to claim 1, wherein the high voltage steep pulse generator comprises an adjustable high voltage DC power supply, a first resistor, a second resistor, and a first capacitor. And the first switch;
所述可调高压直流电源的负极和正极之间依次包括串联的第 一电阻、 第一电容和第二电阻;  The first resistor, the first capacitor and the second resistor connected in series between the negative pole and the positive pole of the adjustable high voltage DC power supply;
所述可调高压直流电源的正极接地;  The positive pole of the adjustable high voltage DC power source is grounded;
所述第一开关并联在地所述第一电阻和第一电容的公共端与 之间;  The first switch is connected in parallel between the common end of the first resistor and the first capacitor;
所述第一电容和第二电阻的公共端作为所述高压陡脉冲发生 器的高压陡脉冲输出端。  The common terminal of the first capacitor and the second resistor serves as a high voltage steep pulse output of the high voltage steep pulse generator.
9、 根据权利要求 1 所述的快速暂态迚电压测量用电容传感 器标定系统, 其特征在于, 所述高压陡脉冲发生器产生的高压陡 脉沖的电压的幅值在 5kV-100kV可调, 高压陡脉沖的上升时间小 于或等于 3nSo  9. The capacitance sensor calibration system for fast transient chirp voltage measurement according to claim 1, wherein the voltage of the high voltage steep pulse generated by the high voltage steep pulse generator is adjustable from 5 kV to 100 kV, and the high voltage is The rise time of the steep pulse is less than or equal to 3nSo
10、 根据权利要求 8 所述的快速暂态过电压测量用电容传感 器标定系统, 其特征在于, 所述高压陡脉冲发生器产生的高压陡 脉冲的脉宽为 100ns。  10. The capacitance sensor calibration system for fast transient overvoltage measurement according to claim 8, wherein the high voltage steep pulse generated by the high voltage steep pulse generator has a pulse width of 100 ns.
PCT/CN2011/000387 2010-06-17 2011-03-11 Capacitive sensor calibration system for measuring fast transient over-voltages WO2011157047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514532A JP5889884B2 (en) 2010-06-17 2011-03-11 System for calibrating capacitive sensors used in very fast transient overvoltage measurements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010204642 CN101865987B (en) 2010-06-17 2010-06-17 Capacitance sensor calibration system for measuring very fast transient overvoltage (VFTO)
CN201010204642.5 2010-06-17

Publications (2)

Publication Number Publication Date
WO2011157047A1 true WO2011157047A1 (en) 2011-12-22
WO2011157047A8 WO2011157047A8 (en) 2013-01-31

Family

ID=42957788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000387 WO2011157047A1 (en) 2010-06-17 2011-03-11 Capacitive sensor calibration system for measuring fast transient over-voltages

Country Status (3)

Country Link
JP (1) JP5889884B2 (en)
CN (1) CN101865987B (en)
WO (1) WO2011157047A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105521A (en) * 2013-01-29 2013-05-15 华北电力大学 Very fast transient overvoltage (VFTO) remote measurement system and method
CN108875147A (en) * 2018-05-28 2018-11-23 武汉理工大学 A kind of VFTO mathematic(al) representation approximating method
CN108957265A (en) * 2018-08-27 2018-12-07 云南电网有限责任公司电力科学研究院 High condensation area insulator VFTO flashover property rate of descent experimental rig and method
CN108957264A (en) * 2018-08-27 2018-12-07 云南电网有限责任公司电力科学研究院 GIS pilot system and method under VFTO and Lightning Over-voltage effect
CN111537778A (en) * 2020-04-25 2020-08-14 中国原子能科学研究院 Pulse high-voltage measuring device
US11644484B2 (en) 2018-12-17 2023-05-09 G & W Electric Company Electrical sensor assembly
US11740261B2 (en) 2016-10-14 2023-08-29 G & W Electric Company Capacitive voltage sensor assembly
US11774481B2 (en) 2018-12-17 2023-10-03 G & W Electric Company Electrical sensor assembly
US11815529B2 (en) 2018-03-30 2023-11-14 G & W Electric Company Constructive system regarding a capacitive sensor
CN117192224A (en) * 2023-09-28 2023-12-08 武汉朗德电气有限公司 GIS basin-type insulator dielectric loss testing device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799488B (en) * 2010-02-23 2011-12-21 清华大学 Device and method for generating nominal voltage
CN101865987B (en) * 2010-06-17 2013-01-02 西安交通大学 Capacitance sensor calibration system for measuring very fast transient overvoltage (VFTO)
CN102136831B (en) * 2011-01-14 2013-04-24 西北核技术研究所 High-voltage repetition-frequency pulse generator
CN103149545B (en) * 2013-01-29 2016-05-11 华北电力大学 The method of testing of VFTO sensor, device, equipment and system
CN103217659B (en) * 2013-04-17 2015-06-03 清华大学 Calibration method and calibration device of very fast transient overvoltage measuring system
CN103543316B (en) * 2013-09-29 2015-12-09 国家电网公司 The transient voltage measuring system of Transformer Winding and method
CN105372563B (en) * 2015-10-22 2018-04-10 西安交通大学 A kind of extra-high voltage GIS testing on-site impact transient overvoltage restraining device
CN105891689A (en) * 2016-04-14 2016-08-24 国家电网公司 Partial discharge integrated probe based on capacitance voltage division method VFTO measurement sensor
KR102359151B1 (en) * 2017-03-17 2022-02-08 한국전력공사 System and Method for measuring On-line Trip/Close Surge for Circuit Breaker Equipment
CN107907806B (en) * 2017-12-13 2020-11-06 国网四川省电力公司电力科学研究院 Bus voltage measuring device based on GIS basin-type insulator distributed capacitance
CN109061419B (en) * 2018-08-27 2020-11-20 云南电网有限责任公司电力科学研究院 Insulating oil insulation strength test system and method under composite VFTO effect
CN108761296B (en) * 2018-08-27 2023-11-21 云南电网有限责任公司电力科学研究院 Device and method for testing pulse loss rate of external insulation VFTO in low-pressure environment
CN110609247A (en) * 2019-09-19 2019-12-24 国网天津市电力公司电力科学研究院 Transient earth voltage partial discharge detector calibration system
CN112763959A (en) * 2020-12-24 2021-05-07 广东电网有限责任公司电力科学研究院 External transient overvoltage sensor frequency response calibration platform
CN114280411A (en) * 2021-11-19 2022-04-05 中国电建集团河北省电力勘测设计研究院有限公司 Test method for obtaining high-frequency response of cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312050A2 (en) * 1987-10-14 1989-04-19 Hydro-Quebec High voltage measuring circuit coupled to the capacitive grounding tap bushing of an HV device
CN1858599A (en) * 2005-05-02 2006-11-08 三菱电机株式会社 Voltage check device
CN1858598A (en) * 2005-05-02 2006-11-08 三菱电机株式会社 Voltage check device for gas insulation apparatus
CN1908681A (en) * 2006-08-15 2007-02-07 重庆大学 Over-voltage monitoring sensor for AD electricity system
CN101458273A (en) * 2008-12-26 2009-06-17 西北电网有限公司 Sensor for measuring very fast transient overvoltage in GIS
CN101865987A (en) * 2010-06-17 2010-10-20 西安交通大学 Capacitance sensor calibration system for measuring very fast transient overvoltage (VFTO)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470568A (en) * 1990-07-12 1992-03-05 Toshiba Corp Surge voltage sensor
JPH09281173A (en) * 1996-04-18 1997-10-31 Nikon Corp Electrostatic discharge simulator
DE19719521A1 (en) * 1997-05-09 1998-11-19 Felten & Guilleaume Energie Voltage sensor for measuring and protection devices for medium-voltage switchgear
CN2593431Y (en) * 2002-12-13 2003-12-17 广东长园电缆附件有限公司 Cable terminal
CN2779413Y (en) * 2004-05-31 2006-05-10 綦南供电局 Online monitoring apparatus for overvoltage of 10KV power system
JP2006337357A (en) * 2005-05-02 2006-12-14 Mitsubishi Electric Corp Voltage detection system
CN201226010Y (en) * 2008-03-05 2009-04-22 国网武汉高压研究院 Flat-plate type rapid steep-wave VFTO sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312050A2 (en) * 1987-10-14 1989-04-19 Hydro-Quebec High voltage measuring circuit coupled to the capacitive grounding tap bushing of an HV device
CN1858599A (en) * 2005-05-02 2006-11-08 三菱电机株式会社 Voltage check device
CN1858598A (en) * 2005-05-02 2006-11-08 三菱电机株式会社 Voltage check device for gas insulation apparatus
CN1908681A (en) * 2006-08-15 2007-02-07 重庆大学 Over-voltage monitoring sensor for AD electricity system
CN101458273A (en) * 2008-12-26 2009-06-17 西北电网有限公司 Sensor for measuring very fast transient overvoltage in GIS
CN101865987A (en) * 2010-06-17 2010-10-20 西安交通大学 Capacitance sensor calibration system for measuring very fast transient overvoltage (VFTO)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105521A (en) * 2013-01-29 2013-05-15 华北电力大学 Very fast transient overvoltage (VFTO) remote measurement system and method
US11740261B2 (en) 2016-10-14 2023-08-29 G & W Electric Company Capacitive voltage sensor assembly
US11815529B2 (en) 2018-03-30 2023-11-14 G & W Electric Company Constructive system regarding a capacitive sensor
CN108875147A (en) * 2018-05-28 2018-11-23 武汉理工大学 A kind of VFTO mathematic(al) representation approximating method
CN108875147B (en) * 2018-05-28 2023-09-22 武汉理工大学 VFTO mathematical expression fitting method
CN108957264A (en) * 2018-08-27 2018-12-07 云南电网有限责任公司电力科学研究院 GIS pilot system and method under VFTO and Lightning Over-voltage effect
CN108957264B (en) * 2018-08-27 2023-10-27 云南电网有限责任公司电力科学研究院 GIS test system and method under action of VFTO and lightning overvoltage
CN108957265A (en) * 2018-08-27 2018-12-07 云南电网有限责任公司电力科学研究院 High condensation area insulator VFTO flashover property rate of descent experimental rig and method
CN108957265B (en) * 2018-08-27 2024-04-09 云南电网有限责任公司电力科学研究院 Device and method for testing VFTO flashover characteristic decline rate of porcelain bushing in high condensation area
US11644484B2 (en) 2018-12-17 2023-05-09 G & W Electric Company Electrical sensor assembly
US11774481B2 (en) 2018-12-17 2023-10-03 G & W Electric Company Electrical sensor assembly
CN111537778A (en) * 2020-04-25 2020-08-14 中国原子能科学研究院 Pulse high-voltage measuring device
CN117192224A (en) * 2023-09-28 2023-12-08 武汉朗德电气有限公司 GIS basin-type insulator dielectric loss testing device
CN117192224B (en) * 2023-09-28 2024-02-20 武汉朗德电气有限公司 GIS basin-type insulator dielectric loss testing device

Also Published As

Publication number Publication date
WO2011157047A8 (en) 2013-01-31
JP5889884B2 (en) 2016-03-22
CN101865987B (en) 2013-01-02
CN101865987A (en) 2010-10-20
JP2013532281A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2011157047A1 (en) Capacitive sensor calibration system for measuring fast transient over-voltages
JP2013527429A (en) Calibration voltage generating device and method
CN105738777B (en) The simulator of high-tension cable high frequency partial electric discharge live detection middle ring border interference
Wen et al. 3-MV compact very fast transient overvoltage generator for testing ultra-high-voltage gas-insulated switchgear
CN103217571A (en) Differential type D-dot voltage transformer and voltage detecting method thereof
CN103605051A (en) Gas insulated metal tip defect device for partial discharge test under impact voltage
CN101893650B (en) Voltage measurement device for high-voltage direct-current power transmission valve assembly
Zhao et al. Partial discharge characteristics and development of typical XLPE power cable insulation defects
CN110456123B (en) Broadband transient voltage division measuring device and method
Sharath et al. Prediction of impulse voltage-time characteristics of air and oil insulation for different wavefronts
CN104166043A (en) Non-inductive pulse current detection device
CN110048307A (en) Gas switch
CN106018491A (en) Method for testing performance of field-sensitive type electromagnetic pulse shielding material
CN107576828B (en) Multi-switch synchronous triggering device and method for impulse voltage generator
Stojkanović et al. Design, deployment and verification of the capacitive voltage divider for measuring fast transient occurrences in the nanosecond range
CN103149545A (en) Testing method, testing device, testing equipment and testing system of very fast transient overvoltage (VFTO) sensor
CN205643567U (en) Sensitive type electromagnetic pulse protective material capability test device in field
CN205620343U (en) Sensitive type electromagnetic pulse protective material capability test system in field
CN104833859B (en) A kind of plane plate specimen distribution of space charge pressure wave method measurement apparatus
CN204065227U (en) Noninductive pulse current pick-up unit
Madruga et al. A practical approach for detection of incipient failure of ceramic insulators
Li et al. Experimental research on partial discharge radiated UHF signal attenuation characteristics in GIS
CN110672891A (en) Square wave generator for calibrating voltage divider
CN109557490B (en) Calibration device and method for fast pulse measurement probe based on pulse current source
Yu et al. Online monitoring device for partial discharge in high-voltage switchgear based on capacitance coupling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795014

Country of ref document: EP

Kind code of ref document: A1