WO2011156941A1 - 实现从机床加工点到安装测量基准点的空间转换方法 - Google Patents

实现从机床加工点到安装测量基准点的空间转换方法 Download PDF

Info

Publication number
WO2011156941A1
WO2011156941A1 PCT/CN2010/001146 CN2010001146W WO2011156941A1 WO 2011156941 A1 WO2011156941 A1 WO 2011156941A1 CN 2010001146 W CN2010001146 W CN 2010001146W WO 2011156941 A1 WO2011156941 A1 WO 2011156941A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
measurement reference
installation
machining
point
Prior art date
Application number
PCT/CN2010/001146
Other languages
English (en)
French (fr)
Inventor
过浩侃
陈定祥
张晶
郭春生
姚顺福
李文沛
曾国锋
叶丰
成广伟
邵俊昌
袁亦竑
张驰
王志军
Original Assignee
上海磁浮交通发展有限公司
上海磁浮交通工程技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海磁浮交通发展有限公司, 上海磁浮交通工程技术研究中心 filed Critical 上海磁浮交通发展有限公司
Priority to CN201080068462.7A priority Critical patent/CN103026310B/zh
Publication of WO2011156941A1 publication Critical patent/WO2011156941A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the invention belongs to a method for spatial conversion of precision reference points, and particularly relates to a space conversion method for realizing a machine tool from a machining point to a mounting reference point. Background technique
  • One method is to use the machine tool system to machine the mounting reference hole and the surface at a position where the large component is suitable for setting the mounting reference; the other method is to preset the position of the mounting reference on the large component.
  • the precision-measured measuring reference device measures the spatial coordinates of the measuring reference device through the machine tool measuring system.
  • the invention provides a space conversion method for realizing a machining point from a machine tool to a mounting measurement reference point, and converting the machining point of the precise space component machined by the machining to a measuring point favorable for field observation by using the measuring instrument. It solves the problem of control point conversion in field installation and factory production, and improves the processing efficiency of the machine tool.
  • the present invention provides a space conversion method for realizing a machining point from a machine tool to an installation measurement reference point, comprising the following steps:
  • Step 1 Make an installation measurement reference point
  • the installation measurement reference point is a prefabricated high-precision measurement base, and the reference point is a forced centering device.
  • the observation prism of the optical station can be accurately extracted by the calibration bracket of the calibration size, and the number of installation measurement reference points is not less than three;
  • Step 2 Set the installation measurement reference point to the large component.
  • the installation measurement reference point is embedded on the large component and not higher than the upper surface of the component, and the installation reference point position is as close as possible to the end angle of the upper surface of the component;
  • Step 3 Large-scale components enter the machining station, and the large-scale CNC machine tool system is used to machine the embedded metal embedded parts on the large-scale components, and the corresponding processing surface and hole position are set as machine tool processing points, and the machine tool processing is obtained.
  • Step 4 Move large components away from the machining station
  • Step 5 Set optical stations on both sides of the large-scale components, observe all the installation measurement reference points and the machine tool processing points on both sides of the large-scale components, and establish the installation measurement reference points in the Cartesian coordinate system of the optical stations on both sides. Geometric relationship with machining points on both sides of the machine;
  • Step 5.1 The left optical station measures the coordinates of all installed measurement reference points and the left machine tool machining point in the left optical station coordinate system;
  • Step 5.2 The right optical station measures the coordinates of all installed measuring reference points and the right machine tool machining point in the right optical station coordinate system;
  • Step 6 Install the measurement reference point as a common point, and coordinate the observation point coordinate values of the left and right optical stations to the coordinate system ⁇ of the same optical station by the rotation and parallel of the space rectangular coordinate system;
  • Step 7 The machining point of the machine tool is a common point.
  • the coordinate values of the observation points of the optical station obtained in step 6 are unified into the geodetic coordinate system, and the coordinates of the installation measurement reference point in the geodetic coordinate system are obtained.
  • the benchmark for on-site installation of large components it is used for the control of each process of large-scale component on-site installation and post-completion inspection;
  • the number of installation measurement reference points and machine tool processing points as common points are not less than three.
  • the invention solves the problem of control point conversion in field installation and factory production, and improves the processing efficiency of the machine tool. BRIEF DESCRIPTION OF THE DRAWINGS
  • 1 is a schematic view showing the arrangement of a machine tool processing point and a mounting measurement reference point on a large component in an embodiment of the present invention
  • 2 is a schematic view showing an optical station disposed on the left side of a large component in an embodiment of the present invention
  • Fig. 3 is a schematic view showing the arrangement of an optical station on the right side of a large component in the embodiment of the present invention. The best way to implement the invention
  • a space conversion method for realizing a machine tool from a machining point to a mounting measurement reference point comprising the following steps:
  • Step 1 Make an installation measurement reference point
  • Step 2 Set the installation measurement reference point to the large component
  • Step 3 large components enter the machining station, the machine tool system machines the large components, and manufactures on the large components.
  • Machined hole position as a machine tool processing point;
  • Step 4 Move large components away from the machining station
  • Step 5 Set up optical stations on both sides of the large-scale components, observe the machining points on both sides of the large components and install the measurement reference points respectively, and establish the machining points and installation on both sides of the machine in the Cartesian coordinate system of the optical stations on both sides. Measuring the geometric relationship of the reference points;
  • the measuring points are observed by the round-trip method and the spatial intersection method to obtain coordinate values;
  • the round-trip method refers to observing the target clockwise with the left-hand side of the observation, completing the first-half round-back observation, and then using the right-hand counterclockwise to observe the target, and completing the second-half round-back observation.
  • the upper and lower half-returns constitute a round-trip observation.
  • the preset accuracy it can be determined how many rounds are used, and each round uses a different horizontal dial;
  • the spatial intersection method refers to the intersection of the space, that is, the same point to be measured simultaneously by two or more optical stations ; Step 5.1, as shown in FIG.
  • a first optical station 9 is disposed on the left side of the large component, and the optical station 9 uses a high-precision measuring instrument such as the Leica 2003 total station to simultaneously observe four installation measurements by using the optical station 9.
  • the reference points 5, 6, 7, 8 and the machine tool machining points 1 and 3 on the left side of the large component are in the instrument center and the dial system of the total station 9 (the dial system is the instrument center as the origin 0, with the instrument
  • the reference point 5 is established in the Cartesian coordinate system U1 based on the internal horizontal angle 0 degree direction of the X axis and the vertical axis coordinate system based on the vertical coordinate system of the ZOX plane established by the normal of the O point to the Y axis.
  • the first optical station 9 measured the top surface mounting measurement reference points 5, 6, 7, 8 and the left machining hole position 1, 3 coordinates in the U1 coordinate system are as follows:
  • Step 5.2 As shown in FIG. 3, a second optical station 10 is disposed on the right side of the large component, and the optical station 10 uses a high-precision measuring instrument such as the Leica 2003 total station to simultaneously observe four installation measurements by using the optical station 10.
  • the reference points 5, 6, 7, and 8 and the machine tool machining points 2 and 4 on the right side of the large-scale member establish the reference point 5 in the Cartesian coordinate system U2 based on the instrument center and the dial system of the total station 10.
  • the second optical station 9 measures the top surface mounting measurement reference points 5, 6, 7, 8 and the right machined hole position 2, 4 coordinates in the U2 coordinate system are as follows:
  • Step 6 The measurement point is installed as a common point, and the coordinate values of the observation points of the two optical stations are unified into the coordinate system of the same optical station by the rotation and parallel of the space rectangular coordinate system; in this embodiment,
  • the spatial Cartesian coordinate system rotation model is as follows:
  • XYZ and xyz are the coordinate values of the same point in two coordinate systems respectively, ⁇ , ⁇ , ⁇ are the rotation parameters between the two coordinate systems, and x0, y0, ⁇ are the translation between the two coordinate systems.
  • the parameter, k is the vector length scale factor
  • Step 6.1 Using the common reference points 5, 6, 7, and 8, calculate the conversion parameters between the space rectangular coordinate systems Ul and U2 using the least squares adjustment, as shown in the following table:
  • Step 6.2 Calculate the coordinate values of the right machined hole positions 2 and 4 converted from the U2 coordinate system to the U1 coordinate system according to the conversion parameters, thereby obtaining 4 common point reference points 5, 6, 7, 8 and 4 machines.
  • the coordinates of the hole positions 1, 2, 3, and 4 in the U1 coordinate system are as follows:
  • Step 7 Taking the machining point of the machine tool as a common point, and through the rotation and parallel of the space rectangular coordinate system, the coordinate values of the observation points of the optical station obtained in step 6 are unified into the geodetic coordinate system;
  • Step 7.1 Using common machine machining points 1, 2, 3, 4 Use the least squares adjustment to calculate the conversion parameters between the space rectangular coordinate system Ul and the geodetic coordinate system, as shown in the following table:
  • Step 7.2 According to the conversion parameters, obtain the coordinates of the four reference points 5, 6, 7, and 8 in the geodetic coordinate system, as shown in the following table:
  • the coordinates of the four reference points 5, .6, 7, and 8 in the geodetic coordinate system are used as the benchmark for large-scale component site installation, and are used for each process control of large-scale component on-site installation and post-construction inspection.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

公开了一种实现从机床加工点到安装测量基准点的空间转换方法。在大型构件上预设安装测量基准点,并通过机床加工大型构件上预埋的金属件,产生机床加工点,在大型构件两侧分别设置光学测站,确定安装测量基准点分别与两侧机床加工点的几何关系,然后以安装测量基准点为公共点,通过空间直角坐标系的旋转、平移,将左右两个光学测站的观测点坐标值统一到同一个光学测站的坐标系中,再以机床加工点为公共点,通过空间直角坐标系的旋转、平移,将光学测站的观测点坐标值统一到大地坐标系中,获得安装测量基准点在大地坐标系中的坐标,作为大型构件现场安装的基准,用于大型构件现场安装施工和竣工后检测等各工序控制,解决了现场安装和工厂制作的控制点转换问题,缩短了机床占用时间,进而提高了大型构件的生产效率。

Description

实现从机床加工点到安装测量基准点的空间转换方法 技术领域
本发明属于精密基准点空间转换的一种方法, 尤其涉及一种实现从机床 加工点到安装测量基准点的空间转换方法。 背景技术
对于安装精度要求高的大型构件而言, 利用大型数控机床对金属预埋件 进行加工,在大型构件上生成空间平面及孔 这类加工点空间位置精度高, 然而其位置通常不适合用于现场安装测量, 因此还需要在大型构件上另外设 立安装测量基准。
目前通常有两种方法, 一种方法是利用机床系统在大型构件适合设置安 装基准的位置加工出安装测量基准孔及面; 另一种方法是在大型构件上适合 设置安装基准的位置预设经精密加工的测量基准装置, 再通过机床测量系统 测出测量基准装置的空间坐标。
这两种测定安装测量基准孔坐标的方法都要利用机床系统, 因而大型构 件均须停留在机加工工位, 占用机加工生产线的工作效率, 要达到相同的工 作效率, 可能需要增加生产线的数量, 加大投资。 发明的公开
本发明提供的一种实现从机床加工点到安装测量基准点的空间转换方 法, 通过测量仪器的运用, 将机加工制作的精确空间构件加工点位转换到有 利于野外观测的测量点位上, 解决了现场安装和工厂制作的控制点转换问 题, 提高了机床加工效率。
为了达到上述目的, 本发明提供一种实现从机床加工点到安装测量基准 点的空间转换方法, 包含以下步骤:
步骤 1、 制作安装测量基准点;
安装测量基准点为预制高精度测量基座, 基准点是一种强制对中装置, 确认本 可以通过标定尺寸的转换支架精密引出光学测站的观测棱镜, 所述的安装测 量基准点数量不少于 3个;
步骤 2、 将安装测量基准点设置到大型构件上.;
将安装测量基准点预埋在大型构件上, 且不高于构件上表面, 安装测量 基准点位置尽可能接近构件上表面的端角;
步骤 3、 大型构件进入机加工工位, 利用大型数控机床系.统对大型构件 上预埋的金属埋件进行机加工, 将相应的加工面及孔位设为机床加工点, 并 获得机床加工点在大地坐标系中的坐标;
步骤 4、 将大型构件移离机加工工位;
步骤 5、 在大型构件两侧分别设置光学测站, 分别观测所有的安装测量 基准点和大型构件两侧的机床加工点, 分别在两侧光学测站的直角坐标系统 中, 确立安装测量基准点分别与两侧机床加工点的几何关系;
步骤 5.1、左侧光学测站测量所有安装测量基准点和左侧机床加工点在左 侧光学测站坐标系内的坐标;
步骤 5.2右侧光学测站测量所有安装测量基准点和右侧机床加工点在右 侧光学测站坐标系内的坐标;
步骤 6、 以安装测量基准点为公共点, 通过空间直角坐标系的旋转、 平 行,将左右两个光学测站的观测点坐标值统一到同一个光学测站的坐标系 Φ; 步骤 7、 以机床加工点为公共点, 通过空间直角坐标系的旋转、 平行, 将步骤 6得到的光学测站的观测点坐标值统一到大地坐标系中, 获得安装测 量基准点在大地坐标系中的坐标, 作为大型构件现场安装的基准, 用于大型 构件现场安装施工和竣工后检测的各工序控制;
所述步骤 6和步骤 7中, 作为公共点的安装测量基准点和机床加工点的 数量皆不少于 3个。
本发明解决了现场安装和工厂制作的控制点转换问题, 提高了机床加工 效率。 附图的简要说明
图 1是本发明实施例中大型构件上机床加工点以及安装测量基准点的布 置示意图; 图 2是本发明实施例中大型构件左侧设置光学测站的示意图;
图 3是本发明实施例中大型构件右侧设置光学测站的示意图。 实现本发明的最佳方式
以下根据图 1〜图 3, 具体说明本发明的较佳实施方式:
一种实现从机床加工点到安装测量基准点的空间转换方法, 包含以下步 骤:
步骤 1、 制作安装测量基准点;
步骤 2、 将安装测量基准点设置到大型构件上;
如图 1所示, 在大型构件上设置四个安装测量基准点 5、 6、 7、 8; 步骤 3、 大型构件进入机加工工位, 机床系统对大型构件进行机加工, 在大型构件上制作机加工孔位, 作为机床加工点;
如图 1所示, 在大型构件上加工四个机床加工点 1、 2、 3、 4;
机床加工点 1、 2、 3、 4在大地坐标系中的坐标如下表:
Figure imgf000005_0001
步骤 4、 将大型构件移离机加工工位;
步骤 5、 在大型构件两侧设置光学测站, 分别观测大型构件两侧的机床 加工点和安装测量基准点, 分别在两侧光学测站的直角坐标系统中, 确立两 侧机床加工点和安装测量基准点的几何关系;
采用测回法和空间交会法对待测点 (机床加工点和安装测量基准点)进 行观测, 获得坐标值;
测回法指观测时先用盘左顺时针观测目标, 完成上半测回观测, 再用盘 右逆时针观测目标, 完成下半测回观测, 上、 下半测回构成一测回观测, 根 据预先设定精度, 可决定采用多少测回数, 每个测回使用不同的水平度盘; 空间交会法是指空间前方交会, 即通过两台或多台光学测站同时观测相 同的待测点; 步骤 5.1、 如图 2所示, 在大型构件左侧设置第一光学测站 9, 该光学测 站 9采用徕卡 2003全站仪等高精度测量仪器,利用光学测站 9同步观测四个 安装测量基准点 5、 6、 7、 8和大型构件左侧的机床加工点 1、 3, 在以全站 仪 9的仪器中心及度盘系统 (度盘系统即为以仪器中心为原点 0, 以仪器内 部水平角 0度方向为 X轴, 以铅垂为 Z轴, ZOX平面通过 O点的法线为 Y 轴建立的空间直角坐标系)为基础的直角坐标系 U1中, 确立了基准点 5、 6、 7、 8与左侧机加工孔位 1、 3的几何关系;
第一光学测站 9测得顶面安装测量基准点 5、 6、 7、 8及左侧机加工孔位 1、 3在 U1坐标系内的坐标如下:
Figure imgf000006_0001
步骤 5.2、 如图 3所示, 在大型构件右侧设置第二光学测站 10, 该光学 测站 10采用徕卡 2003全站仪等高精度测量仪器,利用光学测站 10同步观测 四个安装测量基准点 5、 6、 7、 8和大型构件右侧的机床加工点 2、 4, 在以 全站仪 10的仪器中心及度盘系统为基础的直角坐标系 U2中,确立了基准点 5、 6、 7、 8与右侧机加工孔位 2、 4的几何关系;
第二光学测站 9测得顶面安装测量基准点 5、 6、 7、 8及右侧机加工孔位 2、 4在 U2坐标系内的坐标如下:
占号 XU2 Yu2 Zu2
5 0.4702 -8.8280 1.0022
6 2.0996 -8.2173 1.0325
7 9.0837 -31.8069 0.9978
8 10.7126 -31.1962 1.0283
2 2.2865 -8.3288 0.6847
4 10.7804 -30.9895 0.6809 步骤 6、 以安装测量基准点为公共点, 通过空间直角坐标系的旋转、 平 行, 将两个光学测站的观测点坐标值统一到同一个光学测站的坐标系中; 本实施例中, 空间直角坐标系旋转模型如下:
-siny 0、 、 ίχΔ
cosy 0 y + y。 或记为
0 K
Figure imgf000007_0001
其中, XYZ及 xyz分别为同一点分别在两个坐标系中的坐标值, α、 β、 γ为两个坐标系之间的旋转参数, x0、 y0、 ζθ为两个坐标系之间的平移参数, k为矢量长度比例系数;
步骤 6.1、 利用公共基准点 5、 6、 7、 8, 采用最小二乘法平差计算出空 间直角坐标系 Ul、 U2之间的转换参数, 如下表所示:
Figure imgf000007_0002
步骤 6.2、 根据转换参数, 计算出右侧机加工孔位 2、 4由 U2坐标系转 换至 U1坐标系的坐标值, 从而获得 4个公共点基准点 5、 6、 7、 8和 4个机 加工孔位 1、 2、 3、 4在 U1坐标系中的坐标, 如下表:
点号 Χυι Υυι Ζυι
5 0.1367 42.1 165 1.0022
6 1.8740 42.2086 1.0326
7 1.4366 17.6109 0.9980
8 3.1739 17.7031 1.0283
1 0.0220 41.9402 0.6500
3 1.3039 17.7742 0.6458 2 2.0188 42.0460 0.6847
4 3.3007 17.8799 0.6810
步骤 7、 以机床加工点为公共点, 通过空间直角坐标系的旋转、 平行, 将步骤 6得到的光学测站的观测点坐标值统一到大地坐标系中;
步骤 7.1、 利用公共机床加工点 1、 2、 3、 4 采用最小二乘法平差计算 出空间直角坐标系 Ul、 大地坐标系之间的转换参数, 如下表所示:
Figure imgf000008_0001
步骤 7.2、 根据转换参数, 获得 4个基准点 5、 6、 7、 8在大地坐标系中 的坐标, 如下表:
Figure imgf000008_0002
将 4个基准点 5、 .6、 7、 8在大地坐标系中的坐标, 作为大型构件现场安 装的基准, 用于大型构件现场安装施工和竣工后检测的各工序控制。
尽管本发明的内容已经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对 发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种 ^改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利 要 求 1. 一种实现从机床加工点到安装测量基准点的空间转换方法, 其特征在于, 该方法包含以下步骤:
步骤 1、 制作安装测量基准点;
步骤 2、 将安装测量基准点设置到大型构件上;
步骤 3、大型构件进入机加工工位,利用大型数控机床系统对大型构 件上预埋的金属埋件进行机加工, 将相应的加工面及加工孔位设为机床 加工点, 并获得机床加工点在大地坐标系中的坐标;
步骤 4、 将大型构件移离机加工工位;
步骤 5、在大型构件两侧分别设置光学测站,分别观测所有的安装测 量基准点和大型构件两侧的机床加工点, 分别在两侧光学测站的直角坐 标系统中, 确立安装测量基准点分别与两侧机床加工点的几何关系; 步骤 6、 以安装测量基准点为公共点, 通过空间直角坐标系的旋转、 平行, 将左右两个光学测站的观测点坐标值统一到同一个光学测站的坐 标系中;
步骤 7、以机床加工点为公共点,通过空间直角坐标系的旋转、平行, 将步骤 6得到的光学测站的观测点坐标值统一到大地坐标系中, 获得安 装测量基准点在大地坐标系中的坐标, 作为大型构件现场安装的基准, 用于大型构件现场安装施工和竣工后检测的各工序控制。
2. 如权利要求 1 所述的实现从机床加工点到安装测量基准点的空间转换方 法, 其特征在于, 所述的步骤 5包含以下步骤:
步骤 5.1、 左侧光学测站测量所有安装测量基准点和左侧机床加工点 在左侧光学测站坐标系内的坐标;
步骤 5.2、右侧光学测站测量所有安装测量基准点和右侧机床加工点 在右侧光学测站坐标系内的坐标。
3. 如权利要求 2所述的实现从机床加工点到安装测量基准 的空间转换方 法, 其特征在于,所述步骤 6和步骤 7中,作为公共点的安装测量基准点 和机床加工点的数量皆不少于 3个。
4. 如权利要求 2 所述的实现从机床加工点到安装测量基准点的空间转换方 法, 其特征在于, 所述的安装测量基准点数量不少于 3个。
5. 如权利要求 4所述的实现从机床加工点到安装测量基准点的空间转换方 法, 其特征在于, 所述的安装测量基准点为预制高精度测量基座。
6. 如权利要求 5 所述的实现从机床加工点到安装测量基准点的空间转换方 法, 其特征在于, 所述的安装测量基准点位置设置在构件上表面的端角。
PCT/CN2010/001146 2010-06-17 2010-07-29 实现从机床加工点到安装测量基准点的空间转换方法 WO2011156941A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080068462.7A CN103026310B (zh) 2010-06-17 2010-07-29 实现从机床加工点到安装测量基准点的空间转换方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010202505.8 2010-06-17
CN201010202505 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011156941A1 true WO2011156941A1 (zh) 2011-12-22

Family

ID=45347621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001146 WO2011156941A1 (zh) 2010-06-17 2010-07-29 实现从机床加工点到安装测量基准点的空间转换方法

Country Status (2)

Country Link
CN (1) CN103026310B (zh)
WO (1) WO2011156941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140088915A1 (en) * 2012-09-25 2014-03-27 Trimble Jena Gmbh Method and apparatus for assigning measuring points to a set of fixed points
CN104476330A (zh) * 2014-11-07 2015-04-01 沈阳黎明航空发动机(集团)有限责任公司 一种基于7点探测循环的五坐标加工中心坐标系确定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973240B (zh) * 2016-07-15 2018-11-23 哈尔滨工大服务机器人有限公司 一种导航模块坐标系与机器人坐标系的转换方法
CN109425329B (zh) * 2017-08-30 2021-08-17 宝山钢铁股份有限公司 加热炉内板坯跑偏偏移量的检测方法
CN108127186A (zh) * 2017-11-10 2018-06-08 武汉船用机械有限责任公司 一种用于前撑杆的铰孔加工方法
CN108787910B (zh) * 2018-04-28 2021-09-10 广州广汽荻原模具冲压有限公司 一种模具加工中预制辅助基准的方法
CN110836635B (zh) * 2019-09-30 2021-07-13 上海航天设备制造总厂有限公司 一种轻质蜂窝夹层盒型结构的测量基准建立及测量方法
CN113618253B (zh) * 2020-05-08 2023-06-23 大族激光科技产业集团股份有限公司 激光加工方法、系统、激光加工控制器及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430796A (en) * 1981-02-09 1984-02-14 Kosaka Laboratory Ltd. Method and apparatus for determining the location of points on a three dimensional thing
JP2001141427A (ja) * 1999-11-16 2001-05-25 Tokimec Inc レール断面測定装置
JP2002096232A (ja) * 2000-09-21 2002-04-02 Toyoda Mach Works Ltd 工作機械の制御方法
CN1948901A (zh) * 2006-11-09 2007-04-18 上海锅炉厂有限公司 大型构件装配及焊接变形自动实时监测的方法
CN101324428A (zh) * 2008-07-25 2008-12-17 北京城建集团有限责任公司 建筑钢结构异形构件三维坐标测量方法
CN101592482A (zh) * 2009-06-30 2009-12-02 上海磁浮交通发展有限公司 大型构件精确定位的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430796A (en) * 1981-02-09 1984-02-14 Kosaka Laboratory Ltd. Method and apparatus for determining the location of points on a three dimensional thing
JP2001141427A (ja) * 1999-11-16 2001-05-25 Tokimec Inc レール断面測定装置
JP2002096232A (ja) * 2000-09-21 2002-04-02 Toyoda Mach Works Ltd 工作機械の制御方法
CN1948901A (zh) * 2006-11-09 2007-04-18 上海锅炉厂有限公司 大型构件装配及焊接变形自动实时监测的方法
CN101324428A (zh) * 2008-07-25 2008-12-17 北京城建集团有限责任公司 建筑钢结构异形构件三维坐标测量方法
CN101592482A (zh) * 2009-06-30 2009-12-02 上海磁浮交通发展有限公司 大型构件精确定位的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140088915A1 (en) * 2012-09-25 2014-03-27 Trimble Jena Gmbh Method and apparatus for assigning measuring points to a set of fixed points
US10788322B2 (en) * 2012-09-25 2020-09-29 Trimble Jena Gmbh Method and apparatus for assigning measuring points to a set of fixed points
CN104476330A (zh) * 2014-11-07 2015-04-01 沈阳黎明航空发动机(集团)有限责任公司 一种基于7点探测循环的五坐标加工中心坐标系确定方法
CN104476330B (zh) * 2014-11-07 2016-07-20 沈阳黎明航空发动机(集团)有限责任公司 一种基于7点探测循环的五坐标加工中心坐标系确定方法

Also Published As

Publication number Publication date
CN103026310A (zh) 2013-04-03
CN103026310B (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2011156941A1 (zh) 实现从机床加工点到安装测量基准点的空间转换方法
CN106247932B (zh) 一种基于摄影系统的机器人在线误差补偿装置及方法
US7908756B2 (en) Integrated calibration sphere and calibration step fixture for improved coordinate measurement machine calibration
CN102266958B (zh) 基于制孔设备坐标系确定的柔性导轨孔群加工方法
CN108372428A (zh) 五轴机床结构误差自动测量补偿的方法及校正装置
Zhang et al. A general strategy for geometric error identification of multi-axis machine tools based on point measurement
JP2002059340A (ja) 移動装置の位置誤差評価方法およびその評価結果に基づく移動精度向上方法
CN105526885B (zh) 一种基于复合测头的锥孔锥角高精度检测方法
CN102416581A (zh) 飞机部件柔性装配中待装配零件的混合测量定位方法
Huang et al. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement
CN104567837B (zh) 一种高精度同轴调整装置
CN103673976A (zh) 复合式精度测量坐标系的转换与统一方法及系统
CN104006756A (zh) 飞机腹板类零件装配变形快速测量方法
CN111331428B (zh) 加工中心机床斜面夹具零点坐标转换工具、装置和方法
CN111069973B (zh) 一种复杂外形铸件快速找正的方法及装置
Han et al. A review of geometric error modeling and error detection for CNC machine tool
JP2017037460A (ja) 加工システム及び加工方法
CN104634245B (zh) 一种三维大行程精密工作台测量系统自标定方法
CN105241378A (zh) 基于激光跟踪技术的变电站3d实景重绘方法
Szipka et al. Identification of machine tool squareness errors via inertial measurements
BR112021013877A2 (pt) Sistema de medição, e, método relacionado ao sistema de medição
CN107860309B (zh) 提高激光跟踪仪测量精度的方法和装置
Wang et al. Base detection research of drilling robot system by using visual inspection
CN110319746B (zh) 一种基于自动化机精密加工的机床外工况模拟机测量方法
JP2010260119A (ja) 主軸又はアタッチメント主軸の補正値自動計測方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068462.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 10853051

Country of ref document: EP

Kind code of ref document: A1