WO2011154623A1 - Machine tournante comportant un dispositif de sustentation et de centrage de son rotor - Google Patents

Machine tournante comportant un dispositif de sustentation et de centrage de son rotor Download PDF

Info

Publication number
WO2011154623A1
WO2011154623A1 PCT/FR2011/000332 FR2011000332W WO2011154623A1 WO 2011154623 A1 WO2011154623 A1 WO 2011154623A1 FR 2011000332 W FR2011000332 W FR 2011000332W WO 2011154623 A1 WO2011154623 A1 WO 2011154623A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotation
axis
stator
rotating machine
Prior art date
Application number
PCT/FR2011/000332
Other languages
English (en)
Inventor
Eric Vangraefschepe
Original Assignee
Eric Vangraefschepe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eric Vangraefschepe filed Critical Eric Vangraefschepe
Publication of WO2011154623A1 publication Critical patent/WO2011154623A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0429Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/315Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft
    • F16F15/3156Arrangement of the bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a rotating machine comprising a device for levitation and centering of its rotor. More particularly, the invention relates to a device for lifting and centering a flywheel.
  • a flywheel corresponds in a rotating machine to a mass linked to the rotating part also called rotor and distributed around the axis of rotation of the rotor to increase the moment of inertia.
  • the flywheel allows the storage and the restitution of kinetic energy.
  • the flywheel In a first phase, the flywheel is rotated by a rotating element called generator and stores kinetic energy.
  • the flywheel In a second phase, when it is no longer rotated, the flywheel is adapted to rotate a rotating element called receiver and to restore the kinetic energy stored.
  • the kinetic energy being a function of the mass and the square of the speed, the flywheel must have a moment of inertia and a high speed of rotation if one tries to store the most energy.
  • the steering wheel has a substantially vertical axis of rotation and comprises a body with a substantial diameter extended at one end by a shaft with a smaller diameter than the body whose free end can be connected alternately to a receiver or generator.
  • the flywheel is guided in rotation relative to a fixed support called stator with at least one bearing.
  • stator with at least one bearing.
  • the bearings and lift means are of the magnetic type in order to optimize efficiency and to eliminate friction or heating losses.
  • a flywheel is described in particular in FR-2.356.044. The latter describes a rotor floating with respect to a stator.
  • the rotor comprises at its lower face an annular permanent magnet disposed vis-à-vis an annular permanent magnet integral with the stator and identical to the first.
  • these two permanent magnets have magnetic fields with directions aligned and parallel to the axis of rotation, with opposite directions to work in repulsion in a direction parallel to the axis of rotation.
  • the portion of the stator facing the rotor body is divided into two levels, themselves divided into different sectors each having a coil capable of providing radial attraction forces.
  • the rotor comprises peripheral grooves.
  • the device comprises means for detecting the position of the rotor relative to the stator and capable of providing control means making it possible, if necessary, to correct the position of the rotor relative to the stator by means of the windings.
  • the rotor comprises in the lower part a skirt whose cavity cooperates with a cylindrical portion of the stator.
  • the rotor comprises at the level of the skirt two permanent magnets (one at the bottom of the cavity and another at the side wall of the cavity) which are offset relative to the coils provided at the stator which each generate a signal in depending on the position of the rotor with respect to the stator.
  • the centering device is relatively complex.
  • the present invention aims at providing a rotating machine comprising a device for lifting and centering the rotor of simple and compact design.
  • the subject of the invention is a rotating machine comprising a rotating element called a rotor capable of rotating along an axis of vertical rotation relative to a fixed element called a stator, magnetic levitation means for maintaining said rotor relative to to the stator in a direction parallel to the axis of rotation and means for centering said rotor relative to the stator in a plane perpendicular to the axis of rotation, characterized in that the centering means comprise, at the rotor, a first annular magnet concentric with the axis of rotation, and at the stator, a second annular magnet concentric with the axis of rotation, the first and second magnets being arranged to create a repulsion with a resultant in a radial direction and a resultant along the axis of rotation, and in that the rotor is pendulum, the center of gravity of the rotor being arranged under the plan of levitation which corresponds in the plane perpendicular to the axis of rotation, median between the
  • the centering means also ensure the lift of the rotor.
  • the rotor is pendulum type to ensure better stability. Indeed, the point of action of the repulsion forces being thus placed above the center of mass of the rotor, the weight P and the repulsion forces Ri and 2 act in the form of a return torque allowing, in case of punctual destabilization, to bring the rotor back to its stable rotation position. This conjunction of the forces in return forces towards the equilibrium position is illustrated in FIG. 12.
  • the arrangement of the magnets and the pendular position of the rotor thus create a mechanical system evolving in a local minimum of forces potential ensuring the stability of the rotor in its rotation.
  • the means for generating a magnetic field are permanent magnets, which makes it possible to obtain a device for levitation and centering of the passive type.
  • FIG. 1 is a section along a plane containing the axis of rotation of a rotating machine according to the invention
  • FIG. 2 is a section along a plane containing the axis of rotation illustrating a rotor of a rotating machine according to the invention alone,
  • FIG. 3 is a section along a plane perpendicular to the axis of rotation of the rotor of FIG. 2,
  • FIG. 4 is a section along a plane containing the axis of rotation illustrating a stator of a rotating machine according to the invention alone,
  • FIG. 5 is a section along a plane perpendicular to the axis of rotation of the stator of FIG. 4, and
  • FIG. 10 is a low-speed flywheel centering device to bypass the limitation of the magnetic levitation indicated by Earnshaw's theorem.
  • FIG. 11 is an exemplary organization of a solution for storing energy by means of flywheel according to the invention, characterized by the installation of several flywheels in a same enclosure called a container, deployable in various places according to the needs.
  • a rotating machine comprising a rotating element 10 called rotor rotatable about a vertical axis of rotation 12 relative to a fixed element 14 called stator.
  • stator a rotating element 10
  • rotor and the stator may be of a block or consist of several pieces assembled.
  • the rotor forms an inertial flywheel capable of storing kinetic energy.
  • the invention is not limited to this application and covers all rotating machines having a vertical axis of rotation and capable of operating at relatively high rotational speeds.
  • the rotor 10 comprises a body 16 surmounted by a shaft 18 whose diameter is smaller than that of the body 16 and a disc 20 connected to the upper end of the shaft 18 and whose diameter is greater than that of the shaft.
  • the body 16, the shaft 18 and the disc 20 are kinematically connected.
  • the body may be disposed above the shaft itself disposed above the disk.
  • the shapes of the body are determined to provide a moment of inertia relative to the axis of rotation 12 important to optimize the amount of kinetic energy stored.
  • the body 16 comprises a flat upper surface 22 substantially perpendicular to the axis of rotation 12.
  • the disk 20 comprises at least one plane lower surface 24 substantially perpendicular to the axis of rotation 12 and therefore substantially parallel to the upper surface 22 of the body.
  • the stator 14 comprises a hollow cylindrical portion 26 in which at least a portion of the shaft 18 can be housed with at its lower end a disc 28 having a central orifice allowing the passage of the shaft 18.
  • the disc 28 is interposed between the body 16 and the disk 20 of the rotor.
  • the stator 14 is integral with a housing 30 which forms a cavity of shape adapted to house the body 16.
  • the rotor 10 may comprise a body 16 with a cavity 32 at its upper surface, of cylindrical shape and concentric with the axis of rotation 12, partially closed by a wall 34 having an opening 36 circular and concentric with the axis of rotation 12.
  • the stator 14 comprises a shaft 38 which enters the cavity 32 of the rotor via the opening 36 of the wall 34 with at its end disposed in the cavity a disc 40 with a diameter greater than the shaft 38 which comprises a surface facing the wall 34.
  • stator 14 may be integral with a housing 30 which forms a cavity of a shape adapted to house the rotor 10.
  • the body 16 of the rotor can advantageously take the form of a closed hollow cylinder, in its upper part by the upper disk 20 under which is placed the annular magnet 42 in rotation.
  • the shaft 18 has no existence.
  • the stator is a shaft 90 surmounted by a disk 91 arranged perpendicularly to the axis of rotation 12 and carrying the static annular magnet 46.
  • the rotating machine comprises levitation means for holding the rotor 10 in the direction parallel to the axis of rotation 12.
  • the rotating machine comprises means for centering the rotor relative to the stator.
  • the means for centering the rotor with respect to the stator also ensure at least a part of the lift function.
  • the centering means alone provide the lift function.
  • independent levitation means of the centering means could be envisaged to enhance the lift effect provided by the centering means.
  • These independent levitation means of the centering means do not are not more described because they are optional and can be made in the same way as for the prior art.
  • the rotor 10 comprises at least a first annular magnet 42 concentric with the axis of rotation 12 and the stator 14 comprises at least a second annular magnet 46 concentric with the axis of rotation, the first magnet 42 and the second magnet 46 being arranged to create a repulsion with a resultant in a radial direction (perpendicular to the axis of rotation) and a resultant along the axis of rotation 12.
  • This arrangement makes it possible to obtain a centering of the rotor around the axis of rotation 12.
  • the repulsive force generated by the magnets 42 and 46 is sufficient to ensure the lift of the rotor relative to the stator.
  • the center of gravity of the rotor 10 is arranged under the plane of levitation which corresponds to the plane perpendicular to the axis of rotation, median between the facing faces of the magnets 42 and 46.
  • This arrangement makes it possible to obtain a rotor in the pendular position, which, combined with the lift provided by the repulsive effect of the magnets 42 and 46, ensures a greater stability of the rotor.
  • the repulsion forces R 1 and R 2 of the magnets and the weight P of the rotor act, in this configuration, according to a restoring torque, illustrated in FIG. 12, which brings the rotor back to a stable position corresponding to a local minimum potential.
  • the magnets 42 and 46 are of permanent type which makes it possible to obtain a passive centering system.
  • the magnet 42 is capable of generating a magnetic field with a first direction 44 parallel to the axis of rotation and concentric with the axis of rotation 12 and the magnet 46 is capable of generating a magnetic field with a second direction 48 parallel to the axis of rotation and concentric with the axis of rotation 12, the directions 44 and 48 being offset radially (in a direction perpendicular to the axis of rotation 12).
  • Magnetic fields generated respectively by magnets permanent members 42 and 46 are oriented in opposite directions so as to obtain a repulsive effect which generates or enhances the lifting effect.
  • the rotor 10 comprises a permanent magnet 42 in the form of a ring concentric with the axis of rotation 12 and which is secured to the lower face 24 of the disk 20 of the rotor.
  • the stator comprises a permanent magnet 46 in the form of a ring concentric with the axis of rotation 12 and which is secured to the face of the disk 28 of the stator facing towards the face 24. The fact of providing magnetic fields offset in the radial direction provides guidance in a plane perpendicular to the axis of rotation 12.
  • the magnets 42 and 46 are not reported on a flat surface perpendicular to the axis of rotation 12 but each on a truncated cone so that the magnetic fields generated by the two magnets are not parallel with the axis of rotation 12 as for the previous variant but secants with said axis of rotation.
  • This embodiment increases radial repulsion and improves centering.
  • the magnets 42 and 46 are concentric with the axis of rotation. This arrangement can be applied to the various rotor and stator disposition variants.
  • one of the magnets has an outside diameter between the outside and inside diameters of the other magnet.
  • the magnets 42 and 46 are continuous or discontinuous and may be in several parts.
  • the permanent magnets 42 and 46 could be replaced by any means capable of generating magnetic fields having a component along the axis of rotation 12 and a radial component, and concentric with said axis of rotation 12 but shifted in the radial direction.
  • the means 42 and 46 for generating magnetic fields are not necessarily reported on the discs 20 and 28. Thus, they can be provided at two surfaces facing each other, one being related to the stator and the other to the rotor.
  • means 50 for generating a magnetic field in a first direction parallel to the axis of rotation are reported at the fixed part of the flywheel and means 52 for generate at least a second magnetic field in a direction parallel to the axis of rotation are reported at the rotor 10.
  • the means 32 are windings 54 arranged in a circle concentric with the axis of rotation 12, the windings 54 being secured the disk 24 of the stator which comprises at least one opening 56 to the right of the windings 54 to let the magnetic field.
  • the means 52 comprise a first series of permanent magnets 58 attached to the lower face 24 of the disk 20 of the rotor and a second series of permanent magnets 60 attached to the upper face of the body 16 of the rotor.
  • the windings 54 arranged in a ring around the axis of rotation 12 constitute means for ensuring the transfer of energy between the rotor and the external environment.
  • These elements 50 to 60 of magnetic type allow the acceleration of the rotor in the storage phase and its deceleration in the restitution phase. Thus, the windings are not activated during the conservation phase of the energy by the rotor.
  • the rotating machine For the application of the rotating machine to an energy storage device, the rotating machine is used to transform the electrical energy into kinetic energy of the rotor during the charging phase, and vice versa in the discharge phase. By minimizing the friction losses, it is thus possible to conserve this energy for periods of several hours.
  • the mechanical equations show that the density of energy density of this device is independent of the rotor dimensions, but only proportional to the elastic limit of -traction of the material used for this rotor.
  • the rotation speed required to achieve this energy will be greater as the density of the rotor material will be low.
  • the ideal compromise for an application of this energy storage machine is a material having a high yield stress and a high density. This compromise is allowed by some high tensile strength steels, among which maraging steels.
  • this rotating machine For an energy storage application, this rotating machine must be installed in specific equipment to optimize performance while respecting the technical characteristics of each element used. Thus, the repulsion of levitation magnets can allow the levitation of the rotor only if it retains a limited mass. Therefore, the rotor must keep limited dimensions, while the industrial installation of such equipment requires a large amount of storable energy.
  • the solution, presented in FIG. 11, therefore comes from the constitution of a container 120, which groups together a large number of unitary components 121 made on the basis of the rotary machine described here.
  • This solution makes it possible to add the powers in the charging and discharging phase, and to pool, at the container level, complementary equipment such as the inverters 122 (for the interface with the electrical network) and the vacuum pumps 123 (intended for limited friction losses of air on the rotor). It also facilitates the installation of a storage solution by limiting infrastructure costs.
  • the levitation system presented in this document allows the magnetic levitation of the flywheel when it is rotated above the stator. The rotating part remains in a position of stable equilibrium obtained by the disposition of the different forces (magnetic repulsion of the magnets and weight) relative to the center of gravity of the rotating mass. Earnshaw's theorem specifies that such a position of equilibrium can not be found in static.
  • an additional device 92 adapted to the configuration shown in FIG. 9 can be instaWed to force centering when the rotor is rotating at a low speed.
  • the said device shown below and illustrated in Figure 10 provides this function.
  • It comprises a point contact between the stator and the rotor capable of occupying two states, a first state when the relative speed of rotation between the rotor and the stator is less than a given threshold in which it ensures contact between the rotor and the stator and a second state when the relative speed of rotation between the rotor and the stator exceeds said given threshold in which it provides no contact between the rotor and the stator.
  • a rotor 102 rotated by a quarter-turn motor inside another cylinder 101, fixed, installed centered in the upper part of the stator, in the center of the annular magnet 46 of the stator.
  • a system of lugs 103 attached to the inner cylinder, and sliding in a slide 104 formed in the outer cylinder 101 makes it possible to transform the quarter-turn rotation of the inner cylinder 102 in translation along the axis 12. This displacement makes it possible to create a contact temporary contact between the stator and the rotor, contact necessary to ensure the centering of the rotor as the rotational speed of the steering wheel is not sufficient to place in the conditions of Earnshaw's theorem.
  • the end of the device comprises a conical needle 105 which comes into contact with a cone-shaped recess 106 placed inside the annular lifting magnet 42 of the rotor.
  • This needle is placed inside the inner cylinder 102 and left free to rotate relative to this cylinder by means of a set of ball bearings 107 ⁇ 108 placed between the body of the needle and the inner cylinder to serve as a centralizer 107 and stop 108.
  • the vertical positioning of this needle is provided by the joint action of the ball bearing 108 placed between the base of the needle and the positioning plate 110, and a set of ressoris 109 placed between the positioning plate 110 and the inner cylinder 102.
  • Positioning 110 is left free in vertical translation relative to the inner cylinder within the limit of the travel required to ensure shock absorption and reduce wear of the system.
  • a stopper system 111 placed on the inner surface of the cylinder 102, controls this degree of freedom by limiting the translation of the plate between two predefined values.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

L'objet de l' invention est une machine tournante comportant un élément tournant (10) appelé rotor apte à tourner selon un axe de rotation (12) vertical par rapport à un élément fixe (14) appelé stator, des moyens de sustentation de type magnétique pour maintenir ledit rotor (10) par rapport au stator (14) selon une direction parallèle à l'axe de rotation (12) et des moyens de guidage dudit rotor (10) par rapport au stator (14) dans un plan perpendiculaire à l'axe de rotation, caractérisée en ce que les moyens de centrage comprennent au niveau du rotor un premier aimant (42) annulaire concentrique à l'axe de rotation et au niveau du stator un second aimant (46) annulaire concentrique à l'axe de rotation (12), les premier et second aimants (42, 46) étant agencés de manière à créer une répulsion avec une résultante selon une direction radiale et une résultante selon l'axe de rotation (12) et en ce que le rotor (10) est pendulaire, le centre de gravité du rotor (10) étant disposé sous le plan de sustentation qui correspond au plan perpendiculaire à l'axe de rotation, médian entre les faces en regard des aimants (42, 46).

Description

MACHINE TOURNANTE COMPORTANT UN DISPOSITIF DE
SUSTENTATION ET DE CENTRAGE DE SON ROTOR
La présente invention se rapporte à une machine tournante comportant un dispositif de sustentation et de centrage de son rotor. Plus particulièrement, l'invention se rapporte à un dispositif de sustentation et de centrage d'un volant d'inertie.
Un volant d' inertie correspond dans une machine tournante à une masse liée à la partie tournante appelée également rotor et répartie autour de l'axe de rotation du rotor permettant d'augmenter le moment d'inertie.
Le volant d'inertie permet le stockage et la restitution d'énergie cinétique.
Dans une première phase, le volant d'inertie est entraîné en rotation par un élément tournant appelé générateur et emmagasine de l'énergie cinétique.
Dans une seconde phase, lorsqu'il n'est plus entraîné en rotation, le volant d'inertie est apte à entraîner en rotation un élément tournant appelé récepteur et à restituer l'énergie cinétique emmagasinée.
L'énergie cinétique étant fonction de la masse et du carré de la vitesse, le volant d'inertie doit avoir un moment d'inertie et une vitesse de rotation élevés si on cherche à emmagasiner le plus d'énergie.
Selon un mode de réalisation, le volant a un axe de rotation sensiblement vertical et comprend un corps avec un diamètre conséquent prolongé à une extrémité par un arbre avec un diamètre plus réduit que celui du corps dont l'extrémité libre peut être reliée de manière alternée à un récepteur ou un générateur. Le volant d'inertie est guidé en rotation par rapport à un support fixe appelé stator grâce à au moins un palier. En complément, il est nécessaire de prévoir des moyens pour assurer la sustentation du volant d'inertie par rapport au stator. Pour des utilisations nécessitant des vitesses de rotation élevées, les paliers et les moyens de sustentation sont de type magnétique afin d'optimiser le rendement et de supprimer les pertes par frottement ou par échauf f ement. Un volant d'inertie est notamment décrit dans le document FR-2.356.044. Ce dernier décrit un rotor flottant par rapport à un stator. Pour assurer la sustentation, le rotor comprend au niveau de sa face inférieure un aimant permanent annulaire disposé en vis-à-vis d'un aimant permanent annulaire solidaire du stator et identique au premier. Ainsi, ces deux aimants permanents ont des champs magnétiques avec des directions alignées et parallèles à l'axe de rotation, avec des sens contraires afin de travailler en répulsion selon une direction parallèle à l'axe de rotation.
Pour assurer le centrage du rotor par rapport au stator, la partie du stator en regard du corps du rotor est divisée en deux niveaux, eux-mêmes divisés en différents secteurs comportant chacun un bobinage susceptible d'assurer des forces d'attraction radiales. En parallèle, le rotor comprend des rainures périphériques.
Le dispositif comprend des moyens pour détecter la position du rotor par rapport au stator et aptes à renseigner des moyens de contrôle permettant si nécessaire de corriger la position du rotor par rapport au stator grâce aux bobinages. A cet effet, le rotor comprend en partie inférieure une jupe dont la cavité coopère avec une portion cylindrique du stator. Le rotor comprend au niveau de la jupe deux aimants permanents (un au niveau du fond de la cavité et un autre sur la paroi latérale de la cavité) qui sont décalés par rapport à des bobines prévues au niveau du stator qui génèrent chacune un signal en fonction de la position du rotor par rapport au stator. Selon ce document, le dispositif de centrage est relativement complexe.
Aussi, la présente invention vise à proposer une machine tournante comportant un dispositif de sustentation et de centrage du rotor de conception simple et compacte.
A cet effet, l'invention a pour objet une machine tournante comportant un élément tournant appelé rotor apte à tourner selon un axe de rotation vertical par rapport à un élément fixe appelé stator, des moyens de sustentation de type magnétique pour maintenir ledit rotor par rapport au stator selon une direction parallèle à l'axe de rotation et des moyens de centrage dudit rotor par rapport au stator dans un plan perpendiculaire à l'axe de rotation, caractérisée en ce que les moyens de centrage comprennent, au niveau du rotor, un premier aimant annulaire concentrique à l'axe de rotation, et au niveau du stator, un second aimant annulaire concentrique à l'axe de rotation, les premier et second aimants étant agencés de manière à créer une répulsion avec une résultante selon une direction radiale et une résultante selon l'axe de rotation, et en ce que le rotor est pendulaire, le centre de gravité du rotor étant disposé sous le plan de sustentation qui correspond au plan perpendiculaire à l'axe de rotation, médian entre les faces en regard des aimants.
Ainsi, les moyens de centrage assurent également la sustentation du rotor.
Le rotor est de type pendulaire pour assurer une meilleure stabilité. En effet, le point d'action des forces de répulsions étant ainsi placé au dessus du centre de masse du rotor, le poids P et les forces de répulsion Ri et 2 agissent sous la forme d'un couple de rappel permettant, en cas de déstabilisation ponctuelle, de ramener le rotor dans sa position de rotation stable. Cette conjonction des forces en forces de rappel vers la position d'équilibre est illustrée figure 12. L'agencement des aimants et la position pendulaire du rotor créent ainsi un système mécanique évoluant dans un minimum local de potentiel de forces assurant la stabilité du rotor dans sa rotation. De préférence, les moyens pour générer un champ magnétique sont des aimants permanents ce qui permet d'obtenir un dispositif de sustentation et de centrage de type passif.
D'autres caractéristiques et avantages ressortiront de la description qui va suivre de l' invention, description donnée à titre d'exemple uniquement, en regard des dessins annexés sur lesquels :
- la figure 1 est une coupe selon un plan contenant l'axe de rotation d'une machine tournante selon l'invention,
- la figure 2 est une coupe selon un plan contenant l'axe de rotation illustrant un rotor d'une machine tournante selon l'invention seul,
- la figure 3 est une coupe selon un plan perpendiculaire à l'axe de rotation du rotor de la figure 2,
- la figure 4 est une coupe selon un plan contenant l'axe de rotation illustrant un stator d'une machine tournante selon l'invention seul,
- la figure 5 est une coupe selon un plan perpendiculaire à l'axe de rotation du stator de la figure 4, et
- les figures 6 à 9 sont des variantes simplifiées de machines tournantes selon l'invention.
- La figure 10 est un dispositif de centrage du volant d'inertie à basse vitesse permettant de contourner la limitation de la sustentation magnétique indiquée par le théorème d'Earnshaw.
- La figure 11 est un exemple d'organisation d'une solution de stockage de l'énergie par volant d'inertie selon l'invention, caractérisée par l'installation de plusieurs volants d'inertie dans une même enceinte appelée conteneur, déployable dans divers lieux en fonction des besoins.
Sur les différentes figures, on a représenté une machine tournante comportant un élément tournant 10 appelé rotor apte à tourner selon un axe de rotation 12 vertical par rapport à un élément fixe 14 appelé stator. Selon les applications, le rotor et le stator peuvent être d'un bloc ou constitués de plusieurs pièces assemblées.
Selon une application, le rotor forme un volant inertiel susceptible de stocker de l'énergie cinétique. Toutefois, l'invention n'est pas limitée à cette application et couvre toutes les machines tournantes comportant un axe de rotation vertical et susceptibles de fonctionner à des vitesses de rotation relativement élevées. Selon un mode de réalisation illustré sur les figures 1 à 6 et 8, le rotor 10 comprend un corps 16 surmonté par un arbre 18 dont le diamètre est inférieur à celui du corps 16 et un disque 20 relié à l'extrémité supérieure de l'arbre 18 et dont le diamètre est supérieur à celui de l'arbre.
Le corps 16, l'arbre 18 et le disque 20 sont liés cinématiquement. En variante, le corps peut être disposé au-dessus de l'arbre lui-même disposé au-dessus du disque.
Les formes du corps sont déterminées pour procurer un moment d'inertie par rapport à l'axe de rotation 12 important afin d'optimiser la quantité d'énergie cinétique stockée.
Le corps 16 comprend une surface supérieure 22 plane sensiblement perpendiculaire à l'axe de rotation 12.
Le disque 20 comprend au moins une surface inférieure 24 plane sensiblement perpendiculaire à l'axe de rotation 12 et donc sensiblement parallèle à la surface supérieure 22 du corps.
Le stator 14 comprend une portion cylindrique creuse 26 dans laquelle peut se loger au moins une partie de l'arbre 18 avec à son extrémité inférieure un disque 28 comportant un orifice central autorisant le passage de l'arbre 18. Ainsi, le disque 28 est intercalé entre le corps 16 et le disque 20 du rotor.
Avantageusement, le stator 14 est solidaire d'un carter 30 qui forme une cavité de forme adaptée pour loger le corps 16. Selon un autre mode de réalisation illustré sur la figure 7, le rotor 10 peut comprendre un corps 16 avec une cavité 32 au niveau de sa surface supérieure, de forme cylindrique et concentrique à l'axe de rotation 12, partiellement fermée par une paroi 34 comportant une ouverture 36 circulaire et concentrique à l'axe de rotation 12. En parallèle, le stator 14 comprend un arbre 38 qui pénètre dans la cavité 32 du rotor via l'ouverture 36 de la paroi 34 avec à son extrémité disposée dans la cavité un disque 40 avec un diamètre supérieur à l'arbre 38 qui comprend une surface en regard de la paroi 34.
Comme précédemment, le stator 14 peut être solidaire d'un carter 30 qui forme une cavité de forme adaptée pour loger le rotor 10.
bans une autre variante illustrée figures 9 et 12, le corps 16 du rotor peut avantageusement prendre la forme d'un cylindre creux fermé, dans sa partie supérieure par le disque supérieur 20 sous lequel est placé l'aimant annulaire 42 en rotation. Dans cette variante, l'arbre 18 n'a plus d'existence. Le stator est un arbre 90 surmonté d'un disque 91 disposé perpendiculairement à l'axe de rotation 12 et portant l'aimant annulaire statique 46.
La machine tournante comprend des moyens de sustentation pour maintenir le rotor 10 selon la direction parallèle à l'axe de rotation 12.
La machine tournante comprend des moyens de centrage du rotor par rapport au stator.
Selon l'invention, les moyens de centrage du rotor par rapport au stator assurent également au moins une partie de la fonction de sustentation. De préférence, les moyens de centrage assurent seuls la fonction de sustentation. Toutefois, des moyens de sustentation indépendants des moyens de centrage pourraient être envisagés pour renforcer l'effet de sustentation procuré par les moyens de centrage. Ces moyens de sustentation indépendants des moyens de centrage ne sont pas plus décrits car ils sont optionnels et peuvent être réalisés de la même manière que pour l'art antérieur.
Selon l'invention, le rotor 10 comprend au moins un premier aimant annulaire 42 concentrique à l'axe de rotation 12 et le stator 14 comprend au moins un second aimant annulaire 46 concentrique à l'axe de rotation, le premier aimant 42 et le second aimant 46 étant agencés de manière à créer une répulsion avec une résultante selon une direction radiale (perpendiculaire à l'axe de rotation) et une résultante selon l'axe de rotation 12. Cet agencement permet d'obtenir un centrage du rotor autour de l'axe de rotation 12.
Avantageusement, la force de répulsion générée par les aimants 42 et 46 est suffisante pour assurer la sustentation du rotor par rapport au stator. Le centre de gravité du rotor 10 est disposé sous le plan de sustentation qui correspond au plan perpendiculaire à l'axe de rotation, médian entre les faces en regard des aimants 42 et 46. Cet agencement permet d'obtenir un rotor en position pendulaire, ce qui combiné, à la sustentation procurée par l'effet répulsif des aimants 42 et 46, assure une plus grande stabilité du rotor. En effet, les forces de répulsion Ri et R2 des aimants et le poids P du rotor agissent, dans cette configuration, selon un couple de rappel, illustré figure 12, qui ramène le rotor dans une position stable correspondant à un potentiel minimum local.
De préférence, les aimants 42 et 46 sont de type permanents ce qui permet d'obtenir un système de centrage passif.
Selon un mode de réalisation illustré sur les figures 1 à 7 et 9, l'aimant 42 est susceptible de générer un champ magnétique avec une première direction 44 parallèle à l'axe de rotation et concentrique à l'axe de rotation 12 et l'aimant 46 est susceptible de générer un champ magnétique avec une seconde direction 48 parallèle à l'axe de rotation et concentrique à l'axe de rotation 12, les directions 44 et 48 étant décalées radialement (selon une direction perpendiculaire à l'axe de rotation 12). Les champs magnétiques générés respectivement par les aimants permanents 42 et 46 sont orientés en sens opposés de manière à obtenir un effet répulsif qui génère ou renforce l'effet de sustentation.
Selon un mode de réalisation, le rotor 10 comprend un aimant permanent 42 sous forme d'un anneau concentrique à l'axe de rotation 12 et qui est solidarisé à la face inférieure 24 du disque 20 du rotor. En complément, le stator comprend un aimant permanent 46 sous forme d'un anneau concentrique à l'axe de rotation 12 et qui est solidarisé à la face du disque 28 du stator orientée vers la face 24. Le fait de prévoir des champs magnétiques décalés selon la direction radiale permet d'obtenir un guidage dans un plan perpendiculaire à l'axe de rotation 12. Selon un autre mode de réalisation illustré sur la figure 8, les aimants 42 et 46 ne sont pas rapportés sur une surface, plane perpendiculaire à l'axe de rotation 12 mais chacun sur un tronc de cône de manière à ce que les champs magnétiques générés par les deux aimants ne soient pas parallèles avec l'axe de rotation 12 comme pour la variante précédente mais sécants avec ledit axe de rotation. Ce mode de réalisation augmente la répulsion radiale et améliore le centrage. Dans ce cas, les aimants 42 et 46 sont concentriques à l'axe de rotation. Cette disposition peut s'appliquer aux différentes variantes de disposition du rotor et du stator.
Selon les différents modes de réalisation, l'un des aimants a un diamètre extérieur compris entre les diamètres extérieur et intérieur de l'autre aimant. Selon les cas, les aimants 42 et 46 sont continus ou discontinus et peuvent être en plusieurs parties.
En variante, on pourrait remplacer les aimants permanents 42 et 46 par tous moyens susceptibles de générer des champs magnétiques possédant une composante selon l'axe de rotation 12 et une composante radiale, et concentriques audit axe de rotation 12 mais décalées selon la direction radiale. Les moyens 42 et 46 pour générer des champs magnétiques ne sont pas nécessairement rapportés sur les disques 20 et 28. Ainsi, ils peuvent être prévus au niveau de deux surfaces en regard l'une de l'autre , l'une étant rapportée au stator et l'autre au rotor.
Selon un mode de réalisation illustré sur les figures 1 à 4, des moyens 50 pour générer un champ magnétique selon une première direction parallèle à l'axe de rotation sont rapportés au niveau de la partie fixe du volant d'inertie et des moyens 52 pour générer au moins un second champ magnétique selon une direction parallèle à l'axe de rotation sont rapportés au niveau du rotor 10. Les moyens 32 sont des enroulements 54 disposés selon un cercle concentrique à l'axe de rotation 12, les enroulements 54 étant solidarisés au disque 24 du stator qui comprend au moins une ouverture 56 au droit des enroulements 54 pour laisser passer le champ magnétique.
En complément, les moyens 52 comprennent une première série d'aimants permanents 58 rapportés sur la face inférieure 24 du disque 20 du rotor et une seconde série d'aimants permanents 60 rapportés sur la face supérieure du corps 16 du rotor.
Les enroulements 54 disposés en anneau autour de l'axe de rotation 12 constituent des moyens pour assurer le transfert de l'énergie entre le rotor et le milieu extérieur. Ces éléments 50 à 60 de type magnétique permettent l'accélération du rotor en phase de mise en stockage et sa décélération en phase de restitution. Ainsi, les enroulements ne sont pas activés en phase de conservation de l'énergie par le rotor.
Pour l'application de la machine tournante à un dispositif de stockage de l'énergie, la machine tournante est utilisée pour transformer l'énergie électrique en énergie cinétique du rotor lors de la phase de charge, et inversement en phase de décharge. En minimisant les pertes par frottements, on peut ainsi conserver cette énergie pendant des durées de plusieurs heures. Pour une telle application, les équations mécaniques montrent que la densité d'énergie volumique de ce dispositif est indépendante des dimensions du rotor, mais seulement proportionnelle à la limite élastique de -traction du matériau utilisé pour ce rotor. De plus, pour une même quantité d'énergie stockée avec un rotor de dimensions données, la vitesse de rotation nécessaire pour atteindre cette énergie sera d'autant plus grande que la masse volumique du matériau du rotor sera faible. Ainsi, le compromis idéal pour une application de cette machine au stockage de l'énergie est un matériau ayant une haute limite élastique de traction et une masse volumique élevée. Ce compromis est permis par certains aciers à haute limite de traction, parmi lesquels les aciers maraging.
Pour une application de stockage de l'énergie, cette machine tournante doit être installée dans un équipement spécifique permettant d'optimiser les performances tout en respectant les caractéristiques techniques de chaque élément utilisé. Ainsi, la répulsion des aimants de sustentation ne peut permettre la lévitation du rotor que si celui-ci conserve une masse limitée. De ce fait, le rotor doit conserver des dimensions limitées, alors que l'installation industrielle d'un tel équipement requiert une quantité d'énergie stockable importante. La solution, présentée figure 11, vient donc de la constitution d'un conteneur 120, qui regroupe un nombre important de composants unitaires 121 réalisés sur la base de la machine tournante décrite ici. Cette solution permet une addition des puissances en phase de charge et de décharge, et la mise en commun, au niveau du conteneur, d'équipements complémentaires comme les onduleurs 122 (pour l'interface avec le réseau électrique) et les pompes à vides 123 (destinées à limitées les pertes par frottement de l'air sur le rotor). Elle facilite aussi l'installation d'une solution de stockage en limitant les coûts d'infrastructure. Le système de sustentation présenté dans ce document permet le maintien en lévitation magnétique du volant lorsque celui-ci est en rotation au dessus du stator. La partie tournante reste dans une position d'équilibre stable obtenue par la disposition des différentes forces (répulsion magnétique des aimants et poids) par rapport au centre de gravité de la masse en rotation. Le théorème d'Earnshaw précise qu'une telle position d'équilibre ne peut être trouvée en statique. L'équilibre obtenu par l'opposition des aimants, tel que présenté ici, ne peut donc pas fonctionner à l'arrêt ou à faible vitesse. Pour contourner cette limitation technique, un dispositif supplémentaire 92 adapté à la configuration présentée igure 9 peut être instaWé pour forcer le centrage lorsque le rotor tourne à faible vitesse. Le dit dispositif présenté ci-après et illustré figure 10 assure cette fonction. Il comprend un contact ponctuel entre le stator et le rotor apte à occuper deux états, un premier état lorsque la vitesse de rotation relative entre le rotor et la stator est inférieure à un seuil donné dans lequel il assure un contact entre le rotor et le stator et un second état lorsque la vitesse de rotation relative entre le rotor et le stator dépasse ledit seuil donné dans lequel il n'assure aucun contact entre le rotor et le stator.
Il s'agit d'un cy ndre 102 actionné en rotation par un moteur quart de tour à l'intérieur d'un autre cylindre 101, fixe, installé centré dans la partie haute du stator, au centre de l'aimant annulaire 46 du stator. Un système d'ergots 103 attachés au cylindre intérieur, et coulissant dans une glissière 104 pratiquée dans le cylindre extérieur 101 permet de transformer la rotation quart de tour du cylindre intérieur 102 en translation selon l'axe 12. Ce déplacement permet de créer un contact temporaire entre le stator et le rotor, contact nécessaire pour assurer le centrage du rotor tant que la vitesse de rotation du volant ne suffit pas à se placer dans les conditions du théorème d'Earnshaw. L'extrémité du dispositif comprend un pointeau conique 105 qui vient en contact avec un creux en forme de cône 106 placé à l'intérieur de l'aimant annulaire de sustentation 42 du rotor. Ce pointeau est placé à l'intérieur du cylindre intérieur 102 et laissé libre en rotation par rapport à ce cylindre au moyen d'un ensemble de roulements à billes 107 ά 108 placés entre le corps du pointeau et le cylindre intérieur pour servir de centreur 107 et de butée 108. Le positionnement vertical de ce pointeau est assuré par l'action conjointe du roulement à billes 108 placé entre la base du pointeau et le plateau de positionnement 110, et d'un ensemble de ressoris 109 placé entre le plateau de positionnement 110 et le cylindre intérieur 102. Ce plateau de positionnement 110 est laissé libre en translation verticale par rapport au cylindre intérieur dans la limite du débattement nécessaire pour assurer un amortissement des chocs et réduire l'usure du système. Un système de butées d'arrêt 111, placé sur la surface intérieure du cylindre 102, contrôle ce degré de liberté en limitant la translation du plateau entre deux valeurs prédéfinies.

Claims

REVENDICATIONS
1. Machine tournante comportant un élément tournant (10) appelé rotor apte à tourner selon un axe de rotation (12) vertical par rapport à un élément fixe (14) appelé stator, des moyens (32, 34) de sustentation de type magnétique pour maintenir ledit rotor (10) par rapport au stator (14) selon une direction parallèle à l'axe de rotation (12) et des moyens de guidage dudit rotor (10) par rapport au stator (14) dans un plan perpendiculaire à l'axe de rotation, caractérisée en ce que les moyens de centrage comprennent au niveau du rotor un premier aimant (42) annulaire concentrique à l'axe de rotation et au niveau du stator un second aimant (46) annulaire concentrique à l'axe de rotation (12), les premier et second aimants (42, 46) étant agencés de manière à créer une répulsion avec une résultante selon une direction radiale et une résultante selon l'axe de rotation (12) et en ce que le rotor (10) est pendulaire, le centre de gravité du rotor (10) étant disposé sous le plan de sustentation qui correspond au plan perpendiculaire à l'axe de rotation, médian entre les faces en regard des aimants (42, 46).
2. Machine tournante selon la revendication 1, caractérisée en ce que les premier et second aimants (42, 46) sont des aimants permanents.
3. Machine tournante selon l'une quelconque des revendications précédentes, caractérisé en ce que l'un des aimants a un diamètre extérieure compris entre les diamètres extérieur et intérieur de l'autre aimant.
4. Machine tournante selon l'une quelconque des revendications précédentes, caractérisé en ce que le rotor (10) comprend une surface perpendiculaire à l'axe de rotation au niveau de laquelle est disposé le premier aimant (42) générant un champ magnétique selon une direction (44) parallèle à l'axe de rotation (12) et concentrique audit axe de rotation (12) et en ce que le stator (14) comprend une sur ace perpendiculaire à l'axe de rotation au niveau de laquelle est disposé le second aimant (46) générant un champ magnétique selon une direction (48) parallèle à l'axe de rotation (12) et concentrique audit axe de rotation (12), les directions (44, 48) étant décalées radialement.
5. Machine tournante selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le rotor (10) comprend une surface tronconique au niveau de la quelle est disposé un premier aimant (42) générant un champ magnétique sécant à l'axe de rotation (12) et en ce que le stator (14) comprend une surface tronconique en regard de la surface tronconique du rotor au niveau de laquelle est disposé un second aimant (46) générant un champ magnétique sécant à l'axe de rotation (12).
6. Machine tournante selon l'une quelconque des revendications précédentes, caractérisé en ce que le rotor (10) comprend un corps (16) prolongé par un arbre (18) dont l'extrémité libre est relié à un disque (20) avec un diamètre supérieur à celui de l'arbre (18) et en ce que le stator (14) comprend une portion cylindrique creuse (26) dans laquelle peut se loger au moins une partie de l'arbre (18) avec à une extrémité un disque (28) comportant un orifice central autorisant le passage de l'arbre (18), les moyens (42, 46) pour générer les champs magnétiques étant disposés sur les faces des disques (20, 28) en regard.
7. Volant d'inertie sous la forme d'une machine tournante selon l'une quelconque des revendications précédentes.
8. Volant d'inertie selon la revendication 7, caractérisé en ce qu'il comprend des moyens de type magnétique pour stocker l'énergie dans ledit volant d'inertie ou pour la restituer.
9. Volant d'inertie selon la revendication 7 ou 8, caractérisé en ce que le rotor (10) est réalisé en un matériau ayant une haute limite élastique de traction et une masse volumique élevée.
10. Volant d'inertie selon la revendication 9, caractérisé en ce que le rotor (10) est réalisé en acier à haute limite de traction, tel que les aciers maraging.
11. Volant d'inertie selon l'une quelconque des revendications 7 à 10, caractérisé en ce qu'il comprend un contact ponctuel entre le stator et le rotor apte à occuper deux états, un premier état lorsque la vitesse de rotation relative entre le rotor et la stator est inférieure à un seuil donné dans lequel il assure un contact entre le rotor et le stator et un second état lorsque la vitesse de rotation relative entre le rotor et le stator dépasse ledit seuil donné dans lequel il n'assure aucun contact entre le rotor et le stator.
PCT/FR2011/000332 2010-06-09 2011-06-07 Machine tournante comportant un dispositif de sustentation et de centrage de son rotor WO2011154623A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054531A FR2961278A1 (fr) 2010-06-09 2010-06-09 Machine tournante comportant un dispositif de sustentation et de centrage de son rotor
FR1054531 2010-06-09

Publications (1)

Publication Number Publication Date
WO2011154623A1 true WO2011154623A1 (fr) 2011-12-15

Family

ID=43502809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000332 WO2011154623A1 (fr) 2010-06-09 2011-06-07 Machine tournante comportant un dispositif de sustentation et de centrage de son rotor

Country Status (2)

Country Link
FR (1) FR2961278A1 (fr)
WO (1) WO2011154623A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351446A1 (en) * 2017-06-05 2018-12-06 Shou-Cheng Wong Vertically mounted and magnetically driven power generation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676338B (zh) * 2018-02-06 2019-11-01 翁壽成 節能發電裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2356044A1 (fr) 1975-12-02 1978-01-20 Battelle Development Corp Dispositif pour assurer la sustentation magnetique et le centrage d'un rotor de machine tournante par rapport a son stator, ainsi que machine de stockage d'energie inertielle equipee d'un tel dispositif
EP0017724A1 (fr) * 1979-04-03 1980-10-29 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Accumulateur d'énergie à volant et son utilisation
JPS618245A (ja) * 1984-06-22 1986-01-14 Shoichi Akaha スピンドル支持装置
JPH08178011A (ja) * 1994-12-28 1996-07-12 Koyo Seiko Co Ltd フライホイール装置
WO1998054475A1 (fr) * 1997-05-26 1998-12-03 Global Hemostasis Institute Mgr Dispositif porteur
US6710489B1 (en) * 2001-08-30 2004-03-23 Indigo Energy, Inc. Axially free flywheel system
EP1548302A1 (fr) * 2002-09-03 2005-06-29 Seiko Epson Corporation Palier magnetique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2356044A1 (fr) 1975-12-02 1978-01-20 Battelle Development Corp Dispositif pour assurer la sustentation magnetique et le centrage d'un rotor de machine tournante par rapport a son stator, ainsi que machine de stockage d'energie inertielle equipee d'un tel dispositif
EP0017724A1 (fr) * 1979-04-03 1980-10-29 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Accumulateur d'énergie à volant et son utilisation
JPS618245A (ja) * 1984-06-22 1986-01-14 Shoichi Akaha スピンドル支持装置
JPH08178011A (ja) * 1994-12-28 1996-07-12 Koyo Seiko Co Ltd フライホイール装置
WO1998054475A1 (fr) * 1997-05-26 1998-12-03 Global Hemostasis Institute Mgr Dispositif porteur
US6710489B1 (en) * 2001-08-30 2004-03-23 Indigo Energy, Inc. Axially free flywheel system
EP1548302A1 (fr) * 2002-09-03 2005-06-29 Seiko Epson Corporation Palier magnetique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351446A1 (en) * 2017-06-05 2018-12-06 Shou-Cheng Wong Vertically mounted and magnetically driven power generation apparatus
US10797578B2 (en) * 2017-06-05 2020-10-06 Shou-Cheng Wong Vertically mounted and magnetically driven power generation apparatus

Also Published As

Publication number Publication date
FR2961278A1 (fr) 2011-12-16

Similar Documents

Publication Publication Date Title
CN102082483B (zh) 一种带有永磁轴承和止推轴承的飞轮储能装置
EP0072747B1 (fr) Equipement pour le stockage de l'énergie sous forme cinétique et la restitution de celle-ci sous forme électrique
FR2882203A1 (fr) Procede de stabilisation d'un objet en suspension dans un champ magnetique
EP3277932A1 (fr) Ensemble rotor et turbomachine à paliers à gaz comportant un tel ensemble rotor
FR2971826A1 (fr) Dispositif tournant notamment pour volant d'inertie
FR2776037A1 (fr) Structure formant palier pour un dispositif rotatif, tel qu'un moteur de scanner
FR3013529A1 (fr) Lames de maintien des aimants
WO2011154623A1 (fr) Machine tournante comportant un dispositif de sustentation et de centrage de son rotor
FR2911940A1 (fr) Accumulateur d'energie cinetique
EP2237397B1 (fr) Dispositif de stockage d'énergie électrique sous forme d'énergie cinétique amélioré, véhicule ferroviaire équipé d'un tel dispositif
CN101207346A (zh) 一种磁悬浮储能飞轮
FR2675559A1 (fr) Amortisseur de vibrations hybride a vibrateur magnetique actif.
CN201956793U (zh) 一种带有永磁轴承和止推轴承的飞轮储能装置
JP3358362B2 (ja) 超電導磁気軸受装置
CA2370488A1 (fr) Machine de charge pour un banc d'essai d'un moteur thermique
WO2020120845A1 (fr) Convertisseur d'énergie à impulsions
CA2897891C (fr) Dispositif electrique pour le stockage d'electricite par volant d'inertie
JP2022043947A (ja) 発電機及びタイヤ状態監視装置
JP2019210931A (ja) 真空ポンプ
WO2019110310A1 (fr) Dispositif d'amortissement pendulaire centrifuge
JPH08219158A (ja) 磁気軸受装置
FR2659033A1 (fr) Generateur electromecanique de vibrations et dispositif utilisant ce generateur.
KR100576768B1 (ko) 영구자석 베어링
FR3001591B1 (fr) Procede de maintien dans une plage de fonctionnement determinee d'un accouplement magnetique et accouplement magnetique a plusieurs rangees d'aimants pour la mise en oeuvre du procede
JP2001173652A (ja) エネルギー貯蔵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11743252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11743252

Country of ref document: EP

Kind code of ref document: A1