WO2011153944A1 - 一种lte系统中srs资源分配方法和装置 - Google Patents

一种lte系统中srs资源分配方法和装置 Download PDF

Info

Publication number
WO2011153944A1
WO2011153944A1 PCT/CN2011/075496 CN2011075496W WO2011153944A1 WO 2011153944 A1 WO2011153944 A1 WO 2011153944A1 CN 2011075496 W CN2011075496 W CN 2011075496W WO 2011153944 A1 WO2011153944 A1 WO 2011153944A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
tree
bandwidth
resource
resources
Prior art date
Application number
PCT/CN2011/075496
Other languages
English (en)
French (fr)
Inventor
王勇
周用芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11791934.0A priority Critical patent/EP2568729B1/en
Priority to US13/700,484 priority patent/US8913584B2/en
Publication of WO2011153944A1 publication Critical patent/WO2011153944A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code

Definitions

  • the present invention relates to the field of wireless communication systems, and in particular to a SRS (Sounding Reference Signal) resource allocation method and apparatus for an LTE (Long Term Evolution) system.
  • SRS Sounding Reference Signal
  • LTE uplink scheduling, synchronization, and power control can be performed using Sounding Reference Signals (SRS), so SRS plays a very important role in LTE systems.
  • SRS Sounding Reference Signals
  • the minimum bandwidth allocated for SRS resource allocation is 4 RBs (Resource Blocks). Each RB consists of 12 subcarriers in the frequency domain.
  • the total number of RBs of SRS bandwidth resources is determined by system bandwidth and PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the bandwidth occupied by the physical uplink control channel is determined by the bandwidth occupied by the Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • the UpPTS Uplink Pilot Time Slot
  • the SRS resource is a tree structure in the frequency domain to represent its allocable resources.
  • the tree structure is divided into 4 layers (B Q , B 1 3 ⁇ 4 B 2 , B 3 ) on each layer.
  • the bandwidth of a node is a multiple of 4 RBs, and each parent node is a multiple of its child nodes, and the multiple value is the number of child nodes included in the parent node, as shown in Figure 1, the parent of a B Q layer.
  • the node corresponds to the child nodes of the two layers, and each of the 8th-level child nodes serves as the parent node and corresponds to the two B 2- layer child nodes.
  • Each B 2 layer child node serves as the parent node corresponding to the three B 3 layers.
  • the child node (the parent node is divided into several child nodes is determined by the bandwidth configuration of the cell SRS), the bandwidth values of all nodes on the same layer are equal, and the root node, ie, the first layer (B layer in the figure) is the SRS bandwidth of the entire system.
  • the node bandwidth of the last layer is 4 RBs.
  • the SRS sequence is mapped to the subcarriers of the corresponding bandwidth by using a comb structure (Comb) (that is, the SRS sequences are all mapped on the odd subcarriers, or all are mapped on the even subcarriers, forming one A comb structure), such as the subcarrier of RB Q shown in FIG. 1, the black position represents an even subcarrier, and the white position represents an odd subcarrier.
  • a comb structure that is, the SRS sequences are all mapped on the odd subcarriers, or all are mapped on the even subcarriers, forming one A comb structure
  • the black position represents an even subcarrier
  • the white position represents an odd subcarrier.
  • the SRS sequence length of the UE is half of the number of all subcarriers within its allocated SRS bandwidth.
  • a continuous segment of bandwidth on each layer (B Q , B 1 3 ⁇ 4 B 2 , B 3 ) in Figure 1 can be considered as a node.
  • the SRS odd tree corresponding to the B 0 layer has only one node (while the even tree also has a node) ), the SRS tree corresponding to the : ⁇ layer has only 2 nodes, and so on.
  • the LTE protocol specifies that there are eight SRS transmission periods for the UE, specifically ⁇ 2, 5, 10, 20, 40, 80, 160, 320 ⁇ , and the unit is ms.
  • the cell-specific subframe offset in the corresponding cell-specific subframe configuration period is a subframe that the UE UE can use to transmit the SRS. Because the SRS bandwidth resources are limited, it is impossible for each UE to allocate the SRS bandwidth of the entire system. Therefore, in order to enable the base station to obtain channel information of the unallocated frequency band of the UE, the LTE protocol allows the UE to obtain channel information of other frequency bands by using frequency hopping. Of course, the UE can also use the method of non-frequency hopping. Each UE will configure a hopping bandwidth. By configuring the hopping bandwidth and the size of the SRS bandwidth sent by the UE to determine whether it hops over the entire cell SRS bandwidth, or Frequency hopping and no frequency hopping on part of the bandwidth.
  • the SRS resource allocation can have many different manners, and the SRS resource allocation also has many limitations due to the influence of the tree structure, frequency hopping, and different SRS transmission periods.
  • the premise that its parent node can be assigned to the UE is that all its child nodes have not been allocated, that is, as long as any child node of the parent node is allocated, then the parent node is Cannot be allocated as a whole, but can only be allocated to the UE with the same bandwidth as the child node as its whole;
  • the odd tree of the SRS tree if the UEs of various SRS transmission periods are included, due to the period Different, the frequency hopping of each UE will not be synchronized, which will cause the bandwidth of the SRSs transmitted by different UEs to overlap, which will cause mutual interference.
  • the technical problem to be solved by the present invention is to provide an SRS resource allocation method and device for an LTE system, which realizes simple, effective, and high-utilization SRS resource multiplexing between UEs in different periods.
  • the present invention provides a method for allocating reference signal SRS resources in a long-term evolution LTE system, including:
  • the system side sets different SRS transmission periods corresponding to different cyclic shifts.
  • the cyclic shift of the UE is set according to the SRS transmission period used by the UE.
  • the step of setting the cyclic shift of the UE according to the SRS transmission period used by the UE The closer the UE with the SRS transmission period is, the larger the interval for configuring the corresponding cyclic shift is.
  • the method further includes: determining, according to the frequency hopping information of the UE, the resource allocated on the SRS odd tree or the SRS even tree in the range of the SRS band resource of the UE where the UE is located.
  • a resource the frequency hopping information of the UE is used to indicate whether it is a full hopping UE, or a partial frequency hopping UE, or a frequency hopping UE; wherein: the SRS odd tree refers to an SRS frequency band resource with an odd subcarrier number; The SRS even tree refers to an SRS band resource with an even subcarrier number; the full frequency hopping means that the UE hops in the SRS band resource range of the cell in which it is located; the partial hopping refers to the UE The frequency hopping is only performed within a part of the SRS band resource of the cell in which it is located; the non-hopping means that the SRS band resource position of the UE is unchanged each time it is transmitted.
  • the step of determining, according to the frequency hopping information of the UE, the resource on the SRS odd tree or the resource on the SRS even tree includes: determining, by the system side, that the UE in the system is full frequency hopping The UE, or the UE in the system, is a UE that is not fully hopped, and the resource on the SRS tree or the resource on the SRS even tree is allocated to the UE according to the remaining SRS band resources of the cell where the UE is located;
  • the non-full frequency hopping UE includes: a partial frequency hopping UE and/or a non-frequency hopping UE; the system side determines that if the system has both a full frequency hopping UE and a non-full frequency hopping UE, the full frequency hopping UE and UEs with non-full frequency hopping allocate resources on different SRS trees.
  • the UE that is fully hopped and the UE that is not fully hopped are respectively allocated on different SRS trees.
  • the resources are: allocating resources on the SRS sping tree to the full-hopping UE, and allocating resources on the SRS odd tree to the partial frequency hopping UE and the non-frequency hopping UE; or, allocating resources on the SRS odd tree to the full hopping UE , allocating resources on the SRS even tree for the partial frequency hopping UE and the non-frequency hopping UE.
  • the determining, according to the remaining SRS band resources of the cell where the UE is located, the resource allocated to the SRS in the SRS tree or the resource in the SRS even tree is: the system side determines, if the remaining SRS band resources of the cell, If the resources on the SRS odd tree are more than the resources on the SRS even tree, the resources on the SRS odd tree are allocated to the UE; if the remaining SRS band resources of the cell, the resources on the SRS even tree are more than those on the SRS odd tree. The resource allocates resources on the SRS even tree to the UE.
  • the method further includes: determining an SRS bandwidth occupied by the UE; after allocating an SRS tree for the UE, according to the SRS bandwidth of the UE, using any one of the following manners
  • the UE is searched for available resources on the SRS tree allocated by the UE: frequency division, frequency division and time division, frequency division and code division, frequency division, time division and code division; and the searched available resources are allocated to the UE.
  • the method for searching for available resources for the UE on the SRS tree allocated to the UE by using the frequency division method includes: on an SRS tree of the UE corresponding to a certain subframe offset, Starting with a layer with the same SRS bandwidth of the UE, the idle resources on the SRS tree are searched in a predetermined order according to the index of each node on the SRS tree, and if found, the idle resource is used as an available resource.
  • the method for searching for available resources for the UE on the SRS tree allocated to the UE by using the frequency division and the code division manner includes: if the available resources are not searched according to the frequency division manner, Searching for the non-idle resources on the SRS tree in a predetermined order according to the index of each node on the SRS tree, starting from the same layer as the SRS bandwidth of the UE, on the SRS tree of the UE corresponding to a subframe offset
  • the UE that occupies the resource has the same SRS bandwidth as the current UE, and the period is different, and the cyclic offsets corresponding to different periods are different; if found, the non-idle resources are used as available resources.
  • the method for searching for available resources for the UE on the SRS tree allocated to the UE by using a frequency division and a time division manner including: when the subframe is offset, the SRS tree of the UE corresponding to the offset If the available resources are not found by using the frequency division, the next subframe offset is selected, and the available resources are continuously searched by frequency division and/or code division;
  • the SRS bandwidth of the UE is reduced, and the newly determined SRS bandwidth is used to search for available resources for the UE in any of the following manners: The frequency, the frequency division and the time division, the frequency division and the code division, the frequency division, the time division and the code division, allocate the searched available resources to the UE.
  • the step of determining the SRS bandwidth occupied by the UE comprises: allocating an SRS bandwidth according to the channel quality of the UE, and the SRS bandwidth allocated to the UE with better channel quality is larger.
  • the step of the SRS bandwidth allocated by the UE with better channel quality is: the threshold of the signal to interference and noise ratio (SINR) measurement value is set: SinrBad, SinrNormal, SinrGood, and its SinrBad ⁇ SinrNormal ⁇ SinrGood The UE's SINR measurement is compared to a threshold to determine its SRS bandwidth:
  • SINR signal to interference and noise ratio
  • the bandwidth of the first layer resource node > the bandwidth of the resource node on the second layer > the bandwidth of the resource node on the third layer > the bandwidth of the resource node on the fourth layer.
  • the present invention further provides an SRS resource allocation device in an LTE system, including:
  • Setting a unit, which is set to: set different cyclic shifts corresponding to different SRS transmission periods; a resource allocation unit, configured to: set the UE according to an SRS transmission period used by the UE and an SRS transmission period and a cyclic shift relationship set by the setting unit in a process of allocating an SRS resource for the UE The cyclic shift used.
  • the resource allocation unit is further configured to: after setting a cyclic shift for the UE, in the SRS band resource range of the cell where the UE is located, according to the frequency hopping of the UE And determining, by the UE, the resource on the SRS tree or the resource on the SRS even tree, where the frequency hopping information of the UE is used to indicate whether the UE is a full frequency hopping UE or a partial frequency hopping UE, or not Frequency UE.
  • the resource allocation unit is further configured to: after allocating the SRS tree to the UE, according to the SRS bandwidth of the UE, use the SRS tree allocated to the UE in any of the following manners
  • the UE is searched for available resources: frequency division, frequency division and time division, frequency division and code division, frequency division, time division and code division, and the searched available resources are allocated to the UE.
  • the apparatus further includes a bandwidth setting unit, configured to: allocate an SRS bandwidth according to the channel quality of the UE, and allocate a SRS bandwidth to the UE with better channel quality, and allocate the UE The SRS bandwidth is sent to the resource allocation unit.
  • a bandwidth setting unit configured to: allocate an SRS bandwidth according to the channel quality of the UE, and allocate a SRS bandwidth to the UE with better channel quality, and allocate the UE The SRS bandwidth is sent to the resource allocation unit.
  • the SRS resource multiplexing method does not cause the SRS resources allocated between the UEs to collide, that is, does not cause interference with each other, and can simply multiplex the UEs of different SRS transmission periods without In the event of a conflict, the resource reuse process is relatively simple, and the utilization of the entire SRS resource is also very high, and can be applied to both FDD and TDD duplex modes in the LTE system.
  • FIG. 1 is a schematic diagram of an SRS resource tree in an SRS bandwidth configuration
  • FIG. 3 is a schematic diagram of an SRS resource allocation according to an embodiment of the present invention.
  • SRS odd tree refers to: SRS band resource with subcarrier number is odd (or SRS bandwidth resource);
  • SRS even tree refers to: SRS band resource with even subcarrier number.
  • Full frequency hopping means the UE hops frequency within the SRS band resource range of the cell in which it is located;
  • the non-full frequency hopping UE includes: a partial frequency hopping UE and/or a non-frequency hopping UE;
  • the inventive concept is that the system side sets different SRS transmission periods corresponding to different cyclic shifts.
  • the cyclic shift of the UE is set according to the SRS transmission period used by the UE.
  • different UEs configured with different cyclic shifts are equivalent to code divisions; further, by configuring different periods of UEs, different cyclic shifts are used, which is equivalent to the basis of code division.
  • the UEs of different periods are reused, which is a kind of dual multiplexing, thereby avoiding interference existing between UEs in different periods, and realizing simple, effective, and high-utilization SRS resource multiplexing.
  • the setting of the cyclic shift used by the UE according to the SRS transmission period used by the UE refers to: the closer the interval of the cyclic shift corresponding to the UEs with the same configuration period, that is, the corresponding two UEs with similar periods respectively correspond to each other.
  • the interval of the cyclic shift is greater than or equal to the interval of the cyclic shift corresponding to any two UEs having a long period.
  • the resource on the SRS tree is determined to be allocated to the UE according to the frequency hopping information of the UE in the SRS band resource range of the cell where the UE is located.
  • the frequency hopping information of the UE is used to indicate whether it is a full frequency hopping UE, or a partial frequency hopping UE, or a frequency hopping UE;
  • the step of determining, according to the hopping information of the UE, the resource allocated to the SRS tree or the resource on the SRS even tree by the UE includes:
  • the system side determines that if the UEs in the system are full-hopping UEs, or the UEs in the system are all non-full-hopping UEs, it is determined that the UEs are allocated SRS according to the remaining SRS band resources of the cell in which the UE is located.
  • the resource on the tree or the resource on the SRS even tree specifically: the system side determines that if the resources on the SRS odd tree are more than the resources on the SRS even tree in the remaining SRS band resources of the cell, the UE is allocated a resource on the SRS singular tree; if the resources in the SRS singular tree are more than the resources on the SRS singular tree in the remaining SRS band resources of the cell, the resources on the SRS even tree are allocated to the UE; * The system side determines that if there are both full-hopping UEs and non-full-hopping UEs in the system, the resources of the different SRS trees are allocated to the UEs with full frequency hopping and the UEs with non-full frequency hopping, including: The full-hopping UE allocates resources on the SRS spoke tree, and allocates resources on the SRS odd tree to the partial frequency hopping UE and the non-frequency hopping UE; or allocates resources on the SRS odd tree to the full hopping UE, which is a partial frequency hopping
  • the method further includes determining an SRS bandwidth of the UE, after allocating an SRS tree (SRS odd tree or SRS even tree) for the UE, according to an SRS bandwidth of the UE, an SRS allocated for the UE In the tree, the UE searches for available resources in any of the following ways: frequency division, frequency division and time division, frequency division and code division, frequency division, time division and code division (order is not limited), and will be searched The available resources are allocated to the UE.
  • SRS tree SRS odd tree or SRS even tree
  • the step of determining the SRS bandwidth of the UE includes: allocating an SRS bandwidth to the UE according to the channel quality of the UE.
  • the SRS bandwidth allocated to the UE with better channel quality is larger.
  • the frequency division manner includes: starting from a layer with the same SRS bandwidth of the UE, according to an index of each node on the SRS tree, on an SRS tree of the UE corresponding to a certain subframe offset.
  • the idle resources on the SRS tree are sequentially searched, and if found, the idle resources are allocated as available resources to the UE, and if not found, the search is continued in a time division and/or code division manner.
  • the code division manner includes: starting from a layer with the same SRS bandwidth of the UE, according to an index of each node on the SRS tree, on an SRS tree of the UE corresponding to a certain subframe offset. Searching for non-idle resources on the SRS tree in sequence, and the UE2 occupying the resource has the same SRS bandwidth as the current UE, and the period is different; if found, the non-idle resource is allocated as an available resource to the current UE, if not If you find it, you can continue searching by time.
  • the above-mentioned search in the predetermined order may be searched in the order of node index from small to large, or in the order of node index from large to small, or from the index of the intermediate node index to the index of the nodes on both sides.
  • the time division manner includes: when no available resources are found by frequency division and/or code division on the SRS tree of the UE corresponding to a certain subframe offset in the SRS transmission period, then selecting the next The subframe offset continues to find available resources by means of frequency division and/or code division.
  • the SRS bandwidth of the UE is reduced, and the newly determined SRS bandwidth is used to search for available resources for the UE in any of the following manners: Frequency division, frequency The minutes and time divisions, frequency division and code division, frequency division, time division and code division, allocate the searched available resources to the UE.
  • the invention determines the SRS bandwidth of the UE by using the SINR measurement value of the RACH, and then divides the full bandwidth hopping UE and the non-full bandwidth hopping UE by using the odd tree and the even tree, and frequency division multiplexing and different subframes through different frequency bands.
  • Different UEs are offset and time-division multiplexed, and different cyclic shifts are used to code-multiplex the UEs with different SRS transmission periods, which can avoid interference caused by UEs transmitting SRS in the same cell, and also has high resources. Utilization, suitable for both LTE FDD and TDD duplex modes.
  • the SRS resource allocation apparatus implementing the above method includes: a setting unit and a resource allocation unit, wherein:
  • the setting unit is configured to: set different cyclic shifts corresponding to different SRS transmission periods; and the resource allocation unit is configured to: according to the SRS sending period used by the UE in the process of allocating SRS resources for the UE And the SRS transmission period and the cyclic shift corresponding to the setting unit are set, and the cyclic shift used by the UE is set.
  • the resource allocation unit is further configured to: after setting a cyclic shift for the UE, in the SRS band resource range of the cell where the UE is located, according to the frequency hopping of the UE And determining, by the UE, the resource on the SRS tree or the resource on the SRS even tree, where the frequency hopping information of the UE is used to indicate whether the UE is a full frequency hopping UE or a partial frequency hopping UE, or not Frequency UE.
  • the resource allocation unit is further configured to: after the SRS tree is allocated to the UE, according to the SRS bandwidth of the UE, in the SRS tree allocated for the UE, in the following manner Any of the UEs may search for available resources: frequency division, frequency division and time division, frequency division and code division, frequency division, time division and code division, and allocate the searched available resources to the UE.
  • the apparatus further includes a bandwidth setting unit, configured to: allocate an SRS bandwidth according to the channel quality of the UE, and allocate a SRS bandwidth to the UE with better channel quality, and allocate the UE The SRS bandwidth is sent to the resource allocation unit.
  • a bandwidth setting unit configured to: allocate an SRS bandwidth according to the channel quality of the UE, and allocate a SRS bandwidth to the UE with better channel quality, and allocate the UE The SRS bandwidth is sent to the resource allocation unit.
  • the resource allocation process includes:
  • Step 201 Determine a SRS transmission bandwidth, frequency hopping information (full frequency hopping, partial frequency hopping or no frequency hopping) of the UE, and an SRS sending period.
  • frequency hopping information full frequency hopping, partial frequency hopping or no frequency hopping
  • the SRS bandwidth size of the UE in the SRS bandwidth configuration of the cell in which it is located may be determined by a plurality of UE SRS bandwidth allocation schemes.
  • only one available UE SRS bandwidth allocation scheme is used, that is, the better the channel quality is, the larger the SRS bandwidth is allocated to the UE, specifically: in the SRS bandwidth configuration of the cell where the UE is located, according to the initial access of the UE.
  • the SINR (Signal to Interference plus Noise Ratio) measurement of the RACH (Random Access Channel) and the given three SINR thresholds determine the bandwidth of the UE SRS, UE RACH
  • the threshold parameters of the three SINR measurements are Sz 7r ai/, SinrNormal, SinrGood, which indicate that the SINR quality is from bad to
  • the three thresholds are good, where SinrBad ⁇ SinrNormal ⁇ SinrGood , and the three thresholds divide the range of SINR into four parts, corresponding to the bandwidth of different layers, for example:
  • B SRS 3 indicating that the SRS bandwidth allocated to the UE is the bandwidth of the resource node on the fourth layer of the SRS tree of the cell where the UE is located;
  • the frequency hopping information of the UE is determined according to the application scenario of the cell and the bandwidth resource of the SRS, that is, whether frequency hopping is required, and if frequency hopping is required, the full bandwidth hopping or the partial bandwidth hopping.
  • the transmission period of the SRS is determined according to the moving speed of the UE and the channel characteristics. The frequency hopping information and the determination of the period can be implemented according to the prior art.
  • 0 indicates that the frequency hopping bandwidth is in the B Q layer, that is, the frequency hopping bandwidth is in the SRS maximum bandwidth layer
  • the frequency hopping bandwidth is in the SRS minimum bandwidth layer. That is definitely not frequency hopping.
  • the UE does not frequency.
  • the relevant parameters of the transmitting SRS sequence of the UE are obtained in the first step, but in other embodiments, they are not limited to being obtained in the first step, as long as the knowledge is obtained before the parameter is used.
  • UEs of different transmission periods use different cyclic shift phases to transmit SRS sequences.
  • 8 cyclically shifted phases of the SRS sequence are used to multiplex 8 UEs with different SRS transmission periods, so that UEs with different SRS transmission periods can be allocated to the same SRS resource tree, that is, odd trees in the SRS tree or A node of the even tree can be multiplexed to 8 UEs with different bandwidths of the same period, thereby increasing the capacity of the SRS resources, and because the cyclic shift phase is different, the transmission on the same subframe offset does not cause interference and cause interference.
  • the correspondence between the eight cyclic shift phases and the eight SRS transmission periods can be as follows:
  • the setting is such that the closer the transmission period is, the more times the SRS signal of the UE in different periods collides; the farther the transmission period is, the fewer the number of collisions of the SRS signals of UEs in different periods.
  • the cyclic shift interval corresponding to the UEs having similar periods is designed to be as large as possible.
  • the setting of the cyclic shift is not limited to be performed in this step, and may also be performed after the SRS band resource is allocated to the UE, in any case, as long as it is determined before the data transmission.
  • Step 203 it is determined whether the system is all full frequency hopping UE, if not, step 204 is performed, and if yes, step 205 is performed;
  • Step 204 it is determined whether there is a UE with full frequency hopping in the system, if not, step 205 is performed, if yes, step 206 is performed;
  • This step is optional.
  • the present invention designs a user that distinguishes full frequency hopping, partial frequency hopping, and non-frequency hopping by a parity tree. If it is determined that there is no full hopping user in the system, when the SRS bandwidth is allocated to the UE, the limitation is not limited to the odd tree. It is still on the tree.
  • Step 205 determining, according to the remaining SRS band resources of the cell where the UE is located, to allocate the resources on the SRS tree or the resources on the SRS tree to the UE, and perform step 209;
  • the SRS tree allocated for the UE may be determined according to the number of parity tree resources, if the UE In the remaining SRS band resources of the cell, if there are more resources on the SRS odd tree than on the SRS even tree, the resources on the SRS odd tree are allocated to the UE, if the resources on the SRS even tree are more than those on the SRS odd tree. For the resource, the UE is allocated resources on the SRS even tree.
  • Step 206 it is determined whether the UE is a full frequency hopping UE, if not, step 207 is performed, and if yes, step 208 is performed;
  • Step 207 the UE is allocated to the even tree, and the SRS sequence is distributed on the even subcarriers, and step 209 is performed;
  • Step 208 the UE is allocated to the odd tree, and the SRS sequence is distributed on the odd subcarriers, and step 209 is performed;
  • Step 209 Determine a currently available subframe offset of the UE, and offset the corresponding SRS tree from the subframe.
  • the SRS tree here is the SRS singular tree, if the even tree is allocated for the UE, the SRS tree here is the SRS singular tree) and the layer with the current UE bandwidth is equal. Start searching for available resources, that is, whether there are free nodes;
  • the subframe offset number is relative to the cell SRS dedicated subframe configuration period, the subframe offset number of the first subframe in the period is 0, and the subframe offset number of the second subframe is 1. And so on.
  • the configured subframe offset of the cell where the UE is located is the currently available subframe offset of the UE.
  • the search starting point in this step may start from any node on the SRS tree, and is not limited to the bottom of the SRS tree.
  • the subframe offset from which the search is started may also be any available subframe offset, and is not limited to the first available subframe offset.
  • the conditions that must be met for searching for an idle node that can be assigned to the current UE are:
  • the premise that its parent node can be assigned to the UE is that all its child nodes have not been assigned, that is, as long as any child node of the parent node is allocated, then the parent node cannot be treated as one.
  • the whole is allocated, but can only be allocated to the UE with the same bandwidth as the child nodes as a whole of its child nodes;
  • the UE including the hopping bandwidth is the Layer 2 and Layer 3 UEs
  • the non-hopping UE are separated by the frequency division using frequency division.
  • a node is assigned to the SRS even tree A UE with a hopping bandwidth of the second layer
  • a second layer of bandwidth nodes corresponding to the node The UE to be allocated must be the UE with the hopping bandwidth of the second layer.
  • the third layer corresponding to the node must be the UE with the hopping bandwidth as the third layer; for the UE that does not hop the frequency, the node allocated to it in the SRS even tree needs to satisfy the other sub-nodes under its parent node.
  • a node cannot be assigned to a UE whose hopping bandwidth is its parent node.
  • the full-hopping UE is configured on the SRS odd tree, and the partial frequency hopping UE and the non-frequency hopping UE are configured on the SRS even tree.
  • the above conditions are designed based on the principle that, in other embodiments, the full frequency hopping UE is configured on the SRS even tree, and the partial frequency hopping UE and the non-frequency hopping UE are configured on the SRS odd tree;
  • the condition should correspond to the new SRS even tree, and the above conditions for the even tree should correspond to the new SRS odd tree.
  • the intra-cell UEs are all configured on the odd-tree SRS resources, only the conditions corresponding to the odd-trees are considered, and the above-mentioned even-tree conditions are not considered; likewise, if the intra-cell UEs are all configured on the even-tree SRS resources, Consider the above odd tree condition.
  • Step 210 determining whether there are available resources, if yes, performing step 211, if not, executing step 212;
  • Step 211 Allocate the found idle node to the UE, and the SRS resource allocation ends.
  • the SRS resources allocated to the UE at this time include a band resource and a time domain resource (subframe offset).
  • Step 212 determining whether there is a next unsearchable available subframe offset, if any, then using the available subframe offset as the currently available subframe offset, returning to step 209, if not, executing step 213;
  • a subframe offset in the time domain corresponds to a segment of SRS resources in the frequency domain, that is, an SRS tree, and the capacity of the SRS resource can be extended by time division multiplexing of different subframe offsets.
  • Step 213 Determine a current available subframe offset of the UE, and offset the corresponding SRS tree from the subframe. (If the UE is allocated an odd tree, the SRS tree here is an SRS odd tree, if the UE is allocated Even tree, where the SRS tree is an SRS even tree) layer equal to the current UE bandwidth Starting to search for a non-idle node, and the UE occupying the node has the same SRS bandwidth and different period as the current UE;
  • Step 214 whether the node that meets the condition is found, if found, step 215 is performed, if not found, step 216 is performed;
  • Step 215 The found node that meets the condition is allocated to the UE, and the SRS resource allocation ends.
  • the SRS resource allocated to the UE at this time includes the band resource and the time domain resource (subframe offset).
  • Step 216 determining whether there is a next unsearchable available subframe offset, if any, then using the available subframe offset as the currently available subframe offset, returning to step 213, if not, executing step 217;
  • the "unsearched available subframe offset" in this step refers to the available subframe offset that has not been searched according to the condition of step 213.
  • Step 217 the current UE SRS bandwidth is reduced by one layer, and returning to step 209;
  • the SRS bandwidth of the current UE is reduced by one level, that is, one layer, and the allocation is continued from step 209, and the available SRS resources are found to be ended.
  • the SRS bandwidth of the UE performing this step will not be the fourth layer, because there is no remaining SRS band resource, and the system does not access the UE that needs to allocate SRS resources.
  • the available subframe offset of a UE1 is a subframe offset 3 and a subframe offset 5, and each subframe offset has a corresponding SRS resource in the frequency domain, as shown in FIG.
  • Subframe offset 3 corresponds to SRS1
  • subframe offset 5 corresponds to SRS2
  • each SRS is a tree structure as shown in FIG.
  • the UE SRS bandwidth is B shown in FIG bandwidth value (4 RB) 3 layers.
  • the UE1 is a partial frequency hopping UE, and according to the foregoing embodiment, the resource allocated for the UE1 is an SRS even tree. If the search order of small to large, the available subframe start offset B 3 corresponding to the even tree 3 SRS1 layer starts from the bottom up search for a free node, i.e.
  • the present invention designs a tree structure using SRS to divide non-frequency hopping and frequency hopping.
  • the odd tree in the SRS tree is used to allocate to the UE that hops over the entire cell SRS bandwidth
  • the even tree is used to allocate to the UE that hops over the partial SRS bandwidth and the UE that does not hop. If there is no UE with full bandwidth hopping, the singular tree can also be allocated to the UE with partial bandwidth hopping. If all UEs with full bandwidth hopping, the even tree can also be allocated to the UE with full bandwidth hopping.
  • the parity partitioning and frequency band division of the present invention can avoid collisions between bandwidth-spreading UEs with full bandwidth and partial bandwidth hopping and non-hopping UEs after frequency hopping, thereby avoiding interference and improving system performance.
  • other partitioning modes may be used, for example, an singular tree is used to allocate to a UE that hops over a partial cell SRS bandwidth and a UE that does not hop, and an even tree is used to allocate to hop on the entire cell SRS bandwidth. Frequency UE, in short, as long as it can guarantee no conflict.
  • frequency division multiplexing is implemented by steps 209-210; time division multiplexing is implemented by the cyclic process of step 212 and step 215; code division multiplexing is implemented by steps 213-215.
  • the order of the frequency division, the time division, and the code division is not limited to the order in the embodiment of the present invention, and may be modified as needed, for example, the code division and the time division.
  • the present invention provides an SRS resource allocation method and apparatus for an LTE system, which implements simple, efficient, and highly utilized SRS resource multiplexing between UEs of different periods.
  • the SRS resource multiplexing method according to the present invention does not cause the SRS resources allocated between the UEs to collide, that is, does not cause interference with each other, and can simply multiplex the UEs of different SRS transmission periods without
  • the resource reuse process is relatively simple, and the utilization of the entire SRS resource is also very high, and can be applied to both FDD and TDD duplex modes in the LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种长期演进LTE系统中探测参考信号SRS资源分配方法,包括:系统侧设置不同SRS发送周期对应不同的循环移位,在为用户设备UE分配SRS资源的过程中,根据所述UE采用的SRS发送周期设置所述UE采用的循环移位。本发明的方法和装置实现了不同周期UE间的简单、有效、高利用率的SRS资源复用。

Description

一种 LTE系统中 SRS资源分配方法和装置
技术领域
本发明涉及无线通信系统技术领域, 特别是指一种 LTE ( Long Term Evolution,长期演进)系统的 SRS ( Sounding Reference Signal,探测参考信号) 资源分配方法和装置。
背景技术
在长期演进(LTE ) 系统中, 可以用探测参考信号 (SRS )来进行 LTE 上行调度、 同步和功控, 因此 SRS在 LTE系统中具有非常重要的作用。 SRS 资源分配的最小带宽是 4个 RB ( Resource Block, 资源块) , 每个 RB在频 域上由 12个子载波组成, SRS带宽资源的 RB总个数是由系统带宽、 PUCCH ( Physical Uplink Control Channel,物理上行控制信道)占用的带宽和 PRACH ( Physical Random Access Channel, 物理随机接入信道 )占用的带宽共同决定 的。 LTE协议中规定 SRS信号只能在上行常规子帧的最后一个符号中传输, 对于 TDD ( Time Division Duplexing, 时分双工), UpPTS ( Uplink Pilot Time Slot, 上行链路导频时隙)如果为 2个符号, 则 SRS信号最多可以在其中的 两个符号上传输。 SRS 资源在频域是一种树状结构 (Tree ) , 以表示其可分 配的资源, 这种树状结构分为 4层(BQ、 B1 ¾ B2、 B3 ) , 每一层上节点的带 宽都是 4个 RB的倍数, 而且每个父节点都是其子节点的倍数, 倍数值也即 是父节点所包含的子节点数, 如图 1所示, 一个 BQ层的父节点对应两个 层的子节点, 每个 8 层的子节点作为父节点又对应了两个 B2层的子节点, 每个 B2层的子节点作为父节点对应了三个 B3层的子节点 (父节点分为几个 子节点由小区 SRS带宽配置决定) , 同一层上的所有节点的带宽值都相等, 根节点即第一层(图中 B。层)是整个系统的 SRS带宽, 最后一层的节点带宽 粒度为 4个 RB。
SRS序列釆用梳状结构 (Comb ) 映射到对应带宽的子载波上(即 SRS 序列要么全部映射在奇数子载波上, 要么全部映射在偶数子载波上, 形成一 种梳状结构) , 如附图 1所示的 RBQ的子载波, 黑色位置代表偶数子载波, 白色位置代表奇数子载波。通过这种梳状结构可以把一棵 SRS树分为奇树(附 图 1 SRS树中所有白色位置子载波组成)和偶树(附图 1 SRS树中所有黑色 位置子载波组成) , 奇树上的 UE的 SRS序列在频域上的起始位置是奇数子 载波, 而且整个序列只分布在奇数子载波上; 偶树上的 UE的 SRS序列在频 域上的起始位置是偶数子载波, 而且整个序列只分布在偶数子载波上。 因此 UE的 SRS序列长度是其所分配的 SRS带宽内所有子载波数的一半。 图 1中 的每一层(BQ、 B1 ¾ B2、 B3 )上连续的一段带宽可认为是一个节点, 例如 B0 层对应的 SRS奇树只有一个节点(同时偶树也有一个节点),:^层对应的 SRS 奇树只有 2个节点, 以此类推。
LTE 协议中规定 UE 的 SRS 发送周期有 8 种, 具体是 {2, 5, 10, 20, 40, 80, 160, 320} , 单位是 ms。 对应小区专用子帧配置周期下的小区专 用子帧偏移是该小区 UE可以用来发送 SRS的子帧。因为 SRS带宽资源有限, 每个 UE不可能都分配整个系统的 SRS带宽, 因此为了使基站能获得 UE未 分配频带的信道信息, LTE协议中允许 UE通过跳频的方法来获得其它频带 的信道信息, 当然 UE也可以釆用不跳频的方式,每个 UE都会配置一个跳频 带宽, 通过配置的这个跳频带宽与 UE发送 SRS带宽的大小来确定其在整个 小区 SRS带宽上跳频、 还是在部分带宽上跳频和不跳频。
根据上述可利用的各种技术条件, SRS资源分配可以具有多种不同方式, 同时由于树状结构、 跳频和不同 SRS发送周期等的影响, SRS资源分配也具 有许多的限制。 例如, 对于 SRS树的奇树而言, 其父节点能分配给 UE的前 提是它的所有子节点都尚未被分配, 也即只要父节点的任何一个子节点被分 配了, 那么这个父节点都不能被当作一个整体被分配, 而只能是以其子节点 为整体分配给与子节点带宽相等的 UE; 对于 SRS树的奇树, 如果包括了各 种 SRS发送周期的 UE, 由于周期的不同, 各 UE跳频将不会同步, 这样便会 造成不同 UE发送 SRS的带宽重叠, 从而产生相互产生干扰, 如果将不同周 期的 UE在不同的子帧偏移上发送, 由于 UE SRS周期配置较多, 而且可用的 子帧偏移也不够充足, 更重要的是子帧偏移的配置种类太多, 将使 SRS的资 源复用过程非常复杂; 同样地, 对于 SRS树的偶树而言也存在同样的问题。 发明内容
本发明要解决的技术问题是提供一种 LTE系统 SRS资源分配方法和装 置, 实现不同周期 UE间的简单、 有效、 高利用率的 SRS资源复用。
为解决上述技术问题, 本发明提供了一种长期演进 LTE系统中探测参考 信号 SRS资源分配方法, 包括:
系统侧设置不同 SRS发送周期对应不同的循环移位, 在为用户设备 UE 分配 SRS资源的过程中, 根据所述 UE釆用的 SRS发送周期设置所述 UE釆 用的循环移位。
优选地, 所述根据 UE釆用的 SRS发送周期设置所述 UE釆用的循环移 位的步骤中: 对于 SRS发送周期越相近的 UE, 配置其对应的循环移位的间 隔越大。
优选地, 所述方法还包括: 在所述 UE所在的小区的 SRS频带资源范围 内 ,根据所述 UE的跳频信息,确定为所述 UE分配 SRS奇树上的资源或 SRS 偶树上的资源, 所述 UE的跳频信息用于指示其是全跳频 UE, 还是部分跳频 UE, 还是不跳频 UE; 其中: 所述 SRS奇树是指子载波号为奇数的 SRS频带 资源; 所述 SRS偶树是指子载波号为偶数的 SRS频带资源; 所述全跳频是指 所述 UE在其所在小区的 SRS频带资源范围内跳频; 所述部分跳频是指所述 UE仅在其所在小区的部分 SRS频带资源范围内跳频; 所述不跳频是指所述 UE每次发送时的 SRS频带资源位置不变。
优选地, 所述根据所述 UE的跳频信息确定为所述 UE分配 SRS奇树上 的资源或 SRS偶树上的资源的步骤, 包括: 系统侧判断如果系统中的 UE都 是全跳频的 UE, 或者系统中的 UE都是非全跳频的 UE, 则根据所述 UE所 在小区的剩余 SRS频带资源确定为所述 UE分配 SRS奇树上的资源或 SRS偶 树上的资源; 所述非全跳频 UE包括: 部分跳频 UE和 /或不跳频 UE; 系统侧 判断如果系统中既有全跳频的 UE, 又有非全跳频的 UE, 则为全跳频的 UE 和非全跳频的 UE分别分配不同 SRS树上的资源。
优选地, 所述为全跳频的 UE和非全跳频的 UE分别分配不同 SRS树上 的资源是指: 为全跳频 UE分配 SRS偶树上的资源, 为部分跳频 UE和不跳 频 UE分配 SRS奇树上的资源; 或者,为全跳频 UE分配 SRS奇树上的资源, 为部分跳频 UE和不跳频 UE分配 SRS偶树上的资源。
优选地, 所述根据 UE所在小区的剩余 SRS频带资源确定为所述 UE分 配 SRS奇树上的资源或 SRS偶树上的资源是指:所述系统侧判断如果小区的 剩余 SRS频带资源中, SRS奇树上的资源多于 SRS偶树上的资源, 则为所述 UE分配 SRS奇树上的资源; 如果小区的剩余 SRS频带资源中, SRS偶树上 的资源多于 SRS奇树上的资源, 则为所述 UE分配 SRS偶树上的资源。
优选地, 所述方法还包括: 确定所述 UE所占用的 SRS带宽; 在为所述 UE分配 SRS树后, 根据所述 UE的 SRS带宽, 釆用以下方式中的任一种在 为所述 UE分配的 SRS树上为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分; 将搜寻到的可用资源分配给所述 UE。
优选地, 所述釆用频分的方式在为所述 UE分配的 SRS树上为所述 UE 搜寻可用资源, 包括: 在某一子帧偏移对应的所述 UE的 SRS树上, 从与所 述 UE的 SRS带宽相同的一层开始, 根据 SRS树上各节点索引按预定顺序搜 索所述 SRS树上的空闲资源, 如果搜到则将所述空闲资源作为可用资源。
优选地, 所述釆用频分和码分的方式在为所述 UE分配的 SRS树上为所 述 UE搜寻可用资源, 包括: 如果按照所述频分的方式未搜索到可用资源, 则, 在一子帧偏移对应的所述 UE的 SRS树上, 从与所述 UE的 SRS带宽相 同的一层开始,根据 SRS树上各节点索引按预定顺序搜索所述 SRS树上的非 空闲资源, 且占用该资源的 UE与当前 UE的 SRS带宽相同、 周期不同, 不 同的周期所对应的循环偏移不同; 如果搜到, 则将所述非空闲资源作为可用 资源。
优选地, 所述釆用频分和时分的方式在为所述 UE分配的 SRS树上为所 述 UE搜寻可用资源, 包括: 当在某一子帧偏移对应的所述 UE的 SRS树上, 通过所述频分的方式未找到可用资源, 则选择下一子帧偏移, 继续通过频分 和 /或码分的方式寻找可用资源;
所述釆用频分、 时分和码分的方式在为所述 UE分配的 SRS树上为所述 UE搜寻可用资源, 包括: 当在一子帧偏移对应的所述 UE的 SRS树上, 通过所述频分和码分的方 式未找到可用资源, 则选择下一子帧偏移, 继续通过所述频分和 /或码分的方 式寻找可用资源。
优选地,如果未搜索到可分配给 UE的可用资源,则减小所述 UE的 SRS 带宽, 以新确定的 SRS带宽, 釆用以下方式中的任一种为所述 UE搜寻可用 资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分, 将搜寻到的可 用资源分配给所述 UE。
优选地,所述确定所述 UE所占用的 SRS带宽的步骤包括:根据所述 UE 的信道质量为其分配 SRS带宽,为信道质量越好的 UE分配的 SRS带宽越大。
优选地,所述为信道质量越好的 UE所分配的 SRS带宽越大的步骤包括: 设置信号与干扰和噪声比( SINR )测量值的门限: SinrBad、 SinrNormal、 SinrGood , 其 SinrBad〈 SinrNormal〈 SinrGood ,将 UE的 SINR测量值与门限进 行比较, 以决定其 SRS带宽:
当 SINR≤ SinrBad , 则 = 3 , 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS树第四层上资源节点的带宽;
当 SinrBad < SINR≤ SinrNormal , 则 B^ l , 表示为所述 UE分配的 SRS带 宽为该 UE所在小区 SRS树第三层上资源节点的带宽;
当 SinrNormal < SINR≤ SinrGood , 则 = 1 , 表示为所述 UE分配的 SRS带 宽为该 UE所在小区 SRS树第二层上资源节点上的带宽;
当 SinrGood < SINR , 则 Β^ Ο , 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS树第一层上资源节点上的带宽;
其中第一层资源节点的带宽〉第二层上资源节点的带宽〉第三层上资源节 点的带宽〉第四层上资源节点的带宽。
为解决上述技术问题,本发明还提供了一种 LTE系统中 SRS资源分配装 置, 包括:
设置单元, 其设置为: 设置不同 SRS发送周期对应不同的循环移位; 以 及 资源分配单元, 其设置为: 在为 UE分配 SRS资源的过程中, 根据所述 UE釆用的 SRS发送周期以及所述设置单元设置的 SRS发送周期与循环移位 对应关系, 设置所述 UE釆用的循环移位。
优选地, 所述资源分配单元, 其还设置为, 在为所述 UE设置其釆用的 循环移位后, 在所述 UE所在的小区的 SRS频带资源范围内, 根据所述 UE 的跳频信息, 确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源, 所述 UE的跳频信息用于指示所述 UE是全跳频 UE, 还是部分跳频 UE, 还 是不 ϋ频 UE。
优选地, 所述资源分配单元, 其还设置为, 在为所述 UE分配 SRS树后, 根据所述 UE的 SRS带宽,釆用以下方式中的任一种在为所述 UE分配的 SRS 树上为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时 分和码分, 将搜寻到的可用资源分配给所述 UE。
优选地, 所述装置还包括带宽设置单元, 其设置为: 根据所述 UE的信 道质量为其分配 SRS带宽, 为信道质量越好的 UE分配的 SRS带宽越大, 并 将为所述 UE分配的 SRS带宽发送给所述资源分配单元。
釆用本发明所述的 SRS资源复用方法, 不会使 UE间所分配的 SRS资源 发生冲突, 也即不会互相造成干扰, 能够简单的将不同 SRS发送周期的 UE 复用在一起而不发生冲突, 资源复用过程也比较简单, 整个 SRS资源的利用 率也非常高, 能同时适用于 LTE系统中的 FDD和 TDD两种双工模式。 附图概述
图 1为一种 SRS带宽配置下的 SRS资源树示意图;
图 2为本发明实施方式所提供的 SRS资源分配流程图;
图 3为本发明实施方式所提供的 SRS资源分配示例图。
本发明的较佳实施方式
先介绍本文中一些概念: SRS奇树指: 子载波号为奇数的 SRS频带资源 (或称 SRS带宽资源); SRS偶树指: 子载波号为偶数的 SRS频带资源。 全 跳频指: UE在其所在小区的 SRS频带资源范围内跳频; 非全跳频 UE包括: 部分跳频 UE和 /或不跳频 UE; 部分跳频指: UE仅在其所在小区的部分 SRS 频带资源范围内跳频; 不跳频是指: 所述 UE每次发送时的 SRS频带资源位 置不变。
本发明的发明构思是, 系统侧设置不同 SRS发送周期对应不同的循环移 位, 在为 UE分配 SRS资源的过程中, 根据 UE釆用的 SRS发送周期设置所 述 UE釆用的循环移位。
由于不同的循环移位对应不同的相位, 配置不同的 UE釆用不同的循环 移位, 相当于码分; 进一步通过配置不同周期的 UE釆用不同的循环移位, 相当于在码分的基础上又复用了不同周期的 UE,是一种双重复用, 由此可以 避免不同周期 UE之间存在的干扰, 实现简单、 有效、 高利用率的 SRS资源 复用。
上述根据 UE釆用的 SRS发送周期设置所述 UE釆用的循环移位是指: 配置周期越相近的 UE所分别对应的循环移位的间隔越大, 即周期相近的任 意两 UE所分别对应的循环移位的间隔大于等于周期较远的任意两 UE所分别 对应的循环移位的间隔。
在为所述 UE设置其釆用的循环移位后, 在所述 UE所在的小区的 SRS 频带资源范围内, 根据所述 UE的跳频信息, 确定为所述 UE分配 SRS奇树 上的资源或 SRS偶树上的资源,所述 UE的跳频信息用于指示其是全跳频 UE, 还是部分跳频 UE, 还是不跳频 UE;
其中: 所述根据所述 UE的跳频信息, 确定为所述 UE分配 SRS奇树上 的资源或 SRS偶树上的资源的步骤包括:
•系统侧判断如果系统中的 UE都是全跳频的 UE, 或者系统中的 UE都 是非全跳频的 UE,则根据所述 UE所在小区的剩余 SRS频带资源确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源, 具体地: 所述系统侧判断 如果小区的剩余 SRS频带资源中, SRS奇树上的资源多于 SRS偶树上的资源, 则为所述 UE分配 SRS奇树上的资源;如果小区的剩余 SRS频带资源中, SRS 偶树上的资源多于 SRS奇树上的资源,则为所述 UE分配 SRS偶树上的资源; *系统侧判断如果系统中既有全跳频的 UE, 又有非全跳频的 UE, 则为 全跳频的 UE和非全跳频的 UE分别分配不同 SRS树上的资源, 包括: 为全 跳频 UE分配 SRS偶树上的资源, 为部分跳频 UE和不跳频 UE分配 SRS奇 树上的资源; 或者, 为全跳频 UE分配 SRS奇树上的资源, 为部分跳频 UE 和不跳频 UE分配 SRS偶树上的资源。
优选地, 所述方法还包括确定所述 UE的 SRS带宽, 在为所述 UE分配 SRS树( SRS奇树或 SRS偶树 )后, 根据所述 UE的 SRS带宽在为所述 UE 分配的 SRS树上, 釆用以下方式中的任一种为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分(顺序不限定) , 将搜寻到的 可用资源分配给所述 UE。
其中, 通过频分的方式搜寻可用资源时, 是根据不同的频带来搜寻, 通 过时分的方式搜寻可用资源时, 是根据不同的子帧偏移来搜寻, 通过码分的 方式搜寻可用资源时, 是根据不同的循环移位来搜寻。
确定所述 UE的 SRS带宽的步骤包括: 根据所述 UE的信道质量为 UE 分配 SRS带宽, 优选地, 为信道质量越好的 UE分配的 SRS带宽越大。
具体地, 所述频分方式包括: 在某一子帧偏移对应的所述 UE的 SRS树 上, 从与所述 UE的 SRS带宽相同的一层开始, 根据 SRS树上各节点索引按 预定顺序搜索所述 SRS树上的空闲资源, 如果搜到, 则将所述空闲资源作为 可用资源分配给所述 UE, 如果未搜到, 则釆用时分和 /或码分的方式继续搜 索。
具体地, 所述码分方式包括: 在某一子帧偏移对应的所述 UE的 SRS树 上, 从与所述 UE的 SRS带宽相同的一层开始, 根据 SRS树上各节点索引按 预定顺序搜索所述 SRS树上的非空闲资源, 且占用该资源的 UE2与当前 UE 的 SRS带宽相同、 周期不同; 如果搜到, 则将所述非空闲资源作为可用资源 分配给当前 UE, 如果未搜到, 则釆用时分的方式继续搜索。
上述按预定顺序搜索可以是按从小到大的节点索引顺序搜索, 或者是按 从大到小的节点索引顺序搜索, 或者是从中间节点索引往大小两边节点索引 搜索的顺序等。 具体地, 所述时分方式包括: 当在 SRS发送周期内某一子帧偏移对应的 所述 UE的 SRS树上, 通过频分和 /或码分的方式未找到可用资源, 则选择下 一子帧偏移, 继续通过频分和 /或码分的方式寻找可用资源。
如果未搜索到可分配给 UE的可用资源, 则减小所述 UE的 SRS带宽, 以新确定的 SRS带宽, 釆用以下方式中的任一种为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分, 将搜寻到的可用资源 分配给所述 UE。
本发明通过 RACH的 SINR测量值来确定 UE的 SRS带宽大小, 然后用 奇树与偶树来划分全带宽跳频 UE与非全带宽跳频 UE,通过不同频带来频分 复用和不同子帧偏移来时分复用不同的 UE, 不同循环移位来码分复用不同 SRS发送周期的 UE , 既可以避免同一小区内的 UE发送 SRS带来冲突而造 成干扰, 也具有很高的资源的利用率, 适用于 LTE FDD和 TDD两种双工模 式。
实现上述方法的 SRS资源分配装置包括: 设置单元和资源分配单元, 其 中:
所述设置单元, 设置为: 设置不同 SRS发送周期对应不同的循环移位; 所述资源分配单元, 其设置为: 在为 UE分配 SRS资源的过程中, 根据 所述 UE釆用的 SRS发送周期以及所述设置单元设置的 SRS发送周期与循环 移位对应关系, 设置所述 UE釆用的循环移位。
优选地, 所述资源分配单元, 其还设置为, 在为所述 UE设置其釆用的 循环移位后, 在所述 UE所在的小区的 SRS频带资源范围内, 根据所述 UE 的跳频信息, 确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源, 所述 UE的跳频信息用于指示所述 UE是全跳频 UE, 还是部分跳频 UE, 还 是不 ϋ频 UE。
优选地, 所述资源分配单元, 其还设置为, 在为所述 UE分配 SRS树后, 根据所述 UE的 SRS带宽, 在为所述 UE分配的 SRS树上, 釆用以下方式中 的任一种为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分, 将搜寻到的可用资源分配给所述 UE。
优选地, 所述装置还包括带宽设置单元, 其设置为: 根据所述 UE的信 道质量为其分配 SRS带宽, 为信道质量越好的 UE分配的 SRS带宽越大, 并 将为所述 UE分配的 SRS带宽发送给所述资源分配单元。
下面结合附图说明本发明的资源分配过程, 如图 2所示, 资源分配流程 包括:
步骤 201 , 确定 UE的 SRS发送带宽、 跳频信息 (全跳频、 部分跳频或 不跳频) 以及 SRS发送周期;
每种 SRS带宽配置都分为四层, 用 {0, 1, 2, 3}表示, ^ = 0指示第一 层,也即最大带宽这一层, ¾^ = 3也即最小带宽这一层。可以通过多种 UE SRS 带宽分配方案来确定 UE在其所在小区的 SRS带宽配置中的 SRS带宽大小。
本实施例仅列举一种可用的 UE SRS带宽分配方案, 即信道质量越好的 UE其被分配到的 SRS带宽越大, 具体地: 在 UE所在小区的 SRS带宽配置 中, 根据 UE初始接入时 RACH ( Random Access Channel, 随机接入信道) 的 SINR ( Signal to Interference plus Noise Ratio, 信号与干扰和噪声比)测量 值与给定的三个 SINR门限的大小来决定 UE SRS的带宽, UE RACH的 SINR 测量值越小对应配置的 SRS带宽的 ¾^值就越大,即 SRS带宽越小,三个 SINR 测量值的门限参数为 Sz 7r ai/、 SinrNormal、 SinrGood , 分别表示 SINR质量从 坏到好的三个门限, 其中 SinrBad < SinrNormal < SinrGood , 由该三个门限, 将 SINR的取值范围划分为四个部分, 分别对应不同层的带宽, 例如:
1 ) 当 SINR≤ SinrBad , BSRS = 3 , 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS树第四层上资源节点的带宽;
2 )当 SinrBad < SINR≤ SinrNormal , Β^ = 2 , 表示为所述 UE分配的 SRS带 宽为该 UE所在小区 SRS树第三层上资源节点的带宽;
3 ) 当 SinrNormal < SINR≤ SinrGood , Β^ = \ , 表示为所述 UE分配的 SRS 带宽为该 UE所在小区 SRS树第二层上资源节点上的带宽; 4 )当 SinrGood < SINR , Β^ = 0, 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS树第一层上资源节点上的带宽。
在确定 UE的 SRS带宽后, 根据小区的应用场景和 SRS的带宽资源来确 定 UE的跳频信息, 即是否需要跳频, 如果需要跳频的话, 是全带宽跳频还 是部分带宽跳频。 最后, 根据 UE的移动速度和信道特性来决定 SRS的发送 周期。 跳频信息以及周期的确定均可根据现有技术实现。
在本文中, 跳频带宽用 ={0,1,2,3} (所述 b/^是标准中的参数, 专用于 表示 UE的跳频信息 )表示, 。 =0表示跳频带宽在 BQ层, 即跳频的带宽范 围在 SRS最大带宽这一层, ^=3表示跳频带宽在 B3层, 跳频的带宽范围在 SRS最小带宽这一层, 即肯定不跳频。 当 时, UE跳频, ≥¾^时,
UE不 ϋ频。
本实施例中设计在第一步中获得 UE的发送 SRS序列的相关参数, 但在 其他实施例中, 可不限于都在首步中获得, 只要保证在使用该参数前获知即 可。
步骤 202, 根据 UE的 SRS发送周期确定其发送时所釆用的循环移位; 由于 LTE协议中规定 SRS序列可以釆用 8种循环移位,频域循环移位的 相位 = 2τ ,其中" ^ =0,1,2,3,4,5,6,7。不同相位的 SRS序列的互相关为零。
8
因此考虑使不同发送周期的 UE釆用不同的循环移位相位发送 SRS序列。
对于所有的 UE,利用 SRS序列的 8种循环移位相位来复用 8种不同 SRS 发送周期的 UE,使不同 SRS发送周期的 UE可以分配同一个 SRS资源树上, 即 SRS树中奇树或偶树的一个节点可以复用给 8个周期不同带宽相同的 UE 使用, 从而提高 SRS资源的容量, 且由于循环移位相位不同, 在同一个子帧 偏移上传输不会造成冲突而产生干扰。
优选地, 8种循环移位相位与 8种 SRS发送周期的对应关系可釆用如下 方案:
周期为 2ms的 UE对应的循环移位 " =0, 周期为 5ms的 UE对应的循 环移位《 =4, 周期为 10ms的 UE对应的循环移位《 =6 , 周期为 20ms的 UE对应的循环移位 = 2 , 周期为 40ms的 UE对应的循环移位 = 5 , 周 期为 80ms的 UE对应的循环移位 = 3 , 周期为 160ms的 UE对应的循环移 位 = 7 ,周期为 320ms的 UE对应的循环移位 = 1。这样设置是考虑发送 周期越近, 不同周期 UE的 SRS信号发生碰撞的次数越多; 发送周期越远, 不同周期 UE的 SRS信号发生碰撞的次数越少。 为了尽量减少这种情况发生 的概率, 因此本实施例中将周期相近的 UE对应的循环移位间隔设计尽量较 大。
当对照上述周期与循环移位的对应关系的举例时, 在了解用于复杂系统 的 SRS带宽分配时所遭遇的困难就变得显而易见。 当然, 需要说明的是, 上 述对应关系仅仅是本发明设计思想下的一个简单举例, 决不能因此而简单理 解为本发明的带宽分配方法中循环移位与周期的对应关系仅此一种。 本领域 技术人员根据上述设计思想可以做多种变形。 例如, 在上述实施例中, 任意 两个相邻的循环移位可以互相替换, 例如: 周期为 2ms的 UE对应的循环移 位 = 1 , 周期为 320ms的 UE对应的循环移位《 = 0 ; 或者周期为 10ms的 UE对应的循环移位《 = 5 ,周期为 40ms的 UE对应的循环移位《 = 6等等, 此处不再——例举。
设置循环移位不限于在本步骤执行, 也可以在为 UE分配好 SRS频带资 源后再执行, 总之只要在数据传输之前确定即可。
步骤 203 , 判断系统中是否全为全跳频 UE, 如果不是, 执行步骤 204, 如果是, 执行步骤 205;
步骤 204,判断系统中是否存在全跳频的 UE,如果不存在,执行步骤 205, 如果存在, 执行步骤 206;
本步骤可选。 本发明设计通过奇偶树来区分全跳频、 部分跳频和不跳频 的用户,如果判断系统中不存在全跳频的用户, 则在为 UE分配 SRS带宽时, 可不必限制是在奇树上还是偶树上。
步骤 205, 根据所述 UE所在小区的剩余 SRS频带资源确定为所述 UE 分配 SRS奇树上的资源或 SRS偶树上的资源, 执行步骤 209;
优选地,可根据奇偶树资源的多少来确定为 UE分配的 SRS树,如果 UE 所在小区的剩余 SRS频带资源中, SRS奇树上的资源多于 SRS偶树上的资源, 则为该 UE分配 SRS奇树上的资源,如果 SRS偶树上的资源多于 SRS奇树上 的资源, 则为该 UE分配 SRS偶树上的资源。
步骤 206, 判断 UE是否为全跳频 UE, 如果不是, 执行步骤 207, 如果 是, 执行步骤 208;
步骤 207, 分配该 UE属于偶树, 其 SRS序列分布在偶数子载波上, 执 行步骤 209;
步骤 208, 分配该 UE属于奇树, 其 SRS序列分布在奇数子载波上, 执 行步骤 209;
步骤 209, 确定 UE的当前可用子帧偏移, 从该子帧偏移对应的 SRS树
(如果为 UE分配的是奇树, 则此处的 SRS树为 SRS奇树, 如果为 UE分配 的是偶树, 则此处的 SRS树为 SRS偶树)的与当前 UE带宽相等的一层开始 搜索可用资源即是否有空闲节点;
子帧偏移号相对于小区 SRS专用子帧配置周期而言, 在该周期内的第一 个子帧, 其子帧偏移号为 0, 第二个子帧的子帧偏移号为 1 , 以此类推。 在该 周期内的所有子帧偏移中,配置的该 UE所在小区可用的子帧偏移为 UE当前 可用子帧偏移。本步骤中的搜索起点可以是从 SRS树上的任意一个节点开始, 不限于 SRS树的底部。 开始搜索的那个子帧偏移也可以是任意一个可用的子 帧偏移, 而不限于第一个可用子帧偏移。
搜索可分配给当前 UE的空闲节点必须满足的条件是:
对于奇树而言, 其父节点能分配给 UE的前提是它的所有子节点都尚未 被分配, 也即只要父节点的任何一个子节点被分配了, 那么这个父节点都不 能被当作一个整体被分配, 而只能是以其子节点为整体分配给与子节点带宽 相等的 UE;
对于偶树而言, 需满足以下频带分配原则: 偶树中的部分带宽跳频 UE
(包括跳频带宽为第二层和第三层的 UE )和不跳频 UE利用频分在频带上分 开, 为了避免不同 UE SRS发送带宽重叠的冲突, SRS偶树中如果一个节点 分配给了一个跳频带宽为第二层的 UE ,那么这个节点对应的第二层带宽节点 下所分配的 UE都必须是跳频带宽为第二层的 UE; 同理, SRS偶树中如果一 个节点分配给了一个跳频带宽为第三层的 UE,那么这个节点对应的第三层带 宽节点下所分配的 UE都必须是跳频带宽为第三层的 UE; 对于不跳频的 UE 来说, SRS偶树中分配给它的节点需要满足的条件是其父节点下的其他子节 点不能分配给跳频带宽为其父节点这一层的 UE。
上述条件是基于本实施例的分配方法的规定, 具体地, 本实施例中, 将 全跳频 UE配置在 SRS奇树上, 将部分跳频 UE和不跳频 UE配置在 SRS偶 树上。 基于此种原则设计了上述条件, 如果在其他实施例中, 将全跳频 UE 配置在 SRS偶树上, 将部分跳频 UE和不跳频 UE配置在 SRS奇树上; 则上 述针对奇树的条件应对应于新的 SRS偶树, 上述针对偶树的条件应对应与新 的 SRS奇树。
如果小区内 UE均配置在奇树 SRS资源上, 则仅考虑上述奇树对应的条 件, 而不必考虑上述的偶树条件; 同样地,如果小区内 UE均配置在偶树 SRS 资源上, 则不必考虑上述奇树条件。
步骤 210, 判断是否有可用资源, 如果有, 执行步骤 211 , 如果没有, 执 行步骤 212;
步骤 211 , 将找到的空闲节点分配给 UE, SRS资源分配结束;
此时为 UE分配的 SRS资源包括频带资源和时域资源 (子帧偏移) 。 步骤 212, 判断是否有下一个未搜索过的可用子帧偏移, 如果有, 则将 该可用子帧偏移作为当前可用子帧偏移, 返回步骤 209, 如果没有, 执行步 骤 213;
如前所述, 才艮据选定的小区 SRS专用子帧配置周期, 可以确定一个配置 周期内总的可用 SRS子帧偏移个数。 时域上的一个子帧偏移对应频域上的一 段 SRS资源, 即 SRS树, 通过不同子帧偏移的时分复用可以继续扩展 SRS 资源的容量。
步骤 213 , 确定 UE的当前可用子帧偏移, 从该子帧偏移对应的 SRS树 (如果为 UE分配的是奇树, 则此处的 SRS树为 SRS奇树, 如果为 UE分配 的是偶树, 则此处的 SRS树为 SRS偶树)的与当前 UE带宽相等的一层节点 开始搜索非空闲节点, 且占用该节点的 UE与当前 UE的 SRS带宽相同、 周 期不同;
步骤 214, 是否找到满足条件的节点, 如果找到, 则执行步骤 215, 如果 没找到, 执行步骤 216;
步骤 215, 将找到的满足条件的节点分配给 UE, SRS资源分配结束; 此时为 UE分配的 SRS资源包括频带资源和时域资源 (子帧偏移) 。 步骤 216, 判断是否有下一个未搜索过的可用子帧偏移, 如果有, 则将 该可用子帧偏移作为当前可用子帧偏移, 返回步骤 213 , 如果没有, 执行步 骤 217;
本步骤中的 "未搜索过的可用子帧偏移" 是指未按照步骤 213的条件搜 索过的可用子帧偏移。
步骤 217, 将当前 UE的 SRS 带宽降低一层, 返回步骤 209;
将当前 UE的 SRS带宽降低一个等级即一层,从步骤 209开始继续分配, 找到可用的 SRS资源便结束。进行到这一步的 UE的 SRS带宽不会是第四层, 因为没有剩余 SRS频带资源是系统是不会接入需要分配 SRS资源的 UE。
下面举例说明, 设某 UE1的可用子帧偏移为子帧偏移 3和子帧偏移 5, 针对每一个子帧偏移在频域上均有一段与其对应的 SRS资源, 如图 3所示, 子帧偏移 3对应 SRS1 , 子帧偏移 5对应 SRS2, 每一个 SRS均为如图 1所示 的树状结构。
假设该 UE1的 SRS发送周期为 2ms,且该 UE1的 SINR小于等于 SinrBad, 则该 UE的 SRS带宽为图 1所示的 B3层的带宽值(4个 RB ) 。 且该 UE1为 部分跳频 UE, 则根据上述实施例, 为该 UE1分配的资源为 SRS偶树。 如果 按照从小到大的顺序搜索, 则先从可用子帧偏移 3对应的 SRS1的偶树的 B3 层开始, 从下往上搜索空闲节点, 即未被任何 UE 占用的频带资源, 如果未 搜索到, 则再从可用子帧偏移 5对应的 SRS2的偶树的 B3层开始, 从下往上 搜索空闲节点, 如果还未搜索到, 则再釆用码分复用, 即允许带宽相同、 周 期不同的 UE复用一段频带资源。重新从可用子帧偏移 3对应的 SRS1的偶树 的 B3层开始, 从下往上搜索非空闲节点, 即已被其他 UE占用的频带资源, 当占用该频带资源的 UE2的带宽为 4RB、 SRS发送周期为 10ms (满足不等 于 2ms的条件) 时, 将该段资源分配给 UE1 , 即允许 UE1与 UE2复用该段 频带资源, 在发送数据 UE1 釆用的循环移位《 = 0 , UE2 釆用的循环移位 " = ό , 两 UE的数据传输不会产生干扰。
本发明设计利用 SRS的树状结构来划分不跳频与跳频。将 SRS树中的奇 树用来分配给在整个小区 SRS带宽上跳频的 UE, 偶树用来分配给在部分小 区 SRS带宽上跳频的 UE和不跳频的 UE。 如果没有全带宽跳频的 UE, 则奇 树同样可以分配给部分带宽跳频的 UE, 如果全为全带宽跳频的 UE, 则偶树 同样可以分配给全带宽跳频的 UE。
本发明的奇偶划分和频带划分可以避免全带宽上跳频的 UE与部分带宽 跳频和不跳频 UE在跳频后发生带宽重叠的冲突, 从而避免产生干扰, 提高 系统性能。 在其他实施例中, 可釆用其他划分方式, 例如奇树用来分配给在 部分小区 SRS带宽上跳频的 UE和不跳频的 UE,偶树用来分配给在整个小区 SRS带宽上跳频的 UE, 总之只要能保证不冲突即可。
上述实施例中, 通过步骤 209-210实现频分复用; 通过步骤 212以及步 骤 215的循环过程实现时分复用; 通过步骤 213-215实现码分复用。 上述频 分、 时分、 码分的顺序不限于本发明实施例中的顺序, 可根据需要进行修改, 例如先码分后时分等。
工业实用性 本发明要提供一种 LTE系统 SRS资源分配方法和装置, 实现不同周期 UE间的简单、 有效、 高利用率的 SRS资源复用。 釆用本发明所述的 SRS资 源复用方法, 不会使 UE间所分配的 SRS资源发生冲突, 也即不会互相造成 干扰, 能够简单的将不同 SRS发送周期的 UE复用在一起而不发生冲突, 资 源复用过程也比较简单 ,整个 SRS资源的利用率也非常高,能同时适用于 LTE 系统中的 FDD和 TDD两种双工模式。

Claims

权 利 要 求 书
1、 一种长期演进 LTE系统中探测参考信号 SRS资源分配方法, 包括: 系统侧设置不同 SRS发送周期对应不同的循环移位, 在为用户设备 UE 分配 SRS资源的过程中, 根据所述 UE釆用的 SRS发送周期设置所述 UE釆 用的循环移位。
2、 如权利要求 1所述的方法, 其中: 所述根据 UE釆用的 SRS发送周期 设置所述 UE釆用的循环移位的步骤中:
对于 SRS发送周期越相近的 UE, 配置其对应的循环移位的间隔越大。
3、 如权利要求 1所述的方法, 其还包括:
在所述 UE所在的小区的 SRS频带资源范围内, 根据所述 UE的跳频信 息, 确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源, 所述 UE 的跳频信息用于指示其是全跳频 UE, 还是部分跳频 UE, 还是不跳频 UE; 其中: 所述 SRS奇树是指子载波号为奇数的 SRS频带资源; 所述 SRS 偶树是指子载波号为偶数的 SRS频带资源; 所述全跳频是指所述 UE在其所 在小区的 SRS频带资源范围内跳频; 所述部分跳频是指所述 UE仅在其所在 小区的部分 SRS频带资源范围内跳频; 所述不跳频是指所述 UE每次发送时 的 SRS频带资源位置不变。
4、 如权利要求 3所述的方法, 其中: 所述根据所述 UE的跳频信息确定 为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源的步骤, 包括:
系统侧判断如果系统中的 UE都是全跳频 UE, 或者系统中的 UE都是非 全跳频 UE,则根据所述 UE所在小区的剩余 SRS频带资源确定为所述 UE分 配 SRS奇树上的资源或 SRS偶树上的资源; 所述非全跳频 UE包括: 部分跳 频 UE和 /或不 ϋ频 UE;
系统侧判断如果系统中既有全跳频 UE, 又有非全跳频 UE, 则为全跳频 UE和非全跳频 UE分别分配不同 SRS树上的资源。
5、 如权利要求 4所述的方法, 其中: 所述为全跳频 UE和非全跳频 UE 分别分配不同 SRS树上的资源是指: 为全跳频 UE分配 SRS偶树上的资源, 为部分跳频 UE和不跳频 UE分 配 SRS奇树上的资源; 或者
为全跳频 UE分配 SRS奇树上的资源, 为部分跳频 UE和不跳频 UE分 配 SRS偶树上的资源。
6、 如权利要求 4所述的方法, 其中: 所述根据 UE所在小区的剩余 SRS 频带资源确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源是指: 所述系统侧判断如果小区的剩余 SRS频带资源中, SRS奇树上的资源多 于 SRS偶树上的资源, 则为所述 UE分配 SRS奇树上的资源; 如果小区的剩 余 SRS频带资源中, SRS偶树上的资源多于 SRS奇树上的资源, 则为所述 UE分配 SRS偶树上的资源。
7、 如权利要求 3所述的方法, 其还包括:
确定所述 UE所占用的 SRS带宽; 在为所述 UE分配 SRS树后, 根据所 述 UE的 SRS带宽, 釆用以下方式中的任一种在为所述 UE分配的 SRS树上 为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和 码分; 将搜寻到的可用资源分配给所述 UE。
8、 如权利要求 7所述的方法, 其中: 所述釆用频分的方式在为所述 UE 分配的 SRS树上为所述 UE搜寻可用资源, 包括:
在一子帧偏移对应的所述 UE的 SRS树上, 从与所述 UE的 SRS带宽相 同的一层开始,根据 SRS树上各节点索引按预定顺序搜索所述 SRS树上的空 闲资源, 如果搜到则将所述空闲资源作为可用资源。
9、 如权利要求 8所述的方法, 其中: 所述釆用频分和码分的方式在为所 述 UE分配的 SRS树上为所述 UE搜寻可用资源, 包括:
如果按照所述频分的方式未搜索到可用资源, 则,
在一子帧偏移对应的所述 UE的 SRS树上, 从与所述 UE的 SRS带宽相 同的一层开始,根据 SRS树上各节点索引按预定顺序搜索所述 SRS树上的非 空闲资源, 且占用该资源的 UE与当前 UE的 SRS带宽相同、 周期不同, 不 同的周期所对应的循环偏移不同; 如果搜到, 则将所述非空闲资源作为可用 资源。
10、 如权利要求 8或 9所述的方法, 其中: 所述釆用频分和时分的方式 在为所述 UE分配的 SRS树上为所述 UE搜寻可用资源, 包括:
当在一子帧偏移对应的所述 UE的 SRS树上, 通过所述频分的方式未找 到可用资源, 则选择下一子帧偏移, 继续通过所述频分和 /或码分的方式寻找 可用资源;
所述釆用频分、 时分和码分的方式在为所述 UE分配的 SRS树上为所述 UE搜寻可用资源, 包括:
当在一子帧偏移对应的所述 UE的 SRS树上, 通过所述频分和码分的方 式未找到可用资源, 则选择下一子帧偏移, 继续通过所述频分和 /或码分的方 式寻找可用资源。
11、 如权利要求 7所述的方法, 其还包括:
如果未搜索到可分配给 UE的可用资源, 则减小所述 UE的 SRS带宽, 以新确定的 SRS带宽, 釆用以下方式中的任一种为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分, 将搜寻到的可用资源 分配给所述 UE。
12、 如权利要求 7所述的方法, 其中: 所述确定所述 UE所占用的 SRS 带宽的步骤包括:
根据所述 UE的信道质量为其分配 SRS带宽, 为信道质量越好的 UE分 配的 SRS带宽越大。
13、 如权利要求 12所述的方法, 其中: 所述为信道质量越好的 UE所分 配的 SRS带宽越大的步骤包括:
设置信号与干扰和噪声比 SINR测量值的门限: SinrBad、 SinrNormal、 SinrGood ,其 SinrBad〈 SinrNormal〈 SinrGood ,将 UE的 SINR测量值与门限进 行比较, 以决定其 SRS带宽: 用 ¾^表示所述 UE所在小区 SRS树的各层编 号;
当 SINR≤ SinrBad , 则 = 3 , 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS 树第四层资源节点的带宽; SinrBad < SINR≤ SinrNormal , 则 Β^ = 2 , 表示为所述 UE分配的 SRS带宽为该 UE所在小区 SRS树第三层资 源节点的带宽;
当 SinrNormal < SINR≤ SinrGood , 则 = 1 , 表示为所述 UE分配的 SRS带 宽为该 UE所在小区 SRS树第二层资源节点上的带宽;
当 SinrGood < SINR , 则 Β^ Ο , 表示为所述 UE分配的 SRS带宽为该 UE 所在小区 SRS树第一层上资源节点上的带宽; 其中所述第一层资源节点的带 宽〉所述第二层资源节点的带宽〉所述第三层资源节点的带宽〉所述第四层资 源节点的带宽。
14、 一种长期演进 LTE系统中探测参考信号 SRS资源分配装置, 包括: 设置单元, 其设置为: 设置不同 SRS发送周期对应不同的循环移位; 以 及
资源分配单元, 其设置为: 在为用户设备 UE分配 SRS资源的过程中, 根据所述 UE釆用的 SRS发送周期以及所述设置单元设置的 SRS发送周期与 循环移位对应关系, 设置所述 UE釆用的循环移位。
15、 如权利要求 14所述的装置, 其中:
所述资源分配单元还设置为: 在为所述 UE设置其釆用的循环移位后, 在所述 UE所在的小区的 SRS频带资源范围内, 根据所述 UE的跳频信息, 确定为所述 UE分配 SRS奇树上的资源或 SRS偶树上的资源, 所述 UE的跳 频信息用于指示所述 UE是全跳频 UE, 还是部分跳频 UE, 还是不跳频 UE。
16、 如权利要求 15所述的装置, 其中:
所述资源分配单元还设置为:在为所述 UE分配 SRS树后 ,根据所述 UE 的 SRS带宽, 釆用以下方式中的任一种在为所述 UE分配的 SRS树上为所述 UE搜寻可用资源: 频分, 频分和时分, 频分和码分, 频分、 时分和码分, 将 搜寻到的可用资源分配给所述 UE。
17、 如权利要求 16所述的装置, 其还包括带宽设置单元, 所述带宽设置 单元设置为: 根据所述 UE的信道质量为其分配 SRS带宽, 为信道质量越好 的 UE分配的 SRS带宽越大, 并将为所述 UE分配的 SRS带宽发送给所述资 源分配单元。
PCT/CN2011/075496 2010-06-10 2011-06-09 一种lte系统中srs资源分配方法和装置 WO2011153944A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11791934.0A EP2568729B1 (en) 2010-06-10 2011-06-09 Method and apparatus for sounding reference signal resource allocation in long term evolution system
US13/700,484 US8913584B2 (en) 2010-06-10 2011-06-09 Method and apparatus for sounding reference signal resource allocation in long term evolution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010199599.8A CN102281642B (zh) 2010-06-10 2010-06-10 一种lte系统中srs资源分配方法和装置
CN201010199599.8 2010-06-10

Publications (1)

Publication Number Publication Date
WO2011153944A1 true WO2011153944A1 (zh) 2011-12-15

Family

ID=45097546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075496 WO2011153944A1 (zh) 2010-06-10 2011-06-09 一种lte系统中srs资源分配方法和装置

Country Status (4)

Country Link
US (1) US8913584B2 (zh)
EP (1) EP2568729B1 (zh)
CN (1) CN102281642B (zh)
WO (1) WO2011153944A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660057B2 (en) * 2010-08-26 2014-02-25 Golba, Llc Method and system for distributed communication
KR101598201B1 (ko) * 2011-09-16 2016-03-03 한국전자통신연구원 무선 통신 시스템에서의 상향 링크 신호 전송 및 수신 방법
CN103368713B (zh) * 2012-03-26 2017-03-15 中兴通讯股份有限公司 设备到设备的通信方法及装置
CN102685915B (zh) * 2012-05-02 2014-12-17 北京交通大学 一种上行信道探测导频的自适应调度方法
CN103036663B (zh) * 2012-12-06 2015-09-09 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
CN103702431B (zh) * 2013-12-31 2017-07-14 大唐移动通信设备有限公司 上行调度的方法及设备
US9867187B2 (en) * 2014-08-04 2018-01-09 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
CN106105288B (zh) * 2015-02-17 2020-01-17 华为技术有限公司 一种上行参考信号的通信装置及方法
CN107636999B (zh) * 2015-06-09 2020-08-07 华为技术有限公司 无线通信网络中的方法和节点
CN106899394A (zh) * 2015-12-21 2017-06-27 中兴通讯股份有限公司 一种信道探测参考信号动态调度方法、装置以及基站
US10218424B2 (en) 2017-01-13 2019-02-26 Nokia Technologies Oy Reference signal indications for massive MIMO networks
WO2018171793A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 参考信号传输技术
CN108632008B (zh) 2017-03-24 2023-06-02 华为技术有限公司 一种参考信号发送方法及装置
CN108633033B (zh) * 2017-03-24 2023-05-12 中兴通讯股份有限公司 一种传输资源确定方法、装置及用户设备
CN108809587B (zh) 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
CN115021879A (zh) * 2017-08-21 2022-09-06 中兴通讯股份有限公司 参考信号传输方法及装置、终端、基站和存储介质
AU2017433652A1 (en) * 2017-09-30 2020-05-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
US10608697B2 (en) * 2018-01-12 2020-03-31 At&T Intellectual Property I, L.P. Facilitating improvements to the uplink performance of 5G or other next generation networks
CN111224762B (zh) * 2018-11-26 2021-06-11 大唐移动通信设备有限公司 一种探测参考信号资源分配方法及装置
EP3949210A1 (en) * 2019-03-25 2022-02-09 Telefonaktiebolaget LM Ericsson (publ) Configuring a plurality of user equipments
WO2024113607A1 (en) * 2023-04-07 2024-06-06 Zte Corporation Sounding reference signal enhancement methods and systems for wireless communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384055A (zh) * 2007-09-05 2009-03-11 北京三星通信技术研究有限公司 配置用于信道测量的上行参考信号的设备和方法
CN101447826A (zh) * 2008-12-26 2009-06-03 华为技术有限公司 子帧分配方法、处理方法及装置
WO2009115563A1 (en) * 2008-03-20 2009-09-24 Nokia Siemens Networks Oy Frequency hopping pattern and arrangement for sounding reference signal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265648B (zh) * 2008-06-24 2014-01-29 三菱电机株式会社 利用跳频探测参考信号的天线选择
CN101404794B (zh) * 2008-09-24 2012-11-28 中兴通讯股份有限公司 测量参考信号的发送预处理方法、参数发送和接收方法
KR101498297B1 (ko) * 2008-11-23 2015-03-05 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법
KR101639810B1 (ko) * 2009-01-13 2016-07-25 엘지전자 주식회사 무선통신 시스템에서 사운딩 참조신호의 전송방법
US8830931B2 (en) * 2009-03-22 2014-09-09 Lg Electronics Inc. Method for transmitting sounding reference signals in a wireless communication system, and apparatus for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384055A (zh) * 2007-09-05 2009-03-11 北京三星通信技术研究有限公司 配置用于信道测量的上行参考信号的设备和方法
WO2009115563A1 (en) * 2008-03-20 2009-09-24 Nokia Siemens Networks Oy Frequency hopping pattern and arrangement for sounding reference signal
CN101447826A (zh) * 2008-12-26 2009-06-03 华为技术有限公司 子帧分配方法、处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Assignment Scheme for Sounding Reference Signals in E-UTRA Uplink", 3GPP TSG RAN WG1 MEETING #51 R1-074806, 30 October 2007 (2007-10-30), XP050108271 *

Also Published As

Publication number Publication date
US8913584B2 (en) 2014-12-16
EP2568729B1 (en) 2019-03-27
US20130070725A1 (en) 2013-03-21
EP2568729A1 (en) 2013-03-13
EP2568729A4 (en) 2017-07-12
CN102281642A (zh) 2011-12-14
CN102281642B (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2011153944A1 (zh) 一种lte系统中srs资源分配方法和装置
KR102568599B1 (ko) 무선 통신 시스템의 데이터 전송 방법, 수신 방법 및 이를 이용하는 장치
JP5878566B2 (ja) Lteシステムのための上向きリンクサウンディング参照信号伝送方法
CN111740812B (zh) 探测参考信号发送方法
JP6308995B2 (ja) 無線通信システムにおける搬送波集成方法及び装置
WO2016112721A1 (zh) 非授权资源使用方法、系统、基站、ue及计算机存储介质
CN101867403B (zh) 一种测量参考信号的多天线发送方法、终端
WO2017049582A1 (zh) 数据传输方法、数据传输装置、基站及用户设备
US20090073944A1 (en) Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
RU2411653C1 (ru) Устройство и способ выделения ресурсов в системе множественного доступа с частотным разделением на одной несущей
CN106453181B (zh) 一种信息处理方法、装置及系统
CN101815325B (zh) 跳频的实现方法、装置和通信系统
WO2012019414A1 (zh) 一种移动通信系统的无线帧及测量参考信号的发送方法
WO2011120316A1 (zh) 一种lte-a系统中测量参考信号的配置方法和系统
JP2014075816A (ja) 多重アンテナ及びサウンディングレファレンス信号ホッピングを使用する上向きリンク無線通信システムにおけるサウンディングレファレンス信号伝送方法及び装置
JP2013510475A (ja) サウンディング参照信号のシグナリング配置システム及び方法
KR20200029580A (ko) 랜덤 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2014161389A1 (zh) 数据信道的传输、接收处理方法及装置
WO2011127837A1 (zh) 多天线系统中的探测参考信号发送方法及装置
KR20170098891A (ko) 메시지 전송 방법 및 장치
JP7379626B2 (ja) 参照信号の伝送方法および伝送装置
WO2021012738A1 (zh) 同步信号块的发送、时隙位置确定方法及装置、存储介质、基站、终端
CN102291208A (zh) 一种传输上行参考信号的方法
WO2013107267A1 (zh) 一种上行解调导频控制信令的通知方法及系统
CN116506094B (zh) 5g小基站设备基于多用户的srs资源分配方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11791934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13700484

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011791934

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE