WO2011155100A1 - Method for resuming production using sputtering device - Google Patents

Method for resuming production using sputtering device Download PDF

Info

Publication number
WO2011155100A1
WO2011155100A1 PCT/JP2011/000603 JP2011000603W WO2011155100A1 WO 2011155100 A1 WO2011155100 A1 WO 2011155100A1 JP 2011000603 W JP2011000603 W JP 2011000603W WO 2011155100 A1 WO2011155100 A1 WO 2011155100A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
temperature
target
sputtering
baking
Prior art date
Application number
PCT/JP2011/000603
Other languages
French (fr)
Japanese (ja)
Inventor
貴幸 松竹
秀輝 又賀
知宏 佐藤
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020127021001A priority Critical patent/KR101416286B1/en
Priority to JP2012519206A priority patent/JP5433786B2/en
Publication of WO2011155100A1 publication Critical patent/WO2011155100A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Abstract

Provided is a low running cost method for resuming production using a sputtering device, with which the time from completion of maintenance work to production resumption can be made as short as possible. The method comprises: a pre-heating step of, while opening the vacuum chamber of a sputtering device to the atmosphere, pre-heating this vacuum chamber to a first temperature (T1) higher than a room temperature (T0); a baking step of tightly closing the vacuum chamber and, while vacuuming the inside of the vacuum chamber, baking the vacuum chamber and a target placed in the vacuum chamber by increasing the temperatures thereof to a second temperature (T2) higher than the first temperature (T1); a determination step of, during the baking step in which the second temperature (T2) is maintained, monitoring the pressure in the vacuum chamber and determining a time point at which this pressure changes from increasing to decreasing; and a cooling step of, immediately after determining, in the determination step, the time point at which the pressure in the vacuum chamber changes from increasing to decreasing, terminating the baking of the vacuum chamber and forcibly cooling at least the vacuum chamber down to a predetermined temperature.

Description

スパッタリング装置の生産復帰方法Sputtering equipment production return method
 本発明は、スパッタリング装置のメンテナンス作業終了後、処理すべき基板に対して成膜処理を再開するまでの生産復帰方法に関する。 The present invention relates to a production return method until the film forming process is resumed for a substrate to be processed after the maintenance work of the sputtering apparatus is completed.
 処理すべき基板表面に成膜する方法の1つとして、スパッタリング(以下「スパッタ」ともいう)装置を用いたものがある。この種のスパッタ装置では、真空チャンバ内に基板と成膜しようとする膜の組成に応じて形成されたターゲットとを対向配置し、この真空チャンバ内にプラズマ雰囲気を形成して希ガスのイオンをターゲットに向けて加速させて衝突させ、これにより生じたスパッタ粒子(ターゲット原子)を飛散させて基板表面に付着、堆積させることで、所定の薄膜を形成する。 One method of forming a film on the surface of a substrate to be processed is to use a sputtering (hereinafter also referred to as “sputtering”) apparatus. In this type of sputtering apparatus, a substrate and a target formed in accordance with the composition of a film to be deposited are placed opposite to each other in a vacuum chamber, and a plasma atmosphere is formed in the vacuum chamber to generate ions of rare gas. A predetermined thin film is formed by accelerating and colliding toward a target, and sputtered particles (target atoms) generated thereby are scattered and adhered and deposited on the substrate surface.
 ここで、スパッタによる成膜中、スパッタ粒子は基板表面だけでなく真空チャンバ内に存する部品や真空チャンバ内の壁面にも付着する。このため、上記スパッタ装置では、真空チャンバ内に防着板を配置することが一般的である。そして、防着板へのスパッタ粒子の堆積量が多くなると、防着板は交換される。また、ターゲットはスパッタにより侵食されていくことから、このターゲットもまたアースシールドと共に定期的に交換される(以下、これらの交換作業を「メンテナンス作業」という)。 Here, during film formation by sputtering, the sputtered particles adhere not only to the substrate surface but also to the components existing in the vacuum chamber and the wall surface in the vacuum chamber. For this reason, in the said sputtering apparatus, it is common to arrange | position an adhesion prevention board in a vacuum chamber. When the amount of sputtered particles deposited on the deposition preventing plate increases, the deposition preventing plate is replaced. Further, since the target is eroded by sputtering, this target is also periodically replaced together with the ground shield (hereinafter, these replacement operations are referred to as “maintenance operations”).
 このようなメンテナンス作業においては、真空チャンバが一旦大気開放されるが、このとき、真空チャンバ内の部品やその壁面に大気中に含まれる水分等のガス成分が吸着する。また、新たに取り付けられるターゲット、防着板やアースシールドにもガス成分が付着している。このため、メンテナンス作業終了後に、真空チャンバを密閉して内部を真空引きし、生産を再開しようとしても、特に水分は排出され難く、所定の圧力に到達するまでには時間がかかる。他方、吸着ガスの排気が不十分な状態で生産を再開すれば、吸着ガスが基板表面に成膜したものの膜質に悪影響を及ぼす虞があり、製品歩留まりが低下する。そこで、従来、メンテナンス作業の終了後、次の工程を経て生産復帰されていた。 In such a maintenance operation, the vacuum chamber is once opened to the atmosphere. At this time, gas components such as moisture contained in the atmosphere are adsorbed to the components in the vacuum chamber and the wall surfaces thereof. Gas components are also attached to the newly installed target, adhesion prevention plate and earth shield. For this reason, even if an attempt is made to resume production by sealing the vacuum chamber and evacuating the interior after the maintenance work is completed, it is particularly difficult for moisture to be discharged, and it takes time to reach a predetermined pressure. On the other hand, if the production is restarted in a state where exhaust of the adsorbed gas is insufficient, there is a possibility that the adsorbed gas is deposited on the substrate surface, which may adversely affect the film quality, resulting in a decrease in product yield. Therefore, conventionally, after the maintenance work is completed, the production is returned through the following steps.
 図3を参照して説明すれば、真空チャンバを密閉して真空チャンバ内の真空引きを開始すると同時に、真空チャンバを室温T0(例えば、25℃)から所定温度T2(例えば、100℃)に昇温し、真空チャンバを所定時間(例えば、4時間)ベーキングする。その後、真空チャンバの加熱を停止して自然冷却させ、真空チャンバが所定圧力(例えば、1×10-5Pa)及び所定温度(例えば、30℃)に達すると、ターゲットを、所定の積算電力だけプレスパッタして生産を再開する。 Referring to FIG. 3, the vacuum chamber is sealed and evacuation in the vacuum chamber is started. At the same time, the vacuum chamber is raised from room temperature T0 (for example, 25 ° C.) to a predetermined temperature T2 (for example, 100 ° C.). Warm and bake the vacuum chamber for a predetermined time (eg, 4 hours). After that, the heating of the vacuum chamber is stopped and naturally cooled, and when the vacuum chamber reaches a predetermined pressure (for example, 1 × 10 −5 Pa) and a predetermined temperature (for example, 30 ° C.), the target is set to a predetermined integrated power. Pre-sputtering to resume production.
 ここで、加熱温度T2は、スパッタ装置に用いられるOリング等の耐熱性の低い部品を考慮して設定される。他方、ベーキング時間は、製品歩留まり等を考慮した経験則から定められていた。このため、真空チャンバ内に新たに設置した防着板等へのガス吸着の量が毎回異なるにも関わらず、メンテナンス作業終了後、設定された所定時間を経過しないと、生産復帰し得ないという不具合があった。 Here, the heating temperature T2 is set in consideration of components having low heat resistance such as an O-ring used in the sputtering apparatus. On the other hand, the baking time has been determined from an empirical rule considering the product yield and the like. For this reason, although the amount of gas adsorption on the newly installed deposition prevention plate or the like in the vacuum chamber is different every time, after the maintenance work is completed, the production cannot be resumed unless a predetermined time has passed. There was a bug.
 また、真空チャンバ内に酸素ガスまたは不活性ガスを供給しながら真空引きすることで、真空チャンバ内に吸着したガス成分の脱離を促進し、ガス供給を停止して真空チャンバ内を真空引きしつつ、真空チャンバのベーキングを行うことが特許文献1で知られている。然し、この特許文献1記載のものもまた、設定された所定時間を経過しないと、生産復帰し得えず、しかも、多量の酸素ガスまたは不活性ガスを真空チャンバ内に導入するため、ランニングコストが高くなるという不具合がある。 In addition, by evacuating while supplying oxygen gas or inert gas into the vacuum chamber, the desorption of gas components adsorbed in the vacuum chamber is promoted, and the gas supply is stopped and the vacuum chamber is evacuated. However, it is known from Patent Document 1 that the vacuum chamber is baked. However, the one disclosed in Patent Document 1 cannot be returned to production unless a predetermined time has elapsed, and a large amount of oxygen gas or inert gas is introduced into the vacuum chamber. There is a problem that becomes high.
特開平2-46726号公報JP-A-2-46726
 本発明は、以上の点に鑑み、メンテナンス作業終了から生産復帰までを可及的速やかに行い得る低ランニングコストのスパッタリング装置の生産復帰方法を提供することをその課題とする。 In view of the above, it is an object of the present invention to provide a production return method of a sputtering apparatus with a low running cost that can perform from a maintenance work completion to a production return as quickly as possible.
 上記課題を解決するために、本発明のスパッタリング装置の生産復帰方法は、スパッタリング装置の真空チャンバを大気開放している間、この真空チャンバを室温より高い第1の温度に予加熱する予加熱工程と、真空チャンバを密閉してその内部を真空引きしつつ、真空チャンバとこの真空チャンバ内に配置されたターゲットとを第1の温度より高い第2の温度に昇温してベーキングするベーキング工程と、第2の温度に保持したベーキング工程中、真空チャンバ内の圧力を監視し、この圧力が上昇から下降に転じる時点を判定する判定工程と、判定工程にて真空チャンバ内の圧力が上昇から下降に転じる時点が判定された直後に、真空チャンバのベーキングを終了して少なくとも真空チャンバを所定温度まで強制冷却する冷却工程と、を含むことを特徴とする。 In order to solve the above-described problems, a production return method for a sputtering apparatus according to the present invention includes a preheating step of preheating the vacuum chamber to a first temperature higher than room temperature while the vacuum chamber of the sputtering apparatus is open to the atmosphere. And a baking step in which the vacuum chamber and the target disposed in the vacuum chamber are heated to a second temperature higher than the first temperature and baked while the vacuum chamber is sealed and the inside is evacuated. During the baking process held at the second temperature, the pressure in the vacuum chamber is monitored, and a determination process for determining when the pressure starts to increase and decreases, and the pressure in the vacuum chamber decreases from the increase in the determination process. Immediately after the determination of the point in time, the cooling process for terminating the vacuum chamber baking and forcibly cooling at least the vacuum chamber to a predetermined temperature, And wherein the Mukoto.
 本発明によれば、真空チャンバの大気開放中(つまり、メンテナンス作業中)に真空チャンバを第1の温度に加熱する予加熱工程を備えるため、真空チャンバ内の真空引きを開始後、真空チャンバが第2の温度に昇温するまでの時間を短縮できる。そして、ベーキング中、真空チャンバ内で新たに設置した防着板等に吸着したガス成分が活性化され、真空チャンバ内の真空雰囲気へと放出されて排出される。 According to the present invention, the vacuum chamber is provided with a preheating step of heating the vacuum chamber to the first temperature while the vacuum chamber is open to the atmosphere (that is, during maintenance work). The time until the temperature is raised to the second temperature can be shortened. During baking, the gas component adsorbed on the newly installed deposition prevention plate or the like in the vacuum chamber is activated, and is discharged into the vacuum atmosphere in the vacuum chamber and discharged.
 このとき、真空チャンバ内の圧力が上昇から下降に転じる時点を判定する判定工程を備えるため、経験則等に基づきベーキング時間を製品歩留まり等を考慮して設定する必要はない。そして、判定工程にて真空チャンバ内の圧力下降が判定された直後に、真空チャンバの加熱を停止して真空チャンバを強制冷却する。このとき、ベーキングにより活性化されたガス成分が防着板等に留まるようになり、殆ど真空チャンバ内の真空雰囲気に放出されなくなる。このため、真空チャンバ内の圧力が急激に低下し、生産復帰するのに適した圧力まで真空チャンバ内を真空引きできる。 At this time, since there is a determination step for determining when the pressure in the vacuum chamber changes from rising to falling, it is not necessary to set the baking time based on empirical rules and the like in consideration of the product yield and the like. Then, immediately after it is determined in the determination step that the pressure in the vacuum chamber has dropped, heating of the vacuum chamber is stopped and the vacuum chamber is forcibly cooled. At this time, the gas component activated by baking stays on the deposition plate or the like, and is hardly released to the vacuum atmosphere in the vacuum chamber. For this reason, the pressure in a vacuum chamber falls rapidly, and the inside of a vacuum chamber can be evacuated to the pressure suitable for a production return.
 このように本発明は、予加熱工程を備えることと、防着板等へのガス成分の吸着状況に応じてベーキングの終了を判定することとが相俟って、真空チャンバ内の状態に応じて可及的速やかに生産復帰できる。しかも、ベーキング終了後に防着板等に残留するガス成分をそのまま留めることで、生産復帰時のスパッタリングによる成膜に影響を与えないようにした。 As described above, the present invention includes the preheating step and the determination of the end of the baking according to the adsorption state of the gas component on the deposition preventing plate or the like, and according to the state in the vacuum chamber. And return to production as soon as possible. In addition, the gas component remaining on the deposition preventing plate or the like after baking is kept as it is so as not to affect the film formation by sputtering at the time of production return.
 ところで、ターゲット近傍に永久磁石を有する磁石ユニットが配置されていると、ターゲットからの輻射熱で永久磁石が減磁する虞がある。そこで、永久磁石が減磁しないように、ベーキング中の真空チャンバの第2の温度と、ターゲットの第2の温度とを異ならせるようにしてもよい。 By the way, if a magnet unit having a permanent magnet is arranged near the target, the permanent magnet may be demagnetized by radiant heat from the target. Therefore, the second temperature of the vacuum chamber during baking may be different from the second temperature of the target so that the permanent magnet does not demagnetize.
 また、本発明において、前記冷却工程が終了した後、前記真空チャンバ内にスパッタガスを導入すると共に前記ターゲットに電力投入して前記ターゲットをプレスパッタするプレスパッタ工程を更に含むことが望ましい。これによれば、強制冷却により真空チャンバ内に留まったガス成分が、プレスパッタにより生じたスパッタ粒子で覆われるため、生産復帰後にガス成分が真空チャンバ内に放出されることを防止できる。 In the present invention, it is preferable that the method further includes a pre-sputtering step of introducing a sputtering gas into the vacuum chamber and pre-sputtering the target by supplying power to the target after the cooling step is completed. According to this, since the gas component remaining in the vacuum chamber by forced cooling is covered with the sputtered particles generated by the pre-sputtering, it is possible to prevent the gas component from being released into the vacuum chamber after the production return.
本発明の実施形態のスパッタ装置の生産復帰方法が適用されるスパッタ装置の構成を模式的に示す図。The figure which shows typically the structure of the sputtering device to which the production return method of the sputtering device of embodiment of this invention is applied. 本発明の実施形態のスパッタ装置の生産復帰方法におけるメンテナンス作業の終了後から生産再開までの真空チャンバの温度と真空チャンバ内の圧力の変化を示す図。The figure which shows the change of the temperature of the vacuum chamber and the pressure in a vacuum chamber after completion | finish of the maintenance work in the production return method of the sputtering device of embodiment of this invention after production is restarted. 従来例のスパッタ装置の生産復帰方法におけるメンテナンス作業の終了後から生産再開までの真空チャンバの温度と真空チャンバ内の圧力の変化を示す図。The figure which shows the change of the temperature of the vacuum chamber and the pressure in a vacuum chamber after completion | finish of the maintenance work in the production return method of the sputtering device of a prior art example until production restart.
 以下、図面を参照して、本発明の実施形態のスパッタ装置の生産復帰方法が適用されるスパッタ装置Mについて説明する。 Hereinafter, a sputtering apparatus M to which the production return method for a sputtering apparatus according to an embodiment of the present invention is applied will be described with reference to the drawings.
 図1に示すように、スパッタ装置Mは例えばマグネトロン方式のものであり、真空チャンバ1を備える。真空チャンバ1の底部には、排気管2を介して高真空用ポンプ(例えばターボ分子ポンプ)3a及び低真空用ポンプ(例えばロータリポンプ)3bからなる真空排気手段が接続されている。また、真空チャンバ1にはピラニ真空計や電離真空計等の真空計4が設けられている。 As shown in FIG. 1, the sputtering apparatus M is of a magnetron type, for example, and includes a vacuum chamber 1. A vacuum exhaust means including a high vacuum pump (for example, a turbo molecular pump) 3 a and a low vacuum pump (for example, a rotary pump) 3 b is connected to the bottom of the vacuum chamber 1 through an exhaust pipe 2. The vacuum chamber 1 is provided with a vacuum gauge 4 such as a Pirani vacuum gauge or an ionization vacuum gauge.
 真空チャンバ1の上部には、ターゲット5が配置されている。ターゲット5は、CuやAl合金など基板S表面に成膜しようとする薄膜の組成に応じて公知の方法で作製されている。スパッタリング中、バッキングプレート6にターゲット5を接合した状態で絶縁板7を介して真空チャンバ1に装着される。 A target 5 is disposed on the upper portion of the vacuum chamber 1. The target 5 is manufactured by a known method according to the composition of a thin film to be formed on the surface of the substrate S, such as Cu or Al alloy. During sputtering, the target 5 is bonded to the backing plate 6 and is attached to the vacuum chamber 1 via the insulating plate 7.
 ここで、バッキングプレート6には、流路6aが形成され、この流路6aには、スパッタ中、冷媒(例えば冷却水)が循環されてターゲット5を冷却できるようになっている。尚、この流路6aには、後述の温媒供給ユニットからの流水管が接続され、バッキングプレート6内に温媒(例えば温水)を循環させてターゲット5をベーキングできるようになっている。ターゲット5の周囲には、グランド接地されたアノードとしての役割を果たすアースシールド8が取付けられ、また、ターゲット5には、真空チャンバ1外に配置されるスパッタ電源9からの出力が接続され、ターゲット種に応じて負の直流電圧または高周波電圧が印加される。 Here, a flow path 6a is formed in the backing plate 6, and a coolant (for example, cooling water) is circulated through the flow path 6a during sputtering so that the target 5 can be cooled. The flow path 6 a is connected to a water pipe from a heating medium supply unit, which will be described later, so that the target 5 can be baked by circulating a heating medium (for example, hot water) in the backing plate 6. Around the target 5, an earth shield 8 serving as a grounded anode is attached. To the target 5, an output from a sputtering power source 9 disposed outside the vacuum chamber 1 is connected. Depending on the species, a negative DC voltage or a high frequency voltage is applied.
 更に、ターゲット5の後方(図1中、スパッタ面と反対の上側)には、永久磁石を備えた磁石ユニット10が設けられ、ターゲット5の前方(スパッタ面側たる下側)に、釣り合った閉ループのトンネル状の磁束を形成し、ターゲット5の前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、ターゲット5前方での電子密度を高くしてプラズマ密度を高くできるようになっている。 Further, a magnet unit 10 having a permanent magnet is provided behind the target 5 (upper side opposite to the sputtering surface in FIG. 1), and a closed loop balanced in front of the target 5 (lower side which is the sputtering surface side). The tunnel-like magnetic flux is formed, and the electrons ionized in front of the target 5 and the secondary electrons generated by sputtering are captured, so that the electron density in front of the target 5 can be increased and the plasma density can be increased. ing.
 真空チャンバ1の底部には、ターゲット5に対向した位置で基板Sを保持するステージ11が設けられ、真空チャンバ1の側壁には、ガス源13に連通し、マスフローコントローラ13aが介設されたガス管13bが接続され、Arなどの希ガスからなるスパッタガスや反応性スパッタリングの際に用いる反応ガスがスパッタ室1a内に一定の流量で導入できるようになっている。そして、真空チャンバ1内には、その壁面へのスパッタ粒子の付着を防止する防着板12が設けられている。 A stage 11 that holds the substrate S at a position facing the target 5 is provided at the bottom of the vacuum chamber 1, and a gas flow that communicates with the gas source 13 and is provided with a mass flow controller 13 a on the side wall of the vacuum chamber 1. A tube 13b is connected so that a sputtering gas composed of a rare gas such as Ar or a reactive gas used in reactive sputtering can be introduced into the sputtering chamber 1a at a constant flow rate. In the vacuum chamber 1, an adhesion preventing plate 12 that prevents the adhesion of sputtered particles to the wall surface is provided.
 また、真空チャンバ1の外壁にはジャケット14が設けられ、ジャケット14内の流路14aに冷媒(冷却水)を循環させることで真空チャンバ1を冷却できる。また、この流路14aには、後述の温媒供給ユニット16の流路16bが接続され、ジャケット14内に温媒(温水)を循環させることで真空チャンバ1をベーキングできる。真空チャンバ1の側壁にはまた、ヒータ15が埋設され、このヒータ15によっても真空チャンバ1をベーキングできるようになっている。 Further, a jacket 14 is provided on the outer wall of the vacuum chamber 1, and the vacuum chamber 1 can be cooled by circulating a refrigerant (cooling water) through a flow path 14 a in the jacket 14. In addition, a flow path 16b of a heating medium supply unit 16 described later is connected to the flow path 14a, and the vacuum chamber 1 can be baked by circulating a heating medium (hot water) in the jacket 14. A heater 15 is embedded in the side wall of the vacuum chamber 1 so that the vacuum chamber 1 can be baked by the heater 15.
 バッキングプレート6に連通する冷却水供給路L1及び冷却水排出路L2には、三方弁V1、V2を介して温媒供給ユニット16が接続されている。この温媒供給ユニット16は、三方弁V3、V4を介して、冷却水供給路L1から分岐した冷却水供給路L11と冷却水排出路L2に合流する冷却水排出路L21とにも接続されている。温媒供給ユニット16は、循環ポンプ16aを介設した流路16bと、流路16bを流れる冷却水を加熱するヒータ16cとを有する。そして、三方弁V1乃至V4を操作し、循環ポンプ16a及びヒータ16cを作動させることで、バッキングプレート6やジャケット14に温媒(温水)を供給できる。 A heating medium supply unit 16 is connected to the cooling water supply path L1 and the cooling water discharge path L2 communicating with the backing plate 6 via three-way valves V1 and V2. The heating medium supply unit 16 is also connected to a cooling water supply path L11 branched from the cooling water supply path L1 and a cooling water discharge path L21 joined to the cooling water discharge path L2 via the three-way valves V3 and V4. Yes. The heating medium supply unit 16 includes a flow path 16b provided with a circulation pump 16a and a heater 16c that heats cooling water flowing through the flow path 16b. Then, by operating the three-way valves V1 to V4 and operating the circulation pump 16a and the heater 16c, the heating medium (hot water) can be supplied to the backing plate 6 and the jacket 14.
 上述した真空用ポンプ3a、3b、ヒータ15、温媒供給ユニット16及び三方弁V1乃至V4等の部品は、コンピュータ、シーケンサーやドライバー等を備えた制御手段(図示省略)により統括制御される。 The above-described components such as the vacuum pumps 3a and 3b, the heater 15, the heating medium supply unit 16, and the three-way valves V1 to V4 are collectively controlled by a control means (not shown) including a computer, a sequencer, a driver, and the like.
 以下、図2を参照して、上記スパッタ装置Mにおいて、メンテナンス作業としての防着板12の交換が終了した後、生産復帰(基板Sへの成膜処理)するまでの工程を、上記従来例(図3参照)と比較しながら説明する。 Hereinafter, with reference to FIG. 2, in the sputtering apparatus M, the steps from the completion of the replacement of the deposition preventing plate 12 as a maintenance operation to the return to production (film formation processing on the substrate S) are described above. This will be described in comparison with (see FIG. 3).
 真空チャンバ1を大気解放して防着板12を交換する間、ヒータ15を作動して真空チャンバ1を室温T0より高い第1の温度(例えば、50℃)T1に予加熱しておく(予加熱工程)。第1の温度T1は、真空チャンバ1内にて作業者がメンテナンス作業を行うことを考慮して適宜設定される。この場合、温媒供給ユニット16からの温媒をジャケット14内に循環させることで、真空チャンバ1を予加熱してもよい。 While the vacuum chamber 1 is opened to the atmosphere and the deposition plate 12 is replaced, the heater 15 is operated to preheat the vacuum chamber 1 to a first temperature T1 higher than the room temperature T0 (for example, 50 ° C.) (preliminary). Heating step). The first temperature T1 is appropriately set in consideration of the operator performing maintenance work in the vacuum chamber 1. In this case, the vacuum chamber 1 may be preheated by circulating the heating medium from the heating medium supply unit 16 in the jacket 14.
 防着板12の交換が終了すると、真空チャンバ1を密閉し、真空排気手段3a、3bを作動して真空チャンバ1内の真空引きを開始する。これに併せて、ヒータ15により真空チャンバ1を第2の温度(例えば、100℃)T2に昇温して保持する(ベーキング工程)。このとき、真空チャンバ1は第1の温度T1に予加熱されているため、上記従来例のように室温T0から第2の温度T2まで昇温するものと比較して短時間(例えば1時間)で真空チャンバ1が第2の温度T2に到達する。なお、第2の温度T2は、真空シール部品たるOリングの劣化等を考慮して適宜設定される。また、ベーキング中においては、温媒供給ユニット16からの温媒をバッキングプレート6内に循環させて、ターゲット5を第2の温度に加熱し、ターゲット5をベーキングする。ターゲット5の第2の温度は、永久磁石の減磁を考慮して、真空チャンバ1の第2の温度T2とは異なる60~80℃の範囲内の温度とする。 When the replacement of the protection plate 12 is completed, the vacuum chamber 1 is sealed, and the vacuum exhaust means 3a and 3b are operated to start evacuation in the vacuum chamber 1. At the same time, the heater 15 raises the vacuum chamber 1 to a second temperature (for example, 100 ° C.) T2 and holds it (baking step). At this time, since the vacuum chamber 1 is preheated to the first temperature T1, it is shorter (for example, 1 hour) than that in which the temperature is raised from the room temperature T0 to the second temperature T2 as in the conventional example. The vacuum chamber 1 reaches the second temperature T2. The second temperature T2 is appropriately set in consideration of deterioration of the O-ring that is a vacuum seal component. Further, during baking, the heating medium from the heating medium supply unit 16 is circulated in the backing plate 6, the target 5 is heated to the second temperature, and the target 5 is baked. The second temperature of the target 5 is set to a temperature within a range of 60 to 80 ° C. different from the second temperature T2 of the vacuum chamber 1 in consideration of demagnetization of the permanent magnet.
 ここで、真空チャンバ1やターゲット5の昇温開始直後は、真空チャンバ1及びターゲット5の温度が比較的低いため、真空チャンバ1内で新たに設置した防着板12等に吸着したガス成分が殆ど活性化せずに、真空チャンバ1内へと放出されない。このため、真空チャンバ1内の圧力が低下していく。その後、真空チャンバ1及びターゲット5の温度が上昇するのに従い、真空チャンバ1内に吸着したガス成分が活性化されて真空チャンバ1内へと放出される。その結果、真空チャンバ1の圧力が上昇していく。 Here, immediately after the start of raising the temperature of the vacuum chamber 1 or the target 5, the temperature of the vacuum chamber 1 and the target 5 is relatively low. It is not activated and is not released into the vacuum chamber 1. For this reason, the pressure in the vacuum chamber 1 decreases. Thereafter, as the temperature of the vacuum chamber 1 and the target 5 rises, the gas component adsorbed in the vacuum chamber 1 is activated and released into the vacuum chamber 1. As a result, the pressure in the vacuum chamber 1 increases.
 真空チャンバ1の温度が第2の温度T2に達すると、真空計4により測定される真空チャンバ1内の圧力を監視し、その圧力が上昇から下降に転じた時点を判定する(判定工程)。判定方法としては、公知の方法を用いることができ、例えば、真空計4の測定値を1分毎にサンプリングし、前回のサンプリング値との差分を求め、その差分を所定の基準値と比較する方法が用いられる。 When the temperature of the vacuum chamber 1 reaches the second temperature T2, the pressure in the vacuum chamber 1 measured by the vacuum gauge 4 is monitored to determine when the pressure has changed from rising to falling (determination step). As a determination method, a known method can be used. For example, the measurement value of the vacuum gauge 4 is sampled every minute, a difference from the previous sampling value is obtained, and the difference is compared with a predetermined reference value. The method is used.
 そして、真空チャンバ1内の圧力が下降に転じる時点が判定されると、ガス成分が生産復帰後の膜質に悪影響を及ぼさない程度まで排出されたと判断し、ヒータ15の作動を停止して真空チャンバ1のベーキングを終了すると共に、バッキングプレート6内の温媒の循環を停止してターゲット5のベーキングを終了する。つまり、防着板12等のガス成分の吸着状況に応じてベーキングを終了させる。 When it is determined when the pressure in the vacuum chamber 1 starts to decrease, it is determined that the gas component has been exhausted to the extent that it does not adversely affect the film quality after production return, and the heater 15 is stopped to operate. 1 and the baking of the target 5 is finished by stopping the circulation of the heating medium in the backing plate 6. That is, baking is terminated according to the adsorption state of gas components such as the deposition preventing plate 12.
 ベーキングが終了すると、ジャケット14及びバッキングプレート6内に冷却水(例えば20℃)を循環させることで真空チャンバ1及びターゲット5の強制冷却を開始する(冷却工程)。真空チャンバ1及びターゲット5の温度が低下し始めると、ベーキング中に活性化されたガス成分が防着板12等に留まり、殆ど真空チャンバ1内の真空雰囲気に放出されなくなる。このため、真空チャンバ1内の圧力が急激に低下し、真空チャンバ1が生産復帰するのに適した所定の圧力(例えば、1×10-5Pa)及び所定の温度(例えば、30℃)に到達する。所定圧力に達すると、強制冷却を終了する。 When baking is completed, cooling water (for example, 20 ° C.) is circulated in the jacket 14 and the backing plate 6 to start forced cooling of the vacuum chamber 1 and the target 5 (cooling process). When the temperatures of the vacuum chamber 1 and the target 5 begin to decrease, the gas component activated during baking stays on the deposition preventing plate 12 and the like, and is hardly released to the vacuum atmosphere in the vacuum chamber 1. For this reason, the pressure in the vacuum chamber 1 rapidly decreases, and the vacuum chamber 1 is brought to a predetermined pressure (for example, 1 × 10 −5 Pa) and a predetermined temperature (for example, 30 ° C.) suitable for the production return. To reach. When the predetermined pressure is reached, forced cooling is terminated.
 強制冷却の終了後、製品として利用されないダミー基板(図示せず)をターゲット5と対向するステージ11上に搬送する。そして、ガス管13bからスパッタガスを導入しつつ、ターゲット5にスパッタ電源9を介して負の直流電圧または高周波電圧を印加し、所定の積算電力だけプレスパッタを行う(プレスパッタ工程)。プレスパッタ条件は、製品の基板Sへのスパッタ条件と同一または異なるものに設定してもよい。これにより、ターゲット5表面が侵食されて当該ターゲット5表面に吸着したガス成分が除去されると共に、真空チャンバ1内に存する防着板12等の部品に留まっているガス成分がスパッタ粒子により覆われる。このため、生産復帰後にガス成分が真空チャンバ1内に放出されることを防止できる。 After completion of forced cooling, a dummy substrate (not shown) that is not used as a product is transferred onto the stage 11 facing the target 5. Then, a negative DC voltage or a high-frequency voltage is applied to the target 5 via the sputtering power source 9 while introducing the sputtering gas from the gas pipe 13b, and pre-sputtering is performed by a predetermined integrated power (pre-sputtering process). The pre-sputtering conditions may be set to be the same as or different from the sputtering conditions for the product substrate S. As a result, the surface of the target 5 is eroded and the gas components adsorbed on the surface of the target 5 are removed, and the gas components remaining on the components such as the deposition preventing plate 12 in the vacuum chamber 1 are covered with the sputtered particles. . For this reason, it is possible to prevent the gas component from being released into the vacuum chamber 1 after the return of production.
 プレスパッタを所定の積算電力だけ行った後、製品の基板Sがターゲット5に対向したステージ11上に搬送され、成膜処理が再開される。 After performing pre-sputtering with a predetermined integrated power, the substrate S of the product is transferred onto the stage 11 facing the target 5 and the film forming process is resumed.
 このように本実施形態では、真空チャンバ1の大気開放中に真空チャンバ1を第1の温度T1に予加熱することと、第2の温度でのベーキング中に真空チャンバ1内の圧力に基づき防着板12等へのガス成分の吸着状況に応じてベーキングを終了することとが相俟って、メンテナンス作業の終了後、真空チャンバ1の状態に応じて可及的速やかに生産復帰できる。しかも、ベーキング終了後に防着板12等に残留するガス成分をそのまま留めるようにし、このガス成分を、プレスパッタによるスパッタ粒子で覆うことで、生産復帰後にガス成分が真空チャンバ内に放出されることを防止できる。また、多量の酸素ガスまたは不活性ガスを真空チャンバ1内に導入するものと比較して、ランニングコストも低くできる。 As described above, in the present embodiment, the vacuum chamber 1 is preheated to the first temperature T1 while the vacuum chamber 1 is opened to the atmosphere, and the baking is performed based on the pressure in the vacuum chamber 1 during baking at the second temperature. Combined with the completion of the baking according to the state of adsorption of the gas component on the plate 12 or the like, the production can be restored as soon as possible according to the state of the vacuum chamber 1 after the maintenance work is completed. In addition, the gas component remaining on the deposition preventive plate 12 and the like is kept as it is after baking, and this gas component is covered with sputtered particles by pre-sputtering, so that the gas component is released into the vacuum chamber after the production return. Can be prevented. Further, the running cost can be reduced as compared with a case where a large amount of oxygen gas or inert gas is introduced into the vacuum chamber 1.
 以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々変形して実施することができる。例えば、ターゲット5の後方に磁石ユニット10を配置しない場合、真空チャンバ1とターゲット5とを同じ第2の温度でベーキングすれば、ターゲット5に吸着したガス成分の真空チャンバ1内への放出が促進されてよい。 The embodiment of the present invention has been described above, but the present invention is not limited to the above, and various modifications can be made without departing from the spirit of the present invention. For example, when the magnet unit 10 is not disposed behind the target 5, if the vacuum chamber 1 and the target 5 are baked at the same second temperature, the release of the gas components adsorbed on the target 5 into the vacuum chamber 1 is promoted. May be.
 また、上記実施形態では、真空チャンバ1を大気開放している間、真空チャンバ1のみを予加熱しているが、ターゲット5を予加熱すれば、ターゲット5を第2の温度まで短時間で昇温できてよい。 In the above embodiment, only the vacuum chamber 1 is preheated while the vacuum chamber 1 is opened to the atmosphere. However, if the target 5 is preheated, the target 5 is raised to the second temperature in a short time. May be warm.
 M…スパッタリング装置、1…真空チャンバ、5…ターゲット。 M: Sputtering device, 1 ... Vacuum chamber, 5 ... Target.

Claims (2)

  1.  スパッタリング装置の真空チャンバを大気開放している間、この真空チャンバを室温より高い第1の温度に予加熱する予加熱工程と、真空チャンバを密閉してその内部を真空引きしつつ、真空チャンバとこの真空チャンバ内に配置されたターゲットとを第1の温度より高い第2の温度に昇温してベーキングするベーキング工程と、第2の温度に保持したベーキング工程中、真空チャンバ内の圧力を監視し、この圧力が上昇から下降に転じる時点を判定する判定工程と、判定工程にて真空チャンバ内の圧力が上昇から下降に転じる時点が判定された直後に、真空チャンバのベーキングを終了して少なくとも真空チャンバを所定温度まで強制冷却する冷却工程と、を含むことを特徴とするスパッタリング装置の生産復帰方法。 A preheating step of preheating the vacuum chamber to a first temperature higher than room temperature while the vacuum chamber of the sputtering apparatus is open to the atmosphere; and sealing the vacuum chamber and evacuating the interior of the vacuum chamber; During the baking process in which the target placed in the vacuum chamber is baked by raising the temperature to a second temperature higher than the first temperature, and the baking process held at the second temperature, the pressure in the vacuum chamber is monitored. A determination step for determining when the pressure changes from rising to lowering, and immediately after the determination step determines when the pressure in the vacuum chamber changes from rising to lowering, the baking of the vacuum chamber is terminated and at least And a cooling step of forcibly cooling the vacuum chamber to a predetermined temperature.
  2.  前記冷却工程が終了した後、前記真空チャンバ内にスパッタガスを導入すると共に前記ターゲットに電力投入してターゲットをプレスパッタするプレスパッタ工程を更に含むことを特徴とする請求項1記載のスパッタリング装置の生産復帰方法。 2. The sputtering apparatus according to claim 1, further comprising a pre-sputtering step of introducing a sputtering gas into the vacuum chamber and pre-sputtering the target by supplying power to the target after the cooling step is completed. Production return method.
PCT/JP2011/000603 2010-06-10 2011-02-03 Method for resuming production using sputtering device WO2011155100A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127021001A KR101416286B1 (en) 2010-06-10 2011-02-03 Method for resuming production using sputtering device
JP2012519206A JP5433786B2 (en) 2010-06-10 2011-02-03 Sputtering equipment production return method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010132789 2010-06-10
JP2010-132789 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011155100A1 true WO2011155100A1 (en) 2011-12-15

Family

ID=45097722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000603 WO2011155100A1 (en) 2010-06-10 2011-02-03 Method for resuming production using sputtering device

Country Status (4)

Country Link
JP (1) JP5433786B2 (en)
KR (1) KR101416286B1 (en)
TW (1) TW201204853A (en)
WO (1) WO2011155100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183558A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor apparatus, and maintenance method for dry etching device
CN113345979A (en) * 2021-05-25 2021-09-03 通威太阳能(成都)有限公司 Quick resetting method for vacuum machine table
WO2023160809A1 (en) * 2022-02-25 2023-08-31 Applied Materials, Inc. Deposition apparatus, substrate processing system and method for processing a substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295427B (en) * 2018-09-29 2021-01-22 厦门乾照光电股份有限公司 Method and device for cleaning sputtering target

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236237A (en) * 1990-02-14 1991-10-22 Hitachi Ltd Method and apparatus for forming wiring
JP2000038668A (en) * 1998-07-22 2000-02-08 Toyobo Co Ltd Vacuum thin film forming device and its production
JP2010084211A (en) * 2008-10-01 2010-04-15 Ulvac Japan Ltd Sputtering method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246726A (en) * 1988-08-09 1990-02-16 Nec Corp Improvement of degree of vacuum of vacuum apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236237A (en) * 1990-02-14 1991-10-22 Hitachi Ltd Method and apparatus for forming wiring
JP2000038668A (en) * 1998-07-22 2000-02-08 Toyobo Co Ltd Vacuum thin film forming device and its production
JP2010084211A (en) * 2008-10-01 2010-04-15 Ulvac Japan Ltd Sputtering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183558A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor apparatus, and maintenance method for dry etching device
CN113345979A (en) * 2021-05-25 2021-09-03 通威太阳能(成都)有限公司 Quick resetting method for vacuum machine table
WO2023160809A1 (en) * 2022-02-25 2023-08-31 Applied Materials, Inc. Deposition apparatus, substrate processing system and method for processing a substrate

Also Published As

Publication number Publication date
TW201204853A (en) 2012-02-01
JPWO2011155100A1 (en) 2013-08-01
JP5433786B2 (en) 2014-03-05
KR20120107011A (en) 2012-09-27
KR101416286B1 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
US5707498A (en) Avoiding contamination from induction coil in ionized sputtering
JP5433786B2 (en) Sputtering equipment production return method
JP2001023900A (en) Method for improved chamber bake-out and cool-down
JP2007224419A (en) Sputtering using cooled target
TWI599669B (en) Film forming apparatus and film forming method
TWI686492B (en) Magnetron sputtering device
KR101438129B1 (en) Sputtering apparatus
JP2014148703A (en) Sputtering device
JP2000232068A (en) Sputtering system
WO2011131137A1 (en) Magnetron sputtering apparatus
KR102138598B1 (en) Film formation method and sputtering device
WO2019131010A1 (en) Sputtering method and sputtering device
JP6335386B2 (en) Cathode assembly
JP6722466B2 (en) Film forming apparatus and substrate discrimination method
JP7057442B2 (en) Vacuum processing equipment
JP2001073131A (en) Method for depositing copper thin film and sputtering system used for the method
EP1076729A1 (en) Low pressure purging method
JP3949304B2 (en) Sputtering processing method and apparatus
JP2010084211A (en) Sputtering method
JP4614252B2 (en) Substrate processing apparatus and computer program used therefor
JP6927777B2 (en) Film formation method and sputtering equipment
JPH06172987A (en) Sputtering device
TWI713540B (en) Sputtering device and its state judging method
JP2000144417A (en) High frequency sputtering device
JP2003034857A (en) Sputtering apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519206

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127021001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792063

Country of ref document: EP

Kind code of ref document: A1